Sample records for beta mrna levels

  1. Expression of beta 3-adrenoceptor mRNA in rat tissues.

    PubMed

    Evans, B A; Papaioannou, M; Bonazzi, V R; Summers, R J

    1996-01-01

    1. This study examines the expression of beta 3-adrenoceptor messenger RNA (beta 3-AR mRNA) in rat tissues to allow comparison with atypical beta-adrenoceptors determined by functional and radioligand binding techniques. 2. A reverse transcription/polymerase chain reaction protocol has been developed for determining the relative amounts of beta 3-AR mRNA in rat tissues. 3. Measurement of adipsin and uncoupling protein (UCP) mRNA was used to examine all tissues for the presence of white and brown adipose tissue which may contribute beta 3-AR mRNA. 4. The beta 3-AR mRNA is expressed at high levels in brown and white adipose tissue, stomach fundus, the longitudinal/circular smooth muscle of both colon and ileum, and colon submucosa. There was substantial expression of adipsin in colon submucosa and moderate expression in fundus, suggesting that in these regions at least some of the beta 3-AR signal may be contributed by fat. Pylorus and colon mucosa showed moderate levels of beta 3-AR mRNA with lower levels of adipsin. Ileum mucosa and submucosa showed low but readily detectable levels of beta 3-AR. 5. Expression of adipsin in rat skeletal muscles coupled to very low levels of beta 3-AR mRNA indicates that the observed beta 3-AR may be due to the presence of intrinsic fat. beta 3-AR mRNA was virtually undetectable in heart, lung and liver. These results raise the possibility that the atypical beta-AR demonstrated by functional and/or binding studies in muscle and in heart is not the beta 3-AR. 6. By use of two different sets of primers for amplification of beta 3-AR cDNA, no evidence was found for differential splicing of the mRNA in any of the tissues examined. 7. The detection of beta 3-AR mRNA in the gut mucosa and submucosa suggests that in addition to its established roles in lipolysis, thermogenesis and regulation of gut motility beta 3-AR may subserve other functions in the gastrointestinal tract. The absence of beta 3-AR mRNA in rat heart or its presence with adipsin in skeletal muscle suggests that atypical beta-adrenoceptor responses in heart and skeletal muscle are unlikely to be mediated by beta 3-AR.

  2. Inhibition of hepatic gluconeogenesis and enhanced glucose uptake contribute to the development of hypoglycemia in mice bearing interleukin-1beta- secreting tumor.

    PubMed

    Metzger, Shulamit; Nusair, Samir; Planer, David; Barash, Varda; Pappo, Orit; Shilyansky, Joel; Chajek-Shaul, Tova

    2004-11-01

    Mice bearing IL-1beta-secreting tumor were used to study the chronic effect of IL-1beta on glucose metabolism. Mice were injected with syngeneic tumor cells transduced with the human IL-1beta gene. Serum IL-1beta levels increased exponentially with time. Secretion of IL-1beta from the developed tumors was associated with decreased food consumption, reduced body weight, and reduced blood glucose levels. Body composition analysis revealed that IL-1beta caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities and mRNA levels of these enzymes were reduced, and 2-deoxy-glucose uptake by peripheral tissues was enhanced. mRNA levels of glucose transporters (Gluts) in the liver were determined by real-time PCR analysis. Glut-3 mRNA levels were up-regulated by IL-1beta. Glut-1 and Glut-4 mRNA levels in IL-1beta mice were similar to mRNA levels in pair-fed mice bearing nonsecreting tumor. mRNA level of Glut-2, the major Glut of the liver, was down-regulated by IL-1beta. We concluded that both decreased glucose production by the liver and enhanced glucose disposal lead to the development of hypoglycemia in mice bearing IL-1beta-secreting tumor. The observed changes in expression of hepatic Gluts that are not dependent on insulin may contribute to the increased glucose uptake.

  3. Reduced beta 2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme.

    PubMed Central

    Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L

    1994-01-01

    We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151

  4. Molecular analysis of the beta-thalassemia phenotype associated with inheritance of hemoglobin E (alpha 2 beta2(26)Glu leads to Lys).

    PubMed Central

    Benz, E J; Berman, B W; Tonkonow, B L; Coupal, E; Coates, T; Boxer, L A; Altman, A; Adams, J G

    1981-01-01

    Inheritance of the gene for betaE-globin is associated with hypochromia and microcytosis, reminiscent of typical heterozygous beta-thalassemia. Patients with hemoglobin (Hb)E-beta-thalassemia exhibit clinical phenotypes of severe beta-thalassemia, a circumstance not encountered in other compound heterozygous states for structural beta-chain mutations and beta-thalassemia. We have analyzed the kinetics of globin synthesis and the levels of globin messenger (m) RNA accumulation in patients with Hb E-beta-thalassemia and Hb E trait. The initial rate of beta-globin synthesis (betaE/alpha=0.20-0.34) was less than expected on the basis of gene dosage, or comparable studies of other compound heterozygous states for beta-thalassemia and structurally abnormal beta-chains. betaE-globin synthesis was not only reduced during short-term incubations (1-5 min), but also remained relatively unchanged during long-term pulse or chase incubations up to 5h. Analysis of globin mRNA by cell-free translation and molecular hybridization confirmed that the unexpectedly low levels of betaE-globin synthesis were associated with comparable reduction in the levels of beta-globin mRNA. In Hb E-beta-thalassemia the betaA + betaE (alpha globin nRNA ratio observed were substantially lower than those obtained from reticulocytes of patients with heterozygous beta-thalassemia, or Hb S-betaO-thalassemia, while in Hb E trait, the betaA + betaE/alpha mRNA ratio was in the ranged observed for beta-thalassemia trait. The betaE-globin gene specifies reduced accumulation of betaE-globin mRNA, a property characteristic of other forms of beta-thalassemia. The beta-thalassemia phenotype associated with inheritance of Hb E is thus determined at the level of beta-globin mRNA metabolism. PMID:6166632

  5. Uroepithelial cells are part of a mucosal cytokine network.

    PubMed Central

    Hedges, S; Agace, W; Svensson, M; Sjögren, A C; Ceska, M; Svanborg, C

    1994-01-01

    This study compared the cytokine production of uroepithelial cell lines in response to gram-negative bacteria and inflammatory cytokines. Human kidney (A498) and bladder (J82) epithelial cell lines were stimulated with either Escherichia coli Hu734, interleukin 1 alpha (IL-1 alpha), or tumor necrosis factor alpha (TNF-alpha). Supernatant samples were removed, and the RNA was extracted from cells at 0, 2, 6, and 24 h. The secreted cytokine levels were determined by bioassay or immunoassay; mRNA was examined by reverse transcription-PCR. The two cell lines secreted IL-6 and IL-8 constitutively. IL-6 and IL-8 mRNA were constitutively produced in both cell lines; IL-1 beta mRNA was detected in J82 cells. IL-1 alpha induced significantly higher levels of IL-6 secretion than did E. coli Hu734 or TNF-alpha. IL-1 alpha and TNF-alpha induced significantly higher levels of IL-8 secretion than did E. coli Hu734. Secreted IL-1 beta was not detected; IL-1 alpha and TNF-alpha were not detected above the levels used for stimulation. IL-1 alpha, IL-1 beta, IL-6, and IL-8 mRNAs were detected in both cell lines after exposure to the stimulants. TNF-alpha mRNA was occasionally detected in the J82 cell line after TNF-alpha stimulation. Cytokine (IL-6 and IL-8) and control (glyceraldehyde 3-phosphate dehydrogenase [G3PDH] and beta-actin) mRNA concentrations were quantitated with internal PCR standards. Cytokine mRNA levels relative to beta-actin mRNA levels were the highest in E. coli-stimulated cells. In comparison, the cytokine mRNA levels relative to G3PDH mRNA levels were the highest in IL-1 alpha-stimulated cells. beta-Actin mRNA levels decreased after bacterial stimulation but not after cytokine stimulation, while G3PDH mRNA levels increased in response to all of the stimulants tested. These results suggested that E. coli Hu734 lowered the beta-actin mRNA levels in uroepithelial cells, thus distorting the IL-6 and IL-8 mRNA levels relative to this control. In summary, E. coli IL-1 alpha and TNF-alpha were found to activate the de novo synthesis and secretion of IL-6 and IL-8 in uroepithelial cells. These results emphasize the role of epithelial cells in cytokine-mediated responses during the early stages of infection. Images PMID:8188354

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baserga, S.J.; Benz, E.J. Jr.

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. Themore » authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.« less

  7. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    PubMed

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  8. Quantitative RT-PCR for inhibin/activin subunits: measurements of rat hypothalamic and ovarian inhibin/activin subunit mRNAs during the estrous cycle.

    PubMed

    Murata, T; Takizawa, T; Funaba, M; Fujimura, H; Murata, E; Takahashi, M; Torii, K

    1997-02-01

    Inhibins (alpha-beta(A) and alpha-beta(B)) and activins (beta(A)-beta(A), beta(A)-beta(B) and beta(B)-beta(B)) were originally isolated from ovarian follicular fluids as FSH secretion modifiers. Inhibin/activin subunits, alpha, beta(A) and beta(B), are widely distributed in several tissues, including gonads and brain, and inhibins and activins have been reported to be involved in ovarian or hypothalamic functions. In this study, we established and employed a competitive RT-PCR assay system for rat inhibin/activin subunits by capillary electrophoresis to determine rat hypothalamic and ovarian inhibin/activin subunit mRNA levels during the estrous cycle. Linearity of standards for alpha, beta(A), and beta(B) subunit assays were between 0.01-0.3 amol, 0.003-0.09 amol and 0.002-0.02 amol of each fragment DNA as a standard, respectively. Hypothalamic beta(A) subunit mRNA during the estrous morning (1000 h) tended to be increased compared with that of the proestrous evening (1700 h), although they were not significantly different. Ovarian alpha subunit mRNA levels tended to be increased during the proestrous morning (1000 h) and were significantly increased in the proestrous evening (1700 h), compared with diestrus and estrus (P < 0.05). Ovarian beta(A) subunit mRNA was also significantly higher in the proestrous evening, compared with diestrus and estrus (P < 0.05), but in the case of beta(B) subunit mRNA there was no difference among diestrus, proestrus and estrus. We thus established a sensitive competitive RT-PCR system for the measurement of inhibin/activin alpha, beta(A) and beta(B) subunits, and this assay system would be helpful for the study of inhibin/activin action in brain and other tissues where these factors are expressed at low levels.

  9. Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists.

    PubMed

    Danner, S; Lohse, M J

    1997-07-16

    Prolonged agonist stimulation of beta2-adrenoceptors results in receptor down-regulation which is often paralleled by a reduction of the corresponding mRNA. In this study, we investigated the agonist-dependent regulation of beta2-adrenoceptor mRNA in DDT1-MF2 smooth muscle cells and C6 glioma cells. In DDT1-MF2 cells the half-life of the mRNA was 12 h in monolayer compared to 2 h in suspension cultures. Under both conditions, the agonist isoproterenol reduced this half-life by a factor of 2. In contrast, in C6 glioma cells isoproterenol had no effect on the mRNA stability, even though it reduced mRNA levels by approximately 50%. Isoproterenol-induced downregulation of beta2-adrenoceptor mRNA was completely blocked in C6 cells by the presence of a protein synthesis inhibitor, while this was not so in DDT1-MF2-cells. These data show that beta2-adrenoceptor downregulation occurs via cell-type specific mechanisms.

  10. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  11. Cyclic stretching force selectively up-regulates transforming growth factor-beta isoforms in cultured rat mesangial cells.

    PubMed Central

    Riser, B. L.; Cortes, P.; Heilig, C.; Grondin, J.; Ladson-Wofford, S.; Patterson, D.; Narins, R. G.

    1996-01-01

    Glomerular distention from increased intraglomerular pressure stretches mesangial cells (MCs). Stretching MCs in culture stimulates extracellular matrix accumulation, suggesting that this may be a mechanism for glomerular hypertension-associated glomerulosclerosis. We examined whether mechanical stretching serves as a stimulus for the synthesis and activation of the prosclerotic molecule transforming growth factor (TGF)-beta, thus providing a potential system for auto-induction of extracellular matrix. Rat MCs cultured on flexible-bottom plates were subjected to cyclic stretching for up to 3 days and then assayed for TGF-beta mRNA, secretion of TGF-beta, and localization of active TGF-beta by immunostaining. MCs contained mRNA for all three mammalian isoforms of TGF-beta. Cyclic stretching for 36 hours increased TGF-beta1 and TGF-beta3 mRNA levels approximately twofold, without altering the levels of TGF-beta2 mRNA. This was followed at 48 to 72 hours by the increased secretion of both latent and active TGF-beta1. Latent, but not active, TGF-beta3 secretion also increased whereas the levels of TGF-beta2 were unaffected by mechanical force. The stretching force in this system is unequally distributed over the culture membrane. Localization of active TGF-beta by immunostaining demonstrated that the quantity of cell-associated cytokine across the culture was directly proportional to the zonal amplitude of the stretching force. These results demonstrate that stretching force stimulates MCs to selectively release and activate TGF-beta1. This mechanical induction of TGF-beta1 may help explain the increased extracellular matrix associated with intraglomerular hypertension. Images Figure 1 Figure 3 PMID:8669477

  12. MHC2TA mRNA levels and human herpesvirus 6 in multiple sclerosis patients treated with interferon beta along two-year follow-up

    PubMed Central

    2012-01-01

    Background In previous studies we found that MHC2TA +1614 genotype frequency was very different when MS patients with and without human herpesvirus 6 (HHV-6) in serum samples were compared; a different clinical behavior was also described. The purpose of the study was: 1. To evaluate if MHC2TA expression in MS patients was influenced by interferon beta (IFN-beta) treatment. 2. To study MHC2TA expression in MS patients with and without minor allele C. 3. To analyze the relation between MHC2TA mRNA levels and HHV-6 active infection in MS patients. Methods Blood and serum samples of 154 MS patients were collected in five programmed visits: basal (prior to beginning IFN-beta treatment), six, twelve, eighteen and twenty-four months later. HHV-6 in serum and MHC2TA mRNA levels were evaluated by PCR and RT-PCR, respectively. Neutralizing antibodies (NAbs) against IFN-beta were analyzed by the cytopathic effect assay. Results We found that MHC2TA mRNA levels were significantly lower among MS patients with HHV-6 active infection at the basal visit (without treatment) than in those MS patients without HHV-6 active infection at the basal visit (p = 0.012); in all the positive samples we only found variant A. Furthermore, 58/99 (58.6%) MS patients without HHV-6 along the five programmed visits and an increase of MHC2TA expression after two-years of IFN-beta treatment were clinical responders vs. 5/21 (23.8%) among those MS patients with HHV-6 and a decrease of MHC2TA mRNA levels along the two-years with IFN-beta treatment (p = 0.004); no differences were found between patients with and without NAbs. Conclusions MHC2TA mRNA levels could be decreased by the active replication of HHV-6; the absence of HHV-6 in serum and the increase of MHC2TA expression could be further studied as markers of good clinical response to IFN-beta treatment. PMID:23009575

  13. Cannabinoid receptor CB1 mRNA is highly expressed in the rat ciliary body: implications for the antiglaucoma properties of marihuana.

    PubMed

    Porcella, A; Casellas, P; Gessa, G L; Pani, L

    1998-07-15

    We used RT-PCR to measure relative differences in cannabinoid receptor (CB) mRNAs in the rat eye, comparing CB1 or CB2 transcripts to that of the normalizing reference gene beta2 microglobulin (beta2m). Significantly higher levels of CB1 mRNA levels were found in the ciliary body (0.84+/-0.05% of beta2m) than in the iris, (0.34+/-0.04% of beta2m), retina (0.07+/-0.005% of beta2m) and choroid (0.06+/-0.005% of beta2m). CB2 mRNA was undetectable. This expression pattern supports a specific role for the CB1 receptor in controlling intraocular pressure, helping to explain the antiglaucoma property of cannabinoids. Copyright 1998 Elsevier Science B.V. All rights reserved.

  14. Endocrine regulation of gonadotropin and growth hormone gene transcription in fish.

    PubMed

    Melamed, P; Rosenfeld, H; Elizur, A; Yaron, Z

    1998-06-01

    The pituitary of a number of teleosts contains two gonadotropins (GtHs) which are produced in distinct populations of cells; the beta subunit of the GtH I being found in close proximity to the somatotrophs, while the II beta cells are more peripheral. In several species the GtH beta subunits are expressed at varying levels throughout the reproductive cycle, the I beta dominating in early maturing fish, after which the II beta becomes predominant. This suggests differential control of the beta subunit synthesis which may be regulated by both hypothalamic hormones and gonadal steroids. At ovulation and spawning, changes also occur in the somatotrophs, which become markedly more active, while plasma growth hormone (GH) levels increase. In a number of species, GnRH elevates either the I beta or the II beta mRNA levels, depending on the reproductive state of the fish. In tilapia, the GnRH effect on the II beta appears to be mediated through both cAMP-PKA and PKC pathways. GnRH also stimulates GH release in both goldfish and tilapia, but it increases the GH transcript levels only in goldfish; both GnRH and direct activation of PKC are ineffective in altering GH mRNA in tilapia pituitary cells. Dopamine (DA) does not alter II beta transcript levels in cultured tilapia pituitary cells, but increases GH mRNA levels in both rainbow trout and tilapia, in a PKA-dependent manner. This effect appears to be through interactions with Pit-1 and also by stabilizing the mRNA. Somatostatin (SRIF) does not alter GH transcript levels in either tilapia or rainbow trout, although it may alter GH synthesis by modulation of translation. Gonadal steroids appear to have differential effects on the transcription of the beta subunits. In tilapia, testosterone (T) elevates I beta mRNA levels in cells from immature or early maturing fish (in low doses), but depresses them in cells from late maturing fish and is ineffective in cells from regressed fish. Similar results were seen in early recrudescing male coho salmon injected with T or E2. T or E2 administered in vivo has dramatic stimulatory effects on the II beta transcript levels in immature fish of a number of species, while less powerful effects are seen in vitro. A response is also seen in cells from early maturing rainbow trout or tilapia, or regressed tilapia, but not in cells from late maturing or spawning fish. These results are substantiated by the finding that the promoter of the salmon II beta gene contains several estrogen responsive elements (EREs) which react and interact differently when exposed to varying levels of E2. In addition, activator protein-1 (AP-1) and steroidogenic factor-1 (SF-1) response elements are also found in the salmon II beta promoter; the AP-1 site is located close to a half ERE, while the SF-1 acts synergistically with the E2 receptor. The mRNA levels of both AP-1 and SP-1 are elevated, at least in mammals, by GnRH, suggesting possible sites for cross-talk between GnRH and steroid activated pathways. Reports of the effects of T or E2 on GH transcription differ. No effect is seen in vitro in pituitaries of tilapia, juvenile rainbow trout or common carp, but T does increase the transcript levels in pituitaries of both immature and mature goldfish. Reasons for these discrepancies are unclear, but other systemic hormones may be more instrumental than the gonadal steroids in regulating GH transcription. These include T3 which increases both GH mRNA levels and de novo synthesis (in tilapia and common carp) and insulin-like growth factor-I (IGF-I) which reduces GH transcript levels as well as inhibiting GH release.

  15. Differential regulation of amyloid-. beta. -protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.

    1988-02-01

    The authors have mapped the neuroanatomical distribution of amyloid-..beta..-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-..beta..-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-..beta..-protein mRNAmore » in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-..beta..-protein gene expression may be altered in Alzheimer disease.« less

  16. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    PubMed

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  17. Changes in beta-actin mRNA expression in remodeling canine myocardium.

    PubMed

    Carlyle, W C; Toher, C A; Vandervelde, J R; McDonald, K M; Homans, D C; Cohn, J N

    1996-01-01

    Beta-actin, a cytoskeletal protein important in the maintenance of cytoarchitecture, has long been thought to be expressed constitutively in myocardial tissue. As such, beta-actin mRNA has been used as a control gene in a wide range of experiments. However, we have uncovered consistent changes in beta-actin mRNA expression in canine myocardium remodeling as a result of insult to the left ventricle. The experimental canine models used were either DC shock damage to the left ventricle or volume overload resulting from severe mitral regurgitation. The remodeling process in both canine models is characterized by an increase in left ventricular mass. PCR amplification using primers designed to selectively amplify the 3' end and a portion of the 3' untranslated region of beta-actin mRNA resulted in the generation of a 297 base pair product predominant only in normal canine myocardium and a 472 base pair product that became increasingly prominent from 1 to 30 days after DC shock damage to the left ventricle and from 10 to 90 days after creation of mitral regurgitation. Northern analysis showed a three-fold increase in beta-actin mRNA after either DC shock or creation of mitral regurgitation. Western analysis revealed an early increase in beta-actin protein followed by an apparent decrease to below baseline levels. These observations suggest that changes in beta-actin mRNA expression accompany the structural alterations that occur in response to myocardial damage. Whether or not the changes in beta-actin mRNA expression play a role in mediating these structural alterations remains to be determined.

  18. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed

    Sturm, A; Chrispeels, M J

    1990-11-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose.

  19. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection.

    PubMed Central

    Sturm, A; Chrispeels, M J

    1990-01-01

    We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose. PMID:2152110

  20. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro.

    PubMed

    Miyanishi, Keita; Trindade, Michael C D; Lindsey, Derek P; Beaupré, Gary S; Carter, Dennis R; Goodman, Stuart B; Schurman, David J; Smith, R Lane

    2006-06-01

    This study examined the effects of intermittent hydrostatic pressure (IHP) and transforming growth factor-beta 3 on chondrogenesis of adult human mesenchymal stem cells (hMSCs) in vitro. Chondrogenic gene expression was determined by quantifying mRNA signal levels for SOX9, a transcription factor critical for cartilage development and the cartilage matrix proteins, aggrecan and type II collagen. Extracellular matrix production was determined by weight and histology. IHP was applied to hMSCs in pellet culture at a level of 10 MPa and a frequency of 1 Hz for 4 h per day for periods of 3, 7, and 14 days. hMSCs responded to addition of TGF-beta 3 (10 ng/mL) with a greater than 10-fold increase (p < 0.01) in mRNA levels for each, SOX9, type II collagen, and aggrecan during a 14-day culture period. Applying IHP in the presence of TGF-beta 3 further increased the mRNA levels for these proteins by 1.9-, 3.3-, and 1.6-fold, respectively, by day 14. Chondrogenic mRNA levels were increased with just exposure to IHP. Extracellular matrix deposition of type II collagen and aggrecan increased in the pellets as a function of treatment conditions and time of culture. This study demonstrated adjunctive effects of IHP on TGF-beta 3-induced chondrogenesis and suggests that mechanical loading can facilitate articular cartilage tissue engineering.

  1. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    PubMed

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  2. Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor, beta-1,3-Endoglucanase, in Soybean.

    PubMed

    Takeuchi, Y; Yoshikawa, M; Takeba, G; Tanaka, K; Shibata, D; Horino, O

    1990-06-01

    Soybean (Glycine max) beta-1,3-endoglucanase (EC 3.2. 1.39) is involved in one of the earliest plant-pathogen interactions that may lead to active disease resistance by releasing elicitor-active carbohydrates from the cell walls of fungal pathogens. Ethylene induced beta-1,3-endoglucanase activity to 2- to 3-fold higher levels in cotyledons of soybean seedlings. A specific polyclonal antiserum raised against purified soybean beta-1,3-endoglucanase was used to immunoprecipitate in vitro translation products, demonstrating that ethylene induction increased translatable beta-1,3-endoglucanase mRNA. Several cDNA clones for the endoglucanase gene were obtained by antibody screening of a lambda-gt11 expression library prepared from soybean cotyledons. Hybrid-select translation experiments indicated that the cloned cDNA encoded a 36-kilodalton precursor protein product that was specifically immunoprecipitated with beta-1,3-endoglucanase antiserum. Escherichia coli cells expressing the cloned cDNA also synthesized an immunologically positive protein. Nucleotide sequence of three independent clones revealed a single uninterrupted open reading frame of 1041 nucleotides, corresponding to a polypeptide of 347 residue long. The primary amino acid sequence of beta-1,3-endoglucanase as deduced from the nucleotide sequence was confirmed by direct amino acid sequencing of trypsin digests of the glucanase. The soybean beta-1,3-endoglucanase exhibited 53% amino acid homology to a beta-1,3-glucanase cloned from cultured tobacco cells and 48% homology to a beta-(1,3-1,4)-glucanase from barley. Utilizing the largest cloned cDNA (pEG488) as a hybridization probe, it was found that the increase in translatable beta-1,3-endoglucanase mRNA seen upon ethylene treatment of soybean seedlings was due to 50- to 100-fold increase in steady state mRNA levels, indicating that ethylene regulates gene expression of this enzyme important in disease resistance at the level of gene transcription.

  3. (+/-)-3-[4-(2-dimethylamino-1-methylethoxy)-phenyl]-1H-pyrazolo[3,4- B]pyridine-1-acetic acid (Y-25510) stimulates production of IL-1 beta and IL-6 at the level of messenger RNA expression in cultured human monocytes.

    PubMed

    Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y

    1996-12-01

    (+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.

  4. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k.

    PubMed

    Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos

    2004-11-01

    Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.

  5. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol.

    PubMed Central

    Burns, A T; Deeley, R G; Gordon, J I; Udell, D S; Mullinix, K P; Goldberger, R F

    1978-01-01

    We have studied the kinetics of vitellogenin mRNA accumulation in rooster liver after a primary injection of 17beta-estradiol. The levels of vitellogenin mRNA have been determined both by hybridization of total cellular RNA to vitellogenin cDNA and by translation of vitellogenin mRNA in a wheat germ cell-free system. The results obtained by both methods of analysis are in good agreement and indicate that vitellogenin mRNA is present in the liver of normal roosters at a level of 0-5 molecules per liver cell and increases in amount during the 3 days following injection of estrogen, reaching a level of almost 6000 molecules per cell at the peak of the response. The level of vitellogenin mRNA declined exponentially during the next 14 days with a half-life of 29 hr, reaching a level of less than 10 molecules per cell at 17 days after injection of the hormone. The levels of vitellogenin mRNA after stimulation with estrogen have been correlated with the in vivo rate of synthesis of the vitellogenin polypeptide. The results indicate that the rate of vitellogenin synthesis is closely correlated with the level of vitellogenin mRNA. On the basis of these findings, we conclude that vitellogenin mRNA does not exist in the liver in an untranslated form after withdrawal from estrogen. PMID:273910

  6. Relationship between subclinical rejection and genotype, renal messenger RNA, and plasma protein transforming growth factor-beta1 levels.

    PubMed

    Hueso, Miguel; Navarro, Estanis; Moreso, Francesc; Beltrán-Sastre, Violeta; Ventura, Francesc; Grinyó, Josep M; Serón, Daniel

    2006-05-27

    Transforming growth factor (TGF)-beta(1) is increased in allograft rejection and its production is associated with single nucleotide polymorphisms (SNPs). The contribution of SNPs at codons 10 and 25 of the TGF-beta(1) gene to renal allograft damage was assessed in 6-month protocol biopsies and their association with TGF-beta(1) production. TGF-beta(1) genotypes were evaluated by polymerase chain reaction (PCR)/restriction fragment length polymorphism. Intragraft TGF-beta(1) messenger RNA (mRNA) was measured by real-time PCR and TGF-beta(1) plasma levels were assessed by enzyme-linked immunosorbent assay. Eighty consecutive patients were included. Allele T at codon 10 (risk ratio, 6.7; P = 0.02) and an episode of acute rejection before protocol biopsy (risk ratio, 6.2; P = 0.01) were independent predictors of subclinical rejection (SCR). TGF-beta(1) plasma levels, but not those of TGF-beta(1) mRNA, were increased in patients with SCR (2.59 ng/mL +/- 0.91 [n = 22] vs. 2.05 ng/mL +/- 0.76 [n = 43]; P = 0.01). There was no association between allele T and TGF-beta(1) plasma or intragraft levels. Allele T at codon 10 of the TGF-beta(1) gene is associated with a higher incidence of SCR.

  7. [Experimental study on the Der f 1 mRNA molecules derived from dermatophagoides farinae for specific immunotherapy on murine model of asthma].

    PubMed

    Jiang, Yu-xin; Yin, Kang; Jin, Wen-jie; Wu, Lu-yi; Li, Chao-pin

    2014-08-01

    To investigate the effect of Der f 1 mRNA molecules for specific immunotherapy on murine model of asthma. Fifty BALB/c mice were randomly divided into 5 groups: PBS group, Der f 1 sensitization group, Der f 1 specific immunotherapy (SIT) group, beta-actin mRNA SIT group, and Derf 1 mRNA SIT group. On days 0, 7 and 14, mice in PBS group received PBS injection; mice in the other groups were intraperitoneally injected with 10 microg Derf 1. At day 21, the mice in the 4 experimental groups were challenged with a 30-min inhaled dose of Der f 1 (100 microg/ml) for 7 successive days. Two weeks after the final sensitization, the mice in the above five groups were im- munized by intradermal injection with PBS, 1 microg Der f 1, 10 microg Der f 1, 2 microg beta-actin mRNA, and 2 microg Der f 1 mRNA, respectively for 3 times at one-week intervals. Two weeks after the last intradermal injection, all mice were sacrificed and bronchoalveolar lavage fluid (BALF) was collected. ELISA was performed to detect the levels of IFN-gamma and IL-13 in BALF, the number of eosinophils in the BALF was recorded. Splenocytes were prepared, and cultured with Der f 1 al- lergen (10 Jg/ml) for 72 h. Splenocytes of PBS group was cultured without Derf 1 allergen. The levels of IFN-gamma and IL-13 in splenocyte culture supernatant were measured by ELISA, as well as serum antibody levels of total IgE, allergen- specific IgE (sIgE), sIgG1, and sIgG2a. Lung sections were stained in hematoxylin and eosin, and observed under the microsope. Except for PBS group, mice in the other 4 group showed symptoms of acute asthma attack. Com- pared with Derf 1 sensitization group [(897.56 +/- 105.73) pg/ml] and beta-actin mRNA SIT group [(219.47 +/- 64.72) pg/ml], the level of IFN-gamma in BALF from Der f 1 mRNA SIT group [(897.56 +/- 105.73) pg/ml] and Derfl SIT group [(864.48 +/- 70.62)pg/ml] significantly increased (P<0.01). However, the level of IL-13 in BALF from Derf 1 mRNA SIT group [(241.64 +/- 31.41) pg/ml] and Derf 1 SIT group [(321.94 +/- 41.07)pg/ml] was significantly lower than that of Der f 1 sensitization group [(520.62 +/- 43.77) pg/ml] and beta-actin mRNA SIT group [(507.22 +/- 42.26) pg/ml](P<0.01). The number of eosinophils in Der f 1 mRNA SIT group [(1.33 +/- 0.44) x 10(5)/ml] and Der f 1 SIT group [(1.48 +/- 0.39) x 10(5)/ml] was also lower than that of Der f 1 sensitization group [(3.54 +/- 0.52)x10(5)/ml] and beta-actin mRNA SIT group [(2.98-0.53) x 10(5)/ml] (P<0.01). The levels of IFN-GAMMA and IL-13 in splenocyte culture supernatant showed that IFN-gamma level in Der f 1 mRNA SIT group [(420.91+69.92) pg/ml] and Der f 1 SIT group [(334.92 +/- 43.72) pg/ml] was significantly higher than that of Der f 1 sensitization group[(123.75 +/- 5.48) pg/ml] and beta-actin mRNA SIT group[(128.84 +/- 59.00) pg/ml] (P<0.01). However, IL-13 level of Der f 1 mRNA SIT group [(268.51 +/- 40.42) pg/ml] and Der f 1 SIT group [(285.26 +/- 62.21) pg/ml] was significantly lower than that of Derf 1 sensitization group [(613.89 +/- 51.54) pg/ml] and beta-actin mRNA SIT group [(524.05 +/- 39.12) pg/ml] (P<0.01). Compared with Der f 1 sensitization group [total IgE: (94.34 +/- 11.66) ng/ml, sIgE: (65.67 +/- 9.47) ng/ml, sIgG1: (75.18 +/- 9.52) ng/ml, sIgG2a: (2.81 +/- 1.17) ng/ml] and beta-actin mRNA SIT group[total IgE: (86.48 +/- 10.26) ng/ml, sIgE: (62.36 +/- 8.35) ng/ml, sIgG1: (69.51 +/- 8.98) ng/ml, IgG2a: (1.06 +/- 0.11) ng/ml], the serum antibody levels of total IgE [(33.72 +/- 9.78) ng/ml], sIgE [(22.76 +/- 8.09) ng/ml], sIgG1 [(17.87 +/- 7.59) ng/ml] of Der f 1 mRNA SIT group decreased significantly (P<0.01), whereas the level of IgG% [(7.74 +/- 0.88) ng/ml] increased (P<0.01). Compared with Der f 1 sensitization group, the asthmatic symptoms were relieved after immunization with Der f 1 mRNA for specific immunotherapy, including intact structure of respiratory and alveolar epithelial cells, decreased inflammatory cell infiltration, and similar to those in Der f 1 SIT group. However, the breakage and detachment of bronchial epithelial cells occurred in beta-actin mRNA SIT group. Derf 1 mRNA vaccine can correct Th1 and Th2 imbalance.

  8. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.

    PubMed

    Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana

    2009-01-01

    Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.

  9. The effect of thyroid hormone and a long-acting somatostatin analogue on TtT-97 murine thyrotropic tumors.

    PubMed

    Woodmansee, W W; Gordon, D F; Dowding, J M; Stolz, B; Lloyd, R V; James, R A; Wood, W M; Ridgway, E C

    2000-07-01

    Thyroid hormone inhibits thyrotropin (TSH) production and thyrotrope growth. Somatostatin has been implicated as a synergistic factor in the inhibition of thyrotrope function. We have previously shown that pharmacological doses of thyroid hormone (levothyroxine [LT4]) inhibit growth of murine TtT-97 thyrotropic tumors in association with upregulation of somatostatin receptor type 5 (sst5) mRNA and somatostatin receptor binding. In the current study, we examined the effect of physiological thyroid hormone replacement alone or in combination with the long-acting somatostatin analogue, Sandostatin LAR, on thyrotropic tumor growth, thyrotropin growth factor-beta (TSH-beta), and sst5 mRNA expression, as well as somatostatin receptor binding sites. Physiological LT4 replacement therapy resulted in tumor shrinkage in association with increased sst5 mRNA levels, reduced TSH-beta mRNA levels and enhanced somatostatin receptor binding. Sandostatin LAR alone had no effect on any parameter measured. However, Sandostatin LAR combined with LT4 synergistically inhibited TSH-beta mRNA production and reduced final tumor weights to a greater degree. In this paradigm, Sandostatin LAR required a euthyroid status to alter thyrotrope parameters. These data suggest an important interaction between the somatostatinergic system and thyroid hormone in the regulation of thyrotrope cell structure and function.

  10. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    PubMed

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  11. [Glucocorticoid pathway mediated the inhibition of testosterone in rats exposed to dibutyl phthalate].

    PubMed

    Zhang, Xiao-feng; Zheng, Jing; Li, Zi; Zhang, Yang

    2009-08-01

    To investigate the inhibitory mechanisms of testosterone (T) biosynthesis in rats exposed to dibutyl phthalate (DBP). Male Wistar rats were randomly divided into five groups by weight, including 0.25, 0.50, 1.00, 2.00 g/kg DBP groups and corn oil control group, with 16 rats in each group. DBP was administered by gavage once a day. After 30 days exposure, eight rats in each group were killed and the others were killed after 15 days without DBP administration. The levels of T and glucocorticoid (GC) in serum were determined by radioimmunoassay. The expression levels of 11 beta-dedroxysteriod dehydrogenase (11 beta-HSD) mRNA and steroidogenesis acute regulatory protein (StAR) mRNA were determined by RT-PCR. The protein expression level of glucocorticoid receptor (GR) was investigated by Western blotting. During exposure period, in 1.00 and 2.00 g/kg DBP groups, the levels of T were (0.260 +/- 0.218) ng/ml and (0.260 +/- 0.342) ng/ml, the levels of GC were (13.470 +/- 5.661) ng/ml and (13.740 +/- 3.977) ng/ml, the levels of T and GC in control group were (1.045 +/- 1.222) ng/ml and (9.224 +/- 3.496) ng/ml. There were statistic differences between 1.00 and 2.00 g/kg DBP groups and control group (t(T) values were -2.295 and -2.295, t(GC) values were 2.159 and 2.296, respectively, P < 0.05). The expression level of StAR mRNA was significantly down-regulated in 1.00 and 2.00 g/kg DBP groups, while StAR/beta-Actin values were 0.657 +/- 0.060 and 0.407 +/- 0.033, and compared to control group (0.871 +/- 0.081), there was statistic difference (t values were -3.707 and -8.037, P < 0.05). In 1.00 and 2.00 g/kg DBP groups, the expression of 11 beta-HSD mRNA and the expression of GR protein were increased in DBP dose-dependent manner, while 11 beta-HSD/beta-Actin values were 0.538 +/- 0.138 and 0.988 +/- 0.133, and GR/beta-Actin were 0.785 +/- 0.106 and 0.956 +/- 0.076, respectively. There were statistic difference, as compared to the controls (0.285 +/- 0.106 and 0.275 +/- 0.035) (t(11 beta-HSD/beta-Actin) values were 2.829 and 7.860, t(GR/beta-Actin) values were 8.064 and 10.77, respectively, P < 0.05).Linear correlation and regression revealed that there were positive correlation between DBP dose and the expression levels of 11 beta-HSD mRNA and GR protein, with r values of 0.766 and 0.790, respectively. In post-exposure period, there were no statistic differences of all above index among DBP groups and control group. DBP might inhibit T production in rats through GR mediation.

  12. Divergent expression of 11beta-hydroxysteroid dehydrogenase and 11beta-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish.

    PubMed

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-05-15

    The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  14. Type I Glanzmann thrombasthenia caused by an apparently silent beta3 mutation that results in aberrant splicing and reduced beta3 mRNA.

    PubMed

    Xie, Jingli; Pabón, Dina; Jayo, Asier; Butta, Nora; González-Manchón, Consuelo

    2005-05-01

    We report a novel genetic defect in a patient with type I Glanzmann thrombasthenia. Flow cytometry analysis revealed undetectable levels of platelet glycoproteins alphaIIb and beta3, although residual amounts of both proteins were detectable in immunoblotting analysis. Sequence analysis of reversely transcribed platelet beta3 mRNA showed a 100-base pair deletion in the 3'-boundary of exon 11, that results in a frame shift and appearance of a premature STOP codon. Analysis of the corresponding genomic DNA fragment revealed the presence of a homozygous C1815T transition in exon 11. The mutation does not change the amino acid residue but it creates an ectopic consensus splice donor site that is used preferentially, causing splicing out of part of exon 11. The parents of the proband, heterozygous for this mutation, were asymptomatic and had reduced platelet content of alphaIIbbeta3. PCR-based relative quantification of beta3 mRNA failed to detect the mutant transcript in the parents and showed a marked reduction in the patient. The results suggest that the thrombasthenic phenotype is, mainly, the result of the reduced availability of beta3-mRNA, most probably due to activation of the nonsense-mediated mRNA decay mechanism. They also show the convenience of analyzing both genomic DNA and mRNA, in order to ascertain the functional consequences of single nucleotide substitutions.

  15. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene.

    PubMed

    Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste

    2005-08-14

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.

  16. mRNA Expression of Platelet-Derived Growth Factor Receptor-{beta} and C-KIT: Correlation With Pathologic Response to Cetuximab-Based Chemoradiotherapy in Patients With Rectal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erben, Philipp; Horisberger, Karoline; Muessle, Benjamin

    2008-12-01

    Purpose: Deviant expression of platelet-derived growth factor receptor-{beta} (PDGFR{beta}) and c-kit was shown in patients with colorectal cancer. In the present study, mRNA expression of PDGFR{beta} and c-kit in 33 patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy with cetuximab/capecitabine/irinotecan in correlation with the tumor regression rate was investigated. Methods and Materials: Pretherapeutic biopsy cores and tumor material from the resected specimens were collected in parallel with normal rectal mucosa. The expression levels of PDGFR{beta} and c-kit were measured by quantitative polymerase chain reaction. Tumors were classified as good responders (tumor regression grade [TRG], 2-3) or poor responders (TRG,more » 0-1). Results: The TRG evaluation of the resected specimen was TRG 0-1 in 11 and TRG 2-3 in 22. The median normalized ratios in the pretreatment mucosa vs. tumor biopsy cores was as follows: PDGFR{beta} ratio of 15.2 vs. 49.5 (p <0.0001) and c-kit ratio of 0.94 vs. 0.67 (p = 0.014). The same tendency was observed for the median PDGFR{beta} ratios after chemoradiotherapy completion: 34.2 vs. 170.0 (p <0.0001). The PDGFR{beta} and c-kit mRNA expression values in the pretreatment tumor biopsy cores were lower than the values in the resected specimens: PDGFR{beta} ratio 49.5 vs. 170.0 (p = 0.0002) and c-kit ratio 0.67 vs. 1.1 (p = 0.0003). Nevertheless, no correlation was seen between the pretherapeutic PDGFR{beta} and c-kit mRNA expression and the pathologic regression rate. Conclusion: Cetuximab-based chemoradiotherapy increased PDGFR{beta} levels even further compared with the pretreatment samples and deserves further investigation.« less

  17. Regulation of. beta. -cell glucose transporter gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ling; Alam, Tausif; Johnson, J.H.

    1990-06-01

    It has been postulated that a glucose transporter of {beta} cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated {beta}-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the K{sub m} for 3-O-methyl-D-glucose transport in isolated ratmore » islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high K{sub m} glucose transporter in {beta} cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in {beta} cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis.« less

  18. [Tissue localization and expression difference of endogenous beta-glucosidase in digestive system of Musca domestica third instar larvae].

    PubMed

    Hu, Rong; Zhang, Shu; Wu, Jian-Wei; Guo, Guo; Fu, Ping

    2013-08-01

    To study the tissue localization and expression difference of endogenous beta-glucosidase in digestive system of Musca domestica third instar larvae. The digestive system of the 3rd instar larvae of Musca domestic was taken for the below tests. Tissue localization of endogenous beta-glucosidase mRNA was identified by in situ hybridization. Cellulase was localized by immunohistochemistry. The enzymatic activity of beta-glucosidase was measured by 3, 5-dinitrosalicylic acid(DNS) assay. The relative mRNA expression levels of M. domestica beta-glucosidase gene in these organs were determined by RT-PCR. Beta-glucosidase mRNA, with in situ hybridization, was shown in the epithelial cells of midgut, salivary glands and foregut of the larvae. The immunohistochemical analysis on larvae tissues revealed that cellulase was produced and secreted by the epithelial cells of the midgut, salivary glands and foregut. beta-glucosidase activity in salivary glands, foregut, midgut, and hindgut was (0.80 +/- 0.06), (0.38 +/- 0.02), (1.20 +/- 0.05) and (0.26 +/- 0.02) IU/mg, respectively. There was significant difference in beta-glucosidase activity among these digestive organs (P < 0.05). The activity level of beta-glucosidase was highest in midgut [(45.45 +/- 1.27)%], and lowest in hindgut [(9.85 +/- 0.88)%]. However, beta-glucosidase gene were only expressed in the salivary gland, foregut and midgut. Significant differences in gene expression level of beta-glucosidase was found among these organs (P < 0.05). The relative expression quantity of beta-glucosidase gene in midgut and salivary glands were 5 and 3 times higher than that in foregut. The endogenous beta-glucosidase gene is expressed in the foregut, midgut and salivary glands. The midgut and salivary glands of Musca domestica 3rd instar larvae are the primary organs of this enzyme secretion.

  19. Regulation of natriuretic peptide receptor A and B expression by transforming growth factor-beta 1 in cultured aortic smooth muscle cells.

    PubMed

    Fujio, N; Gossard, F; Bayard, F; Tremblay, J

    1994-06-01

    Two types of natriuretic peptide receptors (NPR-A and NPR-B) are membrane guanylate cyclases whose relative expression varies in different tissues. Because natriuretic peptides have been shown to inhibit aortic smooth muscle proliferation, we investigated the regulation of NPR-A and NPR-B in these cells under different proliferative conditions. NPR subtype mRNA levels were measured by our newly developed quantitative reverse transcription-polymerase chain reaction assay using mutated NPR-A and NPR-B cRNA as internal standards. The functional impact of their expression was determined by atrial natriuretic peptide (ANP)- and C-type natriuretic peptide (CNP)-induced stimulation of cyclic GMP production. In the intact aorta, NPR-B mRNA levels were found to be 10-fold higher than those of NPR-A. This dominance was further amplified (1000-fold) in long-term cultures (10 to 15 passages) of aortic smooth muscle cells (ASMC). Higher cyclic GMP production with CNP than with ANP was observed in cultured ASMC from Wistar-Kyoto (WKY) rats. Similar stimulation by the two agonists was noted in spontaneously hypertensive rat (SHR) cells, paralleled by a 10-fold increase in NPR-A mRNA levels and ANP stimulation of cyclic GMP in hypertensive cells. The present study also evaluated NPR-A and NPR-B mRNA control by transforming growth factor-beta 1 (TGF-beta 1), an important regulator of cell proliferation that is overexpressed in SHR ASMC. TGF-beta 1 decreased both NPR-A and NPR-B mRNA levels with a predominant effect in SHR cells at high cell density.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cell-derived transforming growth factor beta and tumor necrosis factor alpha

    PubMed Central

    1994-01-01

    Chronic allergic diseases and other disorders associated with mast cell activation can also be associated with tissue fibrosis, but a direct link between mast cell mediator release and fibroblast collagen gene expression has not been established. Using in situ hybridization, we show that the elicitation of an IgE-dependent passive cutaneous anaphylaxis (PCA) reaction in mice results in a transient, but marked augmentation of steady state levels of type alpha-1 (I) collagen mRNA in the dermis. While peak levels of collagen mRNA expression in the skin are observed 16-24 h after mast cell activation, substantial numbers of dermal cells are strongly positive for collagen mRNA at 1 and 2 h after antigen challenge, before circulating inflammatory cells are recruited into the tissues. Furthermore, experiments in mast cell- reconstituted or genetically mast cell-deficient WBB6F1-W/Wv mice demonstrate that the increased expression of collagen mRNA at sites of PCA reactions is entirely mast cell dependent. In vitro studies show that the supernatants of mouse serosal mast cells activated via the Fc epsilon RI markedly increase type alpha-1 (I) collagen mRNA levels in mouse embryonic skin fibroblasts, and also upregulate collagen secretion by these cells. The ability of mast cell supernatants to induce increased steady state levels of collagen mRNA in mouse skin fibroblasts is markedly diminished by absorption with antibodies specific for either of two mast cell-derived cytokines, transforming growth factor beta (TGF-beta 1) or tumor necrosis factor alpha (TNF- alpha), and is eliminated entirely by absorption with antibodies against both cytokines. Taken together, these findings demonstrate that IgE-dependent mouse mast cell activation can induce a transient and marked increase in steady state levels of type alpha-1 (I) collagen mRNA in dermal fibroblasts and that mast cell-derived TGF-beta 1 and TNF-alpha importantly contribute to this effect. PMID:7964480

  1. [Houttuynia Cordata induces expression of human beta-defensin-2 mRNA in pulmonary epithelial cells in vitro].

    PubMed

    Luo, Li; Dong, Bi-rong; Teng, Li-hua

    2008-07-01

    To explore the effects of Houttuynia Cordata on expression of human beta-defensin-2 (HBD-2) in pulmonary epithelial cells (SPC-A-1) in vitro; and to observe the correlationship between the level of HBD-2 mRNA and the concentrations or treatment times of Houttuynia Cordata. The SPC-A-1 cells were cultured with different concentrations of Houttuynia Cordata in vitro, including 0, 12.5, 25, 50, 100 and 200 microg/ml. And then, the SPC-A-1 cells were cultured with the optimal concentration of Houttuynia Cordata in different lengths of time, including 1, 2, 4, 8, 16 and 24 hours. After the treatment, the mRNA level of HBD-2 in pulmonary epithelial cells was detected by means of semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). After being cultured with Houttuynia Cordata, the expression of HBD-2 mRNA had positive correlation with the stimulus concentrations (rs=0.829, P=0.042) and stimulus time (rs=0.914, P=0.003). The highest expression of HBD-2 mRNA was induced by 100 microg/ml Houttuynia Cordata after 8-hour treatment. In comparison with the normal control group and the interleukin-1beta group, 100 microg/ml Houttuynia Cordata could significantly up-regulate the expression of HBD-2 mRNA in SPC-A-1 cells after 8-hour treatment (P<0.01). Houttuynia Cordata can up-regulate expression of HBD-2 mRNA in SPC-A-1 cells, and the highest expression level of HBD-2 mRNA can be obtained by culture with 100 microg/ml Houttuynia Cordata for 8 hours.

  2. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test

    PubMed Central

    Markova, Nataliia; Shevtsova, Elena; Bakhmet, Anastassia; Steinbusch, Harry M.

    2016-01-01

    While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome. PMID:27478647

  3. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test.

    PubMed

    Strekalova, Tatyana; Markova, Nataliia; Shevtsova, Elena; Zubareva, Olga; Bakhmet, Anastassia; Steinbusch, Harry M; Bachurin, Sergey; Lesch, Klaus-Peter

    2016-01-01

    While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.

  4. Macrophage colony-stimulating factor accelerates wound healing and upregulates TGF-beta1 mRNA levels through tissue macrophages.

    PubMed

    Wu, L; Yu, Y L; Galiano, R D; Roth, S I; Mustoe, T A

    1997-10-01

    Macrophage colony-stimulating factor (M-CSF) is produced by many cell types involved in wound repair, yet it acts specifically on monocytes and macrophages. The monocyte-derived cell is thought to be important in wound healing, but the importance of the role of tissue macrophages in wound healing has not been well defined. Dermal ulcers were created in normal and ischemic ears of young rabbits. Either rhM-CSF (17 microg/wound) or buffer was applied to each wound. Wounds were bisected and analyzed histologically at Days 7 and 10 postwounding. The amounts of epithelial growth and granulation tissue deposition were measured in all wounds. The level of increase of TGF-beta1 mRNA level in M-CSF-treated wounds was examined using competitive RT-PCR. M-CSF increased new granulation tissue formation by 37% (N = 21, P < 0.01) and 50% (P < 0.01) after single and multiple treatments, respectively, in nonischemic wounds. TGF-beta1 mRNA levels in rhM-CSF-treated wounds increased 5.01-fold (N = 8) over vehicle-treated wounds under nonischemic conditions. In contrast, no effect could be detected in ischemic wounds treated with rhM-CSF, and these wounds only showed a 1.66-fold increase in TGF-beta1 mRNA levels when compared to ischemic wounds treated with vehicle alone. GAPDH, a housekeeping gene, showed no change. As mesenchymal cells lack receptors for M-CSF, the improved healing of wounds treated with topical rhM-CSF must reflect a generalized enhancement of activation and function of tissue macrophages, as demonstrated by upregulation of TGF-beta. The lack of effect under ischemic conditions suggests that either macrophage activity and/or response to M-CSF is adversely affected under those conditions; this may suggest the pathogenesis of impaired wound healing at the cellular level. Copyright 1997 Academic Press.

  5. Cafeteria feeding induces interleukin-1beta mRNA expression in rat liver and brain.

    PubMed

    Hansen, M K; Taishi, P; Chen, Z; Krueger, J M

    1998-06-01

    intake affects gut-immune function and can provide a strong intestinal antigen challenge resulting in activation of host defense mechanisms in the digestive system. Previously, we showed that feeding rats a cafeteria diet increases non-rapid eye movement sleep by a subdiaphragmatic mechanism. Food intake and sleep regulation and the immune system share the regulatory molecule interleukin-1beta (IL-1beta). Thus this study examined the effects of a cafeteria diet on IL-1beta mRNA and IL-1 receptor accessory protein (IL-1RAP) mRNA expression in rat liver and brain. Rats were fed normal rat chow or a palatable diet consisting of bread, chocolate, and shortbread cookies (cafeteria diet). After 3 days, midway between the light period of the light-dark cycle, rats were killed by decapitation. Feeding rats a cafeteria diet resulted in increased IL-1beta mRNA expression in the liver and hypothalamus compared with rats fed only the normal rat chow. In addition, cafeteria feeding decreased IL-1RAP mRNA levels in the liver and brain stem. These results indicate that feeding has direct effects on cytokine production and together with other data suggest that the increased sleep that accompanies increased feeding may be the result of increased brain IL-1beta. These results further suggest that cytokine-to-brain communication may be important in normal physiological conditions, such as feeding, as well as being important during inflammatory responses.

  6. Expression of the beta-catenin gene in the skin of embryonic geese during feather bud development.

    PubMed

    Wu, W; Xu, R F; Xiao, L; Xu, H; Gao, G

    2008-01-01

    beta-Catenin signaling has been reported to initiate feather bud development. In the present study, beta-catenin gene was isolated and identified from a cDNA library constructed using embryonic goose skin. Expression patterns of beta-catenin gene in the dorsal skin of goose embryos were investigated using the methods of semi-quantitative reverse transcription PCR, Northern blot analysis, and in situ hybridization. The sequence of beta-catenin was found highly conserved at the amino acid level, sharing 100, 99, and 99% identity with chicken, Chinese soft-shell turtle, and human sequences, respectively. Relatively high levels (62.51 +/- 7.11% to 101.74 +/- 7.29%) of beta-catenin mRNA were detected in the dorsal skin samples. The levels of beta-catenin expression were most prominent at the early stage from embryo day (E)10 to E20 and then significantly declined with the embryonic development. In situ hybridization demonstrated that at E10, beta-catenin expression was mainly observed at the surface periderm cells and the localized region of the epidermal layer. Because feather bud forms with an anterior-posterior orientation, strong staining was observed in the periderm layer and in the ectoderm and epidermis with a diffuse distribution within the internal area of the buds. The stronger staining was seen in the barb ridges than in the center pulp of the feather follicles at E18 and E20. In this study, expression of Shh as a marker gene for the bud development was examined paralleling with expression patterns of beta-catenin. It was found that the expression pattern of beta-catenin was almost similar spatially and temporally to that of Shh mRNA at the later stages of bud development. The differential beta-catenin mRNA expression in the goose dorsal skin may be essential for promoting the normal development of embryonic feather bud.

  7. Upregulation of estrogen receptor subtypes and vitellogenin mRNA in cinnamon clownfish Amphiprion melanopus during the sex change process: profiles on effects of 17beta-estradiol.

    PubMed

    Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young

    2010-10-01

    In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.

  8. Regulation of the mRNA-binding protein AUF1 by activation of the beta-adrenergic receptor signal transduction pathway.

    PubMed

    Pende, A; Tremmel, K D; DeMaria, C T; Blaxall, B C; Minobe, W A; Sherman, J A; Bisognano, J D; Bristow, M R; Brewer, G; Port, J

    1996-04-05

    In both cell culture based model systems and in the failing human heart, beta-adrenergic receptors ( beta-AR) undergo agonist-mediated down-regulation. This decrease correlates closely with down-regulation of its mRNA, an effect regulated in part by changes in mRNA stability. Regulation of mRNA stability has been associated with mRNA-binding proteins that recognize A + U-rich elements within the 3'-untranslated regions of many mRNAs encoding proto-oncogene and cytokine mRNAs. We demonstrate here that the mRNA-binding protein, AUF1, is present in both human heart and in hamster DDT1-MF2 smooth muscle cells and that its abundance is regulated by beta-AR agonist stimulation. In human heart, AUF1 mRNA and protein was significantly increased in individuals with myocardial failure, a condition associated with increases in the beta-adrenergic receptor agonist norepinephrine. In the same hearts, there was a significant decrease (approximately 50%) in the abundance of beta1-AR mRNA and protein. In DDT1-MF2 cells, where agonist-mediated destabilization of beta2-AR mRNA was first described, exposure to beta-AR agonist resulted in a significant increase in AUF1 mRNA and protein (approximately 100%). Conversely, agonist exposure significantly decreased (approximately 40%) beta2-adrenergic receptor mRNA abundance. Last, we demonstrate that AUF1 can be immunoprecipitated from polysome-derived proteins following UV cross-linking to the 3'-untranslated region of the human beta1-AR mRNA and that purified, recombinant p37AUF1 protein also binds to beta1-AR 3'-untranslated region mRNA.

  9. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, R.S.; Rosen, J.M.

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNAmore » was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.« less

  10. Alleviative effects of s-allyl cysteine and s-ethyl cysteine on MCD diet-induced hepatotoxicity in mice.

    PubMed

    Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu

    2008-11-01

    Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P < 0.05). However, the intake of SAC or SEC significantly decreased hepatic triglyceride accumulation, and reduced G6PDH and FAS activities (P < 0.05). MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P < 0.05). The intake of SAC or SEC significantly increased serum and hepatic GSH levels, decreased MDA and GSSG formation, restored the activity and mRNA expression of GPX, SOD and catalase (P < 0.05). MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P < 0.05). The intake of SAC and SEC significantly blunted the mRNA expression of IL-1beta, IL-6, TNF-alpha, TGF-beta1 and collagen-alpha1 (P < 0.05). SEC was greater than SAC in suppressing IL-6 and TNF-alpha expression (P < 0.05), but SAC was greater than SEC in suppressing collagen-alpha1 and TGF-beta1 expression (P < 0.05). These data suggest that SAC and SEC are potent agents against MCD-induced hepatotoxicity.

  11. HNF1(beta) is required for mesoderm induction in the Xenopus embryo.

    PubMed

    Vignali, R; Poggi, L; Madeddu, F; Barsacchi, G

    2000-04-01

    XHNF1(&bgr;) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.

  12. Antisense RNA: effect of ribosome binding sites, target location, size, and concentration on the translation of specific mRNA molecules.

    PubMed

    Daugherty, B L; Hotta, K; Kumar, C; Ahn, Y H; Zhu, J D; Pestka, S

    1989-01-01

    A series of plasmids were constructed to generate RNA complementary to the beta-galactosidase messenger RNA under control of the phage lambda PL promoter. These plasmids generate anti-lacZ mRNA bearing or lacking a synthetic ribosome binding site adjacent to the lambda PL promoter and/or the lacZ ribosome binding site in reverse orientation. Fragments of lacZ DNA from the 5' and/or the 3' region were used in these constructions. When these anti-mRNA molecules were produced in Escherichia coli 294, maximal inhibition of beta-galactosidase synthesis occurred when a functional ribosome binding site was present near the 5' end of the anti-mRNA and the anti-mRNA synthesized was complementary to the 5' region of the mRNA corresponding to the lacZ ribosome binding site and/or the 5'-coding sequence. Anti-mRNAs producing maximal inhibition of beta-galactosidase synthesis exhibited an anti-lacZ mRNA:normal lacZ mRNA ratio of 100:1 or higher. Those showing lower levels of inhibition exhibited much lower anti-lacZ mRNA:normal lacZ mRNA ratios. A functional ribosome binding site at the 5'-end was found to decrease the decay rate of the anti-lacZ mRNAs. In addition, the incorporation of a transcription terminator just downstream of the antisense segment provided for more efficient inhibition of lacZ mRNA translation due to synthesis of smaller and more abundant anti-lacZ mRNAs. The optimal constructions produced undetectable levels of beta-galactosidase synthesis.

  13. Increased expression of transforming growth factor beta s after acute oedematous pancreatitis in rats suggests a role in pancreatic repair.

    PubMed Central

    Riesle, E; Friess, H; Zhao, L; Wagner, M; Uhl, W; Baczako, K; Gold, L I; Korc, M; Büchler, M W

    1997-01-01

    BACKGROUND: Transforming growth factor beta isoforms (TGF beta s) belong to a family of multifunctional regulators of cellular growth and differentiation. They are mitogenic and chemotactic for fibroblasts and are potent stimulators of extracellular matrix production (collagen) and deposition. Upregulation of TGF beta transcription has been reported for several in vivo systems during repair after injury. AIMS: To study the expression of the three mammalian isoforms of TGF beta (TGF beta 1-3) and their relation to collagen expression as a marker for fibroblast response in acute oedematous pancreatitis in rats. METHODS: Using northern blot analysis and immunohistochemistry, the expression and localisation of TGF beta isoforms, collagen, and amylase were analysed during the course of acute oedematous pancreatitis in rats, experimentally induced by intravenous caerulein infusion. RESULTS: Induction of acute pancreatitis resulted in a biphasic peak pattern of expression of TGF beta 1, beta 2, and beta 3 mRNA, with a pronounced increase from day 1 to day 3 (sixfold, 2.5-fold, fivefold, respectively) and again from day 5 to day 7 (three-fold, 2.3-fold, 3.5-fold, respectively). The temporal changes in TGF beta mRNA identically paralleled the expression in collagen mRNA. In contrast, amylase mRNA expression, used as a general indicator of acinar cell integrity, was slightly decreased after induction of acute pancreatitis. Immunohistochemical analysis of pancreatitis tissue showed that increased expression of TGF beta s was mainly present in the pancreatic acinar and ductal cells; this was evident within one day after pancreatitis induction. CONCLUSION: Overexpression of TGF beta s after induction of acute pancreatitis suggests a role for these proteins in pancreatic repair and remodelling. The increased levels of TGF beta s may help suppress immune activation, and may contribute to the increase in the extracellular matrix including collagen and to the repair of the pancreatic parenchyma. Images PMID:9155579

  14. Regulation of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase expression and activity in the hypophysectomized rat ovary: Interactions between the stimulatory effect of human chorionic gonadotropin and the luteolytic effect of prolactin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martel, C.; Labrie, C.; Dupont, E.

    1990-12-01

    The enzyme 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) catalyzes an obligatory step in the conversion of pregnenolone and other 5-ene-3 beta-hydroxysteroids into progesterone as well as precursors of all androgens and estrogens in the ovary. Since 3 beta-HSD is likely to be an important target for regulation by pituitary hormones, we have studied the effect of chronic treatment with LH (hCG), FSH, and PRL on ovarian 3 beta-HSD expression and activity in hypophysectomized adult female rats. Human CG (hCG) (10 IU, twice a day (bid)), ovine FSH (0.5 microgram, bid), and ovine PRL (1 mg, bid) were administered,more » singly or in combination, for a period of 10 days starting 15 days after hypophysectomy. In hypophysectomized rats, PRL exerted a potent inhibitory effect on all the parameters studied. In fact, PRL caused a 81% decrease in ovarian 3 beta-HSD mRNA content accompanied by a similar decrease in 3 beta-HSD activity and protein levels. In addition, ovarian weight decreased by 40% whereas serum progesterone fell dramatically from 1.92 nmol/liter to undetectable levels after treatment with PRL. Whereas hCG alone had only slight stimulatory effects on 3 beta-HSD mRNA, protein content and activity levels, treatment with the gonadotropin partially or completely reversed the potent inhibitory effects of oPRL on all the parameters measured. FSH, on the other hand, had no significant effect on 3 beta-HSD expression and activity. In situ hybridization experiments using the 35S-labeled rat ovary 3 beta-HSD cDNA probe show that the inhibitory effect of PRL is exerted primarily on luteal cell 3 beta-HSD expression and activity. On the other hand, it can be seen that hCG stimulates 3 beta-HSD mRNA accumulation in interstitial cells.« less

  15. N-acetylcysteine augments adenovirus-mediated gene expression in human endothelial cells by enhancing transgene transcription and virus entry.

    PubMed

    Jornot, L; Morris, M A; Petersen, H; Moix, I; Rochat, T

    2002-01-01

    It has previously been shown that oxidants reduce the efficiency of adenoviral transduction in human umbilical vein endothelial cells (HUVECs). In this study, the effect of the antioxidant N-acetylcysteine (NAC) in adenovirus-mediated gene transfer has been investigated. HUVECs were pretreated or not with NAC, and infected with E1E3-deleted adenovirus (Ad) containing the LacZ gene expressed from the RSV-LTR promoter/enhancer in the presence and absence of NAC. Transgene expression was assessed at the protein level (histochemical staining, measurement of beta-Gal activity, and western blot), mRNA level (real-time RT-PCR) and gene level (nuclear run on) 24 h and 48 h after infection. Adenoviral DNA was quantitated by real-time PCR, and cell surface expression of Coxsackie/adenovirus receptors (CAR) was determined by FACS analysis. Pretreatment of cells with NAC prior to Ad infection enhanced beta-Gal activity by two-fold due to an increase in viral DNA, which was related to increased CAR expression. When NAC was present only during the post-infection period, a five-fold increase in beta-Gal activity and LacZ gene transcriptional activity was observed. When NAC was present during both the pretreatment and the post-infection period, beta-Gal activity was further enhanced, by 15-fold. Augmentation of beta-Gal activity was paralleled by an increase in beta-Gal protein and mRNA levels. NAC did not affect the half-life of LacZ mRNA. Pretreatment with NAC prior to Ad infection enhances virus entry, while treatment with NAC post-infection increases transgene transcription. This strategy permits the use of lower adenoviral loads and thus might be helpful for gene therapy of vascular diseases. Copyright 2001 John Wiley & Sons, Ltd.

  16. The Role of CREB in CML

    DTIC Science & Technology

    2008-02-01

    Feng YQ et al. Anti-beta s- ribozyme reduces beta s mRNA levels in transgenic mice: Potential application to the gene therapy of sickle cell anemia... ribozymes . RNA 2003;9:1254–1263. 13 Pace BS, Qian X, Ofori-Acquah SF. Selective inhibition of beta-globin RNA transcripts by antisense RNA molecules. Cell

  17. Thyroid hormone receptor beta2 is strongly up-regulated at all levels of the hypothalamo-pituitary-thyroidal axis during late embryogenesis in chicken.

    PubMed

    Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert

    2008-03-01

    In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.

  18. Glucocorticoids enhance activation of the human type II 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase gene.

    PubMed

    Feltus, F Alex; Cote, Stephanie; Simard, Jacques; Gingras, Sebastien; Kovacs, William J; Nicholson, Wendell E; Clark, Barbara J; Melner, Michael H

    2002-09-01

    Glucocorticoids indirectly alter adrenocortical steroid output through the inhibition of ACTH secretion by the anterior pituitary. However, previous studies suggest that glucocorticoids can directly affect adrenocortical steroid production. Therefore, we have investigated the ability of glucocorticoids to affect transcription of adrenocortical steroid biosynthetic enzymes. One potential target of glucocorticoid action in the adrenal is an enzyme critical for adrenocortical steroid production: 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD). Treatment of the adrenocortical cell line (H295R) with the glucocorticoid agonist dexamethasone (DEX) increased cortisol production and 3beta-HSD mRNA levels alone or in conjunction with phorbol ester. This increase in 3beta-HSD mRNA was paralleled by increases in Steroidogenic Acute Regulatory Protein (StAR) mRNA levels. The human type II 3beta-HSD promoter lacks a consensus palindromic glucocorticoid response element (GRE) but does contain a Stat5 response element (Stat5RE) suggesting that glucocorticoids could affect type II 3beta-HSD transcription via interaction with Stat5. Transfection experiments show enhancement of human type II 3beta-HSD promoter activity by coexpression of the glucocorticoid receptor (GR) and Stat5A and treatment with 100nM dexamethasone. Furthermore, removal of the Stat5RE either by truncation of the 5' flanking sequence in the promoter or introduction of point mutations to the Stat5RE abolished the ability of DEX to enhance 3beta-HSD promoter activity. These studies demonstrate the ability of glucocorticoids to directly enhance the expression of an adrenal steroidogenic enzyme gene albeit independent of a consensus palindromic glucocorticoid response element.

  19. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    PubMed

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  20. Limitations of commonly used internal controls for real-time RT-PCR analysis of renal epithelial-mesenchymal cell transition.

    PubMed

    Elberg, Gerard; Elberg, Dorit; Logan, Charlotte J; Chen, Lijuan; Turman, Martin A

    2006-01-01

    Progressive renal fibrotic disease is accompanied by the massive accumulation of myofibroblasts as defined by alpha smooth muscle actin (alphaSMA) expression. We quantitated gene expression using real-time RT-PCR analysis during conversion of primary cultured human renal tubular cells (RTC) to myofibroblasts after treatment with transforming growth factor-beta1 (TGF-beta1). We report herein the limitations of commonly used reference genes for mRNA quantitation. We determined the expression of alphaSMA and megakaryoblastic leukemia-1 (MKL1), a transcriptional regulator of alphaSMA, by quantitative real-time PCR using three common internal controls, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin A and 18S rRNA. Expression of GAPDH mRNA and cyclophilin A mRNA, and to a lesser extent, 18S rRNA levels varied over time in culture and with exposure to TGF-beta1. Thus, depending on which reference gene was used, TGF-beta1 appeared to have different effects on expression of MKL1 and alphaSMA. RTC converting to myofibroblasts in primary culture is a valuable system to study renal fibrosis in humans. However, variability in expression of reference genes with TGF-beta1 treatment illustrates the need to validate mRNA quantitation with multiple reference genes to provide accurate interpretation of fibrosis studies in the absence of a universal internal standard for mRNA expression. 2006 S. Karger AG, Basel.

  1. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    PubMed

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  2. Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

    PubMed

    Baldwin, Rae Lynn; Tran, Hang; Karlan, Beth Y

    2003-03-15

    Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to determine the mechanisms of TGF-beta resistance. To simulate in vivo responses to TGF-beta, primary cultures derived from normal human ovarian surface epithelium (HOSE) and from ovarian carcinomas (CSOC) were grown on collagen I gel, the predominant matrix molecule in the ovarian tumor milieu. When treated with 5 ng/ml TGF-beta for 72 h, HOSE (n = 11) proliferation was inhibited by 20 +/- 21% on average. In contrast, CSOC (n = 10) proliferation was stimulated 5 +/- 10% in response to TGF-beta (a statistically significant difference in response when compared with HOSE; P = 0.001). To dissect the TGF-beta/Smad signaling pathway we used a quantitative RNase protection assay (RPA) for measuring mRNA levels of TGF-beta pathway components in 20 HOSE and 20 CSOC cultures. Basal mRNA levels of TGF-beta receptors I and II, downstream signaling components Smad2, 3, 4, 6, 7, and the transcriptional corepressors Ski and SnoN did not show a statistically significant difference between HOSE and CSOC, and cannot explain their differential susceptibility to TGF-beta-induced cell cycle arrest. To assess functional differences of the TGF-beta pathway in TGF-beta-sensitive HOSE and TGF-beta-resistant CSOC, we measured Smad2/4 and 3/4 complex induction after TGF-beta treatment. HOSE and CSOC showed equivalent Smad2/4 and 3/4 complex induction after TGF-beta exposure for 0, 0.5, 2, and 4 h. It has been proposed that SnoN and Ski are corepressors of the TGF-beta/Smad pathway and undergo TGF-beta-induced degradation followed by reinduction of SnoN mRNA. However, our data show equivalent SnoN degradation in HOSE and CSOC, and equivalent SnoN mRNA induction after TGF-beta treatment. Surprising, TGF-beta-induced Ski degradation was not observed in HOSE or CSOC, suggesting that Ski may not function as a TGF-beta/Smad corepressor in ovarian epithelial cells. These data implied that the TGF-beta/Smad pathway remains functional in CSOC, although CSOC cells are resistant to antimitogenic TGF-beta effects. CSOC resistance to TGF-beta coincided with the loss of c-myc down-regulation. These data suggest that TGF-beta/Smad signaling is blocked downstream of Smad complex formation or that an alternate signaling pathway other than TGF-beta/Smad may transmit TGF-beta-induced cell cycle arrest in the ovarian epithelium.

  3. Identification of Rice Koji Extract Components that Increase β-Glucocerebrosidase Levels in Human Epidermal Keratinocytes.

    PubMed

    Maeda, Kazuhisa; Ogino, Yuuka; Nakamura, Ayano; Nakata, Keiji; Kitagawa, Manabu; Ito, Seiki

    2018-06-18

    Rice miso contains many ingredients derived from rice koji and has been a valuable source of nutrition since ancient times. We found that the consumption of rice miso led to improvements in the moisture content of cheek stratum corneum, skin viscoelasticity, and skin texture. Further, rice miso extract was found to increase the mRNA expression and activity of β-glucocerebrosidase (β-GCase), an enzyme involved in ceramide synthesis in the stratum corneum, in cultures. In this study, we identified the lipid-derived components of rice koji that increase the β-GCase activity in cultured human epidermal keratinocytes. The methanol fraction of rice koji extract induced an increase in the mRNA expression and activity of β-GCase in keratinocytes. The active fraction of rice koji was found to contain phosphatidic acid (PA) and lysophosphatidic acid (LPA). The total PA concentration in rice koji was 973.9 ng/mg dry weight, which was 17.5 times higher than that in steamed rice. Among the molecular species, PA_18:2/18:2 was the most frequently found. The total LPA concentration in rice koji was 29.6 ng/mg dry weight, and 2-LPA_18:2 was the most frequently found LPA. Since PA and LPA increase the mRNA expression and activity of β-GCase in keratinocytes, they are thought to be the active ingredients in rice koji that increase the β-GCase levels in human epidermal keratinocytes.

  4. Local expression of vaginal Th1 and Th2 cytokines in murine vaginal candidiasis under different immunity conditions.

    PubMed

    Chen, Shanjuan; Li, Shaohua; Wu, Yan; Liu, Zhixiang; Li, Jiawen

    2008-08-01

    To investigate the expression of vaginal Th1 and Th2 cytokines in rats with experimental vaginal candidiasis under different immune conditions, ICR murine vaginal candidiasis model was established and immno-suppressed murine models of vaginal cadidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls. The mRNA level of Th1 (IL-2)/Th2 (IL-4, IL-10, TGF-beta1) cytokines in murine vaginal tissues was determined by RT-PCR. The cykotine in local tissues was increased to different extent under normal immune condition. IL-2 mRNA was increased during early stage of infection, while IL-10 was increased transiently during late stage of infection. TGF-beta1 production was found to be increased persistently. At same time, the expression of IL-2 mRNA was suppressed in immno-suppressed group, and the level of IL-4, IL-10, and TGF-beta1 were higher than the normal immunity group to different degree during infection. The high level of IL-2 mRNA during early stage of infection was associated with clearance of mucosal Candidia albicans (C. albicans), and its expression suppressed leading to decreased clearance of mucosal C. albican in immuno-suppression. The over-expression of IL-4 and IL-10 could significantly enhance the susceptibility to C. albicans infection in mice.

  5. Subchronic exposure to arsenic through drinking water alters expression of cancer-related genes in rat liver.

    PubMed

    Cui, Xing; Li, Song; Shraim, Amjad; Kobayashi, Yayoi; Hayakawa, Toru; Kanno, Sanae; Yamamoto, Megumi; Hirano, Seishiro

    2004-01-01

    Although arsenic exposure causes liver disease and/or hepatoma, little is known about molecular mechanisms of arsenic-induced liver toxicity or carcinogenesis. We investigated the effects of arsenic on expression of cancer-related genes in a rat liver following subchronic exposure to sodium arsenate (1, 10, 100 ppm in drinking water), by using real-time quantitative RT-PCR and immunohistochemical analyses. Arsenic accumulated in the rat liver dose-dependently and caused hepatic histopathological changes, such as disruption of hepatic cords, sinusoidal dilation, and fatty infiltration. A 1-month exposure to arsenic significantly increased hepatic mRNA levels of cyclin D1 (10 ppm), ILK (1 ppm), and p27(Kip1) (10 ppm), whereas it reduced mRNA levels of PTEN (1 ppm) and beta-catenin (100 ppm). In contrast, a 4-month arsenic exposure showed increased mRNA expression of cyclin D1 (100 ppm), ILK (1 ppm), and p27(Kip1) (1 and 10 ppm), and decreased expression of both PTEN and beta-catenin at all 3 doses. An immunohistochemical study revealed that each protein expression accords closely with each gene expression of mRNA level. In conclusion, subchronic exposure to inorganic arsenate caused pathological changes and altered expression of cyclin D1, p27(Kip1), ILK, PTEN, and beta-catenin in the liver. This implies that arsenic liver toxicity involves disturbances of some cancer-related molecules.

  6. Effect of electroacupuncture on the expression of interlukin-1beta mRNA after transient focal cerebral ischemia.

    PubMed

    Xu, Zhen-Feng; Wu, Gen-Cheng; Cao, Xiao-Ding

    2002-01-01

    It has been reported that interleukin-1beta (IL-1beta ) play a key role in the pathogenesis of cerebral ischemia. Acupuncture is an effective traditional medical therapy in China. The aim of present study was to evaluate the effect of electroacupuncture (EA) on IL-1beta mRNA expression after middle cerebral artery occlusion (MCAO) in rats. Using in situ hybridization technique, it was found that in the MCAO group the expression of IL-1beta mRNA was significantly increased at 2h, 6h, 12h after reperfusion in cerebral ischemic cortex compared with normal group. In EA+ MCAO group the expression of IL-1beta mRNA was significantly decreased at 2h, 6h and 12h in ischemic cortex compared with MCAO group. The results indicated that EA might decrease the IL-1beta protein expression by reducing the IL-beta mRNA expression in ischemic cortex.

  7. 5-Fluoroindole Resistance Identifies Tryptophan Synthase Beta Subunit Mutants in Arabidopsis Thaliana

    PubMed Central

    Barczak, A. J.; Zhao, J.; Pruitt, K. D.; Last, R. L.

    1995-01-01

    A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation. PMID:7635295

  8. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats.

    PubMed

    Qin, Bolin; Polansky, Marilyn M; Harry, Dawson; Anderson, Richard A

    2010-05-01

    Epidemiological studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on the cardiac mRNA and protein levels of genes involved in insulin and lipid metabolism and inflammation. In rats fed a high-fructose diet, supplementation with GTP (200 mg/kg BW daily dissolved in distilled water) for 6 wk, reduced systemic blood glucose, plasma insulin, retinol-binding protein 4, soluble CD36, cholesterol, triglycerides, free fatty acids and LDL-C levels, as well as the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and IL-6. GTP did not affect food intake, bodyweight and heart weight. In the myocardium, GTP also increased the insulin receptor (Ir), insulin receptor substrate 1 and 2 (Irs1 and Irs2), phosphoinositide-3-kinase (Pi3k), v-akt murine thymoma viral oncogene homolog 1 (Akt1), glucose transporter 1 and 4 (Glut1 and Glut4) and glycogen synthase 1 (Gys1) expression but inhibited phosphatase and tensin homolog deleted on chromosome ten (Pten) expression and decreased glycogen synthase kinase 3beta (Gsk3beta) mRNA expression. The sterol regulatory element-binding protein-1c (Srebp1c) mRNA, microsomal triglyceride transfer protein (Mttp) mRNA and protein, Cd36 mRNA and cluster of differentiation 36 protein levels were decreased and peroxisome proliferator-activated receptor (Ppar)gamma mRNA levels were increased. GTP also decreased the inflammatory factors: Tnf, Il1b and Il6 mRNA levels, and enhanced the anti-inflammatory protein, zinc-finger protein, protein and mRNA expression. In summary, consumption of GTP ameliorated the detrimental effects of high-fructose diet on insulin signaling, lipid metabolism and inflammation in the cardiac muscle of rats.

  9. Mutagenesis of the three bases preceding the start codon of the beta-galactosidase mRNA and its effect on translation in Escherichia coli.

    PubMed Central

    Hui, A; Hayflick, J; Dinkelspiel, K; de Boer, H A

    1984-01-01

    The effect on the translation efficiency of various mutations in the three bases (the -1 triplet) that precede the AUG start codon of the beta-galactosidase mRNA in Escherichia coli was studied. Of the 39 mutants examined, the level of expression varies over a 20-fold range. The most favorable combinations of bases in the -1 triplet are UAU and CUU. The expression levels in the mutants with UUC, UCA or AGG as the -1 triplet are 20-fold lower than those with UAU or CUU. In general, a U residue immediately preceding the start codon is more favorable for expression than any other base; furthermore, an A residue at the -2 position enhances the translation efficiency in most instances. In both cases, however, the degree of enhancement depends on its context, i.e. the neighboring bases. Although the rules derived from this study are complex, the results show that mutations in any of the three bases preceding the start codon can strongly affect the translational efficiency of the beta-galactosidase mRNA. PMID:6425057

  10. Studies on Pentoxifylline and Tocopherol Combination for Radiation-Induced Heart Disease in Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hui; Department of Radiotherapy, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong; Xiong Mai

    Purpose: To investigate whether the application of pentoxifylline (PTX) and tocopherol l (Vit. E) could modify the development of radiation-induced heart disease and downregulate the expression of transforming growth factor (TGF)-{beta}1mRNA in rats. Methods and Materials: A total of 120 Sprague-Dawley rats were separated into four groups: control group, irradiated group, experimental group 1, and experiment group 2. Supplementation was started 3 days before irradiation; in experimental group 1, injection of PTX (15 mg/kg/d) and Vit. E (5.5 mg/kg/d) continued till the 12th week postirradiation, whereas in experimental group 2 it was continued until the 24th week postirradiation. All ratsmore » were administrated a single dose of 20 Gy irradiation to the heart except the control group. Histopathologic evaluation was performed at various time points (Days 1, 2, 4, 8, and 12 and 24th week) up to 24 weeks after irradiation. Changes of levels of TGF-{beta}1 mRNA expression were also investigated at the same time points using competitive polymerase chain reaction. Results: Compared with the irradiated group, levels of TGF-{beta}1 mRNA of the rat hearts were relatively low in the two experimental groups on the 12th week postirradiation. In experimental group 1, there was a rebound expression of TGF-{beta}1 mRNA on the 24th week postirradiation, whereas that of the experimental group 2 remained low (p < 0.05). The proportions of collagen fibers of the two experimental groups were lower than that of irradiated group (p < 0.05). A rebound could be observed in the experimental group 1. Conclusion: PTX and Vit. E downregulated the expression of TGF-{beta}1 mRNA. The irradiated rat hearts showed a marked pathologic response to the drugs. The withdrawal of drugs in the 12th week postirradiation could cause rebound effects of the development of fibrosis.« less

  11. Estradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus

    NASA Technical Reports Server (NTRS)

    Krumenacker, J. S.; Hyder, S. M.; Murad, F.

    2001-01-01

    Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Using real-time quantitative PCR, we found that within 1 h of in vivo E2 administration to rats, sGC mRNA levels begin to diminish. After 3 h, there is a maximal diminution of sGC mRNA expression (sGC alpha(1) 10% and sGC beta(1) 33% of untreated). This effect was blocked by the estrogen receptor antagonist, ICI 182,780, indicating that estrogen receptor is required. The effect of E2 also was observed in vitro with incubations of uterine tissue, indicating that the response does not depend on the secondary release of other hormones or factors from other tissues. Puromycin did not block the effect, suggesting the effects occur because of preexisting factors in uterine tissues and do not require new protein synthesis. Using immunoblot analysis, we found that sGC protein levels also were reduced by E2 over a similar time course as the sGC mRNA. We conclude that sGC plays a vital role in the NO/sGC/cGMP regulatory pathway during conditions of elevated estrogen levels in the rat uterus as a result of the reduction of sGC expression.

  12. Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes.

    PubMed

    Toegel, S; Wu, S Q; Piana, C; Unger, F M; Wirth, M; Goldring, M B; Gabor, F; Viernstein, H

    2008-10-01

    To compare the effects of glucosamine (GlcN), curcumin, and diacerein in immortalized human C-28/I2 chondrocytes at the cellular and the gene expression level. This study aimed to provide insights into the proposed beneficial effects of these agents and to assess the applicability of the C-28/I2 cell line as a model for the evaluation of chondroprotective action. Interleukin-1beta (IL-1beta)-stimulated C-28/I2 cells were cultured in the presence of GlcN, curcumin, and diacerein prior to the evaluation of parameters such as viability, morphology and proliferation. The impact of GlcN, curcumin, and diacerein on gene expression was determined using quantitative real-time RT-PCR (qPCR). At the transcriptional level, 5 mM GlcN and 50 microM diacerein increased the expression of cartilage-specific genes such as aggrecan (AGC) and collagen type II (COL2), while reducing collagen type I (COL1) mRNA levels. Moreover, the IL-1beta-mediated shift in gene expression pattern was antagonized by GlcN and diacerein. These effects were associated with a significant reduction in cellular proliferation and the development of chondrocyte-specific cell morphology. In contrast, curcumin was not effective at lower concentrations but even damaged the cells at higher amounts. Both GlcN and diacerein promoted a differentiated chondrocytic phenotype of immortalized human C-28/I2 chondrocytes by altering proliferation, morphology, and COL2/COL1 mRNA ratios. Moreover, both agents antagonized inhibitory effects of IL-1beta by enhancing AGC and COL2 as well as by reducing COL1 mRNA levels.

  13. Prostaglandin E1 inhibits collagen expression in anti-thymocyte antibody-induced glomerulonephritis: possible role of TGF beta.

    PubMed

    Schneider, A; Thaiss, F; Rau, H P; Wolf, G; Zahner, G; Jocks, T; Helmchen, U; Stahl, R A

    1996-07-01

    To test whether or not prostaglandins mediate extracellular matrix formation in immune-mediated glomerular disease, rats with anti-thymocyte antibody-induced glomerulonephritis were treated with prostaglandin E1 (PGE1) (250 micrograms/twice daily/s.c.). Glomerular expression of collagen types III and IV was assessed by Northern blotting, immunohistology and Western blotting. Proliferation of glomerular cells was evaluated by staining for the proliferating cell nuclear antigen (PCNA) and consecutive cell counting. At day five after induction of the disease, glomerular mRNA levels of collagen types III and IV were three- to fivefold higher compared with non-nephritic controls. Similarly glomerular deposition of these collagens was markedly increased when assessed by immunohistology. The treatment of nephritic rats with PGE1 reduced the increased glomerular mRNA levels as well as the protein concentration and the deposition of extracellular collagens. The number of PCNA positive cells which was significantly higher in nephritic rats when compared with control animals (24 hr, nephritis 2.53 +/- 0.33 and Control 0.26 +/- 0.06, P = 0.011; 5 days, nephritis 5.10 +/- 1.13 and Control 0.75 +/- 0.08, cells per glomerular cross section, P = 0.03) was reduced by PGE1 (24 hr, nephritis+PGE1 0.44 +/- 0.30, P = 0.0001; 5 days, nephritis +/- PGE1 1.91 +/- 1.84 cells per glomerular cross section, P = 0.001). Prostaglandin E1 also ameliorated the glomerular infiltration of monocytes at 24 hours (nephritis 4.36 +/- 2.82, nephritis + PGE1 2.20 +/- 1.82, cells per glomerular cross section) and five days (nephritis 1.51 +/- 0.58, nephritis+PGE1 1.12 +/- 0.61, cells per glomerular cross section). To further characterize possible mechanisms by which PGE1 reduces extracellular matrix deposition, the glomerular expression of transforming growth factor (TGF-beta), and interleukin 1 beta (IL-1 beta) was assessed by Northern blotting. Nephritic glomeruli showed increased mRNA levels of TGF-beta at day 5 and IL-1 beta at 24 hours when compared with control kidneys. Treatment of the animals with PGE1 inhibited the mRNA expression of TGF-beta and IL-1 beta. These data demonstrate that PGE1 reduces the glomerular expression of extracellular matrix proteins in anti-thymocyte antibody-induced glomerulonephritis, suggesting a beneficial role of prostaglandins in this proliferative glomerular immune injury. The effects of PGE1 might be mediated by inhibition of TGF-beta and IL-1 beta production.

  14. Effects of irradiation and semistarvation on rat thyrotropin beta subunit messenger ribonucleic acid, pituitary thyrotropin content, and thyroid hormone levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litten, R.Z.; Carr, F.E.; Fein, H.G.

    1990-01-01

    The effect of radiation-induced anorexia on serum thyrotropin (TSH), pituitary TSH-{beta} mRNA, pituitary TSH content, serum thyroxine (T{sub 4}), and serum 3,5,3{prime}-triiodothyronine (T{sub 3}) was investigated using feed-matched controls. Rats received 10 Gy gamma whole-body irradiation and were examined 1-3 days postirradiation. Feed-matched and untreated controls were also studied. The average food intake of the irradiated and feed-matched groups was approximately 18% of the untreated controls. Over the three day period both the irradiated and feed-matched groups lost a significant amount of body weight. The serum T{sub 4} levels of both the irradiated and feed-matched groups were not significantly differentmore » from each other, but were significantly depressed when compared to the untreated control group. The serum TSH and T{sub 3} were, however, significantly greater in the irradiated than the feed-matched groups at day 3 posttreatment. To determine if the difference in the serum TSH level between the two groups was due to a pretranslational alteration in TSH production, we measured the TSH-{beta} mRNA using an RNA blot hybridization assay. We found that the TSH-{beta} mRNA level was the same in the irradiated and feed-matched groups, suggesting that the mechanism responsible for the radiation-induced increase in the serum TSH level is posttranscriptional. Pituitary TSH content in the irradiated rats was significantly less than in pair-fed controls, suggesting that irradiation may permit enhanced secretion of stored hormone.« less

  15. Effects of Histone Deacetylase Inhibitor (HDACi); Trichostatin-A (TSA) on the expression of housekeeping genes.

    PubMed

    Mogal, Ashish; Abdulkadir, Sarki A

    2006-04-01

    In quantitative RT-PCR (qRT-PCR), analysis of gene expression is dependent on normalization using housekeeping genes such as 18S rRNA, GAPDH and beta actin. However, variability in their expression has been reported to be caused by factors like drug treatment, pathological states and cell-cycle phase. An emerging area of cancer research focuses on identifying the role of epigenetic alterations such as histone modifications and DNA methylation in the initiation and progression of cancer. Histone acetylation is the best studied modification so far and has been probed through the use of histone deacetylase inhibitors (HDACi). Further, modulation of histone acetylation is currently being explored as a therapeutic strategy in the treatment of cancer and HDACis have shown promise in inhibiting tumorigenesis and metastasis. Trichostatin-A (TSA) is the most widely used HDACi. Therefore, we were driven to identify a suitable internal control for RT-PCR following TSA treatment. We performed quantitative RT-PCR analysis using mouse prostate tissue explants, human prostate cancer (LNCaP) cells and human breast cancer (T-47D and ZR-75-1) cells following TSA treatment. Expression of housekeeping genes including 18S rRNA, beta actin, GAPDH and ribosomal highly-basic 23-kDa protein (rb 23-kDa, RPL13A) were compared in vehicle versus TSA treated samples. Our results showed marked variations in 18S rRNA, beta actin mRNA and GAPDH mRNA levels in mouse prostate explants and a human prostate cancer (LNCaP) cell line following TSA treatment. Furthermore, in two human breast cancer cell lines (T-47D and ZR-75-1) 18S rRNA, beta actin mRNA and GAPDH mRNA levels varied significantly. However, RPL13A mRNA levels remained constant in all the conditions tested. Therefore, we recommend use of RPL13A as a standard for normalization during TSA treatment.

  16. Cykotine mRNA expression in mouse retina after laser injury by reverse transcriptase-polymerase chain reaction (RT-PCR)

    NASA Astrophysics Data System (ADS)

    Schuschereba, Steven T.; Bowman, Phillip D.; Ujimore, Veronica; Hoxie, Stephen W.; Pizarro, Jose M.; Cross, Michael E.; Lund, David J.

    1996-04-01

    The purpose of this study was to identify cytokines produced by the retina after laser injury. With the aid of a scanning laser ophthalmoscope (SLO), right eyes of mice received lesions from a continuous wave argon laser. Left eyes served as unirradiated controls. At 2, 4, 6, 12, 24, and 48 hr after laser irradiation groups of 3 mice were euthanized and retinas fixed for histology or isolated for RNA. Messenger RNA (mRNA) was reverse-transcribed into complementary DNA (cDNA) and subjected to polymerase chain reaction for the following cytokines: tumor necrosis factor-(alpha) (TNF-(alpha) ), interleukin-1(alpha) /(Beta) (IL- 1(alpha) /(Beta) ), interleukin-6 (IL-6), transforming growth factor-(Beta) 1 (TGF- (Beta) 1), macrophage colony stimulating factor (M-CSF), inducible nitric oxide synthase (iNOS), and glyceraldehyde 3-phosphate dehydrogenase (G3PDH). Histologically, lesions were confined to the photoreceptors, retinal pigment epithelium, and choroid. In laser-injured retinas, mRNA levels were elevated for IL-1(alpha) , TGF-(Beta) 1, iNOS, and G3PDH, but not TNF-(alpha) , IL-1(Beta) , or IL-6. It appears that the retina, in response to laser injury, upregulates a select number of cytokines in a time-course dependent fashion.

  17. 11beta-Hydroxysteroid dehydrogenase Type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle.

    PubMed

    Nair, S; Lee, Y H; Lindsay, R S; Walker, B R; Tataranni, P A; Bogardus, C; Baier, L J; Permana, P A

    2004-06-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) modulates tissue-specific glucocorticoid concentrations by generating active cortisol. We have shown that adipose tissue 11beta-HSD1 mRNA levels were associated with adiposity and insulinaemia. Here we conducted further expression and genetic association studies in Pima Indians. The 11beta-HSD1 mRNA concentrations were measured in abdominal subcutaneous adipocytes (n=61) and skeletal muscle tissues (n=64). Single nucleotide polymorphisms in the HSD11B1 gene were genotyped in a larger group of full-blooded Pima Indians. Two representative SNPs (SNP1, n=706; SNP5, n=839) were associated with Type 2 diabetes mellitus (p=0.01), although neither SNP was associated with obesity. Among subjects with normal glucose tolerance, SNP1 (n=127) and SNP5 (n=159) were associated with insulin-mediated glucose uptake rates (p=0.03 and p=0.04), and SNP1 was further associated with fasting, 30-min, and 2-h plasma insulin concentrations (p=0.002, p=0.002 and p=0.03). Adipocyte 11beta-HSD1 mRNA concentrations were correlated positively with adiposity and insulinaemia, and were additionally negatively correlated with insulin-mediated glucose uptake rates; nevertheless, the adipocyte 11beta-HSD1 expression did not correlate with genotypes of the donors. The muscle 11beta-HSD1 mRNA concentrations did not correlate with any anthropometric or metabolic variables. We confirmed that adipocyte 11beta-HSD1 mRNA concentrations were associated with adiposity, and showed that genetic variations in the HSD11B1 gene were associated with Type 2 diabetes mellitus, plasma insulin concentrations and insulin action, independent of obesity. The variable adipose expression might not be a primary consequence of these HSD11B1 SNPs. Therefore, it is possible that the HSD11B1 gene is under tissue-specific regulation, and has tissue-specific consequences.

  18. Patterns of mRNA and protein expression during minus-lens compensation and recovery in tree shrew sclera.

    PubMed

    Gao, Hong; Frost, Michael R; Siegwart, John T; Norton, Thomas T

    2011-04-12

    To increase our understanding of the mechanisms that remodel the sclera during the development of lens-induced myopia, when the sclera responds to putative "go" signals of retinal origin, and during recovery from lens-induced myopia, when the sclera responds to retinally-derived "stop" signals. Seven groups of tree shrews were used to examine mRNA levels during minus lens compensation and recovery. Starting 24 days after eye opening (days of visual experience [VE]) lens compensation animals wore a monocular -5D lens for 1, 4, or 11 days. Recovery animals wore the -5D lens for 11 days, which was then removed for 1 or 4 days. Normal animals were examined at 24 and 38 days of VE. All groups contained 8 animals. Scleral mRNA levels were examined in the treated and contralateral control eyes with quantitative real-time polymerase chain reaction (qPCR) for 27 genes divided into four categories: 1) signaling molecules, 2) matricellular proteins, 3) metalloproteinases (MPs) and tissue inhibitors of metalloproteinases (TIMPs), and 4) cell adhesion and other proteins. Four groups (n=5 per group) were used to examine protein levels. One group wore a -5D lens for 4 days. A second group recovered for 4 days after 11 days of -5D lens treatment. Two groups were used to examine age-matched normal protein levels at 28 and 39 days of VE. The levels of six scleral proteins that showed differential mRNA expression were examined with quantitative western blots. Nineteen of the genes showed differential (treated eye versus control eye) expression of mRNA levels in at least one group of animals. Which genes showed differential expression differed after 1 and 4 days of compensation and after 1 or 4 days of recovery. The mRNA level for one gene, a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), was upregulated in the treated eyes after 1 day of compensation. After 4 days, transforming growth factor beta receptor 3 (TGFBR3), transforming growth factor-beta-induced protein ig-h3 (TGFBI), and matrix metalloproteinase 14 (MMP14) mRNA levels were upregulated. Downregulated were mRNA levels for transforming growth factor beta-1 (TGFB1), transforming growth factor beta-2 (TGFB2), thrombospondin 1 (THBS1), tenascin (TNC), osteonectin (SPARC), osteopontin (SPP1), tissue inhibitor of metalloproteinases 3 (TIMP3), and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). After 11 days of lens wear, there was no differential expression. During recovery, after 1 day, treated-eye mRNA downregulation was found for TGFB2, TGFBR1, TGFBR2, TGFBR3, SPARC, ADAMTS1, ADAMTS5, syndecan 4 (SDC4), and collagen type VI, alpha 1 (COL6A1). After 4 days, TGFB1, TGFB2, TGFB3, THBS2, and TIMP3 mRNA levels were upregulated in the recovering eye. Significant downregulation, relative to normal eyes, was found in both the control and treated eyes for most genes after 1 day of compensation; a similar decrease was found, compared to lens-compensated eyes, after one day of recovery. Protein levels for THBS1 showed positive correlation with the differential mRNA levels and TGFBR3 showed a negative correlation. No differential protein expression was found for TGFB2, TGFBI, MMP14, and TIMP3. The different patterns of differential mRNA expression during minus lens compensation (hyperopia) and recovery (myopia) show that scleral fibroblasts distinguish between "go" and "stop" conditions. There is evidence of binocular global downregulation of genes at the start of both lens wear and recovery. As additional information accumulates about changes in gene expression that occur during compensation and recovery the "signature" of differential changes may help us to understand in more detail how the sclera responds in "go" and "stop" conditions.

  19. [The administration of interleukin-1beta during early postnatal develop ment impairs FGF2, but not TIMP1, mRNA expression in brain structures of adult rats].

    PubMed

    Trofimov, A N; Zubareva, O E; Shvarts, A P; Ishchenko, A M; Klimenko, V M

    2014-09-01

    According to the Neurodevelopmental hypothesis, the long-lasting cognitive deficit in schizophrenia and other types of neuropathology may occur by injurious factors, such as hypoxia, traumas, infections that take place during pre- and postnatal development, at least at early stages. These pathological conditions are often associated with the high production of pro-inflammatory cytokine interleukin-1B (IL-1B) by the cells of immune and nervous systems. We investigated the expression of genes involved in the neuroplastic regulation (Fgf2 and Timp2) in medial prefrontal cortex and dorsal and ventral regions of hippocampus of adult rats that were treated with IL-1beta between P15 and P21. The learning impairment in IL-1beta-treated rats is accompanied by lower FGF-2 mRNA levels in medial prefrontal cortex and ventral (not dorsal) hippocampus, but TIMP-1 was not affected. No differences in TIMP-1 and FGF-2 mRNA expressions were observed in untrained IL-1beta-treated when compared to control rats.

  20. Microgravity and Signaling Molecules in Rat Osteoblasts: Downstream of Receptor Tyrosine Kinase, G-Protein-Coupled Receptor, and Small GTP-Binding Proteins

    NASA Technical Reports Server (NTRS)

    Kumel, Yasuhiro; Shimokawa, Hitoyata; Morita, Sadao; Katano, Hisako; Akiyama, Hideo; Hirano, Masahiko; Ohya, Keiichi; Sams, Clarence F.; Whitson, Peggy A.

    2005-01-01

    Rat osteoblasts were cultured for 4 and 5 days aboard Space Shuttle and solubilized on board. The mRNA levels of the post-receptor signaling molecules were analyzed by quantitative RT-PCR. The G-protein alpha subunit G(alpha)q mRNA levels were elevated 3-fold by microgravity. G(alpha)q stimulates PLC(beta), and then PKC. PKC(delta) and PKC(theta) mRNA levels were increased 2- to 5-fold by microgravity The mRNA levels of SOS and Ras GRF were increased 4 to 5-fold by microgravity, while Ras GAP was not altered. Spaceflight-induced bone loss might be attributed to microgravity modulation of the signaling pathway in osteoblasts.

  1. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  2. Inhibition of HSP70 and a Collagen-Specific Molecular Chaperone (HSP47) Expression in Rat Osteoblasts by Microgravity

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Morita, Sadao; Shimokawa, Hitoyata; Ohya, Kei'ichi; Akiyama, Hideo; Hirano, Masahiko; Sams, Clarence F.; Whitson, Peggy A.

    2003-01-01

    Rat osteoblasts were cultured aboard a space shuttle for 4 or 5 days. Cells were exposed to 1alpha, 25 dihydroxyvitamin D(3) during the last 20 h and then solubilized by guanidine solution. The mRNA levels for molecular chaperones were analyzed by semi-quantitative RT-PCR. ELISA was used to quantify TGF-beta1 in the conditioned medium. The HSP70 mRNA levels in the flight cultures were almost completely suppressed, as compared to the ground (1 x g) controls. The inducible HSP70 is known as the major heat shock protein that prevents stress-induced apoptosis. The mean mRNA levels for the constitutive HSC73 in the flight cultures were reduced to 69%, approximately 60% of the ground controls. HSC73 is reported to prevent the pathological state that is induced by disruption of microtubule network. The mean HSP47 mRNA levels in the flight cultures were decreased to 50% and 19% of the ground controls on the 4th and 5th days. Concomitantly, the concentration of TGF-beta1 in the conditioned medium of the flight cultures was reduced to 37% and 19% of the ground controls on the 4th and 5th days. HSP47 is the collagen-specific molecular chaperone that controls collagen processing and quality and is regulated by TGF-beta1. Microgravity differentially modulated the expression of molecular chaperones in osteoblasts, which might be involved in induction and/or prevention of osteopenia in space.

  3. Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2.

    PubMed

    Gnanalingham, Muhuntha G; Mostyn, Alison; Symonds, Michael E; Stephenson, Terence

    2005-11-01

    Increased glucocorticoid action and adipose tissue inflammation contribute to excess adiposity. These adaptations may be enhanced in offspring exposed to nutrient restriction (NR) in utero, thereby increasing their susceptibility to later obesity. We therefore determined the developmental ontogeny of glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase (11betaHSD) types 1 and 2, and uncoupling protein (UCP)-2 mRNA in perirenal adipose tissue between late gestation and 6 mo after birth in the sheep, as well as the effect of maternal NR targeted between early to mid (28-80 days, term approximately 147 days)- or late (110-147 days) gestation. GR and 11betaHSD1 mRNA increased with fat mass and were all maximal within the 6-mo observation period. 11betaHSD2 mRNA abundance demonstrated a converse decline, whereas UCP2 peaked at 30 days. GR and 11betaHSD1 mRNA abundance were strongly correlated with total and relative perirenal adipose tissue weight, and UCP2 was strongly correlated with GR and 11betaHSD1 mRNA. Early- to midgestational NR increased GR, 11betaHSD1, and UCP2 mRNA, but decreased 11betaHSD2 mRNA abundance, an adaptation reversed with late-gestational NR. We conclude that the continual rise in glucocorticoid action and fat mass after birth may underlie the development of later obesity. The magnitude of this adaptation is partly dependent on maternal food intake through pregnancy.

  4. Over, and Underexpression of Endothelin 1 and TGF-Beta Family Ligands and Receptors in Lung Tissue of Broilers with Pulmonary Hypertension

    PubMed Central

    Dominguez-Avila, Norma; Ruiz-Castañeda, Gabriel; González-Ramírez, Javier; Fernandez-Jaramillo, Nora; Escoto, Jorge; Sánchez-Muñoz, Fausto; Marquez-Velasco, Ricardo; Bojalil, Rafael; Espinosa-Cervantes, Román; Sánchez, Fausto

    2013-01-01

    Transforming growth factor beta (TGFβ) is a family of genes that play a key role in mediating tissue remodeling in various forms of acute and chronic lung disease. In order to assess their role on pulmonary hypertension in broilers, we determined mRNA expression of genes of the TGFβ family and endothelin 1 in lung samples from 4-week-old chickens raised either under normal or cold temperature conditions. Both in control and cold-treated groups of broilers, endothelin 1 mRNA expression levels in lungs from ascitic chickens were higher than levels from healthy birds (P < 0.05), whereas levels in animals with cardiac failure were intermediate. Conversely, TGFβ2 and TGFβ3 gene expression in lungs were higher in healthy animals than in ascitic animals in both groups (P < 0.05). TGFβ1, TβRI, and TβRII mRNA gene expression among healthy, ascitic, and chickens with cardiac failure showed no differences (P > 0.05). BAMBI mRNA gene expression was lowest in birds with ascites only in the control group as compared with the values from healthy birds (P < 0.05). PMID:24286074

  5. [Study of signal transduction pathway in the expression of inflammatory factors stimulated by lipopolysaccharides from Porphyromonas endodontalis in osteoblasts].

    PubMed

    Yang, Di; Qiu, Li-hong; Li, Ren; Li, Zi-mu; Li, Chen

    2010-04-01

    To quantify the interleukin (IL)-1beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides ([PS) extracted from Porphyromonoas endodontalis (P. endodontalis) in osteoblasts, and to relate P. endodontalis LPS to the bone resorptive pathogenesis in the lesions of chronic apical periodontitis. MG63 cells was pretreated with PD98059 or SB203580 for 1 h and then treated with P. endodontolis LPS for 6 h. The expression of IL-1beta mRNA and IL-6 mRNA were detected by reverse transcription polymerase chain reaction (RT-PCR) technique. The production of IL-1beta mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with PD98059. Both of the production of IL-1beta mRNA and JL-6 mRNA induced by P. endodontalis LPS decreased in osteoblasts pretreated with SB203580. The synthesis of IL-1beta mRNA stimulated by Pendodontalis LPS in MG63 probably occur via extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen activated protein kinase (MAPK) signal transduction system. The synthesis of IL-6 mRNA stimulated by P.endodontalis LPS in MG63 probahly occur via p38MAPK signal transduction system.

  6. Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas.

    PubMed

    Fallo, F; Pezzi, V; Barzon, L; Mulatero, P; Veglio, F; Sonino, N; Mathis, J M

    2002-12-01

    The presence and pathophysiological role of CYP11B1 (11beta-hydroxylase) gene in the zona glomerulosa of human adrenal cortex is still controversial. In order to specifically quantify CYP11B1, CYP11B2 (aldosterone synthase) and CYP17(17alpha-hydroxylase) mRNA levels, we developed a real-time RT-PCR assay and examined the expression in a series of adrenal tIssues, including six normal adrenals from patients adrenalectomized for renal cancer and twelve aldosterone-producing adenomas (APA) from patients with primary aldosteronism. CYP11B1 mRNA levels were clearly detected in normal adrenals, which comprised both zona glomerulosa and fasciculata/reticularis cells, but were also measured at a lower range (P<0.05) in APA. The levels of CYP11B2 mRNA were lower (P<0.005) in normal adrenals than in APA. CYP17 mRNAlevels were similar in normal adrenals and in APA. In patients with APA, CYP11B2 and CYP11B1 mRNA levels were not correlated either with basal aldosterone or with the change from basal aldosterone in response to posture or to dexamethasone. No correlation between CYP11B1 mRNA or CYP11B2 mRNA and the percentage of zona fasciculata-like cells was observed in APA. Real-time RT-PCR can be reliably used to quantify CYP11B1 and CYP11B2 mRNA levels in adrenal tIssues. Expression of CYP11B1 in hyperfunctioning zona glomerulosa suggests an additional formation of corticosterone via 11beta-hydroxylase, providing further substrate for aldosterone biosynthesis. CYP11B1 and CYP11B2 mRNA levels in APA are not related to the in vivo secretory activity of glomerulosa cells, where post-transcriptional factors might ultimately regulate aldosterone production.

  7. In situ changes in the relative abundance of human epidermal cytokine messenger RNA levels following exposure to the poison ivy/oak contact allergen urushiol.

    PubMed

    Boehm, K D; Yun, J K; Strohl, K P; Trefzer, U; Häffner, A; Elmets, C A

    1996-06-01

    Abstract: Epidermal keratinocytes in culture have been shown to produce many cytokines, and their proteins have been identified in skin tissue samples. It has therefore been assumed that these cytokines are transcribed in vivo by the epidermis in response to contact allergens. In this report, in situ hybridization was used to detect the messenger RNAs for interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta) and tumour necrosis factor-alpha (TNF-alpha) in samples of human skin prior to and at various times after application of urushiol, the immunogenic component of poison ivy/oak. In sensitive subjects, IL-1 alpha and TNF-alpha mRNAs showed a progressive increase in transcript levels that paralleled the clinical and histological features of the inflammatory process. The time-course of the IL-1 beta response differed from that of IL-1 alpha and TNF-alpha, in that there was an early (by 6 h after urushiol administration) elevation in IL-1 beta mRNA that occurred before there was evidence of inflammation and had returned to background levels by 72 h when the reaction had reached its peak. In contrast to urushiol-sensitive subjects, urushiol-anergic individuals did not exhibit an increase in IL-1 alpha, IL-1 beta or TNF-alpha mRNA levels. The data provide evidence for an in vivo role for epidermal IL-1 alpha, IL-1 beta and TNF-alpha transcription in the regulation of IL-1 beta and TNF-alpha polypeptide levels in the epidermis in response to this common contact allergen.

  8. Effect of gel re-organization and tensional forces on alpha2beta1 integrin levels in dermal fibroblasts.

    PubMed

    Jenkins, G; Redwood, K L; Meadows, L; Green, M R

    1999-07-01

    Mechanical forces are known to play an important role in regulating cell function in a wide range of biological systems. This is of particular relevance to dermal fibroblast function, given that the skin is known to be held under an intrinsic natural tension. To understand more about the generation of force by dermal fibroblasts and their ability to respond to changes in it, we have studied the role of the beta1 integrin receptors expressed by dermal fibroblasts in their ability to generate tensional forces within a collagen type I matrix and the effect of altered tensional force on integrin expression by dermal fibroblasts. Using a purpose-built culture force monitor, function-blocking antibodies directed towards the beta1 receptors dramatically reduced the tensional forces generated by dermal fibroblasts in a 3D collagen I matrix. However, the specific involvement of alpha1 or alpha2 subunits could not be demonstrated. Analysis of cellular response demonstrated that cells isolated from contracting collagen gels expressed fourfold higher levels of alpha2 mRNA than cells isolated from fully restrained gels. The levels of beta1 messenger RNA were relatively unaffected by reductions in force. Cells exposed to single reductions in force, however, did not exhibit alterations in either alpha1 or beta1 mRNA levels. We propose, therefore that alpha2beta1 integrin receptor levels in dermal fibroblasts are not altered in response to single reductions of gel tension, but do change following a continual change in force and associated matrix re-organization

  9. The shunt from the cyclooxygenase to lipoxygenase pathway in human osteoarthritic subchondral osteoblasts is linked with a variable expression of the 5-lipoxygenase-activating protein.

    PubMed

    Maxis, Kelitha; Delalandre, Aline; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Duval, Nicolas; Lajeunesse, Daniel

    2006-01-01

    Osteoarthritis (OA) is characterized by articular cartilage degradation and hypertrophic bone changes with osteophyte formation and abnormal bone remodeling. Two groups of OA patients were identified via the production of variable and opposite levels of prostaglandin E2 (PGE2) or leukotriene B4 (LTB4) by subchondral osteoblasts, PGE2 levels discriminating between low and high subgroups. We studied whether the expression of 5-lipoxygenase (5-LO) or 5-LO-activating protein (FLAP) is responsible for the shunt from prostaglandins to leukotrienes. FLAP mRNA levels varied in low and high OA groups compared with normal, whereas mRNA levels of 5-LO were similar in all osteoblasts. Selective inhibition of cyclooxygenase-2 (COX-2) with NS-398-stimulated FLAP expression in the high OA osteoblasts subgroup, whereas it was without effect in the low OA osteoblasts subgroup. The addition of PGE2 to the low OA osteoblasts subgroup decreased FLAP expression but failed to affect it in the high OA osteoblasts subgroup. LTB4 levels in OA osteoblasts were stimulated about twofold by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plus transforming growth factor-beta (TGF-beta), a situation corresponding to their effect on FLAP mRNA levels. Treatments with 1,25(OH)2D3 and TGF-beta also modulated PGE2 production. TGF-beta stimulated PGE2 production in both OA osteoblast groups, whereas 1,25(OH)2D3 alone had a limited effect but decreased the effect of TGF-beta in the low OA osteoblasts subgroup. This modulation of PGE2 production was mirrored by the synthesis of COX-2. IL-18 levels were only slightly increased in a subgroup of OA osteoblasts compared with normal; however, no relationship was observed overall between IL-18 and PGE2 levels in normal and OA osteoblasts. These results suggest that the shunt from the production of PGE2 to LTB4 is through regulation of the expression of FLAP, not 5-LO, in OA osteoblasts. The expression of FLAP in OA osteoblasts is also modulated differently by 1,25(OH)2D3 and TGF-beta depending on their endogenous low and high PGE2 levels.

  10. Adjuvant-induced joint inflammation causes very rapid transcription of beta-preprotachykinin and alpha-CGRP genes in innervating sensory ganglia.

    PubMed

    Bulling, D G; Kelly, D; Bond, S; McQueen, D S; Seckl, J R

    2001-04-01

    Neuropeptides synthesized in dorsal root ganglia (DRG) have been implicated in neurogenic inflammation and nociception in experimental and clinical inflammatory arthritis. We examined the very early changes in response to adjuvant injection in a rat model of unilateral tibio-tarsal joint inflammation and subsequent monoarthritis. Within 30 min of adjuvant injection ipsilateral swelling and hyperalgesia were apparent, and marked increases in beta-preprotachykinin-A (beta-PPT-A) and alpha-calcitonin gene-related peptide (CGRP)-encoding mRNAs were observed in small-diameter L5 DRG neurones innervating the affected joint. This response was augmented by recruitment of additional small-diameter DRG neurones expressing beta-PPT-A and CGRP transcripts. The increased mRNA was paralleled by initial increases in L5 DRG content of the protein products, substance P and calcitonin gene-related peptide. Within 15 min of adjuvant injection there were increases in electrical activity in sensory nerves innervating a joint. Blockade of this activity prevented the rapid induction in beta-PPT-A and CGRP mRNA expression in DRG neurones. Increased expression of heteronuclear (intron E) beta-PPT-A RNA suggests that increases in beta-PPT-A mRNA levels were, at least in part, due to transcription. Pre-treatment with the protein synthesis inhibitor cycloheximide had no effect upon the early rise in neuropeptide mRNAS: This and the rapid time course of these changes suggest that increased sensory neural discharge and activation of a latent modulator of transcription are involved.

  11. Tissue specific expression of the retinoic acid receptor-beta 2: regulation by short open reading frames in the 5'-noncoding region

    PubMed Central

    1994-01-01

    The 40-S subunit of eukaryotic ribosomes binds to the capped 5'-end of mRNA and scans for the first AUG in a favorable sequence context to initiate translation. Most eukaryotic mRNAs therefore have a short 5'- untranslated region (5'-UTR) and no AUGs upstream of the translational start site; features that seem to assure efficient translation. However, approximately 5-10% of all eukaryotic mRNAs, particularly those encoding for regulatory proteins, have complex leader sequences that seem to compromise translational initiation. The retinoic-acid- receptor-beta 2 (RAR beta 2) mRNA is such a transcript with a long (461 nucleotides) 5'-UTR that contains five, partially overlapping, upstream open reading frames (uORFs) that precede the major ORF. We have begun to investigate the function of this complex 5'-UTR in transgenic mice, by introducing mutations in the start/stop codons of the uORFs in RAR beta 2-lacZ reporter constructs. When we compared the expression patterns of mutant and wild-type constructs we found that these mutations affected expression of the downstream RAR beta 2-ORF, resulting in an altered regulation of RAR beta 2-lacZ expression in heart and brain. Other tissues were unaffected. RNA analysis of adult tissues demonstrated that the uORFs act at the level of translation; adult brains and hearts of transgenic mice carrying a construct with either the wild-type or a mutant UTR, had the same levels of mRNA, but only the mutant produced protein. Our study outlines an unexpected role for uORFs: control of tissue-specific and developmentally regulated gene expression. PMID:7962071

  12. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu.

    PubMed

    Rodriguez-Cuenca, S; Monjo, M; Proenza, A M; Roca, P

    2005-01-01

    Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.

  13. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  14. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M.

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, amore » previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.« less

  15. In situ hybridization of nucleus basalis neurons shows increased. beta. -amyloid mRNA in Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, M.L.; Golde, T.E.; Usiak, M.F.

    1988-02-01

    To determine which cells within the brain produce ..beta..-amyloid mRNA and to assess expression of the ..beta..-amyloid gene in Alzheimer disease, the authors analyzed brain tissue from Alzheimer and control patients by in situ hybridization. The results demonstrate that ..beta..-amyloid mRNA is produced by neurons in the nucleus basalis of Meynert and cerebral cortex and that nuclues basalis perikarya from Alzheimer patients consistently hybridize more ..beta..-amyloid probe than those from controls. These observations support the hypothesis that increased expression of the ..beta..-amyloid gene plays an important role in the deposition of amyloid in the brains of patients with Alzheimer disease.

  16. The role of IL-1beta in reduced IL-7 production by stromal and epithelial cells: a model for impaired T-cell numbers in the gut during HIV-1 infection.

    PubMed

    Thang, P H; Ruffin, N; Brodin, D; Rethi, B; Cam, P D; Hien, N T; Lopalco, L; Vivar, N; Chiodi, F

    2010-08-01

    Interleukin (IL)-7 is a key cytokine in T-cell homeostasis. Stromal cells, intestinal epithelial cells and keratinocytes are known to produce this cytokine. The mechanisms and cellular factors regulating IL-7 production are still unclear. We assessed whether IL-1beta and interferon (IFN)-gamma, cytokines produced during inflammatory conditions, may impact on IL-7 production. We used human intestinal epithelial cells (DLD-1 cell line) and bone marrow stromal cells (HS27 cell line), known to produce IL-7; IL-7 production was evaluated at the mRNA and protein levels. To assess whether treatment of HS27 cells with IL-1beta and/or IFN-gamma leads to changes in the gene expression of cytokines, Toll-like receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole-genome microarray Human Gene 1.0 ST. We found that IFN-gamma enhanced the expression of IL-7 mRNA (P < 0.001) in both cell lines. IL-1beta treatment led to a significant down-regulation (P < 0.001) of IL-7 mRNA expression in both cell lines. The IL-7 concentration in supernatants collected from treated DLD-1 and HS27 cell cultures reflected the trend of IL-7 mRNA levels. The gene profiles revealed dramatic changes in expression of cytokines and their receptors (IL-7/IL-7R alpha; IL-1alpha,IL-1beta/IL-1R1; IFN-gamma/IFN-gammaR1), of IFN regulatory factors (IRF-1 and 2), of TLRs and of important chemo-attractants for T cells. The microarray results were verified by additional methods. Our results are discussed in the setting of inflammation and T-cell survival in the gut compartment during HIV-1 infection where stromal and epithelial cells may produce factors that contribute to impaired IL-7 homeostasis and homing of T cells.

  17. Hepatocyte growth factor and transforming growth factor beta regulate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression in rat hepatocyte primary cultures.

    PubMed Central

    Joaquin, M; Rosa, J L; Salvadó, C; López, S; Nakamura, T; Bartrons, R; Gil, J; Tauler, A

    1996-01-01

    Hepatocyte growth factor (HGF) and transforming growth factor beta (TGF-beta) are believed to be of major importance for hepatic regeneration after liver damage. We have studied the effect of these growth factors on fructose 2,6-bisphosphate (Fru-2,6-P2) levels and the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF2K/Fru-2,6-BPase) in rat hepatocyte primary cultures. Our results demonstrate that HGF activates the expression of the 6PF2K/Fru-2,6-BPase gene by increasing the levels of its mRNA. As a consequence of this activation, the amount of 6PF2K/Fru-2,6-BPase protein and 6-phosphofructo-2-kinase activity increased, which was reflected by a rise in Fru-2,6-P2 levels. In contrast, TGF-beta decreased the levels of 6PF2K/Fru-2,6-BPase mRNA, which led to a decrease in the amount of 6PF2K/Fru-2,6-BPase protein and Fru-2,6-P2. The different actions of HGF and TGF-beta on 6PF2K/Fru-2,6-BPase gene expression are concomitant with their effect on cell proliferation. Here we show that, in the absence of hormones, primary cultures of hepatocytes express the F-type isoenzyme. In addition, HGF increases the expression of this isoenzyme, and dexamethasone activates the L-type isoform. HGF and TGF-beta were able to inhibit this activation. PMID:8660288

  18. Expression and regulation of Icer mRNA in the Syrian hamster pineal gland.

    PubMed

    Diaz, Elena; Garidou, Marie-Laure; Dardente, Hugues; Salingre, Anthony; Pévet, Paul; Simonneaux, Valérie

    2003-04-10

    Inducible-cAMP early repressor (ICER) is a potent inhibitor of CRE (cAMP-related element)-driven gene transcription. In the rat pineal gland, it has been proposed to be part of the mechanisms involved in the shutting down of the transcription of the gene coding for arylalkylamine N-acetyltransferase (AA-NAT, the melatonin rhythm-generating enzyme). In this study, we report that ICER is expressed in the pineal gland of the photoperiodic rodent Syrian hamster although with some difference compared to the rat. In the Syrian hamster pineal, Icer mRNA levels, low at daytime, displayed a 20-fold increase during the night. Nighttime administration of a beta-adrenergic antagonist, propranolol, significantly reduced Icer mRNA levels although daytime administration of a beta-adrenergic agonist, isoproterenol, was unable to raise the low amount of Icer mRNA. These observations indicate that Icer mRNA expression is induced by the clock-driven norepinephrine release and further suggest that this stimulation is restricted to nighttime, as already observed for Aa-nat gene transcription. Furthermore, we found that the daily profile of Icer mRNA displayed photoperiodic variation with a lengthening of the nocturnal peak in short versus long photoperiod. These data indicate that ICER may be involved in both daily and seasonal regulation of melatonin synthesis in the Syrian hamster.

  19. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    PubMed

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  20. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1}more » knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a suppressor of PKC activity.« less

  1. Effect of inhibition of glycogen synthase kinase-3 on cardiac hypertrophy during acute pressure overload.

    PubMed

    Tateishi, Atsushi; Matsushita, Masayuki; Asai, Tomohiro; Masuda, Zenichi; Kuriyama, Mitsuhito; Kanki, Kazushige; Ishino, Kozo; Kawada, Masaaki; Sano, Shunji; Matsui, Hideki

    2010-06-01

    A large number of diverse signaling molecules in cell and animal models participate in the stimulus-response pathway through which the hypertrophic growth of the myocardium is controlled. However, the mechanisms of signaling pathway including the influence of lithium, which is known as an inhibitor of glycogen synthase kinase-3beta, in pressure overload hypertrophy remain unclear. The aim of our study was to determine whether glycogen synthase kinase-3beta inhibition by lithium has acute effects on the myocyte growth mechanism in a pressure overload rat model. First, we created a rat model of acute pressure overload cardiac hypertrophy by abdominal aortic banding. Protein expression time courses for beta-catenin, glycogen synthase kinase-3beta, and phosphoserine9-glycogen synthase kinase-3beta were then examined. The rats were divided into four groups: normal rats with or without lithium administration and pressure-overloaded rats with or without lithium administration. Two days after surgery, Western blot analysis of beta-catenin, echo-cardiographic evaluation, left ventricular (LV) weight, and LV atrial natriuretic peptide mRNA levels were evaluated. We observed an increase in the level of glycogen synthase kinase-3beta phosphorylation on Ser 9. A significant enhancement of LV heart weight (P < 0.05) and interventricular septum and posterior wall thickness (P < 0.05) with pressure-overloaded hypertrophy in animals treated with lithium were also observed. Atrial natriuretic peptide mRNA levels were significantly increased with pressure overload hypertrophy in animals treated with lithium. We have shown in an animal model that inhibition of glycogen synthase kinase-3beta by lithium has an additive effect on pressure overload cardiac hypertrophy.

  2. Salt-induction of betaine aldehyde dehydrogenase mRNA, protein, and enzymatic activity in sugar beet. [Beta vulgaris L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCue, K.F.; Hanson, A.D.

    1991-05-01

    In Chenopodiaceae such as sugar beet (Beta vulgaris L.), glycine betaine (betaine) accumulates in response to drought or salinity stress and functions in the cytoplasm as a compatible osmolyte. The last enzyme in the biosynthetic pathway, betaine aldehyde dehydrogenase (BADH), increases as much as 4-fold in response to rising salinity in the external medium. This increase is accompanied by an increase in both protein and mRNA levels. The steady state increases in BADH were examined at a series of NaCl concentrations from 100 to 500 mM NaCl. BADH protein levels were examined by native PAGE, and by western blot analysismore » using antibodies raised against BADH purified from spinach. mRNA levels were examined by northern plot analysis of total RNA isolated from the leaves and hybridized with a sugar beet BADH cDNA clone. The time course for BADH mRNA induction was determined in a salt shock experiment utilizing 400 mM NaCl added to the external growth medium. Disappearance of BADH was examined in a salt relief experiment using plants step-wise salinized to 500 mM NaCl and then returned to 0 mM NaCl.« less

  3. TNF-alpha, but not IFN-gamma, regulates CCN2 (CTGF), collagen type I, and proliferation in mesangial cells: possible roles in the progression of renal fibrosis.

    PubMed

    Cooker, Laurinda A; Peterson, Darryl; Rambow, Joann; Riser, Melisa L; Riser, Rebecca E; Najmabadi, Feridoon; Brigstock, David; Riser, Bruce L

    2007-07-01

    Connective tissue growth factor (CCN2) is a profibrotic factor acting downstream and independently of TGF-beta to mediate renal fibrosis. Although inflammation is often involved in the initiation and/or progression of fibrosis, the role of inflammatory cytokines in regulation of glomerular CCN2 expression, cellular proliferation, and extracellular matrix accumulation is unknown. We studied two such cytokines, TNF-alpha and IFN-gamma, for their effects on cultured mesangial cells in the presence or absence of TGF-beta, as a model for progressive renal fibrosis. Short-term treatment with TNF-alpha, like TGF-beta, significantly increased secreted CCN2 per cell, but unlike TGF-beta inhibited cellular replication. TNF-alpha combined with TGF-beta further increased CCN2 secretion and mRNA levels and reduced proliferation. Surprisingly, however, TNF-alpha treatment decreased baseline collagen type I protein and mRNA levels and largely blocked their stimulation by TGF-beta. Long-term treatment with TGF-beta or TNF-alpha alone no longer increased CCN2 protein levels. However, the combination synergistically increased CCN2. IFN-gamma had no effect on either CCN2 or collagen activity and produced a mild inhibition of TGF-beta-induced collagen only at a high concentration (500 U/ml). In summary, we report a strong positive regulatory role for TNF-alpha, but not IFN-gamma, in CCN2 production and secretion, including that driven by TGF-beta. The stimulation of CCN2 release by TNF-alpha, unlike TGF-beta, is independent of cellular proliferation and not linked to increased collagen type I accumulation. This suggests that the paradigm of TGF-beta-driven CCN2 with subsequent collagen production may be overridden by an as yet undefined inhibitory mechanism acting either directly or indirectly on matrix metabolism.

  4. Increased expression of mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type 2 in human atria during atrial fibrillation.

    PubMed

    De-An, Pei; Li, Li; Zhi-Yun, Xu; Jin-Yu, Huang; Zheng-Ming, Xu; Min, Wang; Qiang, Yao; Shi-Eng, Huang

    2010-01-01

    Atrialfibrillation (AF) is associated with the activation of the renin-angiotensin-aldosterone system in the atria. It is not clear whether the expression of a mineralocorticoid receptor (MR), or 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), conferring aldosterone specificity to the MR, in patients with AF is altered. Patients with AF may be associated with increased expression of MR and 11betaHSD2 in the atria. Atrial tissue samples of 25 patients with rheumatic heart valve disease undergoing a valve replacement operation were examined. A total of 13 patients had chronic persistent AF (>6 mo) and 12 patients had no history of AF. The MR and 11betaHSD2 expression were analyzed at the mRNA and protein level. The localization of MR and 11betaHSD2 in atrial tissue was performed using specific immunohistochemistry staining. The results of real-time quantitative polymerase chain reaction (PCR) showed that AF groups, in comparison with sinus rhythm, had a higher mRNA expression level of MR or 11betaHSD2 (all P < 0.01). Both the MR and 11betaHSD2 protein expression level in atrial tissue were also significantly increased in patients with AF compared with patients with sinus rhythm (P < 0.05 or P < 0.01). The immunohistochemical staining of MR or 11betaHSD2 demonstrated that MR and 11betaHSD2 predominately located in the cytoplasm of myocardial cells in the atrium and the intensity and density of immunostaining appeared to be increased in the atria of patients with AF compared to those without AF. Increasing expression of MR and 11betaHSD2 in the atria during AF is one of the molecular mechanisms for development of atrial interstitial fibrosis in patients with AF. These findings may have an important impact on the treatment of AF with aldosterone antagonists. Copyright 2010 Wiley Periodicals, Inc.

  5. Why is golden rice golden (yellow) instead of red?

    PubMed

    Schaub, Patrick; Al-Babili, Salim; Drake, Rachel; Beyer, Peter

    2005-05-01

    The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.

  6. TGF-beta antisense oligonucleotides reduce mRNA expression of matrix metalloproteinases in cultured wound-healing-related cells.

    PubMed

    Philipp, Katrin; Riedel, Frank; Germann, Günter; Hörmann, Karl; Sauerbier, Michael

    2005-02-01

    The pathology of chronic dermal ulcers is characterized by excessive proteolytic activity which degrades extracellular matrix. The transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. We investigated the effect of TGF-beta antisense oligonucleotides on the mRNA expression of matrix metalloproteinases in cultured human keratinocytes, fibroblasts and endothelial cells using multiplex RT-PCR. The treatment of keratinocytes and fibroblasts with TGF-beta antisense oligonucleotides resulted in a significant decrease of expression of mRNA of MMP-1 and MMP-9 compared to controls. Accordingly, a decreased expression of MMP-1 mRNA in endothelial cells was detectable. Other MMPs were not affected. Affecting all dermal wound-healing-related cell types, TGF-beta antisense oligonucleotide technology may be a potential therapeutic option for the inhibition of proteolytic tissue destruction in chronic wounds. Pharmaceutical intervention in this area ultimately may help clinicians to proactively intervene in an effort to prevent normal wounds from becoming chronic.

  7. Decreased heat tolerance is associated with hypothalamo-pituitary-adrenocortical axis impairment.

    PubMed

    Michel, V; Peinnequin, A; Alonso, A; Buguet, A; Cespuglio, R; Canini, F

    2007-06-29

    When rats are exposed to heat, they adapt themselves to the stressor with a wide inter-individual variability. Such differences in heat tolerance may be related to particularities in the hypothalamo-pituitary-adrenocortical (HPA) axis activation. To further this hypothesis, 80 rats instrumented with a telemetric device for abdominal temperature (Tabd) measurement were separated into two groups. Sixty-eight rats were exposed during 90 min at an ambient temperature of 40 degrees C, and 12 rats to an ambient temperature of 22 degrees C. Heat-exposed rats were then divided into three groups using the a posteriori k-means clustering method according to their Tabd level at the end of heat exposure. Heat tolerant rats (Tol, n=30) exhibiting the lowest Tabd showed a slight dehydration, a moderate triglyceride mobilization, but the highest plasma adrenocorticotropic-hormone (ACTH) and corticosterone levels. Conversely, heat exhausted rats (HE, n=14) presented the highest Tabd, a higher degree of dehydration, a greater metabolic imbalance with the lowest plasma triglyceride level and the highest lactate concentration, as well as a lowest plasma corticosterone and ACTH levels. The fact that the proopiomelanocortin (POMC) mRNA content within the pituitary was low despite of a high c-fos mRNA level is also relevant. Current inflammatory processes in HE rats were underlined by lower inhibitory factor kappaBalpha (IkappaBalpha) mRNA and higher tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) mRNA. In conclusion, data show that intolerance to heat exposure is associated to an HPA axis impairment, possibly related to changes occurring in the IkappaBalpha and TNF-alpha mRNA levels.

  8. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells inmore » the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. {alpha}1 and {alpha}3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers' blood is pro-fibrogenic, through actions on hHSCs expressed nAChRs. Therefore, CS, via its nicotine content, may worsen liver fibrosis. Moreover, nicotinic receptor antagonists may have utility as novel anti-fibrotic agents.« less

  9. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  10. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  11. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue withinmore » 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in X. laevis tadpoles.« less

  12. Stabilization and cytoskeletal-association of LDL receptor mRNA are mediated by distinct domains in its 3' untranslated region.

    PubMed

    Wilson, G M; Vasa, M Z; Deeley, R G

    1998-05-01

    The mRNA encoding the human low density lipoprotein (LDL) receptor is transiently stabilized after phorbol ester treatment of HepG2 cells and has been shown to associate with components of the cytoskeleton in this cell line (G. M. Wilson, E. A. Roberts, and R. G. Deeley, J. Lipid Res. 1997. 38: 437-446). Using an episomal expression system, fragments of the 3' untranslated region (3'UTR) of LDL receptor mRNA were transcribed in fusion with the coding region of beta-globin mRNA in HepG2 cells. Analyses of the decay kinetics of these beta-globin-LDL receptor fusion mRNA deletion mutants showed that sequences in the proximal 3'UTR of LDL receptor mRNA including several AU-rich elements (AREs) were sufficient to confer short constitutive mRNA half-life in the heterologous system. Stabilization of LDL receptor mRNA in the presence of PMA required sequences in the distal 3'UTR, at or near three Alu-like repetitive elements. Furthermore, the 3'UTR of LDL receptor mRNA conferred cytoskeletal association on the otherwise unassociated beta-globin mRNA, by a mechanism involving at least two distinct RNA elements. Comparisons of decay kinetics and subcellular localization of endogenous LDL receptor mRNA and beta-globin-LDL receptor mRNA fusions in HepG2 cells have demonstrated that several cis-acting elements in the receptor 3'UTR contribute to post-transcriptional regulation of receptor expression, and provide further support for involvement of the cytoskeleton in the regulation of LDL receptor mRNA turnover.

  13. mRNA and Protein Levels for GABA[subscript A][alpha]4, [alpha]5, [beta]1 and GABA[subscript B]R1 Receptors are Altered in Brains from Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rooney, Robert J.; Patel, Diven H.; Thuras, Paul D.

    2010-01-01

    We have shown altered expression of gamma-aminobutyric acid A (GABA[subscript A]) and gamma-aminobutyric acid B (GABA[subscript B]) receptors in the brains of subjects with autism. In the current study, we sought to verify our western blotting data for GABBR1 via qRT-PCR and to expand our previous work to measure mRNA and protein levels of 3…

  14. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  15. Hypophyseal corticosteroids stimulate somatotrope differentiation in the embryonic chicken pituitary gland.

    PubMed

    Zheng, Jun; Takagi, Hiroyasu; Tsutsui, Chihiro; Adachi, Akihito; Sakai, Takafumi

    2008-03-01

    Although it is known that glucocorticoids induce differentiation of growth hormone (GH)-producing cells in rodents and birds, the effect of mineralocorticoids on GH mRNA expression and the origin of corticosteroids affecting somatotrope differentiation have not been elucidated. In this study, we therefore carried out experiments to determine the effect of mineralocorticoids on GH mRNA expression in the chicken anterior pituitary gland in vitro and to determine whether corticosteroids are synthesized in the chicken embryonic pituitary gland. In a pituitary culture experiment with E11 embryos, both corticosterone and aldosterone stimulated GH mRNA expression and increased the number of GH cells in both lobes of the pituitary gland in a dose-dependent manner. These effects of the corticosteroids were significantly reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist, or spironolactone, a mineralocorticoid receptor (MR) antagonist. Interestingly, an in vitro serum-free culture experiment with an E11 pituitary gland showed that the GH mRNA level spontaneously increased during cultivation for 2 days without any extra stimulation, and this increase in GH mRNA level was completely suppressed by metyrapone, a corticosterone-producing enzyme P450C11 inhibitor. Moreover, progesterone, the corticosterone precursor, also stimulated GH mRNA expression in the cultured chicken pituitary gland, and this effect was blocked by pretreatment with metyrapone. We also detected mRNA expression of enzymes of cytochrome P450 cholesterol side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase1 (3beta-HSD1) in the developmental chicken pituitary gland from E14 and E18, respectively. These results suggest that mineralocorticoids as well as glucocorticoids can stimulate GH mRNA expression and that corticosteroids generated in the embryonic pituitary gland by intrinsic steroidogenic enzymes stimulate somatotrope differentiation.

  16. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin surface was accelerated by continuous 5 month UVB irradiation along with a reduction of type I collagen in the dermis, but this change was prevented by topical application of FM of Z. mobilis. From this experimental data, it is suggested that FM of Z. mobilis is effective for suppression of wrinkle formation in photoaging skin by inhibition of type I procollagen synthesis reduction.

  17. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin. I. Excisional wound model.

    PubMed

    Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M

    1990-09-01

    The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.

  18. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    USDA-ARS?s Scientific Manuscript database

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  19. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    PubMed Central

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group «C». The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and alpha-actinin-1 (Actn1) in group «HS» compared with that of group «C» by 25% and 30%, respectively, as well as a decrease and increase in the ACTN4 protein content in the membrane and cytoplasmic fractions, respectively. Lecithin injection resulted in an increase in the Actn1 and Actn4 mRNA content in group «C+L» by 1.5-fold and more than 2-fold, respectively, compared with the levels in group «C». Moreover, in group «HS+L», the mRNA content did not change in these genes compared with the levels in group «C+L», and the ACTN4 protein content in the membrane and cytoplasmic fractions also remained unchanged. Thus, lecithin prevented the reduction of Actn1 and Actn4 mRNA and the migration of ACTN4 from the cortical cytoskeleton to the cytoplasm. PMID:27073851

  20. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    PubMed

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and alpha-actinin-1 (Actn1) in group "HS" compared with that of group "C" by 25% and 30%, respectively, as well as a decrease and increase in the ACTN4 protein content in the membrane and cytoplasmic fractions, respectively. Lecithin injection resulted in an increase in the Actn1 and Actn4 mRNA content in group "C+L" by 1.5-fold and more than 2-fold, respectively, compared with the levels in group "C". Moreover, in group "HS+L", the mRNA content did not change in these genes compared with the levels in group "C+L", and the ACTN4 protein content in the membrane and cytoplasmic fractions also remained unchanged. Thus, lecithin prevented the reduction of Actn1 and Actn4 mRNA and the migration of ACTN4 from the cortical cytoskeleton to the cytoplasm.

  1. [S632A3 promotes LPS-induced IFN-beta production through inhibiting the activation of GSK-3beta].

    PubMed

    Zhang, Na; Yang, Xin; Xu, Rong; Wang, Zhen; Song, Dan-Qing; Li, Dian-Dong; Deng, Hong-Bin

    2013-07-01

    LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.

  2. Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.

    PubMed

    Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano

    2004-06-01

    Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.

  3. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway.

    PubMed

    Pérez-Sala, D; Cernuda-Morollón, E; Díaz-Cazorla, M; Rodríguez-Pascual, F; Lamas, S

    2001-03-01

    Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.

  4. Dysregulation of glucocorticoid metabolism in murine obesity: comparable effects of leptin resistance and deficiency.

    PubMed

    Livingstone, Dawn E W; Grassick, Sarah L; Currie, Gillian L; Walker, Brian R; Andrew, Ruth

    2009-05-01

    In obese humans, metabolism of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) and A-ring reduction (by 5 alpha- and 5 beta-reductases) is dysregulated in a tissue specific manner. These changes have been recapitulated in leptin resistant obese Zucker rats but were not observed in high-fat fed Wistar rats. Recent data from mouse models suggest that such discrepancies may reflect differences in leptin signalling. We therefore compared glucocorticoid metabolism in murine models of leptin deficiency and resistance. Male ob/ob and db/db mice and their respective littermate controls (n=10-12/group) were studied at the age of 12 weeks. Enzyme activities and mRNA expression were quantified in snap-frozen tissues. The patterns of altered pathways of steroid metabolism in obesity were similar in ob/ob and db/db mice. In liver, 5 beta-reductase activity and mRNA were increased and 11 beta-HSD1 decreased in obese mice, whereas 5 alpha-reductase 1 (5 alpha R1) mRNA was not altered. In visceral adipose depots, 5 beta-reductase was not expressed, 11 beta-HSD1 activity was increased and 5 alpha R1 mRNA was not altered in obesity. By contrast, in subcutaneous adipose tissue 11 beta-HSD1 and 5 alpha R1 mRNA were decreased. Systematic differences were not found between ob/ob and db/db murine models of obesity, suggesting that variations in leptin signalling through the short splice variant of the Ob receptor do not contribute to dysregulation of glucocorticoid metabolism.

  5. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro.

    PubMed

    Ikenoue, Takashi; Trindade, Michael C D; Lee, Mel S; Lin, Eric Y; Schurman, David J; Goodman, Stuart B; Smith, R Lane

    2003-01-01

    This study addressed the hypothesis that duration and magnitude of applied intermittent hydrostatic pressure (IHP) are critical parameters in regulation of normal human articular chondrocyte aggrecan and type II collagen expression. Articular chondrocytes were isolated from knee cartilage and maintained as primary, high-density monolayer cultures. IHP was applied at magnitudes of 1, 5 and 10 MPa at 1 Hz for durations of either 4 h per day for one day (4 x 1) or 4 h per day for four days (4 x 4). Total cellular RNA was isolated and analyzed for aggrecan and type II collagen mRNA signal levels using specific primers and reverse transcription polymerase chain reaction (RT-PCR) nested with beta-actin primers as internal controls. With a 4x1 loading regimen, aggrecan mRNA signal levels increased 1.3- and 1.5-fold at 5 and 10 MPa, respectively, relative to beta-actin mRNA when compared to unloaded cultures. Changing the duration of loading to a 4x4 regimen increased aggrecan mRNA signal levels by 1.4-, 1.8- and 1.9-fold at loads of 1, 5 and 10 MPa, respectively. In contrast to the effects of IHP on aggrecan, type II collagen mRNA signal levels were only upregulated at loads of 5 and 10 MPa with the 4x4 loading regimen. Analysis of cell-associated protein by western blotting confirmed that IHP increased aggrecan and type II collagen in chondrocyte extracts. These data demonstrate that duration and magnitude of applied IHP differentially alter chondrocyte matrix protein expression. The results show that IHP provides an important stimulus for increasing cartilage matrix anabolism and may contribute to repair and regeneration of damaged or diseased cartilage.

  6. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  7. The effect of isosaponarin isolated from wasabi leaf on collagen synthesis in human fibroblasts and its underlying mechanism.

    PubMed

    Nagai, Masashi; Akita, Keiko; Yamada, Kazuno; Okunishi, Isao

    2010-07-01

    Wasabi has been used as an important spice in Japanese foods. The wasabi leaves were used as a cosmetic material, but its biological activities have not yet been examined. We investigated the effect of isosaponarin derived from wasabi leaf on collagen synthesis in human fibroblasts. The production of type I collagen in human fibroblasts was increased with treatment of wasabi leaf extract. Isosaponarin isolated from wasabi leaves belonged to the group of flavone glycoside, and was the key compound in collagen synthesis from the wasabi leaf ingredients. Isosaponarin increased the type I collagen production at the mRNA gene level. The treatment of isosaponarin did not influence the production of transforming growth factor-beta (TGF-beta) protein, but increased the production of TGF-beta type II receptor (TbetaR-II) protein and TbetaR-II mRNA. Prolyl 4-hydroxylase (P4H) protein and P4H mRNA were increased by treatment with isosaponarin. Heat shock protein 47 (HSP47) was not increased by treatment with isosaponarin. These results suggested that isosaponarin increased collagen synthesis in human fibroblasts, caused by up-regulated TbetaR-II and P4H production.

  8. Translational autocontrol of the Escherichia coli ribosomal protein S15.

    PubMed

    Portier, C; Dondon, L; Grunberg-Manago, M

    1990-01-20

    When rpsO, the gene encoding the ribosomal protein S15 in Escherichia coli, is carried by a multicopy plasmid, the mRNA synthesis rate of S15 increases with the gene dosage but the rate of synthesis of S15 does not rise. A translational fusion between S15 and beta-galactosidase was introduced on the chromosome in a delta lac strain and the expression of beta-galactosidase studied under different conditions. The presence of S15 in trans represses the beta-galactosidase level five- to sixfold, while the synthesis rate of the S15-beta-galactosidase mRNA decreases by only 30 to 50%. These data indicate that S15 is subject to autogenous translational control. Derepressed mutants were isolated and sequenced. All the point mutations map in the second codon of S15, suggesting a location for the operator site that is very near to the translation initiation codon. However, the creation of deletion mutations shows that the operator extends into the 5' non-coding part of the message, thus overlapping the ribosome loading site.

  9. ST2 is essential for Th2 responsiveness and resistance to pseudomonas aeruginosa keratitis.

    PubMed

    Huang, Xi; Du, Wenjin; Barrett, Ronald P; Hazlett, Linda D

    2007-10-01

    To elucidate the role of ST2, a member of the TLR/IL-1R (TIR) superfamily, in protecting against Pseudomonas aeruginosa keratitis in BALB/c mice. ST2 mRNA and protein expression levels were tested by real-time PCR and Western-blot in C57BL/6 (B6; susceptible) versus BALB/c (resistant) mice before and after P. aeruginosa (strain 19660; American Type Culture Collection, Philadelphia, PA) challenge. Infected BALB/c mice also were tested after subconjunctival injection with recombinant murine (rm)ST2 or PBS. Disease was monitored by clinical score, slit lamp, bacterial plate count, a myeloperoxidase (MPO) assay to measure polymorphonuclear neutrophil (PMN) infiltrate, real-time RT-PCR, and ELISA. ST2 mRNA and protein were constitutively expressed in the uninfected normal corneas of both mouse groups. ST2 levels in the cornea of BALB/c compared with B6 mice were elevated significantly at 1 to 3 days post infection (PI), peaked at 3 and decreased at 5 days PI. BALB/c mice treated with rmST2 showed increased corneal opacity and perforation (at 5 days PI) when compared with PBS controls. rmST2- versus PBS-injected mice exhibited increased bacterial load, PMN infiltrate, and higher corneal mRNA levels for IL-1beta, MIP-2, IL-6, IL-1R1, and Th1-type cytokine such as IFN-gamma. Protein levels for IL-1beta, MIP-2, and IL-6 also were significantly upregulated, whereas the Th2 cytokines IL-4 (mRNA), IL-5 (mRNA), and IL-10 (mRNA and protein) were significantly reduced. ST2 is critical in resistance to P. aeruginosa keratitis, functioning to reduce corneal infection (bacterial load) and inflammation by negatively regulating proinflammatory cytokines and inhibiting type-1 immunity, but upregulating type-2 cytokine production, particularly IL-10.

  10. Cyclooxygenase system contributes to the maintenance of post convulsive period of epileptic phenomena in the genetically epileptic El mice.

    PubMed

    Okada, Kazumasa; Yamashita, Uki; Tsuji, Sadatoshi

    2006-09-01

    Recent studies have shown that cytokines and cyclooxygenase (COX)-2 are up-regulated in the brain of human epilepsy patients and animal models of epilepsy. We investigated the effect of inflammatory responses induced by intramuscular injection of turpentine on the epileptic phenomenon in genetically epileptic El mice. As parameters of epileptic seizure, seizure threshold (number of toss-ups to induce convulsion), duration of actual convulsion and duration of post actual convulsive period (period from the offset of convulsion to full recovery) were evaluated. The post actual convulsive period was prolonged without any change of seizure threshold or duration of actual convulsion 24 h after turpentine injection. Although pretreatment with indomethacin for one week did not change the seizure parameters, indomethacin suppressed the prolongation of the post actual convulsive period induced by turpentine. The mRNA expression of IL-1beta, IL-6 and COX-2 in the cerebral cortex was detected by RT-PCR. There was no difference in the mRNA expression in the cerebral cortex before and 24 h after seizure. The mRNA levels of IL-1beta, IL-6 and COX-2 in the cerebral cortex were up-regulated 24 h after turpentine injection. On the other hand, the up-regulated mRNA levels of IL-1beta, IL-6 and COX-2 in the cerebral cortex after turpentine treatment were not suppressed by indomethacin. These results suggest that prostaglandins induced with COX-2 in the cerebral cortex seem to play an important role in the maintenance of the post convulsive period, but not in induction and maintenance of the actual convulsive state.

  11. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less

  12. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    PubMed

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  13. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  14. Factors of transforming growth factor beta signalling are co-regulated in human hepatocellular carcinoma.

    PubMed

    Longerich, Thomas; Breuhahn, Kai; Odenthal, Margarete; Petmecky, Katharina; Schirmacher, Peter

    2004-12-01

    Transforming growth factor beta (TGFbeta) is a central mitoinhibitory factor for epithelial cells, and alterations of TGFbeta signalling have been demonstrated in many different human cancers. We have analysed human hepatocellular carcinomas (HCCs) for potential pro-tumourigenic alterations in regard to expression of Smad4 and mutations and expression changes of the pro-oncogenic transcriptional co-repressors Ski and SnoN, as well as mRNA levels of matrix metalloproteinase-2 (MMP2), which is transcriptionally regulated by TGFbeta. Smad4 mRNA was detected in all HCCs; while, using immunohistology, loss of Smad4 expression was found in 10% of HCCs. Neither mutations in the transformation-relevant sequences nor significant pro-tumourigenic expression changes of the Ski and SnoN genes were detected. In HCC cell lines, expression of both genes was regulated, potentially involving phosphorylation. Ski showed a distinct nuclear speckled pattern, indicating recruitment to active transcription complexes. MMP2 mRNA levels were increased in 19% of HCCs, whereas MMP2 mRNA was not detectable in HCC cell lines, suggesting that MMP2 was derived only from tumour stroma cells. Transcript levels of Smad4, Ski, SnoN and MMP2 correlated well. These data argue against a significant role of Ski and SnoN in human hepatocarcinogenesis and suggest that, in the majority of HCCs, the analysed factors are co-regulated by an upstream mechanism, potentially by TGFbeta itself.

  15. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    PubMed

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  16. Pannus invasion and cartilage degradation in rheumatoid arthritis: involvement of MMP-3 and interleukin-1beta.

    PubMed

    Ainola, M M; Mandelin, J A; Liljeström, M P; Li, T F; Hukkanen, M V J; Konttinen, Y T

    2005-01-01

    Synovial inflammation in rheumatoid arthritis (RA) leads to pannus tissue invasion and destruction of cartilage/bone matrix by proteinases. Our intention was to analyze some of the key matrix metalloproteinases (MMPs) in pannus tissue overlying evolving cartilage erosions in RA. Frozen tissue samples of pannus and synovium from advanced RA and synovium from osteoarthritic patients were used for immunohistochemical, western blotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analysis of MMP-1, -3, -13 and -14. Synovial fibroblast cultures, stimulated with tumour necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), were analyzed with enzyme-linked immunosorbent assays (ELISA) and quantitative RT-PCR. MMP-3 was highly expressed in pannus tissue compared with significantly lower expression levels of MMP-1, -13 and -14. In fibroblast cultures IL-1beta was a potent stimulus for MMP-3, whereas TNF-alpha was more potent for MMP-1. This is the first study to demonstrate quantitatively in real time that MMP-3 mRNA expression is clearly higher in advanced RA pannus tissue compared to parallel RA or osteoarthritic synovium. MMP-3 mRNA levels were also clearly overexpressed in RA pannus compared to MMP-1, -13 and -14. Advanced RA has previously been found to overexpress IL-1beta. The high expression of MMP-3 in pannus and IL-1beta, mediated stimulation of MMP-3 suggest that MMP-3 plays a significant role in the progression of erosions through the proteoglycan-rich cartilage matrix.

  17. Inhibin binding protein in rats: alternative transcripts and regulation in the pituitary across the estrous cycle.

    PubMed

    Bernard, D J; Woodruff, T K

    2001-04-01

    Inhibin binding protein (InhBP) and the transforming growth factor-beta (TGF beta) type III receptor, beta glycan, have been identified as putative inhibin coreceptors. Here we cloned the InhBP cDNA in rats and predict that it encodes a large membrane-spanning protein that is part of the Ig superfamily, as has been described for humans. Two abundant InhBP transcripts (4.4 and 1.8 kb) were detected in the adult rat pituitary. The larger transcript encodes the full-length protein while the 1.8-kb transcript (InhBP-short or InhBP-S) corresponds to a splice variant of the receptor. This truncated isoform contains only the N-terminal signal peptide and first two (of 12) Ig-like domains observed in the full-length InhBP (InhBP-long or InhBP-L). InhBP-S does not contain a transmembrane domain and is predicted to be a soluble protein. Beta glycan was also detected in the pituitary; however, it was most abundant within the intermediate lobe. Although we also observed beta glycan immunopositive cells in the anterior pituitary, they rarely colocalized with FSH beta-producing cells. We next examined physiological regulation of the coreceptors across the rat estrous cycle. Like circulating inhibin A and inhibin B levels, pituitary InhBP-L and InhBP-S mRNA levels were dynamically regulated across the cycle and were negatively correlated with serum FSH levels. Expression of both forms of InhBP was also positively correlated with serum inhibin B, but not inhibin A, levels. These data are particularly interesting in light of our in vitro observations that InhBP may function as an inhibin B-specific coreceptor. Pituitary beta glycan mRNA levels did not fluctuate across the cycle nor did they correlate with serum FSH. These observations, coupled with its pattern of expression within the pituitary, indicate that beta glycan likely functions as more than merely an inhibin coreceptor within the pituitary. A direct role for InhBP or beta glycan in regulation of pituitary FSH by inhibin in vivo has yet to be determined, but the demonstration of dynamic regulation of pituitary InhBP and its negative relation to serum FSH across the estrous cycle is an important step in this direction.

  18. Accumulation of nerve growth factor and its receptors in the uterus and dorsal root ganglia in a mouse model of adenomyosis.

    PubMed

    Li, Yan; Zhang, Shao-fen; Zou, Shi-en; Xia, Xian; Bao, Lei

    2011-03-08

    Adenomyosis is a common gynecological disease, which is accompanied by a series of immunological and neuroendocrinological changes. Nerve growth factor (NGF) plays a critical role in producing pain, neural plasticity, immunocyte aggregation and release of inflammatory factors. This study aimed to investigate the expression of NGF and its two receptors in uteri and dorsal root ganglia (DRG) in an adenomyosis mouse model, as well as their relationship with the severity of adenomyosis. Forty newborn ICR mice were randomly divided into the adenomyosis model group and control group (n = 20 in each group). Mice in the adenomyosis model group were orally dosed with 2.7 μmol/kg tamoxifen on days 2-5 after birth. Experiments were conducted to identify the expression of NGF- beta and its receptors, tyrosine kinase receptor (trkA) and p75 neurotrophin receptor (p75NTR), in the uterus and DRG in four age groups (90+/-5 d, 140+/-5 d, 190+/-5 d and 240+/-5 d; n = 5 mice in each group) by western bolt, immunochemistry and real time reverse transcription-polymerase chain reaction. Adenomyosis, which became more serious as age increased, was successfully induced in dosed ICR mice. NGF-beta, trkA and p75NTR protein levels in the uterus and trkA mRNA levels in DRG were higher in the older aged adenomyosis model group than those in controls (190+/-5 d and 240+/-5 d groups, P < 0.05). The expression of NGF-beta and its receptors in the uterus increased gradually as age increased for adenomyosis mice (190+/-5 d and 240+/-5 d, P < 0.05, compared with 90+/-5 d) but it showed little change in control mice. The mRNA level of trkA in DRG also increased as age increased in the adenomyosis model group (190+/-5 d and 240+/-5 d, P < 0.05, compared with 90+/-5 d) but was unchanged in controls. The mRNA level of p75NTR in DRG was not different between the adenomyosis and control groups and was stable from young to old mice. NGF- beta can be used as an indicator for the severity of adenomyosis. The gradually increasing level of NGF- beta and its receptors while the disease becomes more severe suggests an effect of NGF- beta on pathogenic mechanisms of adenomyosis.

  19. [Effects of Salvianolate on Myosin Heavy Chain in Cardiomyocytes of Congestive Heart Failure Rats].

    PubMed

    Chen, Cheng; Zou, Xiang-gu; Qiu, Shan-dong; Chen, Hui; Chen, Yong-zhong; Lin, Xiu-ming

    2015-07-01

    To explore the effect of Salvianolate on myosin heavy chain (MHC) in cardiomyocytes of congestive heart failure (CHF) rats. Sixty male SD rats were divided into 6 groups according to random digit table, i.e., the normal control group (NCG), the model group, the Captopril group (CAG), the low dose Salvianolate group (LSG), the high dose Salvianolate group (HSG), the Captopril and high dose Salvianolate group (CSG), 10 in each group. CHF rat model was established with peritoneal injection of adriamycin in all rats except those in the NCG. Equal volume of normal saline was peritoneally injected to rats in the NCG, once per week for 6 successive weeks. Corresponding medication was started from the 5th week of injecting adriamycin. Rats in the CAG were administered with Captopril solution at the daily dose of 10 mg/kg by gastrogavage. Rats in the LSG and the HSG were administered with Salvianolate solution at the daily dose of 24.219 mg/kg and 48.438 mg/kg respectively by gastrogavage. Salvianolate was dissolved in 2 mL 5% glucose solution and administered by peritoneal injection. Rats in the CSG were peritoneally injected with high dose Salvianolate solution and administered with Captopril solution by gastrogavage. Two mL normal saline was peritoneally injected to rats in the model group, once per day for 8 successive weeks. Eight weeks later, the cardiac function and myocardial hypertrophy indices were detected by biological signal collecting and processing system. mRNA expression levels of alpha-MHC and beta-MHC in cardiac muscle were detected by fluorescence quantitative PCR. Expressions of protein kinase C (PKC) in cardiac muscle were detected by Western blot. Compared with the normal control group, heart mass index (HMI) and left ventricular mass index (LVMI) obviously increased in the model group (P < 0.01). Compared with the model group, HMI and LVMI decreased in HSG, CAG, and CSG groups (P < 0.05, P < 0.01). It was more obviously lowered in the CSG group than in the CAG group (P < 0.05). Compared with the NCG, the mRNA expression level of alpha-MHC in cardiac muscle decreased, the mRNA expression level of p-MHC and the expression of PKC in cardiac muscle increased in the model group (P < 0.01). Compared with the model group, the mRNA expression level of alpha-MHC in cardiac muscle was increased, and the mRNA expression level of beta-MHC and the expression of PKC in cardiac muscle were decreased in HSG, CAG, and CSG groups (P < 0.05, P < 0.01). There was statistical difference between the CSG group and the CAG group (P < 0.05). Salvianolate could up-regulate the mRNA expression level of alpha-MHC, and down-regulate the mRNA expression level of beta-MHC in cardiac muscle. Its mechanism might be related to decreasing the expression of PKC.

  20. Sex-dependent effects of antenatal glucocorticoids on insulin sensitivity in adult sheep: role of the adipose tissue renin angiotensin system

    PubMed Central

    Massmann, G. Angela; Zhang, Jie; Seong, Won Joon; Kim, Minhyoung

    2017-01-01

    Exposure to glucocorticoids in utero is associated with changes in organ function and structure in the adult. The aims of this study were to characterize the effects of antenatal exposure to glucocorticoids on glucose handling and the role of adipose tissue. Pregnant sheep received betamethasone (Beta, 0.17 mg/kg) or vehicle 24 h apart at 80 days of gestation and allowed to deliver at term. At 9 mo, male and female offspring were fed at either 100% of nutritional allowance (lean) or ad libitum for 3 mo (obese). At 1 yr, they were chronically instrumented under general anesthesia. Glucose tolerance was evaluated using a bolus of glucose (0.25 g/kg). Adipose tissue was harvested after death to determine mRNA expression levels of angiotensinogen (AGT), angiotensin-converting enzyme (ACE) 1, ACE2, and peroxisome proliferator-activated receptor γ (PPAR-γ). Data are expressed as means ± SE and analyzed by ANOVA. Sex, obesity, and Beta exposure had significant effects on glucose tolerance and mRNA expression. Beta impaired glucose tolerance in lean females but not males. Superimposed obesity worsened the impairment in females and unmasked the defect in males. Beta increased ACE1 mRNA in females and males and AGT in females only (P < 0.05 by three-way ANOVA). Obesity increased AGT in females but had no effect on ACE1 in either males or females. PPAR-γ mRNA exhibited a significant sex (F = 42.8; P < 0.01) and obesity (F = 6.9; P < 0.05) effect and was significantly higher in males (P < 0.01 by three-way ANOVA). We conclude that adipose tissue may play an important role in the sexually dimorphic response to antenatal glucocorticoids. PMID:28356296

  1. Expression of beta-expansins is correlated with internodal elongation in deepwater rice.

    PubMed

    Lee, Y; Kende, H

    2001-10-01

    Fourteen putative rice (Oryza sativa) beta-expansin genes, Os-EXPB1 through Os-EXPB14, were identified in the expressed sequence tag and genomic databases. The DNA and deduced amino acid sequences are highly conserved in all 14 beta-expansins. They have a series of conserved C (cysteine) residues in the N-terminal half of the protein, an HFD (histidine-phenylalanine-aspartate) motif in the central region, and a series of W (tryptophan) residues near the carboxyl terminus. Five beta-expansin genes are expressed in deepwater rice internodes, with especially high transcript levels in the growing region. Expression of four beta-expansin genes in the internode was induced by treatment with gibberellin and by wounding. The wound response resulted from excising stem sections or from piercing pinholes into the stem of intact plants. The level of wound-induced beta-expansin transcripts declined rapidly 5 h after cutting of stem sections. We conclude that the expression of beta-expansin genes is correlated with rapid elongation of deepwater rice internodes, it is induced by gibberellin and wounding, and wound-induced beta-expansin mRNA appears to turn over rapidly.

  2. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.

    PubMed

    Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko

    2015-05-21

    Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three proteins, pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase, were increased in hypocotyl under flooding conditions and during post-flooding recovery. The proteins are involved in glycolysis, nucleotide synthesis and amino acid activation, and complex fatty acid biosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Elk-3 is a transcriptional repressor of nitric-oxide synthase 2.

    PubMed

    Chen, Yen-Hsu; Layne, Matthew D; Chung, Su Wol; Ejima, Kuniaki; Baron, Rebecca M; Yet, Shaw-Fang; Perrella, Mark A

    2003-10-10

    The inducible isoform of nitric-oxide synthase (NOS2), a key enzyme catalyzing the dramatic increase in nitric oxide by lipopolysaccharide (LPS), plays an important role in the pathophysiology of endotoxemia and sepsis. Recent evidence suggests that Ets transcription factors may contribute to NOS2 induction by inflammatory stimuli. In this study, we investigated the role of Ets transcription factors in the regulation of NOS2 by LPS and transforming growth factor (TGF)-beta 1. Transient transfection assays in macrophages showed that Ets-2 produced an increase in NOS2 promoter activity, whereas the induction by Ets-1 was modest and NERF2 had no effect. Elk-3 (Net/Erp/Sap-2a) markedly repressed NOS2 promoter activity in a dose-dependent fashion, and overexpression of Elk-3 blunted the induction of endogenous NOS2 message. Mutation of the Net inhibitory domain of Elk-3, but not the C-terminal-binding protein interaction domain, partially alleviated this repressive effect. We also found that deletion of the Ets domain of Elk-3 completely abolished its repressive effect on the NOS2 promoter. LPS administration to macrophages led to a dose-dependent decrease in endogenous Elk-3 mRNA levels, and this decrease in Elk-3 preceded the induction of NOS2 mRNA. In a mouse model of endotoxemia, the expression of Elk-3 in kidney, lung, and heart was significantly down-regulated after systemic administration of LPS, and this down-regulation also preceded NOS2 induction. Moreover, TGF-beta 1 significantly increased endogenous Elk-3 mRNA levels that had been down-regulated by LPS in macrophages. This increase in Elk-3 correlated with a TGF-beta 1-induced down-regulation of NOS2. Taken together, our data suggest that Elk-3 is a strong repressor of NOS2 promoter activity and mRNA levels and that endogenous expression of Elk-3 inversely correlates with NOS2. Thus, Elk-3 may serve as an important mediator of NOS2 gene expression.

  4. Long-term treatment of bile duct-ligated rats with rapamycin (sirolimus) significantly attenuates liver fibrosis: analysis of the underlying mechanisms.

    PubMed

    Biecker, Erwin; De Gottardi, Andrea; Neef, Markus; Unternährer, Matthias; Schneider, Vreni; Ledermann, Monika; Sägesser, Hans; Shaw, Sidney; Reichen, Jürg

    2005-06-01

    Rapamycin is an immunosuppressant with antiproliferative properties. We investigated whether rapamycin treatment of bile duct-ligated (BDL) rats is capable of inhibiting liver fibrosis and thereby affecting hemodynamics. Following BDL, rats were treated for 28 days with rapamycin (BDL SIR). BDL animals without drug treatment (BDL CTR) and sham-operated animals served as controls. After 28 days, hemodynamics were measured, and livers were harvested for histology/immunohistochemistry. Liver mRNA levels of transforming growth factor (TGF)-beta1, connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF)-beta, cyclin-dependent kinase inhibitor p27(kip) (p27), and cyclin-dependent kinase inhibitor p21(WAF1/CIP1) (p21) were quantified by real-time polymerase chain reaction. Liver protein levels of p27, p21, p70 S6 kinase (p70(s6k)), phosphorylated p70(s6k) (p-p70(s6k)), eukaryotic initiation factor 4E-binding protein (4E-BP1), p-4E-BP1 (Thr37/46), and p-4E-BP1 (Ser65/Thr70) were determined by Western blotting. Portal vein pressure was lower in BDL SIR than in BDL CTR animals. Volume fractions of connective tissue, bile duct epithelial, and desmin- and actin-positive cells were lower in BDL SIR than in BDL CTR rats. On the mRNA level, TGF-beta1, CTGF, and PDGF were decreased by rapamycin. p27 and p21 mRNA did not differ. On the protein level, rapamycin increased p27 and decreased p21 levels. Levels of nonphosphorylated p70(s6k) and 4E-BP1 did not vary between groups, but levels of p-p70(s6k) were decreased by rapamycin. Rapamycin had no effect on p-4E-BP1 (Thr37/46) and p-4E-BP1 (Ser65/Thr70) levels. In BDL rats, rapamycin inhibits liver fibrosis and ameliorates portal hypertension. This is paralleled by decreased levels of TGF-beta1, CTGF, and PDGF. Rapamycin influences the cell cycle by up-regulation of p27, down-regulation of p21, and inhibition of p70(s6k) phosphorylation.

  5. Dual response of BDNF to sublethal concentrations of beta-amyloid peptides in cultured cortical neurons.

    PubMed

    Aliaga, E; Silhol, M; Bonneau, N; Maurice, T; Arancibia, S; Tapia-Arancibia, L

    2010-01-01

    Beta-amyloid (Abeta) deposition is one important pathological hallmark in Alzheimer's disease (AD). However, low levels of Abeta may modify critical endogenous protection systems before neurodegeneration occurs. We examined the time-course effect of sublethal concentrations of Abeta on total BDNF (panBDNF), BDNF transcripts (I, II, IV and VI), trkB.FL, trkB.T1 and p75(NGFR) mRNA expression in cultured cortical neurons. We have shown that Abeta exhibited a dual response on BDNF mRNA, i.e. an increase at short times (3-5 h) and a dramatic decrease at longer times (24 or 48 h). The early increase in BDNF expression seems to be driven by increased expression of transcripts I and IV. The BDNF drop was specific since did not occur for other mRNAs examined. The BDNF protein content showed a similar profile but did not follow the dramatic reduction as its encoding mRNA. These observations may help to explain cognitive deficits observed at initial stages of AD.

  6. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    PubMed

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (P<0.05) and obesity (P<0.05) were independently associated with increased expression of 11beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (P<0.05, P<0.05). There were no effects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  7. Regulation of 11 beta-hydroxysteroid dehydrogenase enzymes in the rat kidney by estradiol.

    PubMed

    Gomez-Sanchez, Elise P; Ganjam, Venkataseshu; Chen, Yuan Jian; Liu, Ying; Zhou, Ming Yi; Toroslu, Cigdem; Romero, Damian G; Hughson, Michael D; de Rodriguez, Angela; Gomez-Sanchez, Celso E

    2003-08-01

    The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.

  8. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  9. Myocardium expression of connexin 43, SERCA2a, and myosin heavy chain isoforms are preserved in nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Baptista, Maria João; Recamán, Mónica; Melo-Rocha, Gustavo; Nogueira-Silva, Cristina; Roriz, José-Mário; Soares-Fernandes, João; Gonzaga, Silvia; Santos, Marta; Leite-Moreira, Adelino; Areias, José Carlos; Correia-Pinto, Jorge

    2006-09-01

    Previous morphological studies had produced controversial results with regard to heart development in congenital diaphragmatic hernia (CDH), whereas a few publications investigated cardiac function and myocardial maturation. Myocardium maturation is associated with age-dependent increasing of gene expression of gap junction protein connexin 43 (Cx43), adenosine triphosphatase of the sarcoplasmic reticulum (SERCA2a), as well as switching of myosin heavy chains (MHCs) from beta to alpha isoforms. Our aim was to evaluate myocardium maturity in nitrofen-induced CDH rat model. Fetuses from dated pregnant Sprague-Dawley rats were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from left ventricle free wall were processed to (i) quantification of messenger RNA (mRNA) of Cx43, SERCA2a, alpha and beta MHC isoforms, as well as beta-actin (housekeeping gene); and (ii) separation of MHC isoforms (alpha and beta isoforms) by sodium dodecyl sulfate polyacrylamide gel electrophoresis silver stained. We demonstrated that there is no difference in myocardial gene expression of Cx43 (control, 1.0 +/- 0.1; nitrofen, 1.1 +/- 0.2; CDH, 1.3 +/- 0.2) and SERCA2a (control, 1.0 +/- 0.1; nitrofen, 0.9 +/- 0.1; CDH, 1.0 +/- 0.2). Myocardial gene expressions of alpha and beta mRNA of MHC isoforms were slightly decreased both in nitrofen and CDH fetuses when compared with control fetuses, but evaluation of the alpha-to-beta ratios of MHC isoforms at protein level revealed no significant differences between CDH and control (control, 16.9 +/- 2.5; CDH, 17.0 +/- 2.0). Myocardial quantification of Cx43 and SERCA2a mRNA, as well as the expression pattern of MHC isoforms at protein levels, was similar in all studied groups. We predict, therefore, that acute heart failure commonly observed in CDH infants might be attributed predominantly to cardiac overload secondary to severe pulmonary hypertension rather than to myocardial immaturity.

  10. Effect of developmental exposure to chlorpyrifos on the expression of neurotrophin growth factors and cell-specific markers in neonatal rat brain.

    PubMed

    Betancourt, Angela M; Burgess, Shane C; Carr, Russell L

    2006-08-01

    Chlorpyrifos (CPS), a known neurotoxicant, is a widely used agricultural organophosphorus insecticide. The effects of postnatal exposure to CPS on the expression of mRNA for two factors critical to brain development, nerve growth factor (NGF) and reelin, were investigated in the forebrain of rats. In addition, the expression of mRNA for the muscarinic acetylcholine receptor (mAChR) M(1) subtype and cell-specific markers for developing neurons (beta-III tubulin), astrocytes (glial fibrillary acidic protein, GFAP), and oligodendrocytes (myelin-associated glycoprotein, MAG) was also investigated. Oral administration of CPS (1.5 or 3.0 mg/kg) or the corn oil vehicle was performed daily from postnatal days (PNDs) 1 through 6. No signs of overt toxicity or of cholinergic hyperstimulation were observed after CPS administration. Body weight was significantly different from controls on PND7 in both males and females exposed to 3.0 mg/kg CPS. Quantitative PCR was performed on the forebrain. The expression of NGF, reelin, and M(1) mAChR mRNA was significantly reduced with both dosages of CPS in both sexes. beta-III Tubulin mRNA expression remained unchanged after exposure, whereas MAG mRNA expression was significantly decreased with both dosages of CPS in both sexes, suggesting effects on the developing oligodendrocytes. In contrast, GFAP mRNA levels were significantly increased with both dosages of CPS in both sexes, suggesting increased astrocyte reactivity. Our findings indicate that dosages of CPS which cause significant cholinesterase inhibition but do not exert overt toxicity can adversely affect the expression levels of critical genes involved in brain development during the early postnatal period in the rat.

  11. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function.

    PubMed

    Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K

    1997-10-01

    Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.

  12. Age differentially influences estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) gene expression in specific regions of the rat brain.

    PubMed

    Wilson, Melinda E; Rosewell, Katherine L; Kashon, Michael L; Shughrue, Paul J; Merchenthaler, Istvan; Wise, Phyllis M

    2002-03-31

    Estradiol's ability to influence neurochemical events that are critical to female reproductive cyclicity and behavior decreases with age. We tested the hypothesis that decreases in estrogen receptor-alpha (ERalpha) and/or ERbeta mRNA explain the brain's declining responsiveness to estradiol. We assessed ERalpha and ERbeta mRNA levels in intact and ovariectomized estradiol-treated rats. ERbeta mRNA was detected in several brain regions and decreased by middle-age in the cerebral cortex and supraoptic nucleus of estradiol-treated rats. ERbeta mRNA levels exhibited a diurnal rhythm in the suprachiasmatic nucleus of young and middle-aged rats and this rhythm was blunted in old rats. We examined ERalpha mRNA in the periventricular preoptic, medial preoptic, ventromedial and arcuate nuclei, and it was decreased only in the periventricular preoptic nucleus of the old rats. In summary, the expression of ERalpha and ERbeta mRNAs is differentially modulated in the aging brain and changes are region specific.

  13. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland.

    PubMed

    Cabilla, Jimena P; Díaz, María del Carmen; Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H

    2006-09-01

    Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.

  14. [Influence of macrophages on the expression of vascular endothelial growth factor receptor mRNA, homeobox B2 mRNA, and integrin alpha nu beta3 in vascular endothelial strain].

    PubMed

    Liu, Liang; Liu, Chang; Zhang, Xiao-qi; Ming, Jia; Liu, Xu-sheng; Xu, Hui; Cheng, Tian-min

    2005-06-01

    To investigate the influence of macrophages on the expression of the vascular endothelial growth factor (VEGF) receptor (KDR) mRNA, homeobox B2 (HOXB2) mRNA, and integrin alpha nu beta3 in vitro in vascular endothelial strain. Human umbilical vein cells (ECV304) were cultured in vitro and divided into 4 groups, i.e. (1) ECV304 group, (2) ECV304 + conA group [with conA (25 microg/ml in culture) added to ECV304], (3) ECV304 + U937 group (with 1 x 10(5)/ml of U937 cells added to 1 x 10(5)/ml ECV 304), (4) ECV304 + U937 + conA group [with 1 x 10(5)/ml of U937 cells and conA (25 microg/ml in culture)] groups. Forty-eight hours after culturing, the expression of integrin receptor alpha nu beta3 and the changes in the expression of KDR mRNA and HOXB2 mRNA in each group were determined by immunofluorescent technique and RT-PCR, respectively. The expression of integrin receptor alpha nu beta3, KDR mRNA, and HOXB2 mRNA in ECV304 group were 6.7 +/- 1.5, 0.633 +/- 0.012, and 0.674 +/- 0.004, respectively, while those in ECV304 + U937 + conA group (10.2 +/- 1.7, 0.879 +/- 0.003, 0.947 +/- 0.003) were obviously more upregulated when compared with those in ECV304 group (P < 0.01). No difference in the above indices was found between ECV304 and ECV304 + conA, ECV304 + U937 groups (P > 0.05). Macrophages activated by ConA can accelerate the proliferation, migration and adhesion to the basement membrane matrix of vascular endothelial cells through the influence on the expression of KDR mRNA, HOXB2 mRNA and integrin alpha nu beta3, and through this pathway the angiogenesis is modulated.

  15. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    PubMed Central

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  16. Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea.

    PubMed

    Yang, H; Jiang, W; Furth, E E; Wen, X; Katz, J P; Sellon, R K; Silberg, D G; Antalis, T M; Schweinfest, C W; Wu, G D

    1998-12-01

    The pathogenesis of diarrhea in intestinal inflammatory states is a multifactorial process involving the effects of inflammatory mediators on epithelial transport function. The effect of colonic inflammation on the gene expression of DRA (downregulated in adenoma), a chloride-sulfate anion transporter that is mutated in patients with congenital chloridorrhea, was examined in vivo as well as in an intestinal epithelial cell line. DRA mRNA expression was diminished five- to sevenfold in the HLA-B27/beta2m transgenic rat compared with control. In situ hybridization showed that DRA, which is normally expressed in the upper crypt and surface epithelium of the colon, was dramatically reduced in the surface epithelium of the HLA-B27/beta2m transgenic rat, the interleukin-10 (IL-10) knockout mouse with spontaneous colitis, and in patients with ulcerative colitis. Immunohistochemistry demonstrated that mRNA expression of DRA reflected that of protein expression in vivo. IL-1beta reduced DRA mRNA expression in vitro by inhibiting gene transcription. The loss of transport function in the surface epithelium of the colon by attenuation of transporter gene expression, perhaps inhibited at the level of gene transcription by proinflammatory cytokines, may play a role in the pathogenesis of diarrhea in colitis.

  17. [Effect of paeoniflorin on level of glucocorticoid receptor of peripheral blood monocytes in rats of collagen-induced arthritis].

    PubMed

    Yi, Jian-Feng

    2014-03-01

    The study is to explore the effect of paeoniflorin on the level of glucocorticoid receptor, including glucocorticoid receptor-alpha (GCRalpha) and glucocorticoid receptor-beta (GCRbeta), of peripheral blood mononuclear cells (PBMCs) in rats of collagen-induced arthritis (CIA). CIA is induced in Wistar rats by an intradermal injection of bovine type II collagen emulsified with complete adjuvant. From the 14th day after primary immunization, the CIA rats were intragastrically administered paeoniflorin 25, 50 and 100 mg x kg(-1) or triptolde 20 microg x kg(-1) or paeoniflorin 50 mg x kg(-1) + RU486 15 mg x kg(-1), once a day, for 28 consecutive days. After administration, apart from PF + RU486 group all experimental rats were took blood by removalling eyeball, then separated PBMCs. The level of GCRalpha, GCRbeta in PBMCs were examined by ELISA, and the mRNA expression of GCRalpha, GCRbeta was detected by RT-PCR. All rats were sacrificed and took the joint with no immunization. The expression of IL-1beta, NF-kappaB p65, TNF-alpha, PGE2 of synovial tissue was detected by immunohistochemistry. Paeoniflorin was able to inhibit the expression of IL-1beta, NF-kappaB p65, TNF-alpha, PGE2 of synovial tissue in CIA rats. While RU486, glucocorticoid receptor's blocker, could weaken the fuction of paeoniflorin. Meanwhile, paeoniflorin obviously induced the expression of GCRalpha and GCRalpha mRNA, while obviously inhibited the expression of GCRbeta and GCRbeta mRNA. These results indicat paeoniflorine suppresses inflammatory mediator production may be relating with it regulating GCR in PBMCs of CIA rats.

  18. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice.

    PubMed

    Buckley, Jill; Willingham, Emily; Agras, Koray; Baskin, Laurence S

    2006-02-21

    Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors alpha and beta, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen alpha and beta, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor alpha mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor alpha and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways.

  19. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less

  1. Transforming growth factor-beta production in anti-glomerular basement membrane disease in the rabbit.

    PubMed Central

    Coimbra, T.; Wiggins, R.; Noh, J. W.; Merritt, S.; Phan, S. H.

    1991-01-01

    The purpose of this study was to assay for the presence of collagen synthesis stimulatory activity in the kidney during immune-induced renal injury that results in severe fibrosis in both glomerular and interstitial compartments. A model of antiglomerular basement (anti-GBM) disease in the rabbit was induced on day 0 by the injection of anti-GBM antibody and renal cortex tissues were then sampled at various time points. Only conditioned media prepared from diseased renal cortical samples showed collagen synthesis stimulatory activity when tested on rabbit mesangial cells. The activity had an estimated molecular weight range of 16 to 25 kd and was neutralized by antibody to transforming growth factor-beta (TGF-beta). A standard assay for TGF-beta using a mink lung epithelial cell line confirmed the increase in TGF-beta activity in conditioned media of diseased cortex from day 7 and day 14 animals, which was not significantly activated by previous acidification. This suggests that most of the TGF-beta present in renal conditioned media was in the active form. The increase in renal cortical secretion of active TGF-beta was accompanied by increases in renal cortical TGF-beta mRNA content on days 4 and 7 after induction, with subsequent return to control levels. A similar increase in TGF-beta activity was present in nonacidified conditioned media of purified glomeruli from diseased days 7 and 14 animals, which was also accompanied by significant increases in TGF-beta mRNA. However with acidification no significant differences were noted between control and diseased samples, suggesting the presence of substantial latent TGF-beta activity in control glomerular conditioned media. These same control-conditioned media contained inhibitor activity for added exogenous TGF-beta. These results support the conclusion that the association between increased TGF-beta secretion and increased renal cortical collagen synthesis in this model is consistent with a role for this cytokine in directing fibrogenesis in the kidney. Images Figure 6 PMID:1987768

  2. MHC class I, beta2 microglobulin, and the INF-gamma receptor are upregulated in aged motoneurons.

    PubMed

    Edström, Erik; Kullberg, Susanna; Ming, Yu; Zheng, Huaiyu; Ulfhake, Brun

    2004-12-15

    During aging, spinal cord motoneurons show characteristic changes including the loss of afferent boutons, a selective process that associates with gliosis and behavioral motor impairment. Evidence suggests that the major histocompatibility complex Class I (MHC I) system may be involved in synaptic plasticity of neurons during development and regeneration. In search of a mechanism governing senescent changes in synaptic connectivity, we report evidence for increased expression of MHC I and beta2 microglobulin (beta2M) in motoneurons and glial-like profiles of 30-month-old rats. The regulatory signal(s) for MHC I expression in normal neurons remains unresolved but among tentative molecules are cytokines such as interferon-gamma (INF-gamma) and tumor necrosis factor alpha (TNF-alpha). Interestingly, aged motoneurons, overlapping with those showing increased levels of MHC I, contained increased levels of INF-gamma receptor message. INF-gamma mRNA was detected at low levels in most (8/9) of the aged spinal cords but only infrequently (2/9) in young adult spinal cords; however, the cellular localization of INF-gamma mRNA could not be determined. Our data also indicates that TNF-alpha is upregulated in the senescent spinal cord but that TNF-alpha immunoreactive protein does not associate with motoneurons. We report evidence for an increased expression of MHC I and beta2M in senescent spinal motoneurons and discuss the possibility that this regulation associates with INF-gamma or changes in neurotrophin signaling and neuron activity in senescence. (c) 2004 Wiley-Liss, Inc.

  3. Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages.

    PubMed

    Erdely, Aaron; Kepka-Lenhart, Diane; Clark, Melissa; Zeidler-Erdely, Patti; Poljakovic, Mirjana; Calhoun, William J; Morris, Sidney M

    2006-03-01

    Arginase is greatly elevated in asthma and is thought to play a role in the pathophysiology of this disease. As inhibitors of phosphodiesterase 4 (PDE4), the predominant PDE in macrophages, elevate cAMP levels and reduce inflammation, they have been proposed for use in treatment of asthma and chronic obstructive pulmonary disease. As cAMP is an inducer of arginase, we tested the hypothesis that a PDE4 inhibitor would enhance macrophage arginase induction by key cytokines implicated in asthma and other pulmonary diseases. RAW 264.7 cells were stimulated with IL-4 or transforming growth factor (TGF)-beta, with and without the PDE4 inhibitor rolipram. IL-4 and TGF-beta increased arginase activity 16- and 5-fold, respectively. Rolipram alone had no effect but when combined with IL-4 and TGF-beta synergistically enhanced arginase activity by an additional 15- and 5-fold, respectively. The increases in arginase I protein and mRNA levels mirrored increases in arginase activity. Induction of arginase II mRNA was also enhanced by rolipram but to a much lesser extent than arginase I. Unlike its effect in RAW 264.7 cells, IL-4 alone did not increase arginase activity in human alveolar macrophages (AM) from healthy volunteers. However, combining IL-4 with agents to induce cAMP levels induced arginase activity in human AM significantly above the level obtained with cAMP-inducing agents alone. In conclusion, agents that elevate cAMP significantly enhance induction of arginase by cytokines. Therefore, consequences of increased arginase expression should be evaluated whenever PDE inhibitors are proposed for treatment of inflammatory disorders in which IL-4 and/or TGF-beta predominate.

  4. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1beta mRNA expression in skin of burn wound-treated rats.

    PubMed

    Sui, ZhiFu; Yang, RongYa; Liu, Biao; Gu, TingMin; Zhao, Zhili; Shi, Dongfang; Chang, DongQing

    2010-08-01

    Agaricus blazei polysaccharides were analyzed by GC-MS. Results indicated that the polysaccharides contained glucose (93.87%), mannose (3.54%), and arabinose (2.25%). The compositional analysis was completed by the methylation data. These data indicated that Agaricus blazei polysaccharides are glucans. Compared to model rats, rats fed with Agaricus blazei polysaccharides showed a decrease of ratio of IL-1beta/beta-actin and IL-1beta level in skin of burn wound. Recovery rate of wound skin increased with increasing dose of polysaccharides. The results indicated that Agaricus blazei polysaccharides could be useful in promote burn wound healing. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Antiproliferative properties of toremifene on AIDS-related Kaposi's sarcoma cells.

    PubMed

    Hong, Angela; Leigh, Bryan R

    2002-12-01

    Kaposi's sarcoma (KS) is the most common neoplastic apoptosis manifestation of acquired immunodeficiency syndrome. Toremifene is known to upregulate transforming growth factor beta-1 (TGF-beta1), which is a growth-inhibitory factor for KS. We investigated the in vitro effect of toremifene on KS cells. MTT assay was used to measure the growth of four KS cell lines and a human umbilical vein endothelial (HUVE) cell line after incubation with toremifene. Reverse transcription polymerase chain reaction and ELISA were used to measure the level of TGF-beta1. The IC(50) for the KS cells ranged from 2.2 to 3.2 microM, and 80% of the growth inhibition occurred within 24 h. Toremifene enhanced TGF-beta1 mRNA expression, and the level of TGF-beta1 increased from 103 to 473 pg/ml after 48 h of incubation. Toremifene had no effect on the growth of HUVE cells. Toremifene has a specific antiproliferative effect on KS cells. The stimulation of TGF-beta1 production may play a role in the antiproliferative process. Copyright 2002 S. Karger AG, Basel

  6. Sex hormone-binding globulin and corticosteroid-binding globulin mRNA levels in infertile women with luteal phase deficiency.

    PubMed

    Misao, R; Nakanishi, Y; Fujimoto, J; Tamaya, T

    1995-09-01

    This study was designed to investigate the biological significance in intracellular expression of sex hormone-binding globulin (SHBG) and corticosteroid-binding globulin (CBG) mRNA in uterine endometrium with luteal phase deficiency (designated as out-of-phase endometrium or low serum progesterone level). The levels of such mRNAs were measured by the quantitative reverse transcription-polymerase chain reaction. Under the normal serum 17 beta-estradiol and progesterone levels in the mid-luteal phase, the levels of SHBG and CBG mRNAs in the out-of-phase endometria were not significantly different from those in the normal endometria. On the other hand, SHBG and CBG mRNA levels in the endometria of low serum midluteal progesterone level were significantly (p < 0.05) reduced and raised, respectively, compared with normal levels. These findings suggest that the synthesis of endometrial steroid-binding proteins in the out-of-phase endometrium is conserved, as that in the in-phase endometrium, whereas the decreased progesterone level might up-regulate CBG expression with down-regulation of SHBG expression.

  7. Stretch and interleukin 1 beta: pro-labour factors with similar mitogen-activated protein kinase effects but differential patterns of transcription factor activation and gene expression.

    PubMed

    Sooranna, S R; Engineer, N; Liang, Z; Bennett, P R; Johnson, M R

    2007-07-01

    IL-1beta and stretch increase uterine smooth muscle cell (USMC) prostaglandin H synthase 2 (PGHS-2) and interleukin (IL)-8 mRNA expression in a mitogen-activated protein kinase (MAPK) dependent mechanism. We have tested our hypothesis that stretch and IL-1beta activate different components of the MAPK cascade in USMC and investigated the effects of specific MAPK inhibitors on these components. Further, we have used a Jun N-terminal kinase (JNK) and p38 activator, anisomycin, to compare the effect of differential MAPK activation on the expression of PGHS-2, IL-8 and oxytocin receptor (OTR) mRNA with that seen in response to stretch and IL-1beta. Stretch, IL-1beta and anisomycin activated similar components of the MAPK cascade and specific inhibitors of MAPK altered phosphorylation of MAPK and downstream cascade components as expected. Expression of OTR mRNA was increased by stretch and anisomycin in a MAPK-independent manner. All three stimuli increased PGHS-2 and IL-8 mRNA expression in a MAPK-dependent manner, but while the MAPK inhibitors reduced the IL-1beta-induced activation of activating transcription factor (ATF)-2, liver activating protein (LAP) and c-jun, the stretch-induced increase in LAP was unaffected by MAPK-inhibition and only JNK inhibition appeared to reduce c-jun activation. These observations show that stretch, IL-1beta and anisomycin activate the same components of the MAPK cascade, but differentially activate LAP and liver inhibitory protein (LIP) perhaps accounting for the increase in OTR by stretch and anisomycin but not IL-1beta observed in this study.

  8. Stimulation of interleukin-1 beta production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K

    1997-01-01

    IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.

  9. Neuropilin-1 and neuropilin-2 are differentially expressed in human proteinuric nephropathies and cytokine-stimulated proximal tubular cells.

    PubMed

    Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert

    2009-11-01

    Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.

  10. Amyloid precursor protein mRNA levels in Alzheimer's disease brain.

    PubMed

    Preece, Paul; Virley, David J; Costandi, Moheb; Coombes, Robert; Moss, Stephen J; Mudge, Anne W; Jazin, Elena; Cairns, Nigel J

    2004-03-17

    Insoluble beta-amyloid deposits in Alzheimer's disease (AD) brain are proteolytically derived from the membrane bound amyloid precursor protein (APP). The APP gene is differentially spliced to produce isoforms that can be classified into those containing a Kunitz-type serine protease inhibitor domain (K(+), APP(751), APP(770), APRP(365) and APRP(563)), and those without (K(-), APP(695) and APP(714)). Given the hypothesis that Abeta is a result of aberrant catabolism of APP, differential expression of mRNA isoforms containing protease inhibitors might play an active role in the pathology of AD. We took 513 cerebral cortex samples from 90 AD and 81 control brains and quantified the mRNA isoforms of APP with TaqMan real-time RT-PCR. After adjustment for age at death, brain pH and gender we found a change in the ratio of KPI(+) to KPI(-) mRNA isoforms of APP. Three separate probes, designed to recognise only KPI(+) mRNA species, gave increases of between 28% and 50% in AD brains relative to controls (p=0.002). There was no change in the mRNA levels of KPI-(APP 695) (p=0.898). Therefore, whilst KPI-mRNA levels remained stable the KPI(+) species increased specifically in the AD brains.

  11. Endometrial IL-1beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis. Effects of estrous cycle, artificial insemination and immunomodulation.

    PubMed

    Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A

    2003-11-15

    Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression of IL-1 with significant effects in SM which behaved like RM. Immunomodulation with MCWE could be of help in restoring homeostatic local inflammatory mechanisms, thus assisting in the prophylaxis of post-breeding endometritis in mares.

  12. Transcription Analysis of the Beta-Glucosidase Precursor in Wild-Type and l-4i Mutant Bombyx mori (Lepidoptera: Bombycidae).

    PubMed

    Kang, Lequn; Huang, Fei; Wu, Fan; Zhao, Qiaoling

    2015-01-01

    Lethal fourth-instar larvae (l-4i) mutant of Bombyx mori, a recently discovered novel mutant, die from energy depletion due to genetic mutation. Beta-glucosidase is a common digestive enzyme that hydrolyzes cellulose in the diet to provide energy. In this study, the mRNA expression profiles of B. mori beta-glucosidase precursor (BmpreBG) were characterized by reverse transcription polymerase chain reaction and quantitative real-time polymerase chain reaction. The transcription level of BmpreBG varied in different tissues and developmental stages, except in the pupa and moth, which are the no-diet period. Remarkably, the mRNA expression level of BmpreBG was sharply reduced in l-4i but not in the wild type, which suggested that the digestive function of the mutant was severely damaged. This was consistent with the l-4i phenotypic traits of not eating mulberries, lack of energy, and ultimate death. 5'-rapid amplification of cDNA ends showed, for the first time, that BmpreBG has a 160-bp 5'-untranslated region. These findings suggested that B. mori β-glucosidase precursor was involved in the death process of l-4i mutant larvae. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation.

    PubMed

    Zhou, Fangfang; Zhang, Long; Wang, Aijun; Song, Bo; Gong, Kai; Zhang, Lihai; Hu, Min; Zhang, Xiufang; Zhao, Nanming; Gong, Yandao

    2008-05-23

    It is widely acknowledged that E2F1 and GSK3beta are both involved in the process of cell differentiation. However, the relationship between E2F1 and GSK3beta in cell differentiation has yet to be discovered. Here, we provide evidence that in the differentiation of PC12 cells induced by nerve growth factor (NGF), GSK3beta was increased at both the mRNA and protein levels, whereas E2F1 at these two levels was decreased. Both wild-type GSK3beta and its kinase-defective mutant GSK3beta KM can inhibit E2F1 by promoting its ubiquitination through physical interaction. In addition, the colocalization of GSK3beta and E2F1 and their subcellular distribution, regulated by NGF, were observed in the process of PC12 differentiation. At the tissue level, GSK3beta colocalized and interacted with E2F1 in mouse hippocampus. Furthermore, GSK3beta facilitated neurite outgrowth by rescuing the promoter activities of Cdk inhibitors p21 and p15 from the inhibition caused by E2F1. To summarize, our findings suggest that GSK3beta can promote the ubiquitination of E2F1 via physical interaction and thus inhibit its transcription activity in a kinase activity independent manner, which plays an important role in the NGF-induced PC12 differentiation.

  14. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. Role of thymosin beta 4 in hair growth.

    PubMed

    Gao, Xiao-Yu; Hou, Fang; Zhang, Zhi-Peng; Nuo, Ming-Tu; Liang, Hao; Cang, Ming; Wang, Zhi-Gang; Wang, Xin; Xu, Teng; Yan, Le-Yan; Guo, Xu-Dong; Liu, Dong-Jun

    2016-08-01

    Although thymosin beta 4 (Tβ4) is known to play a role in hair growth, its mechanism of action is unclear. We examined the levels of key genes in a Tβ4 epidermal-specific over-expressing mouse model and Tβ4 global knockout mouse model to explore how Tβ4 affects hair growth. By depilation and histological examination of the skin, we confirmed the effect of Tβ4 on hair growth, the number of hair shafts and hair follicle (HF) structure. The mRNA and protein expression of several genes involved in hair growth were detected by real-time PCR and western blotting, respectively. Changes in the expression of β-catenin and Lef-1, the two key molecules in the Wnt signaling pathway, were similar to the changes observed in Tβ4 expression. We also found that compared to the control mice, the mRNA and protein expression of MMP-2 and VEGF were increased in the Tβ4 over-expressing mice, while the level of E-cadherin (E-cad) remained the same. Further, in the Tβ4 global knockout mice, the mRNA and protein levels of MMP-2 and VEGF decreased dramatically and the level of E-cad was stable. Based on the above results, we believe that Tβ4 may regulate the levels of VEGF and MMP-2 via the Wnt/β-catenin/Lef-1 signaling pathway to influence the growth of blood vessels around HFs and to activate cell migration. Tβ4 may have potential for the treatment of hair growth problems in adults, and its effects should be further confirmed in future studies.

  16. Sex-dependent effects of antenatal glucocorticoids on insulin sensitivity in adult sheep: role of the adipose tissue renin angiotensin system.

    PubMed

    Massmann, G Angela; Zhang, Jie; Seong, Won Joon; Kim, Minhyoung; Figueroa, Jorge P

    2017-06-01

    Exposure to glucocorticoids in utero is associated with changes in organ function and structure in the adult. The aims of this study were to characterize the effects of antenatal exposure to glucocorticoids on glucose handling and the role of adipose tissue. Pregnant sheep received betamethasone (Beta, 0.17 mg/kg) or vehicle 24 h apart at 80 days of gestation and allowed to deliver at term. At 9 mo, male and female offspring were fed at either 100% of nutritional allowance (lean) or ad libitum for 3 mo (obese). At 1 yr, they were chronically instrumented under general anesthesia. Glucose tolerance was evaluated using a bolus of glucose (0.25 g/kg). Adipose tissue was harvested after death to determine mRNA expression levels of angiotensinogen (AGT), angiotensin-converting enzyme (ACE) 1, ACE2, and peroxisome proliferator-activated receptor γ (PPAR-γ). Data are expressed as means ± SE and analyzed by ANOVA. Sex, obesity, and Beta exposure had significant effects on glucose tolerance and mRNA expression. Beta impaired glucose tolerance in lean females but not males. Superimposed obesity worsened the impairment in females and unmasked the defect in males. Beta increased ACE1 mRNA in females and males and AGT in females only ( P < 0.05 by three-way ANOVA). Obesity increased AGT in females but had no effect on ACE1 in either males or females. PPAR-γ mRNA exhibited a significant sex ( F = 42.8; P < 0.01) and obesity ( F = 6.9; P < 0.05) effect and was significantly higher in males ( P < 0.01 by three-way ANOVA). We conclude that adipose tissue may play an important role in the sexually dimorphic response to antenatal glucocorticoids. Copyright © 2017 the American Physiological Society.

  17. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  18. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice.

    PubMed

    Schwenk, Robert W; Baumeier, Christian; Finan, Brian; Kluth, Oliver; Brauer, Christine; Joost, Hans-Georg; DiMarchi, Richard D; Tschöp, Matthias H; Schürmann, Annette

    2015-03-01

    Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.

  19. PKA- and PKC-dependent regulation of angiopoietin 2 mRNA in human granulosa lutein cells.

    PubMed

    Witt, P S; Pietrowski, D; Keck, C

    2004-02-01

    New blood vessels develop from preexisting vessels in response to growth factors or hypoxic conditions. Recent studies have shown that angiopoietin 2 (ANGPT-2) plays an important role in the modulation of angiogenesis and vasculogenesis in humans and mice. The signaling pathways that lead to the regulation of ANGPT-2 are largely unclear. Here, we report that protein kinase C and protein kinase A activators (ADMB, 8-Cl-cAMP) increased the mRNA levels of ANGPT-2 in human Granulosa cells, whereas PKC and PKA Inhibitors (Rp-cAMP, GO 6983) decreased markedly the level of ANGPT-2 mRNA. Due to varying specificity of the modulators for certain protein kinases subunits, we conclude that the conventional PKCs, but not PKC alpha and beta1, the atypical PKCs and the PKA I, are involved in the regulation of ANGPT-2. These findings may help to explain the role of both PKA and PKC dependent signaling cascades in the regulation of ANGPT-2 mRNA.

  20. A quantitative real-time RT-PCR assay to measure TGF-beta mRNA and its correlation with hematologic, plasma chemistry and organo-somatic indices responses in triamcinolone-treated Atlantic menhaden, Brevoortia tyrannus.

    PubMed

    Johnson, A K; Harms, C A; Levine, J F; Law, J McHugh

    2006-01-01

    A quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) assay was developed to measure transforming growth factor-beta (TGF-beta) in Atlantic menhaden (Brevoortia tyrannus), an estuarine-dependent species plagued by ulcerative skin lesions in the estuaries along the eastern United States. Atlantic menhaden were acclimated in a closed system for two weeks prior to initiation of the study. The synthetic glucocorticoid, triamcinolone acetonide (10mg/kg body weight) was administered by intracoelomic injection and its effect on the splenic mononuclear cell TGF-beta mRNA transcription, liver-somatic index, spleno-somatic index, hematology, and plasma chemistry were compared to untreated fish at 48 and 96h post-treatment. Triamcinolone-treated Atlantic menhaden showed suppression of TGF-beta mRNA production, neutrophilia, monocytosis, lymphopenia, and an increase in blood glucose concentrations. The health indices used in this study may help us interpret some of the changes observed during the development of ulcerative skin lesions in wild-caught menhaden.

  1. Changes in the mRNA levels of delayed rectifier potassium channels in human atrial fibrillation.

    PubMed

    Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Tseng, Y Z; Lien, W P; Huang, S K

    1999-01-01

    We measured mRNA levels of delayed rectifier potassium channels in human atrial tissue to investigate the mechanism of the shortening of the atrial effective refractory period and the loss of rate-adaptive shortening of the atrial effective refractory period in human atrial fibrillation. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The mRNA amounts of KVLQT1 (IKs), minK (beta-subunit of IKs), HERG (IKr), and KV1.5 (IKur) were measured by reverse transcription-polymerase chain reaction and normalized to the mRNA amount of GAPDH. We found that the mRNA levels of KV1.5, HERG and KVLQT1 were all significantly decreased in patients with persistent atrial fibrillation for more than 3 months. In contrast, the mRNA level of minK was significantly increased in patients with persistent atrial fibrillation for more than 3 months. We further showed that these changes were independent of the underlying cardiac disease, atrial filling pressure, gender and age. We also found that there was no spatial dispersion of mRNA levels among the four atrial sampling sites. Because the decrease in potassium currents results in a prolonged action potential, the shortening of the atrial effective refractory period in atrial fibrillation should be attributed to other factors. However, the decrease in IKs might contribute, at least in part, to the loss of rate-adaptive shortening of the atrial refractory period.

  2. Validation of internal controls for gene expression analysis in the intestine of rats infected with Hymenolepis diminuta.

    PubMed

    Hoque, Tafazzal; Bhogal, Meetu; Boghal, Meetu; Webb, Rodney A

    2007-12-01

    The non-invasive parasitic cestode Hymenolepis diminuta induces hypertrophy, hyperplasia and other changes in cell activity in the intestine of rats which are indicated in the expression of mRNA. We have investigated various house-keeping genes (GAPDH, beta-actin, 18S and HPRT) and other internal controls (total RNA/unit biomass, total RNA/unit length of intestine) to validate gene expression in the rat intestine after cestode infection and drug-induced neuromodulation. Variation in GAPDH, beta-actin, 18S and HPRT expression was observed in rat jejunal tissue according to treatment. Total RNA/unit length of intestine was found to be the most suitable internal control for normalizing target gene mRNA expression in both infected and/or drug-induced rat intestine. This normalization method may be applied to studies of gene expression levels in intestinal tissue where hypertrophy, hyperplasia, rapid growth and cell differentiation generally occur.

  3. Expression of very low density lipoprotein receptor mRNA in circulating human monocytes: its up-regulation by hypoxia.

    PubMed

    Nakazato, K; Ishibashi, T; Nagata, K; Seino, Y; Wada, Y; Sakamoto, T; Matsuoka, R; Teramoto, T; Sekimata, M; Homma, Y; Maruyama, Y

    2001-04-01

    Although very low density lipoprotein (VLDL) receptor expression by macrophages has been shown in the vascular wall, it is not clear whether or not circulating monocytes express the VLDL receptor. We investigated the expression of VLDL receptor mRNA in human peripheral blood monocytes and monocyte-derived macrophages by reverse transcriptase polymerase chain reaction (RT-PCR) and nucleotide sequencing after subcloning of PCR product. VLDL receptor mRNA was detected both in peripheral blood monocytes and monocyte-derived macrophages. Expression of VLDL receptor mRNA was upregulated by hypoxia in monocytes, whereas treatment with oxidized LDL, interleukin-1beta or monocyte chemoattractant protein-1 did not affect the levels of VLDL receptor mRNA in monocytes and macrophages. The present study shows a novel response of VLDL receptor mRNA to hypoxia, suggesting a role for VLDL receptor in the metabolism of lipoproteins in the vascular wall and the development of atherosclerosis.

  4. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors.

    PubMed Central

    Rana, B; Mischoulon, D; Xie, Y; Bucher, N L; Farmer, S R

    1994-01-01

    Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha mRNA and protein as well as C/EBP alpha and C/EBP beta DNA binding activities to the abundant levels present in freshly isolated hepatocytes. These changes are not due merely to growth inhibition, because suppression of hepatocyte proliferation on collagen by epidermal growth factor starvation or addition of transforming growth factor beta does not inhibit AP-1 activity or restore C/EBP alpha DNA binding activity to normal hepatic levels. These data suggest that expression of the normal hepatic phenotype requires that hepatocytes exist in a G0 state of growth arrest, facilitated here by adhesion of cells to the EHS gel, in order to express high levels of hepatic transcription factors such as C/EBP alpha. Images PMID:8065319

  5. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to estrogenic activity of the WWTP effluents. These results suggest that lhb gene expression may be a sensitive index of acute exposure to estrogenic chemicals in juvenile coho salmon. Further work is needed to determine the kinetics and specificity of lhb induction to evaluate its utility as a potential indicator of estrogen exposure in immature fish. Published by Elsevier B.V.

  6. Regressive changes in finasteride-treated human hyperplastic prostates correlate with an upregulation of TGF-beta receptor expression.

    PubMed

    Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Miranda, G; Rodríguez-Vallejo, J M; González-Esteban, J; Torrubia, F

    1998-10-01

    Prostatic atrophy has been documented histologically as a consequence of finasteride action on human hyperplastic prostates. An increase in apoptotic rates has also been reported in androgen-deprived hyperplastic prostates. Transforming growth factor beta (TGF-beta) signaling is implicated in apoptotic cell death. TGF-betas have been detected in normal and diseased human prostate. In the normal prostate, TGF-beta acts as a predominantly negative growth regulator. TGF-beta signaling receptors TbetaRI and TbetaRII have been shown to be negatively regulated by androgens. We studied the histological changes in 9 selected finasteride-treated patients with benign prostatic hyperplasia (BPH), and analyzed the levels of expression and localization of TGF-beta receptor types TbetaRI and TbetaRII in these patients as compared to selected BPH controls. The prostatic epithelial compartment seemed to be a primary target site for finasteride action, since we observed moderate to severe glandular atrophy after 4-6 months of treatment. TGF-beta receptors were upregulated in treated cases. We assessed a twofold increase in TbetaRII mRNA levels in treated cases as compared to controls. An increase in both TbetaRI and TbetaRII at the protein level by immunostaining was observed, which also provided a helpful means for detecting glands undergoing regression. We conclude that finasteride may modulate the TGF-beta signaling system to promote changes leading to apoptosis of epithelial cells and prostatic glandular atrophy.

  7. Intravenous infusion of hexamethonium and atropine but not propranolol diminishes apolipoprotein A-IV gene expression in rat ileum.

    PubMed

    Sonoyama, K; Tajima, K; Fujiwara, R; Kasai, T

    2000-03-01

    To clarify the role of neural factors in the regulation of apolipoprotein (apo) A-IV expression in the small intestine, we investigated the effect of neural blockers on mRNA levels of apo A-IV in rat small intestine. Either ganglionic blocker (hexamethonium), cholinergic blocker (atropine) or beta-adrenergic blocker (propranolol) was infused intravenously to unrestrained conscious rats for 8 h, and then total RNA was isolated from the small intestine and analyzed using Northern hybridization. Apo A-IV mRNA levels in the ileum were significantly lower in hexamethonium- or atropine-infused rats than in saline- (control) or propranolol-infused rats. Immunoblot analysis showed no difference in plasma apo A-IV concentrations between hexamethonium- and saline-infused groups. The lower mRNA levels of apo A-IV in the ileum of hexamethonium-infused rats were observed even in bile-drained rats, indicating that the lower expression was not due to any changes in bile availability. The ileal apo A-IV mRNA levels were significantly higher in rats infused with lipid emulsion into the ileum than in rats infused with glucose-saline, and the concomitant infusion of intravenous hexamethonium did not affect the higher levels of apo A-IV mRNA. These results suggest that the basal expression of the ileal A-IV gene is at least partially regulated in a site-specific manner by cholinergic neurons.

  8. Expression of beta2-microglobulin and c-fos mRNA: is there an influence of high- or low-flux dialyzer membranes?

    PubMed

    Haufe, C C; Eismann, U; Deppisch, R M; Stein, G

    2001-02-01

    Dialysis-related amyloidosis is an important complication of long-term hemodialysis (HD) therapy with several pathogenetic factors. One of them is the influence of the dialyzer membrane type on the synthesis of beta2-microglobulin (beta2m). In vitro results are controversial. Thus, the hypothesis of whether in vivo beta2m generation is induced by the HD procedure and whether this induction depends on the type of the used dialyzer membrane should be tested. The aim of the present study was to investigate the influence of "biocompatible" high-flux versus "bioincompatible" low-flux HD on in vivo beta2m generation as well as the induction of the early activation gene c-fos in peripheral blood cells. Six nondiabetic HD patients [mean age 46 (21 to 69) years; Kt/V> 1.2] were included in a randomized crossover study using either a low-flux (cellulosic/cuprophan) or a high-flux (polyamide) dialyzer membrane. At the end of a four-week run-in period for each membrane, whole blood samples were taken before, immediately at, and four hours after the end of the dialysis session. MRNA was extracted, and after transcription to cDNA, quantitative polymerase chain reaction was performed for the beta2m gene, the early response gene c-fos, and the GAP-DH housekeeping gene. Based on the applied method for detection of specific mRNA, the results were given as ratio of beta2m or c-fos cDNA per GAP-DH cDNA. General cell activation during HD was indicated by increasing mRNA expression of c-fos related to the time course of the dialysis session, whereas beta2m did not change significantly. However, no difference was found when comparing the low-flux and the high-flux dialyzer membranes. Despite the evidence for activation of peripheral blood cells, as indicated by increasing c-fos message, no sign of beta2m mRNA induction during HD procedure with different dialyzer membranes was seen. Our results suggest that there is post-transcriptional regulation of beta2m generation and/or release as well as the influence of the dialyzer membrane type on post-translational processes, that is, advance glycation end products (AGE) or conformational modification of the beta2m protein. Furthermore, our data demonstrate that gene expression patterns during dialysis and/or uremia are not homogenous and need to be investigated further, especially with respect to the proinflammatory role of early leukocyte activation signals.

  9. Identification and characterization of a human smad3 splicing variant lacking part of the linker region.

    PubMed

    Kjellman, Christian; Honeth, Gabriella; Järnum, Sofia; Lindvall, Magnus; Darabi, Anna; Nilsson, Ingar; Edvardsen, Klaus; Salford, Leif G; Widegren, Bengt

    2004-03-03

    Smad3 is one of the signal transducers that are activated in response to transforming growth factor-beta (TGF-beta). We have identified and characterized a splicing variant of smad3. The splicing variant (smad3-Delta3) lacks exon 3 resulting in a truncated linker region. We could detect mRNA expression of smad3-Delta3 in all investigated human tissues. Real-time PCR analyses demonstrated that the fraction of smad3-Delta3 mRNA compared to normal smad3 varies between tissues. The amount of spliced mRNA was estimated to represent 0.5-5% of the normal smad3 mRNA. When smad3-Delta3 is overexpressed in a fibrosarcoma cell line, the Smad3-Delta3 is translocated to the nucleus upon TGF-beta stimulation and binds the Smad responsive element. Using a CAGA luciferase reporter system, we demonstrate that Smad3-Delta3 has transcriptional activity and we conclude that Smad3-Delta3 possesses functional transactivating properties.

  10. Messenger RNA-based therapeutics for brain diseases: An animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles.

    PubMed

    Lin, Chin-Yu; Perche, Federico; Ikegami, Masaru; Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2016-08-10

    Alzheimer's disease (AD) pathogenesis is considered to be the metabolic imbalance between anabolism and clearance of amyloid-beta (Aβ), and the strategy of breaking the equilibrium between soluble and insoluble forms of Aβ is likely to help prevent the progression of AD. Neprilysin (NEP) plays a major role in the clearance of Aβ in the brain, and its supplementation using viral vectors has shown to decrease Aβ deposition and prevent pathogenic changes in the brain. In this study, we developed a new therapeutic strategy by mRNA-based gene introduction. mRNA has the advantages of negligible risk of random integration into genome and not needing to be transcribed precludes the need for nuclear entry. This allows efficient protein expression in slowly-dividing or non-dividing cells, such as neural cells. We constructed mRNA encoding the mouse NEP protein and evaluated its ability degrade Aβ. In vitro transfection of NEP mRNA to primary neurons exhibited Amyloid Precursor Protein (APP) degradation activity superior to that of NEP encoding plasmid DNA. We then evaluated the in vivo activity of NEP mRNA by intracerebroventricular (i.c.v.) infusion using a cationic polymer-based PEGylated nanocarrier to form polyplex nanomicelles, which have been shown to have a high potential to deliver mRNA to various target tissues and organs. Nanomicelles carrying a GFP-NEP fusion mRNA produced efficient protein expression in a diffuse manner surrounding the ventricular space. An ELISA evaluation revealed that the mRNA infusion significantly augmented NEP level and effectively reduced the concentration of Aβ that had been supplemented in the mouse brain. To the best of our knowledge, this is the first study to demonstrate the therapeutic potential of introducing exogenous mRNA for the treatment of brain diseases, opening the new era of mRNA-based therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  12. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats.

    PubMed

    Qin, B; Polansky, M M; Anderson, R A

    2010-03-01

    We reported earlier that dietary cinnamon extract (CE) improves systemic insulin sensitivity and dyslipidemia by enhancing insulin signaling. In the present study, we have examined the effects of CE on several biomarkers including plasma levels of adipose-derived adipokines, and the potential molecular mechanisms of CE in epididymal adipose tissue (EAT). In Wistar rats fed a high-fructose diet (HFD) to induce insulin resistance, supplementation with a CE (Cinnulin PF, 50 mg/kg daily) for 8 weeks reduced blood glucose, plasma insulin, triglycerides, total cholesterol, chylomicron-apoB48, VLDL-apoB100, and soluble CD36. CE also inhibited plasma retinol binding protein 4 (RBP4) and fatty acid binding protein 4 (FABP4) levels. CE-induced increases in plasma adiponectin were not significant. CE did not affect food intake, bodyweight, and EAT weight. In EAT, there were increases in the insulin receptor ( IR) and IR substrate 2 ( IRS2) mRNA, but CE-induced increases in mRNA expression of IRS1, phosphoinositide-3-kinase, AKT1, glucose transporters 1 and 4 , and glycogen synthase 1 expression and decreased trends in mRNA expression of glycogen synthase kinase 3beta were not statistically significant. CE also enhanced the mRNA levels of ADIPOQ, and inhibited sterol regulatory element binding protein-1c mRNA levels. mRNA and protein levels of fatty acid synthase and FABP4 were inhibited by CE and RBP4, and CD36 protein levels were also decreased by CE. These results suggest that CE effectively ameliorates circulating levels of adipokines partially mediated via regulation of the expression of multiple genes involved in insulin sensitivity and lipogenesis in the EAT.

  13. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice.

    PubMed

    Wang, Z; Gleichmann, H

    1998-01-01

    In mice, diabetes can be induced by multiple low doses of streptozotocin (MLD-STZ), i.e., 40 mg/kg body wt on each of 5 consecutive days. In this model, diabetes develops only when STZ induces both beta-cell toxicity and T-cell-dependent immune reactions. The target molecule(s) of MLD-STZ-induced beta-cell toxicity are not known, however. In this study, we report that GLUT2 is a target molecule for MLD-STZ toxicity. Ex vivo, a gradual decrement of both GLUT2 protein and mRNA expression was found in pancreatic islets isolated from MLD-STZ-treated C57BL/6 male mice, whereas mRNA expression of beta-actin, glucokinase, and proinsulin remained unaffected. Significant reduction of both GLUT2 protein and mRNA expression was first noted 1 day after the third STZ injection, clearly preceding the onset of hyperglycemia. The extent of reduction increased with the number of STZ injections administered and increased over time, after the last, i.e., fifth, STZ injection. The STZ-induced reduction of GLUT2 protein and mRNA was not due to an essential loss of beta-cells, because ex vivo, not only the total RNA yield and protein content in isolated islets, but also proinsulin mRNA expression, failed to differ significantly in the differently treated groups. Furthermore, islets isolated from MLD-STZ-treated donors responded to the nonglucose secretagogue arginine in a pattern similar to that of solvent-treated donors. Interestingly, the MLD-STZ-induced reduction of both GLUT2 protein and mRNA was prevented by preinjecting mice with 5-thio-D-glucose before each STZ injection. Apparently, GLUT2 is a crucial target molecule of MLD-STZ toxicity, and this toxicity seems to precede the immune reactions against beta-cells.

  14. The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line.

    PubMed

    Kim, You Sun; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2004-04-30

    The immunomodulatory and anti-inflammatory effects of thalidomide are associated with inhibition of TNF-alpha levels. However, the mechanism by which thalidomide reduces TNF-alpha production remains elusive. NF-kappaB is known to play a central role in regulating inflammatory responses in patients with inflammatory bowel disease (IBD). We tested whether thalidomide acts through inhibiting NF-kappaB activity. HT-29 cells were stimulated with LPS (1 microg/ml) alone, or after pretreatment with thalidomide (100 microg/ml), and NF-kappaB activity was determined by gel mobility shift assays. RT-PCR was used to measure expression of the proinflammatory cytokine genes TNF-alpha, IL-1beta and IL-8. The level of TNF-alpha mRNA was also analyzed by real-time quantitative RT-PCR, and TNF-alpha protein was measured by ELISA. Thalidomide pretreatment did not affect NF-kappaB activity in HT-29 cells stimulated with LPS but production of TNF-alpha was depressed. Thalidomide was found to accelerate the degradation of TNF-alpha mRNA, but had little effect on IL-1beta or IL-8. These observations suggest that the immunomodulatory effect of thalidomide in colonic epithelial cells is associated with inhibition of TNF-alpha. However, it does not act by inhibiting NF-kappaB but rather by inducing degradation of TNF-alpha mRNA.

  15. Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy

    PubMed Central

    Schraenen, A.; Lemaire, K.; de Faudeur, G.; Hendrickx, N.; Granvik, M.; Van Lommel, L.; Mallet, J.; Vodjdani, G.; Gilon, P.; Binart, N.; in’t Veld, P.

    2010-01-01

    Aims/hypothesis Upregulation of the functional beta cell mass is required to match the physiological demands of mother and fetus during pregnancy. This increase is dependent on placental lactogens (PLs) and prolactin receptors, but the mechanisms underlying these events are only partially understood. We studied the mRNA expression profile of mouse islets during pregnancy to gain a better insight into these changes. Methods RNA expression was measured ex vivo via microarrays and quantitative RT-PCR. In vivo observations were extended by in vitro models in which ovine PL was added to cultured mouse islets and MIN6 cells. Results mRNA encoding both isoforms of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase (TPH), i.e. Tph1 and Tph2, were strongly induced (fold change 25- to 200-fold) during pregnancy. This induction was mimicked by exposing islets or MIN6 cells to ovine PLs for 24 h and was dependent on janus kinase 2 and signal transducer and activator of transcription 5. Parallel to Tph1 mRNA and protein induction, islet serotonin content increased to a peak level that was 200-fold higher than basal. Interestingly, only a subpopulation of the beta cells was serotonin-positive in vitro and in vivo. The stored serotonin pool in pregnant islets and PL-treated MIN6 cells was rapidly released (turnover once every 2 h). Conclusions/interpretation A very strong lactogen-dependent upregulation of serotonin biosynthesis occurs in a subpopulation of mouse islet beta cells during pregnancy. Since the newly formed serotonin is rapidly released, this lactogen-induced beta cell function may serve local or endocrine tasks, the nature of which remains to be identified. Electronic supplementary material The online version of this article (doi:10.1007/s00125-010-1913-7) contains supplementary material, which is available to authorised users. PMID:20938637

  16. Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-kappaB inactivation in RAW 264.7 macrophages cells.

    PubMed

    Won, Jong-Heon; Kim, Ji-Yeon; Yun, Kyung-Jin; Lee, Jin-Hee; Back, Nam-In; Chung, Hae-Gon; Chung, Sun A; Jeong, Tae-Sook; Choi, Myung-Sook; Lee, Kyung-Tae

    2006-10-01

    During our efforts to find bioactive natural products with anti-inflammatory activity, we isolated gigantol from the whole plants of Cymbidium goeringii (Orchidaceae) by activity-guided chromatographic fractionation. Gigantol was found to have potent inhibitory effects on LPS-induced nitric oxide (NO) and prostaglandin E (2) (PGE (2)) production in RAW 264.7 cells. Consistent with these findings, gigantol suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in RAW 264.7 cells in a concentration-dependent manner. Our data also indicate that gigantol is a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) release and influenced the mRNA expression levels of these cytokines in a dose-dependent manner. Furthermore, a reporter gene assay for nuclear factor kappa B (NF-kappaB) and an electromobility shift assay (EMSA) demonstrated that gigantol effectively inhibited the activation of NF-kappaB, which is necessary for the expression of iNOS, COX-2, TNF-alpha, IL-1beta and IL-6. Thus, our studies suggest that gigantol inhibits LPS-induced iNOS and COX-2 expression by blocking NF- kappaB activation.

  17. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11{beta}-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Department of Orthopedics, Taizhou Hospital, Wenzhou Medical College, Lin Hai, ZJ 317000; Li, Xing-Wang

    2009-11-13

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11{beta}-hydroxysteroid dehydrogenase type 2 (11{beta}-HSD2), not 11{beta}-HSD1, is strongly expressed in murine gonadotrope L{beta}T2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11{beta}-HSD2 enzyme activity in L{beta}T2 cells at as low as 10{sup -7} M. Corticosterone (CORT) atmore » a concentration of 10{sup -6} M significantly inhibited L{beta}T2 cell proliferation after 2-day culture, and 10{sup -6} M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10{sup -5} or 10{sup -4} M MEHP, the minimal concentration of CORT to inhibit the proliferation of L{beta}T2 cells was lowered to 10{sup -7} M, and 10{sup -6} M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11{beta}-HSD2 may have a key role in glucocorticoid metabolism in L{beta}T2 cells. MEHP may participate in the glucocorticoid metabolism in L{beta}T2 cells through inhibition of 11{beta}-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.« less

  18. PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogilenko, Denis A., E-mail: denis@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Shavva, Vladimir S.

    Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediatedmore » regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.« less

  19. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPAR{gamma} activation.« less

  20. Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells.

    PubMed

    Dash, Pradyot; Barnett, Paul V; Denyer, Michael S; Jackson, Terry; Stirling, Catrina M A; Hawes, Philippa C; Simpson, Jennifer L; Monaghan, Paul; Takamatsu, Haru-H

    2010-09-01

    Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.

  1. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers.

    PubMed Central

    Lashbrook, C C; Gonzalez-Bosch, C; Bennett, A B

    1994-01-01

    Two structurally divergent endo-beta-1,4-glucanase (EGase) cDNAs were cloned from tomato. Although both cDNAs (Cel1 and Cel2) encode potentially glycosylated, basic proteins of 51 to 53 kD and possess multiple amino acid domains conserved in both plant and microbial EGases, Cel1 and Cel2 exhibit only 50% amino acid identity at the overall sequence level. Amino acid sequence comparisons to other plant EGases indicate that tomato Cel1 is most similar to bean abscission zone EGase (68%), whereas Cel2 exhibits greatest sequence identity to avocado fruit EGase (57%). Sequence comparisons suggest the presence of at least two structurally divergent EGase families in plants. Unlike ripening avocado fruit and bean abscission zones in which a single EGase mRNA predominates, EGase expression in tomato reflects the overlapping accumulation of both Cel1 and Cel2 transcripts in ripening fruit and in plant organs undergoing cell separation. Cel1 mRNA contributes significantly to total EGase mRNA accumulation within plant organs undergoing cell separation (abscission zones and mature anthers), whereas Cel2 mRNA is most abundant in ripening fruit. The overlapping expression of divergent EGase genes within a single species may suggest that multiple activities are required for the cooperative disassembly of cell wall components during fruit ripening, floral abscission, and anther dehiscence. PMID:7994180

  2. Increase of prolactin mRNA in the rat hypothalamus after intracerebroventricular injection of VIP or PACAP.

    PubMed

    Bredow, S; Kacsóh, B; Obál, F; Fang, J; Krueger, J M

    1994-10-17

    Vasoactive intestinal peptide (VIP), the structurally homologous pituitary adenylate cyclase-activating peptide (PACAP) and the pituitary hormone, prolactin (PRL) enhance rapid eye movement sleep (REMS). VIP and PACAP are both inducers of PRL gene expression and release in the pituitary gland. Little is known about PRL regulation in the brain although it is hypothesized that the REMS-promoting activity of i.c.v. administered VIP may be mediated via the activation of cerebral PRL. To test whether VIP or PACAP in fact increase intracerebral mRNA, the peptides (VIP: 30 or 300 pmol; PACAP: 220 pmol) were injected i.c.v. into rats at dark onset. 1 h later, cDNA was synthesized from purified hypothalamic mRNA. Standardized amounts were analysed for PRL using the polymerase chain reaction followed by Southern blotting and hybridization. Compared with beta-actin mRNA levels, both VIP and PACAP increased PRL mRNA levels in a dose-dependent fashion though VIP was more effective on a molar basis. The previously reported alternatively spliced PRL mRNA (lacking exon 4) was not detected. The data support the hypothesis that the REMS-promoting activity of central VIP and PACAP might be mediated by cerebral PRL.

  3. Gonadotrophin-inhibitory hormone receptor expression in the chicken pituitary gland: potential influence of sexual maturation and ovarian steroids.

    PubMed

    Maddineni, S; Ocón-Grove, O M; Krzysik-Walker, S M; Hendricks, G L; Proudman, J A; Ramachandran, R

    2008-09-01

    Gonadotrophin-inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR-immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR-ir cells were found to be colocalised with luteinising hormone (LH)beta mRNA-, or follicle-stimulating hormone (FSH)beta mRNA-containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHbeta or LHbeta mRNA-containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.

  4. Isolation and characterization of cDNA clones for human erythrocyte beta-spectrin.

    PubMed Central

    Prchal, J T; Morley, B J; Yoon, S H; Coetzer, T L; Palek, J; Conboy, J G; Kan, Y W

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical alpha (Mr 240,000) and beta (Mr 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. We report here the isolation and characterization of a human erythroid-specific beta-spectrin cDNA clone that encodes parts of the beta-9 through beta-12 repeat segments. This cDNA was used as a hybridization probe to assign the beta-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte beta-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the beta-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities. Images PMID:3478706

  5. E-cadherin and beta-catenin are down-regulated in prostatic bone metastases.

    PubMed

    Bryden, A A G; Hoyland, J A; Freemont, A J; Clarke, N W; Schembri Wismayer, D; George, N J R

    2002-03-01

    To determine the E-cadherin and beta-catenin expression phenotype in untreated primary prostate cancer and corresponding bone metastases. Paired bone metastasis and primary prostate specimens were obtained from 14 men with untreated metastatic prostate carcinoma. The tumours were histologically graded by an independent pathologist. Expression of mRNA for E-cadherin and beta-catenin was detected within the tumour cells using in-situ hybridization with a 35S-labelled cDNA probe. The expression of E-cadherin and beta-catenin were graded as uniform, heterogeneous or negative. The mRNA for E-cadherin was expressed in 13 of 14 primary carcinomas and 11 bone metastases; beta-catenin was expressed by 13 and nine, respectively. Of the primary tumours, nine expressed E-cadherin and beta-catenin uniformly; in contrast, all metastases had down-regulated E-cadherin and/or beta-catenin. The down-regulation of E-cadherin and beta-catenin are a feature of the metastatic phenotype, which may be a significant factor in the genesis of bone metastases. However, this does not appear to be reflected in the expression of these molecules in the primary tumours.

  6. Deletion of the human beta-globin LCR 5'HS4 or 5'HS1 differentially affects beta-like globin gene expression in beta-YAC transgenic mice.

    PubMed

    Fedosyuk, Halyna; Peterson, Kenneth R

    2007-01-01

    A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.

  7. Role of interleukin-1beta and tumor necrosis factor-alpha-dependent expression of cyclooxygenase-2 mRNA in thermal hyperalgesia induced by chronic inflammation in mice.

    PubMed

    Narita, M; Shimamura, M; Imai, S; Kubota, C; Yajima, Y; Takagi, T; Shiokawa, M; Inoue, T; Suzuki, M; Suzuki, T

    2008-03-18

    The present study investigated whether the endogenous pro-inflammatory cytokines [interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha)]-dependent expression of cyclooxygenase-2 (COX-2) mRNA within the spinal cord could be involved in the development of chronic inflammatory pain-like behaviors in mice. We demonstrated that the expression of COX-2 mRNA on the ipsilateral side of the spinal cord was significantly increased 6 h and 3 days after intraplantar injection of complete Freund's adjuvant (CFA), compared with the expression in saline-treated mice. In addition, the chronic pain-like behaviors following CFA injection were markedly suppressed by repeated intrathecal (i.t.) pre-treatment with the COX-2 inhibitor etodolac, but not with the COX-1 inhibitor mofezolac. The cytosolic level of the activated form of nuclear factor-kappa B (NF-kappaB), which is a major contributor to the induction of COX-2, on the ipsilateral side of the mouse spinal cord was also increased compared with that in the saline-treated mice. The key finding in the present study was that a single i.t. injection with either IL-1beta or TNF-alpha induced a marked increase in spinal COX-2 mRNA and persistent thermal hyperalgesia in mice. Furthermore, CFA-induced hypersensitivity to inflammatory pain was significantly reduced by repeated i.t. pre-injection of the recombinant Fc chimera of IL-1 receptor I or soluble TNF receptor I, which sequesters endogenous IL-1beta or TNF-alpha, respectively. In contrast, the expression of spinal COX-2 mRNA in CFA-treated mice was similar to that in saline-treated mice at 7 days after CFA injection. The present findings strongly indicate the early intrathecal use of the COX-2 inhibitor for the relief of chronic inflammatory pain. Furthermore, together with the result in a previous study that pro-inflammatory cytokines lead to stimulation of a NF-kappaB-dependent transcriptional pathway, these findings suggest that a spinal cytokine/NF-kappaB/COX-2 pathway may play an important role in the development, but not maintenance, of chronic pain following peripheral tissue inflammation.

  8. Human beta-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5' termini.

    PubMed Central

    Lim, S K; Maquat, L E

    1992-01-01

    Previous studies have demonstrated that nonsense codons within beta zero-thalassemic or in vitro-mutagenized human beta-globin transgenes result in the production of mRNAs that are degraded abnormally rapidly in the cytoplasm of murine erythroid cells. As a consequence, three RNA degradative intermediates are formed that lack sequences from either exon I or exons I and II. We show here that the intermediates, like the full-length mRNA from which they derive and the endogenous murine beta maj-globin mRNA, bind to the anticap monoclonal antibody H-20 in a way that is competed by the cap analogue m7G and eliminated by prior exposure to tobacco acid pyrophosphatase. Furthermore, the intermediates, like the two full-length mRNAs, are resistant to a 5'----3' exonuclease activity isolated from HeLa cell nuclei that degrades uncapped but not capped ribopolymers. Based on these observations, the intermediates appear to possess a structure that is indistinguishable from the cap at the 5' end of mRNA, i.e. a methylated nucleoside that is linked to the RNA by a 5'-5' phosphodiester bond. Detection of the intermediates during murine development was concomitant with detection of full-length thalassemic mRNA. Intermediate production appears to be influenced by RNA structure as indicated by the products that derive from a beta zero-thalassemic beta-globin transgene harboring a structural alteration (a 4 bp deletion) that was larger than any of those previously studied. Images PMID:1324170

  9. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    PubMed

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  10. Treadmill Exercise Ameliorates Spatial Learning and Memory Deficits Through Improving the Clearance of Peripheral and Central Amyloid-Beta Levels.

    PubMed

    Khodadadi, Davar; Gharakhanlou, Reza; Naghdi, Naser; Salimi, Mona; Azimi, Mohammad; Shahed, Atabak; Heysieattalab, Soomaayeh

    2018-06-11

    Aggregated amyloid beta (Aβ) peptides are believed to play a decisive role in the pathology of Alzheimer's disease (AD). Previous evidence suggested that exercise contributes to the improvement of cognitive decline and slows down pathogenesis of AD; however, the exact mechanisms for this have not been fully understood. Here, we evaluated the effect of a 4-week moderate treadmill exercise on spatial memory via central and peripheral Aβ clearance mechanisms following developed AD-like neuropathology induced by intra-hippocampal Aβ 1-42 injection in male Wistar rats. We found Aβ 1-42 -treated animals showed spatial learning and memory impairment which was accompanied by increased levels of amyloid plaque load and soluble Aβ 1-42 (sAβ 1-42 ), decreased mRNA and protein expression of neprilysin (NEP), insulin degrading enzyme (IDE) and low-density lipoprotein receptor-related protein-1 (LRP-1) in the hippocampus. Aβ 1-42 -treated animals also exhibited a higher level of sAβ 1-42 and a lower level of soluble LRP-1 (sLRP-1) in plasma, as well as a decreased level of LRP-1 mRNA and protein content in the liver. However, exercise training improved the spatial learning and memory deficits, reduced both plaque load and sAβ 1-42 levels, and up-regulated expression of NEP, IDE, and LRP-1 in the hippocampus of Aβ 1-42 -treated animals. Aβ 1-42 -treated animals subjected to treadmill exercise also revealed decreased levels of sAβ 1-42 and increased levels of sLRP-1 in plasma, as well as increased levels of LRP-1 mRNA and protein in the liver. In conclusion, our findings suggest that exercise-induced improvement in both of central and peripheral Aβ clearance are likely involved in ameliorating spatial learning and memory deficits in an animal model of AD. Future studies need to determine their relative contribution.

  11. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed

    Smits, A; Funa, K; Vassbotn, F S; Beausang-Linder, M; af Ekenstam, F; Heldin, C H; Westermark, B; Nistér, M

    1992-03-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions.

  12. [Effect of multi-glycoside of Tripterygium wilfordii Hook. f. in intervening TGF-beta1/Smad signaling pathway of adriamycin-induced nephropathy model rat].

    PubMed

    Wan, Yi-gang; Sun, Wei; Dou, Chen-hui

    2011-04-01

    To explore the potential molecular mechanisms of multi-glycoside of Tripterygium wilfordii Hook. f. (GTW) for ameliorating glomerulosclerosis (GS) by observing its intervention effect on transforming growth factor (TGF)-beta1/Smad signaling pathway in adriamycin-induced nephropathy (ADRN) model rat. Fifteen female Sprague-Dawley (SD) rats were randomly divided into three groups, the sham-operation group (A), the untreated model group (B), and the GTW treated model group (C). Rats in Group B and C were made into ADRN model by right nephrectomy and intravenous injection of adriamycin (ADR, 0. 4 mL and 0. 2 mL respectively in 4 weeks). After the model was successfully established, rats in Group C were orally given GTW (50 mg/kg per day), while rats in Group B were intervened with distilled water. The intervention for two groups was 6 weeks. Rats' body weight were weighed and 24 h urinary protein excretion (Upro) detected by the end of the 2nd, 4th, 8th and 10th week. All rats were sacrificed at the end of 10th week after operation to withdraw blood and kidney tissue to examine serum biochemical parameters, glomerular morphological changes, alpha-smooth muscle actin (alpha-SMA), and collagen type I expression. Besides, the mRNA expressions of TGF-beta1, Smad3 and Smad7, as well as protein expressions of TGF-beta1, and phosphorylated Smad2/3 (p-Smad2/3) in glomeruli were detected by RT-PCR or Western blotting. As compared with Group B, in Group C, Upro and serum albumin were improved significantly, but no difference between groups was found in levels of blood urea nitrogen(BUN), serum creatinine(SCr), or hepatic cell injury. Mesangial cell proliferation, extracellular matrix (ECM) and collagen deposition were suppressed by GTW. Expressions of alpha-SMA and collagen type I decreased, and the characteristic changes of GS were attenuated. The mRNA expressions of TGF-P,31, Smad3 and protein expression of TGF-beta1, p-Smad2/3 in renal tissues were down-regulated, while the protein expression of Smad7 mRNA was up-regulated. GTW showed effect in ameliorating GS in vivo. It could reduce the ECM deposition and improve GS by way of intervening TGF-beta1/Smad signaling pathway in the kidney through regulating the mRNA or protein expressions of key signal molecules, such as Smad3 and p-Smad2/3.

  13. Proteomic characterization of paired non-malignant and malignant African-American prostate epithelial cell lines distinguishes them by structural proteins.

    PubMed

    Myers, Jennifer S; Vallega, Karin A; White, Jason; Yu, Kaixian; Yates, Clayton C; Sang, Qing-Xiang Amy

    2017-07-11

    While many factors may contribute to the higher prostate cancer incidence and mortality experienced by African-American men compared to their counterparts, the contribution of tumor biology is underexplored due to inadequate availability of African-American patient-derived cell lines and specimens. Here, we characterize the proteomes of non-malignant RC-77 N/E and malignant RC-77 T/E prostate epithelial cell lines previously established from prostate specimens from the same African-American patient with early stage primary prostate cancer. In this comparative proteomic analysis of RC-77 N/E and RC-77 T/E cells, differentially expressed proteins were identified and analyzed for overrepresentation of PANTHER protein classes, Gene Ontology annotations, and pathways. The enrichment of gene sets and pathway significance were assessed using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, respectively. The gene and protein expression data of age- and stage-matched prostate cancer specimens from The Cancer Genome Atlas were analyzed. Structural and cytoskeletal proteins were differentially expressed and statistically overrepresented between RC-77 N/E and RC-77 T/E cells. Beta-catenin, alpha-actinin-1, and filamin-A were upregulated in the tumorigenic RC-77 T/E cells, while integrin beta-1, integrin alpha-6, caveolin-1, laminin subunit gamma-2, and CD44 antigen were downregulated. The increased protein level of beta-catenin and the reduction of caveolin-1 protein level in the tumorigenic RC-77 T/E cells mirrored the upregulation of beta-catenin mRNA and downregulation of caveolin-1 mRNA in African-American prostate cancer specimens compared to non-malignant controls. After subtracting race-specific non-malignant RNA expression, beta-catenin and caveolin-1 mRNA expression levels were higher in African-American prostate cancer specimens than in Caucasian-American specimens. The "ECM-Receptor Interaction" and "Cell Adhesion Molecules", and the "Tight Junction" and "Adherens Junction" pathways contained proteins are associated with RC-77 N/E and RC-77 T/E cells, respectively. Our results suggest RC-77 T/E and RC-77 N/E cell lines can be distinguished by differentially expressed structural and cytoskeletal proteins, which appeared in several pathways across multiple analyses. Our results indicate that the expression of beta-catenin and caveolin-1 may be prostate cancer- and race-specific. Although the RC-77 cell model may not be representative of all African-American prostate cancer due to tumor heterogeneity, it is a unique resource for studying prostate cancer initiation and progression.

  14. Esmolol reduces apoptosis and inflammation in early sepsis rats with abdominal infection.

    PubMed

    Lu, Yang; Yang, Yang; He, Xin; Dong, Shangwen; Wang, Wanhua; Wang, Donghao; Zhang, Peng

    2017-10-01

    Esmolol is a highly selective beta 1 receptor blocker with various effects such as slowing heart rate, lowering blood pressure and reducing myocardial oxygen consumption. However, few studies have reported the use of beta blockers in sepsis with multiple organ dysfunctions. This study aimed to investigate the effects of esmolol on reducing apoptosis and inflammation in early sepsis rats with abdominal infection. Rats were randomly divided into sham operation group, sepsis group, antibiotic group, Esmolol + antibiotic group with low, median and high dose Esmolol (L group, M group and H group). Values between two or more groups were compared by independent t-tests. In the liver and kidney, we found inflammatory infiltration in sepsis group while pathological aspects reduced in L, M and H groups. Bcl-2 mRNA and protein levels increased while Bax mRNA and protein levels decreased in the liver and kidney of L, M and H groups. Serum IL-6, HMGB-1 and TNF-α levels decreased but IL-10 level increased in L, M and H groups, compared to sepsis group. Compared to sepsis and antibiotic groups, the levels of myocardial enzymes were lower in L, M and H groups. The administration of esmolol in early sepsis may reduce inflammation, inhibit apoptosis and protect key organs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages.

    PubMed

    Wang, Huamin; Actor, Jeffrey K; Indrigo, Jessica; Olsen, Margaret; Dasgupta, Amitava

    2003-01-01

    Ginseng is a widely used herbal product in China, other Asian countries, and in the Unites States. There is a traditional belief that ginseng stimulates immune functions. In this study, the innate effects of Asian and Siberian ginsengs on cytokines and chemokines produced by cultured macrophages were examined. The effects of Asian and Siberian ginseng on cytokines and chemokines produced by cultured macrophages were examined. Mouse macrophages (J774A.1) were incubated with Asian or Siberian ginseng at varying concentrations (1, 10, 100, and 1000 microg/ml) for 24 h and then harvested for RNA isolation. The expression levels of IL-1beta, IL-12, TNF-alpha, MIP-1 alpha, and MIP-2 mRNA were measured by quantitative PCR. Our data showed that Asian ginseng induced a statistically significant increase in IL-12 expression at both mRNA and protein levels. However, the minor twofold increase is probably biologically insignificant. No significant increase of IL-12 by Siberian ginseng was observed at any dose level studied. No significant change in IL-1beta, IL-15, TNF-alpha, or MIP-1alpha mRNA was observed by either Asian or Siberian ginseng treatment. Our data showed statistically significant differential regulation of IL-12 by Asian ginseng. Siberian ginseng did not show a statistically significant increase. We conclude that both Asian ginseng and Siberian ginseng cannot significantly stimulate innate macrophage immune functions that influence cellular immune responses. Therefore, contrary to the popular belief, Asian and Siberian ginseng may not stimulate immune function.

  16. Downregulation of cell surface molecules during noncytopathic infection of T cells with human immunodeficiency virus.

    PubMed Central

    Stevenson, M; Zhang, X H; Volsky, D J

    1987-01-01

    Noncytopathic infection of human T-lymphoid cell line CR-10 with human immunodeficiency virus (HIV) (CEM-N1T isolate) resulted in a gradual loss of cell surface receptors for OKT4/OKT4A (HIV receptor), OKT8, OKT3, and OKT11 but not for OKT9 (transferrin receptor) within 10 days after infection. Surface receptor decline was accompanied by a rapid increase in HIV antigens and mRNA expression. Multireceptor downregulation was also observed in three T-lymphoid cell lines (MT-4, CEM, and HBD-1) cytopathically infected with the HIV/N1T virus and in HUT-78 cells infected with the HIV/SF-2 isolate. HIV-infected and uninfected CR-10 cells contained similar levels of mRNAs coding for T3, T8, T9, T11, HLA-A2, and HLA-B7 proteins. By densitometry, fully infected CR-10 cells showed approximately 75% reduction in T4 and tubulin (beta chain) mRNA levels when compared with uninfected CR-10 cells. No such reduction was detected in HIV-infected MT-4 and HBD-1 cells. A T-cell receptor gene (beta chain) rearrangement study revealed that no distinct CR-10 subpopulation was selected out upon infection with HIV. Our results suggest that the reduction in cell surface receptors observed between 1 and 2 weeks postinfection cannot be directly attributed to similar reductions in mRNA levels coding for these receptor proteins. We conclude that HIV infection induces posttranscriptional downregulation of several T-cell surface receptors. Images PMID:3500327

  17. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper.

    PubMed

    Li, Shuisheng; Xiao, Ling; Liu, Qiongyu; Zheng, Binbin; Chen, Huapu; Liu, Xiaochun; Zhang, Yong; Lin, Haoran

    2015-10-01

    Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper. © 2015 Society for Endocrinology.

  18. Scavenger receptor class A type I/II determines matrix metalloproteinase-mediated cartilage destruction and chondrocyte death in antigen-induced arthritis.

    PubMed

    van Lent, P L E M; Hofkens, W; Blom, A B; Grevers, L; Sloetjes, A; Takahashi, N; van Tits, L J; Vogl, T; Roth, J; de Winther, M P; van den Berg, W B

    2009-10-01

    Scavenger receptor class A type I (SR-AI) and SR-AII are expressed by macrophages in particular and bind and internalize a broad range of molecules (including endotoxins, apoptotic bodies, and oxidized low-density lipoprotein). This study was undertaken to investigate the role of SR-AI/II in mediating severe cartilage destruction in antigen-induced arthritis (AIA). AIA was induced in the knee joints of SR-AI/II(-/-) mice and wild-type (WT) controls. Joint inflammation and cartilage destruction (chondrocyte death) were measured by examining the histology of total knee joints. Matrix metalloproteinase (MMP)-mediated neoepitopes were measured by immunolocalization using anti-VDIPEN antibodies and chondrocyte activation with anti-S100A8 antibodies. Messenger RNA (mRNA) levels were determined in inflamed synovium using microarray analysis and quantitative reverse transcriptase-polymerase chain reaction. In synovial washouts, cytokines (interleukin-1beta [IL-1beta], IL-10, and tumor necrosis factor alpha) and S100A8/S100A9 were measured using Luminex and enzyme-linked immunosorbent assay. Levels of SR-AI/II mRNA were strongly elevated in inflamed synovium in AIA. On days 2, 8, and 14 after AIA induction, joint inflammation (exudates/infiltrate) was similar between the 2 groups. In WT mice, severe cartilage destruction was found in multiple cartilage surfaces of the inflamed knee joint on day 14 after AIA induction. MMP-mediated matrix destruction ranged between 40% and 60%, and chondrocyte death was prominent in 40-75% of the cartilage surfaces. In striking contrast, in SR-AI/II(-/-) mice, despite comparable joint inflammation, pronounced cartilage destruction was almost completely absent. Levels of IL-1beta and S100A8/S100A9 were significantly lower on days 7 and 14 after AIA induction, but levels of mRNA for various MMPs (MMP-2, MMP-3, MMP-9, and MMP-13) were comparable. Our findings indicate that SR-AI and SR-AII are crucial receptors involved in mediating severe cartilage destruction in AIA.

  19. Disruption of sex-hormone levels and steroidogenic-related gene expression on Mongolia Racerunner (Eremias argus) after exposure to triadimefon and its enantiomers.

    PubMed

    Li, Jitong; Chang, Jing; Li, Wei; Guo, Baoyuan; Li, Jianzhong; Wang, Huili

    2017-03-01

    Triadimefon (TF) is a widely used chiral fungicide with one chiral centre and two enantiomers (TF 1 and TF 2 ). However, little is reported about the ecological toxicity of reptiles on an enantioselective level. TF is a potential endocrine disruptor that may interfere with sex steroid hormones, such as testosterone (T) and 17beta-estradiol (E 2 ). In our study, the lizards Mongolia Racerunner (Eremias argus) were orally exposed to TF and its enantiomers for 21 days. Plasma sex steroid hormones and steroidogenic-related genes, including 17-beta-hydroxysteroid (hsd17β), cytochrome P450 enzymes (cyp19 and cyp17), and steroid hormone receptors (erα and Ar) were evaluated. After exposure, the plasma testosterone level in the 100 mg/kg bw group was elevated, while the oestradiol level was reduced. This phenomenon may be caused by the transformation of cyp19, which may inhibit the conversion of testosterone to oestradiol and affect sexual behaviour. In addition, the two enantiomers have different effects on hormone levels, which testified to the previously reported biotoxic dissimilarity between TF 1 and TF 2 in organisms. Furthermore, the cyp19 mRNA level in liver and gonad of the TF 2 and TF group (100 mg/kg bw ) were significantly down-regulated, while the cyp17 and hsd17β mRNA levels were up-regulated. The expression of erα and Ar mRNA levels were up-regulated in males but not in females, which may indicate that TF has sex differences on these two genes. As seen from the above results, TF and its enantiomers may have endocrine-disrupting effects on lizards (E. argus) by acting sensitively on sex steroid hormones and steroidogenic-related genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and post-ovulatory ageing.

    PubMed

    Aegerter, Sandrine; Jalabert, Bernard; Bobe, Julien

    2005-11-01

    The mRNA levels of 39 target genes were monitored in unfertilized eggs of 14 rainbow trout sampled the day of ovulation and again 5, 14, and 21 days later. For all 56 collected egg batches, an egg sample was fertilized to estimate egg quality by monitoring embryonic development. Remaining eggs were used for RNA extraction and subsequent real-time PCR analysis. A significant drop of egg quality was observed when eggs were held in the body cavity for 14 or 21 days post-ovulation (dpo). During the same period, eight transcripts (nucleoplasmin or Npm2, ferritin H, tubulin beta, JNK1, cyclin A1, cyclin A2, cathepsin Z, and IGF2) exhibited a differential abundance at one or several collection time(s). Interestingly, we observed higher levels of cyclins A1 and A2 mRNAs in eggs taken 5 days post-ovulation than in eggs taken, from the same females, at the time of ovulation. In addition, seven transcripts exhibited a differential abundance between low quality and high quality eggs. Low quality eggs were characterized by lower levels of Npm2, tubulin beta, and IGF1 transcripts. In contrast, keratins 8 and 18, cathepsin Z, and prostaglandin synthase 2 were more abundant in low quality eggs than in high quality eggs. In this study, we have demonstrated differences in mRNA levels in the rainbow trout egg that are reflective of developmental competence differences induced by post-ovulatory ageing. The putative role of these transcripts in post-ovulatory ageing-induced egg quality defects is discussed with special attention for corresponding cellular functions.

  1. Establishment and characterization of scleroderma fibroblast clonal cell lines by introduction of the hTERT gene.

    PubMed

    Kapanadze, Bagrat; Morris, Erin; Smith, Edwin; Trojanowska, Maria

    2010-05-01

    Lack of an adequate experimental model has hindered the ability to fully understand scleroderma (SSc) pathogenesis. Current SSc research is based on the study of cultured fibroblasts from skin biopsies. In depth characterization of the SSc fibroblast phenotype is hindered by the limited lifespan and heterogeneity of these cells. The goal of this study was to isolate high collagen-producing fibroblasts from SSc biopsies and extend their lifespan with hTERT immortalization to enable characterization of their phenotype. Fibroblasts from two pairs of closely matched normal and SSc biopsies were infected with an hTERT lentivirus. Infected colonies were isolated, cultured into clonal cell lines and analysed with respect to profibrotic gene expression. The mRNA levels of nine profibrotic genes were measured by quantitative real-time PCR. Protein levels were assessed by Western blot. The hTERT SSc clones were heterogeneous with regards to expression of the profibrotic genes measured. A subset of the SSc clones showed elevated expression levels of collagen I, connective tissue growth factor and thrombospondin 1 mRNA, while expression of other genes was not significantly changed. Elevated expression of collagen I protein and mRNA was correlative with elevated expression of connective tissue growth factor. Several hTERT clones expressed high levels of pSmad1, Smad1 and TGF-betaRI indicative of altered TGF-beta signalling. A portion of SSc clones expressed several profibrotic genes. This study demonstrates that select characteristics of the SSc phenotype are expressed in a subset of activated fibroblasts in culture. The clonal SSc cell lines may present a new and useful model to investigate the mechanisms involved in SSc fibrosis.

  2. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi, E-mail: y3oishi@nodai.ac.jp

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis alongmore » with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.« less

  3. Identification of MSX1 and DCLK1 as mRNA Biomarkers for Colorectal Cancer Detection Through DNA Methylation Information.

    PubMed

    Sun, Ai-Jun; Gao, Hai-Bo; Liu, Gao; Ge, Heng-Fa; Ke, Zun-Ping; Li, Sen

    2017-07-01

    Colorectal cancer is the second most deadly malignancy in the United States. However, the currently screening options had their limitation. Novel biomarkers for colorectal cancer detections are necessary to reduce the mortality. The clinical information, mRNA expression levels and DNA methylation information of colorectal cancer were downloaded from TCGA. The patients were separated into training group and testing group based on their platforms for DNA methylation. Beta values of DNA methylation from tumor tissues and normal tissues were utilized to figure out the position that were differentially methylated. The expression levels of mRNA of thirteen genes, whose CpG islands were differentially methylated, were extracted from the RNA-Seq results from TCGA. The probabilities whether the mRNA was differentially expressed between tumor and normal samples were calculated using Student's t-test. Logistic regression and decision tree were built for cancer detection and their performances were evaluated by the area under the curve (AUC). Twenty-four genomic locations were differentially methylated, which could be mapped to eleven genes. Nine out of eleven genes had differentially expressed mRNA levels, which were used to build the model for cancer detection. The final detection models consisting of mRNA expression levels of these nine genes had great performances on both training group and testing group. The model that constructed in this study suggested MSX1 and DCLK1 might be used in colorectal cancer detection or as target of cancer therapies. J. Cell. Physiol. 232: 1879-1884, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreamer, G.L.; Squibb, K.; Gioeli, D.

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached bymore » 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.« less

  5. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgaard, Louise T., E-mail: ltd@ruc.dk; Department of Science, Systems and Models, Roskilde University

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was tomore » examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.« less

  6. hnRNP L regulates differences in expression of mouse integrin alpha2beta1.

    PubMed

    Cheli, Yann; Kunicki, Thomas J

    2006-06-01

    There is a 2-fold variation in platelet integrin alpha2beta1 levels among inbred mouse strains. Decreased alpha2beta1 in 4 strains carrying Itga2 haplotype 2 results from decreased affinity of heterogeneous ribonucleoprotein L (hnRNP L) for a 6 CA repeat sequence (CA6) within intron 1. Seven strains bearing haplotype 1 and a 21 CA repeat sequence at this position (CA21) express twice the level of platelet alpha2beta1 and exhibit an equivalent gain of platelet function in vitro. By UV crosslinking and immunoprecipitation, hnRNP L binds more avidly to CA21, relative to CA6. By cell-free, in vitro mRNA splicing, decreased binding of hnRNP L results in decreased splicing efficiency and an increased proportion of alternatively spliced product. The splicing enhancer activity of CA21 in vivo is abolished by prior treatment with hnRNP L-specific siRNA. Thus, decreased surface alpha2beta1 results from decreased Itga2 pre-mRNA splicing regulated by hnRNP L and depends on CA repeat length at a specific site in intron 1.

  7. Structure and expression of the rat CYP3A1 gene: isolation of the gene (P450/6betaB) and characterization of the recombinant protein.

    PubMed

    Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y

    1999-02-15

    A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.

  8. Low-dose oral rapamycin treatment reduces fibrogenesis, improves liver function, and prolongs survival in rats with established liver cirrhosis.

    PubMed

    Neef, Markus; Ledermann, Monika; Saegesser, Hans; Schneider, Vreni; Reichen, Juerg

    2006-12-01

    Mammalian target of rapamycin (mTOR) signalling is central in the activation of hepatic stellate cells (HSCs), the key source of extracellular matrix (ECM) in fibrotic liver. We tested the therapeutic potential of the mTOR inhibitor rapamycin in advanced cirrhosis. Cirrhosis was induced by bile duct-ligation (BDL) or thioacetamide injections (TAA). Rats received oral rapamycin (0.5 mg/kg/day) for either 14 or 28 days. Untreated BDL and TAA-rats served as controls. Liver function was quantified by aminopyrine breath test. ECM and ECM-producing cells were quantified by morphometry. MMP-2 activity was measured by zymography. mRNA expression of procollagen-alpha1, transforming growth factor-beta1 (TGF-beta1) and beta2 was quantified by RT-PCR. Fourteen days of rapamycin improved liver function. Accumulation of ECM was decreased together with numbers of activated HSCs and MMP-2 activity in both animal models. TGF-beta1 mRNA was downregulated in TAA, TGF-beta2 mRNA was downregulated in BDL. 28 days of rapamycin treatment entailed a survival advantage of long-term treated BDL-rats. Low-dose rapamycin treatment is effectively antifibrotic and attenuates disease progression in advanced fibrosis. Our results warrant the clinical evaluation of rapamycin as an antifibrotic drug.

  9. TGF-beta1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium.

    PubMed

    Vega, José L; Puebla, Carlos; Vásquez, Rodrigo; Farías, Marcelo; Alarcón, Julio; Pastor-Anglada, Marçal; Krause, Bernardo; Casanello, Paola; Sobrevia, Luis

    2009-06-01

    We studied whether transforming growth factor beta1 (TGF-beta1) modulates human equilibrative nucleoside transporters 1 (hENT1) expression and activity in human umbilical vein endothelial cells (HUVECs). hENT1-mediated adenosine transport and expression are reduced in gestational diabetes and hyperglycaemia, conditions associated with increased synthesis and release of nitric oxide (NO) and TGF-beta1 in this cell type. TGF-beta1 increases NO synthesis via activation of TGF-beta receptor type II (TbetaRII), and NO inhibits hENT1 expression and activity in HUVECs. HUVECs (passage 2) were used for experiments. Total and hENT1-mediated adenosine transport was measured in the absence or presence of TGF-beta1, NG-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor), S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor), and/or KT-5823 (protein kinase G inhibitor) in control cells and cells expressing a truncated form of TGF-beta1 receptor type II (TTbetaRII). Western blot and real-time PCR were used to determine hENT1 protein abundance and mRNA expression. SLC29A1 gene promoter and specific protein 1 (Sp1) transcription factor activity was assayed. Vascular reactivity was assayed in endothelium-intact or -denuded umbilical vein rings. TGF-beta1 reduced hENT1-mediated adenosine transport, hENT1 protein abundance, hENT1 mRNA expression, and SLC29A1 gene promoter activity, but increased Sp1 binding to DNA. TGF-beta1 effect was blocked by L-NAME and KT-5823 and mimicked by SNAP in control cells. However, TGF-beta1 was ineffective in cells expressing TTbetaRII or a mutated Sp1 consensus sequence. Vasodilatation in response to TGF-beta1 and S-(4-nitrobenzyl)-6-thio-inosine (an ENT inhibitor) was endothelium-dependent and blocked by KT-5823 and ZM-241385. hENT1 is down-regulated by activation of TbetaRII by TGF-beta1 in HUVECs, a phenomenon where NO and Sp1 play key roles. These findings comprise physiological mechanisms that could be important in diseases where TGF-beta1 plasma level is increased as in gestational diabetic mothers or patients with diabetes mellitus.

  10. The effects of a cytokine suppressive anti-inflammatory drug on the output of prostaglandin E(2) and interleukin-1 beta from human fetal membranes.

    PubMed

    Sullivan, M H F; Alvi, S A; Brown, N L; Elder, M G; Bennett, P R

    2002-03-01

    Fetal membranes are a primary source of prostaglandins and pro-inflammatory cytokines implicated in human parturition, so the inhibition of inflammatory pathways may be of benefit in pregnancies complicated by premature labour. We have therefore investigated the effects of a cytokine-suppressant anti-inflammatory drug (CSAID) on the output of prostaglandin E(2) (PGE(2)) and interleukin (IL)-1 beta from human fetal membranes in vitro. Bacterial endotoxin increased the expression of mRNA for IL-1 beta and type-2 cyclo-oxygenase (COX-2), and there were corresponding increases in the output of IL-1 beta protein and PGE(2). The CSAID decreased IL-1 beta protein, COX-2 expression and PGE(2) output, but not mRNA for IL-1 beta, indicating a post-translational effect on the production of IL-1 beta and a transcriptional affect on COX-2, with an overall reduction in PGE(2). These findings are consistent with the effects of CSAIDs in other systems, and indicate that they are of possible use in premature labour.

  11. The role of growth factors in embryonic induction in Xenopus laevis.

    PubMed

    Dawid, I B; Taira, M; Good, P J; Rebagliati, M R

    1992-06-01

    Establishment of the body pattern in all animals, and especially in vertebrate embryos, depends on cell interactions. During the cleavage and blastula stages in amphibians, signal(s) from the vegetal region induce the equatorial region to become mesoderm. Two types of peptide growth factors have been shown by explant culture experiments to be active in mesoderm induction. First, there are several isoforms of fibroblast growth factor (FGF), including aFGF, bFGF, and hst/kFGF. FGF induces ventral, but not the most dorsal, levels of mesodermal tissue; bFGF and its mRNA, and an FGF receptor and its mRNA, are present in the embryo. Thus, FGF probably has a role in mesoderm induction, but is unlikely to be the sole inducing agent in vivo. Second, members of the transforming growth factor-beta (TGF-beta) family. TGF-beta 2 and TGF-beta 3 are active in induction, but the most powerful inducing factors are the distant relatives of TGF-beta named activin A and activin B, which are capable of inducing all types of mesoderm. An important question relates to the establishment of polarity during the induction of mesoderm. While all regions of the animal hemisphere of frog embryos are competent to respond to activins by mesoderm differentiation, only explants that include cells close to the equator form structures with some organization along dorsoventral and anteroposterior axes. These observations suggest that cells in the blastula animal hemisphere are already polarized to some extent, although inducers are required to make this polarity explicit.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys of hamsters infected with pathogenic Leptospira.

    PubMed

    Lowanitchapat, Alisa; Payungporn, Sunchai; Sereemaspun, Amornpun; Ekpo, Pattama; Phulsuksombati, Duangporn; Poovorawan, Yong; Chirathaworn, Chintana

    2010-09-01

    Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. Although several components of this organism have been identified, the molecular mechanisms underlying pathogenesis of this infectious disease are still poorly understood. Besides, direct injury by microbial factors, cytokines produced in response to infection have been proposed to be involved in pathogenesis of leptospirosis. In this study, cytokine gene expression in kidneys was investigated. Hamsters were injected with pathogenic Leptospira interrogans serovar Pyrogenes and were sacrificed on days 3, 5 and 7 after infection. RNA was extracted from kidney tissues. Real-time PCR was performed to demonstrate expression of TNF-alpha, TGF-beta, IP-10 and IL-10 mRNA in kidneys. TNF-alpha, TGF-beta and IP-10 expression could be demonstrated since day 3 post-infection whereas IL-10 expression was detected later on day 5. Leptospira infection resulted in not only expression of a proinflammatory cytokine, TNF-alpha, but also a T cell chemokine, IP-10. Detection of IP-10 suggested the involvement of T cell recruitment in the immune response or pathology in infected kidneys. Expressions of anti-inflammatory cytokines, TGF-beta and IL-10 were also observed. However, the level of TGF-beta expression was prominent since day 3 post-infection whereas IL-10 expression was clearly observed on day 5. Further experiments will provide additional information whether there is a correlation between the expression of these cytokines and pathologies found in an affected organ. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Involvement of GTA protein NC2beta in neuroblastoma pathogenesis suggests that it physiologically participates in the regulation of cell proliferation.

    PubMed

    Di Pietro, Cinzia; Ragusa, Marco; Barbagallo, Davide; Duro, Laura R; Guglielmino, Maria R; Majorana, Alessandra; Giunta, Veronica; Rapisarda, Antonella; Tricarichi, Elisa; Miceli, Marco; Angelica, Rosario; Grillo, Agata; Banelli, Barbara; Defferari, Isabella; Forte, Stefano; Laganà, Alessandro; Bosco, Camillo; Giugno, Rosalba; Pulvirenti, Alfredo; Ferro, Alfredo; Grzeschik, Karl H; Di Cataldo, Andrea; Tonini, Gian P; Romani, Massimo; Purrello, Michele

    2008-06-06

    The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. To verify our hypothesis, we analyzed the involvement in neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2beta (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2alpha (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2beta mRNA had also genomic deletions at the corresponding locus. Our data show that NC2beta is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2beta, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells.

  14. Regulation of aromatase activity in bone-derived cells: possible role of mitogen-activated protein kinase.

    PubMed

    Shozu, M; Sumitani, H; Murakami, K; Segawa, T; Yang, H J; Inoue, M

    2001-12-01

    Fetal human osteoblast-like cells and the THP-1 cell line that differentiates into macrophage/osteoblast-like cells in the presence of Vitamin D3 and which possesses high aromatase activity, constitute a useful model with which to study the regulation of aromatase in bone. We showed that dexamethasone (DEX)-induced aromatase activity in the THP-1 cell line is completely suppressed by forskolin and by dibutyryl cAMP. We therefore investigated the contribution of mitogen-activated protein kinase (MAPK) to the regulation of aromatase, because cAMP inhibits MAPK in many cells. We examined the role of MAPK on aromatase activity using PD98059, a selective inhibitor of MEK-1. PD98059 (100 microM) reduced DEX+interleukin (IL)-1beta-induced aromatase activity in human osteoblast-like cells by more than 90%, whereas 50% of the aromatase mRNA concentration was retained compared with the control incubated with DEX+IL-1beta. PD98059 (50 microM) reduced the activity of aromatase in THP-1 cells by 80% without significantly affecting the mRNA level. These results indicated that MAPK plays an important role in aromatase activation at the post-transcriptional level.

  15. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant.

    PubMed

    Martin, Douglas R; Krum, Barbara K; Varadarajan, G S; Hathcock, Terri L; Smith, Bruce F; Baker, Henry J

    2004-05-01

    In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).

  16. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression.

    PubMed

    Baldwin, Amy; Pirisi, Lucia; Creek, Kim E

    2004-04-01

    Human papillomaviruses (HPVs) are present in virtually all cervical cancers. An important step in the development of malignant disease, including cervical cancer, involves a loss of sensitivity to transforming growth factor beta (TGF-beta). HPV type 16 (HPV16) early gene expression, including that of the E6 and E7 oncoprotein genes, is under the control of the upstream regulatory region (URR), and E6 and E7 expression in HPV16-immortalized human epithelial cells is inhibited at the transcriptional level by TGF-beta. While the URR contains a myriad of transcription factor binding sites, including seven binding sites for nuclear factor I (NFI), the specific sequences within the URR or the transcription factors responsible for TGF-beta modulation of the URR remain unknown. To identify potential transcription factors and binding sites involved in TGF-beta modulation of the URR, we performed DNase I footprint analysis on the HPV16 URR using nuclear extracts from TGF-beta-sensitive HPV16-immortalized human keratinocytes (HKc/HPV16) treated with and without TGF-beta. Differentially protected regions were found to be located around NFI binding sites. Electrophoretic mobility shift assays, using the NFI binding sites as probes, showed decreased binding upon TGF-beta treatment. This decrease in binding was not due to reduced NFI protein or NFI mRNA levels. Mutational analysis of individual and multiple NFI binding sites in the URR defined their role in TGF-beta sensitivity of the promoter. Overexpression of the NFI family members in HKc/HPV16 decreased the ability of TGF-beta to inhibit the URR. Since the oncoprotein Ski has been shown to interact with and increase the transcriptional activity of NFI and since cellular Ski levels are decreased by TGF-beta treatment, we explored the possibility that Ski may provide a link between TGF-beta signaling and NFI activity. Anti-NFI antibodies coimmunoprecipitated endogenous Ski in nuclear extracts from HKc/HPV16, confirming that NFI and Ski interact in these cells. Ski levels dramatically decreased upon TGF-beta treatment of HKc/HPV16, and overexpression of Ski eliminated the ability of TGF-beta to inhibit the URR. Based on these studies, we propose that TGF-beta inhibition of HPV16 early gene expression is mediated by a decrease in Ski levels, which in turn dramatically reduces NFI activity.

  17. Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection.

    PubMed

    Veldhuizen, Edwin J A; van Dijk, Albert; Tersteeg, Monique H G; Kalkhove, Stefanie I C; van der Meulen, Jan; Niewold, Theo A; Haagsman, Henk P

    2007-01-01

    Defensins are antimicrobial peptides that play an important role in the innate immune response in the intestine. Up to date, only one beta-defensin (pBD-1), has been described in pig, which was found to be expressed at low levels in the intestine. We set-up a quantitative PCR method to detect the gene expression of pBD-1 and a newly discovered porcine beta-defensin, pBD-2. Expression of pBD-1 mRNA increased from the proximal to the distal part of the intestine whereas pBD-2 expression decreased. The main gene expression sites for pBD-2 were kidney and liver, whereas pBD-1 was mainly expressed in tongue. The porcine small intestinal segment perfusion (SISP) technique was used to investigate effects of Salmonella typhimurium DT104 on intestinal morphology and pBD-1 and pBD-2 mRNA levels in vivo. The early responses were studied 2, 4 and 8 h post-infection in four separate jejunal and ileal segments. Immunohistochemistry showed invasion of the mucosa by Salmonella and changes in intestinal morphology. However, no concomitant changes in expression of either pBD-1 or pBD-2 were observed. We conclude that at least two defensins are differentially expressed in the intestine of pigs, and that expression of both defensins is not altered by S. typhimurium under these conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influencedmore » the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasid, A.; Morecki, S.; Aebersold, P.

    Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (Neo{sup R}) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact Neo{sup R} gene integration andmore » expressed high levels of neomycin phosphotransferase activity. The Neo{sup R} gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for {beta}- and {gamma}-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the {beta} and {gamma} chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors ({alpha} and {beta}) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs.« less

  20. Beta-hydroxybutyrate increases reactive oxygen species in late but not in early postimplantation embryonic cells in vitro.

    PubMed

    Forsberg, H; Eriksson, U J; Melefors, O; Welsh, N

    1998-02-01

    Embryonic dysmorphogenesis has been blocked by antioxidant treatment in vivo and in vitro, suggesting that embryonic excess of reactive oxygen species (ROS) has a role in the teratogenic process of diabetic pregnancy. We report that the basal levels of ROS in dispersed rat embryonic cells in vitro, as determined by fluorescence of dichlorofluorescein (DCF), were not different in cells from control and diabetic pregnancy at day 10 or 12. Beta-hydroxybutyrate (beta-HB) and succinic acid monomethyl ester both augmented DCF fluorescence in cells from day 12 embryos of normal and diabetic rats but not from day 10 embryos. Cells of day 10 and day 12 embryos from normal and diabetic rats responded to increasing glucose concentrations with a dosage-dependent alleviation of DCF fluorescence. Day 10 embryonic cells exhibited high glucose utilization rates and high pentose phosphate shunt rates, but low mitochondrial oxidation rates. Moreover, in vitro culture of embryos between gestational days 9 and 10 in the presence of 20% oxygen induced an increased and glucose-sensitive oxidation of glucose compared with embryos not cultured in vitro. At gestation day 12, however, pentose phosphate shunt rates showed a decrease, whereas the mitochondrial beta-HB oxidation rates were increased compared with those at gestation day 10. This was paralleled by a lower expression of glucose 6-phosphate dehydrogenase- and phosphofructokinase-mRNA levels at day 12 than at day 10. On the other hand, H-ferritin mRNA expression at day 12 was high compared with day 10. None of the mRNA species investigated were affected by the diabetic state of the mother. It was concluded that beta-HB-induced stimulation of mitochondrial oxidative events may lead to the generation of ROS at gestational day 12, but probably not at day 10, when only a minute amount of mitochondrial activity occurs. Thus our results do not support the notion of diabetes-induced mitochondrial oxidative stress before the development of a placental supply of oxygen.

  1. [Effect of Moxibustion on Learning-memory Ability and Hippocampal Amyloid beta Protein Overexpression in Mild Cognitive Impairment Rats].

    PubMed

    Zhu, Cai-feng; Sun, Jian-jian; Han, Wei; Yang, Jun

    2016-04-01

    To observe the effect of moxibustion of "Baihui" (GV 20), etc. on learning-memory ability, hip- pocampal amyloid beta (AP) protein expression and immune activity in mild cognitive impairment (MCI) rats, so as to reveal its mechanism underlying improving cognitive impairment. A total of 48 SD rats were randomly divided into normal, model, moxibustion, and medication groups (n = 12 in each group). The MCI model was established by intraperitoneal injection of 2 mL mixture solution containing D-galactose (120 mg - kg- - d-) and Sodium Nitrite (90 mg x kg(-1) x d(-1)), once daily for 40 days. Moxibustion (separated by Radix Aconiti Praeparata cake) was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14) for 20 min, once daily for 2 weeks, with one day's rest between two weeks. The rats of the medication group were given with Nimodipine (2 mg x kg(-1) x d(-1), t.i.d.) by lavage for 2 weeks (except Sundays). The learning-memory ability was detected by Morris maze water swimming tasks. The expression level of hippocampal AP protein was detected by immunohistochemistry, and those of hippocampal presenilin-1 (PS-1) mRNA and cleaving enzyme (BACE-1) mRNA were detected by real time-PCR, and serum IL-6 level was assayed by ELISA. Following modeling, the average escape latency of location navigation tests of Morris maze water swimming tests, the expression levels of hippocampal Abeta protein, PS-1 mRNA and BACE-1 mRNA, and serum IL-6 content were significantly increased in the model group( P<0.01) , while the target-platform crossing times and the percentage of target-quadrant swimming duration of spacial probe trials were remarkably decreased in the model group (P<0.01). After moxibustion, the increased escape latency, hippocampal AP protein, PS-i mHNA and BACE-1 mRNA ex- pression and serum IL-6 content, and the decreased target-platform crossing times and the percentage of target-quadrant swim- ming duration were reversed in both moxibustion and medication groups (P<0.01). The effects of the moxibustion group were obviously superior to those of the medication group in decreasing the escape latency, and in up-regulating the target-platform crossing times, the percentage of target-quadrant swimming duration, and down-regulating hippocampal Abeta protein, PS-1 mHNA and BACE-1 mRNA expression levels and serum IL-6 content (P<0.05). Moxibustion is effective in improving MCI rats' learning-memory ability, which may be associated with its functions in down-regulating the levels of hippocampal Abeta protein, PS-1 mRNA and BACE-1 mRNA expression and serum IL-6 content, possibly by blocking Abeta overexpression-induced inflammation cascade.

  2. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    Abdominal adhesions are the aberrant result of peritoneal wound healing commonly associated with surgery and inflammation. A subject of a large number of studies since the first half of the last century, peritoneal adhesion prevention has, for the most part, evaded the scientific community and continues to cost Americans an estimated $2-4 billion annually. It is known that transforming growth factor-beta (TGF-beta) plays a key role in the wound healing cascade; however, suppression of this multifunctional growth factor's activity may have more harmful consequences than can be tolerated. As a result, much attention has fallen on connective tissue growth factor (CTGF), a downstream mediator of TGF-beta's fibrotic action. It has been demonstrated in several in vitro models, that the suppression of CTGF hinders fibroblast proliferation, a necessary condition for fibrosis. Furthermore, antisense oligonucleotides (antisense oligos, AO) to CTGF have been shown to knock down CTGF mRNA levels by specifically hindering the translation of CTGF protein. Antisense technologies have met with a great deal of excitement as a viable means of preventing diseases such as adhesions by hindering protein translation at the mRNA level. However, the great challenge associated with the use of these drugs lies in the short circulation time when administered "naked". Viral delivery systems, although excellent platforms in metabolic studies, are not ideal for diagnostic use because of the inherent danger associated with viral vectors. Microparticles made of biodegradable polymers have therefore presented themselves as a viable means of delivering these drugs to target cells over extended periods. Herein, we present two in vivo studies confirming the up-regulation of TGF-beta protein and CTGF mRNA following injury to the uterine tissues of female rats. We were able to selectively knockdown post-operative CTGF protein levels following surgery, however, our observations led us to conclude that, while both cytokines are over-expressed within the first day following injury, CTGF protein levels could not be correlated with observed adhesion development. In addition, we synthesized linear triblock copolymers of polyethylene glycol (PEG) and poly(D,L-lactide-co-glycolide) (PLGA), two of the most widely studied biodegradable polymers in use today. Bulk gels and microparticles of the copolymers were then evaluated for gelling behavior, temperature stability, and drug loading and release kinetics in order assess their suitability as potential carriers of antisense therapeutics. A novel approach to affecting the antisense oligonucleotide release kinetics by varying the relative concentrations of co-encapsulated cationic lipid transfection agents was also presented.

  3. Expression of platelet-derived growth factor and its receptors in proliferative disorders of fibroblastic origin.

    PubMed Central

    Smits, A.; Funa, K.; Vassbotn, F. S.; Beausang-Linder, M.; af Ekenstam, F.; Heldin, C. H.; Westermark, B.; Nistér, M.

    1992-01-01

    Platelet-derived growth factor (PDGF) is known to stimulate the proliferation of connective tissue-derived cells in vitro. Less is known about its functions in vivo, and the role of PDGF in the development of human tumors has not been clarified. The authors have investigated the occurrence of PDGF and PDGF receptors in a series of proliferative disorders of fibroblastic origin using immunohistochemical and in situ hybridization techniques. High expression of PDGF beta-receptor mRNA and protein was found in the malignant tumors, and also in some benign lesions, such as dermatofibroma. In all these cases, benign as well as malignant, the PDGF B-chain mRNA, and less clearly, the PDGF A-chain mRNA, were coexpressed with the beta-receptor. In contrast, high expression of PDGF alpha-receptor mRNA was only found in fully malignant lesions, i.e., malignant fibrous histiocytoma. These data indicate that an autocrine growth stimulation via the PDGF beta-receptor could occur in an early phase of tumorigenesis, and may be a necessary but insufficient event for the progression into fully malignant human connective tissue lesions. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1372158

  4. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet.

    PubMed

    Nagasawa, Tatsuya; Inada, Yoichi; Nakano, Shigeru; Tamura, Toru; Takahashi, Tetsuaki; Maruyama, Kazuyasu; Yamazaki, Yoshinobu; Kuroda, Junji; Shibata, Nobuo

    2006-04-24

    We evaluated the effects of bezafibrate, a peroxisome proliferator-activated receptor (PPAR) pan-agonist, and GW501516, a PPARdelta agonist, on mice fed a methionine- and choline-deficient (MCD) diet, a model of non-alcholic steatohepatitis (NASH), to investigate (a) the efficacy of bezafibrate against non-alcholic steatohepatitis and (b) the relation between non-alcholic steatohepatitis and the functional role of PPARdelta. Bezafibrate (50 or 100 mg/kg/day) and GW501516 (10 mg/kg/day) were administered by gavage once a day for 5 weeks. Hepatic lipid contents, plasma triglyceride, high density lipoprotein (HDL)-cholesterol and alanine aminotransferase (ALT) concentrations were evaluated, as were histopathological changes in the liver and hepatic mRNA expression levels. Bezafibrate and GW501516 inhibited the MCD-diet-induced elevations of hepatic triglyceride and thiobarbituric acid-reactants contents and the histopathological increases in fatty droplets within hepatocytes, liver inflammation and number of activated hepatic stellate cells. In this model, bezafibrate and GW501516 increased the levels of hepatic mRNAs associated with fatty acid beta-oxidation [acyl-CoA oxidase (ACO), carnitine palmitoyltransferase-1 (CPT-1), liver-fatty acid binding protein (L-FABP) and peroxisomal ketothiolase], and reduced the levels of those associated with inflammatory cytokines or chemokine [transforming growth factor (TGF)-beta1, interleukin (IL)-6, IL-1beta, monocyte chemoattractant protein (MCP)-1, tumor necrosis factor (TNF) alpha and nuclear factor (NF)-kappaB1]. In addition, bezafibrate characteristically reduced the elevation in the level of plasma ALT, but enhanced that in plasma adiponectin and increased the mRNA expression levels of its receptors (adiponectin receptors 1 and 2). These results suggest that (a) bezafibrate (especially) and GW501516 might improve hepatic steatosis via an improvement in fatty acid beta-oxidation and a direct prevention of inflammation, (b) treatment with a PPARdelta agonist might improve non-alcholic steatohepatitis, (c) bezafibrate may improve non-alcholic steatohepatitis via activation not only of PPARalpha but also of PPARdelta, because bezafibrate is a PPAR pan-agonist.

  5. WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway.

    PubMed

    Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K

    2001-12-21

    Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.

  6. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hama, Kouji; Ohnishi, Hirohide; Aoki, Hiroyoshi

    2006-02-17

    Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-{beta}{sub 1} inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-{beta}{sub 1}-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSCmore » proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-{beta}{sub 1}-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.« less

  7. Interferon-alpha receptor 1 mRNA expression in peripheral blood mononuclear cells is associated with response to interferon-alpha therapy of patients with chronic hepatitis C.

    PubMed

    Massirer, K B; Hirata, M H; Silva, A E B; Ferraz, M L G; Nguyen, N Y; Hirata, R D C

    2004-05-01

    Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha 2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/beta-actin-mRNA ratio (mean +/- SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 +/- 0.15; N = 5; P < 0.05) compared to non-responders (0.35 +/- 0.17; N = 12) and controls (0.30 +/- 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.

  8. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway.

    PubMed

    Razeghi, Peter; Bruckner, Brian A; Sharma, Saumya; Youker, Keith A; Frazier, O H; Taegtmeyer, Heinrich

    2003-01-01

    Left ventricular assist device (LVAD) support of the failing human heart improves myocyte function and increases cell survival. One potential mechanism underlying this phenomenon is activation of the protein kinase B (PKB)/Akt/glycogen synthase kinase-3beta (GSK-3beta) survival pathway. Left ventricular tissue was obtained both at the time of implantation and explantation of the LVAD (n = 11). Six patients were diagnosed with idiopathic dilated cardiomyopathy, 4 patients with ischemic cardiomyopathy and 1 patient with peripartum cardiomyopathy. The mean duration of LVAD support was 205 +/- 35 days. Myocyte diameter and phosphorylation of ERK were used as indices for reverse remodeling. Transcript levels of genes required for the activation of PKB/Akt (insulin-like growth factor-1, insulin receptor substrate-1) were measured by quantitative RT-PCR. In addition, we measured the relative activity of PKB/Akt and GSK-3beta, and assayed for molecular and histological indices of PKB/Akt activation (cyclooxygenase mRNA levels and glycogen levels). Myocyte diameter and phosphorylation of ERK decreased with LVAD support. In contrast, none of the components of the PKB/Akt/GSK-3beta pathway changed significantly with mechanical unloading. The PKB/Akt/GSK-3beta pathway is not activated during LVAD support. Other signaling pathways must be responsible for the improvement of cellular function and cell survival during LVAD support. Copyright 2003 S. Karger AG, Basel

  9. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy.

    PubMed

    Mobley, Christopher Brooks; Fox, Carlton D; Ferguson, Brian S; Amin, Rajesh H; Dalbo, Vincent J; Baier, Shawn; Rathmacher, John A; Wilson, Jacob M; Roberts, Michael D

    2014-01-01

    The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to skeletal muscle hypertrophy in vivo.

  10. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy

    PubMed Central

    2014-01-01

    Background The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. Methods After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). Results MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Conclusions Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to skeletal muscle hypertrophy in vivo. PMID:25132809

  11. MSX-1 gene expression and regulation in embryonic palatal tissue.

    PubMed

    Nugent, P; Greene, R M

    1998-01-01

    The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.

  12. Sarcomeric Myosin Expression in the Tongue Body of Humans, Macaques and Rats

    PubMed Central

    Rahnert, Jill A.; Sokoloff, Alan J.; Burkholder, Thomas J.

    2010-01-01

    Expression of developmental and unconventional myosin heavy chain (MHC) isoforms in some adult head and neck muscles is thought to reflect specific contractile demands of muscle fibers active during kinematically complex movements. Mammalian tongue muscles are active during oromotor behaviors that encompass a wide range of tongue movement speeds and tongue shape changes (e.g. respiration, oral transport, swallowing, rejection), but the extent to which tongue muscles express developmental and unconventional MHC is not known. Quantitative PCR was used to determine the mRNA content of conventional MHC-beta, MHC-2a, MHC-2b and MHC-2x, the developmental isoforms embryonic MHC and neonatal MHC and the unconventional isoforms atrial/cardiac-α MHC (MHC-alpha), extraocular MHC, masseter MHC and slow tonic MHC in tongue body muscles of the rat, macaque and human. In all species, conventional MHC isoforms predominate. MHC-2b and MHC-2x account for 98% of total MHC mRNA in the rat. MHC-2a, MHC-2x and MHC-beta account for 94% of total MHC mRNA in humans and 96% of total MHC mRNA in macaque. With the exception of MHC-alpha in humans (5%), developmental and unconventional MHC mRNA represents less than 0.3% of total MHC mRNA. We conclude that in these species, there is limited expression of developmental and unconventional MHC and that diversity of tongue body muscle fiber contractile properties is achieved primarily by MHC-beta, MHC-2a, MHC-2x and MHC-2b. Whether expression of MHC-alpha mRNA in tongue is unique to humans or present in other hominoids awaits further investigation. PMID:19907142

  13. [Study on effect of cordyceps sinensis on early-stage silicotic pulmonary fibrosis in rabbits].

    PubMed

    Liu, Qianzhong; Zhang, Wei; Cui, Hongfu; Ying, Yanhong

    2014-07-01

    To establish a rabbit model of silicotic pulmonary fibrosis and to investigate the effect of cordyceps sinensis in this model. Thirty healthy male white rabbits were randomly divided into control group, silicosis model group, and intervention group. The rabbits in silicosis model group and intervention group received endotracheal perfusion of silicon dioxide suspension (120 mg/kg), and the control group was treated with the same volume of saline. All the rabbits were sacrificed 30 days later. The lung coefficient was calculated by comparing the lung weight and body weight; the right lung tissue was stained with hematoxylin-eosin (HE). The content of hydroxyproline in lung tissue was measured by alkaline hydrolysis. The mRNA levels of transforming growth factor beta 1 (TGF-β₁) and mothers against decapentaplegic homolog 7 (Smad7) in rabbit lung sections were determined by real-time PCR. No abnormalities were observed by HE staining in the lung tissues of control group, while fibrosis and silicotic nodules were discovered in the silicosis model group and intervention group. The lung coefficient and the content of hydroxyproline in lung tissue were significantly higher in the silicosis model group than in the control group and intervention group (P < 0.05 or P < 0.01). Compared with the control group, the silicosis model group and intervention group had significantly increased TGF-β₁ mRNA levels but significantly reduced Smad7 mRNA levels (P < 0.02). Compared with the silicosis model group, the intervention group had a significantly reduced TGF-β₁ mRNA level but a significantly increased Smad7 mRNA level (P < 0.05). Cordyceps sinensis is able to reduce the expression of TGF-β₁ mRNA and increase the expression of Smad7 mRNA in lung tissues of rabbits with silicotic pulmonary fibrosis, and thus postpone the progression of fibrosis.

  14. Enrichment of cardiac pacemaker-like cells: neuregulin-1 and cyclic AMP increase I(f)-current density and connexin 40 mRNA levels in fetal cardiomyocytes.

    PubMed

    Ruhparwar, Arjang; Er, Fikret; Martin, Ulrich; Radke, Kristin; Gruh, Ina; Niehaus, Michael; Karck, Matthias; Haverich, Axel; Hoppe, Uta C

    2007-02-01

    Generation of a large number of cells belonging to the cardiac pacemaker system would constitute an important step towards their utilization as a biological cardiac pacemaker system. The aim of the present study was to identify factors, which might induce transformation of a heterogenous population of fetal cardiomyocytes into cells with a pacemaker-like phenotype. Neuregulin-1 (alpha- and beta-isoform) or the cAMP was added to fresh cell cultures of murine embryonic cardiomyocytes. Quantitative northern blot analysis and flowcytometry were performed to detect the expression of connexins 40, 43 and 45. Patch clamp recordings in the whole cell configuration were performed to determine current density of I (f), a characteristic ion current of pacemaker cells. Fetal cardiomyocytes without supplement of neuregulin or cAMP served as control group. Neuregulin and cAMP significantly increased mRNA levels of connexin 40 (Cx-40), a marker of the early differentiating conduction system in mice. On the protein level, flowcytometry revealed no significant differences between treated and untreated groups with regard to the expression of connexins 40, 43 and 45. Treatment with cAMP (11.2 +/- 2.24 pA/pF; P < 0.001) and neuregulin-1-beta (6.23 +/- 1.07 pA/pF; P < 0.001) significantly increased the pacemaker current density compared to control cardiomyocytes (1.76 +/- 0.49 pA/pF). Our results indicate that neuregulin-1 and cAMP possess the capacity to cause significant transformation of a mixed population of fetal cardiomyocytes into cardiac pacemaker-like cells as shown by electrophysiology and increase of Cx-40 mRNA. This method may allow the development of a biological cardiac pacemaker system when applied to adult or embryonic stem cells.

  15. The expression of transforming growth factor beta in pregnant rat myometrium is hormone and stretch dependent.

    PubMed

    Shynlova, Oksana; Tsui, Prudence; Dorogin, Anna; Langille, B Lowell; Lye, Stephen J

    2007-09-01

    From a quiescent state in early pregnancy to a highly contractile state in labor, the myometrium displays tremendous growth and remodeling. We hypothesize that the transforming growth factor beta (TGFbeta) system is involved in the differentiation of pregnant myometrium throughout gestation and labor. Furthermore, we propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial TGFbetas. The expression of TGFbeta1-3 mRNAs and proteins was examined by real-time PCR, Western immunoblot, and localized with immunohistochemistry in the rat uterus throughout pregnancy and labor. Tgfbeta1-3 genes were expressed differentially in pregnant myometrium. Tgfbeta2 gene was not affected by pregnancy, whereas the Tgfbeta1 gene showed a threefold increase during the second half of gestation. In contrast, we observed a dramatic bimodal change in Tgfbeta3 gene expression throughout pregnancy. Tgfbeta3 mRNA levels first transiently increased at mid-gestation (11-fold on day 14) and later at term (45-fold at labor, day 23). Protein expression levels paralleled the changes in mRNA. Treatment of pregnant rats with the progesterone (P4) receptor antagonist RU486 induced premature labor on day 19 and increased Tgfbeta3 mRNA, whereas artificial maintenance of elevated P4 levels at late gestation (days 20-23) caused a significant decrease in the expression of Tgfbeta3 gene. In addition, Tgfbeta3 was up-regulated specifically in the gravid horn of unilaterally pregnant rats subjected to a passive biological stretch imposed by the growing fetuses, but not in the empty horn. Collectively, these data indicate that the TGFbeta family contributes in the regulation of myometrial activation at term integrating mechanical and endocrine signals for successful labor contraction.

  16. Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages.

    PubMed

    Diao, Huajia; Li, Xin; Chen, Jiangning; Luo, Yi; Chen, Xi; Dong, Lei; Wang, Chunming; Zhang, Chenyu; Zhang, Junfeng

    2008-02-01

    Bletilla striata, a traditional Chinese medicine, has been used for the treatment of alimentary canal mucosal damage, ulcers, bleeding, bruises and burns. B. striata polysaccharide (BSP) isolated from B. striata was found to enhance vascular endothelial cell (EC) proliferation and vascular endothelial growth factor (VEGF) expression. However, the wound healing mechanism of BSP is not well understood. In this study, the results show that treatment with BSP induces coordinate changes in inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1beta) mRNA levels and enhances the expression of these cytokines, but has no effect on interferon gamma (IFN-gamma) level. In this study, we partially elucidate the wound healing mechanism of BSP.

  17. Zearalenone and 17 β-estradiol induced damages in male rats reproduction potential; evidence for ERα and ERβ receptors expression and steroidogenesis.

    PubMed

    Adibnia, Elmira; Razi, Mazdak; Malekinejad, Hassan

    2016-09-15

    The estrogen receptors (ERs)-dependent effects of Zearalenone (ZEA) on structure and function of the testis as well as sperm parameters were compared with 17-β estradiol as endogenous substance. For this purpose, 30 mature male rats were assigned into five groups as; control (appropriate volume of normal saline, i. p.), ZEA-received (1, 2 and 4 mg/kg, b. w., i. p.) and 17 β-estradiol (E2)-received (appropriate dose of 0.1 mg/kg, i. p.). Following 28 days, the mRNA levels of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in the testis and sperms and the expression of them at protein levels in testicles were estimated. Mitochondrial content of germinal epithelium, Leydig cells steroid foci, sperm quality parameters and serum level of testosterone were assessed. Fluorescent techniques were used for analyzing apoptosis and mRNA damage in necrotic cells. ZEA reduced the mRNA and protein levels of ERα in testicles while up-regulated the ERβ expression. The mRNA level of ERα decreased in sperms of ZEA and E2-received animals. No remarkable changes were found for ERβ expression in sperms from ZEA and E2-received animals. ZEA reduced the Leydig cells steroidogenesis, mitochondrial content of germinal cells and elevated cellular apoptosis and necrosis dose-dependently. E2 reduced the testosterone concentration, enhanced the apoptosis and reduced sperm quality. Our data suggest that ZEA-induced detrimental effects in the structure and function of testis, may attribute to changing the ERs expression at mRNA and translational level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y

    1996-12-01

    Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.

  19. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  20. beta-Thalassemia present in cis to a new beta-chain structural variant, Hb Vicksburg [beta 75 (E19)Leu leads to 0].

    PubMed Central

    Adams, J G; Steinberg, M H; Newman, M V; Morrison, W T; Benz, E J; Iyer, R

    1981-01-01

    Hemoglobin Vicksburg was discovered in a 6-year-old Black boy who had been anemic since infancy. Examination of his hemolysate revealed 87.5% Hb F, 2.4% Hb A2, and 7.6% Hb Vicksburg, which had the electrophoretic and chromatographic properties of Hb A. Structural analysis of Hb Vicksburg demonstrated a deletion of leucine at beta 75(E19), a new variant. Hb Vicksburg was neither unstable nor subject to posttranslational degradation. The alpha/non-alpha biosynthetic ratio was 2.6. Because the proband appeared to be a mixed heterozygote for Hb Vicksburg and beta 0-thalassemia, Hb Vicksburg should have comprised the major portion of the hemolysate. Thus, Hb Vicksburg was synthesized at a rate considerably lower than would be expected on the basis of gene dosage. There was no reason to suspect abnormal translation of beta Vicksburg mRNA; in individuals with Hb St. Antoine (beta 74 and beta 75 deleted), the abnormal hemoglobin comprised 25% of the hemolysate in the simple heterozygote yet was unstable. Deletion of beta 75, therefore, would not in itself appear to lead to diminished synthesis. There was a profound deficit of beta Vicksburg mRNA when measured by liquid hybridization analysis with beta cDNA. The most plausible explanation for the low output of Hb Vicksburg is that a mutation for beta +-thalassemia is present in cis to the structural mutation. PMID:6165992

  1. beta-Thalassemia present in cis to a new beta-chain structural variant, Hb Vicksburg [beta 75 (E19)Leu leads to 0].

    PubMed

    Adams, J G; Steinberg, M H; Newman, M V; Morrison, W T; Benz, E J; Iyer, R

    1981-01-01

    Hemoglobin Vicksburg was discovered in a 6-year-old Black boy who had been anemic since infancy. Examination of his hemolysate revealed 87.5% Hb F, 2.4% Hb A2, and 7.6% Hb Vicksburg, which had the electrophoretic and chromatographic properties of Hb A. Structural analysis of Hb Vicksburg demonstrated a deletion of leucine at beta 75(E19), a new variant. Hb Vicksburg was neither unstable nor subject to posttranslational degradation. The alpha/non-alpha biosynthetic ratio was 2.6. Because the proband appeared to be a mixed heterozygote for Hb Vicksburg and beta 0-thalassemia, Hb Vicksburg should have comprised the major portion of the hemolysate. Thus, Hb Vicksburg was synthesized at a rate considerably lower than would be expected on the basis of gene dosage. There was no reason to suspect abnormal translation of beta Vicksburg mRNA; in individuals with Hb St. Antoine (beta 74 and beta 75 deleted), the abnormal hemoglobin comprised 25% of the hemolysate in the simple heterozygote yet was unstable. Deletion of beta 75, therefore, would not in itself appear to lead to diminished synthesis. There was a profound deficit of beta Vicksburg mRNA when measured by liquid hybridization analysis with beta cDNA. The most plausible explanation for the low output of Hb Vicksburg is that a mutation for beta +-thalassemia is present in cis to the structural mutation.

  2. Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity.

    PubMed

    Maestroni, Georges J M; Mazzola, Paola

    2003-11-01

    We showed that norepinephrine (NE) hampers IL-12 and stimulates IL-10 production via adrenoceptors (ARs) in bone marrow-derived dendritic cells (BMDC) influencing their Th priming ability. Others have shown that Langerhans cells (LC) express mRNA for beta1-, beta2- and alpha1(A)-(ARs) and that catecholamines may inhibit the antigen-presenting capability via beta2-ARs. Here, we show that also BMDC express mRNA for beta1-, beta2-, alpha2(A)- and alpha2(C)-ARs. Inhibition of IL-12 is mediated by both beta2- and alpha2(A)-ARs, while stimulation of IL-10 by beta2-ARs only. In addition, LC migration, the contact hypersensitivity response (CHS) and production of IFN-gamma and IL-2 in draining lymph node cells is increased in mice treated topically with the beta2-AR antagonist ICI 118,551 during FITC sensitization. Activation of beta2-ARs in BMDC before adoptive transfer could reduce both migration and CHS response to FITC. Finally, preincubation of BMDC with LPS in presence of the specific beta2-AR agonist salbutamol impaired their chemotactic response to CCL19 and CCL21 and this effect was neutralized by anti-IL-10 mAb. We suggest that the physiological activation of beta2-ARs in DC (LC) results in stimulation of IL-10 which in turn restrains DC (LC) migration influencing antigen presentation and the consequent CHS response.

  3. Korea red ginseng on Helicobacter pylori-induced halitosis: newer therapeutic strategy and a plausible mechanism.

    PubMed

    Lee, Jeong Sang; Kwon, Kwang An; Jung, Hyeon Sik; Kim, Joo Hyeon; Hahm, Ki-Baik

    2009-01-01

    Gas chromatographic documentation of volatile sulfur compounds in Helicobacter pylori cultures and the amelioration of halitosis after eradication suggested a causal link between H. pylori infection and halitosis. We hypothesized that Korea red ginseng can relieve H. pylori-associated halitosis based on their anti-inflammatory and cytoprotective actions in H. pylori-associated gastritis. Eighty-eight functional dyspepsia patients presenting with either subjective halitosis or objective halimeter levels >100 ppb were recruited, on whom tests were repeated after 10 weeks of red ginseng administration. The expressions of cystathionine gamma-lyase (CSE), cystathionine beta-synthetase (CBS), IL-6, IL-8 and IL-1beta mRNA were compared in H. pylori-infected or NaHS-treated gastric epithelial cells according to red ginseng treatment. After 10 weeks of red ginseng administration, 38 patients out of 68 H. pylori-positive cases became 'free of halitosis' accompanied with halimeter levels <50 ppb accordant with the subjective resolution of halitosis. Among the remaining 30 patients, 15 cases administered with both eradication regimen and red ginseng supplement showed either higher eradication rates (93.3%) or were found to be completely free of halitosis in comparison to the other 15 patients who were only administered the eradication regimen. Among 20 H. pylori-negative patients, 13 patients became 'free of halitosis' with 10 weeks of red ginseng treatment alone. Red ginseng extracts significantly decreased H. pylori- or NaHS-induced CSE expressions concomitant with attenuated levels of IL-6, IL-8 and IL-1beta mRNA. The strategy consisting of Korea red ginseng supplementation after the successful eradication of H. pylori could be an effective way to fight troublesome halitosis. Copyright 2009 S. Karger AG, Basel.

  4. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk; Tohoku University School of Medicine, Sendai; Andres, MC de

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OAmore » is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma-Aldrich), (iv) cultured with a mixture of 2.5 ng/ml IL-1{beta}, 2.5 ng/ml OSM and 2 mM GlcN, (v) cultured with 1.0 {mu}M BAY 11-7082 (BAY; NF-kB inhibitor: Calbiochem, Darmstadt, Germany) and, (vi) cultured with a mixture of 2.5 ng/ml IL-1{beta}, 2.5 ng/ml OSM and 1.0 {mu}M BAY. The levels of IL1B and MMP13 mRNA were examined using qRT-PCR. The percentage DNA methylation in the CpG sites of the IL1{beta} and MMP13 proximal promoter were quantified by pyrosequencing. Result:IL1{beta} expression was enhanced over 580-fold in articular chondrocytes treated with IL-1{beta} and OSM. GlcN dramatically ameliorated the cytokine-induced expression by 4-fold. BAY alone increased IL1{beta} expression by 3-fold. In the presence of BAY, IL-1{beta} induced IL1B mRNA levels were decreased by 6-fold. The observed average percentage methylation of the -256 CpG site in the IL1{beta} promoter was 65% in control cultures and decreased to 36% in the presence of IL-1{beta}/OSM. GlcN and BAY alone had a negligible effect on the methylation status of the IL1B promoter. The cytokine-induced loss of methylation status in the IL1B promoter was ameliorated by both GlcN and BAY to 44% and 53%, respectively. IL-1{beta}/OSM treatment increased MMP13 mRNA levels independently of either GlcN or BAY and no change in the methylation status of the MMP13 promoter was observed. Conclusion: We demonstrate for the first time that GlcN and BAY can prevent cytokine-induced demethylation of a specific CpG site in the IL1{beta} promoter and this was associated with decreased expression of IL1{beta}. These studies provide a potential mechanism of action for OA disease modifying agents via NF-kB and, critically, demonstrate the need for further studies to elucidate the role that NF-kB may play in DNA demethylation in human chondrocytes.« less

  5. Influence of performance on gene expression in skeletal muscle: effects of forced inactivity

    NASA Technical Reports Server (NTRS)

    Thomason, D. B.; Booth, F. W.

    1989-01-01

    Joint immobilization and hindlimb suspension are used to examine muscle protein expression and mRNA quantities in rats. A decrease in protein synthesis was not associated with alteration in alpha-actin mRNA, cytochrome c mRNA, or beta-myosin heavy chain mRNA early in treatment. Percentage declines after seven days are compared with early treatment quantities to determine acute and chronic response to muscular atrophy.

  6. Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1beta.

    PubMed

    Lebovic, D I; Bentzien, F; Chao, V A; Garrett, E N; Meng, Y G; Taylor, R N

    2000-03-01

    Activated peritoneal macrophages are associated with endometriosis and may play a central role in its aetiology by releasing interleukin-1beta (IL-1beta) in response to refluxed endometrium. Pari passu with the establishment of endometriotic implants is the development of a vascular supply. In this study we investigated the angiogenic properties of two endometrial proteins, vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), and assessed their production in response to IL-1beta stimulation in human stromal cells isolated from normal endometrium (NE) and endometriotic lesions (EI). Proliferation of bovine brain capillary endothelial cells (BBCE) with a [(3)H]-thymidine incorporation assay was observed when VEGF (2.1 +/- 0.2-fold; P < 0.05) or VEGF and IL-6 (1.8 +/- 0.1-fold; P < 0.05) were added in vitro, relative to saline-treated control cultures. Northern blot analysis showed induction of VEGF mRNA (2.6-fold; P < 0.05) and IL-6 mRNA (6.3-fold; P < 0.05) transcripts in EI cells, but not NE cells, exposed to IL-1beta. A similar induction was seen with VEGF and IL-6 protein secretion in the responsive EI cells. Reverse transcription-polymerase chain reaction (RT-PCR) for the IL-1 receptor type I (IL-1 RI) indicated that the differential effects of IL-1beta on NE and EI cells was associated with 2.4 +/- 0.1-fold more receptor mRNA in EI versus NE cells. We propose that the ability of IL-1beta to activate an angiogenic phenotype in EI stromal cells but not in NE cells, is mediated by the IL-1 RI.

  7. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    PubMed

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-05

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P < 0.01). Social isolation decreased gene expression (P < 0.05) in the frontal cortex of all piglets. Twelve-day-old piglets showed higher MR mRNA in the frontal cortex (P < 0.01) and lower 11beta-HSD2 and GR mRNA (P < 0.05) in the hippocampus compared to 23-day-old animals. Results indicate that EW affected the hippocampus of piglets at 12 days of age, while social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  8. FATHEAD MINNOW VITELLOGENIN: CDNA SEQUENCE AND MRNA AND PROTEIN EXPRESSION AFTER 17 BETA-ESTRADIOL TREATMENT

    EPA Science Inventory

    In the present study, a sensitive ribonuclease protection assay (RPA) for VTG mRNA was developed for the fathead minnow (Pimephales promelas), a species proposed for routine endocrine-disrupting chemical (EDC) screening.

  9. Reduction of isoprenaline-induced myocardial TGF-{beta}1 expression and fibrosis in osthole-treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Rong; The First Hospital Affiliated to Soochow University, Suzhou 215006, Jiangsu Province; Xue Jie

    Peroxisome proliferator-activated receptor (PPAR) {alpha} and PPAR{gamma} ligands can attenuate myocardial fibrosis. Osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, may be a dual PPAR{alpha}/{gamma} agonist, but there has been no report on its effect on myocardial fibrosis. In the present study, we investigated the inhibitory effect of osthole on myocardial fibrotic formation in mice and its possible mechanisms. A mouse model with myocardial fibrosis was induced by hypodermic injection of isoprenaline while the mice were simultaneously treated with 40 and 80 mg/kg osthole for 40 days. After the addition of osthole, the cardiac weightmore » index and hydroxyproline content in the myocardial tissues were decreased, the degree of collagen accumulation in the heart was improved, and the downregulation of myocardial PPAR{alpha}/{gamma} mRNA expression induced by isoprenaline was reversed. Moreover, the mRNA expression of transforming growth factor (TGF)-{beta}1 and the protein levels of nuclear factor (NF)-{kappa}B and TGF-{beta}1 in the myocardial tissues were decreased. These findings suggest that osthole can prevent isoprenaline-induced myocardial fibrosis in mice, and its mechanisms may be related to the reduction of TGF-{beta}1 expression via the activation of PPAR{alpha}/{gamma} and subsequent inhibition of NF-{kappa}B in myocardial tissues. - Highlights: > Osthole could inhibit the myocardial fibrosis induced by isoprenaline in mice. > The mechanism was related to reduction of TGF-{beta}1 expression in myocardial tissue. > The result of osthole was from the activation of PPAR{alpha}/{gamma} and inhibition of NF-{kappa}B.« less

  10. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N

    2003-02-28

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.

  11. Long-term beta-adrenergic stimulation leads to downregulation of protein phosphatase inhibitor-1 in the heart.

    PubMed

    El-Armouche, Ali; Gocht, Fabian; Jaeckel, Elmar; Wittköpper, Katrin; Peeck, Micha; Eschenhagen, Thomas

    2007-11-01

    Desensitization of the beta-adrenoceptor/cAMP/PKA pathway is a hallmark of heart failure. Inhibitor-1 (I-1) acts as a conditional amplifier of beta-adrenergic signalling downstream of PKA by inhibiting type-1 phosphatases in the PKA-phosphorylated form. I-1 is downregulated in failing hearts and thus presumably contributes to beta-adrenergic desensitization. To test whether I-1 downregulation is a consequence of excessive adrenergic drive in heart failure, rats were treated via minipumps with isoprenaline 2.4 mg/kg/day (ISO) or 0.9% NaCl for 4 days. As expected, chronic ISO increased heart-to-body weight ratio by approximately 40% and abolished the inotropic response to acute ISO in papillary muscles by approximately 50%. In the ISO-treated hearts I-1 mRNA and protein levels were decreased by 30% and 54%, respectively. This was accompanied by decreased phospholamban phosphorylation (-40%), a downstream target of I-1, and a reduction in 45Ca2+ uptake (-54%) in membrane vesicles. Notably, phospholamban phosphorylation correlated significantly with I-1 protein levels indicating a causal relationship. We conclude that I-1 downregulation in heart failure is likely a consequence of the increased sympathetic adrenergic drive and participates in desensitization of the beta-adrenergic signalling cascade.

  12. Inhibition of human megakaryocytopoiesis in vitro by platelet factor 4 (PF4) and a synthetic COOH-terminal PF4 peptide.

    PubMed Central

    Gewirtz, A M; Calabretta, B; Rucinski, B; Niewiarowski, S; Xu, W Y

    1989-01-01

    We report that highly purified human platelet factor 4 (PF4) inhibits human megakaryocytopoiesis in vitro. At greater than or equal to 25 micrograms/ml, PF4 inhibited megakaryocyte colony formation approximately 80% in unstimulated cultures, and approximately 58% in cultures containing recombinant human IL 3 and granulocyte-macrophage colony-stimulating factor. Because PF4 (25 micrograms/ml) had no effect on either myeloid or erythroid colony formation lineage specificity of this effect was suggested. A synthetic COOH-terminal PF4 peptide of 24, but not 13 residues, also inhibited megakaryocyte colony formation, whereas a synthetic 18-residue beta-thromboglobulin (beta-TG) peptide and native beta-TG had no such effect when assayed at similar concentrations. The mechanism of PF4-mediated inhibition was investigated. First, we enumerated total cell number, and examined cell maturation in control colonies (n = 200) and colonies (n = 100) that arose in PF4-containing cultures. Total cells per colony did not differ dramatically in the two groups (6.1 +/- 3.0 vs. 4.2 +/- 1.6, respectively), but the numbers of mature large cells per colony was significantly decreased in the presence of PF4 when compared with controls (1.6 +/- 1.5 vs. 3.9 +/- 2.3; P less than 0.001). Second, by using the human leukemia cell line HEL as a model for primitive megakaryocytic cells, we studied the effect of PF4 on cell doubling time, on the expression of both growth-regulated (H3, p53, c-myc,and c-myb), and non-growth-regulated (beta 2-microglobulin) genes. At high concentrations of native PF4 (50 micrograms/ml), no effect on cell doubling time, or H3 or p53 expression was discerned. In contrast, c-myc and c-myb were both upregulated. These results suggested the PF4 inhibited colony formation by impeding cell maturation, as opposed to cell proliferation, perhaps by inducing expression of c-myc and c-myb. The ability of PF4 to inhibit a normal cell maturation function was then tested. Megakaryocytes were incubated in synthetic PF4, or beta-TG peptides for 18 h and effect on Factor V steady-state mRNA levels was determined in 600 individual cells by in situ hybridization. beta-TG peptide had no effect on FV mRNA levels, whereas a approximately 60% decrease in expression of Factor V mRNA was found in megakaryocytes exposed to greater than or equal 100 ng/ml synthetic COOH-terminal PF4 peptide. Accordingly, PF4 modulates megakaryocyte maturation in vitro, and may function as a negative autocrine regulator of human megakaryocytopoiesis. Images PMID:2523411

  13. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis.

    PubMed

    Medrano, Estela E

    2003-05-19

    Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.

  14. Inhibition by salmeterol and cilomilast of fluticasone-enhanced IP-10 release in airway epithelial cells.

    PubMed

    Reddy, P J; Aksoy, Mark O; Yang, Yi; Li, Xiu Xia; Ji, Rong; Kelsen, Steven G

    2008-02-01

    The CXC chemokines, IP-10/CXCL10 and IL-8/CXCL8, play a role in obstructive lung disease by attracting Th1/Tc1 lymphocytes and neutrophils, respectively. Inhaled corticosteroids (ICS) and long acting beta 2-agonists (LABA) are widely used. However, their effect(s) on the release of IP-10 and IL-8 by airway epithelial cells are poorly understood. This study examined the effects of fluticasone, salmeterol, and agents which raise intracellular cAMP (cilomilast and db-cAMP) on the expression of IP-10 and IL-8 protein and mRNA. Studies were performed in cultured human airway epithelial cells during cytokine-stimulated IP-10 and IL-8 release. Cytokine treatment (TNF-alpha, IL-1beta and IFN-gamma) increased IP-10 and IL-8 protein and mRNA levels. Fluticasone (0.1 nM to 1 microM) increased IP-10 but reduced IL-8 protein release without changing IP-10 mRNA levels assessed by real time RT-PCR. The combination of salmeterol (1 micro M) and cilomilast (1-10 mu M) reduced IP-10 but had no effect on IL-8 protein. Salmeterol alone (1 micro M) and db-cAMP alone (1 mM) antagonised the effects of fluticasone on IP-10 but not IL-8 protein. In human airway epithelial cells, inhibition by salmeterol of fluticasone-enhanced IP-10 release may be an important therapeutic effect of the LABA/ICS combination not present when the two drugs are used separately.

  15. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.

    PubMed

    Yoon, Ji Sung; Moon, Jun Sung; Kim, Yong-Woon; Won, Kyu Chang; Lee, Hyoung Woo

    2016-04-01

    Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.

  16. The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36

    PubMed Central

    2016-01-01

    Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36. PMID:27051238

  17. Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-{beta}/Smad activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xinjuan; Dai Yujie; Li Xing

    2011-08-01

    Chronic arsenic exposure induces oxidative damage to liver leading to liver fibrosis. We aimed to define the effect of grape seed extract (GSE), an antioxidant dietary supplement, on arsenic-induced liver injury. First, Male Sprague-Dawley rats were exposed to a low level of arsenic in drinking water (30 ppm) with or without GSE (100 mg/kg, every other day by oral gavage) for 12 months and the effect of GSE on arsenic-induced hepatotoxicity was examined. The results from this study revealed that GSE co-treatment significantly attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. Moreover, GSE reduced arsenic-stimulated Smad2/3more » phosphorylation and protein levels of NADPH oxidase subunits (Nox2, Nox4 and p47phox). Next, we explored the molecular mechanisms underlying GSE inhibition of arsenic toxicity using cultured rat hepatic stellate cells (HSCs). From the in vitro study, we found that GSE dose-dependently reduced arsenic-stimulated ROS production and NADPH oxidase activities. Both NADPH oxidases flavoprotein inhibitor DPI and Nox4 siRNA blocked arsenic-induced ROS production, whereas Nox4 overexpression suppressed the inhibitory effects of GSE on arsenic-induced ROS production and NADPH oxidase activities, as well as expression of TGF-{beta}1, type I procollagen (Coll-I) and {alpha}-smooth muscle actin ({alpha}-SMA) mRNA. We also observed that GSE dose-dependently inhibited TGF-{beta}1-induced transactivation of the TGF-{beta}-induced smad response element p3TP-Lux, and that forced expression of Smad3 attenuated the inhibitory effects of GSE on TGF-{beta}1-induced mRNA expression of Coll-I and {alpha}-SMA. Collectively, GSE could be a potential dietary therapeutic agent for arsenic-induced liver injury through suppression of NADPH oxidase and TGF-{beta}/Smad activation. - Research Highlights: > GSE attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. > GSE reduced arsenic-mediated Smad2/3 phosphorylation and NADPH oxidase subunits (Nox2, Nox4 and p47phox). > Beneficial effects of GSE on As-induced liver injury was via inhibition of NADPH oxidase and TGF-{beta}/Smad activation.« less

  18. Expression and Antimicrobial Function of Beta-Defensin 1 in the Lower Urinary Tract

    PubMed Central

    Becknell, Brian; Spencer, John David; Carpenter, Ashley R.; Chen, Xi; Singh, Aspinder; Ploeger, Suzanne; Kline, Jennifer; Ellsworth, Patrick; Li, Birong; Proksch, Ehrhardt; Schwaderer, Andrew L.; Hains, David S.; Justice, Sheryl S.; McHugh, Kirk M.

    2013-01-01

    Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1 -/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1 -/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract. PMID:24204930

  19. Suppressive effects of ketamine on macrophage functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Yi; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Chen, T.-L.

    2005-04-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 {mu}M ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 {mu}M, ketamine caused a release of lactate dehydrogenasemore » and cell death. Ketamine, at 10 and 100 {mu}M, did not affect the chemotactic activity of macrophages. Administration of 1000 {mu}M ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-{alpha}, IL-1{beta}, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 {mu}M) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity.« less

  20. Molecular cloning of a novel widely expressed human 80 kDa 17 beta-hydroxysteroid dehydrogenase IV.

    PubMed Central

    Adamski, J; Normand, T; Leenders, F; Monté, D; Begue, A; Stéhelin, D; Jungblut, P W; de Launoit, Y

    1995-01-01

    Reactions of oestrogens and androgens at position C-17 are catalysed by 17 beta-hydroxysteroid dehydrogenases (17 beta-HSDs). Cloning of the cDNA of a novel human 17 beta-HSD IV and expression of its mRNA are described. A probe derived from the recently discovered porcine 17 beta-oestradiol dehydrogenase (17 beta-EDH) was used to isolate a 2.6 kb human cDNA encoding a continuous protein of 736 amino acids of high (84%) similarity to the porcine 17 beta-EDH. The calculated molecular mass of the human enzyme is 79,595 Da. Other sequence similarities shared by the two enzymes are: an N-terminal sequence which is similar to that of members of the short-chain alcohol dehydrogenase family; amino acids 343-607 which are similar to the C-terminal domains of a trifunctional Candida tropicalis enzyme and the FOX2 gene product of Saccharomyces cerevisiae; amino acids 596-736 which are similar to human sterol carrier protein 2. The previously cloned human 17 beta-HSD I, II and III are less than 25% identical with 17 beta-HSD IV. mRNA for HSD IV is a single species of 3.0 kb, present in many tissues with highest concentrations in liver, heart, prostate and testes. When over-expressed in mammalian cells, the human 17 beta-HSD IV enzyme displays a specific unidirectional oxidative 17 beta-HSD activity. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7487879

  1. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less

  2. Hypoperfusion induces overexpression of beta-amyloid precursor protein mRNA in a focal ischemic rodent model.

    PubMed

    Shi, J; Yang, S H; Stubley, L; Day, A L; Simpkins, J W

    2000-01-17

    Silent stroke is one of the risk factors of dementia. In the present study, we used a novel focal ischemic animal model to investigate the effects of comparatively small changes of cerebral blood flow (CBF) on the expression of beta-amyloid precursor protein (APP) mRNA. Focal ischemia was achieved by introducing a 4-0 monofilament to the bifurcation of anterior and middle cerebral arteries. Brain samples were harvested from ischemic core and penumbra of cortices at 1, 4 and 7 days following ischemia. The expression of APP mRNA was assessed by RT-PCR. The CBF was decreased to 50% for 1 day after stroke and recovered to 90% at the fourth day after stroke. The changes of CBF were accompanied by an increase in the expression of APP mRNA. APP mRNA increased to 208% and 152% in the penumbra and core ischemic regions, respectively, on the fourth day after MCAO and remained high through the seventh day of ischemia. This study suggests brain hypoperfusion enhances APP mRNA expression and may contribute to the progression of cognitive impairment after silent stroke.

  3. Mono-allelic expression of variegating transgene locus in the mouse.

    PubMed

    Opsahl, Margaret L; Springbett, Anthea; Lathe, Richard; Colman, Alan; McClenaghan, Margaret; Whitelaw, C Bruce A

    2003-12-01

    We have generated transgenic mice which express an ovine beta-lactoglobulin transgene during lactation. In two transgenic lines, BLG/7 and BLG/45, beta-lactoglobulin protein levels vary between siblings, reflected at the cellular level by a mosaic transgene expression pattern in the mammary tissue that is reminiscent of position effect variegation. To investigate whether this variegating expression profile can be affected by the introduction of an identical variegating locus on the homologous chromosome, we compared the beta-lactoglobulin expression profiles in mice hemizygous or homozygous for the transgene locus. In BLG/45 mice, milk protein analysis revealed that transgene expression was effectively doubled in homozygous compared to hemizygous mice. In contrast, beta-lactoglobulin protein in hemizygous and homozygous BLG/7 mice displayed a similar range; although minimum expression levels were doubled in the homozygous population, the maximum level of expression was indistinguishable between the two populations. Fluorescent in situ hybridisation (FISH) for transgene mRNA indicated that for a given protein level, the extent of cellular expression is similar in both BLG/7 populations. In homozygous mice genomic DNA and nuclear RNA FISH demonstrated that only one of the two BLG/7 loci is active in expressing cells, while two transcription foci were present in BLG/45 homozygous mice. This mono-allelic transgene expression pattern is not inherited through the germline, as hemizygous mice bred from homozygous parents expressed at the expected hemizygous population level. We discuss these observations in the context of known epigenetic events such as imprinting and trans-inactivation.

  4. Augmented cell survival in eutopic endometrium from women with endometriosis: Expression of c-myc, TGF-beta1 and bax genes

    PubMed Central

    Johnson, M Cecilia; Torres, Marisa; Alves, Alessandra; Bacallao, Ketty; Fuentes, Ariel; Vega, Margarita; Boric, M Angélica

    2005-01-01

    Background Endometriosis is a common gynaecological disorder characterized by the presence of endometrial tissue outside of the uterus. The fragments in normal menstruation are composed of necrotic and living cells, which do not survive in ectopic locations because of programmed cell death. The aim of this study was to evaluate if the balance between cell proliferation and apoptosis is changed in eutopic endometrium from women with endometriosis throughout the menstrual cycle by studying bax (pro-apoptotic), c-myc (regulator of cell cycle) and TGF-beta1 (involved in cell differentiation) genes. Methods Eutopic endometrium was obtained from: 30 women with endometriosis (32.8 +/- 5 years) and 34 fertile eumenorrheic women (36 +/- 5.3 years). We analyzed apoptosis (TUNEL: DNA fragmentation); cell proliferation (immunohistochemistry (IHC) for Ki67); c-myc, bax and TGF-beta1 mRNA abundance (RT-PCR) and TGF-beta1 protein (IHC) in endometrial explants. Results Cell proliferation strongly decreased from proliferative to late secretory phases in glands, but not in stroma, in both endometria. Positive staining in glands and stroma from proliferative endometrium with endometriosis was 1.9- and 2.2-fold higher than control endometrium, respectively (p < 0.05). Abundance of c-myc mRNA was 65% higher in proliferative endometrium from endometriosis than normal tissue (p < 0.05). TGF-beta1 (mRNA and protein) augmented during mid secretory phase in normal endometrium, effect not observed in endometrium with endometriosis. In normal endometrium, the percentage of apoptotic epithelial and stromal cells increased more than 30-fold during late secretory phase. In contrast, in endometrium from endometriosis, not only this increase was not observed, besides bax mRNA decreased 63% versus normal endometrium (p < 0.05). At once, in early secretory phase, apoptotic stromal cells increased 10-fold with a concomitant augment of bax mRNA abundance (42%) in endometria from endometriosis (p < 0.05). Conclusion An altered expression of c-myc, TGF-beta1 and bax was observed in eutopic endometrium from endometriosis, suggesting its participation in the regulation of cell survival in this disease. The augmented cell viability in eutopic endometrium from these patients as a consequence of a reduction in cell death by apoptosis, and also an increase in cell proliferation indicates that this condition may facilitate the invasive feature of the endometrium. PMID:16150151

  5. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Qing; Liu, Qi; Xu, Ning

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanismmore » in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-{beta}1, type I collagen and type III collagen (P < 0.01). Conclusions: Using siRNA to target TGF-{beta}1 can inhibit the expression of TGF-{beta}1 and attenuate rat hepatic fibrosis induced by a high-fat diet and CCL4. A possible mechanism is through the down-regulation of TGF-{beta}1 expression, which could inhibit HSC activation, as well as the proliferation and collagen production of collagen reducing, so that collagen deposition in the liver is reduced.« less

  6. Improved Brain Expression of Anti-Amyloid β scFv by Complexation of mRNA Including a Secretion Sequence with PEG-based Block Catiomer.

    PubMed

    Perche, Federico; Uchida, Satoshi; Akiba, Hiroki; Lin, Chin-Yu; Ikegami, Masaru; Dirisala, Anjaneyulu; Nakashima, Toshihiro; Itaka, Keiji; Tsumoto, Kohei; Kataoka, Kazunori

    2017-01-01

    The ever-increasing number of people living with Alzheimer's disease urges to develop more effective therapies. Despite considerable success, anti-Alzheimer immunotherapy still faces the challenge of intracerebral and intracellular delivery. This work introduces in situ production of anti-amyloid beta (Aβ) antibody after intracerebral injection of PEG-PAsp(DET)/mRNA polyplexes as a novel immunotherapy approach and a safer alternative compared to high systemic antibodies doses or administration of adenovirus encoding anti- Aβ antibodies. We used mRNA encoding three different Aβ-specific scFV with a secretion signal for passive immunotherapy. scFv contained a 6xHis-tag for immuno-detection. The secretion signal from IL2 (IL2ss) was added to allow extracellular engagement of senile plaques. Aβ affinity of scFv was measured by surface plasmon resonance. To allow intracellular delivery, scFv were administered as polyplexes formed with our smart copolymer polyethylene glycol-poly[N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide] [PEG-PAsp (DET)]. We evaluated scFv expression in cellulo by Western blot and ELISA, their ability to disaggregate amyloid aggregates by thioflavine T assay. Moreover, in vivo expression and therapeutic activity were evaluated in a murine amyloidosis model, by anti-6xHis-tag ELISA and anti- Aβ ELISA, respectively. The selected anti-amyloid beta scFv showed affinity towards Aβ and disaggregated Aβ fibers in vitro. Whereas both DNA and mRNA transfection led to scFV expression in cancer cells, only mRNA led to detectable scFv expression in primary neurons. In addition, the use of IL2ss increased by 3.4-fold scFv secretion by primary neurons over mRNA polyplexes devoid of secretion signal. In vivo, a 3 to 11- fold of intracranial scFv levels was measured for mRNA compared to DNA polyplexes and higher in vivo scFv levels were obtained with mRNA containing IL2ss over non-secreted mRNA. Intracranial injection of anti-Aβ mRNA polyplexes with IL2ss resulted in 40 % Aβ decrease in an acute amyloidosis model; with no decrease detected with control scFv mRNA nor DNA polyplexes. However, no Aβ decrease was detected in a more challenging transgenic model of Alzheimer's disease. Our results introduce a concerted approach not only for Alzheimer's disease treatment but also for immunotherapy against neurological diseases. The effectivity of our platform required the intracranial delivery of anti-Aβ scFv as mRNA not DNA, as mRNA with an IL2ss secretion sequence to favor engagement of Aβ in the amyloidosis model, complexation with a smart copolymer for efficient transfection of primary neurons and to achieve detectable mRNA expression in the brain during 48h. Amyloid burden decrease in an acute amyloidosis model was only achieved when these three factors (mRNA coding scFv, smart copolymer, IL2ss) were integrated into a single formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Ethanol specifically decreases peroxisome proliferator activated receptor beta in B12 oligodendrocyte-like cells.

    PubMed

    Leisewitz, Andrea V; Jung, Juan E; Perez-Alzola, Patricia; Fuenzalida, Karen M; Roth, Alejandro; Inestrosa, Nibaldo C; Bronfman, Miguel

    2003-04-01

    Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma. The effect on PPARbeta is seen as an increase in mRNA degradation, as assessed by run-off assays, due to a significant decrease in PPARbeta mRNA half-life, with no observed changes in intracellular localization. Our results suggest a possible link between PPARbeta function and ethanol-induced abnormal myelination in oligodendrocytes.

  8. Changes in Vitellogenin expression during captivity-induced stress in a tropical anole.

    PubMed

    Morales, M H; Sánchez, E J

    1996-08-01

    Tropical anoline lizards have been shown to undergo massive reproductive retrogression when held in captivity. The present study focused on the effects generated by captivity-induced stress on the hepatic expression of vitellogenin (Vtg), the precursor of the major egg yolk proteins, in Anolis pulchellus. Several hepatic dysfunctions accompanying the regression of the reproductive organs were detected when mature highly vitellogenic females were kept in captivity for long periods. These included decreased synthesis of Vtg to undetectable levels after 4 days of captivity concomitant with a large reduction in the levels of its cognate mRNA. In addition, a drastic reduction in Vtg plasma levels preceding the conspicuous cessation of follicular growth was observed. Results suggest the activation of a specific mechanism for rapid clearance of vitellogenic and other female-specific proteins from plasma. The effects of captivity, both in the liver and in the reproductive tract, were alleviated or even reversed by treatment with 17 Beta-estradiol. Hepatic protein synthesis increased threefold when animals were maintained under estrogen therapy during the captivity period. Also, the levels of Vtg mRNA and Vtg protein synthesis and plasma levels were similar or even higher to the observed in control vitellogenic females. Animals treated with 17 beta-estradiol after long-term captivity recovered the normal vitellogenic levels after 72 to 96 hr. Therefore, our results im this tropical anole strongly suggest that the stress effects upon reproductive behavior previously reported in anoline lizards results from suppression of the estrogen stimulus for the hepatic vitellogenic response.

  9. Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina.

    PubMed Central

    Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J

    2002-01-01

    The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles. PMID:11882478

  10. Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina.

    PubMed

    Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J

    2002-03-01

    The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of exposure. Our results indicate that low levels of OP are bioactive and can alter the expression of APLP-2 and APP. Because members of the APP gene family are involved in neuronal development, we hypothesize that OP exposure may disrupt hypothalamic development in young turtles.

  11. Specific beta1-adrenergic receptor silencing with small interfering RNA lowers high blood pressure and improves cardiac function in myocardial ischemia.

    PubMed

    Arnold, Anne-Sophie; Tang, Yao Liang; Qian, Keping; Shen, Leping; Valencia, Valery; Phillips, Michael Ian; Zhang, Yuan Clare

    2007-01-01

    Beta-blockers are widely used and effective for treating hypertension, acute myocardial infarction (MI) and heart failure, but they present side-effects mainly due to antagonism of beta2-adrenergic receptor (AR). Currently available beta-blockers are at best selective but not specific for beta1 or beta2-AR. To specifically inhibit the expression of the beta1-AR, we developed a small interfering RNA (siRNA) targeted to beta1-AR. Three different sequences of beta1 siRNA were delivered into C6-2B cells with 90% efficiency. One of the three sequences reduced the level of beta1-AR mRNA by 70%. The siRNA was highly specific for beta1-AR inhibition with no overlap with beta2-AR. To test this in vivo, systemic injection of beta1 siRNA complexed with liposomes resulted in efficient delivery into the heart, lung, kidney and liver, and effectively reduced beta1-AR expression in the heart without altering beta2-AR. beta1 siRNA significantly lowered blood pressure of spontaneously hypertensive rats (SHR) for at least 12 days and reduced cardiac hypertrophy following a single injection. Pretreatment with beta1 siRNA 3 days before induction of MI in Wistar rats significantly improved cardiac function, as demonstrated by dP/dt and electrocardiogram following the MI. The protective mechanism involved reduction of cardiomyocyte apoptosis in the beta1 siRNA-treated hearts. The present study demonstrates the possibility of using siRNA for treating cardiovascular diseases and may represent a novel beta-blocker specific for beta1-AR.

  12. Antenatal glucocorticoid treatment alters Na+ uptake in renal proximal tubule cells from adult offspring in a sex-specific manner.

    PubMed

    Su, Yixin; Bi, Jianli; Pulgar, Victor M; Figueroa, Jorge; Chappell, Mark; Rose, James C

    2015-06-01

    We have shown a sex-specific effect of fetal programming on Na(+) excretion in adult sheep. The site of this effect in the kidney is unknown. Therefore, we tested the hypothesis that renal proximal tubule cells (RPTCs) from adult male sheep exposed to betamethasone (Beta) before birth have greater Na(+) uptake than do RPTCs from vehicle-exposed male sheep and that RPTCs from female sheep similarly exposed are not influenced by antenatal Beta. In isolated RPTCs from 1- to 1.5-yr-old male and female sheep, we measured Na(+) uptake under basal conditions and after stimulation with ANG II. To gain insight into the mechanisms involved, we also measured nitric oxide (NO) levels, ANG II receptor mRNA levels, and expression of Na(+)/H(+) exchanger 3. Basal Na(+) uptake increased more in cells from Beta-exposed male sheep than in cells from vehicle-exposed male sheep (400% vs. 300%, P < 0.00001). ANG II-stimulated Na(+) uptake was also greater in cells from Beta-exposed males. Beta exposure did not increase Na(+) uptake by RPTCs from female sheep. NO production was suppressed more by ANG II in RPTCs from Beta-exposed males than in RPTCs from either vehicle-exposed male or female sheep. Our data suggest that one site of the sex-specific effect of Beta-induced fetal programming in the kidney is the RPTC and that the enhanced Na(+) uptake induced by antenatal Beta in male RPTCs may be related to the suppression of NO in these cells. Copyright © 2015 the American Physiological Society.

  13. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    PubMed

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  14. Preventive effects of heregulin-beta1 on macrophage foam cell formation and atherosclerosis.

    PubMed

    Xu, Gang; Watanabe, Takuya; Iso, Yoshitaka; Koba, Shinji; Sakai, Tetsuo; Nagashima, Masaharu; Arita, Shigeko; Hongo, Shigeki; Ota, Hidekazu; Kobayashi, Youichi; Miyazaki, Akira; Hirano, Tsutomu

    2009-08-28

    Human heregulins, neuregulin-1 type I polypeptides that activate proliferation, differentiation, and survival of glial cells, neurons, and myocytes, are expressed in macrophage foam cells within human coronary atherosclerotic lesions. Macrophage foam cell formation, characterized by cholesterol ester accumulation, is modulated by scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter (ABC)A1. The present study clarified the roles of heregulins in macrophage foam cell formation and atherosclerosis. Plasma heregulin-beta(1) levels were significantly decreased in 31 patients with acute coronary syndrome and 33 patients with effort angina pectoris compared with 34 patients with mild hypertension and 40 healthy volunteers (1.3+/-0.3, 2.0+/-0.4 versus 7.6+/-1.4, 8.2+/-1.2 ng/mL; P<0.01). Among all patients with acute coronary syndrome and effort angina pectoris, plasma heregulin-beta(1) levels were further decreased in accordance with the severity of coronary artery lesions. Expression of heregulin-beta(1) was observed at trace levels in intracoronary atherothrombosis obtained by aspiration thrombectomy from acute coronary syndrome patients. Heregulin-beta(1), but not heregulin-alpha, significantly reduced acetylated low-density lipoprotein-induced cholesterol ester accumulation in primary cultured human monocyte-derived macrophages by reducing SR-A and ACAT1 expression and by increasing ABCA1 expression at both mRNA and protein levels. Heregulin-beta(1) significantly decreased endocytic uptake of [(125)I]acetylated low-density lipoprotein and ACAT activity, and increased cholesterol efflux to apolipoprotein (Apo)A-I from human macrophages. Chronic infusion of heregulin-beta(1) into ApoE(-/-) mice significantly suppressed the development of atherosclerotic lesions. This study provided the first evidence that heregulin-beta(1) inhibits atherogenesis and suppresses macrophage foam cell formation via SR-A and ACAT1 downregulation and ABCA1 upregulation.

  15. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls

    PubMed Central

    Fassah, Dilla Mareistia; Jeong, Jin Young

    2018-01-01

    Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition. PMID:29502393

  16. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls.

    PubMed

    Fassah, Dilla Mareistia; Jeong, Jin Young; Baik, Myunggi

    2018-04-01

    This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.

  17. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    PubMed

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells.

    PubMed

    Moreira, Tiago J T P; Pierre, Karin; Maekawa, Fumihiko; Repond, Cendrine; Cebere, Aleta; Liljequist, Sture; Pellerin, Luc

    2009-07-01

    Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.

  19. APP mRNA splicing is upregulated in the brain of biglycan transgenic mice.

    PubMed

    Bjelik, Annamária; Pákáski, Magdolna; Bereczki, Erika; Gonda, Szilvia; Juhász, Anna; Rimanóczy, Agnes; Zana, Marianna; Janka, Zoltán; Sántha, Miklós; Kálmán, János

    2007-01-01

    Many of the risk factors for cerebrovascular disease and atherosclerosis also increase the risk of Alzheimer's disease, characterized by the cerebral deposition of beta-amyloid plaques resulting from the abnormal processing of the transmembrane amyloid precursor protein (APP). The initiating event of cholesterol-induced atherosclerosis is the retention and accumulation of atherogenic apolipoprotein B (apoB) together with low-density lipoproteins in the vascular intima. Biglycan, a member of the small leucine-rich protein family, was suspected of contributing to this process. The individual and combined overexpressions of biglycan and apoB-100 were therefore examined on the cortical APP mRNA levels of transgenic mice by means of semiquantitative PCR. As compared with the control littermates, transgenic biglycan mice had significantly increased cortical APP695 (122%) and APP770 (157%) mRNA levels, while the double transgenic (apoB(+/-)xbiglycan(+/-)) mice did not exhibit any changes. These results provide the first experimental evidence that the atherogenic risk factor biglycan alters APP splicing and may participate in the pathogenesis of both Alzheimer and vascular dementias.

  20. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line.

    PubMed

    Moeslinger, Thomas; Friedl, Roswitha; Spieckermann, Paul Gerhard

    2006-06-20

    Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of inducible nitric oxide synthesis might contribute to the anti-inflammatory activities of azathioprine.

  1. Beta-Catenin and Epithelial Tumors: A Study Based on 374 Oropharyngeal Cancers

    PubMed Central

    Santoro, Angela; Pannone, Giuseppe; Papagerakis, Silvana; McGuff, H. Stan; Cafarelli, Barbara; Lepore, Silvia; De Maria, Salvatore; Rubini, Corrado; Mattoni, Marilena; Staibano, Stefania; Mezza, Ernesto; De Rosa, Gaetano; Aquino, Gabriella; Losito, Simona; Loreto, Carla; Crimi, Salvatore; Bufo, Pantaleo

    2014-01-01

    Introduction. Although altered regulation of the Wnt pathway via beta-catenin is a frequent event in several human cancers, its potential implications in oral/oropharyngeal squamous cell carcinomas (OSCC/OPSCC) are largely unexplored. Work purpose was to define association between beta-catenin expression and clinical-pathological parameters in 374 OSCCs/OP-SCCs by immunohistochemistry (IHC). Materials and Methods. Association between IHC detected patterns of protein expression and clinical-pathological parameters was assessed by statistical analysis and survival rates by Kaplan-Meier curves. Beta-catenin expression was also investigated in OSCC cell lines by Real-Time PCR. An additional analysis of the DNA content was performed on 22 representative OSCCs/OPSCCs by DNA-image-cytometric analysis. Results and Discussion. All carcinomas exhibited significant alterations of beta-catenin expression (P < 0.05). Beta-catenin protein was mainly detected in the cytoplasm of cancerous cells and only focal nuclear positivity was observed. Higher cytoplasmic expression correlated significantly with poor histological differentiation, advanced stage, and worst patient outcome (P < 0.05). By Real-Time PCR significant increase of beta-catenin mRNA was detected in OSCC cell lines and in 45% of surgical specimens. DNA ploidy study demonstrated high levels of aneuploidy in beta-catenin overexpressing carcinomas. Conclusions. This is the largest study reporting significant association between beta-catenin expression and clinical-pathological factors in patients with OSCCs/OPSCCs. PMID:24511551

  2. Genomic organization and sequence of the Gus-s/sup a/ allele of the murine. beta. -glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funkenstein, B.; Leary, S.L.; Stein, J.C.

    1988-03-01

    The Gus-s/sup ..cap alpha../ allele of the mouse ..beta..-glucuronidase gene exhibits a high degree of inducibility by androgens due to its linkage with the Gus-r/sup ..cap alpha../ regulatory locus. The authors isolated Gus-s/sup ..cap alpha../ on a 28-kilobase pair fragment of mouse chromosome 5 and found that it contains 12 exons and 11 intervening sequences spanning 14 kilobase pairs of this genomic segment. The mRNA cap site was identified by ribonuclease protection and primer extension analyses which revealed an unusually short 5' noncoding sequence of 12 nucleotides. Proximal regulatory sequences in the 5'-flanking DNA and the complete sequence of themore » Gus-s/sup ..cap alpha../ mRNA transcript were also determined. Comparison of the amino acid sequence determined from the Gus-s/sup ..cap alpha../ nucleotide sequence with that of human ..beta..-glucuronidase indicated that the two human mRNA species differ due to alternate splicing of an exon homologous to exon 6 of the mouse gene.« less

  3. Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats.

    PubMed

    Chang, Yun Sil; Oh, Wonil; Choi, Soo Jin; Sung, Dong Kyung; Kim, Soo Yoon; Choi, Eun Yang; Kang, Saem; Jin, Hye Jin; Yang, Yoon Sun; Park, Won Soon

    2009-01-01

    Recent evidence suggests mesenchymal stem cells (MSCs) can downmodulate bleomycin-induced lung injury, and umbilical cord blood (UCB) is a promising source for human MSCs. This study examined whether intratracheal or intraperitoneal transplantation of human UCB-derived MSCs can attenuate hyperoxia-induced lung injury in immunocompetent newborn rats. Wild-type Sprague-Dawley rats were randomly exposed to 95% oxygen or air from birth. In the transplantation groups, a single dose of PKH26-labeled human UCB-derived MSCs was administered either intratracheally (2 x 10(6) cells) or intraperitoneally (5 x 10(5) cells) at postnatal day (P) 5. At P14, the harvested lungs were examined for morphometric analyses of alveolarization and TUNEL staining, as well as the myeoloperoxidase activity, the level of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and transforming growth factor (TGF)-beta mRNA, alpha-smooth muscle actin (SMA) protein, and collagen levels. Differentiation of MSCs to the respiratory epithelium was also evaluated both in vitro before transplantation and in vivo after transplantation. Despite one fourth dosage of MSCs, significantly more PKH26-labeled donor cells were recovered with intratracheal administration than with intraperitoneal administration both during normoxia and hyperoxia. The hyperoxia-induced increase in the number of TUNEL-positive cells, myeloperoixdase activity, and the level of IL-6 mRNA were significantly attenuated with both intratracheal and intraperitoneal MSCs transplantation. However, the hyperoxia-induced impaired alveolarization and increased the level of TNF-alpha and TGF-beta mRNA, alpha-SMA protein, and collagen were significantly attenuated only with intratracheal MSCs transplantation. MSCs differentiated into respiratory epithelium in vitro and a few PKH26-positive donor cells were colocalized with pro surfactant protein C in the damaged lungs. In conclusion, intratracheal transplantation of human UCB-derived MSCs is more effective than intraperitoneal transplantation in attenuating the hyperoxia-induced lung injury in neonatal rats.

  4. Activity-dependent expression of ELAV/Hu RBPs and neuronal mRNAs in seizure and cocaine brain.

    PubMed

    Tiruchinapalli, Dhanrajan M; Caron, Marc G; Keene, Jack D

    2008-12-01

    Growing evidence indicates that both seizure (glutamate) and cocaine (dopamine) treatment modulate synaptic plasticity within the mesolimbic region of the CNS. Activation of glutamatergic neurons depends on the localized translation of neuronal mRNA products involved in modulating synaptic plasticity. In this study, we demonstrate the dendritic localization of HuR and HuD RNA-binding proteins (RBPs) and their association with neuronal mRNAs following these two paradigms of seizure and cocaine treatment. Both the ubiquitously expressed HuR and neuronal HuD RBPs were detected in different regions as well as within dendrites of the brain and in dissociated neurons. Quantitative analysis revealed an increase in HuR, HuD and p-glycogen synthase kinase 3beta (GSK3beta) protein levels as well as neuronal mRNAs encoding Homer, CaMKIIalpha, vascular early response gene, GAP-43, neuritin, and neuroligin protein products following either seizure or cocaine treatment. Inhibition of the Akt/GSK3beta signaling pathway by acute or chronic LiCl treatment revealed changes in HuR, HuD, pGSK3beta, p-Akt, and beta-catenin protein levels. In addition, a genetically engineered hyperdopaminergic mouse model (dopamine transporter knockout) revealed decreased expression of HuR protein levels, but no significant change was observed in HuD or fragile-X mental retardation protein RBPs. Finally, our data suggest that HuR and HuD RBPs potentially interact directly with neuronal mRNAs important for differentiation and synaptic plasticity.

  5. Molecular basis of maple syrup urine disease: Novel mutations at the E1[alpha] locus that impair E1([alpha][sub 2][beta][sub 2]) assembly or decrease steady-state E1[alpha] mRNA levels of branched-chain [alpha]-keto acid dehydrogenase complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, J.L.; Fisher, C.R.; Chuang, D.T.

    1994-08-01

    The authors report the occurrence of three novel mutations in the E1[alpha] (BCKDHA) locus of the branched-chain [alpha]-keto acid dehydrogenase (BCKAD) complex that cause maple syrup urine disease (MSUD). An 8-bp deletion in exon 7 is present in one allele of a compound-heterozygous patient (GM-649). A single C nucleotide insertion in exon 2 occurs in one allele of an intermediate-MSUD patient (Lo). The second allele of patient Lo carries an A-to-G transition in exon 9 of the E1[alpha] gene. This missense mutation changes Tyr-368 to Cys (Y368C) in the E1[alpha] subunit. Both the 8-bp deletion and the single C insertionmore » generate a downstream nonsense codon. Both mutations appear to be associated with a low abundance of the mutant E1[alpha] mRNA, as determined by allele-specific oligonucleotide probing. Transfection studies strongly suggest that the Y368C substitution in the E1[alpha] subunit impairs its proper assembly with the normal E1[beta]. Unassembled as well as misassembled E1[alpha] and E1[beta] subunits are degraded in the cell. 32 refs., 8 figs.« less

  6. Modulation of xenobiotic biotransformation system and hormonal responses in Atlantic salmon (Salmo salar) after exposure to tributyltin (TBT).

    PubMed

    Mortensen, Anne Skjetne; Arukwe, Augustine

    2007-04-01

    Multiple biological effects of tributyltin (TBT) on juvenile salmon have been investigated. Fish were exposed for 7 days to waterborne TBT at nominal concentrations of 50 and 250 microg/L dissolved in dimethyl sulfoxide (DMSO). Hepatic samples were analyzed for gene expression patterns in the hormonal and xenobiotic biotransformation pathways using validated real-time PCR method. Immunochemical and several cytochrome P450 (CYP)-mediated enzyme activity (ethoxyresorufin: EROD, benzyloxyresorufin: BROD, methoxyresorufin: MROD and pentoxyresorufin: PROD) assays were analyzed. Our data show that TBT produced concentration-specific decrease of estrogen receptor-alpha (ERalpha), vitellogenin (Vtg), zona radiata protein (Zr-protein) and increase of estrogen receptor-beta (ERbeta) and androgen receptor-beta (ARbeta) in the hormonal pathway. In the xenobiotic biotransformation pathway, TBT produced apparent increase and decrease at respective low and high concentration, on aryl hydrocarbon receptor-alpha (AhRalpha), AhR nuclear translocator (ARNT) and AhR repressor (AhRR) mRNA. The expression of CYP1A1 and GST showed a TBT concentration-dependent decrease. The AhRbeta, CYP3A and uridine diphosphoglucuronosyl transferase (UGT) mRNA expressions were significantly induced after exposure to TBT. Immunochemical analysis of CYP3A and CYP1A1 protein levels confirmed the TBT effects observed at the transcriptional levels. The effect of TBT on the biotransformation enzyme gene expressions partially co-related but did not directly parallel enzyme activity levels for EROD, BROD, MROD and PROD. In general, these findings confirm previous reports on the endocrine effects of TBT, in addition to effects on hepatic CYP1A isoenzyme at the transcriptional level that transcends to protein and enzymatic levels. The induced expression patterns of CYP3A and UGT mRNA after TBT exposure, suggest the involvement of CYP3A and UGT in TBT metabolism in fish. The effect of TBT on CYP3A is proposed to represent another hormonal effect of TBT not previously reported in any fish or lower vertebrate. The proposed androgenic effect is supported by the observation that TBT also induced ARbeta mRNA expression in a concentration-specific manner. To our knowledge, this is the first study that has simultaneously studied multiple responses after exposure to TBT in fish.

  7. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dang; Fang, Liurong; Luo, Rui

    2010-08-13

    Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reductionmore » of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.« less

  8. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{submore » 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.« less

  9. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression

    NASA Technical Reports Server (NTRS)

    Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T.

    2000-01-01

    During long-term spaceflight, astronauts lose bone, in part due to a reduction in bone formation. It is not clear, however, whether the force imparted by gravity has direct effects on bone cells. To examine the response of bone forming cells to weightlessness, human fetal osteoblastic (hFOB) cells were cultured during the 17 day STS-80 space shuttle mission. Fractions of conditioned media were collected during flight and shortly after landing for analyses of glucose utilization and accumulation of type I collagen and prostaglandin E(2) (PGE(2)). Total cellular RNA was isolated from flight and ground control cultures after landing. Measurement of glucose levels in conditioned media indicated that glucose utilization occurred at a similar rate in flight and ground control cultures. Furthermore, the levels of type I collagen and PGE(2) accumulation in the flight and control conditioned media were indistinguishable. The steady-state levels of osteonectin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) were not significantly changed following spaceflight. Gene-specific reductions in mRNA levels for cytokines and skeletal growth factors were detected in the flight cultures using RNase protection assays. Steady-state mRNA levels for interleukin (IL)-1alpha and IL-6 were decreased 8 h following the flight and returned to control levels at 24 h postflight. Also, transforming growth factor (TGF)-beta(2) and TGF-beta(1) message levels were modestly reduced at 8 h and 24 h postflight, although the change was not statistically significant at 8 h. These data suggest that spaceflight did not significantly affect hFOB cell proliferation, expression of type I collagen, or PGE(2) production, further suggesting that the removal of osteoblastic cells from the context of the bone tissue results in a reduced ability to respond to weightlessness. However, spaceflight followed by return to earth significantly impacted the expression of cytokines and skeletal growth factors, which have been implicated as mediators of the bone remodeling cycle. It is not yet clear whether these latter changes were due to weightlessness or to the transient increase in loading resulting from reentry.

  10. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    PubMed

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  11. Possible involvement of AMPK in acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in fast-twitch skeletal muscle.

    PubMed

    Takimoto, Masaki; Takeyama, Mirei; Hamada, Taku

    2013-11-01

    The regulatory mechanisms responsible for acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in skeletal muscle remain unclear. 5'-adenosine-activated protein kinase (AMPK) is a key signaling molecule that regulates gene expression at the mRNA level. We examined whether AMPK activation is involved in acute exercise-induced expression of MCT1 and MCT4 mRNA in fast-twitch muscle. Male Sprague-Dawley rats were subjected to an acute bout of either 5min high-intensity intermittent swimming (HIS) or 6-h low-intensity prolonged swimming (LIS). The effects of acute exercise on the phosphorylation of AMPK (p-AMPK), calcium/calmodulin pendent kinase II (p-CaMKII), p38 mitogen-activated protein kinase (p-p38MAPK), and MCTs mRNA were analyzed in vivo. To observe the direct effects of AMPK activation on MCTs mRNA, the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), caffeine, and dantrolene were analyzed in vitro using an isolated muscle incubation model. The p-AMPK increased in response to both HIS and LIS, although the p-CaMKII and p-p38MAPK were increased only following HIS. Irrespective of exercise intensity, MCT1 and MCT4 mRNA was also transiently upregulated by both HIS and LIS. Direct exposure of the epitrochlearis muscle to 0.5mmol/L AICAR or 1mmol/L caffeine, which activated p-AMPK increased both MCT1 and MCT4 mRNA levels. When pAMPK was inhibited by dantrolene, neither MCT1 nor MCT4 mRNA was increased. These results suggest that acute exercise-induced increases in MCT1 and MCT4 mRNA expression may be possibly mediated by AMPK activation, at least in part in fast-twitch muscle. © 2013.

  12. Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling.

    PubMed

    Du, Qiang; Park, Kyung Soo; Guo, Zhong; He, Peijun; Nagashima, Makoto; Shao, Lifang; Sahai, Rohit; Geller, David A; Hussain, S Perwez

    2006-07-15

    Nitric oxide (NO.), an important mediator of inflammation, and beta-catenin, a component of the Wnt-adenomatous polyposis coli signaling pathway, contribute to the development of cancer. We have identified two T-cell factor 4 (Tcf-4)-binding elements (TBE1 and TBE2) in the promoter of human inducible NO synthase 2 (NOS2). We tested the hypothesis that beta-catenin regulates human NOS2 gene. Mutation in either of the two TBE sites decreased the basal and cytokine-induced NOS2 promoter activity in different cell lines. The promoter activity was significantly reduced when both TBE1 and TBE2 sites were mutated (P < 0.01). Nuclear extract from HCT116, HepG2, or DLD1 cells bound to NOS2 TBE1 or TBE2 oligonucleotides in electrophoretic mobility shift assays and the specific protein-DNA complexes were supershifted with anti-beta-catenin or anti-Tcf-4 antibody. Overexpression of beta-catenin and Tcf-4 significantly increased both basal and cytokine-induced NOS2 promoter activity (P < 0.01), and the induction was dependent on intact TBE sites. Overexpression of beta-catenin or Tcf-4 increased NOS2 mRNA and protein expression in HCT116 cells. Lithium chloride (LiCl), an inhibitor of glycogen synthase kinase-3beta, increased cytosolic and nuclear beta-catenin level, NOS2 expression, and NO. production in primary human and rat hepatocytes and cancer cell lines. Treatment with Wnt-3A-conditioned medium increased beta-catenin and NOS2 expression in fetal human hepatocytes. When administered in vivo, LiCl increased hepatic beta-catenin level in a dose-dependent manner with simultaneous increase in NOS2 expression. These data are consistent with the hypothesis that beta-catenin up-regulates NOS2 and suggest a novel mechanism by which the Wnt/beta-catenin signaling pathway may contribute to cancer by increasing NO. production.

  13. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    PubMed

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.

  14. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium.

    PubMed

    Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J

    2004-04-01

    Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.

  15. Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17beta-estradiol and the phytoestrogen, coumestrol.

    PubMed

    Patisaul, H B; Whitten, P L; Young, L J

    1999-04-06

    Estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) are differentially distributed in the brain and likely mediate different estrogen-dependent processes. ERbeta is abundant in the bed nucleus of the stria terminalis, medial preoptic nucleus, paraventricular nucleus of the hypothalamus and the amygdala of the rat. In the paraventricular nucleus, which is devoid of ERalpha, ERbeta is colocalized with the neuropeptides, oxytocin and vasopressin, suggesting a potential functional role for ERbeta in the regulation of these peptides. We examined the regulation of ERbeta mRNA expression in the rat brain by 17beta-estradiol and the phytoestrogen, coumestrol. 17beta-Estradiol treatment decreased ERbeta mRNA in situ hybridization signal by 44.5% in the paraventricular nucleus of the hypothalamus (PVN), but had no effect in the bed nucleus of the stria terminalis (BnST) or the medial preoptic nucleus (MPA). In contrast, dietary exposure to coumestrol increased ERbeta mRNA signal by 47.5% in the PVN but had no effect in the BnST or the MPA. These data demonstrate that like ERalpha, ERbeta is down regulated by estrogen in a region specific manner in the rat brain. Furthermore, exposure to coumestrol may modulate ERbeta-dependent processes by acting as an anti-estrogen at ERbeta. This data contradicts results from cell transfection assays which suggest an estrogenic activity of coumestrol on ERbeta, indicating that the mode of action may be tissue specific, or that metabolism of dietary coumestrol may alter its effects. Because the highest concentrations of phytoestrogens are found in legumes, vegetables and grains, they are most prevalent in vegetarian and traditional Asian diets. Understanding the neuroendocrine effects of phytoestrogens is particularly important now that they are being marketed as a natural alternative to estrogen replacement therapy and sold in highly concentrated pills and powders. Copyright 1999 Elsevier Science B.V.

  16. Molecular Basis of the Increase in Invertase Activity Elicited by Gravistimulation of Oat-Shoot Pulvini

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Kim, Donghern; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom) increase in invertase activity is elicited by gravistimulation in oatshoot pulvini starting within 3h after treatment. In order to analyze the regulation of invertase gene expression in this system, we examined the effect of gravistimulation on invertase mRNA induction. Total RNA and poly(A)(+)RNA, isolated from oat pulvini, and two oligonucleotide primers, corresponding to two conserved amino-acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the Polymerase Chain Reaction (PCR). A partial-length cDNA (550 base pairs) was obtained and characterized. There was a 52 % deduced amino-acid sequence homology to that of carrot beta-fructosi- dase and a 48 % homology to that of tomato invertase. Northern blot analysis showed that there was an obvious transient accumulation of invertase mRNA elicited by gravistimulation of oat pulvini. The mRNA was rapidly induced to a maximum level at 1h following gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher (five-fold) than that in the top half of the pulvinus tissue. The induction of invertase mRNA was consistent with the transient enhancement of invertase activity during the graviresponse of the pulvinus. These data indicate that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional and/or translational levels. Southern blot analysis showed that there were four genomic DNA fragments hybridized to the invertase cDNA. This suggests that an invertase gene family may exist in oat plants.

  17. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  18. 5-Aminoimidazole-4-carboxamide ribonucleotide prevents fat gain following the cessation of voluntary physical activity.

    PubMed

    Ruegsegger, Gregory N; Sevage, Joseph A; Childs, Thomas E; Grigsby, Kolter B; Booth, Frank W

    2017-11-01

    What is the central question of this study? We investigated whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) could prevent acute increases in body fat and changes in omental and subcutaneous adipose tissue following the sudden transition from physical activity to physical inactivity. What is the main finding and its importance? AICAR prevented fat gains following the transition from physical activity to inactivity to levels comparable to rats that remained physically active. AICAR and continuous physical activity produced depot-specific changes in cyclin A1 mRNA and protein that were associated with the prevention of fat gain. These findings suggest that targeting AMP-activated protein kinase signalling could oppose rapid adipose mass growth. The transition from physical activity to inactivity is associated with drastic increases in 'catch-up' fat that in turn foster the development of many obesity-associated maladies. We tested whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) treatment would prevent gains in body fat following the sudden transition from a physically active state to an inactive state by locking a voluntary running wheel. Male Wistar rats were either sedentary (SED) or given wheel access for 4 weeks, at which time rats with wheels continued running (RUN), had their wheel locked (WL) or had WL with daily AICAR injection (WL + AICAR) for 1 week. RUN and WL + AICAR prevented gains in body fat compared with SED and WL (P < 0.001). Cyclin A1 mRNA, a marker of cell proliferation, was decreased in omental, but not subcutaneous adipose tissue, in RUN and WL + AICAR compared with SED and WL groups (P < 0.05). Both cyclin A1 mRNA and protein were positively associated with gains in fat mass (P < 0.05). Cyclin A1 mRNA in omental, but not subcutaneous, adipose tissue was negatively correlated with p-AMPK levels (P < 0.05). Differences in fat gain and omental mRNA and protein levels were independent of changes in food intake and in differences in select hypothalamic mRNAs. These findings suggest that AICAR treatment prevents acute gains in adipose tissue following physical inactivity to levels of rats that continuously run, and that together, continuous physical activity and AICAR could, at least initially in these conditions, exert similar inhibitory effects on adipogenesis in a depot-specific manner. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  19. E-cadherin interactions regulate beta-cell proliferation in islet-like structures.

    PubMed

    Carvell, Melanie J; Marsh, Phil J; Persaud, Shanta J; Jones, Peter M

    2007-01-01

    Islet function is dependent on cells within the islet interacting with each other. E-cadherin (ECAD) mediates Ca(2+)-dependent homophilic cell adhesion between b-cells within islets and has been identified as a tumour suppressor. We generated clones of the MIN6 beta-cell line that stably over- (S) and under-express (alphaS) ECAD. Modified expression of ECAD was confirmed by quantitative RT-PCR, immunoblotting and immunocytochemistry. Preproinsulin mRNA, insulin content and basal rates of insulin secretion were higher in S cells compared to aS and control (V) cells. However, stimulated insulin secretory responses were unaffected by ECAD expression levels. ECAD expression did affect proliferation, with enhanced ECAD expression being associated with reduced proliferation and vice versa. Formation of islet-like structures was associated with a significant reduction in proliferation of V and S cells but not alphaS cells. These data suggest that ECAD expression levels do not modulate insulin secretory function but are consistent with a role for ECAD in the regulation of beta-cell proliferation. Copyright (c) 2007 S. Karger AG, Basel.

  20. Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury.

    PubMed

    Wolf, Gunter; Jocks, Thomas; Zahner, Gunther; Panzer, Ulf; Stahl, Rolf A K

    2002-11-01

    Glomerular upregulation of monocyte chemotactic protein-1 (MCP-1), followed by an influx of monocytes resulting eventually in extracellular matrix deposition is a common sequel of many types of glomerulonephritis. However, it is not entirely clear how early expression of MCP-1 is linked to the later development of glomerulosclerosis. Because transforming growth factor-beta (TGF-beta) is a key regulator of extracellular matrix proteins, we hypothesized that there might be a regulatory loop between early glomerular MCP-1 induction and subsequent TGF-beta expression. To avoid interference with other cytokines that may be released from infiltrating monocytes, isolated rat kidneys were perfused with a polyclonal anti-thymocyte-1 antiserum (ATS) and rat serum (RS) as a complement source to induce glomerular injury. Renal TGF-beta protein and mRNA expressions were strongly stimulated after perfusion with ATS-RS. This effect was attenuated by coperfusion with a neutralizing anti-MCP-1 but was partly mimicked by perfusion with recombinant MCP-1 protein. On the other hand, renal MCP-1 expression and production were stimulated by administration of ATS-RS. Additional perfusion with an anti-TGF-beta antibody further aggravated this increase, whereas application of recombinant TGF-beta protein reduced MCP-1 formation. Our data demonstrate an intrinsic regulatory loop in which increased MCP-1 levels stimulate TGF-beta formation in resident glomerular cells in the absence of infiltrating immune competent cells.

  1. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    PubMed

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.

  2. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi

    2006-12-15

    The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17{alpha}-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ER{alpha}-selective agonist), diarylpropionitrile (DPN, an ER{beta}-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE inmore » the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ER{alpha}-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ER{beta}-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.« less

  3. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation.

    PubMed

    Fustiñana, Maria Sol; Ariel, Pablo; Federman, Noel; Freudenthal, Ramiro; Romano, Arturo

    2010-09-01

    Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.

  4. Activation of mineralocorticoid receptors by exogenous glucocorticoids and the development of cardiovascular inflammatory responses in adrenalectomized rats.

    PubMed

    Young, Morag J; Morgan, James; Brolin, Kim; Fuller, Peter J; Funder, John W

    2010-06-01

    Activation of the mineralocorticoid receptor (MR) in the context of a high salt intake produces cardiovascular inflammation plus cardiac fibrosis and failure. Inactivation of vascular 11beta-hydroxysteroid dehydrogenase type 2 activity in intact animals by carbenoxolone (CBX) produces a similar pathology, presumably reflecting coronary vascular MR activation by endogenous glucocorticoids. To test this hypothesis, we have used adrenalectomized rats, without endogenous corticosteroids, and examined the consequences of corticosterone (CORT) replacement on a series of cardiovascular disease parameters. Uninephrectomized adrenalectomized Sprague Dawley rats given 1% NaCl/0.3% KCl to drink were treated for 8 d as follows: control; 20 mg deoxycorticosterone (DOC); 2 mg/d CORT; 2.5 mg/d CBX; CORT plus CBX (CORT/CBX); and CORT/CBX plus 100 mg/kg.d eplerenone. Markers of cardiac oxidative stress (p22(phox) and NOX4 mRNA) were up-regulated in the DOC and CORT/CBX groups; in contrast, inflammatory cell infiltration was increased and endothelial nitric oxide synthase down-regulated by CORT as well as by DOC and CORT/CBX. In the kidney, connective tissue growth factor mRNA levels were increased by DOC and CORT/CBX; in contrast, DOC had no effect on mRNA levels for channel inducing factor or endothelin 3, which were elevated only by CORT/CBX. All changes noted were reversed by eplerenone. Rats given 10-fold lower CORT (0.2 mg/d) with or without CBX showed no change in any parameter. These results suggest that there exist distinct but overlapping ligand-specific MR-mediated tissue responses to a classic mineralocorticoid (DOC) and to the glucocorticoid CORT, in the presence and absence of CBX to block vascular 11beta-hydroxysteroid dehydrogenase type 2.

  5. Betacellulin-Induced Beta Cell Proliferation and Regeneration Is Mediated by Activation of ErbB-1 and ErbB-2 Receptors

    PubMed Central

    Oh, Yoon Sin; Shin, Seungjin; Lee, Youn-Jung; Kim, Eung Hwi; Jun, Hee-Sook

    2011-01-01

    Background Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. Methodology/Principal Findings The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. Conclusions/Significance These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells. PMID:21897861

  6. The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk.

    PubMed Central

    Kuraishi, T; Sun, Y; Aoki, F; Imakawa, K; Sakai, S

    2000-01-01

    The length of casein mRNA from the lactating mouse mammary gland, as assessed on Northern blots, is shorter after weaning, but is elongated following the removal of milk. In order to investigate this phenomenon, the molecular structures of beta- and gamma-casein mRNAs were analysed. The coding and non-coding regions of the two forms were the same length, but the long form of casein mRNA had a longer poly(A) tail than the short form (P<0.05). In order to examine the stability of casein mRNA under identical conditions, casein mRNAs with the long and short poly(A) tails were incubated in the rabbit reticulocyte lysate (RRL) cell-free translation system. Casein mRNA with the long poly(A) tail had a longer half-life than that with the short tail (P<0.05). The beta- and gamma-casein mRNAs were first degraded into 0.92 and 0.81 kb fragments respectively. With undegraded mRNA, the poly(A) tail shortening by exoribonuclease was not observed until the end of the incubation. Northern blot analysis showed that casein mRNA with the long poly(A) tail was protected efficiently from endoribonucleases. We conclude that the length of the poly(A) tail of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of the gland's milk, and we show that the longer poly(A) tail potentially protects the mRNA from degradation by endoribonucleases. PMID:10749689

  7. Sequential changes in luminal microflora and mucosal cytokine expression during developing of colitis in HLA-B27/beta2-microglobulin transgenic rats.

    PubMed

    Hata, K; Andoh, A; Sato, H; Araki, Y; Tanaka, M; Tsujikawa, T; Fujiyama, Y; Bamba, T

    2001-11-01

    Transgenic rats expressing HLA-B27 and human beta2-microglobulin (HLA-B27 rats) spontaneously develop chronic colitis resembling human inflammatory bowel disease. We investigated the sequential changes in the luminal bacterial flora and mucosal cytokine mRNA expression in this model. HLA-B27 rats were maintained in a specific pathogen-free environment, and luminal microflora was evaluated by standard bacterial culture technique. The expression of mucosal cytokine mRNA was analysed by RT-PCR methods. Clinical symptoms of colitis appeared at 8 weeks of age. The total number of obligate anaerobes was higher than those of facultative anaerobes during the experimental period. At 6 weeks of age, the colonization of Bacteroides spp., Bifidobacterium spp. and Lactobacillus spp. was already detectable at high concentrations, whereas Clostridium spp. and Eubacterium spp. were not detected. The expression of proinflammatory cytokines (IL-Ibeta, IL-8 and TNF-alpha) appeared at 8 weeks of age, and these were detectable until 17 weeks. A similar pattern was observed in the expression of Th1 cytokines (IL-2, IL-12 and IFN-gamma). On the other hand, the expression of Th2 cytokines (IL-4, IL-10 and TGF-beta) was weak. IL-4 mRNA expression was weakly detectable only at 6 and 8 weeks of age. The expression of IL-10 and TGF-beta mRNA was scarcely detectable throughout the experimental period. The development of colitis may be mediated by both the predominant expression of Th1 cytokines and the weakness of Th2 cytokine expression in the mucosa. The colonization of anaerobic bacteria, especially Bacteroides spp., may be initiating and promoting these cytokine responses.

  8. Regulation of oocyte maturation in fish.

    PubMed

    Nagahama, Yoshitaka; Yamashita, Masakane

    2008-06-01

    A period of oocyte growth is followed by a process called oocyte maturation (the resumption of meiosis) which occurs prior to ovulation and is a prerequisite for successful fertilization. Our studies using fish models have revealed that oocyte maturation is a three-step induction process involving gonadotropin (LH), maturation-inducing hormone (MIH), and maturation-promoting factor (MPF). LH acts on the ovarian follicle layer to produce MIH (17alpha, 20beta-dihydroxy-4-pregnen-3-one, 17alpha, 20beta-DP, in most fishes). The interaction of ovarian thecal and granulosa cell layers (two-cell type model), is required for the synthesis of 17alpha,20beta-DP. The dramatic increase in the capacity of postvitellogenic follicles to produce 17alpha,20beta-DP in response to LH is correlated with decreases in P450c17 (P450c17-I) and P450 aromatase (oP450arom) mRNA and increases in the novel form of P450c17 (P450c17-II) and 20beta-hydroxysteroid dehydrogenase (20beta-HSD) mRNA. Transcription factors such as Ad4BP/SF-1, Foxl2, and CREB may be involved in the regulation of expression of these steroidogenic enzymes. A distinct family of G-protein-coupled membrane-bound MIH receptors has been shown to mediate non-genomic actions of 17alpha, 20beta-DP. The MIH signal induces the de novo synthesis of cyclin B from the stored mRNA, which activates a preexisting 35 kDa cdc2 kinase via phosphorylation of its threonine 161 by cyclin-dependent kinase activating kinase, thus producing the 34 kDa active cdc2 (active MPF). Upon egg activation, MPF is inactivated by degradation of cyclin B. This process is initiated by the 26S proteasome through the first cut in its NH(2) terminus at lysine 57.

  9. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol.

    PubMed

    Lam, L T; Pickeral, O K; Peng, A C; Rosenwald, A; Hurt, E M; Giltnane, J M; Averett, L M; Zhao, H; Davis, R E; Sathyamoorthy, M; Wahl, L M; Harris, E D; Mikovits, J A; Monks, A P; Hollingshead, M G; Sausville, E A; Staudt, L M

    2001-01-01

    Flavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated. Using DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover. The present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.

  10. [Effect of fentanyl on expression of mu-receptor and beta-arrestin 2 in periaqueductal gray of rats tolerant to morphine].

    PubMed

    Liu, Ruo-shan; Sun, Li; Liu, Xiao-yan; Li, Xuan-ying; Xu, Lei

    2009-05-19

    To investigate the effect of fentanyl upon the expression of mu-receptor and beta-arrestin 2 in peri-aqueductal gray of morphine-tolerant rats. Forty male SD rats weighing (230 +/- 20) g were randomly divided into 5 groups of eight animals each: group NS, group M, group MF1, group MF2 and group MF3. Rats in group NS received only subcutaneous normal saline 1 ml/kg twice a day for 9 consecutive days; group M received subcutaneous morphine 10 mg/kg followed by NS 1 ml/kg twice a day for 9 consecutive days; In groups MF1, MF2 and MF3, morphine 10 mg x kg(-1) was injected subcutaneously followed by fentanyl 3, 6, 12 microg/kg respectively. All animals were sacrificed at Day 9 after measurement of pain threshold. Periaqueductal gray was removed for determination of the expression of mRNA (RT-PCR) and protein (Western-blot) of mu-receptor and beta-arrestin 2. Compared with group NS, TFL of group M was significantly elevated after the first morphine injection (P < 0.01). But TFL of group M returned to the baseline value after chronic morphine treatment. Compared with group M, TFL increased in groups MF2 and MF3 at Days 7 and 9 (P < 0.05 or 0.01). However, TFL of group MF1 was negative (P > 0.05). The expression of mu-receptor mRNA and protein was significantly lower in group M than in group NS (P < 0.01). Compared with group M, the expressions of mu-receptor mRNA and protein were significantly elevated in group MF2 and MF3 (P < 0.05 or 0.01) but there was no significant change in group MF1 (P > 0.05). The expression of beta-arrestin 2 mRNA and protein significantly decreased in group M as compared with group NS (P < 0.01). Compared with group M, the expressions of beta-arrestin 2 mRNA and protein were significantly elevated in group MF2 and MF3 (P < 0.05 or 0.01), but there was no significant change in group MF1 (P > 0.05). Fentanyl at 6 and 12 microg/kg can partly inhibit morphine tolerance through an increased expression of mu-receptor and beta-arrestin 2 in periaqueductal gray of morphine-tolerant rats.

  11. Amelioration of Cardiac Function and Activation of Anti-Inflammatory Vasoactive Peptides Expression in the Rat Myocardium by Low Level Laser Therapy

    PubMed Central

    Manchini, Martha Trindade; Serra, Andrey Jorge; Feliciano, Regiane dos Santos; Santana, Eduardo Tadeu; Antônio, Ednei Luis; de Tarso Camillo de Carvalho, Paulo; Montemor, Jairo; Crajoinas, Renato Oliveira; Girardi, Adriana Castello Costa; Tucci, Paulo José Ferreira; Silva, José Antônio

    2014-01-01

    Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions, even when inflammation is a secondary consequence, such as in myocardial infarction (MI). However, the mechanism by which LLLT is able to protect the remaining myocardium remains unclear. The present study tested the hypothesis that LLLT reduces inflammation after acute MI in female rats and ameliorates cardiac function. The potential participation of the Renin-Angiotensin System (RAS) and Kallikrein-Kinin System (KKS) vasoactive peptides was also evaluated. LLLT treatment effectively reduced MI size, attenuated the systolic dysfunction after MI, and decreased the myocardial mRNA expression of interleukin-1 beta and interleukin-6 in comparison to the non-irradiated rat tissue. In addition, LLLT treatment increased protein and mRNA levels of the Mas receptor, the mRNA expression of kinin B2 receptors and the circulating levels of plasma kallikrein compared to non-treated post-MI rats. On the other hand, the kinin B1 receptor mRNA expression decreased after LLLT. No significant changes were found in the expression of vascular endothelial growth factor (VEGF) in the myocardial remote area between laser-irradiated and non-irradiated post-MI rats. Capillaries density also remained similar between these two experimental groups. The mRNA expression of the inducible nitric oxide synthase (iNOS) was increased three days after MI, however, this effect was blunted by LLLT. Moreover, endothelial NOS mRNA content increased after LLLT. Plasma nitric oxide metabolites (NOx) concentration was increased three days after MI in non-treated rats and increased even further by LLLT treatment. Our data suggest that LLLT diminishes the acute inflammation in the myocardium, reduces infarct size and attenuates left ventricle dysfunction post-MI and increases vasoactive peptides expression and nitric oxide (NO) generation. PMID:24991808

  12. Quantitation of cytokine mRNA expression as an endpoint for prediction and diagnosis of xenobiotic-induced hypersensitivity reactions.

    PubMed

    Gaspard, I; Kerdine, S; Pallardy, M; Lebrec, H

    1999-09-01

    Xenobiotic-induced hypersensitivity reactions are immune-mediated effects that involve specific antibodies and/or effector and regulatory T lymphocytes. Cytokines are key mediators of such responses and must be considered as possible endpoints for predicting sensitizing potency of drugs and chemicals, as well as for helping diagnosis of allergy. Detecting cytokine production at the protein level has been shown to not be always sensitive enough. This paper describes three examples of the utilization of semiquantitative or competitive reverse transcription polymerase chain reaction analysis of interleukin-4, interferon gamma, and interleukin-1beta mRNAs as endpoints for assessing T-cell or dendritic cell responses to sensitizing drugs (beta-lactam antibiotics) or chemicals (dinitrochlorobenzene). Copyright 1999 Academic Press.

  13. Differential role of Sloan–Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells

    PubMed Central

    Khan, Shafiq A.

    2012-01-01

    Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling. PMID:22843506

  14. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  15. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.

    PubMed

    Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

    2009-12-01

    Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.

  16. Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)-1 beta production by synovial T cells.

    PubMed Central

    Robinson, E; Keystone, E C; Schall, T J; Gillett, N; Fish, E N

    1995-01-01

    Earlier studies from this laboratory provided evidence for restricted cytokine expression in the T cell population in RA tissues. Specifically, IL-2, IL-4, IL-6 and interferon-gamma (IFN-gamma) gene expression levels were low. The selective chemoattractant and activation effects of chemokines on leucocytes identify them as potentially ideal candidates in mediating selective inflammatory processes in RA. Accordingly, we undertook studies to examine constitutive chemokine gene expression in RA tissues. RANTES, monocyte chemotactic protein-1 (MCP-1) and MIP-1 beta gene expression was examined in both the T and non-T cell populations in RA peripheral blood (PB), synovial fluid (SF) and synovial tissues (ST). Our results identified elevated levels of both RANTES and MIP-1 beta gene expression in circulating RA PB and SF T cells. By contrast, MCP-1 expression was virtually absent in RA PB, yet elevated MCP-1 mRNA levels were detected primarily in the non-T cell populations of the SF and ST samples. Histological examination of affected rheumatoid joints revealed extensive RANTES and MIP-1 beta expression in sites of lymphocyte infiltration and cell proliferation, namely the synovial lining and sublining layers. Fractionation or RA ST patient samples revealed that RANTES expression was restricted to the T cells, whereas MIP-1 beta expression was detected in both T and non-T fractions. These data suggest that MCP-1, MIP-1 beta and RANTES may have a central role in the trafficking of reactive molecules involved in immunoregulation and in the inflammatory processes in RA. Images Fig. 4 PMID:7545093

  17. Dominant expression of interleukin-10 and transforming growth factor-beta genes in activated T-cells of chronic active Epstein-Barr virus infection.

    PubMed

    Ohga, Shouichi; Nomura, Akihiko; Takada, Hidetoshi; Tanaka, Tamami; Furuno, Kenji; Takahata, Yasushi; Kinukawa, Naoko; Fukushima, Noriyasu; Imai, Shosuke; Hara, Toshiro

    2004-11-01

    Chronic active Epstein-Barr virus (EBV) infection is a chronic mononucleosis syndrome associated with clonal proliferation of EBV-carrying T-/natural killer (NK)-cells. High levels of circulating EBV and activated T-cells are sustained during the prolonged disease course, whereas it is not clear how ectopic EBV infection in T-/NK-cells has been established and maintained. To assess the biological role of activated T-cells in chronic active EBV infection (CAEBV), EBV DNA and cellular gene expressions in peripheral T-cells were quantified in CAEBV and infectious mononucleosis (IM) patients. In CAEBV, HLA-DR(+) T-cells had higher viral load and larger amounts of IFN gamma, IL-10, transforming growth factor-beta (TGF beta), and cytotoxic T lymphocyte antigen-4 (CTLA4) mRNA than HLA-DR(-)T-cells. HLA-DR(+) T cells of IM patients transcribed more IFN gamma and IL-10 than their HLA-DR(-)T cells. Expression levels of IFN gamma and forkhead box p3 (Foxp3) in CAEBV HLA-DR(+) T-cells were higher than in IM HLA-DR(+) T-cells. The effective variables to discriminate the positivity of HLA-DR were IL-10, IFN gamma, CTLA4, TGF beta, and IL-2 in the order of statistical weight. EBV load in CAEBV T-cells correlated with the expression levels of only IL-10 and TGF beta. These results suggest that CAEBV T-cells are activated to transcribe IFN gamma, IL-10, and TGF beta excessively, and the latter two genes are expressed preferentially in the EBV-infected subsets. The dominant expression of regulatory cytokines in T-cells may imply a viral evasion mechanism in the disease.

  18. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  19. Induction of IL-1, in the testes of adult mice, following subcutaneous administration of turpentine.

    PubMed

    Elhija, Mahmoud Abu; Lunenfeld, Eitan; Huleihel, Mahmoud

    2006-02-01

    Interleukin-1 family is present in the testicular homogenates and its cellular compartments. It has been suggested that IL-1 is involved in physiological and pathological functions of the testicular tissues. In the present study we examined the effect of acute mostly localized inflammation, using turpentine, on the expression levels of testicular IL-1 system. Mice were subcutaneously injected with steam-distilled turpentine or saline (control). Three hours to 10 days following the injection, mice were killed and testis and spleen were homogenized and examined for interleukin (IL)-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1ra) levels by enzyme-linked immunosorbent assay and polymerase chain reaction. Subcutaneous injection of turpentine induced mice systemic inflammation, as indicated by significant increase in serum IL-1beta levels, and IL-1alpha, IL-1beta and IL-1ra in spleen homogenates. The levels of IL-1alpha, IL-1beta and IL-1ra were significantly induced in testicular homogenates of adult mice following subcutaneous injection of turpentine. The significant induction of testicular IL-1alpha was detected after 3-24 hr of turpentine injection and decreased later (after 3-10 days) to levels similar to the control. However, significant induction of testicular IL-1beta was detected only after 3-10 days of turpentine injection, and for testicular IL-1ra levels was detected after 3 hr to 6 days of turpentine injection, and after 10 days the levels were similar to the control. These results were also confirmed by mRNA expression of these factors. Our results demonstrate for the first time the distant effect of acute localized inflammation on testicular IL-1 levels. Thus, transient inflammatory response to infectious/inflammatory agents at non-testicular sites that elicit systemic IL-1 response should be considered during clinical treatment as a possible factor of male infertility.

  20. beta(2)microglobulin mRNA expression levels are prognostic for lymph node metastasis in colorectal cancer patients.

    PubMed

    Shrout, J; Yousefzadeh, M; Dodd, A; Kirven, K; Blum, C; Graham, A; Benjamin, K; Hoda, R; Krishna, M; Romano, M; Wallace, M; Garrett-Mayer, E; Mitas, M

    2008-06-17

    Colorectal cancer (CRC) is the fourth most common non-cutaneous malignancy in the United States and the second most frequent cause of cancer-related death. One of the most important determinants of CRC survival is lymph node metastasis. To determine whether molecular markers might be prognostic for lymph node metastases, we measured by quantitative real-time RT-PCR the expression levels of 15 cancer-associated genes in formalin-fixed paraffin-embedded primary tissues derived from stage I-IV CRC patients with (n=20) and without (n=18) nodal metastases. Using the mean of the 15 genes as an internal reference control, we observed that low expression of beta(2)microglobulin (B2M) was a strong prognostic indicator of lymph node metastases (area under the curve (AUC)=0.85; 95% confidence interval (CI)=0.69-0.94). We also observed that the expression ratio of B2M/Spint2 had the highest prognostic accuracy (AUC=0.87; 95% CI=0.71-0.96) of all potential two-gene combinations. Expression values of Spint2 correlated with the mean of the entire gene set at an R(2) value of 0.97, providing evidence that Spint2 serves not as an independent prognostic gene, but rather as a reliable reference control gene. These studies are the first to demonstrate a prognostic role of B2M at the mRNA level and suggest that low B2M expression levels might be useful for identifying patients with lymph node metastasis and/or poor survival.

  1. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma.

    PubMed

    Kiyono, Kunihiko; Suzuki, Hiroshi I; Morishita, Yasuyuki; Komuro, Akiyoshi; Iwata, Caname; Yashiro, Masakazu; Hirakawa, Kosei; Kano, Mitsunobu R; Miyazono, Kohei

    2009-10-01

    c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.

  2. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter.

    PubMed

    Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander

    2007-10-01

    The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.

  3. Repression of endogenous Smad7 by Ski.

    PubMed

    Denissova, Natalia G; Liu, Fang

    2004-07-02

    The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.

  4. TGF-beta induces connexin43 gene expression in normal murine mammary gland epithelial cells via activation of p38 and PI3K/AKT signaling pathways.

    PubMed

    Tacheau, Charlotte; Fontaine, Juliette; Loy, Jennifer; Mauviel, Alain; Verrecchia, Franck

    2008-12-01

    One of the shared physiological roles between TGF-beta and connexin family members is to inhibit epithelial cell cycle progression and consequently, to provide protection against malignant transformation. Herein, we demonstrated that TGF-beta1 induces the expression of connexin43 (Cx43) in normal murine mammary gland (NMuMG) cell lines at the protein and mRNA levels, and transcriptionally. Using overexpression of a truncated dominant-negative form of Cx43, we determined that the modulation of gap junctional communication by TGF-beta1 plays a key role in the control of NMuMG cells proliferation by TGF-beta1. In addition, using overexpression of truncated dominant-negative forms of either Smad2 or Smad3, and MDA-MB-468 human breast carcinoma cells deficient for Smad4, we determined that the Smad cascade is not implicated in TGF-beta1 effect on Cx43 expression. Using specific pharmacologic inhibitors for JNK, ERK, p38, and PI3K/AKT signaling pathways, we demonstrated the cooperative role of p38 and PI3K/AKT signaling in TGF-beta1-induced Cx43 expression and gap junctional communication. Furthermore, transfection of a c-jun antisense expression vector significantly prevented TGF-beta1-induced Cx43 gene expression demonstrating the involvement of c-Jun/AP-1 pathway together with p38 and PI3K/AKT pathways in mediating TGF-beta1-induced Cx43 gene expression.

  5. Identifying Molecular Targets For PTSD Treatment Using Single Prolonged Stress

    DTIC Science & Technology

    2014-10-01

    mRNA levels in the locus coeruleus. Based on our findings we hypothesize that SPS alters glucocorticoid and beta adrenergic receptor (β-AR) expression...recruited to join the project. This individual was a recent graduate from PhD training and came with expertise in animal behavioral tests of anxiety ...peer-reviewed journals (Biology of Mood and Anxiety Disorders, 2013, 3,22; Psychopharmacology, 2014, DOI:10.1007/s00213-014-3635-x). Dr. George has

  6. Opposite actions of transforming growth factor-beta 1 on the gene expression of atrial natriuretic peptide biological and clearance receptors in a murine thymic stromal cell line.

    PubMed

    Agui, T; Xin, X; Cai, Y; Shim, G; Muramatsu, Y; Yamada, T; Fujiwara, H; Matsumoto, K

    1995-09-01

    The regulation of the gene expression of the atrial natriuretic peptide receptor (ANPR) subtypes, ANPR-A, ANPR-B, and ANPR-C, was investigated in a murine thymic stromal cell line, MRL 104.8a. When MRL 104.8a cells were cultured with transforming growth factor (TGF)-beta1, [125I]ANP binding sites increased with increasing dose of TGF-beta1. These binding sites were identified as ANPR-C by a displacement experiment with ANPR-C-specific ligand, C-ANF, and by the affinity cross-linking of the [125I]ANP binding sites with a chemical cross-linker to determine the molecular weight of the ANPR. This augmentation of the ANPR-C expression was elucidated to occur at the transcriptional level by Northern blot experiment, comparison of the relative amounts of mRNA by reverse transcription (RT)-PCR, and in vitro nuclear transcription assay. Conversely, the expression of the ANP biological receptors, ANPR-A and ANPR-B, was shown to be down-regulated by TGF-beta1. These data suggest that TGF-beta1 regulates the gene expression of ANPRs in the thymic stromal cells and that ANP and TGF-beta1 might affect the thymic stromal cell functions.

  7. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo, E-mail: csshin@snu.ac.kr

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2more » was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.« less

  8. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition.

    PubMed

    Jaeger, Laura B; Dohgu, Shinya; Hwang, Mark C; Farr, Susan A; Murphy, M Paul; Fleegal-DeMotta, Melissa A; Lynch, Jessica L; Robinson, Sandra M; Niehoff, Michael L; Johnson, Steven N; Kumar, Vijaya B; Banks, William A

    2009-01-01

    Decreased clearance is the main reason amyloid-beta protein (Abeta) is increased in the brains of patients with Alzheimer's disease (AD). The neurovascular hypothesis states that this decreased clearance is caused by impairment of low density lipoprotein receptor related protein-1 (LRP-1), the major brain-to-blood transporter of Abeta at the blood-brain barrier (BBB). As deletion of the LRP-1 gene is a lethal mutation, we tested the neurovascular hypothesis by developing a cocktail of phosphorothioate antisenses directed against LRP-1 mRNA. We found these antisenses in comparison to random antisense selectively decreased LRP-1 expression, reduced BBB clearance of Abeta42, increased brain levels of Abeta42, and impaired learning ability and recognition memory in mice. These results support dysfunction of LRP-1 at the BBB as a mechanism by which brain levels of Abeta could increase and AD would be promoted.

  9. Induction of hypoxia-inducible factor-1alpha and activation of caspase-3 in hypoxia-reoxygenated bone marrow stroma is negatively regulated by the delayed production of substance P.

    PubMed

    Qian, J; Ramroop, K; McLeod, A; Bandari, P; Livingston, D H; Harrison, J S; Rameshwar, P

    2001-10-15

    The bone marrow (BM), which is the major site of immune cell development in the adult, responds to different stimuli such as inflammation and hemorrhagic shock. Substance P (SP) is the major peptide encoded by the immune/hemopoietic modulator gene, preprotachykinin-1 (PPT-I). Differential gene expression using a microarray showed that SP reduced hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA levels in BM stroma. Because long-term hypoxia induced the expression of PPT-I in BM mononuclear cells, we used timeline studies to determine whether PPT-I is central to the biologic responses of BM stroma subjected to 30-min hypoxia (pO(2) = 35 mm Hg) followed by reoxygenation. HIF-1alpha mRNA and protein levels were increased up to 12 h. At this time, beta-PPT-I mRNA was detected with the release of SP at 16 h. SP release correlated with down-regulation of HIF-1alpha to baseline. A direct role for SP in HIF-1alpha expression was demonstrated as follows: 1) transient knockout of beta-PPT-I showed an increase in HIF-1alpha expression up to 48 h of reoxygenation; and 2) HIF-1alpha expression remained baseline during reoxygenation when stroma was subjected to hypoxia in the presence of SP. Reoxygenation activated the PPT-I promoter with concomitant nuclear translocation of HIF-1alpha that can bind to the respective consensus sequences within the PPT-I promoter. SP reversed active caspase-3, an indicator of apoptosis and erythropoiesis, to homeostasis level after reoxygenation of hypoxic stroma. The results show that during reoxgenation the PPT-I gene acts as a negative regulator on the expression of HIF-1alpha and active caspase-3 in BM stroma subjected to reoxygenation.

  10. Glucocorticoids inhibit coordinated translation of. cap alpha. - and. beta. -globin mRNAs in Friend erythroleukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, J.; Stewart, J.A.; Rabek, J.P.

    The dimethylsulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend erythroleukemia cells is inhibited by the glucocorticoids hydrocortisone, dexamethasone, and fluocinolone acetonide; hydrocortisone, at concentrations of 10/sup -5/ to 10/sup -8/ M inhibits by 90-30% and fluocinolone acetonide at concentrations of 10/sup -8/ to 10/sup -11/ M shows a greater than 90% inhibition. At these concentrations the hormones have no effect on cell growth or viability. In this study it has been shown that there is a group of proteins, including the ..cap alpha..- and ..beta..-globins, whose regulation is associated with the induction of Friend erythroleukemia cell differentiation, and thatmore » the expression of these, in addition to ..cap alpha..- and ..beta..-globin, is affected by glucocorticoids. It is concluded that, although the translation of ..cap alpha..- and ..beta..-globin mRNA is a major site of inhibition by glucocorticoids, there is a detectable amount of ..cap alpha..- and ..beta..-globin mRNA translation which results in unequal amounts of globin synthesis and an overall more potent inhibition of hemoglobin formation.« less

  11. Steroid exposure during larval development of Xenopus laevis affects mRNA expression of the reproductive pituitary-gonadal axis in a sex- and stage-dependent manner.

    PubMed

    Urbatzka, Ralph; Lorenz, Claudia; Wiedemann, Caterina; Lutz, Ilka; Kloas, Werner

    2014-03-01

    Steroids are known to influence the reproductive pituitary-gonadal axis in adult amphibians. Here, we studied the effects of hormones on pituitary and gonadal mRNA expression during the development of Xenopus laevis. Tadpoles at NF 58 (prometamorphosis) and at NF 66 (freshly metamorphosed) were exposed for three days to 17β-estradiol (E2), tamoxifen (TAM), testosterone (T), dihydrotestosterone (DHT) at 10(-7)M, and flutamide (FLU) at 10(-6)M. In both genders at NF 58 and 66, T and DHT decreased luteinizing hormone beta (lhβ), but increased follicle stimulating hormone beta (fshβ), while FLU induced lhβ specifically in males. In the testis steroidogenic genes (p450 side chain cleavage enzyme, p450scc; steroid acute regulatory protein, star) at NF 58 showed a similar pattern as for lhβ, while the response at NF 66 was only partially present. In females, TAM induced lhβ at NF 58, while E2 decreased lhβ and increased fshβ at NF 66. In the ovaries, no alterations were observed for the steroidogenic genes. Summarizing, gonadotropic and steroidogenic mRNA expression may indicate control of androgen level during testis differentiation in male tadpoles at NF 58. In females the non-responsiveness of steroidogenic genes could be a sign of gonadal quiescence during pre-pubertal stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acidmore » binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.« less

  13. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    PubMed

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  14. Beta(3)-adrenergic signaling acutely down regulates adipose triglyceride lipase in brown adipocytes.

    PubMed

    Deiuliis, Jeffrey A; Liu, Li-Fen; Belury, Martha A; Rim, Jong S; Shin, Sangsu; Lee, Kichoon

    2010-06-01

    Mice exposed to cold rely upon brown adipose tissue (BAT)-mediated nonshivering thermogenesis to generate body heat using dietary glucose and lipids from the liver and white adipose tissue. In this report, we investigate how cold exposure affects the PI3 K/Akt signaling cascade and the expression of genes involved in lipid metabolism and trafficking in BAT. Cold exposure at an early time point led to the activation of the PI3 K/Akt, insulin-like signaling cascade followed by a transient decrease in adipose triglyceride lipase (ATGL) gene and protein expression in BAT. To further investigate how cold exposure-induced signaling altered ATGL expression, cultured primary brown adipocytes were treated with the beta(3)-adrenergic receptor (beta(3)AR) agonist CL 316,243 (CL) resulting in activation of PI3 K/Akt, ERK 1/2, and p38 signaling pathways and significantly decreased ATGL protein levels. ATGL protein levels decreased significantly 30 min post CL treatment suggesting protein degradation. Inhibition of PKA signaling by H89 rescued ATGL levels. The effects of PKA signaling on ATGL were shown to be independent of relevant pathways downstream of PKA such as PI3 K/Akt, ERK 1/2, and p38. However, CL treatment in 3T3-L1 adipocytes did not decrease ATGL protein and mRNA expression, suggesting a distinct response in WAT to beta3-adrenergic agonism. Transitory effects, possibly attributed to acute Akt activation during the early recruitment phase, were noted as well as stable changes in gene expression which may be attributed to beta3-adrenergic signaling in BAT.

  15. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei

    PubMed Central

    Donner, Nina C; Handa, Robert J

    2009-01-01

    Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors. PMID:19559077

  16. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11beta-hydroxysteroid dehydrogenase type 1.

    PubMed

    Nyirenda, Moffat J; Carter, Roderick; Tang, Justin I; de Vries, Annick; Schlumbohm, Christina; Hillier, Stephen G; Streit, Frank; Oellerich, Michael; Armstrong, Victor W; Fuchs, Eberhard; Seckl, Jonathan R

    2009-12-01

    Recent studies in humans and animal models of obesity have shown increased adipose tissue activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which amplifies local tissue glucocorticoid concentrations. The reasons for this 11beta-HSD1 dysregulation are unknown. Here, we tested whether 11beta-HSD1 expression, like the metabolic syndrome, is "programmed" by prenatal environmental events in a nonhuman primate model, the common marmoset monkey. We used a "fetal programming" paradigm where brief antenatal exposure to glucocorticoids leads to the metabolic syndrome in the offspring. Pregnant marmosets were given the synthetic glucocorticoid dexamethasone orally for 1 week in either early or late gestation, or they were given vehicle. Tissue 11beta-HSD1 and glucocorticoid receptor mRNA expression were examined in the offspring at 4 and 24 months of age. Prenatal dexamethasone administration, selectively during late gestation, resulted in early and persistent elevations in 11beta-HSD1 mRNA expression and activity in the liver, pancreas, and subcutaneous-but not visceral-fat. The increase in 11beta-HSD1 occurred before animals developed obesity or overt features of the metabolic syndrome. In contrast to rodents, in utero dexamethasone exposure did not alter glucocorticoid receptor expression in metabolic tissues in marmosets. These data suggest that long-term upregulation of 11beta-HSD1 in metabolically active tissues may follow prenatal "stress" hormone exposure and indicates a novel mechanism for fetal origins of adult obesity and the metabolic syndrome.

  17. Mechanisms of stimulation of interleukin-1 beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components.

    PubMed Central

    Zhang, Y; Doerfler, M; Lee, T C; Guillemin, B; Rom, W N

    1993-01-01

    The granulomatous immune response in tuberculosis is characterized by delayed hypersensitivity and is mediated by various cytokines released by the stimulated mononuclear phagocytes, including tumor necrosis factor-alpha (TNF alpha) and IL-1 beta. We have demonstrated that Mycobacterium tuberculosis cell wall component lipoarabinomannan (LAM), mycobacterial heat shock protein-65 kD, and M. tuberculosis culture filtrate, devoid of LPS as assessed by the Amebocyte Lysate assay, stimulate the production of TNF alpha and IL-1 beta proteins and mRNA from mononuclear phagocytes (THP-1 cells). The effect of LAM on the release of these cytokines was specific, as only LAM stimulation was inhibited by anti-LAM monoclonal antibody. Interestingly, we found that LAM and Gram-negative bacterial cell wall-associated endotoxin LPS may share a similar mechanism in their stimulatory action as demonstrated by inhibition of TNF alpha and IL-1 beta release by monoclonal antibodies to CD14. Anti-CD14 monoclonal antibody MY4 inhibited both TNF alpha and IL-1 beta release with LAM and LPS but no effect was observed with other mycobacterial proteins. An isotype antibody control did not inhibit release of cytokines under the same experimental conditions. M. tuberculosis and its components upregulated IL-1 beta and TNF alpha mRNAs in THP-1 cells. Nuclear run-on assay for IL-1 beta demonstrated that LAM increased the transcription rate. The induction of IL-1 beta was regulated at the transcriptional level, in which these stimuli acted through cis-acting element(s) on the 5' flanking region of the IL-1 beta genomic DNA. M. tuberculosis cell wall component LAM acts similarly to LPS in activating mononuclear phagocyte cytokine TNF alpha and IL-1 beta release through CD14 and synthesis at the transcriptional level; both cytokines are key participants in the host immune response to tuberculosis. Images PMID:7683696

  18. Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion.

    PubMed

    Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y

    1998-05-04

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.

  19. Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries.

    PubMed

    Laughlin, M Harold; Welshons, Wade V; Sturek, Michael; Rush, James W E; Turk, James R; Taylor, Julia A; Judy, Barbara M; Henderson, Kyle K; Ganjam, V K

    2003-07-01

    Our purpose was to determine the effects of gender and exercise training on endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) protein content of porcine skeletal muscle arteries and to evaluate the role of 17beta-estradiol (E2) in these effects. We measured eNOS and SOD content with immunoblots and immunohistochemistry in femoral and brachial arteries of trained and sedentary male and female pigs and measured estrogen receptor (ER) mRNA and alpha-ER and beta-ER protein in aortas of male and female pigs. Results indicate that female arteries contain more eNOS than male arteries and that exercise training increases eNOS content independent of gender. Male and female pigs expressed similar levels of alpha-ER mRNA and protein and similar amounts beta-ER protein in their arteries. E2 concentrations as measured by RIA were 180 +/- 34 pg/ml in male sera and approximately 5 pg/ml in female sera, and neither was changed by training. However, bioassay indicated that biologically active estrogen equivalent to only 35 +/- 5 pg/ml was present in male sera. E2 in female pigs, whether measured by RIA or bioassay, was approximately 24 pg/ml at peak estrous and 2 pg/ml on day 5 diestrus. The free fraction of E2 in sera did not explain the low measurements, relative to RIA, of E2. We conclude that 1). gender has significant influence on eNOS and SOD content of porcine skeletal muscle arteries; 2). the effects of gender and exercise training vary among arteries of different anatomic origin; 3). male sera contains compounds that cause RIA to overestimate circulating estrogenic activity; and 4). relative to human men, the male pig is not biologically estrogenized by high levels of E2 reported by RIA, whereas in female pigs E2 levels are lower than in the blood of human women.

  20. TGF-beta1 inhibits Cx43 expression and formation of functional syncytia in cultured smooth muscle cells from human detrusor.

    PubMed

    Neuhaus, Jochen; Heinrich, Marco; Schwalenberg, Thilo; Stolzenburg, Jens-Uwe

    2009-02-01

    Human detrusor smooth muscle cells (hBSMCs) are coupled by connexin 43 (Cx43)-positive gap junctions to form functional syncytia. Gap junctional communication likely is necessary for synchronised detrusor contractions and is supposed to be altered in voiding disturbances. Other authors have shown that the pleiotropic cytokine TGF-beta1 upregulates Cx43 expression in human aortic smooth muscle cells. In this study, we examined the TGF-beta1 effects on Cx43 expression in cultured hBSMCs. hBSMC cultures, established from patients undergoing cystectomy, were treated with recombinant human TGF-beta1. Cx43 expression was then examined by Western blotting, real-time PCR, and immunocytochemistry. Dye-injection experiments were used to study the size of functional syncytia. Dye-coupling experiments revealed stable formation of functional syncytia in passaged cell cultures (P1-P4). Stimulation with TGF-beta1 led to significant reduction of Cx43 immunoreactivity and coupling. Cx43 protein expression was significantly downregulated and Cx43 mRNA was only 30% of the control level. Interestingly, low phosphorylation species of Cx43 were particularly affected. Our experiments demonstrated a significant down regulation of connexin 43 by TGF-beta1 in cultured hBSMCs. These findings support the view that TGF-beta1 is involved in the pathophysiology of urinary bladder dysfunction.

  1. Levetiracetam protects against kainic acid-induced toxicity.

    PubMed

    Marini, Herbert; Costa, Cinzia; Passaniti, Maria; Esposito, Maria; Campo, Giuseppe M; Ientile, Riccardo; Adamo, Elena Bianca; Marini, Rolando; Calabresi, Paolo; Altavilla, Domenica; Minutoli, Letteria; Pisani, Francesco; Squadrito, Francesco

    2004-01-23

    We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.

  2. Factors regulating collagen synthesis and degradation during second-intention healing of wounds in the thoracic region and the distal aspect of the forelimb of horses.

    PubMed

    Schwartz, Anne J; Wilson, David A; Keegan, Kevin G; Ganjam, Venkataseshu K; Sun, Yao; Weber, Karl T; Zhang, Jiakun

    2002-11-01

    To determine significant molecular and cellular factors responsible for differences in second-intention healing in thoracic and metacarpal wounds of horses. 6 adult mixed-breed horses. A full-thickness skin wound on the metacarpus and another such wound on the pectoral region were created, photographed, and measured, and tissue was harvested from these sites weekly for 4 weeks. Gene expression of type-I collagen, transforming growth factor (TGF)-beta1, matrix metalloproteinase (MMP)-1, and tissue inhibitor of metalloproteinase (TIMP)-1 were determined by quantitative in situ hybridization. Myofibroblasts were detected by immunohistochemical labeling with alpha-smooth muscle actin (alpha-SMA). Collagen accumulation was detected by use of picrosirius red staining. Tissue morphology was examined by use of H&E staining. Unlike thoracic wounds, forelimb wounds enlarged during the first 2 weeks. Myofibroblasts, detected by week 1, remained abundant with superior organization in thoracic wounds. Type-I collagen mRNA accumulated progressively in both wounds. More type-I collagen and TGF-beta1 mRNA were seen in forelimb wounds. Volume of MMP-1 mRNA decreased from day 0 in both wounds. By week 3, TIMP-1 mRNA concentration was greater in thoracic wounds. Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.

  3. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    PubMed

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  4. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Hwi; Kim, Eung-Hwi

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H{sub 2}O{sub 2}. Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factormore » erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress. - Highlights: • EX4 protects against oxidative stress-induced pancreatic beta cell dysfunction. • EX4 increases antioxidant gene expression. • Antioxidative effect of EX4 is mediated by Nrf2. • EX4 increases Nrf2 level by stabilizing Nrf2 protein. • EX4 stabilizes Nrf2 by activation of PKCδ.« less

  5. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    PubMed

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P < 0.01) on a rotating rod than do wt littermates. We have also noted a lower body weight gain (P < 0.05) in Foxs1beta-gal/lbeta-gal males on a high-fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  6. Effect of Jianweiyuyang granule on gastric ulcer recurrence and expression of VEGF mRNA in the healing process of gastric ulcer in rats.

    PubMed

    Dai, Xing-Ping; Li, Jia-Bang; Liu, Zhao-Qian; Ding, Xiang; Huang, Cheng-Hui; Zhou, Bing

    2005-09-21

    To investigate the effect of Jianweiyuyang (JWYY) granule on gastric ulcer recurrence and its mechanism in the treatment of gastric ulcer in rats. Gastric ulcer in rats was induced according to Okeba's method with minor modification and the recurrence model was induced by IL-1beta. The expression of vascular endothelial growth factor mRNA (VEGF mRNA) was examined by reverse transcription polymerase chain reaction in gastric ulcer and microvessel density (MVD) adjacent to the ulcer margin was examined by immunohistochemistry. MVD was higher in the JWYY treatment group (14.0+/-2.62) compared with the normal, model and ranitidine treatment groups (2.2+/-0.84, 8.8+/-0.97, 10.4+/-0.97) in rats (P<0.01). The expression level of VEGF mRNA in gastric tissues during the healing process of JWYY treatment group rats significantly increased compared with other groups (normal group: 0.190+/-0.019, model group: 0.642+/-0.034, ranitidine group: 0.790+/-0.037, P<0.01). JWYY granules can stimulate angiogenesis and enhance the expression of VEGF mRNA in gastric ulcer rats. This might be the mechanism for JWYY accelerating the ulcer healing, and preventing the recurrence of gastric ulcer.

  7. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okunieff, Paul; Xu Jianhua; Hu Dongping

    2006-07-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to themore » hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.« less

  8. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley.

    PubMed

    Burton, Rachel A; Jobling, Stephen A; Harvey, Andrew J; Shirley, Neil J; Mather, Diane E; Bacic, Antony; Fincher, Geoffrey B

    2008-04-01

    Cellulose synthase-like CslF genes have been implicated in the biosynthesis of (1,3;1,4)-beta-d-glucans, which are major cell wall constituents in grasses and cereals. Seven CslF genes from barley (Hordeum vulgare) can be divided into two classes on the basis of intron-exon arrangements. Four of the HvCslF genes have been mapped to a single locus on barley chromosome 2H, in a region corresponding to a major quantitative trait locus for grain (1,3;1,4)-beta-d-glucan content. The other HvCslF genes map to chromosomes 1H, 5H, and 7H, and in two cases the genes are close to other quantitative trait loci for grain (1,3;1,4)-beta-d-glucan content. Spatial and temporal patterns of transcription of the seven genes have been defined through quantitative polymerase chain reaction. In developing barley coleoptiles HvCslF6 mRNA is most abundant. Transcript levels are maximal in 4- to 5-d coleoptiles, at a time when (1,3;1,4)-beta-d-glucan content of coleoptile cell walls also reaches maximal levels. In the starchy endosperm of developing grain, HvCslF6 and HvCslF9 transcripts predominate. Two peaks of transcription are apparent. One occurs just after endosperm cellularization, 4 to 8 d after pollination, while the second occurs much later in grain development, more than 20 d after pollination. Marked varietal differences in transcription of the HvCslF genes are observed during endosperm development. Given the commercial importance of cereal (1,3;1,4)-beta-d-glucans in human nutrition, in stock feed, and in malting and brewing, the observation that only two genes, HvCslF6 and HvCslF9, are transcribed at high levels in developing grain is of potential relevance for the future manipulation of grain (1,3;1,4)-beta-d-glucan levels.

  9. Nitric Oxide Increases the Decay of Matrix Metalloproteinase 9 mRNA by Inhibiting the Expression of mRNA-Stabilizing Factor HuR

    PubMed Central

    Akool, El-Sayed; Kleinert, Hartmut; Hamada, Farid M. A.; Abdelwahab, Mohamed H.; Förstermann, Ulrich; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2003-01-01

    Dysregulation of extracellular matrix turnover is an important feature of many inflammatory processes. Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin-1 beta. We demonstrate that NO does strongly destabilize MMP-9 mRNA, since different luciferase reporter gene constructs containing the MMP-9 3′ untranslated region (UTR) displayed significant reduced luciferase activity in response to the presence of NO. Moreover, by use of an in vitro degradation assay we found that the cytoplasmic fractions of NO-treated cells contained a higher capacity to degrade MMP-9 transcripts than those obtained from control cells. An RNA electrophoretic mobility shift assay demonstrated that three of four putative AU-rich elements present in the 3′ UTR of MMP-9 were constitutively occupied by the mRNA-stabilizing factor HuR and that the RNA binding was strongly attenuated by the presence of NO. The addition of recombinant glutathione transferase-HuR prevented the rapid decay of MMP-9 mRNA, whereas the addition of a neutralizing anti-HuR antibody caused an acceleration of MMP-9 mRNA degradation. Furthermore, the expression of HuR mRNA and protein was significantly reduced by exogenously and endogenously produced NO. These inhibitory effects were mimicked by the cGMP analog 8-bromo-cGMP and reversed by LY-83583, an inhibitor of soluble guanylyl cyclase. These results demonstrate that NO acts in a cGMP-dependent mechanism to inhibit the expression level of HuR, thereby reducing the stability of MMP-9 mRNA. PMID:12832476

  10. Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6⁺CD4⁺ T Cells.

    PubMed

    Lafferty, Mark K; Sun, Lingling; Christensen-Quick, Aaron; Lu, Wuyuan; Garzino-Demo, Alfredo

    2017-05-16

    Chemokine receptor type 6 (CCR6)⁺CD4⁺ T cells are preferentially infected and depleted during HIV disease progression, but are preserved in non-progressors. CCR6 is expressed on a heterogeneous population of memory CD4⁺ T cells that are critical to mucosal immunity. Preferential infection of these cells is associated, in part, with high surface expression of CCR5, CXCR4, and α4β7. In addition, CCR6⁺CD4⁺ T cells harbor elevated levels of integrated viral DNA and high levels of proliferation markers. We have previously shown that the CCR6 ligands MIP-3α and human beta defensins inhibit HIV replication. The inhibition required CCR6 and the induction of APOBEC3G. Here, we further characterize the induction of apolipoprotein B mRNA editing enzyme (APOBEC3G) by human beta defensin 2. Human beta defensin 2 rapidly induces transcriptional induction of APOBEC3G that involves extracellular signal-regulated kinases 1/2 (ERK1/2) activation and the transcription factors NFATc2, NFATc1, and IRF4. We demonstrate that human beta defensin 2 selectively protects primary CCR6⁺CD4⁺ T cells infected with HIV-1. The selective protection of CCR6⁺CD4⁺ T cell subsets may be critical in maintaining mucosal immune function and preventing disease progression.

  11. Effects of beta-phenylethylamine on the hypothalamo-pituitary-adrenal axis in the male rat.

    PubMed

    Kosa, E; Marcilhac-Flouriot, A; Fache, M P; Siaud, P

    2000-11-01

    beta-Phenylethylamine (PEA) is a trace neuroactive amine implicated in the regulation of the hypothalamic-pituitary-adrenal (HPA) response to stress. To test this hypothesis, effects of subchronic levels of PEA (50 mg/kg/day treatment for 10 days) on the corticotroph function were studied. PEA treatment induces: (i) a significant increase of corticotrophin releasing hormone (CRH) immunoreactivity in the median eminence (ME), as measured by semi-quantitative immunofluorescence labeling techniques, (ii) a significant increase in CRH mRNA levels in paraventricular nuclei, as detected by in situ hybridization, and (iii) an increase in plasma adreno-corticotrophin hormone (ACTH) and corticosterone levels in responses to stress. PEA treatment has no effect on the number of binding sites and on the dissociation constant of the glucocorticoid receptors in any structure studied. Results of the dexamethasone suppression test were similar in PEA- and saline-treated rats. Taken together, these results suggest that PEA treatment stimulated the HPA axis activity levels directly via the CRH hypothalamic neurons, without altering the negative feed back control exerted by the glucocorticoids.

  12. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction.

    PubMed

    Kelai, Sabah; Maussion, Gilles; Noble, Florence; Boni, Claudette; Ramoz, Nicolas; Moalic, Jean-Marie; Peuchmaur, Michel; Gorwood, Philip; Simonneau, Michel

    2008-05-07

    Dysfunctions affecting the connections of basal ganglia lead to major neurological and psychiatric disorders. We investigated levels of mRNA for three neurexins (Nrxn) and three neuroligins (Nlgn) in the globus pallidus, subthalamic nucleus, and substantia nigra, in control conditions and after short-term exposure to cocaine. The expression of Nrxn2beta and Nlgn3 in the substantia nigra and Nlgn1 in the subthalamic nucleus depended on genetic background. The development of short-term cocaine appetence induced an increase in Nrxn3beta expression in the globus pallidus. Human NRXN3 has recently been linked to several addictions. Thus, NRXN3 adhesion molecules may play an important role in the synaptic plasticity of neurons involved in the indirect pathways of basal ganglia, in which they regulate reward-related learning.

  13. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  14. Expression of APP pathway mRNAs and proteins in Alzheimer's disease.

    PubMed

    Matsui, Toshifumi; Ingelsson, Martin; Fukumoto, Hiroaki; Ramasamy, Karunya; Kowa, Hisatomo; Frosch, Matthew P; Irizarry, Michael C; Hyman, Bradley T

    2007-08-03

    In both trisomy 21 and rare cases of triplication of amyloid precursor protein (APP) Alzheimer's disease (AD) pathological changes are believed to be secondary to increased expression of APP. We hypothesized that sporadic AD may also be associated with changes in transcription of APP or its metabolic partners. To address this issue, temporal neocortex of 27 AD and 21 non-demented control brains was examined to assess mRNA levels of APP isoforms (total APP, APP containing the Kunitz protease inhibitor domain [APP-KPI] and APP770) and APP metabolic enzymatic partners (the APP cleaving enzymes beta-secretase [BACE] and presenilin-1 [PS-1], and putative clearance molecules, low-density lipoprotein receptor protein [LRP] and apolipoprotein E [apoE]). Furthermore, we evaluated how changes in APP at the mRNA level affect the amount of Tris buffer extractable APP protein and Abeta40 and 42 peptides in AD and control brains. As assessed by quantitative PCR, APP-KPI (p=0.007), APP770 (p=0.004), PS-1 (p=0.004), LRP (p=0.003), apoE (p=0.0002) and GFAP (p<0.0001) mRNA levels all increased in AD, and there was a shift from APP695 (a neuronal isoform) towards KPI containing isoforms that are present in glia as well. APP-KPI mRNA levels correlated with soluble APPalpha-KPI protein (sAPPalpha-KPI) levels measured by ELISA (tau=0.33, p=0.015 by Kendall's rank correlation); in turn, soluble APPalpha-KPI protein levels positively correlated with Tris-extractable, soluble Abeta40 (p=0.046) and 42 levels (p=0.007). The ratio of soluble APPalpha-KPI protein levels to total APP protein increased in AD, and also correlated with GFAP protein levels in AD. These results suggest that altered transcription of APP in AD is proportionately associated with Abeta peptide, may occur in the context of gliosis, and may contribute to Abeta deposition in sporadic AD.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeadin, Melec G.; Butcher, Martin K.; Shaughnessy, Stephen G.

    Highlights: Black-Right-Pointing-Pointer Leptin promotes osteoblast differentiation of primary smooth muscle cells. Black-Right-Pointing-Pointer Leptin regulates the expression of genes involved in osteoblast differentiation. Black-Right-Pointing-Pointer Constitutively active GSK-3{beta} attenuates leptin-induced osteoblast differentiation. Black-Right-Pointing-Pointer This suggests that leptin signals through GSK-3{beta} to promote osteoblast differentiation. -- Abstract: In this study, we begin to investigate the underlying mechanism of leptin-induced vascular calcification. We found that treatment of cultured bovine aortic smooth muscle cells (BASMCs) with leptin (0.5-4 {mu}g/ml) induced osteoblast differentiation in a dose-dependent manner. Furthermore, we found that leptin significantly increased the mRNA expression of osteopontin and bone sialoprotein, while down-regulating matrix glamore » protein (MGP) expression in BASMCs. Key factors implicated in osteoblast differentiation, including members of the Wnt signaling pathway, were examined. Exposure to leptin enhanced phosphorylation of GSK-3{beta} on serine-9 thereby inhibiting activity and promoting the nuclear accumulation of {beta}-catenin. Transfection of BASMCs with an adenovirus that expressed constitutively active GSK-3{beta} (Ad-GSK-3{beta} S9A) resulted in a >2-fold increase in GSK-3{beta} activity and a significant decrease in leptin-induced alkaline phosphatase (ALP) activity. In addition, qRT-PCR analysis showed that GSK-3{beta} activation resulted in a significant decrease in the expression of osteopontin and bone sialoprotein, but a marked increase in MGP mRNA expression. When taken together, our results suggest a mechanism by which leptin promotes osteoblast differentiation and vascular calcification in vivo.« less

  16. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cellsmore » were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta}-GA alters fat mass by directly affecting adipogenesis in maturing preadipocytes and lipolysis in matured adipocytes. Thus, 18{beta}-GA may be useful for the treatment of obesity.« less

  17. Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins.

    PubMed

    Tommasi, Stefania; Mangia, Anita; Lacalamita, Rosanna; Bellizzi, Antonia; Fedele, Vita; Chiriatti, Annalisa; Thomssen, Christopher; Kendzierski, Nancy; Latorre, Agnese; Lorusso, Vito; Schittulli, Francesco; Zito, Francesco; Kavallaris, Maria; Paradiso, Angelo

    2007-05-15

    The antineoplastic effect of paclitaxel is mainly related to its ability to bind the beta subunit of tubulin, thus preventing tubulin chain depolarization and inducing apoptosis. The relevance of the Class I beta-tubulin characteristics have also been confirmed in the clinical setting where mutations of paclitaxel-binding site of beta-tubulin Class I have been related to paclitaxel resistance in non small cell lung and ovarian cancers. In the present study, we verified the hypothesis of a relationship between molecular alterations of beta-tubulin Class I and paclitaxel sensitivity in a panel of breast cell lines with different drug IC(50). The Class I beta-tubulin gene cDNA has been sequenced detecting heterozygous missense mutations (exon 1 and 4) only in MCF-7 and SK-BR-3 lines. Furthermore, the expression (at both mRNA and protein level) of the different isotypes have been analyzed demonstrating an association between low cell sensitivity to paclitaxel and Class III beta-tubulin expression increasing. Antisense oligonucleotide (ODN) experiments confirmed that the inhibition of Class III beta-tubulin could at least partially increase paclitaxel-chemosensitivity. The hypothesis of a relationship between beta-tubulin tumor expression and paclitaxel clinical response has been finally verified in a series of 92 advanced breast cancer patients treated with a first line paclitaxel-based chemotherapy. Thirty-five percent (95% CI: 45-31) of patients with high Class III beta-tubulin expression showed a disease progression vs. only 7% of patients with low expression (35% vs. 7%, p < 0.002). Our study suggests that Class III beta-tubulin tumor expression could be considered a predictive biomarker of paclitaxel-clinical resistance for breast cancer patients. (c) 2007 Wiley-Liss, Inc.

  18. TWEAK Appears as a Modulator of Endometrial IL-18 Related Cytotoxic Activity of Uterine Natural Killers

    PubMed Central

    Petitbarat, Marie; Rahmati, Mona; Sérazin, Valérie; Dubanchet, Sylvie; Morvan, Corinne; Wainer, Robert; de Mazancourt, Philippe; Chaouat, Gérard; Foidart, Jean-Michel; Munaut, Carine; Lédée, Nathalie

    2011-01-01

    Background TWEAK (Tumor necrosis factor like WEAK inducer of apoptosis) is highly expressed by different immune cells and triggers multiple cellular responses, including control of angiogenesis. Our objective was to investigate its role in the human endometrium during the implantation window, using an ex-vivo endometrial microhistoculture model. Indeed, previous results suggested that basic TWEAK expression influences the IL-18 related uNK recruitment and local cytotoxicity. Methodology/Principal Findings Endometrial biopsies were performed 7 to 9 days after the ovulation surge of women in monitored natural cycles. Biopsies were cut in micro-pieces and cultured on collagen sponge with appropriate medium. Morphology, functionality and cell death were analysed at different time of the culture. We used this ex vivo model to study mRNA expressions of NKp46 (a uNK cytotoxic receptor) and TGF-beta1 (protein which regulates uNK cytokine production) after adjunction of excess of recombinant IL-18 and either recombinant TWEAK or its antibody. NKp46 protein expression was also detailed by immunohistochemistry in selected patients with high basic mRNA level of IL-18 and either low or high mRNA level of TWEAK. The NKp46 immunostaining was stronger in patients with an IL-18 over-expression and a low TWEAK expression, when compared with patients with both IL-18 and TWEAK high expressions. We did not observe any difference for TWEAK expression when recombinant protein IL-18 or its antibody was added, or conversely, for IL-18 expression when TWEAK or its antibody was added in the culture medium. In a pro-inflammatory environment (obtained by an excess of IL-18), inhibition of TWEAK was able to increase significantly NKp46 and TGF-beta1 mRNA expressions. Conclusions/Significance TWEAK doesn't act on IL-18 expression but seems to control IL-18 related cytotoxicity on uNK cells when IL-18 is over-expressed. Thus, TWEAK appears as a crucial physiological modulator to prevent endometrial uNK cytotoxicity in human. PMID:21249128

  19. The cytokine-protease connection: identification of a 96-kD THP-1 gelatinase and regulation by interleukin-1 and cytokine inducers.

    PubMed

    Van Ranst, M; Norga, K; Masure, S; Proost, P; Vandekerckhove, F; Auwerx, J; Van Damme, J; Opdenakker, G

    1991-05-01

    The induction of proteolytic enzymes is an important mechanism in the migration of monocytes into tissues and body fluids. The monocytic cell line THP-1 was used as a model system to study the production of a particular gelatinase. Upon stimulation with phorbol myristate acetate (PMA) the cells differentiated to the adherent phenotype and produced significant amounts of a 96-kD gelatinase in a dose-dependent way. The secretion rate was maximal between 12 and 24 h after induction. Study of gelatinase mRNA steady state levels showed that the synthesis of THP-1 gelatinase is regulated by PMA at transcriptional or posttranscriptional levels. Stimulation of signal transduction pathways with other substances, including calcium ionophore A 23187, dibutyryl cyclic AMP, and dexamethasone, were ineffective in inducing gelatinase mRNA or enzyme activity. However, THP-1 cells were responsive to the cytokine interleukin (IL)-1 beta, to bacterial lipopolysaccharide (LPS), and the lectin concanavalin A (Con A), the kinetics of gelatinase induction being similar to those of induction by PMA. The THP-1 cells did not synthesize and/or secrete detectable levels of IL-6 after stimulation with PMA, Con A, LPS, or IL-1 beta. The 96-kD monocytic THP-1 gelatinase was shown to be a neutral metalloproteinase that cross-reacted with hepatoma-derived and neutrophil gelatinases in immunoprecipitation experiments. The active enzyme produced by THP-1 cells consistently showed, however, a molecular mass different from that of normal granulocyte-, monocyte-, and tumor cell-derived gelatinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters

    PubMed Central

    Whim, Matthew D.

    2011-01-01

    Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341

  1. Activation of estrogen receptor signaling by the dioxin-like aryl hydrocarbon receptor agonist, 3,3',4,4',5-Pentachlorobiphenyl (PCB126) in salmon in vitro system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortensen, Anne Skjetne; Arukwe, Augustine

    2008-03-01

    Available toxicological evidence indicates that environmental contaminants with strong affinity to the aryl hydrocarbon receptor (AhR) have anti-estrogenic properties in both mammalian and non-mammalian in vivo and in vitro studies. The primary objective of the present study was to investigate the interactions between the AhR and estrogen receptor (ER) in salmon in vitro system. Two separate experiments were performed and gene expression patterns were analyzed using real-time PCR, while protein analysis was done by immunoblotting. Firstly, salmon primary hepatocytes were exposed to the dioxin-like PCB126 at 1, 10 and 50 pM and ER agonist nonylphenol (NP) at 5 and 10more » {mu}M, singly or in combination. Our data showed increased levels of ER-mediated gene expression (vitellogenin: Vtg, zona radiata protein: Zr-protein, ER{alpha}, ER{beta} and vigilin) as well as increased cellular ER{alpha} protein levels after treatment with NP and PCB126, singly or in combination. PCB126 treatment alone produced, as expected, increased transcription of AhR nuclear translocator (Arnt), CYP1A1 and AhR repressor (AhRR) mRNA, and these responses were reduced in the presence of NP concentrations. PCB126 exposure alone did not produce significant effect on AhR2{alpha} mRNA but increased (at 1 and 50 pM) and decreased (at 10 pM) AhR2{beta} mRNA below control level. For AhR2{delta} and AhR2{gamma} isotypes, PCB126 (at 1 pM) produced significant decreases (total inhibition for AhR2{gamma}) of mRNA levels but was indifferent at 10 and 50 pM, compared to control. NP exposure alone produced concentration-dependent significant decrease of AhR2{beta} mRNA. In contrast, while 5 {mu}M NP produced an indifferent effect on AhR2{delta} and AhR2{gamma}, 10 {mu}M NP produced significant decrease (total inhibition for AhR2{gamma}) and the presence of NP produced apparent PCB126 concentration-specific modulation of all AhR isotypes. A second experiment was performed to evaluate the involvement of ER isoforms in PCB126 mediated estrogenicity. Here, cells were treated with the different concentrations of PCB126, alone or in combination with ICI182,780 (ICI) and sampled at 12, 24 and 48 h post-exposure. Our data showed that PCB126 produced a time- and concentration-specific increase of ER{alpha} and Vtg expressions and these responses were decreased in the presence of ICI. In general, these responses show a direct PCB126 induced transcriptional activation of ER{alpha} and estrogenic responses in the absence of ER agonists. Although not conclusive, our findings represent the first study showing the activation of estrogenic responses by a dioxin-like PCB in fish in vitro system and resemble the 'ER-hijacking' hypothesis that was recently proposed. Thus, the direct estrogenic actions of PCB126 observed in the present study add new insight on the mechanisms of ER-AhR cross-talk, prompting a new wave of discussion on whether AhR-mediated anti-estrogenicity is an exception rather than rule of action.« less

  2. Characterization of the synthesis and expression of the GTA-kinase from transformed and normal rodent cells.

    PubMed

    Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G

    1994-08-02

    The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.

  3. Prostaglandin G/H synthase (PGHS)-2 expression in bovine myometrium: influence of steroid hormones and PGHS inhibitors.

    PubMed

    Doualla-Bell, F; Guay, J M; Bourgoin, S; Fortier, M A

    1998-12-01

    Prostaglandins (PGs) are important mediators regulating uterine functions during the reproductive process. The objective of this study was to examine, in myocytes from the circular and longitudinal layers of bovine myometrium, the relative levels of mRNA and proteins corresponding to the gene expression of key enzymes (phospholipase A2; prostaglandin G/H synthase-1 [PGHS-1]; prostaglandin G/H synthase-2 [PGHS-2]; prostaglandin I2 synthase) involved in PG biosynthesis. We examined the influence of estradiol-17beta and progesterone on the expression and activity of these enzymes. Treatment of myocytes with progesterone (P4: 10 nM, 24 h) in the absence or presence of estradiol-17beta (E2: 1 nM, 72 h) suppressed PG biosynthesis by approximately 60% in both myometrial layers. No significant effect was observed after E2 treatment. The combined effect of E2 and P4 on PG accumulation was correlated with the modulation of PGHS-2 protein and mRNA levels in the two myometrial layers without affecting other enzymes of the PG cascade. Selective or nonselective inhibition of PGHS activity with CGP 28238 (PGHS-2-specific; a product from Ciba-Geigy: 6-[2, 4-difluorophenoxy]-5-methyl-sulfonylamino-1-indanone) or indomethacin (PGHS-1 and -2) reduced prostacyclin accumulation (measured as 6-keto-PGF1alpha in the culture medium) in a dose-dependent manner in the two myometrial layers. A significant inhibitory effect was obtained at a low concentration of indomethacin (1 nM, p < 0.05) compared to CGP 28238 (10 nM, p < 0. 05). In both myometrial layers, the maximal effect of indomethacin and/or CGP 28238 on PG accumulation was observed at 100 nM and represented 85% and 65% inhibition, respectively. In the presence of phorbol 12-myristate (100 nM), CGP 28238 (10 nM) significantly suppressed PGHS-2 mRNA level by 44.80 +/- 7.67% (p < 0.01) and 27.83 +/- 7.62% (p < 0.05) in the longitudinal and circular layer, respectively. In contrast, indomethacin did not have any significant effect. These data constitute the first quantitative analysis of key enzymes involved in PG biosynthesis in separated myometrial layers. Furthermore, the results provide interesting information on the CGP 28238 drug modulating both enzymatic activity and mRNA expression of PGHS-2.

  4. Differential neonatal imprinting and regulation by estrogen of estrogen receptor subtypes alpha and beta and of the truncated estrogen receptor product (TERP-1) mRNA expression in the male rat pituitary.

    PubMed

    Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E

    2001-11-01

    Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat pituitary, and is affected by neonatal estrogen imprinting and acute estrogen treatment. Regulation of TERP-1 expression by neonatal or acute estrogen treatment may thus represent an additional tuning mechanism for estrogen actions in the male rat pituitary. Copyright 2001 S. Karger AG, Basel

  5. Enhanced endothelial cell senescence by lithium-induced matrix metalloproteinase-1 expression.

    PubMed

    Struewing, Ian T; Durham, Samuel N; Barnett, Corey D; Mao, Catherine D

    2009-06-26

    Endothelial cell (EC) senescence and dysfunction occurring after chronic injury and inflammation are highly associated with the development and progression of cardiovascular diseases. However, the factors involved in the establishment of EC senescence remain poorly understood. We have previously shown that lithium, an inhibitor of glycogen synthase kinase (GSK)-3beta and activator of the Wnt/beta-catenin signaling pathway, induces an EC senescent-like phenotype. Herein, we show that lithium induces a rapid and pronounced up-regulation of the matrix metalloproteinase (MMP)-1, an inflammation and senescent cell marker, at the mRNA and protein levels, whereas the induction of two other senescent cell markers is either weak (interleukin-8) or delayed (plasminogen activator inhibitor-1). Lithium effect on MMP-1 expression is also specific among other MMPs and not mediated by GSK3beta inhibition. Lithium affects MMP-1 expression mainly at the transcriptional level but neither the AP1/Ets regulatory sites nor the redox sensitive (-1607/2G) site in MMP-1 promoter are involved in lithium-dependent MMP-1 regulation. However, down-regulation of p53, a target of lithium in EC, dampens both basal and lithium-induced MMP-1 expression, which further links MMP-1 up-regulation with the establishment of cell senescence. Although increased MMP-1 levels are usually associated with angiogenesis in enabled proliferative EC, the exogenous addition of activated MMP-1 on lithium- arrested EC increases the number of EC positive for the senescent-associated-beta-galactosidase marker. Conversely, down-regulation of MMP-1 expression by small interfering RNAs blunts the lithium-dependent increase in senescent-associated-beta-galactosidase positive cells. Altogether our data indicate that lithium-induced MMP-1 may participate in the reinforcement of EC senescence and reveal a novel mechanism for lithium-induced tissue remodeling.

  6. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes.

    PubMed

    Leboy, P S; Vaias, L; Uschmann, B; Golub, E; Adams, S L; Pacifici, M

    1989-10-15

    During the process of endochondral bone formation, proliferating chondrocytes give rise to hypertrophic chondrocytes, which then deposit a mineralized matrix to form calcified cartilage. Chondrocyte hypertrophy and matrix mineralization are associated with expression of type X collagen and the induction of high levels of the bone/liver/kidney isozyme of alkaline phosphatase. To determine what role vitamin C plays in these processes, chondrocytes derived from the cephalic portion of 14-day chick embryo sternae were grown in the absence or presence of exogenous ascorbic acid. Control untreated cells displayed low levels of type X collagen and alkaline phosphatase activity throughout the culture period. However, cells grown in the presence of ascorbic acid produced increasing levels of alkaline phosphatase activity and type X collagen mRNA and protein. Both alkaline phosphatase activity and type X collagen mRNA levels began to increase within 24 h of ascorbate treatment; by 9 days, the levels of both alkaline phosphatase activity and type X collagen mRNA were 15-20-fold higher than in non-ascorbate-treated cells. Ascorbate treatment also increased calcium deposition in the cell layer and decreased the levels of types II and IX collagen mRNAs; these effects lagged significantly behind the elevation of alkaline phosphatase and type X collagen. Addition of beta-glycerophosphate to the medium increased calcium deposition in the presence of ascorbate but had no effect on levels of collagen mRNAs or alkaline phosphatase. The results suggest that vitamin C may play an important role in endochondral bone formation by modulating gene expression in hypertrophic chondrocytes.

  7. Identification and expression analysis of peroxisome proliferator-activated receptors cDNA in a reptile, the leopard gecko (Eublepharis macularius).

    PubMed

    Kato, Keisuke; Oka, Yoshitaka; Park, Min Kyun

    2008-05-01

    Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.

  8. IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha.

    PubMed

    Gounni, A S; Nutku, E; Koussih, L; Aris, F; Louahed, J; Levitt, R C; Nicolaides, N C; Hamid, Q

    2000-09-01

    IL-9 is a pleiotropic cytokine that exhibits biologic activity on cells of diverse hemopoietic lineage. IL-9 stimulates the proliferation of activated T cells, enhances the production of IgE from B cells, and promotes the proliferation and differentiation of mast cells and hematopoietic progenitors. In this study we evaluated the expression of IL-9 messenger (m)RNA and protein by human peripheral blood eosinophils. We also investigated the role of IL-1beta and TNF-alpha in the release of IL-9 from human peripheral blood eosinophils. RT-PCR, in situ hybridization, and immunocytochemistry were used to investigate the presence of IL-9 mRNA and protein in human peripheral blood eosinophils from asthmatic patients and normal control subjects. Furthermore, biologic assay was used to investigate the release of IL-9 protein from IL-1beta- or TNF-alpha-stimulated eosinophils in vitro. RT-PCR analysis showed the presence of IL-9 mRNA in human peripheral blood eosinophil RNA preparations from subjects with atopic asthma, as well as in the eosinophil-differentiated HL-60 cell line. By using in situ hybridization, a significant difference (P <.01) in IL-9 mRNA expression was detected in human peripheral blood eosinophils freshly isolated from asthmatic subjects compared with those isolated from normal control subjects. Furthermore, the percentage of IL-9 immunoreactive eosinophils from asthmatic patients was increased compared with that found in normal control subjects (P <.01). We also demonstrate that cultured human peripheral blood eosinophils from asthmatic subjects synthesize and release IL-9 protein, which is upregulated on stimulation with TNF-alpha and IL-1beta. Human eosinophils express biologically active IL-9, which suggests that these cells may influence the recruitment and activation of effector cells linked to the pathogenesis of allergic disease. These observations provide further evidence for the role of eosinophils in regulating airway immune responses.

  9. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes.

    PubMed

    Natsu-Ume, Takashi; Majima, Tokifumi; Reno, Carol; Shrive, Nigel G; Frank, Cyril B; Hart, David A

    2005-07-01

    The purpose of this study was to examine the influence of removing menisci from their in vivo loading environment on gene expression patterns and to determine whether in vitro loading can maintain the tissues in their in vivo phenotype. Lateral and medial rabbit meniscal explants from one leg were cultured in vitro and subjected to intermittent cyclic hydrostatic pressure (CHP) of 1 MPa at 0.5 Hz for 1 min and a rest period of 14 min (4 h of culture). The contralateral menisci were incubated at atmospheric pressure for 4 h. Menisci from both legs of another set of rabbits were frozen immediately to yield time zero values reflective of in vivo mRNA levels. Total RNA was isolated from all groups and processed for reverse transcription-polymerase chain reaction analysis for a subset of relevant genes (matrix molecules, cytokines, proteinases and inhibitors, enzymes). It was found that mRNA levels for MMP-1, MMP-3, TIMPs, iNOS, COX-2, interleukin-1beta in both menisci, and interleukin-6 in medial menisci were significantly elevated in tissues cultured under nonloading conditions compared to the time zero controls. Subjecting menisci to CHP significantly prevented these increases in mRNA levels for nearly all of the indicated molecules. In contrast, there were no significant differences in mRNA levels for collagens, biglycan, MMP-13, or TIMP-4 between the time zero values and those cultured under either nonloading or loading conditions. These studies demonstrate that removing rabbit menisci from their normal in vivo mechanical environment leads to an apparent up-regulation of a subset of potent effector molecules that could mediate catabolic activities, and that in vitro CHP can largely prevent this apparent up-regulation.

  10. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  11. Congenitally learned helpless rats show abnormalities in intracellular signaling.

    PubMed

    Kohen, Ruth; Neumaier, John F; Hamblin, Mark W; Edwards, Emmeline

    2003-03-15

    Affective disorders and the drugs used to treat them lead to changes in intracellular signaling. We used a genetic animal model to investigate to what extent changes in intracellular signal transduction confer a vulnerability to mood or anxiety disorders. Levels of gene expression in a selectively bred strain of rats with a high vulnerability to develop congenitally learned helplessness (cLH), a strain highly resistant to the same behavior (cNLH) and outbred Sprague-Dawley (SD) control animals were compared using quantitative reverse transcription polymerase chain reaction. Congenitally learned helpless animals had a 24%-30% reduced expression of the cyclic adenosine monophosphate response element binding protein messenger ribonucleic acid (mRNA) in the hippocampus and a 40%-41% increased level of the antiapoptotic protein bcl-2 mRNA in the prefrontal cortex compared to cNLH and SD rats. Other significant changes included changes in the expression levels of the alpha catalytic subunit of protein kinase A, glycogen synthase kinase 3beta, and protein kinase C epsilon. Congenitally learned helpless animals show evidence of altered signal transduction and regulation of apoptosis compared to cNLH and SD control animals.

  12. Activation of ERK and JNK signaling pathways by mycotoxin citrinin in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.-H.; Yu, F.-Y.; Wang, L.-T.

    2009-06-15

    Mycotoxin citrinin (CTN) is commonly found in foods and feeds that are contaminated/inoculated with Penicillium, Aspergillus and Monascus species. The exposure of human embryonic kidney (HEK293) and HeLa cells to CTN resulted in a dose-dependent increase in the phosphorylation of two major mitogen-activated protein kinases (MAPKs), ERK1/2 and JNK. In HEK293 cultures, the administering of CTN increased both the mRNA and protein levels of egr-1, c-fos and c-jun genes; additionally, the ERK1/2 pathway contributed to the upregulation of Egr-1 and c-Fos protein expression. CTN treatment also induced the transcription activity of Egr-1 and AP-1 proteins, as evidenced by luciferase reportermore » assays. Bioinformatic analyses indicated two genes Gadd45{beta} and MMP3 have Egr-1 and AP-1 response elements in their promoters, respectively. Furthermore, co-exposure of HEK293 cells to CTN and MAPK pathway inhibitors demonstrated that CTN increased the levels of Gadd45{beta} mRNA through ERK1/2 signaling pathway and up-regulated the MMP3 transcripts majorly via JNK pathway. Finally, CTN-triggered caspase 3 activity was significantly reduced in the presence of MAPK inhibitors. Our results suggest that CTN positively regulates ERK1/2 and JNK pathways as well as their downstream effectors in human cells; activated MAPK pathways are also involved in CTN-induced apoptosis.« less

  13. Sex steroid hormone metabolism takes place in human ocular cells.

    PubMed

    Coca-Prados, Miguel; Ghosh, Sikha; Wang, Yugang; Escribano, Julio; Herrala, Annakaisa; Vihko, Pirkko

    2003-08-01

    Steroids are potentially important mediators in the pathophysiology of ocular diseases. In this study, we report on the gene expression in the human eye of a group of enzymes, the 17beta-hydroxysteroid dehydrogenases (17HSDs), involved in the biosynthesis and inactivation of sex steroid hormones. In the eye, the ciliary epithelium, a neuroendocrine secretory epithelium, co-expresses the highest levels of 17HSD2 and 5 mRNAs, and in lesser level 17HSD7 mRNA. The regulation of gene expression of these enzymes was investigated in vitro in cell lines, ODM-C4 and chronic open glaucoma (GCE), used as cell models of the human ciliary epithelium. The estrogen, 17beta-estradiol (10(-7) M) and androgen agonist, R1881 (10(-8) M) elicited in ODM-C4 and GCE cells over a 24 h time course a robust up-regulation of 17HSD7 mRNA expression. 17HSD2 was up-regulated by estradiol in ODM-C4 cells, but not in GCE cells. Under steady-state conditions, ODM-C4 cells exhibited a predominant 17HSD2 oxidative enzymatic activity. In contrast, 17HSD2 activity was low or absent in GCE cells. Our collective data suggest that cultured human ciliary epithelial cells are able to metabolize estrogen, androgen and progesterone, and that 17HSD2 and 7 in these cells are sex steroid hormone-responsive genes and 17HSD7 is responsible to keep on intra/paracrine estrogenic milieu.

  14. Chronic Sleep Restriction Induces Cognitive Deficits and Cortical Beta-Amyloid Deposition in Mice via BACE1-Antisense Activation.

    PubMed

    Zhao, Hong-Yi; Wu, Hui-Juan; He, Jia-Lin; Zhuang, Jian-Hua; Liu, Zhen-Yu; Huang, Liu-Qing; Zhao, Zhong-Xin

    2017-03-01

    To clarify the correlation between chronic sleep restriction (CSR) and sporadic Alzheimer disease (AD), we determined in wild-type mice the impact of CSR, on cognitive performance, beta-amyloid (Aβ) peptides, and its feed-forward regulators regarding AD pathogenesis. Sixteen nine-month-old C57BL/6 male mice were equally divided into the CSR and control groups. CSR was achieved by application of a slowly rotating drum for 2 months. The Morris water maze test was used to assess cognitive impairment. The concentrations of Aβ peptides, amyloid precursor protein (APP) and β-secretase 1 (BACE1), and the mRNA levels of BACE1 and BACE1-antisense (BACE1-AS) were measured. Following CSR, impairments of spatial learning and memory consolidation were observed in the mice, accompanied by Aβ plaque deposition and an increased Aβ concentration in the prefrontal and temporal lobe cortex. CSR also upregulated the β-secretase-induced cleavage of APP by increasing the protein and mRNA levels of BACE1, particularly the BACE1-AS. This study shows that a CSR accelerates AD pathogenesis in wild-type mice. An upregulation of the BACE1 pathway appears to participate in both cortical Aβ plaque deposition and memory impairment caused by CSR. BACE1-AS is likely activated to initiate a cascade of events that lead to AD pathogenesis. Our study provides, therefore, a molecular mechanism that links CSR to sporadic AD. © 2017 John Wiley & Sons Ltd.

  15. Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma.

    PubMed

    Ogata, M; Naito, Z; Tanaka, S; Moriyama, Y; Asano, G

    2000-06-01

    In the present study we examined the localization and overexpression of heat shock proteins (hsps), mainly hsp90, in pancreatic carcinoma tissue compared with control tissue (including chronic pancreatitis and normal pancreas tissue), with the aid of immunohistochemical staining, in situ hybridization and reverse transcriptase polymerase chain reaction. Hsp90 alpha mRNA was overexpressed more highly in pancreatic carcinoma than in the control tissue. The proliferating-cell-nuclear-antigen labeling index was also high in pancreatic carcinoma tissue compared with the other tissue. These findings suggest that the overexpression of hsp90 alpha mRNA in carcinomas may be correlated with cell proliferation. However, hsp90 beta was constitutively overexpressed almost equally in all groups of pancreatic tissue including pancreatic carcinoma, chronic pancreatitis and normal pancreas tissue. Immunohistochemical staining demonstrated a differentiation in the expression of hsp90 between histological types of pancreatic carcinoma. These findings suggest that hsp90 alpha is involved in carcinogenesis and that hsp90 beta is correlated to structural conformation. Hsp90 alpha and hsp90 beta seem to perform different functions in tissue containing malignant cells. P53, MDM2 and WAF1, that were cell-cycle-related oncogene product were more strongly expressed in the nuclei of the cancer cells of the cancer tissue. Especially, MDM2 was more strongly expressed in mucinous carcinoma and the mucin secreting tissues surrounding pancreatic carcinoma tissue. The expression of MDM2 protein might also be correlated to secretion systems during structural conformation and be correlated to hsp90 beta.

  16. Loss of membranous Ep-CAM in budding colorectal carcinoma cells.

    PubMed

    Gosens, Marleen J E M; van Kempen, Léon C L; van de Velde, Cornelis J H; van Krieken, J Han J M; Nagtegaal, Iris D

    2007-02-01

    Tumor budding is a histological feature that reflects loss of adhesion of tumor cells and is associated with locoregional metastasis of colorectal carcinoma. Although nuclear localization of beta-catenin is associated with tumor budding, the molecular mechanism remains largely elusive. In this study, we hypothesize that the epithelial cell adhesion molecule (Ep-CAM) is involved in tumor budding. In order to address this question, we performed immunohistochemistry on Ep-CAM using three different antibodies (monoclonal antibodies Ber-ep4 and 311-1K1 and a polyclonal antibody) and a double staining on beta-catenin and Ep-CAM. In addition, Ep-CAM mRNA was monitored with mRNA in situ hybridization. Subsequently, we determined the effect of Ep-CAM staining patterns on tumor spread in rectal cancer. In contrast to the tumor mass, budding cells of colorectal carcinoma displayed lack of membranous but highly increased cytoplasmic Ep-CAM staining and nuclear translocation of beta-catenin. mRNA in situ hybridization suggested no differences in Ep-CAM expression between the invasive front and the tumor mass. Importantly, reduced Ep-CAM staining at the invasive margin of rectal tumor specimens (n=133) correlated significantly with tumor budding, tumor grade and an increased risk of local recurrence (P=0.001, P=0.04 and P=0.03, respectively). These data demonstrate abnormal processing of Ep-CAM at the invasive margin of colorectal carcinomas. Our observations indicate that loss of membranous Ep-CAM is associated with nuclear beta-catenin localization and suggest that this contributes to reduced cell-cell adhesions, increased migratory potential and tumor budding.

  17. Interleukin-1beta contributes via nitric oxide to the upregulation and functional activity of the zinc transporter Zip14 (Slc39a14) in murine hepatocytes.

    PubMed

    Lichten, Louis A; Liuzzi, Juan P; Cousins, Robert J

    2009-04-01

    Zinc metabolism during chronic disease is dysregulated by inflammatory cytokines. Experiments with IL-6 knockout mice show that LPS regulates expression of the zinc transporter, Zip14, by a mechanism that is partially independent of IL-6. The LPS-induced model of sepsis may occur by a mechanism signaled by nitric oxide (NO) as a secondary messenger. To address the hypothesis that NO can modulate Zip14 expression, we treated primary hepatocytes from wild-type mice with the NO donor S-nitroso N-acetyl penicillamine (SNAP). After treatment with SNAP, steady-state Zip14 mRNA levels displayed a maximal increase after 8 h and a concomitant increase in the transcriptional activity of the gene. Chromatin immunoprecipitation documented the kinetics of activator protein (AP)-1 and RNA polymerase II association with the Zip14 promoter after NO exposure, indicating a role of AP-1 in transcription of Zip14. We then stimulated the primary murine hepatocytes with IL-1beta, an LPS-induced proinflammatory cytokine and a potent activator of inducible NO synthase (iNOS) and NO production. In support of our hypothesis, IL-1beta treatment led to a threefold increase in Zip14 mRNA and enhanced zinc transport, as measured with a zinc fluorophore, in wild-type but not iNOS-/- hepatocytes. These data suggest that signaling pathways activated by NO are factors in the upregulation of Zip14, which in turn mediates hepatic zinc accumulation and hypozincemia during inflammation and sepsis.

  18. Tachykinin substance P depletion by capsaicin exacerbates inflammatory response to sidestream cigarette smoke in rats.

    PubMed

    Sun, Nina N; Wong, Simon S; Keith, Ingegerd; Witten, Mark L

    2004-09-01

    To evaluate the role of substance P (SP)-containing C-fiber nerves in the development of the inflammatory responses to sidestream cigarette smoke (SSCS), female Fischer 344 rats were randomly assigned into vehicle and capsaicin groups, respectively. Then, half the number in each group (N = 24) was nose-only exposed to air or 0.4 mg/m3 total particulate matter of SSCS for 4 h/day for 7 days. Exposure of the vehicle rats to SSCS induced obvious pulmonary neurogenic inflammation as indicated by elevations in plasma extravasation and proinflammatory cytokine secretions [interieukin (IL)-1beta and IL-12]. In addition, except for SP release, SSCS exposure significantly induced the tachykininergic toxicities at the gene level: upregulation of beta-preprotachykinin-I (beta-PPT-I) mRNA. However, neither SSCS exposure nor capsaicin pretreatment affects the immunolabeling density of neurokinin-1 receptor (NK-1R) in airway epithelium. SSCS also significantly inactivated pulmonary neutral endopeptidase (NEP) in lung tissue. Moreover, pretreatment with capsaicin significantly exacerbated the SSCS-induced inflammatory responses mentioned above as well as the release of plasma protein. Considering that capsaicin did not affect the normal control baselines of these parameters except for a decrease in NK-1R mRNA, we conclude that the degree of SSCS-induced inflammatory response was exacerbated because of the depletion of stored SP and/or inactivation of capsaicin-sensitive C-fiber nerves. Our data suggest the loss of afferent tachykinin SP signaling may lead to dysfunction of the sensory C-fiber nerve reflexes during exposure to SSCS, suggesting that SP serves a protective role.

  19. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus.

    PubMed

    McIntyre, Christa K; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D; Steward, Oswald; Guzowski, John F; McGaugh, James L

    2005-07-26

    Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the beta-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance.

  20. Decreased hepatocyte membrane potential differences and GABAA-beta3 expression in human hepatocellular carcinoma.

    PubMed

    Minuk, Gerald Y; Zhang, Manna; Gong, Yuewen; Minuk, Leonard; Dienes, Hans; Pettigrew, Norman; Kew, Michael; Lipschitz, Jeremy; Sun, Dongfeng

    2007-03-01

    To determine whether hepatocyte membrane potential differences (PDs) are depolarized in human HCC and whether depolarization is associated with changes in GABAA receptor expression, hepatocyte PDs and gamma-aminobutyric acid (GABA)A receptor messenger RNA (mRNA) and protein expression were documented in HCC tissues via microelectrode impalement, real-time reverse-transcriptase polymerase chain reaction, and Western blot analysis, respectively. HCC tissues were significantly depolarized (-19.8+/-1.3 versus -25.9+/-3.2 mV, respectively [P<0.05]), and GABAA-beta3 expression was down-regulated (GABAA-beta3 mRNA and protein expression in HCC; 5,693+/-1,385 and 0.29+/-0.11 versus 11,046+/-4,979 copies/100 mg RNA and 0.62+/-0.16 optical density in adjacent tumor tissues, respectively [P=0.002 and P<0.0001, respectively]) when compared with adjacent nontumor tissues. To determine the physiological relevance of the down-regulation, human malignant hepatocytes deficient in GABAA-beta3 receptor expression (Huh-7 cells) were transfected with GABAA-beta3 complementary DNA (cDNA) or vector alone and injected into nu/nu nude mice (n=16-17 group). Tumors developed after a mean (+/-SD) of 51+/-6 days (range: 41-60 days) in 7/16 (44%) mice injected with vector-transfected cells and 70+/-12 days (range: 59-86 days) in 4/17 (24%) mice injected with GABAA-beta3 cDNA-transfected cells (P<0.005). The results of this study indicate that (1) human HCC tissues are depolarized compared with adjacent nontumor tissues, (2) hepatic GABAA-beta3 receptor expression is down-regulated in human HCC, and (3) restoration of GABAA-beta3 receptor expression results in attenuated in vivo tumor growth in nude mice.

  1. Anti-inflammatory effect of linear polarized infrared irradiation on interleukin-1beta-induced chemokine production in MH7A rheumatoid synovial cells.

    PubMed

    Shibata, Yasuko; Ogura, Naomi; Yamashiro, Keisuke; Takashiba, Shogo; Kondoh, Toshirou; Miyazawa, Keiji; Matsui, Masaru; Abiko, Yoshimitsu

    2005-12-01

    We examined the anti-inflammatory effect of infrared linear polarized light irradiation on the MH7A rheumatoid fibroblast-like synoviocytes (FLS) stimulated with the proinflammatory cytokine interleukin (IL)-1beta. Expression of messenger ribonucleic acids (mRNAs) encoding IL-8, RANTES (regulated upon activation, normal T cell expressed and secreted), growth-related gene alpha (GROalpha), and macrophage inflammatory protein-1alpha (MIP1alpha) was measured using real-time reverse transcription polymerase chain reaction, and the secreted proteins were measured in the conditioned media using enzyme-linked immunosorbent assays. We found that irradiation with linear polarized infrared light suppressed IL-1beta-induced expression of IL-8 mRNA and, correspondingly, the synthesis and release of IL-8 protein in MH7A cells. This anti-inflammatory effect was equivalent to that obtained with the glucocorticoid dexamethasone. Likewise, irradiation suppressed the IL-1beta-induced expression of RANTES and GROalpha mRNA. These results suggest that the irradiation of the areas around the articular surfaces of joints affected by rheumatoid arthritis (RA) using linear polarized light may represent a useful new approach to treatment.

  2. Protein structure and the sequential structure of mRNA: alpha-helix and beta-sheet signals at the nucleotide level.

    PubMed

    Brunak, S; Engelbrecht, J

    1996-06-01

    A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed. We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting protein. The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain. A complete search for GenBank nucleotide sequences coding for structural entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment. By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets. These signals do not originate from the clustering of rare codons, but from the similarity of codons coding for very abundant amino acid residues at the N- and C-termini of helices and sheets. No correlation between the positioning of rare codons and the location of structural units was found. The mRNA signals were also compared with conserved nucleotide features of 16S-like ribosomal RNA sequences and related to mechanisms for maintaining the correct reading frame by the ribosome.

  3. Promoter-dependent and -independent activation of insulin-like growth factor binding protein-5 gene expression by prostaglandin E2 in primary rat osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Casinghino, S.; Mittanck, D. W.; Ji, C. H.; Centrella, M.; Rotwein, P.

    1996-01-01

    Insulin-like growth factor (IGF) action is mediated by high affinity cell surface IGF receptors and modulated by a family of secreted IGF binding proteins (IGFBPs). IGFBP-5, the most conserved of six IGFBPs characterized to date, uniquely potentiates the anabolic actions of IGF-I for skeletal cells. In osteoblasts, IGFBP-5 production is stimulated by prostaglandin E2 (PGE2), a local factor that mediates certain effects induced by parathyroid hormone, cytokines such as interleukin-1 and transforming growth factor-beta, and mechanical strain. In this study, we show that transcriptional and post-transcriptional events initiated by PGE2 collaborate to enhance IGFBP-5 gene expression in primary fetal rat osteoblast cultures. PGE2 treatment stimulated up to a 7-fold rise in steady-state levels of IGFBP-5 mRNA throughout 32 h of incubation. Analysis of nascent IGFBP-5 mRNA suggested that PGE2 had only a modest stimulatory effect on IGFBP-5 gene transcription, and transient transfection studies with IGFBP-5 promoter-reporter genes confirmed that PGE2 enhanced promoter activity by approximately 2-fold. Similar stimulatory effects were seen with forskolin. A DNA fragment with only 51 base pairs of the 5'-flanking sequence retained hormonal responsiveness, which may be mediated by a binding site for transcription factor AP-2 located at positions -44 to -36 in the proximal IGFBP-5 promoter. Incubation of osteoblasts with the mRNA transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that PGE2 enhanced IGFBP-5 mRNA stability by 2-fold, increasing the t1/2 from 9 to 18 h. The effects of PGE2 on steady-state IGFBP-5 transcripts were abrogated by preincubating cells with cycloheximide, indicating that the effects of PGE2 on both gene transcription and mRNA stability required ongoing protein synthesis. Therefore, both promoter-dependent and -independent pathways converge to enhance IGFBP-5 gene expression in response to PGE2 in osteoblasts.

  4. Expression of gibberellin 3 beta-hydroxylase gene in a gravi-response mutant, weeping Japanese flowering cherry

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Nakagawa, Yuriko; Nyunoya, Hiroshi; Nakamura, Teruko

    2004-01-01

    Expressions of the gibberellin biosynthesis gene were investigated in a normal upright type and a gravi-response mutant, a weeping type of Japanese flowering cherry (Prunus spachiana), that is unable to support its own weight and elongates downward. A segment of the gibberellin 3 beta-hydroxylase cDNA of Prunus spachiana (Ps3ox), which is responsible for active gibberellin synthesis, was amplified by using real-time RT-PCR. The content of Ps3ox mRNA in the weeping type was much greater than that in the upright type, while the endogenous gibberellin level was much higher in the elongating zone of the weeping type. These results suggest that the amount and distribution of synthesized gibberellin regulate secondary xylem formation, and the unbalanced distribution of gibberellin affects the gravi-response of the Prunus tree.

  5. [Up regulation of phenylacetate to glioma homeobox gene expression].

    PubMed

    Tian, Yu; Yang, Chaohua; Zhao, Conghai

    2002-03-01

    Even though phenylacetate (PA) bas been shown to inhibit the growth and induce differentiation in rat C6 glioma cell line, its mechanisms are still poorly understood. This study is aimed to identify which Hox gene is related to glioma and to observe the change in expression on mRNA level as treated by phenylasetate. Twenty-two kinds of Hox gene were divided into 3 groups according to their primer sequence. Semiquantitative reverse transcription- polymerase chain reaction (RT-PCR) was used to investigate the mRNA expression of Hox gene groups and some Hox gene in rat C6 glioma cell line following differentiation induced by PA. The level of Hox gene expression was expressed as ratio expression rate (RER) of Hox gene/beta-actin according to computer image analysis and the difference between C6 cells and PA treated C6 cells was analyzed by student t-test. It was found that Hox genes matching to primers P2 were mildly expressed in C6 cells and the expression of HoxB2 mRNA was significantly up-regulated in PA treated C6 cells (P < 0.001). The weak expression of HoxB2 may be involved in glioma origin and the mechanisms of PA action are correlated with transcription process in the glioma cells.

  6. Estrogen receptors and biologic response in rat parathyroid tissue and C cells.

    PubMed Central

    Naveh-Many, T; Almogi, G; Livni, N; Silver, J

    1992-01-01

    The expression of the PTH and calcitonin genes is dramatically decreased by 1,25(OH)2D3 in vivo, and the PTH gene expression is increased by hypocalcemia. We have now studied the effect of estrogens on the expression of these genes in vivo. 17 beta-Estradiol, given to ovariectomized rats, led to a fourfold increase in PTH mRNA and calcitonin mRNA levels. These effects occurred 24 h after single injections of 37-145 nmol estradiol, or after constant infusions of 12 pmol/d for 1 or 2 wk, where there was no effect on serum calcium levels. The estrogen receptor mRNA was demonstrated in the thyroparathyroid tissue by polymerase chain reaction. The estrogen binding was localized to the parathyroid and C cells by immunohistochemistry. Uterus weight was increased by repeated larger doses (73 nmol/d x 7) of estradiol, but not by the small doses (12 pmol/d for 1 or 2 wk) which were effective on the PTH and calcitonin genes, suggesting a sensitive endocrine effect. These results confirm that the parathyroid and C cells are target organs for estrogen, leading to an increased expression of PTH and calcitonin, which by their combined anabolic effect on bone would help prevent osteoporosis. Images PMID:1469095

  7. Genome-wide analysis of DNA methylation variations caused by chronic glucolipotoxicity in beta-cells.

    PubMed

    Hu, Y; Xu, X-H; He, K; Zhang, L-L; Wang, S-K; Pan, Y-Q; He, B-S; Feng, T-T; Mao, X-M

    2014-02-01

    There is a growing body of literature suggesting the role of interactions between genes and the environment in development of type 2 diabetes mellitus (T2DM). However, the interplay between environment and genetic in developing and progressing T2MD is not fully understood. To determine the effects of high-glucose-lipid on the status of DNA methylation in beta cells, and clarify the mechanism of glucolipotoxicity on beta-cell deterioration, the DNA methylation profile was detected in beta-cells cultured with high-glucose-lipid medium.We utilized a high throughput NimbleGen RN34 CpG Island & Promoter Microarray to investigate the DNA methylation profile in beta-cells cultured with high-glucose-lipid medium. To validate the results of microarray, the immunoprecipitation (MeDIP) PCR was used to test the methylation status of some selected genes. The mRNA and protein expression of insulin and Tcf7l2 in these cells were quantified by RT-PCR and western blot, respectively.We have identified a lot of loci which experienced aberrant DNA methylation in beta-cells cultured with high-glucose-lipid medium. The results of MeDIP PCR were consistency to the microarray. An opposite regulation in transcription and translation of Tcf7l2 gene was found. Furthermore, the insulin mRNA and protein expression in beta-cells also decreased after cultured with high-glucose-lipid medium compared with the control cells.We conclude that chronic glucolipotoxicity could induce aberrant DNA methylation of some genes and may affect these genes expression in beta-cells, which might contribute to beta-cell function failure in T2DM and be helpful to explain, at least partially, the mechanism of glucolipotoxicity on beta-cells deterioration. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  8. Induction of an interleukin-1 receptor (IL-1R) on monocytic cells. Evidence that the receptor is not encoded by a T cell-type IL-1R mRNA.

    PubMed

    Spriggs, M K; Lioubin, P J; Slack, J; Dower, S K; Jonas, U; Cosman, D; Sims, J E; Bauer, J

    1990-12-25

    Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com; Yang, Chengwei; Qian, Yu

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interferencemore » was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.« less

  10. Expression of estrogen receptors-alpha and -beta in the pregnant ovine uterine artery endothelial cells in vivo and in vitro.

    PubMed

    Liao, Wu Xiang; Magness, Ronald R; Chen, Dong-Bao

    2005-03-01

    Estrogen is recognized to be one of the driving forces in increases in uterine blood flow through both rapid and delayed actions via binding to its receptors, ER alpha and ER beta at the uterine artery (UA) wall, and especially in UA endothelium (UAE). However, information regarding estrogen receptor (ER) expression in UAE is limited. This study was designed to test whether ERs are expressed in UAE in vivo, and if they are, whether these receptors are maintained in cultured UA endothelial cells (UAECs) in vitro. By using immunohistochemical and Western blot analyses, we clearly demonstrated ER alpha and ER beta protein expression in pregnant (Days 120-130) sheep UA and UAE in vivo and as well as cultured UAECs in vitro. Reverse transcription-polymerase chain reaction (RT-PCR) amplified both ER alpha and ER beta mRNAs in UA, UAE, and UAECs. Of interest, a truncated ER beta (ER beta2) variant due to a splicing deletion of exon 5 of the ER beta gene was detected in these cells. Quantitative RT-PCR analysis revealed that ER alpha mRNA levels are approximately 8-fold (P < 0.01) higher than that of ER beta in UAECs, indicating that ER alpha may play a more important role than ER beta in the UAEC responses to estrogen. Fluorescence immunolabeling analysis showed that ER alpha is present in both nuclei and plasma membranes in UAECs, and the latter is also colocalized with caveolin-1. The membrane and nuclear ER alpha presumably participate in rapid and delayed responses, respectively, to estrogen on UAE. Taken together, our data demonstrated that UAE is a direct target of estrogen actions and that the UAEC culture model we established is suitable for dissecting estrogen actions on UAE.

  11. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.

    PubMed

    Yang, Junwei; Dai, Chunsun; Liu, Youhua

    2005-01-01

    Hepatocyte growth factor (HGF) is a potent antifibrotic cytokine that blocks tubular epithelial to mesenchymal transition (EMT) induced by TGF-beta1. However, the underlying mechanism remains largely unknown. This study investigated the signaling events that lead to HGF blockade of the TGF-beta1-initiated EMT. Incubation of human kidney epithelial cells HKC with HGF only marginally affected the expression of TGF-beta1 and its type I and type II receptors, suggesting that disruption of TGF-beta1 signaling likely plays a critical role in mediating HGF inhibition of TGF-beta1 action. However, HGF neither affected TGF-beta1-induced Smad-2 phosphorylation and its subsequent nuclear translocation nor influenced the expression of inhibitory Smad-6 and -7 in tubular epithelial cells. HGF specifically induced the expression of Smad transcriptional co-repressor SnoN but not Ski and TG-interacting factor at both mRNA and protein levels in HKC cells. SnoN physically interacted with activated Smad-2 by forming transcriptionally inactive complex and overrode the profibrotic action of TGF-beta1. In vivo, HGF did not affect Smad-2 activation and its nuclear accumulation in tubular epithelium, but it restored SnoN protein abundance in the fibrotic kidney in obstructive nephropathy. Hence, HGF blocks EMT by antagonizing TGF-beta1's action via upregulating Smad transcriptional co-repressor SnoN expression. These findings not only identify a novel mode of interaction between the signals activated by HGF receptor tyrosine kinase and TGF-beta receptor serine/threonine kinases but also illustrate the feasibility of confining Smad activity as an effective strategy for blocking renal fibrosis.

  12. Thymosin Beta-4 Induces Mouse Hair Growth

    PubMed Central

    Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts. PMID:26083021

  13. Thymosin Beta-4 Induces Mouse Hair Growth.

    PubMed

    Gao, Xiaoyu; Liang, Hao; Hou, Fang; Zhang, Zhipeng; Nuo, Mingtu; Guo, Xudong; Liu, Dongjun

    2015-01-01

    Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.

  14. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.

    PubMed

    Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza

    2009-10-01

    Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.

  15. Beta-catenin is required for memory consolidation.

    PubMed

    Maguschak, Kimberly A; Ressler, Kerry J

    2008-11-01

    beta-catenin has been implicated in neuronal synapse regulation and remodeling. Here we have examined beta-catenin expression in the adult mouse brain and its role in amygdala-dependent learning and memory. We found alterations in beta-catenin mRNA and protein phosphorylation during fear-memory consolidation. Such alterations correlated with a change in the association of beta-catenin with cadherin. Pharmacologically, this consolidation was enhanced by lithium-mediated facilitation of beta-catenin. Genetically, the role of beta-catenin was confirmed with site-specific deletions of loxP-flanked Ctnnb1 (encoding beta-catenin) in the amygdala. Baseline locomotion, anxiety-related behaviors and acquisition or expression of conditioned fear were normal. However, amygdala-specific deletion of Ctnnb1 prevented the normal transfer of newly formed fear learning into long-term memory. Thus, beta-catenin may be required in the amygdala for the normal consolidation, but not acquisition, of fear memory. This suggests a general role for beta-catenin in the synaptic remodeling and stabilization underlying long-term memory in adults.

  16. Effects of traditional chinese medicine on endotoxin and its receptors in rats with non-alcoholic steatohepatitis.

    PubMed

    Gao, Yuan; Song, Lin-Xuan; Jiang, Miao-Na; Ge, Guang-Yan; Jia, Yu-Jie

    2008-04-01

    The aim of this research is to study the effects of traditional Chinese medicine on endotoxin and its receptors in rats with nonalcoholic steatohepatitis (NASH). Fifty-six SD rats were divided into seven groups. All the animals were fed high fatty diet for 12 weeks. Rats with non-alcoholic steatohepatitis (NASH) were treated with traditional Chinese medicine according to low-dose, middle-dose, high-dose and Lipitor from fifth week. All rats were killed at the end of 12th week. The liver pathology changes were observed under light microscope. The levels of serum lipoid, alanine aminotransferase (ALT), endotoxin (ET), tumor necrosis factor-alpha (TNF-alpha) and interleukine-1beta (IL-1beta) were determined. The expressions of CD14 and nuclear transcriptional factor kappaB (NF-kappaB) were observed by immunohistochemistry. The expressions of lipopolysaccharide binding protein (LBP), toll-like receptor-4 (TLR-4), myeloid differentiation-2 (MD-2) and induced nitric oxide synthase (iNOS) mRNA were detected by the reverse transcription polymerase chain reaction (RT-PCR). The levels of serum endotoxin in the middle dose group (0.0225 +/- 0.0112 EU/l) were lower than those in high fatty diet model group (0.2249 +/- 0.0982 EU/l) at 12th week, the difference was significant (P < 0.01). In the middle dose group, mean values of serum TNF-alpha and IL-1beta levels decreased dramatically (1.604 +/- 0.302 ng/ml and 0.052 +/- 0.024 ng/ml) compared with those in the high fatty diet model group (4.029 +/- 1.180 ng/ml and 14.944 +/- 0.491 ng/ml; P < 0.01 and P < 0.01). The expressions of CD14 and NF-kappaB in the middle dose group decreased compared with those in the high fatty diet model group. The expressions of LBP mRNA (0.284 +/- 0.105) and TLR-4 mRNA (0.290 +/- 0.123) in the middle dose group down regulated compared with those in the high fatty diet model group (1.060 +/- 0.158 and 1.261 +/- 0.368; P < 0.01 and P < 0.01). In the middle dose group MD-2 and iNOS gene expressions were 0.132 +/- 0.058 and 0.164 +/- 0.061, respectively, which were significantly lower compared with the high fatty diet model group (0.795 +/- 0.294 and 1.029 +/- 0.388; P < 0.01 and P < 0.01). The mechanism of non-alcoholic steatohepatitis (NASH) maybe related to increasing the levels of serum endotoxin, upregulating endotoxin receptors of hepatic tissue and enhancing liver inflammatory injury. Traditional Chinese medicine is a good treatment for non-alcoholic steatohepatitis (NASH). It can produce a marked effect via relieving LPS-induced liver injury.

  17. The correlation between pulmonary fibrosis and methylation of peripheral Smad3 in cases of pigeon breeder's lung in a Chinese Uygur population.

    PubMed

    Wu, Chao; Ding, Wei; Li, Qifeng; Wang, Wenyi; Deng, Mingqin; Jin, Rong; Pang, Baosen; Yang, Xiaohong

    2017-06-27

    Smad3 is a key protein in the transforming growth factor-beta (TGF-β)/Smad signaling pathway, which is involved in fibrosis in many organs. We investigated the relationship between Smad3 gene methylation and pulmonary fibrosis in pigeon breeder's lung (PBL). Twenty Uygur PBL patients with pulmonary fibrosis in Kashi between October 2015 and March 2016 were enrolled. Twenty PBL-free pigeon breeders and 20 healthy non-pigeon breeders enrolled during the same period constituted the negative and normal control groups, respectively. Participants' data and peripheral blood samples were collected, and three Smad3 CpG loci were examined. Distributions of CpG_2 and CpG_4 methylation rates did not differ across groups, whereas distributions of CpG_3 methylation rates were significantly different among the three groups. The CpG_3 methylation rate was significantly lower in the patient group than in the negative control group. Smad3 mRNA expression was significantly higher in the patient group than in the negative control group but did not differ between the two control groups. TGF-βlevels were significantly higher in the patient group than in either control group (both P<0.01). Smad3 gene methylation and Smad3 mRNA expression were negatively correlated, with a correlation coefficient of -0.84. The number of pigeons bred during the preceding three months was positively correlated with Smad3 mRNA expression, with a correlation coefficient of 0.77. Smad3 gene hypomethylation might promote pulmonary fibrosis in Uygur PBL patients via increased Smad3 mRNA expression. Smad3 methylation, Smad3 mRNA expression and TGF-β level were correlated with the number of pigeons bred by patients.

  18. Translation and assembly of HLA-DR antigens in Xenopus oocytes injected with mRNA from a human B-cell line.

    PubMed Central

    Long, E O; Gross, N; Wake, C T; Mach, J P; Carrel, S; Accolla, R; Mach, B

    1982-01-01

    HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6821356

  19. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets.

    PubMed

    Pié, S; Awati, A; Vida, S; Falluel, I; Williams, B A; Oswald, I P

    2007-03-01

    There is increasing evidence showing that dietary supplementation with prebiotics can be effective in the treatment of intestinal inflammation. Because weaning time is characterized by rapid intestinal inflammation, this study investigated the effect of a diet supplemented with a combination of 4 fermentable carbohydrates (lactulose, inulin, sugarbeet pulp, and wheat starch) on the mRNA content of proinflammatory cytokines in newly weaned piglets. Cytokines (IL-1beta, IL-6, IL-8, IL-12p40, IL-18, and tumor necrosis factor-alpha) were analyzed using a semiquantitative reverse-transcription PCR technique on d 1, 4, and 10 in the ileum and colon of piglets fed either a test diet (CHO) or a control diet. In addition to the diet, the effect of enforced fasting on cytokine mRNA content was also evaluated. No effect of fasting was observed on the pro-inflammatory cytokine mRNA content. Our results showed that the CHO diet induced an up-regulation of IL-6 mRNA content in the colon of piglets 4 d postweaning. This up-regulation was specific for the animals fed the CHO diet and was not observed in animals fed the control diet. An increase in IL-1beta mRNA content was also observed on d 4 postweaning in all of the piglets. Correlations between proinflammatory cytokines and the end-products of fermentation indicated that the regulation of cytokines may be linked with some of the fermentation end-products such as branched-chain fatty acids, which are in turn end-products of protein fermentation.

  20. Effects of Coriolus versicolor polysaccharide B on monocyte chemoattractant protein 1 gene expression in rat.

    PubMed

    Song, Lie-Chang; Chen, Hai-Sheng; Lou, Ning; Song, Chang; Zeng, Jun; Fu, Ting-Huan

    2002-06-01

    To investigate the effect of Coriolus versicolor polysaccharide B (CVPS-B), a new water-soluble component of polysaccharides from the fungus Coriolus versicolor (Fr) L on monocyte chemoattractant protein-1 (MCP-1) gene expression in rat splenocytes. Expression of MCP-1 mRNA in rat splenocytes was examined by reverse transcription-polymerase chain reaction (RT-PCR) with beta- actin as an internal standard. Sequencing of RT-PCR products was performed to confirm their specificity in MCP-1 gene composition. (1) Without pre-treatment of lipopolysaccharide (LPS), the relative MCP-1 mRNA expression ratios (MCP-1/beta-actin) for the saline control group and for CVPS-B groups in 3 different doses (10, 20, and 30 mg . kg-1 . d-1, ip, for 4 d) were 1.4 +/- 0.3, 1.6 +/- 0.4, 1.7 +/- 0.5, and 1.5 +/- 0.4, respectively (P > 0.05); (2) LPS (10 microg . kg-1, ip) enhanced the expression of MPC-1 mRNA by the ratio of 114 %; (3) pre-treatment with CVPS-B of 4 different doses (5, 10, 30, and 50 mg . kg-1 . d-1, ip, for 4 d) decreased the LPS induced expression of MPC-1 mRNA by the ratios of 51 %, 70 %, 84 %, and 99 %, respectively (n = 6). In a dose-related fashion, CVPS-B inhibited the expression of MCP-1 mRNA induced by LPS in the rat splenocytes, but did not significantly affect the expression of MPC-1 mRNA in the normal rat.

  1. Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Mahaboob S.; Department of Biochemistry, Govt. Home Science College, Panjab University, Chandigarh; Devaraj, Halagowder

    Flavonoids possess strong anti-oxidant and cancer chemopreventive activities. Chrysin (5,7-dihydroxyflavone) occurs naturally in many plants, honey, and propolis. In vitro, chrysin acts as a general anti-oxidant, causes cell cycle arrest and promotes cell death. However, the mechanism by which chrysin inhibits cancer cell growth and the subcellular pathways activated remains poorly understood. Effect of dietary supplementation with chrysin on proliferation and apoptosis during diethylnitrosamine (DEN)-induced early hepatocarcinogenesis was investigated in male Wistar rats. To induce hepatocarcinogenesis, rats were given DEN injections (i.p., 200 mg/kg) three times at a 15 day interval. An oral dose of chrysin (250 mg/kg bodyweight) wasmore » given three times weekly for 3 weeks, commencing 1 week after the last dose of DEN. Changes in the mRNA expression of COX-2, NFkB p65, p53, Bcl-xL and {beta}-arrestin-2 were assessed by quantitative real-time PCR. Changes in the protein levels were measured by western blotting. Chrysin administration significantly (P < 0.001) reduced the number and size of nodules formed. Also, a significant (P < 0.01) reduction in serum activities of AST, ALT, ALP, LDH and {gamma}GT was noticed. Expression of COX-2 and NFkB p65 was significantly reduced whereas that of p53, Bax and caspase 3 increased at the mRNA and protein levels. Likewise, a decrease in levels of {beta}-arrestin and the anti-apoptotic marker Bcl-xL was also noted. These findings suggest that chrysin exerts global hepato-protective effect and its chemopreventive activity is associated with p53-mediated apoptosis during early hepatocarcinogenesis.« less

  2. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.

    PubMed

    Miura, Pedro; Chakkalakal, Joe V; Boudreault, Louise; Bélanger, Guy; Hébert, Richard L; Renaud, Jean-Marc; Jasmin, Bernard J

    2009-12-01

    A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.

  3. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihsan, Awais, E-mail: awais.dr@gmail.com; Wang Xu; Liu Zhaoying

    2011-05-01

    Mequindox (MEQ) is a synthetic antimicrobial chemical of quinoxaline 1, 4-dioxide group. This study was designed to investigate the hypothesis that MEQ exerts testicular toxicity by causing oxidative stress and steroidal gene expression profiles and determine mechanism of MEQ testicular toxicity. In this study, adult male Wistar rats were fed with MEQ for 180 days at five different doses as 0, 25, 55, 110 and 275 mg/kg, respectively. In comparison to control, superoxide dismutase (SOD), reduced glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG) levels were elevated at 110 and 275 mg/kg MEQ, whereas the malondialdehyde (MDA) level was slightly increase at onlymore » 275 mg/kg. Furthermore, in LC/MS-IT-TOF analysis, one metabolite 2-isoethanol 4-desoxymequindox (M11) was found in the testis. There was significant decrease in body weight, testicular weight and testosterone at 275 mg/kg, serum follicular stimulating hormone (FSH) at 110 and 275 mg/kg, while lutinizing hormone (LH) levels were elevated at 110 mg/kg. Moreover, histopathology of testis exhibited germ cell depletion, contraction of seminiferous tubules and disorganization of the tubular contents of testis. Compared with control, mRNA expression of StAR, P450scc and 17{beta}-HSD in testis was significantly decreased after exposure of 275 mg/kg MEQ while AR and 3{beta}-HSD mRNA expression were significantly elevated at the 110 mg/kg MEQ group. Taken together, our findings provide the first and direct evidence in vivo for the formation of free radicals during the MEQ metabolism through N {yields} O group reduction, which may have implications to understand the possible mechanism of male infertility related to quinoxaline derivatives.« less

  4. Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation.

    PubMed

    Rose, K; Allan, A; Gauldie, S; Stapleton, G; Dobbie, L; Dott, K; Martin, C; Wang, L; Hedlund, E; Seckl, J R; Gustafsson, J A; Lathe, R

    2001-06-29

    The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.

  5. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells : A possible mechanism for the cardiovascular benefits associated with moderate consumption of wine.

    PubMed

    Pendurthi, U R; Williams, J T; Rao, L V

    1999-02-01

    A number of studies suggest that moderate consumption of red wine may be more effective than other alcoholic beverages in decreasing the risk of coronary heart disease mortality. The phytochemical resveratrol found in wine, derived from grapes, has been thought to be responsible for cardiovascular benefits associated with wine consumption because it was shown to have antioxidant and antiplatelet activities. In the present investigation, we examined the effect of resveratrol on induction of tissue factor (TF) expression in vascular cells that were exposed to pathophysiological stimuli. The data presented herein show that resveratrol, in a dose-dependent manner, inhibited the expression of TF in endothelial cells stimulated with a variety of agonists, including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS). A similar inhibition of TF induction was also seen in LPS stimulated monocytes that were pretreated with resveratrol before their stimulation with LPS. In addition, resveratrol was shown to inhibit the LPS-induced expression of TNFalpha mRNA in endothelial cells and of TNFalpha and IL-1beta mRNA in monocytes. Nuclear run-on analysis in endothelial cells showed that resveratrol inhibited TF expression at the level of transcription. However, resveratrol did not significantly alter the binding of the transcription factors c-Fos/c-Jun and c-Rel/p65, the transcription factors required for the induction of TF promoter in both endothelial cells and monocytes. Similarly, resveratrol had no significant effect on the binding of NF-kappaB in endothelial cells stimulated with IL-1beta, TNFalpha, and LPS. Overall, our data show that resveratrol could effectively suppress the aberrant expression of TF and cytokines in vascular cells, but it requires further investigation to understand how resveratrol exerts its inhibitory effect.

  6. Assessment of the cytokine profile in peripheral blood mononuclear cells of naturally Sarcoptes scabiei var. canis infested dogs.

    PubMed

    Singh, Shanker K; Dimri, Umesh; Sharma, Bhaskar; Saxena, Meeta; Kumari, Priyambada

    2014-12-15

    The mechanism of cytokine secretion from T lymphocytes plays an important role in the immune response of dogs and parasitic skin infestations. Assessment of the cytokine profile of naturally S. scabiei var. canis infested dogs could augment understanding of the pathobiology of canine sarcoptic mange. Therefore, the present study examined the cytokines in peripheral blood mononuclear cells of dogs suffering from sarcoptic mange. Thirteen dogs naturally infected with sarcoptic mange participated in the study. The dogs were found positive for S. scabiei var. canis mites in skin scraping examinations and revealed at least three clinical inclusion criteria. Another five clinically healthy dogs were kept as healthy controls. Peripheral blood mononuclear cells were isolated from heparinized blood samples and used for extraction of mRNA. Further, cDNA was synthesized by using 1 mg of mRNA by reverse transcription using oligonucleotide primers. Relative levels of cytokine expression were compared with normalized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts. The levels of interleukin-4, interleukin-5 and transforming growth factor beta (TGF-β) mRNA expression in dogs with sarcoptic mange were significantly higher (P ≤ 0.01), whereas the level of tumor necrosis factor alpha (TNF-α) was significantly lower (P ≤ 0.01) in comparison with the healthy dogs. No remarkable difference was seen for interleukin-2 mRNA expression between these animals. An overproduction IL-4 and IL-5 might be involved in immuno-pathogenesis of canine sarcoptic mange. S. scabiei var. canis mites possibly induce an overproduction of TGF-β and reduced expression of TNF-α and thus could be conferring the immune suppression of infested dogs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Mitomycin C induces apoptosis in cultured corneal fibroblasts derived from type II granular corneal dystrophy corneas.

    PubMed

    Kim, Tae-im; Choi, Seung-il; Lee, Hyung Keun; Cho, Young Jae; Kim, Eung Kweon

    2008-06-30

    The present study investigated the effect of mitomycin C (MMC) on cell viability, apoptosis, and transforming growth factor beta-induced protein (TGFBIp) expression in cultured normal corneal fibroblasts and heterozygote or homozygote granular corneal dystrophy type II (GCD II) corneal fibroblasts. Keratocytes were obtained from normal cornea or from heterozygote or homozygote GCD II patients after lamellar or penetrating keratoplasty. To measure cell viability, corneal fibroblasts were incubated with 0.02% MMC for 3 h, 6 h, and 24 h or with 0%, 0.01%, 0.02%, and 0.04% MMC for 24 h and then tested using lactate dehydrogenase (LDH) and 3-[4,5-demethylthiazol-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays. To measure apoptosis, cells were analyzed by FACS analysis and annexin V staining. Bcl-xL, Bax, and TGFBI mRNA expression was measured using reverse transcription polymerase chain reaction (RT-PCR) assays. Cellular and media levels of TGFBIp protein were measured by immunoblotting. MTT and LDH assays showed that MMC reduced cell viability in all three cell types in a dose-dependent and time-dependent manner (p<0.05). FACS analysis and annexin V staining showed that MMC caused apoptosis with GCD II homozygote cells being most affected. RT-PCR analysis showed that MMC decreased Bcl-xL mRNA expression and increased Bax mRNA expression in all cell types. RT-PCR and immunoblotting analysis showed that MMC reduced TGFBI mRNA levels and cellular and media TGFBIp protein levels in all cell types. MMC induced apoptosis, and the effects of MMC were greatest in GCD II homozygote cells. MMC also reduced the production of TGFBIp in all three types of corneal fibroblasts. These findings may explain the additional therapeutic effect of MMC in GCD II patients.

  8. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    PubMed

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  9. Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways.

    PubMed

    Kornasio, Reut; Riederer, Ingo; Butler-Browne, Gillian; Mouly, Vincent; Uni, Zehava; Halevy, Orna

    2009-05-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine catabolite, has been shown to prevent exercise-induced protein degradation and muscle damage. We hypothesized that HMB would directly regulate muscle-cell proliferation and differentiation and would attenuate apoptosis, the latter presumably underlying satellite-cell depletion during muscle degradation or atrophy. Adding various concentrations of HMB to serum-starved myoblasts induced cell proliferation and MyoD expression as well as the phosphorylation of MAPK/ERK. HMB induced differentiation-specific markers, increased IGF-I mRNA levels and accelerated cell fusion. Its inhibition of serum-starvation- or staurosporine-induced apoptosis was reflected by less apoptotic cells, reduced BAX expression and increased levels of Bcl-2 and Bcl-X. Annexin V staining and flow cytometry analysis showed reduced staurosporine-induced apoptosis in human myoblasts in response to HMB. HMB enhanced the association of the p85 subunit of PI3K with tyrosine-phosphorylated proteins. HMB elevated Akt phosphorylation on Thr308 and Ser473 and this was inhibited by Wortmannin, suggesting that HMB acts via Class I PI3K. Blocking of the PI3K/Akt pathway with specific inhibitors revealed its requirement in mediating the promotive effects of HMB on muscle cell differentiation and fusion. These direct effects of HMB on myoblast differentiation and survival resembling those of IGF-I, at least in culture, suggest its positive influence in preventing muscle wasting.

  10. Arachidonic Acid-Induced Expression of the Organic Solute and Steroid Transporter-beta (Ost-beta) in a Cartilaginous Fish Cell Line

    PubMed Central

    Hwang, Jae-Ho; Parton, Angela; Czechanski, Anne; Ballatori, Nazzareno; Barnes, David

    2008-01-01

    The organic solute and steroid transporter (OST/Ost) is a unique membrane transport protein heterodimer composed of subunits designated alpha and beta, that transports conjugated steroids and prostaglandin E2 across the plasma membrane. Ost was first identified in the liver of the cartilaginous fish Leucoraja erinacea, the little skate, and subsequently was found in many other species, including humans and rodents. The present study describes the isolation of a new cell line, LEE-1, derived from an early embryo of L. erinacea, and characterizes the expression of Ost in these cells. The mRNA size and amino acid sequence of Ost-beta in LEE-1 was identical to that previously reported for Ost-beta from skate liver, and the primary structure was identical to that of the spiny dogfish shark (Squalus acanthias) with the exception of a single amino acid. Ost-beta was found both on the plasma membrane and intracellularly in LEE-1 cells, consistent with its localization in other cell types. Interestingly, arachidonic acid, the precursor to eiconsanoids, strongly induced Ost-beta expression in LEE-1 cells and a lipid mixture containing arachidonic acid also induced Ost-alpha. Overall, the present study describes the isolation of a novel marine cell line, and shows that this cell line expresses relatively high levels of Ost when cultured in the presence of arachidonic acid. Although the function of this transport protein in embryo-derived cells is unknown, it may play a role in the disposition of eicosanoids or steroid-derived molecules. PMID:18407792

  11. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  12. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed Central

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-01-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832

  13. Osteoclast size heterogeneity in rat long bones is associated with differences in adhesive ligand specificity.

    PubMed

    Hu, Yingwei; Ek-Rylander, Barbro; Karlström, Erik; Wendel, Mikael; Andersson, Göran

    2008-02-01

    Prothrombin (PT) is an RGD-containing bone-residing precursor to the serine protease thrombin (TH), which acts as an agonist for a variety of cellular responses in osteoblasts and osteoclasts. We show here that PT, TH, osteopontin (OPN) and fibronectin (FN) promoted adhesion of isolated neonatal rat long bone osteoclasts. However, the cells that adhered to PT and TH were smaller in size, rounded and contained 3-4 nuclei, in comparison to the cells adhering to OPN and FN, which were larger with extended cytoplasmic processes and 6-7 nuclei. Attachment of the larger osteoclasts to OPN and FN was inhibited by antibodies towards beta 3 and beta 1 integrin subunits, respectively. Whereas an RGD-containing peptide inhibited adhesion of the smaller osteoclasts to PT and TH, this was not seen with the beta 3 or beta 1 antibodies. In contrast, the beta 1 antibody augmented osteoclast adhesion to PT and TH in an RGD-dependent manner. Small osteoclasts were less efficient in resorbing mineralized bovine bone slices, as well as expressed lower mRNA levels of MMP-9 and the cathepsins K and L compared to large osteoclasts. The small osteoclast adhering to PT and TH may represent either an immature, less functional precursor to the large osteoclast or alternatively constitute a distinct osteoclast population with a specific role in bone.

  14. Ascorbic acid transported by sodium-dependent vitamin C transporter 2 stimulates steroidogenesis in human choriocarcinoma cells.

    PubMed

    Wu, Ximei; Iguchi, Takuma; Itoh, Norio; Okamoto, Kousuke; Takagi, Tatsuya; Tanaka, Keiichi; Nakanishi, Tsuyoshi

    2008-01-01

    Reduced vitamin C [ascorbic acid (AA)], which is taken up into cells by sodium-dependent vitamin C transporter (SVCT) 1 and 2, is believed to be important for hormone synthesis, but its role in generating placental steroids needed to maintain pregnancy and fetal development is not clear. To determine the steroidogenic effect of AA and the role of SVCT2 in AA-induced steroidogenesis, we tested the effects of AA treatment and SVCT2 knockdown on steroidogenesis in human choriocarcinoma cell lines. AA treatment of JEG-3, BeWo, and JAR cells for 48-h dose dependently increased progesterone and estradiol levels. In JEG-3 cells, AA increased the mRNA expression of P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase, key enzymes for steroidogenesis. Stable knockdown of SVCT2 in JEG-3 cells by retrovirally mediated RNA interference decreased the maximal velocity of AA uptake by approximately 50%, but apparent affinity values were not affected. SVCT2 knockdown in JEG-3 cells significantly suppressed the AA-induced mRNA expression of placental P450 cholesterol side-chain cleavage enzyme, 3beta-hydroxysteroid dehydrogenase type 1, and aromatase. This suppression of the AA-induced mRNA expression of steroidogenic enzymes subsequently decreased progesterone and estradiol production. In addition, inhibition of MAPK kinase-ERK signaling, which is a major pathway for AA-regulated gene expression, failed to affect AA-induced steroidogenesis. Our observations indicate that SVCT2-mediated AA uptake into cells is necessary for AA-induced steroidogenesis in human choriocarcinoma cell, but MAPK kinase-ERK signaling is not involved in AA-induced steroidogenesis.

  15. Nest box exploration may stimulate breeding physiology and alter mRNA expression in the medial preoptic area of female European starlings.

    PubMed

    Spool, Jeremy A; Jay, Melannie D; Riters, Lauren V

    2018-04-25

    Environmental resources are proposed to fine-tune the timing of breeding, yet how they may do so remains unclear. In female European starlings ( Sturnus vulgaris ), nest cavities are limited resources that are necessary for breeding. Females that explore nest cavities, compared to those that do not, readily perform sexually-motivated behaviors. We assigned female starlings to aviaries with 1) no nest boxes, 2) nest boxes, or 3) nest boxes, plants, flowing water, insects and berries to test the hypothesis that environmental resources alter neural systems to stimulate mating behavior. Compared to other females, females that were housed with and explored nest boxes had higher estradiol, higher preproenkephalin (PENK) mRNA, and lower levels of D1 and D2 dopamine receptor mRNA in the medial preoptic area (mPOA), a region in which opioids and dopamine modify female sexual behaviors and sexual motivation. Additionally, in the mPOA, PENK and tyrosine hydroxylase mRNA positively predicted, whereas estrogen receptor beta mRNA negatively predicted nest box exploration. In the ventromedial hypothalamus, a region in which estradiol acts to stimulate sexual behavior, estrogen receptor alpha mRNA was highest in females that had access to but did not explore nest cavities. It is likely that seasonal increases in estradiol modify mRNA in the mPOA to facilitate nest cavity exploration. It is also possible that nest cavity exploration further alters gene expression in the mPOA, functioning to coordinate mating with resource availability. Thus nest cavity exploration may be a form of self-stimulation that alters neural systems to fine-tune sexual behavior. © 2018. Published by The Company of Biologists Ltd.

  16. The platelet-derived growth factor signaling system in snapping turtle embryos, Chelydra serpentina: potential role in temperature-dependent sex determination and testis development.

    PubMed

    Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki

    2009-05-01

    The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-alpha and PdgfR-beta in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-alpha mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-beta mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-alpha and PdgfR-beta in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle.

  17. Compartmental responses after thoracic irradiation of mice: Strain differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, C.-S.; Liu, W.-C.; Jung, S.-M.

    2005-07-01

    Purpose: To examine and compare the molecular and cellular processes leading to radiation fibrosis and pneumonitis in C57BL/6J and C3H/HeN mice. Methods and Materials: At indicated times after various doses of thoracic irradiation, the cell populations obtained by bronchoalveolar lavage of C57BL/6J mice were differentially analyzed by cytology and assessed by RNase protection (RPA) assay for levels of cytokines and related genes. The molecular responses in bronchial alveolar lavage (BAL) populations were compared with those in whole lung of C57BL/6J mice and with those of C3H/HeN mice. The former strain develops late radiation fibrosis, whereas the latter develop subacute radiationmore » pneumonitis. Results: In C57BL/6J mice, a decrease in the total number of BAL cells was found 1 week after 6, 12, or 20 Gy thoracic irradiation with a subsequent dose-dependent increase up to 6 months. After 12 and 20 Gy, large, foamy macrophages and multinucleated cells became evident in BAL at 3 weeks, only to disappear at 4 months and reappear at 6 months. This biphasic response was mirrored by changes expression of mRNA for proinflammatory cytokines and the Mac-1 macrophage-associated antigen. As with BAL, whole lung tissue also showed biphasic cytokine and Mac-1 mRNA responses, but there were striking temporal differences between the two compartments, with changes in whole lung tissue correlating better than BAL with the onset of fibrosis in this strain. The radiation-induced proinflammatory mRNA responses had strain-dependent and strain-independent components. Thoracic irradiation of C3H/HeN induced similar increases in tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{alpha}/{beta}, and interferon (IFN)-{gamma} mRNA expression in lung as it did in C57BL/6J mice during the 'presymptom' phase at 1-2 months. However, immediately preceding and during the pneumonitic time period at 3-4 months, TNF-{alpha} and IL-1{alpha}/{beta} mRNAs were highly upregulated in C3H/HeN mice, which develop pneumonitis, but not in C57BL/6J mice, which do not. At the onset of radiation fibrosis in C57BL/6J mice (5-6 months), irradiated lungs had increased levels of IL-1{alpha}/{beta} and IFN-{gamma} mRNA expression, but the TNF-{alpha} response was, notably, still muted. Conclusions: The major molecular and cellular events in lungs of C57BL/6J and C3H/HeN mice, which develop late fibrosis and subacute pneumonitis after thoracic irradiation respectively, take place within the interstitium and are not reflected within BAL populations. The initial proinflammatory responses are similar in the two strains, but later responses reflect the latent time to lesion development. TNF-{alpha} expression at 3-4 months may be important in radiation-induced pneumonitis, and its downregulation is important in avoiding this radiation-induced complication.« less

  18. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  19. Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with down-regulation of AChR-specific IFN-gamma-expressing Th1-like cells and up-regulation of TGF-beta mRNA in mononuclear cells.

    PubMed

    Ma, C G; Zhang, G X; Xiao, B G; Wang, Z Y; Link, J; Olsson, T; Link, H

    1996-02-13

    Oral and nasal administration of nicotinic acetylcholine receptor (AChR) to Lewis rats prior to myasthenogenic immunization with AChR and complete Freund's adjuvant (CFA) resulted in prevention or marked decrease of the severity of experimental autoimmune myasthenia gravis (EAMG) and suppression of AChR-specific B-cell responses and of AChR-reactive T-cell function. To examine the involvement of immunoregulatory cytokines and the underlying mechanisms involved in tolerance induction, in situ hybridization with radiolabeled cDNA oligonucleotide proves was adopted to enumerate mononuclear cells (MNC) expressing mRNA for the proinflammatory cytokine interferon-gamma (IFN-gamma), the B cell-stimulating interleukin-4 (IL-4), and the immunosuppressive transforming growth factor-beta (TGF-beta). Popliteal and inguinal lymph nodes from EAMG rats contained elevated numbers of AChR-reactive IFN-gamma, IL-4, and TGF-beta mRNA-expressing cells, compared to control rats receiving PBS orally or nasally and injected with CFA only. Oral and nasal tolerance was accompanied by decreased numbers of AChR-reactive IFN-gamma and IL-4 mRNA-expressing cells and strong up-regulation of TGF-beta mRNA-positive cells in lymphoid organs when compared to nontolerized EAMG control rats. The results suggest that IFN-gamma and IL-4 are central effector molecules in the development of EAMG and that TGF-beta plays an important role in tolerance induction to EAMG.

  20. Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle

    PubMed Central

    Nagler, James J.; Cavileer, Timothy D.; Verducci, Joseph S.; Schultz, Irvin R.; Hook, Sharon E.; Hayton, William L.

    2012-01-01

    Estrogens are critical hormones involved in reproduction and need to bind to estrogen receptors in target organs for biological activity. Fishes have two distinct estrogen receptor subtypes, alpha (α) and beta (β), with variable combinations of additional isoforms of each subtype dependent on the history of genome duplication within a taxon. The comparative expression patterns of estrogen receptor isoforms during the female reproductive cycle will provide important insights into the unique function and importance of each. The purpose of this study was to measure the mRNAs for the four estrogen receptor isoforms (erα1, erα2, erβ1, erβ2) in the liver and ovary of adult, female rainbow trout over the course of an annual reproductive cycle. The expression of estrogen receptor mRNA isoforms was measured by quantitative real-time RT-PCR. Several reproductive indices (gonadosomatic index, maximum oocyte diameter, plasma estradiol-17β, plasma vitellogenin, and ovulation) were also quantified for comparison and used in a correlation analysis to examine any inter-relationships. Of the four isoforms, the expression of erα1 was highest in the liver, and had a significant positive correlation with liver erβ1 expression. Liver expression of erα2 mRNA was the lowest, but showed a significant positive correlation with maximum oocyte diameter in the ovary. The pattern of the erβ isoforms in liver was one of initially elevated mRNA expression followed by a gradual decrease as reproductive development proceeded. In the ovary the erβ1 isoform had the highest mRNA expression of all estrogen receptor isoforms, at the beginning of the reproductive cycle, but then decreased afterward. Both ovarian erβ isoforms had a significant positive correlation with one another. In contrast, erα2 mRNA expression showed a high maximum level in the ovary near the end of the cycle along with a significant positive correlation with plasma estradiol-17β levels; the highest gonadosomatic indices, maximum oocyte diameter, and vitellogenin levels occurred then too. PMID:22732076

  1. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXRalpha-null mice.

    PubMed

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D; Wan, Yu-Jui Yvonne

    2009-01-15

    Retinoid X receptor-alpha (RXRalpha) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRalpha deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRalpha-null (H-RXRalpha-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid beta-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRalpha-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRalpha-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRalpha-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRalpha-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRalpha-null mice. In conclusion, these data suggest a critical role for RXRalpha in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  2. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunha, Elizabeth S.; Kawahara, Rebeca; Kadowaki, Marina K.

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cellmore » cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.« less

  3. Morphine via nitric oxide modulates beta-amyloid metabolism: a novel protective mechanism for Alzheimer's disease.

    PubMed

    Pak, Theodore; Cadet, Patrick; Mantione, Kirk J; Stefano, George B

    2005-10-01

    The deposition of intracellular and extracellular beta-amyloid peptide (Abeta) in the brain is a pathologic feature of Alzheimer's disease (AD), a prevalent neurodegenerative disorder. However, the exact role of the Abeta peptide in causing AD's symptoms is unclear. CRL-2266 SH-SY5Y human neuroblastoma cells (ATCC, USA) and HTB-11 human neuroblastoma cells (ATCC, USA) were cultured. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to analyze the effects of beta25-35, morphine, and SNAP treatments upon BACE-1 and BACE-2 mRNA expression semi-quantitative RT-PCR. The production of NO in SH-SY5Y cells was detected using the Apollo 4000 Free Radical Analyzer (World Precision Instruments). Untreated HTB-11 neuroblastoma cells constitutively express BACE-1 and BACE-2 mRNA. Morphine down regulates the expression of BACE-1 and up regulates the expression of BACE-2 in a naloxone antagonizable manner. When HTB-11 cells were treated with L-NAME, a cNOS inhibitor; the effects of morphine were blocked. SNAP (a NO donor) mimicked the effect of morphine. In SH-SY5Y cells, Abeta treated cells show a dose-dependent decrease in NO release, demonstrating that Ab is dose-dependently inhibiting the release of constitutive NO. Ab and morphine/NO each inhibit the production of the other. This suggests that a deficiency of basal NO or endogenous morphine may trigger drastically reduced levels of basal NO. The outcome is chronic vasoconstriction and brain hypoperfusion and eventual neuronal death. This novel theorized mechanism for AD supports an increasingly-accepted vascular pathological hypothesis for the disease.

  4. [Effect of Yiguan Decoction on differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells: an experimental research].

    PubMed

    Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming

    2014-03-01

    To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.

  5. Endoglin regulates renal ischaemia-reperfusion injury.

    PubMed

    Docherty, Neil G; López-Novoa, José M; Arevalo, Miguel; Düwel, Annette; Rodriguez-Peña, Ana; Pérez-Barriocanal, Fernando; Bernabeu, Carmelo; Eleno, Nélida

    2006-08-01

    Renal ischaemia-reperfusion (I-R) can cause acute tubular necrosis and chronic renal deterioration. Endoglin, an accessory receptor for Transforming Growth Factor-beta1 (TGF-beta1), is expressed on activated endothelium during macrophage maturation and implicated in the control of fibrosis, angiogenesis and inflammation. Endoglin expression was monitored over 14 days after renal I-R in rats. As endoglin-null mice are not viable, the role of endoglin in I-R was studied by comparing renal I-R injury in haploinsufficient mice (Eng(+/-)) and their wild-type littermates (Eng(+/+)). Renal function, morphology and molecular markers of acute renal injury and inflammation were compared. Endoglin mRNA up-regulation in the post-ischaemic kidneys of rats occurred at 12 h after I-R; endoglin protein levels were elevated throughout the study period. Expression was initially localized to the vascular endothelium, then extended to fibrotic and inflamed areas of the interstitium. Two days after I-R, plasma creatinine elevation and acute tubular necrosis were less marked in Eng(+/-) than in Eng(+/+) mice. Significant up-regulation of endoglin protein was found only in the post-ischaemic kidneys of Eng(+/+) mice and coincided with an increased mRNA expression of the TGF-beta1 and collagen IV (alpha1) chain genes. Significant increases in vascular cell adhesion molecule-1 (VCAM-1) and inducible nitric oxide synthase (iNOS) expression, nitrosative stress, myeloperoxidase activity and CD68 staining for macrophages were evident in post-ischaemic kidneys of Eng(+/+), but not Eng(+/-) mice, suggesting that impaired endothelial activation and macrophage maturation may account for the reduced injury in post-ischaemic kidneys of Eng(+/-) mice. Endoglin is up-regulated in the post-ischaemic kidney and endoglin-haploinsufficient mice are protected from renal I-R injury. Endoglin may play a primary role in promoting inflammatory responses following renal I-R.

  6. A novel role of HLA class I in the pathology of medulloblastoma.

    PubMed

    Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav

    2009-07-12

    MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. We investigated expression of four essential components of MHC class I (heavy chain, beta2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of beta2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or beta2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility.

  7. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  8. Osmotic Stress Induces Expression of Choline Monooxygenase in Sugar Beet and Amaranth1

    PubMed Central

    Russell, Brenda L.; Rathinasabapathi, Bala; Hanson, Andrew D.

    1998-01-01

    Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolerant crop. The deduced beet CMO amino acid sequence comprised a transit peptide and a 381-residue mature peptide that was 84% identical (97% similar) to that of spinach and that showed the same consensus motif for coordinating a Rieske-type [2Fe-2S] cluster. A mononuclear Fe-binding motif was also present. When water was withheld, leaf relative water content declined to 59% and the levels of CMO mRNA, protein, and enzyme activity rose 3- to 5-fold; rewatering reversed these changes. After gradual salinization (NaCl:CaCl2 = 5.7:1, mol/mol), CMO mRNA, protein, and enzyme levels in leaves increased 3- to 7-fold at 400 mm salt, and returned to uninduced levels when salt was removed. Beet roots also expressed CMO, most strongly when salinized. Salt-inducible CMO mRNA, protein, and enzyme activity were readily detected in leaves of Amaranthus caudatus L. (Amaranthaceae). These data show that CMO most probably has a mononuclear Fe center, is inducibly expressed in roots as well as in leaves of Chenopodiaceae, and is not unique to this family. PMID:9489025

  9. High Hydrostatic Pressure Extract of Ginger Exerts Antistress Effects in Immobilization-Stressed Rats.

    PubMed

    Moon, Sohee; Lee, Mak-Soon; Jung, Sunyoon; Kang, Bori; Kim, Seog-Young; Park, Seonyoung; Son, Hye-Yeon; Kim, Chong-Tai; Jo, Young-Hee; Kim, In-Hwan; Kim, Young Soon; Kim, Yangha

    2017-09-01

    Stress contributes to physiological changes such as weight loss and hormonal imbalances. The aim of the present study was to investigate antistress effects of high hydrostatic pressure extract of ginger (HPG) in immobilization-stressed rats. Male Sprague-Dawley rats (n = 24) were divided into three groups as follows: control (C), immobilization stress (2 h daily, for 2 weeks) (S), and immobilization stress (2 h daily, for 2 weeks) plus oral administration of HPG (150 mg/kg body weight/day) (S+G). Immobilization stress reduced the body weight gain and thymus weight by 50.2% and 31.3%, respectively, compared to the control group. The levels of serum aspartate transaminase, alanine transaminase, and corticosterone were significantly higher in the stress group, compared to the control group. Moreover, immobilization stress elevated the mRNA levels of tyrosine hydroxylase (Th), dopamine beta-hydroxylase (Dbh), and cytochrome P450 side-chain cleavage (P450scc), which are related to catecholamine and corticosterone synthesis in the adrenal gland. HPG administration also increased the body weight gain and thymus weight by 12.7% and 16.6%, respectively, compared to the stress group. Furthermore, the mRNA levels of Th, Dbh, phenylethanolamine-N-methyltransferase, and P450scc were elevated by the HPG treatment when compared to the stress group. These results suggest that HPG would have antistress effects partially via the reversal of stress-induced physiological changes and suppression of mRNA expression of genes related to corticosterone and catecholamine synthetic enzymes.

  10. Expression of transcription factors during sodium phenylacetate induced erythroid differentiation in K562 cells.

    PubMed

    Rath, A V; Schmahl, G E; Niemeyer, C M

    1997-01-01

    During 15 days of treatment of K562 cells with sodium phenylacetate, we observed an increase in the cellular hemoglobin concentration with a similar increase in the expression of gamma-globin mRNA. Morphological studies demonstrated characteristic features of erythroid differentiation and maturation. At the same time there was no change in the level of expression of the cell surface antigenes CD33, CD34, CD45, CD71 and glycophorin A. Likewise, the level of expression of the erythroid transcription factors GATA-1, GATA-2, NF-E2, SCL and RBTN2, all expressed in untreated K562 cells, did not increase during sodium phenylacetate induced erythroid differentiation. The expression of the nuclear factors Evi-1 and c-myb, known to inhibit erythroid differentiation, did not decrease. We conclude that sodium phenylacetate treatment of K562 cells increases gamma-globin mRNA and induces cell maturation as judged by morphology without affecting the expression of the erythroid transcription factors, some of which are known to be involved in the regulation of beta-like globin genes.

  11. Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.

    PubMed

    Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu

    2010-09-01

    The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.

  12. 3,4-Methylenedioxymethamphetamine (MDMA), but not morphine, alters APP processing in the rat brain.

    PubMed

    Kálmán, János; Bjelik, Annamária; Hugyecz, Marietta; Tímár, Júlia; Gyarmati, Zsuzsanna; Zana, Marianna; Fürst, Zsuzsanna; Janka, Zoltán; Rakonczay, Zoltán; Horváth, Zoltán; Pákáski, Magdolna

    2007-04-01

    The abuse of drugs such as opioids and 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') can have detrimental effects on the cognitive functions, but the exact molecular mechanism whereby these drugs promote neurodegeneration remains to be elucidated. The major purpose of the present pilot study was to determine whether the chronic in-vivo administration of morphine (10 mg/kg) or MDMA (1 mg/kg) to rats can alter the expression and processing of amyloid precursor protein (APP), the central molecule in the proposed pathomechanism of Alzheimer's disease. MDMA treatment significantly decreased the production of APP in the cytosolic fraction of the brain cortex. A concomitant 25% increase was found both in the beta-secretase (BACE) and APP mRNA levels (108%). In contrast, in the applied single dosage chronic morphine treatment did not influence either the APP and BACE protein levels or the APP mRNA production. These results indicate that the chronic use of 'ecstasy', but not morphine, may be harmful via a novel mode of action, i.e. by altering the APP expression and processing in the brain.

  13. Decreased serum levels of sCD40L and IL-31 correlate in treated patients with Relapsing-Remitting Multiple Sclerosis.

    PubMed

    de J Guerrero-García, José; Rojas-Mayorquín, Argelia E; Valle, Yeminia; Padilla-Gutiérrez, Jorge R; Castañeda-Moreno, Víctor A; Mireles-Ramírez, Mario A; Muñoz-Valle, José F; Ortuño-Sahagún, Daniel

    2018-01-01

    The CD40/CD40L system is a binding key for co-stimulation of immune cells. Soluble form of CD40L has been widely studied as marker of inflammatory and autoimmune diseases. Here we analyze serum concentrations of sCD40L, as well as 14 cytokines, in patients with Multiple Sclerosis (MS) treated with Glatiramer acetate or Interferon beta. In the healthy control group, we found in serum a highly positive correlation between sCD40L and Interleukin (IL)-31, an anti-inflammatory Th2 cytokine. Additionally, an important reduction in IL-31 and sCD40L serum levels, as well as a significant reduction in CD40 mRNA expression and complete depletion of CD40L mRNA, detected from peripheral blood cells, was found in treated patients with MS. Therefore, sCD40L and IL-31 must be taken into account as possible prognostic markers when analyzing the disease progress of MS in order to provide more personalized treatment. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syndrome.

    PubMed

    Bakhshalizadeh, Shabnam; Amidi, Fardin; Alleyassin, Ashraf; Soleimani, Masoud; Shirazi, Reza; Shabani Nashtaei, Maryam

    2017-06-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder of women of reproductive age characterized by polycystic ovarian morphology, anovulation or oligomenorrhea, and hyperandrogenism. It is shown that disruption in the steroidogenesis pathway caused by excess androgen in PCOS is a critical element of abnormal folliculogenesis and failure in dominant follicle selection. Vitamin D plays an important role in the regulation of ovulatory dysfunction and can influence genes involved in steroidogenesis in granulosa cells. In the present study, we investigated the effects of vitamin D3 on steroidogenic enzyme expression and activities in granulosa cell using a PCOS mouse model. In our study, the PCOS mouse model was developed by the injection of dehydroepiandrosterone (DHEA) for 20 days. The mRNA and protein expression levels of genes involved in steroidogenesis in granulosa cells were compared between polycystic and normal ovaries using real-time PCR and Western blotting assays. Granulosa cells of DHEA-induced PCOS mice were then cultured with and without vitamin D3 and mRNA and protein expression levels of steroidogenic enzymes and serum 17beta-estradiol and progesterone levels were investigated using qRT-PCR, western blot, and radioimmunoassay, respectively. Steroidogenic enzymes including Cyp11a1, StAR, Cyp19a1, and 3β-HSD were upregulated in granulosa cells of PCOS mice when compared to normal mice. Treatment with vitamin D3 decreased mRNA and protein expression levels of steroidogenic enzymes in cultured granulosa cells. Vitamin D3 also decreased aromatase and 3β-HSD activity that leads to decreased 17beta-estradiol and progesterone release. This study suggests that vitamin D3 could modulate the steroidogenesis pathway in granulosa cells of PCOS mice that may lead to improving follicular development and maturation. This is a step towards a possible conceivable treatment for PCOS. AMHR-II: anti-müllerian hormone receptor-II; 3β-HSD: 3β-hydroxysteroid dehydrogenase; Cyp11a1: Cytochrome P450 Family 11 Subfamily A Member 1; Cyp19a1: cytochrome P450 aromatase; DHEA: dehydroepiandrosterone; FSH: follicle stimulating hormone; FSHR: follicle stimulating hormone receptor; IVF: in vitro fertilization; 25OHD: 25-hydroxy vitamin D; OHSS: ovarian hyperstimulation syndrome; PCOS: polycystic ovarian syndrome; P450scc: P450 side-chain cleavage enzyme; StAR: steroidogenic acute regulatory protein; VDRs: vitamin D receptors.

  15. Substance P activates ADAM9 mRNA expression and induces α-secretase-mediated amyloid precursor protein cleavage.

    PubMed

    Marolda, R; Ciotti, M T; Matrone, C; Possenti, R; Calissano, P; Cavallaro, S; Severini, C

    2012-04-01

    Altered levels of Substance P (SP), a neuropeptide endowed with neuroprotective and anti-apoptotic properties, were found in brain areas and spinal fluid of Alzheimer's disease (AD) patients. One of the hallmarks of AD is the abnormal extracellular deposition of neurotoxic beta amyloid (Aβ) peptides, derived from the proteolytic processing of amyloid precursor protein (APP). In the present study, we confirmed, the neurotrophic action of SP in cultured rat cerebellar granule cells (CGCs) and investigated its effects on APP metabolism. Incubation with low (5 mM) potassium induced apoptotic cell death of CGCs and amyloidogenic processing of APP, whereas treatment with SP (200 nM) reverted these effects via NK1 receptors. The non-amyloidogenic effect of SP consisted of reduction of Aβ(1-42), increase of sAPPα and enhanced α-secretase activity, without a significant change in steady-state levels of cellular APP. The intracellular mechanisms whereby SP alters APP metabolism were further investigated by measuring mRNA and/or steady-state protein levels of key enzymes involved with α-, β- and γ-secretase activity. Among them, Adam9, both at the mRNA and protein level, was the only enzyme to be significantly down-regulated following the induction of apoptosis (K5) and up-regulated after SP treatment. In addition to its neuroprotective properties, this study shows that SP is able to stimulate non-amyloidogenic APP processing, thereby reducing the possibility of generation of toxic Aβ peptides in brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  17. Repression of choline kinase by inositol and choline in Saccharomyces cerevisiae.

    PubMed Central

    Hosaka, K; Murakami, T; Kodaki, T; Nikawa, J; Yamashita, S

    1990-01-01

    The regulation of choline kinase (EC 2.7.1.32), the initial enzyme in the CDP-choline pathway, was examined in Saccharomyces cerevisiae. The addition of myo-inositol to a culture of wild-type cells resulted in a significant decrease in choline kinase activity. Additional supplementation of choline caused a further reduction in the activity. The coding frame of the choline kinase gene, CK1, was joined to the carboxyl terminus of lacZ and expressed in Escherichia coli as a fusion protein, which was then used to prepare an anti-choline kinase antibody. Upon Western (immuno-) and Northern (RNA) blot analyses using the antibody and a CK1 probe, respectively, the decrease in the enzyme activity was found to be correlated with decreases in the enzyme amount and mRNA abundance. The molecular mass of the enzyme was estimated to be 66 kilodaltons, in agreement with the value predicted previously from the nucleotide sequence of the gene. The coding region of CK1 was replaced with that of lacZ, and CK1 expression was measured by assaying beta-galactosidase. The expression of beta-galactosidase from this fusion was repressed by myo-inositol and choline and derepressed in a time-dependent manner upon their removal. The present findings indicate that yeast choline kinase is regulated by myo-inositol and choline at the level of mRNA abundance. Images FIG. 3 FIG. 4 PMID:2156807

  18. Expression of gonadotropin subunits in roach (Rutilus rutilus, Cyprinidae) infected with plerocercoids of the tapeworm Ligula intestinalis (Cestoda).

    PubMed

    Trubiroha, Achim; Wuertz, Sven; Frank, Sabrina N; Sures, Bernd; Kloas, Werner

    2009-11-01

    Plerocercoids of the tapeworm Ligula intestinalis (Cestoda: Bothriocephalidea) have been reported to inhibit gametogenesis of their intermediate fish hosts. However, mechanistic studies are rare and the proximate cues leading to impaired reproduction still remain unknown. In the present study we investigated the effects of infection by L. intestinalis on reproductive parameters of roach (Rutilus rutilus, Cyprinidae), a common fish host of this parasite. Field studies on roach demonstrated that in both genders infection prevented gonad development. As revealed by quantitative PCR, infection was accompanied by essentially lower pituitary expression of follicle-stimulating hormone beta-subunit (FSHbeta) and luteinizing hormone beta-subunit (LHbeta) mRNA compared with uninfected roach, providing clear evidence for gonadotropin-insufficiency as the cause of arrested gametogenesis. Under controlled laboratory conditions infected roach showed lower mRNA levels of FSHbeta but not of LHbeta, despite histology revealing similar gonad stages as in uninfected conspecifics. These findings indicate the involvement of FSH rather than LH in mediating effects of infection early during gonad development in roach. Moreover, the impact of L. intestinalis on reproductive parameters of roach appeared to be independent of the parasite burden. Together, these data provide valuable information on the role of FSH and LH as mediators of parasite-induced sterilization in a vertebrate and implicate the selective inhibition of host reproduction by L. intestinalis as a natural source of endocrine disruption in fish.

  19. Priming affects the activity of a specific region of the promoter of the human beta interferon gene.

    PubMed Central

    Dron, M; Lacasa, M; Tovey, M G

    1990-01-01

    Treatment of Daudi or HeLa cells with human interferon (IFN) alpha 8 before induction with either poly(I)-poly(C) or Sendai virus resulted in an 8- to 100-fold increase in IFN production. The extent of priming in Daudi cells paralleled the increase in the intracellular content of IFN-beta mRNA. IFN-alpha mRNA remained undetectable in poly(I)-poly(C)-treated Daudi cells either before or after priming. An IFN-resistant clone of Daudi cells was found to produce 4- to 20-fold more IFN after priming, indicating that priming was unrelated to the phenotype of IFN sensitivity. IFN treatment of either Daudi or HeLa cells transfected with the human IFN-beta promoter (-282 to -37) linked to the chloramphenicol acetyltransferase (CAT) gene resulted in an increase in CAT activity after induction with poly(I)-poly(C) or Sendai virus. A synthetic double-stranded oligonucleotide corresponding to an authentic 30-base-pair (bp) region of the human IFN-beta promoter between positions -91 and -62 was found to confer virus inducibility upon the reporter CAT gene in HeLa cells. IFN treatment of HeLa cells transfected with this 30-bp region of the IFN-beta promoter in either the correct or reversed orientation also increased CAT activity upon subsequent induction. IFN treatment alone had no detectable effect on the activity of either the 30-bp region or the complete human IFN promoter. Images PMID:2153928

  20. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of schizophrenics, the previously reported upregulation of muscimol binding sites and downregulation of benzodiazepine binding sites in the prefrontal and adjacent cingulate cortex of schizophrenics are possibly due to posttranscriptional modifications of mRNAs and their translated polypeptides.

  1. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development.

    PubMed

    Japón, M A; Rubinstein, M; Low, M J

    1994-08-01

    We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer of cells on Day E17.5. Mammotrophs also increased in number but less abundantly than somatotrophs, and PRL expression remained more confined to central-medial and ventrolateral areas of the pars distalis up to Day P1. These data demonstrate distinctive patterns of expression for each of the major anterior pituitary hormone genes during development of the mouse pituitary gland and suggest that different groups of committed cells are the immediate precursors to the terminally differentiated hormone-secreting cell types.

  2. Post-burn hypertrophic scars are characterized by high levels of IL-1β mRNA and protein and TNF-α type I receptors.

    PubMed

    Salgado, Rosa M; Alcántara, Luz; Mendoza-Rodríguez, C Adriana; Cerbón, Marco; Hidalgo-González, Christian; Mercadillo, Patricia; Moreno, Luis M; Alvarez-Jiménez, Ricardo; Krötzsch, Edgar

    2012-08-01

    Post-burn hypertrophic scars are characterized by increased collagen synthesis and hyperplasia, and may be associated with erythema, pain, dysesthesia, pruritus, and skin border elevation. Although the etiopathogenesis of hypertrophic scarring remains unclear, proinflammatory and profibrogenic cytokines are known to play an important role in general skin dysfunction. This study assessed mRNA expression, proteins, and type I receptors of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1β) in normal skin, normotrophic and post-burn hypertrophic scars. Skin biopsies were obtained from 10 hypertrophic and 9 normotrophic scars, and 4 normal skin sites. Only post-burn scars covering more than 10% of the body were included. Ex vivo histopathological analysis evaluated scar maturity, in situ hybridization assessed mRNA expression, and cytokine protein and cytokine/cell colocalization were performed using single- and double-label immunohistochemistry, respectively. IL-1β is overexpressed in hypertrophic scars at the post-transcriptional level, associated primarily with keratinocytes and CD1a(+) cells. Type I receptors for TNF-α are overexpressed in blood vessels of hypertrophic scars. The coordinated overexpression of IL-1β and TNF-α type I receptor may maintain the fibrogenic phenotypes of hypertrophic scars, even those in "remission". Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  3. Iron homeostasis during transfusional iron overload in beta-thalassemia and sickle cell disease: changes in iron regulatory protein, hepcidin, and ferritin expression.

    PubMed

    Jenkins, Zandra A; Hagar, Ward; Bowlus, Christopher L; Johansson, Hans E; Harmatz, Paul; Vichinsky, Elliott P; Theil, Elizabeth C

    2007-06-01

    Hypertransfusional (>8 transfusions/year) iron in liver biopsies collected immediately after transfusions in beta-thalassemia and sickle cell disease correlated with increased expression (RNA) for iron regulatory proteins 1 and 2 (3-, 9- to 11-fold) and hepcidin RNA: (5- to 8-fold) (each p <.01), while ferritin H and L RNA remained constant. A different H:L ferritin ratio in RNA (0.03) and protein (0.2-0.6) indicated disease-specific trends and suggests novel post-transcriptional effects. Increased iron regulatory proteins could stabilize the transferrin receptor mRNA and, thereby, iron uptake. Increased hepcidin, after correction of anemia by transfusion, likely reflects excess liver iron. Finally, the absence of a detectable change in ferritin mRNA indicates insufficient oxidative stress to significantly activate MARE/ARE promoters.

  4. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less

  5. Molecular phenotype of zebrafish ovarian follicle by serial analysis of gene expression and proteomic profiling, and comparison with the transcriptomes of other animals

    PubMed Central

    Knoll-Gellida, Anja; André, Michèle; Gattegno, Tamar; Forgue, Jean; Admon, Arie; Babin, Patrick J

    2006-01-01

    Background The ability of an oocyte to develop into a viable embryo depends on the accumulation of specific maternal information and molecules, such as RNAs and proteins. A serial analysis of gene expression (SAGE) was carried out in parallel with proteomic analysis on fully-grown ovarian follicles from zebrafish (Danio rerio). The data obtained were compared with ovary/follicle/egg molecular phenotypes of other animals, published or available in public sequence databases. Results Sequencing of 27,486 SAGE tags identified 11,399 different ones, including 3,329 tags with an occurrence superior to one. Fifty-eight genes were expressed at over 0.15% of the total population and represented 17.34% of the mRNA population identified. The three most expressed transcripts were a rhamnose-binding lectin, beta-actin 2, and a transcribed locus similar to the H2B histone family. Comparison with the large-scale expressed sequence tags sequencing approach revealed highly expressed transcripts that were not previously known to be expressed at high levels in fish ovaries, like the short-sized polarized metallothionein 2 transcript. A higher sensitivity for the detection of transcripts with a characterized maternal genetic contribution was also demonstrated compared to large-scale sequencing of cDNA libraries. Ferritin heavy polypeptide 1, heat shock protein 90-beta, lactate dehydrogenase B4, beta-actin isoforms, tubulin beta 2, ATP synthase subunit 9, together with 40 S ribosomal protein S27a, were common highly-expressed transcripts of vertebrate ovary/unfertilized egg. Comparison of transcriptome and proteome data revealed that transcript levels provide little predictive value with respect to the extent of protein abundance. All the proteins identified by proteomic analysis of fully-grown zebrafish follicles had at least one transcript counterpart, with two exceptions: eosinophil chemotactic cytokine and nothepsin. Conclusion This study provides a complete sequence data set of maternal mRNA stored in zebrafish germ cells at the end of oogenesis. This catalogue contains highly-expressed transcripts that are part of a vertebrate ovarian expressed gene signature. Comparison of transcriptome and proteome data identified downregulated transcripts or proteins potentially incorporated in the oocyte by endocytosis. The molecular phenotype described provides groundwork for future experimental approaches aimed at identifying functionally important stored maternal transcripts and proteins involved in oogenesis and early stages of embryo development. PMID:16526958

  6. Cloning of the cDNA for a hematopoietic cell-specific protein related to CD20 and the {beta} subunit of the high-affinity IgE receptor: Evidence for a family of proteins with four membrane-spanning regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adra, C.N.; Morrison, P.; Lim, B.

    1994-10-11

    The authors report the cloning of the cDNA for a human gene whose mRNA is expressed specifically in hematopoietic cells. A long open reading frame in the 1.7-kb mRNA encodes a 214-aa protein of 25 kDa with four hydrophobic regions consistent with a protein that traverses the membrane four times. To reflect the structure and expression of this gene in diverse hematopoietic lineages of lymphoid and myeloid origin, the authors named the gene HTm{sub 4}. The protein is about 20% homologous to two other {open_quotes}four-transmembrane{close_quotes} proteins; the B-cell-specific antigen CD20 and the {beta} subunit of the high-affinity receptor for IgE,more » Fc{sub {epsilon}}RI{beta}. The highest homologies among the three proteins are found in the transmembrane domains, but conserved residues are also recognized in the inter-transmembrane domains and in the N and C termini. Using fluorescence in situ hybridization, they localized HTm{sub 4} to human chromosome 11q12-13.1, where the CD20 and Fc{sub {epsilon}}RI{beta} genes are also located. Both the murine homologue for CD20, Ly-44, and the murine Fc{sub {epsilon}}RI{beta} gene map to the same region in murine chromosome 19. The authors propose that the HTm{sub 4}, CD20, and Fc{sub {epsilon}}RI{beta} genes evolved from the same ancestral gene to form a family of four-transmembrane proteins. It is possible that other related members exist. Similar to CD20 and Fc{sub {epsilon}}RI{beta}, it is likely that Htm{sub 4} has a role in signal transduction and, like Fc{sub {epsilon}}RI{beta}, might be a subunit associated with receptor complexes.« less

  7. Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells.

    PubMed

    Farabegoli, F; Scarpa, E S; Frati, A; Serafini, G; Papi, A; Spisni, E; Antonini, E; Benedetti, S; Ninfali, P

    2017-03-01

    Vitexin-2-O-xyloside (XVX) from Beta vulgaris var. cicla L. (BVc) seeds, betaxanthin (R1) and betacyanin (R2) fractions from Beta vulgaris var. rubra L. (BVr) roots were combined and tested for cytotoxicity in CaCo-2 colon cancer cells. XVX was the most cytotoxic molecule, but the combination of XVX with R1 and R2 significantly prolonged its cytotoxicity. Cytotoxicity was mediated by the intrinsic apoptotic pathway, as shown by an increase in Bcl2-like protein 4, cleaved Poly ADP-Ribosyl Polymerase 1 and cleaved Caspase 3 levels with a parallel decrease in anti-apoptotic protein B-cell leukemia/lymphoma 2 levels. R1 and R2, used alone or in combination, reduced oxidative stress triggered by H 2 O 2 in CaCo-2 cells. Betalains dampened cyclooxygenase-2 and interleukin-8 mRNA expression after lipopolysaccharide induction in CaCo-2, showing an anti-inflammatory action. Our results support the use of a cocktail of R1, R2 and XVX as a chemopreventive tool against colon cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Transforming growth factor-β stimulates the expression of eotaxin/CC chemokine ligand 11 and its promoter activity through binding site for nuclear factor-κβ in airway smooth muscle cells.

    PubMed

    Matsukura, S; Odaka, M; Kurokawa, M; Kuga, H; Homma, T; Takeuchi, H; Notomi, K; Kokubu, F; Kawaguchi, M; Schleimer, R P; Johnson, M W; Adachi, M

    2010-05-01

    Chemokines ligands of CCR3 including eotaxin/CC chemokine ligand 11 (CCL11) may contribute to the pathogenesis of asthma. These chemokines and a growth factor (TGF-beta) may be involved in the process of airway remodelling. We analysed the effects of TGF-beta on the expression of CCR3 ligands in human airway smooth muscle (HASM) cells and investigated the mechanisms. HASM cells were cultured and treated with TGF-beta and Th2 cytokines IL-4 or IL-13. Expression of mRNA was analysed by real-time PCR. Secretion of CCL11 into the culture medium was analysed by ELISA. Transcriptional regulation of CCL11 was analysed by luciferase assay using CCL11 promoter-luciferase reporter plasmids. IL-4 or IL-13 significantly up-regulated the expression of mRNAs for CCL11 and CCL26. TGF-beta alone did not increase the expression of chemokine mRNAs, but enhanced the induction of only CCL11 by IL-4 or IL-13 among CCR3 ligands. Activity of the CCL11 promoter was stimulated by IL-4, and this activity was enhanced by TGF-beta. Activation by IL-4 or IL-4 plus TGF-beta was lost by mutation of the binding site for signal transducers and activators of transcription-6 (STAT6) in the promoter. Cooperative activation by IL-4 and TGF-beta was inhibited by mutation of the binding site for nuclear factor-kappaB (NF-kappaB) in the promoter. Pretreatment with an inhibitor of NF-kappaB and glucocorticoid fluticasone propionate significantly inhibited the expression of CCL11 mRNA induced by IL-4 plus TGF-beta, indicating the importance of NF-kappaB in the cooperative activation of CCL11 transcription by TGF-beta and IL-4. These results indicate that Th2 cytokines and TGF-beta may contribute to the pathogenesis of asthma by stimulating expression of CCL11. The transcription factors STAT6 and NF-kappaB may play pivotal roles in this process.

  9. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

    PubMed

    Nakayama, Yohei; Matsui, Sari; Noda, Keisuke; Yamazaki, Mizuho; Iwai, Yasunobu; Matsumura, Hiroyoshi; Izawa, Takashi; Tanaka, Eiji; Ganss, Bernhard; Ogata, Yorimasa

    2016-10-01

    Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.

  10. Potential Molecular Targets of Statins in the Prevention of Hepatocarcinogenesis.

    PubMed

    Ridruejo, Ezequiel; Romero-Caími, Giselle; Obregón, María J; Kleiman de Pisarev, Diana; Alvarez, Laura

    2018-04-09

    Hepatocellular carcinoma (HCC) represents 90% of liver tumors. Statins, may reduce the incidence of various tumors, including HCC. Antitumoral activities may be mediated by changes in transforming growth factor-beta (TGF-β1) and thyroid hormones (TH) regulation. The aim of our study is to establish the statins mechanism of action and the potential key molecules involved in an in vivo and in vitro HCC model. We used two models: in vivo (in rats) using diethylnitrosamine (DEN) and hexachlorobenzene (HCB) to develop HCC, we analyzed cell proliferation parameters (proliferating cell nuclear antigen, PCNA) and cholesterol metabolism (hydroxy-methylglutaryl-CoA reductase, HMGCoAR). In vitro (Hep-G2 cells) we evaluated the effects of different doses of Atorvastatin (AT) and Simvastatin (SM) on HCB induced proliferation and analyzed proliferative parameters, colesterol metabolism, TGF-β1 mRNA, c-Src and TH levels. In vivo, we observed that cell proliferation significantly increased as well as cholesterol serum levels in rats treated with HCB. In vitro, we observed the same results on PCNA as in vivo. The statins prevented the increase in HMG-CoAR mRNA levels induced by HCB, reaching levels similar to controls at máximum doses: AT (30 μM), and SM (20 μM). Increases in PCNA, TGF-β1, and pc-Src, and decreases in deiodinase I mRNA levels induced by HCB were not observed when cells were pre-treated with AT and SM at maximum doses. Statins can prevent the proliferative HCB effects on Hep-G2 cells. TGF-β1, c-Src and TH may be the statins molecular targets in hepatocarcinogenesis.

  11. Exogenous galanin attenuates spatial memory impairment and decreases hippocampal β-amyloid levels in rat model of Alzheimer's disease.

    PubMed

    Li, Lei; Yu, Liling; Kong, Qingxia

    2013-11-01

    One of the major pathological characteristics of Alzheimer's disease (AD) is the presence of enhanced deposits of beta-amyloid peptide (Aβ). The neuropeptide galanin (GAL) and its receptors are overexpressed in degenerating brain regions in AD. The functional consequences of galaninergic systems plasticity in AD are unclear. The objective of the present study was to investigate whether exogenous galanin could attenuate spatial memory impairment and hippocampal Aβ aggregation in rat model of AD. The effects of Aβ, galanin, galanin receptor 1 agonist M617 and galanin receptor 2 agonist AR-M1896 on spatial memory were tested by Morris water maze. The effects of Aβ, galanin, M617 and AR-M1896 on hippocampal Aβ protein expression were evaluated by western blot assay. The expression of galanin, galanin receptors 1 and 2 in rats' hippocampus were detected by real time PCR and western blot assay. The results showed that (1) Galanin administration was effective in improving the spatial memory and decreasing hippocampal Aβ levels after intracerebroventricular injection of Aβ; (2) AR-M1896 rather than M617 could imitate these effects of galanin; (3) GAL and GALR2 mRNA and protein levels increased significantly in hippocampus after Aβ administration, while GALR1 mRNA and protein levels did not change; (4) GAL, AR-M1896 and M617 administration did not show significant effect on GAL, GalR1 and GalR2 mRNA and protein levels in hippocampus after Aβ administration. These results implied that galanin receptor 2, but not receptor 1 was involved in the protective effects against spatial memory impairment and hippocampal Aβ aggregation.

  12. In vivo effects of chronic contamination with 137 cesium on testicular and adrenal steroidogenesis.

    PubMed

    Grignard, Elise; Guéguen, Yann; Grison, Stéphane; Lobaccaro, Jean-Marc A; Gourmelon, Patrick; Souidi, Maâmar

    2008-09-01

    More than 20 years after Chernobyl nuclear power plant explosion, radionuclides are still mainly bound to the organic soil layers. The radiation exposure is dominated by the external exposure to gamma-radiation following the decay of (137)Cs and by soil-to-plant-to-human transfer of (137)Cs into the food chain. Because of this persistence of contamination with (137)Cs, questions regarding public health for people living in contaminated areas were raised. We investigated the biological effects of chronic exposure to (137)Cs on testicular and adrenal steroidogenesis metabolisms in rat. Animals were exposed to radionuclide in their drinking water for 9 months at a dose of 6,500 Bq/l (610 Bq/kg/day). Cesium contamination decreases the level of circulating 17beta-estradiol, and increases corticosterone level. In testis, several nuclear receptors messenger expression is disrupted; levels of mRNA encoding Liver X receptor alpha (LXRalpha) and LXRbeta are increased, whereas farnesoid X receptor mRNA presents a lower level. Adrenal metabolism presents a paradoxical decrease in cyp11a1 gene expression. In conclusion, our results show for the first time molecular and hormonal modifications in testicular and adrenal steroidogenic metabolism, induced by chronic contamination with low doses of (137)Cs.

  13. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    PubMed

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  14. Involvement of the c-Ski oncoprotein in cell cycle arrest and transformation during nurse cell formation after Trichinella spiralis infection.

    PubMed

    Wu, Z; Nagano, I; Boonmars, T; Takahashi, Y

    2006-09-01

    The role of c-Ski, an oncoprotein encoded by the oncogene, c-ski, in Trichinella spiralis-infected muscle tissues during nurse cell formation, was investigated by following the expression kinetics and distribution of c-Ski (both protein and mRNA) in the infected muscle cell, as well as the expression kinetics of the transforming growth factor beta (TGF-beta) signaling pathway factor genes (TGF-beta, Smad2 and Smad4) which cooperate with c-Ski. Immunohistochemical analysis using an anti-c-Ski antibody indicated that in the early stages of infection (13 and 18 days post-infection (p.i.)) the increased expression of the c-Ski protein was limited to the eosinophilic cytoplasm and not the enlarged nuclei or basophilic cytoplasm. At a later stage of infection (23 and 28 days p.i.) the c-Ski protein was limited to the enlarged nuclei in the basophilic cytoplasm, rather than the eosinophilic cytoplasm. At 48 days p.i., the c-Ski protein was barely detectable. Real-time PCR analysis showed that expression of the c-ski gene increased from 13 days p.i., reached a peak at 23-28 days p.i. and then decreased to a low level by 48 days p.i. Expression kinetics for the TGF-beta signaling pathway factor genes (TGF-beta, Smad2 and Smad4) were similar to that of c-ski. These findings provide evidence that the c-Ski protein is involved in nurse cell formation through the TGF-beta signaling pathway process in the host cell nucleus.

  15. Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication.

    PubMed

    Tan, Ruoyun; He, Weichun; Lin, Xia; Kiss, Lawrence P; Liu, Youhua

    2008-05-01

    Smad ubiquitination regulatory factor-2 (Smurf2) is an E3 ubiqutin ligase that plays a pivotal role in regulating TGF-beta signaling via selectively targeting key components of the Smad pathway for degradation. In this study, we have investigated the regulation of Smurf2 expression, its target specificity, and the functional implication of its induction in the fibrotic kidney. Immunohistochemical staining revealed that Smurf2 was upregulated specifically in renal tubules of kidney biopsies from patients with various nephropathies. In vitro, Smurf2 mRNA and protein were induced in human proximal tubular epithelial cells (HKC-8) upon TGF-beta1 stimulation. Ectopic expression of Smurf2 was sufficient to reduce the steady-state levels of Smad2, but not Smad1, Smad3, Smad4, and Smad7, in HKC-8 cells. Interestingly, Smurf2 was also able to downregulate the Smad transcriptional corepressors Ski, SnoN, and TG-interacting factor. Inhibition of the proteasomal pathway prevented Smurf2-mediated downregulation of Smad2 and Smad corepressors. Functionally, overexpression of Smurf2 enhanced the transcription of the TGF-beta-responsive promoter and augmented TGF-beta1-mediated E-cadherin suppression, as well as fibronectin and type I collagen induction in HKC-8 cells. These results indicate that Smurf2 specifically targets both positive and negative Smad regulators for destruction in tubular epithelial cells, thereby providing a complex fine-tuning of TGF-beta signaling. It appears that dysregulation of Smurf2 could contribute to an aberrant TGF-beta/Smad signaling in the pathogenesis of kidney fibrosis.

  16. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1beta and TNF-alpha.

  17. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium.

    PubMed

    Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S

    2008-05-01

    This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.

  18. Reversion of multidrug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme.

    PubMed Central

    Holm, P. S.; Scanlon, K. J.; Dietel, M.

    1994-01-01

    A major problem in cytostatic treatment of many tumours is the development of multidrug resistance (MDR4). This is most often accompanied by the overexpression of a membrane transport protein, P-glycoprotein, and its encoding mRNA. In order to reverse the resistant phenotype in cell cultures, we constructed a specific hammerhead ribozyme possessing catalytic activity that cleaves the 3'-end of the GUC sequence in codon 880 of the mdr1 mRNA. We demonstrated that the constructed ribozyme is able to cleave a reduced substrate mdr1 mRNA at the GUC position under physiological conditions in a cell-free system. A DNA sequence encoding the ribozyme gene was then incorporated into a mammalian expression vector (pH beta APr-1 neo) and transfected into the human pancreatic carcinoma cell line EPP85-181RDB, which is resistant to daunorubicin and expresses the MDR phenotype. The expressed ribozyme decreased the level of mdr1 mRNA expression, inhibited the formation of P-glycoprotein and reduced the cell's resistance to daunorubicin dramatically; this means that the resistant cells were 1,600-fold more resistant than the parental cell line (EPP85-181P), whereas those cell clones that showed ribozyme expression were only 5.3-fold more resistant than the parental cell line. Images Figure 1 Figure 3 Figure 2 PMID:7914421

  19. β-MSCs: successful fusion of MSCs with β-cells results in a β-cell like phenotype.

    PubMed

    Azizi, Zahra; Lange, Claudia; Paroni, Federico; Ardestani, Amin; Meyer, Anke; Wu, Yonghua; Zander, Axel R; Westenfelder, Christof; Maedler, Kathrin

    2016-08-02

    Bone marrow mesenchymal stromal cells (MSC) have anti-inflammatory, anti-apoptotic and immunosuppressive properties and are a potent source for cell therapy. Cell fusion has been proposed for rapid generation of functional new reprogrammed cells. In this study, we aimed to establish a fusion protocol of bone marrow-derived human MSCs with the rat beta-cell line (INS-1E) as well as human isolated pancreatic islets in order to generate insulin producing beta-MSCs as a cell-based treatment for diabetes.Human eGFP+ puromycin+ MSCs were co-cultured with either stably mCherry-expressing rat INS-1E cells or human dispersed islet cells and treated with phytohemagglutinin (PHA-P) and polyethylene glycol (PEG) to induce fusion. MSCs and fused cells were selected by puromycin treatment.With an improved fusion protocol, 29.8 ± 2.9% of all MSCs were β-MSC heterokaryons based on double positivity for mCherry and eGFP.After fusion and puromycin selection, human NKX6.1 and insulin as well as rat Neurod1, Nkx2.2, MafA, Pdx1 and Ins1 mRNA were highly elevated in fused human MSC/INS-1E cells, compared to the mixed control population. Such induction of beta-cell markers was confirmed in fused human MSC/human dispersed islet cells, which showed elevated NEUROD1, NKX2.2, MAFA, PDX1 and insulin mRNA compared to the mixed control. Fused cells had higher insulin content and improved insulin secretion compared to the mixed control and insulin positive beta-MSCs also expressed nuclear PDX1. We established a protocol for fusion of human MSCs and beta cells, which resulted in a beta cell like phenotype. This could be a novel tool for cell-based therapies of diabetes.

  20. Comparison of the canine and human acid {beta}-galactosidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahern-Rindell, A.J.; Kretz, K.A.; O`Brien, J.S.

    Several canine cDNA libraries were screened with human {beta}-galactosidase cDNA as probe. Seven positive clones were isolated and sequenced yielding a partial (2060 bp) canine {beta}-galactosidase cDNA with 86% identity to the human {beta}-galactosidase cDNA. Preliminary analysis of a canine genomic library indicated conservation of exon number and size. Analysis by Northern blotting disclosed a single mRNA of 2.4 kb in fibroblasts and liver from normal dogs and dogs affected with GM1 gangliosidosis. Although incomplete, these results indicate canine GM1 gangliosidosis is a suitable animal model of the human disease and should further efforts to devise a gene therapy strategymore » for its treatment. 20 refs., 2 figs., 1 tab.« less

  1. Antisense and sense poly(A)-RNAs from the Xenopus laevis pyruvate dehydrogenase gene loci are regulated with message production during embryogenesis.

    PubMed

    Islam, N; Poitras, L; Gagnon, F; Moss, T

    1996-10-17

    The structure and temporal expression of two Xenopus cDNAs encoding the beta subunit of pyruvate dehydrogenase (XPdhE1 beta) have been determined. XPdhE1 beta was 88% homologous to mature human PdhE1 beta, but the putative N-terminal mitochondrial signal peptide was poorly conserved. Zygotic expression of XPdhE1 beta mRNA was detected at neural tube closure and increased until stage 40. RT-PCR cloning identified a short homology to a protein kinase open reading frame within the 3' non-coding sequence of the XPdhE1 beta cDNAs. This homology, which occurred on the antisense cDNA strand, was shown by strand specific RT-PCR to be transcribed in vivo as part of an antisense RNA. Northern analysis showed that this RNA formed part of an abundant and heterogeneous population of antisense and sense poly(A)-RNAs transcribed from the XPdhE1 beta loci and coordinately regulated with message production.

  2. Interaction of Hb South Florida (codon 1; GTG-->ATG) and HbE, with beta-thalassemia (IVS1-1; G-->A): expression of different clinical phenotypes.

    PubMed

    Tan, Jin-Ai Mary Anne; Tan, Kim-Lian; Omar, Khairul Zaman; Chan, Lee-Lee; Wee, Yong-Chui; George, Elizabeth

    2009-09-01

    Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A). HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia. Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA. The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.

  3. Mushroom β-Glucan May Immunomodulate the Tumor-Associated Macrophages in the Lewis Lung Carcinoma

    PubMed Central

    Wang, Wan-Jhen; Wu, Yu-Sheng; Chen, Sherwin; Liu, Chi-Feng

    2015-01-01

    The present study showed that oral mushroom beta-glucan treatment significantly increased IFN-γ mRNA expression but significantly reduced COX-2 mRNA expression within the lung. For LLC tumor model, oral Ganoderma lucidum or Antrodia camphorata polysaccharides treatments significantly reduced TGF-β production in serum. In addition, IL-12 and IFN-γ mRNA expression were significantly increased, but IL-6, IL-10, COX-2, and TGF-β mRNA expression were substantially following oral mushroom polysaccharides treatments. The study highlights the efficacious effect of mushroom polysaccharides for ameliorating the immune suppression in the tumor microenvironment. Increased M1 phenotype of tumor-associated macrophages and attenuated M2 phenotype of tumor-associated macrophages could be achieved by ingesting mushroom polysaccharides. PMID:26167490

  4. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  5. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo.

    PubMed

    Gupta, Nidhi; Fisker, Niels; Asselin, Marie-Claude; Lindholm, Marie; Rosenbohm, Christoph; Ørum, Henrik; Elmén, Joacim; Seidah, Nabil G; Straarup, Ellen Marie

    2010-05-17

    The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol. The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse beta-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by approximately 60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5-3 folds for at least 8 days and approximately 2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity. LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.

  6. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen genemore » expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.« less

  7. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach.

    PubMed

    Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A

    2014-01-01

    Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.

  8. Betacellulin ameliorates hyperglycemia in obese diabetic db/db mice.

    PubMed

    Oh, Yoon Sin; Shin, Seungjin; Li, Hui Ying; Park, Eun-Young; Lee, Song Mi; Choi, Cheol Soo; Lim, Yong; Jung, Hye Seung; Jun, Hee-Sook

    2015-11-01

    We found that administration of a recombinant adenovirus (rAd) expressing betacellulin (BTC) into obese diabetic db/db mice ameliorated hyperglycemia. Exogenous glucose clearance was significantly improved, and serum insulin levels were significantly higher in rAd-BTC-treated mice than rAd-β-gal-treated control mice. rAd-BTC treatment increased insulin/bromodeoxyuridine double-positive cells in the islets, and islets from rAd-BTC-treated mice exhibited a significant increase in the level of G1-S phase-related cyclins as compared with control mice. In addition, BTC treatment increased messenger RNA (mRNA) and protein levels of these cyclins and cyclin-dependent kinases in MIN-6 cells. BTC treatment induced intracellular Ca(2+) levels through phospholipase C-γ1 activation, and upregulated calcineurin B (CnB1) levels as well as calcineurin activity. Upregulation of CnB1 by BTC treatment was observed in isolated islet cells from db/db mice. When treated with CnB1 small interfering RNA (siRNA) in MIN-6 cells and isolated islets, induction of cell cycle regulators by BTC treatment was blocked and consequently reduced BTC-induced cell viability. As well as BTC's effects on cell survival and insulin secretion, our findings demonstrate a novel pathway by which BTC controls beta-cell regeneration in the obese diabetic condition by regulating G1-S phase cell cycle expression through Ca(2+) signaling pathways. Administration of BTC to db/db mice results in amelioration of hyperglycemia. BTC stimulates beta-cell proliferation in db/db mice. Ca(2+) signaling was involved in BTC-induced beta-cell proliferation. BTC has an anti-apoptotic effect and potentiates glucose-stimulated insulin secretion.

  9. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    PubMed

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  10. Narrow-leafed lupin (Lupinus angustifolius L.) β-conglutin proteins modulate the insulin signaling pathway as potential type 2 diabetes treatment and inflammatory-related disease amelioration.

    PubMed

    Lima-Cabello, Elena; Alche, Victor; Foley, Rhonda C; Andrikopoulos, Sofianos; Morahan, Grant; Singh, Karam B; Alche, Juan D; Jimenez-Lopez, Jose C

    2017-05-01

    We have investigated the potential use of β-conglutin protein isoforms from narrow-leafed lupin (Lupinus angustifolius L.) as a diabetes treatment. We produced purified recombinant β1-, β2-, β3-, β4-, and β6-conglutin proteins and showed that β1, β3, and β6 could bind to insulin. To assess β-conglutin proteins modulatory effect on insulin activation meditated kinases, whole blood and peripheral blood mononuclear cell cultures from type 2 diabetes (T2D) and healthy control subjects (C) were incubated with conglutin proteins. The treatment of peripheral blood mononuclear cells from T2D patients with β1, β3, and β6 proteins increased up to threefold mRNA and protein levels of genes important in insulin signaling pathways, namely insulin receptor substrate 1/p85/AKT/glucose transporter type 4. This was accompanied by a comparable fold-change decrease in the mRNA expression level of pro-inflammatory genes (iNOS and IL-1β) and proteins compared to healthy controls. The β2 and β4 isoforms had no effect on the insulin signaling pathway. However, these β-conglutin proteins elicited pro-inflammatory effects since levels of mRNA and proteins of inducible nitric oxide synthase and IL 1 beta were increased. Our results raise the possibility of using these particular β-conglutin proteins in the prevention and treatment of diabetes, as well as their potential as anti-inflammatory molecules. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal

    PubMed Central

    Martinez, Bridget; Soñanez-Organis, José G.; Vázquez-Medina, José Pablo; Viscarra, Jose A.; MacKenzie, Duncan S.; Crocker, Daniel E.; Ortiz, Rudy M.

    2013-01-01

    SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism. PMID:24307712

  12. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages.

    PubMed

    Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N

    2004-12-01

    The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.

  13. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    PubMed Central

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of expression of cytokines in macrophages. This finding suggests that CAEV may modulate the accessory functions of infected macrophages and the antiviral immune response in vivo. PMID:9311828

  14. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing ofmore » an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.« less

  15. ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis.

    PubMed

    Pinto, Patrícia I S; Singh, Pratap B; Condeça, João B; Teodósio, Helena R; Power, Deborah M; Canário, Adelino V M

    2006-12-27

    ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response.

  16. ICI 182,780 has agonistic effects and synergizes with estradiol-17 beta in fish liver, but not in testis

    PubMed Central

    Pinto, Patrícia IS; Singh, Pratap B; Condeça, João B; Teodósio, Helena R; Power, Deborah M; Canário, Adelino VM

    2006-01-01

    Background ICI 182,780 (ICI) belongs to a new class of antiestrogens developed to be pure estrogen antagonists and, in addition to its therapeutic use, it has been used to knock-out estrogen and estrogen receptor (ER) actions in several mammalian species. In the present study, the effects and mechanism of action of ICI were investigated in the teleost fish, sea bream (Sparus auratus). Methods Three independent in vivo experiments were performed in which mature male tilapia (Oreochromis mossambicus) or sea bream received intra-peritoneal implants containing estradiol-17 beta (E2), ICI or a combination of both compounds. The effects of E2 and ICI on plasma calcium levels were measured and hepatic and testicular gene expression of the three ER subtypes, ER alpha, ER beta a and ER beta b, and the estrogen-responsive genes, vitellogenin II and choriogenin L, were analyzed by semi-quantitative RT-PCR in sea bream. Results E2 treatment caused an increase in calcium levels in tilapia, while ICI alone had no noticeable effect, as expected. However, pretreatment with ICI synergistically potentiated the effect of E2 on plasma calcium in both species. ICI mimicked some E2 actions in gene expression in sea bream liver upregulating ER alpha, vitellogenin II and choriogenin L, although, unlike E2, it did not downregulate ER beta a and ER beta b. In contrast, no effects of E2 or ICI alone were detected in the expression of ERs in testis, while vitellogenin II and choriogenin L were upregulated by E2 but not ICI. Finally, pretreatment with ICI had a synergistic effect on the hepatic E2 down-regulation of ER beta b, but apparently blocked the ER alpha up-regulation by E2. Conclusion These results demonstrate that ICI has agonistic effects on several typical estrogenic responses in fish, but its actions are tissue-specific. The mechanisms for the ICI agonistic activity are still unknown; although the ICI induced up-regulation of ER alpha mRNA could be one of the factors contributing to the cellular response. PMID:17192186

  17. Atorvastatin inhibits insulin synthesis by inhibiting the Ras/Raf/ERK/CREB pathway in INS-1 cells

    PubMed Central

    Sun, Hongxi; Li, Yu; Sun, Bei; Hou, Ningning; Yang, Juhong; Zheng, Miaoyan; Xu, Jie; Wang, Jingyu; Zhang, Yi; Zeng, Xianwei; Shan, Chunyan; Chang, Bai; Chen, Liming; Chang, Baocheng

    2016-01-01

    Abstract Backround: Type 2 diabetes has become a global epidemic disease. Atorvastatin has become a cornerstone in the prevention and treatment of atherosclerosis. However, increasing evidence showed that statins can dose-dependently increase the risk of diabetes mellitus. The mechanism is not clear. Objective: The Ras complex pathway (Ras/Raf/extracellular signal-regulated kinase [ERK]/cAMP response element-binding protein [CREB]) is the major pathway that regulates the gene transcription. Except for the inhibition of cholesterol synthesis by inhibiting the 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-COA) reductase, statins can also downregulate the phosphorylation of a series of downstream substrates including the key proteins of the Ras complex pathway, therefore may inhibit the insulin syntheses in pancreatic beta cells. In our study, we investigated the inhibitory effect and the underlying mechanism of atorvastatin on insulin synthesis in rat islets. Methods: Islets were isolated from Wistar rats and cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. The insulin content in the medium was measured by radioimmunoassay before and after the treatment of 50 μM atorvastatin. Effect of atorvastatin on the expression of insulin message Ribonucleic acid (mRNA) in pancreatic islet beta cells was also detected using quantitative real-time polymerase chain reaction. Western blotting was used to explore the possible role of the Ras complex pathway (Ras/Raf/ERK/CREB) in atorvastatin-inhibited insulin synthesis. The effects of atorvastatin on the binding of nuclear transcription factor p-CREB with CRE in INS-1 cells were examined via chromatin immunoprecipitation assay. Results: Compared with the control group, the insulin level decreased by 27.1% at 24 hours after atorvastatin treatment. Atorvastatin inhibited insulin synthesis by decreasing insulin mRNA expression of pancreatic islet beta cells. The activities of Ras, Raf-1, and p-CREB in the Ras complex pathway were inhibited by 50 μM atorvastatin in INS-1 cells in vitro. Moreover, 50 μM atorvastatin reduced the binding of p-CREB with deoxyribonucleic acid (DNA) in INS-1 cells in vitro. Conclusion: Atorvastatin inhibits insulin synthesis in beta cells by inhibiting the activation of the Ras complex pathway. PMID:27684825

  18. Successful expression in pollen of various plant species of in vitro synthesized mRNA introduced by particle bombardment.

    PubMed

    Tanaka, T; Nishihara, M; Seki, M; Sakamoto, A; Tanaka, K; Irifune, K; Morikawa, H

    1995-05-01

    Gold particles coated with beta-glucuronidase (GUS) mRNA with a 5' cap structure that had been synthesized in vitro were introduced, by use of a pneumatic particle gun, into pollen grains of lily (Lilium longiflorum), freesia (Freesia refracta) and tulip (Tulipa gesneriana). A fluorometric assay for the GUS activity indicated that in vitro synthesized GUS mRNA introduced into these pollen cells by particle bombardment was successfully expressed. GUS activity in extracts of the bombarded lily pollen became detectable fluorometrically within 30 min after bombardment, peaked at 6 h, then gradually decreased. This activity changed as a function of the developmental stage of the pollen cell of lily.

  19. Effects of Extract from Mangifera indica Leaf on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats

    PubMed Central

    Jiang, Yan; You, Xiao-Ying; Fu, Kong-Long; Yin, Wan-Le

    2012-01-01

    The leaves of Mangifera indica L. (Anacardiaceae) is used as a medicinal material in traditional herb medicine for a long time in India, China, and other Eastern Asian countries. Our present study investigated the therapeutic effects of the ethanol extract from Mangifera indica (EMI) in rat with monosodium urate (MSU) crystals-induced gouty arthritis. Effects of EMI (50, 100, and 200 mg/kg, p.o.) administrated for 9 days on the ankle swelling, synovial tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β) levels were assessed in MSU crystal rat. Data from our study showed that rat with gouty arthritis induced by MSU crystal demonstrated an elevation in ankle swelling, synovial TNF-α, IL-1β mRNA, and protein levels. Oral administration of 100 and 200 mg/kg EMI for 9 days reversed the abnormalities in ankle swelling, synovial TNF-α, IL-1β mRNA, and protein levels. The results indicated that the beneficial antigouty arthritis effect of EMI may be mediated, at least in part, by inhibiting TNF-α and IL-1β expression in the synovial tissues. Our study suggests that Mangifera indica and its extract may have a considerable potential for development as an anti-gouty arthritis agent for clinical application. PMID:23304232

  20. Dietary Milk Sphingomyelin Prevents Disruption of Skin Barrier Function in Hairless Mice after UV-B Irradiation.

    PubMed

    Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya

    2015-01-01

    Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.

Top