Sample records for beta-glucuronidase reporter gene

  1. The egasyn gene affects the processing of oligosaccharides of lysosomal beta-glucuronidase in liver.

    PubMed Central

    Swank, R T; Pfister, K; Miller, D; Chapman, V

    1986-01-01

    The accumulation of the relatively large amounts of beta-glucuronidase in microsomal fractions of normal mice depends on formation of complexes with the protein egasyn. Unexpectedly, it was found that the egasyn gene also affects the processing of beta-glucuronidase, which is segregated to lysosomes. In egasyn-positive mice lysosomal beta-glucuronidase from liver has a mean pI of 5.9 with a minor proportion at pI 5.4, whereas in egasyn-negative mice the proportion of the two lysosomal forms is reversed. Combined experiments measuring susceptibility to neuraminidase and to endoglycosidase H and specific binding to Ricinus communis lectin-agarose columns showed that the alterations in isoelectric point were associated with a decrease in complex oligosaccharides of lysosomal beta-glucuronidase in egasyn-positive mice. Since this alteration occurs not only in a congenic strain carrying the Eg0 gene but also in several other inbred strains that are homozygous for this gene, it is considered to be a genuine effect of the Eg gene rather than other genes that might regulate oligosaccharide processing. Also, the alteration is likely to be a result of direct physical interaction of the egasyn protein and lysosomal beta-glucuronidase, since a second lysosomal enzyme, beta-galactosidase, which does not form complexes with egasyn, is unaffected. The results suggest a model in which egasyn not only causes accumulation of beta-glucuronidase in the microsomal compartment but also acts upon the precursor to lysosomal beta-glucuronidase to alter its interaction with trans-Golgi-apparatus processing enzymes. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:3101673

  2. Correction of murine mucopolysaccharidosis VII by a human. beta. -glucuronidase transgene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, J.W.; Vogler, C.; Hoffmann, J.W.

    1990-05-01

    The authors recently described a murine model for mucopolysaccharidosis VII in mice that have an inherited deficiency of {beta}-glucuronidase. Affected mice, of genotype gus{sup mps}/gus{sup mps}, present clinical manifestations similar to those of humans with mucopolysaccharidosis VII (Sly syndrome) and are shown here to have secondary elevations of other lysosomal enzymes. The mucopolysaccharidosis VII phenotype in both species includes dwarfism, skeletal deformities, and premature death. Lysosome storage is visualized within enlarged vesicles and correlates biochemically with accumulation of undegraded and partially degraded glycosaminoglycans. In this report they describe the consequences of introducing the human {beta}-glucuronidase gene, GUSB, into gus{sup mps}/gus{supmore » mps} mice that produce virtually no murine {beta}-glucuronidase. Transgenic mice homozygous for the mucopolysaccharidosis VII mutation expressed high levels of human {beta}-glucuronidase activity in all tissues examined and were phenotypically normal. Biochemically, both the intralysosomal storage of glycosaminoglycans and the secondary elevation of other acid hydrolases were corrected. These findings demonstrate that the GUSB transgene is expressed in gus{sup mps}/gus{sup mps} mice and that human {beta}-glucuronidase corrects the murine mucopolysaccharidosis storage disease.« less

  3. Genetics Home Reference: mucopolysaccharidosis type VII

    MedlinePlus

    ... This gene provides instructions for producing the beta-glucuronidase (β-glucuronidase) enzyme, which is involved in the breakdown of ... reduce or completely eliminate the function of β-glucuronidase. The shortage (deficiency) of β-glucuronidase leads to ...

  4. Assignment of the structural gene for human beta glucuronidase to chromosome 7 and tetrameric association of subunits in the enzyme molecule.

    PubMed Central

    Chern, C J; Croce, C M

    1976-01-01

    The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure. Images Fig. 1 Fig. 2 Fig. 3 PMID:941902

  5. A pseudodeficiency allele (D152N) of the human {beta}-glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vervoort, R.; Liebaers, I.; Lissens, W.

    1995-10-01

    We present evidence that a 480G{r_arrow}A transition in the coding region of the {Beta}glucuronidase gene, which results in an aspartic-acid-to-asparagine substitution at amino acid position 152 (D152N), produces a pseudodeficiency allele (GUSBp) that leads to greatly reduced levels of {Beta}-glucuronidase activity without apparent deleterious consequences. The 48OG{r_arrow}A mutation was found initially in the pseudodeficient mother of a child with mucopolysaccharidosis VII (MPSVII), but it was not on her disease-causing allele, which carried the L176F mutation. The 480G{r_arrow}A change was also present in an unrelated individual with another MPSVII allele who had unusually low {Beta}-glucuronidase activity, but whose clinical symptoms weremore » probably unrelated to {Beta}-glucuronidase deficiency. This individual also had an R357X mutation, probably on his second allele. We screened 100 unrelated normal individuals for the 480G{r_arrow}A mutation with a PCR method and detected one carrier. Reduced {Beta}-glucuronidase activity following transfection of COS cells with the D152N cDNA supported the causal relationship between the D152N allele and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due to accelerated intracellular turnover of the D152N enzyme. They also suggested that a potential glycosylation site created by the mutation is utilized in {approximately}50% of the enzyme expressed. 25 refs., 3 figs., 3 tabs.« less

  6. EFFICACY OF B-GLUCURONIDASE ASSAY FOR IDENTIFICATION OF ESCHERICHIA COLI BY THE DEFINED-SUBSTRATE TECHNOLOGY

    EPA Science Inventory

    In 1976, Kilian and Bulow described the association of beta-glucuronidase with the genus Escherichia (97% positive) and suggested that a beta-glucuronidase assay would be a useful identification test. Since that report, papers about the sensitivity and specificity of this enzyme ...

  7. EFFICACY OF B-GLUCURONIDASE ASSAY FOR IDENTIFICATION OF ESCHERICHIA COLI BY THE DEFINED-SUBSTRATE TECHNOLOGY.

    EPA Science Inventory

    In 1976, Kilian and Bulow described the association of beta-glucuronidase with the genus Escherichia (97% positive) and suggested that a beta-glucuronidase assay would be a useful identification test. Since that report, papers about the sensitivity and specificity of the enzyme ...

  8. Genomic organization and sequence of the Gus-s/sup a/ allele of the murine. beta. -glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funkenstein, B.; Leary, S.L.; Stein, J.C.

    1988-03-01

    The Gus-s/sup ..cap alpha../ allele of the mouse ..beta..-glucuronidase gene exhibits a high degree of inducibility by androgens due to its linkage with the Gus-r/sup ..cap alpha../ regulatory locus. The authors isolated Gus-s/sup ..cap alpha../ on a 28-kilobase pair fragment of mouse chromosome 5 and found that it contains 12 exons and 11 intervening sequences spanning 14 kilobase pairs of this genomic segment. The mRNA cap site was identified by ribonuclease protection and primer extension analyses which revealed an unusually short 5' noncoding sequence of 12 nucleotides. Proximal regulatory sequences in the 5'-flanking DNA and the complete sequence of themore » Gus-s/sup ..cap alpha../ mRNA transcript were also determined. Comparison of the amino acid sequence determined from the Gus-s/sup ..cap alpha../ nucleotide sequence with that of human ..beta..-glucuronidase indicated that the two human mRNA species differ due to alternate splicing of an exon homologous to exon 6 of the mouse gene.« less

  9. Molecular analysis of patients with {Beta}-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vervoort, R.; Liebaers, I.; Lissens, W.

    1996-03-01

    Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human {beta}-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified {beta}-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 of 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detectedmore » 14 undescribed mutations in the {beta}-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N, and 1900{Delta}GA). The mutations in hydropic fetuses were widely scattered in the {beta}-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T, and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA. 52 refs., 4 figs., 5 tabs.« less

  10. Molecular analysis of patients with beta-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII.

    PubMed Central

    Vervoort, R.; Islam, M. R.; Sly, W. S.; Zabot, M. T.; Kleijer, W. J.; Chabas, A.; Fensom, A.; Young, E. P.; Liebaers, I.; Lissens, W.

    1996-01-01

    Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human beta-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified beta-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 or 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detected 14 undescribed mutations in the beta-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N and 1900 delta GA). The mutations in hydropic fetuses were widely scattered in the beta-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA. Images Figure 2 Figure 3A Figure 3BC Figure 4 PMID:8644704

  11. Application of microalgal fucoxanthin for the reduction of colon cancer risk: inhibitory activity of fucoxanthin against beta-glucuronidase and DLD-1 cancer cells.

    PubMed

    Kawee-Ai, Arthitaya; Kim, Sang Moo

    2014-07-01

    Intestinal bacterial beta-glucuronidases are capable of retoxifying compounds that have been detoxified by liver glucuronidation and are also known to accelerate colon cancer invasion and metastasis. In this study, fucoxanthin extracted from the microalga Phaeodactylum tricornutum was investigated for its inhibitory activity against Escherichia coli beta-glucuronidase and DLD-1 cancer cells. Fucoxanthin inhibited beta-glucuronidase in a concentration-dependent manner with an IC50 value of 2.32 mM and a mixed inhibition type. Fucoxanthin had more potent inhibitory activity on beta-glucuronidase at 37 degrees C and in alkaline conditions. Fucoxanthin also inhibited the beta-glucuronidase activity of DLD-1 cancer cells at a concentration of 20-50 microM. The presence of beta-glucuronidase and substrate in the medium decreased the inhibitory activity of fucoxanthin against DLD-1 cancer cells. Therefore, microalgal fucoxanthin might prevent colon cancer because of its strong beta-glucuronidase inhibitory activity and could be utilized as a novel functional ingredient of food and pharmaceutical supplements.

  12. Cloning, sequencing, and expression of cDNA for human. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-02-01

    The authors report here the cDNA sequence for human placental ..beta..-glucuronidase (..beta..-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH/sub 2/-terminal amino acid sequence determined for human spleen ..beta..-glucuronidase agreed with that inferred from the DNAmore » sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human ..beta..-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human ..beta..-glucuronidase, demonstrate the existence of two populations of mRNA for ..beta..-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length.« less

  13. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    PubMed

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-07-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  14. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    PubMed

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-11-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  15. Effects of beta-glucuronidase-deficient and lycopene-producing Escherichia coli strains on formation of azoxymethane-induced aberrant crypt foci in the rat colon.

    PubMed

    Arimochi, H; Kataoka, K; Kuwahara, T; Nakayama, H; Misawa, N; Ohnishi, Y

    1999-08-27

    We tried to inhibit the formation of azoxymethane-induced aberrant crypt foci (ACF) in the rat intestine by feeding a culture of a beta-glucuronidase-deficient Escherichia coli strain or a cell suspension of a lycopene-producing E. coli strain. Feeding of the former culture to F344 rats did not decrease fecal beta-glucuronidase activity or the number of ACF compared with the control beta-glucuronidase-proficient groups. However, a significant positive correlation between the fecal beta-glucuronidase activity and the ACF number was observed among groups treated with cultures of beta-glucuronidase-proficient and -deficient strains. In the group treated with lycopene-producing cells, the number of ACF was significantly lower than that in the control group. A vegetable juice containing a larger amount of lycopene than a cell suspension of the lycopene-producing E. coli also decreased the number of ACF to the same extent as a cell suspension of the lycopene-producing bacteria. These results suggest that feeding of the beta-glucuronidase-deficient E. coli is not very effective in preventing colon carcinogenesis, although activity of the fecal beta-glucuronidase is associated with AOM-induced ACF formation, and that lycopene-producing intestinal bacteria can effectively prevent colon carcinogenesis. Copyright 1999 Academic Press.

  16. Is plasma {beta}-glucuronidase a novel human biomarker for monitoring anticholinesterase pesticides exposure? A Malaysian experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inayat-Hussain, Salmaan H.; Lubis, Syarif Husin; Sakian, Noor Ibrahim Mohamed

    A cross-sectional study was conducted to investigate the effects of acute and chronic pesticide exposure on the plasma {beta}-glucuronidase enzyme activity among five patients of acute pesticide poisoning in Tengku Ampuan Rahimah Hospital, Klang, 230 farmers in the MADA area, Kedah and 49 fishermen in Setiu, Terengganu. The duration of pesticide exposure among the patients was unknown, but the plasma samples from patients were collected on day one in the hospital. The duration of pesticide exposure among the farmers was between 1 and 45 years. The {beta}-glucuronidase activity was compared with plasma cholinesterase activity in the same individual. The plasmamore » cholinesterase activity was measured using Cholinesterase (PTC) Reagent set kit (Teco Diagnostics, UK) based on colorimetric method, while the plasma {beta}-glucuronidase activity was measured fluorometrically based on {beta}-glucuronidase assay. The plasma cholinesterase activity was significantly reduced (p < 0.05) among the patients (1386.786 {+-} 791.291 U/L/min) but the inhibition in plasma cholinesterase activity among the farmers (7346.5 {+-} 1860.786 U/L/min) was not significant (p > 0.05). The plasma {beta}-glucuronidase activity among the farmers was significantly elevated (p < 0.05) (0.737 {+-} 0.425 {mu}M/h) but not significant among the patients (p > 0.05). The plasma cholinesterase activity was positively correlated with the plasma {beta}-glucuronidase activity among the farmers (r = 0.205, p < 0.01) but not among the patients (r = 0.79, p > 0.05). Thus, plasma {beta}-glucuronidase enzyme activity can be measured as a biomarker for the chronic exposure of pesticide. However, further studies need to be performed to confirm whether plasma {beta}-glucuronidase can be a sensitive biomarker for anticholinesterase pesticide poisoning.« less

  17. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner.

    PubMed Central

    Leyva, A.; Jarillo, J. A.; Salinas, J.; Martinez-Zapater, J. M.

    1995-01-01

    Anthocyanins, which accumulate in leaves and stems in response to low temperature and changes in light intensity, are synthesized through the phenylpropanoid pathway that is controlled by key enzymes that include phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS). In this work we demonstrate that PAL and CHS mRNAs accumulate in leaves of Arabidopsis thaliana (L.) Heynh. upon exposure to low temperature in a light-dependent manner. The regulation of the PAL1 gene expression by low temperature and light was examined by analyzing the expression of the [beta]-glucuronidase (uidA) reporter gene in transgenic Arabidopsis plants containing the uidA gene of Escherichia coli under the control of the PAL1 promoter. The results indicate that the accumulation of PAL1 mRNA is transcriptionally regulated. Histochemical staining for [beta]-glucuronidase activity showed that the PAL1 promoter is preferentially activated in photosynthetically active cells, paralleling anthocyanin accumulation. Moreover, we show that light may also be implicated in the regulation of the CHS gene in response to bacterial infiltration. Finally, using two transparent testa Arabidopsis mutants that are unable to accumulate anthocyanins, we demonstrate that these pigments are not required for successful development of freezing tolerance in this species. PMID:12228452

  18. THE EFFECT OF RADIATION AND POLYMYXIN B SULFATE ON THE SERIUM BETA- GLUCURONIDASE ACTIVITY LEVEL IN CANCER PATIENTS: A PRELIMINARY REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartalos, M.; Gyoerkey, F.

    1962-01-01

    Serial serum BETA -glucuronidase activity determinations showed a consistently higher level in 50 cancer patients as compared with a group of healthy adults. In 1 group of these patients treated with radiation alone, the serum BETA glucuronidase level rose in all reaching the highest peak about the 12th day. Another group of these cancer patients was treated with radiation and polymyxin B each day for 2 consecutive days. In all, the serum activity showed a sharp fall after the 2nd injection which was followed by clinical improvement. In order to exclude the possibility of a direct deactivating effect of radiationmore » of BETA -glucuronidase in the circulating blood, the following in vitro experiments were performed. A pure crystalline enzyme was dissolved in distilled water to an approximately similar concentration to that found in cancer patients' serums with and without polymyxin and exposed to 50,000 r radiation. This did not lower the enzyme activity level. Pleural fluid from cancer patients showing high BETA -glucoronidase activity, with and without polymyxin, exposed to a similar dose of radiation showed no change in activity. (H.H.D.)« less

  19. A Thermostable β-Glucuronidase Obtained by Directed Evolution as a Reporter Gene in Transgenic Plants

    PubMed Central

    Xiong, Ai-Sheng; Peng, Ri-He; Zhuang, Jing; Chen, Jian-Min; Zhang, Bin; Zhang, Jian; Yao, Quan-Hong

    2011-01-01

    A β-glucuronidase variant, GUS-TR3337, that was obtained by directed evolution exhibited higher thermostability than the wild-type enzyme, GUS-WT. In this study, the utility of GUS-TR337 as an improved reporter was evaluated. The corresponding gus-tr3337 and gus-wt genes were independently cloned in a plant expression vector and introduced into Arabidopsis thaliana. With 4-MUG as a substrate, plants containing the gus-wt gene showed no detectable β-glucuronidase activity after exposure to 60°C for 10 min, while those hosting the gus-tr3337 gene retained 70% or 50% activity after exposure to 80°C for 10 min or 30 min, respectively. Similarly, in vivo β-glucuronidase activity could be demonstrated by using X-GLUC as a substrate in transgenic Arabidopsis plants hosting the gus-tr3337 gene that were exposed to 80°C for up to 30 min. Thus, the thermostability of GUS-TR3337 can be exploited to distinguish between endogenous and transgenic β-glucuronidase activity, which is a welcome improvement in its use as a reporter. PMID:22096498

  20. Effect of dietary fiber on the activity of intestinal and fecal beta-glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis.

    PubMed

    Manoj, G; Thampi, B S; Leelamma, S; Menon, P V

    2001-01-01

    The effects of fiber isolated from black gram (Phaseolus mungo) and coconut (Cocos nucifera) kernel on the metabolic activity of intestinal and fecal beta glucuronidase activity during 1,2-dimethylhydrazine induced colon carcinogenesis were studied. The results indicated that the inclusion of fiber from black gram and coconut kernel generally supported lower specific activities and less fecal output of beta-glucuronidase than did the fiber free diet. This study suggests that the fibers isolated from coconut or black gram may potentially play a role in preventing the formation of colon tumors induced by the carcinogen 1,2-dimethylhydrazine by reducing the activity of the intestinal as well as fecal beta-glucuronidase.

  1. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination.

    PubMed

    Elorza, Alvaro; Roschzttardtz, Hannetz; Gómez, Isabel; Mouras, Armand; Holuigue, Loreto; Araya, Alejandro; Jordana, Xavier

    2006-01-01

    Three nuclear genes, SDH2-1, SDH2-2 and SDH2-3, encode the essential iron-sulfur subunit of mitochondrial complex II in Arabidopsis thaliana. SDH2-1 and SDH2-2 probably arose via a recent duplication event and we reported that both are expressed in all organs from adult plants. In contrast, transcripts from SDH2-3 were not detected. Here we present data demonstrating that SDH2-3 is specifically expressed during seed development. SDH2-3 transcripts appear during seed maturation, persist through desiccation, are abundant in dry seeds and markedly decline during germination. Analysis of transgenic Arabidopsis plants carrying the SDH2-3 promoter fused to the beta-glucuronidase reporter gene shows that the SDH2-3 promoter is activated in the embryo during maturation, from the bent-cotyledon stage. beta-Glucuronidase expression correlates with the appearance of endogenous SDH2-3 transcripts, suggesting that control of this nuclear gene is achieved through transcriptional regulation. Furthermore, progressive deletions of this promoter identified a 159 bp region (-223 to -65) important for SDH2-3 transcriptional activation in seeds. Interestingly, the SDH2-3 promoter remains active in embryonic tissues during germination and post-germinative growth, and is turned off in vegetative tissues (true leaves). In contrast to SDH2-3 transcripts, SDH2-1 and SDH2-2 transcripts are barely detected in dry seeds and increase during germination and post-germinative growth. The opposite expression patterns of SDH2 nuclear genes strongly suggest that during germination the embryo-specific SDH2-3 is replaced by SDH2-1 or SDH2-2 in mitochondrial complex II.

  2. Pigment gallstone pathogenesis: slime production by biliary bacteria is more important than beta-glucuronidase production.

    PubMed

    Stewart, L; Ponce, R; Oesterle, A L; Griffiss, J M; Way, L W

    2000-01-01

    Pigment stones are thought to form as a result of deconjugation of bilirubin by bacterial beta-glucuronidase, which results in precipitation of calcium bilirubinate. Calcium bilirubinate is then aggregated into stones by an anionic glycoprotein. Slime (glycocalyx), an anionic glycoprotein produced by bacteria causing foreign body infections, has been implicated in the formation of the precipitate that blocks biliary stents. We previously showed that bacteria are present within the pigment portions of gallstones and postulated a bacterial role in pigment stone formation through beta-glucuronidase or slime production. Ninety-one biliary bacterial isolates from 61 patients and 12 control stool organisms were tested for their production of beta-glucuronidase and slime. The average slime production was 42 for biliary bacteria and 2.5 for stool bacteria (P <0.001). Overall, 73% of biliary bacteria and 8% of stool bacteria produced slime (optical density >3). In contrast, only 38% of biliary bacteria produced beta-glucuronidase. Eighty-two percent of all patients, 90% of patients with common bile duct (CBD) stones, 100% of patients with primary CBD stones, and 93% of patients with biliary tubes had one or more bacterial species in their stones that produced slime. By comparison, only 47% of all patients, 60% of patients with CBD stones, 62% of patients with primary CBD stones, and 50% of patients with biliary tubes had one or more bacteria that produced beta-glucuronidase. Most biliary bacteria produced slime, and slime production correlated better than beta-glucuronidase production did with stone formation and the presence of biliary tubes or stents. Patients with primary CBD stones and biliary tubes had the highest incidence of slime production. These findings suggest that bacterial slime is important in gallstone formation and the blockage of biliary tubes.

  3. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene.

    PubMed Central

    Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M

    1990-01-01

    The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158

  4. Gallstones containing bacteria are biofilms: bacterial slime production and ability to form pigment solids determines infection severity and bacteremia.

    PubMed

    Stewart, Lygia; Griffiss, J McLeod; Jarvis, Gary A; Way, Lawrence W

    2007-08-01

    Gallstone bacteria provide a reservoir for biliary infections. Slime production facilitates adherence, whereas beta-glucuronidase and phospholipase generate colonization surface. These factors facilitate gallstone formation, but their influence on infection severity is unknown. Two hundred ninety-two patients were studied. Gallstones, bile, and blood (as applicable) were cultured. Bacteria were tested for beta-glucuronidase/phospholipase production and quantitative slime production. Infection severity was correlated with bacterial factors. Bacteria were present in 43% of cases, 13% with bacteremia. Severe infections correlated directly with beta-glucuronidase/phospholipase (55% with vs 13% without, P < 0.0001), but inversely with slime production (55 vs 8%, slime <75 or >75, P = 0.008). Low slime production and beta-glucuronidase/phospholipase production were additive: Severe infections were present in 76% with both, but 10% with either or none (P < 0.0001). beta-Glucuronidase/phospholipase production facilitated bactibilia (86% with vs 62% without, P = 0.03). Slime production was 19 (+/-8) vs 50 (+/-10) for bacteria that did or did not cause bacteremia (P = 0.004). No bacteria with slime >75 demonstrated bacteremia. Bacteria-laden gallstones are biofilms whose characteristics influence illness severity. Factors creating colonization surface (beta-glucuronidase/phospholipase) facilitated bacteremia and severe infections; but abundant slime production, while facilitating colonization, inhibited detachment and cholangiovenous reflux. This shows how properties of the gallstone biofilm determine the severity of the associated illness.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okita, T.W.

    Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.

  6. Liver damage induced in rats by malathion impurities.

    PubMed

    Keadtisuke, S; Dheranetra, W; Nakatsugawa, T; Fukuto, T R

    1990-06-01

    Administration of a single oral dose of the malathion impurity, O,O,S-trimethyl phosphorothioate (OOS-Me) or O,S,S-trimethyl phosphorodithioate (OSS-Me), to the rat resulted in hemostatic disorders, e.g. prolongation of blood clotting, prothrombin and thrombin time. Deficiency of coagulation Factors II, V and VII was also observed. OOS-Me and OSS-Me also caused dose-dependent increases of beta-glucuronidase in the blood with a maximum of 15- and 31-fold observed following treatment with 60 mg/kg OOS-Me and 40 mg/kg OSS-Me, respectively. Analysis of serum beta-glucuronidase by isoelectrofocusing electrophoresis showed that the liver endoplasmic reticulum was the source of this enzyme released into the blood. Co-treatment of OOS-Me with 5% O,O,O-trimethyl phosphorothioate (OOO-Me), a potent antagonist of OOS-Me-induced delayed toxicity, prevented hemostatic disorders but had no effect in reducing beta-glucuronidase levels. However, pretreatment of rats with piperonyl butoxide reduced the amount of beta-glucuronidase released into the blood. Of other O,O,S-trialkyl phosphorothioates examined, the O,O-diethyl S-alkyl phosphorothioates showed the highest activity in increasing beta-glucuronidase levels.

  7. Beta-glucuronidase and Beta-glucosidase activity in stool specimens of children with inflammatory bowel disease.

    PubMed

    Mroczyńska, Marta; Galecka, Miroslawa; Szachta, Patrycja; Kamoda, Dorota; Libudzisz, Zdzislawa; Roszak, Dorota

    2013-01-01

    The aim of the study was to analyze the differences in the activity of beta-glucuronidase and beta-glucosidase in stool specimens of children with Inflammatory Bowel Diseases (IBD) and healthy subjects. The disease activity was determined according to the PCDAI scale (Crohn disease) and Truelove-Witts scale (Ulcerative colitis). Enzyme activity was determined by spectrophotometry. There was a correlation between the level of beta - glucosidase activity in stool and patient's age in the group of healthy controls, but not in the IBD group. beta-glucosidase activity in IBD and healthy subjects stool specimens did not differ significantly. The activity of beta-glucuronidase in children with IBD was two times lower than in the healthy group and was correlated with age in children with IBD, but not in the group of healthy ones.

  8. Effects of sulfate concentrations on the expression of a soybean seed storage protein gene and its reversibility in transgenic Arabidopsis thaliana.

    PubMed

    Hirai, M Y; Fujiwara, T; Chino, M; Naito, S

    1995-10-01

    Transgenic expression of genes encoding the alpha' and beta subunits of beta-conglycinin, one of the major seed storage proteins of soybean (Glycine max [L.] Merr.), was analyzed in Arabidopsis thaliana (L.) Heynh. under conditions of sulfate deficiency. Temporal patterns of expression of both the intact beta subunit gene and the beta subunit gene promoter fused to the beta-glucuronidase (GUS) gene are similar in soil-less cultures using rockwool, suggesting that the response to sulfate deficiency is regulated mainly at the level of transcription. In hydroponic cultures with various concentrations of sulfate, expression of both the intact beta subunit gene and the beta subunit gene promoter-GUS fusion gene were negatively correlated to increased sulfate concentrations in the culture medium. Transfer of transgenic A. thaliana plants carrying the beta subunit gene promoter-GUS fusion from sulfate-deficient to sulfate-sufficient control medium caused GUS activity in developing siliques to be repressed within two days. A reverse shift, where the plants were transferred from the control to sulfate-deficient medium, caused GUS activity to become higher than that in seeds of the control plants within two days. These results indicate that the expression of the beta subunit gene promoter responds rapidly to changes of sulfate availability.

  9. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  10. The influence of co-cultivation on expression of the antifungal protein in Aspergillus giganteus.

    PubMed

    Meyer, Vera; Stahl, Ulf

    2003-01-01

    The afp gene of Aspergillus giganteus encodes a small, highly basic polypeptide with antifungal activity, named Antifungal Protein (AFP). The protein is secreted by the mould and inhibits the growth of various filamentous fungi. In this paper we report that co-cultivation of A. giganteus with various microorganisms alters afp expression. It was found that co-cultivation modulates afp expression on the level of transcription, using a reporter system based on the beta-glucuronidase gene. The presence of Fusarium oxysporum triggered afp transcription whereas dual cultures of A. giganteus and A. niger resulted in suppression of afp transcription. Growth tests performed with several carbon and nitrogen sources, revealed that the influence of co-cultivation is strongly dependent on the medium composition.

  11. Effect of long-term exposure to pesticides on plasma esterases from plastic greenhouse workers.

    PubMed

    Hernández, Antonio; Gómez, M Amparo; Pena, Gloria; Gil, Fernando; Rodrigo, Lourdes; Villanueva, Enrique; Pla, Antonio

    2004-07-23

    Previous reports in animals considered beta-glucuronidase activity as a novel biomarker of anticholinesterase (organophosphates and carbamates) pesticides exposure. Acid phosphatase activity was also shown to increase after organophosphates exposure. In addition, there is evidence that the paraoxonase status influences sensitivity to specific pesticides. In this study, activities of beta-glucuronidase, acid phosphatase, cholinesterase, and paraoxonase were measured in plasma from plastic greenhouse workers exposed over the long term to different pesticides, including organophosphates and carbamates, in order to evaluate the potential chronic toxicity of pesticides at occupational level. Our results show that activities of paraoxonase and cholinesterase were decreased in applicators of pesticides compared to non-applicators. Likewise, it was found that activities of beta-glucuronidase and acid phosphatase were associated with pesticide exposure in humans, and that both biochemical parameters were related to each other. Interestingly, the paraoxonase B allele (phenotyped in plasma) was associated with a higher risk of inhibition of cholinesterase activity above a 25% level, which supports the hypothesis that paraoxonase phenotypes are associated with susceptibility of humans to anticholinesterase pesticides toxicity. Copyright Taylor and Francis Inc.

  12. aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid.

    PubMed

    de Vries, R P; Poulsen, C H; Madrid, S; Visser, J

    1998-01-01

    An extracellular alpha-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70 degrees C. The alpha-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and beta-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this alpha-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and alpha-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.

  13. A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug.

    PubMed

    de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M

    2002-03-04

    Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme beta-glucuronidase. The sequences encoding C28 and human enzyme beta-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGkappa signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-beta-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme beta-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. Copyright 2002 Cancer Research UK

  14. Scoparic acid A, a beta-glucuronidase inhibitor from Scoparia dulcis.

    PubMed

    Hayashi, T; Kawasaki, M; Okamura, K; Tamada, Y; Morita, N; Tezuka, Y; Kikuchi, T; Miwa, Y; Taga, T

    1992-12-01

    The 70% EtOH extract of Scoparia dulcis showed inhibitory activity against beta-glucuronidase from bovine liver. Bioassay-directed fractionation of the active extract led to the isolation of three labdane-type diterpene acids, scoparic acid A [1] [6-benzoyl-12-hydroxy-labda-8(17), 13-dien-18-oic acid], scoparic acid B [2] [6-benzoyl-14,15-dinor-13-oxo-8(17)-labden-18-oic acid], and scoparic acid C [3] [6-benzoyl-15-nor-14-oxo-8(17)-labden-18-oic acid], the structures of which were established by spectral means, including X-ray analysis. Scoparic acid A was found to be a potent beta-glucuronidase inhibitor.

  15. Truncated presequences of mitochondrial F1-ATPase beta subunit from Nicotiana plumbaginifolia transport CAT and GUS proteins into mitochondria of transgenic tobacco.

    PubMed

    Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M

    1994-02-01

    The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.

  16. LuFLA1PRO and LuBGAL1PRO promote gene expression in the phloem fibres of flax (Linum usitatissimum).

    PubMed

    Hobson, Neil; Deyholos, Michael K

    2013-04-01

    Cell type-specific promoters were identified that drive gene expression in an industrially important product. To identify flax (Linum usitatissimum) gene promoters, we analyzed the genomic regions upstream of a fasciclin-like arabinogalactan protein (LuFLA1) and a beta-galactosidase (LuBGAL1). Both of these genes encode transcripts that have been found to be highly enriched in tissues bearing phloem fibres. Using a beta-glucuronidase (GUS) reporter construct, we found that a 908-bp genomic sequence upstream of LuFLA1 (LuFLA1PRO) directed GUS expression with high specificity to phloem fibres undergoing secondary cell wall development. The DNA sequence upstream of LuBGAL1 (LuBGAL1PRO) likewise produced GUS staining in phloem fibres with developing secondary walls, as well as in tissues of developing flowers and seed bolls. These data provide further evidence of a specific role for LuFLA1 in phloem fibre development, and demonstrate the utility of LuFLA1PRO and LuBGAL1PRO as tools for biotechnology and further investigations of phloem fibre development.

  17. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less

  18. Enhancer trap expression patterns provide a novel teaching resource.

    PubMed

    Geisler, Matt; Jablonska, Barbara; Springer, Patricia S

    2002-12-01

    A collection of Arabidopsis enhancer trap transposants has been identified for use as a teaching tool. This collection serves to assist students in understanding the patterning and organization of plant tissues and cells, and will be useful in plant anatomy, morphology, and developmental biology courses. Each transposant exhibits reporter gene expression in a specific tissue, cell type, or domain, and these lines collectively offer a glimpse of compartments of gene expression. Some compartments correspond to classical definitions of botanical anatomy and can assist in anatomical identification. Other patterns of reporter gene expression are more complex and do not necessarily correspond to known anatomical features. The sensitivity of the beta-glucuronidase histochemical stain provides the student with a colorful and direct way to visualize difficult aspects of plant development and anatomy, and provides the teacher with an invaluable tool for a practical laboratory session.

  19. Release of lysosomal enzymes in Candida albicans phagocytosis by rat peritoneal macrophages.

    PubMed

    Fontenla de Petrino, S E; Sirena, A

    1984-02-15

    The present paper reports the in vitro release of lysosomal enzymes in the supernatant of cultures of rat peritoneal macrophages, with the addition of Candida albicans cells. Macrophages were taken from the rat peritoneal cavity 72 hr after non-specific activation with Brain-Heart-Infusion (B.H.I.) broth containing 10% proteose-peptone No. 3. They were then cultured in Parker medium No. 199 (TC 199). After 24 hr a suspension of Candida albicans cells, in a determined concentration, was added to the peritoneal macrophage cultures. At that time, and during pre-determined periods, the following enzymes in the culture supernatants were studied using colorimetric methods: beta-glucuronidase, beta-galactosidase and acid phosphatase. It is concluded that, under identical conditions, the release of beta-galactosidase and acid phosphatase is higher than for beta-glucuronidase. The release rate of all three enzymes is the highest at a 6 hr incubation period, after which, a gradual decrease leads to the rate down to 50% at 24 hr.

  20. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    PubMed

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an additional ethylene independent signalling pathway for ozone-induced expression of genes involved in phytoalexin biosynthesis.

  1. Relationships between levels of membrane-bound glucuronidase and the associated protein egasyn in mouse tissues

    PubMed Central

    1977-01-01

    Mouse beta-glucuronidase has a dual intracellular localization, being present in both endoplasmic reticulum and lysosomes of several tissues. Previous studies demonstrated that the protein egasyn is complexed with microsomal but not lysosomal glucuronidase and that a mutant lacking egasyn is deficient in microsomal, but not lysosomal, glucuronidase. By means of a recently developed radioimmunoassay for egasyn, the relationship between microsomal glucuronidase levels and egasyn levels has been examined in various adult tissues, during postnatal development in liver, and after androgen induction of glucuronidase in kidney. The results indicate that the relative availability of egasyn determines the balance between glucuronidase incorporation into membranes and that into lysosomes. PMID:873997

  2. Evaluation of a rapid tube assay for presumptive identification of Escherichia coli from veterinary specimens.

    PubMed Central

    Iritani, B; Inzana, T J

    1988-01-01

    Three hundred sixty-six isolates of gram-negative, oxidase-negative bacteria from veterinary specimens were tested by a tube test for identification as Escherichia coli by production within 60 min of indole, beta-galactosidase, and beta-glucuronidase. The test correctly identified 255 of 269 isolates of E. coli (95% sensitivity) and correctly indicated that 97 of 97 isolates were not E. coli (100% specificity). We conclude that production of indole, beta-galactosidase, and beta-glucuronidase as measured by a rapid tube test is useful for identification of E. coli from veterinary specimens. PMID:3128581

  3. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities.

    PubMed

    McIntosh, Freda M; Maison, Nathalie; Holtrop, Grietje; Young, Pauline; Stevens, Valerie J; Ince, Jennifer; Johnstone, Alexandra M; Lobley, Gerald E; Flint, Harry J; Louis, Petra

    2012-08-01

    Bacterial β-glucuronidase in the human colon plays an important role in cleaving liver conjugates of dietary compounds and xenobiotics, while other glycosidase activities are involved in the conversion of dietary plant glycosides. Here we detected an increase in β-glucuronidase activity in faecal samples from obese volunteers following a high-protein moderate carbohydrate weight-loss diet, compared with a weight maintenance diet, but little or no changes were observed when the type of fermentable carbohydrate was varied. Other faecal glycosidase activities showed little or no change over a fivefold range of dietary NSP intake, although α-glucosidase increased on a resistant starch-enriched diet. Two distinct groups of gene, gus and BG, have been reported to encode β-glucuronidase activity among human colonic bacteria. Degenerate primers were designed against these genes. Overall, Firmicutes were found to account for 96% of amplified gus sequences, with three operational taxonomic units particularly abundant, whereas 59% of amplified BG sequences belonged to Bacteroidetes and 41% to Firmicutes. A similar distribution of operational taxonomic units was found in a published metagenome dataset involving a larger number of volunteers. Seven cultured isolates of human colonic bacteria that carried only the BG gene gave relatively low β-glucuronidase activity that was not induced by 4-nitrophenyl-β-D-glucuronide. By comparison, in three of five isolates that possessed only the gus gene, β-glucuronidase activity was induced. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Cloning and characterization of the promoter of the 9-cis-epoxycarotenoid dioxygenase gene in Arachis hypogaea L.

    PubMed

    Liang, Jianhua; Yang, Lixia; Chen, Xiong; Li, Ling; Guo, Dongliang; Li, Haihang; Zhang, Biyu

    2009-09-01

    We cloned the promoter of the 9-cis-epoxycarotenoid dioxygenase gene from Arachis hypogaea L. beta-Glucuronidase (GUS) histochemical staining and GUS activity assay indicated that the activity of the promoter was exhibited predominantly in the leaves and enhanced by water and NaCl stresses, and by application of abscisic acid (ABA) and salicylic acid (SA) in transgenic Arabidopsis. Moreover, two novel ABRE-like (abscisic acid response element) elements were identified in the promoter region.

  5. Inhibition of several enzymes by gold compounds. II. beta-Glucuronidase, acid phosphatase and L-malate dehydrogenase by sodium thiomalatoraurate (I), sodium thiosulfatoaurate (I) and thioglucosoaurate (I).

    PubMed

    Lee, M T; Ahmed, T; Haddad, R; Friedman, M E

    1989-01-01

    Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.

  6. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  7. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less

  8. Radiation-induced association of beta-glucuronidase with purified nuclei from irradiated MOLT-4 and HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.E.; Kalinich, J.F.; Poplack, J.K.

    1989-02-01

    Beta-glucuronidase, a lysosomal marker enzyme, associates with purified nuclei from HeLa and MOLT-4 cell lines in a radiation dose-dependent manner, up to 300 cGy in MOLT-4 cells, and 1000 cGy in HeLa cells. In MOLT-4 cells (200-cGy exposure), there is a significant increase in beta-glucuronidase activity detected in the nuclear fraction 24 h postirradiation with a maximum association occurring at 72 h. In HeLa cells (1000-cGy exposure), a significant association is first detected 24 h postirradiation with a maximum association at 48 h. The association is not the result of nonspecific contamination occurring during nuclei purification since nuclei from irradiatedmore » cells show no greater levels of plasma membrane marker and mitochondrial marker than controls. The nature of the association remains unclear, but activity is not removed by detergents used in the nuclei isolation procedure, and incubation of the nuclei with EDTA reverses the association only modestly. Exposure of nuclei from irradiated cells to anisotonic buffers also results in only a small decrease in beta-glucuronidase activity associated with the nuclei. These observations suggest that lysosomal hydrolases become intimately associated with the nuclei of irradiated cells.« less

  9. Enzyme potentiated hyposensitization: IV. effect of protamine on the immunological behavior of beta glucuronidase in mice and patients with hay fever.

    PubMed

    McEwen, L M; Nicholson, M; Kitchen, I; O'Gorman, J; White, S

    1975-05-01

    The ability of beta glucuronidase and a small dose of antigen to modify the anaphylactic reaction of previously sensitized mice has been further investigated. Protamine has an important effect on the immunological behavior of the enzyme. A trial on hay fever patients shows that the results in mice are relevant and that the method can produce significant clinical hyposensitization.

  10. Characterization of the phase dependent pulmonary response following irritant inhalation exposure to nitrogen dioxide gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, P.D.

    1988-01-01

    The present study utilized NO{sub 2} to fingerprint the biochemical reaction of the pulmonary compartment to oxidative damage and to correlate this with histopathology following acute and subacute exposures to NO{sub 2}. Acute exposure to NO{sub 2} produced dose-dependent immediate increases in the nonenzymatic parameters of pulmonary protein content, protease inhibitor activity and lung weight. The enzymatic activities of lactate dehydrogenase (LDH), choline kinase and beta-glucuronidase were elevated by two days following acute exposure. All of the above parameters were elevated following subacute exposure, however, nonenzymatic manifestations were attenuated with respect to enzymatic alterations. Hydroxyurea-induced granulocytopenia attenuated the increases inmore » activities of LDH and beta-glucuronidase following acute, but not subacute exposures. Cycloheximide-induced protein synthesis inhibition decrease the LDH and beta-glucuronidase response to NO{sub 2} without altering the increases in protein content or protease inhibitor activity.« less

  11. Influence of sodium chloride on the beta-glucuronidase activity of Clostridium perfringens and Escherichia coli.

    PubMed

    Fujisawa, T; Aikawa, K; Takahashi, T; Yamai, S

    2000-09-01

    While the beta-glucuronidase activity of intact cells of Clostridium perfringens was higher in 0.95% sodium chloride (NaCl) than that in 0, 0.1 or 0.5%, that of Escherichia coli was higher in 0.1% NaCl than that in 0, 0.5 or 0.95% NaCl in 0.1 mol l-1 KH2PO4. However, the enzyme activity of both species of intact cells was higher in buffer containing 16 mEq sodium, 134 mEq potassium and 16 mEq chloride per litre than in that containing 146 mEq sodium, 13 mEq potassium and 146 mEq chloride. These findings suggest that bacterial cells are affected by the presence of NaCl and that the effect of NaCl on the activity of bacterial beta-glucuronidase may differ by location in the large intestine.

  12. Analysis of complex repeat sequences within the spinal muscular atrophy (SMA) candidate region in 5q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, K.E.; Morrison, K.E.; Daniels, R.I.

    1994-09-01

    We previously reported that the 400 kb interval flanked the polymorphic loci D5S435 and D5S557 contains blocks of a chromosome 5 specific repeat. This interval also defines the SMA candidate region by genetic analysis of recombinant families. A YAC contig of 2-3 Mb encompassing this area has been constructed and a 5.5 kb conserved fragment, isolated from a YAC end clone within the above interval, was used to obtain cDNAs from both fetal and adult brain libraries. We describe the identification of cDNAs with stretches of high DNA sequence homology to exons of {beta} glucuronidase on human chromosome 7. Themore » cDNAs map both to the candidate region and to an area of 5p using FISH and deletion hybrid analysis. Hybridization to bacteriophage and cosmid clones from the YACs localizes the {beta} glucuronidase related sequences within the 400 kb region of the YAC contig. The cDNAs show a polymorphic pattern on hybridization to genomic BamH1 fragments in the size range of 10-250 kb. Further analysis using YAC fragmentation vectors is being used to determine how these {beta} glucuronidase related cDNAs are distributed within 5q13. Dinucleotide repeats within the region are being investigated to determine linkage disequilibrium with the disease locus.« less

  13. Pathogenesis of pigment gallstones in Western societies: the central role of bacteria.

    PubMed

    Stewart, Lygia; Oesterle, Adair L; Erdan, Ihsan; Griffiss, J MacLeod; Way, Lawrence W

    2002-01-01

    Bacteria are traditionally accorded a greater role in pigment gallstone formation in Eastern populations. Stone color is thought to predict the presence of bacteria; that is, black stones (Western predominant) are supposedly sterile and brown stones (Eastern predominant) contain bacteria. We previously reported that, regardless of appearance, most pigment gallstones contain bacteria. This study examined, in a large Western population (370 patients), the incidence, appearance, and chemical composition of pigment stones, and the characteristics of gallstone bacteria. One hundred eighty-six pigment stones were obtained aseptically. Bacteria were detected by means of scanning electron microscopy and gallstone culture. Chemical composition was determined by infrared spectroscopy. Bacteria were tested for slime and beta-glucuronidase production. Seventy-three percent of pigment stones contained bacteria. Choledocholithiasis was associated with gallstone bacteria. Ca-bilirubinate was present in all pigment stones. Ca-palmitate was characteristic of infected stones, and more than 75% Ca-carbonate was characteristic of sterile stones. Neither chemical composition nor stone appearance predicted the presence of bacteria. Ninety-five percent and 67% of infected pigment stones contained bacteria that produced slime and beta-glucuronidase, respectively. Most pigment stones contained bacteria that produced beta-glucuronidase, slime, and phospholipase, factors that facilitate stone formation. Thus bacteria have a major role in Western pigment gallstone formation. Furthermore, gallstone color did not predict composition or bacterial presence.

  14. Naphthol AS-BI (7-bromo-3-hydroxy-2-naphtho-o-anisidine) phosphatase and naphthol AS-BI. beta. -D-glucuronidase in Chinese hamster ovary cells: biochemical and flow cytometric studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolbeare, F.A.; Phares, W.

    1979-01-01

    Conditions for the biochemical and flow cytometric assay of 7-bromo-3-hydroxy-2-naphtho-o-anisidine phosphatase and ..beta..-D-glucuronidase activities in Chinese hamster ovary cells were studied. In the biochemical assays, the pH optimum for the phosphatase activity was pH 4.6 with a Km of 10/sup -5/ M; the pH optimum for ..beta..-D-glucuronidase activity was pH 5.0 with a Km of 2 x 10/sup -5/ M. For intact cells the derived constants were 3 to 10 times higher. The rate of hydrolysis of both substrates was also examined by flow cytometry. Cellular fluorescence increased linearly for only about 15 min. Diffusion of the fluorescent product probablymore » caused nonlinearity of the fluorescence increase and was demonstrated by mixing cells incubated with substrate with those that had not been incubated. After 15 min, cells that had not been exposed previously to product or substrate contained the fluorescent product. Cells fractionated into size classes by centrifugal elutriation also were analyzed by flow cytometry for ..beta..-D-glucuronidase activity. The activity increased linearly with the increase in cell size corresponding to the progression from G/sub 1/ through S and into G/sub 2/-M phases of the cell cycle.« less

  15. A STUDY OF THE INDIGOGENIC PRINCIPLE AND IN VITRO MACROPHAGE DIFFERENTIATION

    DTIC Science & Technology

    and beta- glucuronidase activities. Moreover, there was a progressive increase in the densities of enzyme reactive centers. Indigo reaction product was...not observed over nuclei; lipid droplets and cell background were free from spurious precipitations. Both galactosidase and glucuronidase were

  16. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  17. Impediments to enhancement of CPT-11 anticancer activity by E. coli directed beta-glucuronidase therapy.

    PubMed

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity.

  18. Inhibition of intestinal microflora beta-glucuronidase modifies the distribution of the active metabolite of the antitumor agent, irinotecan hydrochloride (CPT-11) in rats.

    PubMed

    Takasuna, K; Hagiwara, T; Hirohashi, M; Kato, M; Nomura, M; Nagai, E; Yokoi, T; Kamataki, T

    1998-01-01

    SN-38, a metabolite of irinotecan hydrochloride (CPT-11), is considered to play a key role in the development of diarrhea as well as in the antitumor activity of CPT-11. We have previously found that the inhibition of beta-glucuronidase, which hydrolyzes detoxified SN-38 (SN-38 glucuronide) to reform SN-38, in the lumen by eliminating the intestinal microflora with antibiotics, markedly ameliorates the intestinal toxicity of CPT-11 in rats. In this study we compared the disposition of CPT-11 and its metabolites in rats treated with and without antibiotics. Rats were given drinking water containing 1 mg/ml penicillin and 2 mg/ml streptomycin from 5 days before the administration of CPT-11 (60 mg/kg i.v.) and throughout the experiment. CPT-11, SN-38 glucuronide and SN-38 concentrations in the blood, intestinal tissues and intestinal luminal contents were determined by HPLC. Antibiotics had little or no effect on the pharmacokinetics of CPT-11, SN-38 glucuronide or SN-38 in the blood, or in the tissues or contents of the small intestine, which has less beta-glucuronidase activity in its luminal contents. In contrast, antibiotics markedly reduced the AUC1-24 h of SN-38 (by about 85%) in the large intestine tissue without changing that of CPT-11, and this was accompanied by a complete inhibition of the deconjugation of SN-38 glucuronide in the luminal contents. These results suggest that SN-38, which results from the hydrolysis of SN-38 glucuronide by beta-glucuronidase in the intestinal microflora, contributes considerably to the distribution of SN-38 in the large intestine tissue, and that inhibition of the beta-glucuronidase activity by antibiotics results in decreased accumulation of SN-38 in the large intestine.

  19. Impediments to Enhancement of CPT-11 Anticancer Activity by E. coli Directed Beta-Glucuronidase Therapy

    PubMed Central

    Hsieh, Yuan-Ting; Chen, Kai-Chuan; Cheng, Chiu-Min; Cheng, Tian-Lu; Tao, Mi-Hua; Roffler, Steve R.

    2015-01-01

    CPT-11 is a camptothecin analog used for the clinical treatment of colorectal adenocarcinoma. CPT-11 is converted into the therapeutic anti-cancer agent SN-38 by liver enzymes and can be further metabolized to a non-toxic glucuronide SN-38G, resulting in low SN-38 but high SN-38G concentrations in the circulation. We previously demonstrated that adenoviral expression of membrane-anchored beta-glucuronidase could promote conversion of SN-38G to SN-38 in tumors and increase the anticancer activity of CPT-11. Here, we identified impediments to effective tumor therapy with E. coli that were engineered to constitutively express highly active E. coli beta-glucuronidase intracellularly to enhance the anticancer activity of CPT-11. The engineered bacteria, E. coli (lux/βG), could hydrolyze SN-38G to SN-38, increased the sensitivity of cultured tumor cells to SN-38G by about 100 fold and selectively accumulated in tumors. However, E. coli (lux/βG) did not more effectively increase CPT-11 anticancer activity in human tumor xenografts as compared to non-engineered E. coli. SN-38G conversion to SN-38 by E. coli (lux/βG) appeared to be limited by slow uptake into bacteria as well as by segregation of E. coli in necrotic regions of tumors that may be relatively inaccessible to systemically-administered drug molecules. Studies using a fluorescent glucuronide probe showed that significantly greater glucuronide hydrolysis could be achieved in mice pretreated with E. coli (lux/βG) by direct intratumoral injection of the glucuronide probe or by intratumoral lysis of bacteria to release intracellular beta-glucuronidase. Our study suggests that the distribution of beta-glucuronidase, and possibly other therapeutic proteins, in the tumor microenvironment might be an important barrier for effective bacterial-based tumor therapy. Expression of secreted therapeutic proteins or induction of therapeutic protein release from bacteria might therefore be a promising strategy to enhance anti-tumor activity. PMID:25688562

  20. Monolignol radical-radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications

    NASA Technical Reports Server (NTRS)

    Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.

  1. Importance of Dichloroacetate and Trichloroacetate to the Hepatocarcinogenic Response to Trichloroeylene in B6C3F1 Mice

    DTIC Science & Technology

    1989-10-15

    Baker Co., polysorbate (Tween 80), beta- glucuronidase (Type VII), N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), clofibrate , phenobllbital, DCA, TCA...TCOH conjugated wit’a glucuronic acid was determined in an aliquot of sample treated with beta-glucuronidase. A Varian Model 3700 gas chromatQgraph...diaminobenzoic acid fluorimetric assay. The fraction of DNA unwound during the two hour incubation at OC was calculated as: (Total DNA - DS DNA)t

  2. Efficient gusA transient expression in Porphyra yezoensis protoplasts mediated by endogenous beta-tubulin flanking sequences

    NASA Astrophysics Data System (ADS)

    Gong, Qianhong; Yu, Wengong; Dai, Jixun; Liu, Hongquan; Xu, Rifu; Guan, Huashi; Pan, Kehou

    2007-01-01

    Endogenous tubulin promoter has been widely used for expressing foreign genes in green algae, but the efficiency and feasibility of endogenous tubulin promoter in the economically important Porphyra yezoensis (Rhodophyta) are unknown. In this study, the flanking sequences of beta-tubulin gene from P. yezoensis were amplified and two transient expression vectors were constructed to determine their transcription promoting feasibility for foreign gene gusA. The testing vector pATubGUS was constructed by inserting 5'-and 3'-flanking regions ( Tub5' and Tub3') up-and down-stream of β-glucuronidase (GUS) gene ( gusA), respectively, into pA, a derivative of pCAT®3-enhancer vector. The control construct, pAGUSTub3, contains only gusA and Tub3'. These constructs were electroporated into P. yezoensis protoplasts and the GUS activities were quantitatively analyzed by spectrometry. The results demonstrated that gusA gene was efficiently expressed in P. yezoensis protoplasts under the regulation of 5'-flanking sequence of the beta-tubulin gene. More interestingly, the pATubGUS produced stronger GUS activity in P. yezoensis protoplasts when compared to the result from pBI221, in which the gusA gene was directed by a constitutive CaMV 35S promoter. The data suggest that the integration of P. yezoensis protoplast and its endogenous beta-tubulin flanking sequences is a potential novel system for foreign gene expression.

  3. EFFECT OF ROENTGEN RADIATION ON $beta$-GLUCURONIDASE IN RAT TESTIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arata, L.; Santoro, R.; Severi, M.A.

    1962-04-30

    The testes were irradiated with a single 600-r dose and enzyme activity was determined in homogenates of testis, at 10-day intervals, up to the 50th postirradiation day. In comparison with the control value of 47.9 (units/mg fresh tissue), BETA -glucuronidase activity fell to 30.5 by the 10th day, then progressively rose to 78.4, 126.0, 242.0, and 275.0 in the subsequent 10-day periods. A parallel drop, followed by a rise, occurred in total activity of testis. Testicular weight fell, and seminal vesicular weight fell and then rose, during the 50-day period. Thus, the transient sterility and destruction of germinal epithelium inducedmore » by irradiation were reflected by a decrease in BETA - glucuronidase activity, whereas regeneration of this epithelium followed the rise in enzyme activity. Such parallel changes in epithelial function and enzyme activity were previously noted in vitamin E-deficient rats. (H.H.D.)« less

  4. Gene and enhancer trap tagging of vascular-expressed genes in poplar trees

    Treesearch

    Andrew Groover; Joseph R. Fontana; Gayle Dupper; Caiping Ma; Robert Martienssen; Steven Strauss; Richard Meilan

    2004-01-01

    We report a gene discovery system for poplar trees based on gene and enhancer traps. Gene and enhancer trap vectors carrying the β-glucuronidase (GUS) reporter gene were inserted into the poplar genome via Agrobacterium tumefaciens transformation, where they reveal the expression pattern of genes at or near the insertion sites. Because GUS...

  5. Genetic transformation of Dichanthium annulatum (Forssk)--an apomictic tropical forage grass.

    PubMed

    Dalton, S J; Bettany, A J E; Bhat, V; Gupta, M G; Bailey, K; Timms, E; Morris, P

    2003-06-01

    Eleven Dichanthium annulatum (Forssk) plants were regenerated from embryogenic callus co-transformed with two plasmids encoding either the hygromycin phosphotransferase gene (hph) or the beta-glucuronidase (GUS) gene (uidA). Analysis of these putative transformants showed that three plants were transformed with the hph gene, showed the presence of the hph transcript and expressed hygromycin resistance after transfer to soil. Two of these also contained the uidA gene but did not express GUS and were shown to be the same transformation event. All three of the transformants set seed. Hygromycin resistance varied from 68-100% in the progeny of the three transformants. Transgene transmission appeared to have been mainly through apomixis.

  6. Inhibition of hydrolytic enzymes by gold compounds. I. beta-Glucuronidase and acid phosphatase by sodium tetrachloroaurate (III) and potassium tetrabromoaurate (III).

    PubMed

    Lee, M T; Ahmed, T; Friedman, M E

    1989-01-01

    Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.

  7. Alteration of gene expression by restriction enzymes electroporated into plant cells.

    PubMed

    Ashraf, M; Altschuler, M; Galasinski, S; Griffiths, T D

    1993-06-01

    The alteration in the expression of a beta-glucuronidase (GUS) reporter gene was used to monitor the effect of restriction endonucleases electroporated into the tobacco (Nicotiana tabacum L.) protoplasts. Restriction enzyme (RE) Hind III which does not have a recognition site within the gene cassette, had little effect on enzyme activity. In contrast restriction endonucleases Hae III and Sau3A1 which possess 8 and 16 recognition sites in the GUS cassette, were found to reduce the enzyme activity by 89% and 94% respectively when compared to control electroporations. Restriction-site mutation analysis (RSM) and Southern blot analysis indicated the enzymatic degradation of GUS coding sequence by the REs Hae III and Sau3A1. Results of this study suggest that on electroporation, REs can enter into plant cells and alter the expression of the GUS gene. The alteration of gene expression is thus correlated with the digestion of GUS template DNA. Future applications of this technique could include addressing fundamental questions with regard to DNA repair, site-specific recombination, identifying mutations, insertional mutagenesis, enhancement of stable transformation and gene tagging in plants.

  8. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice.

    PubMed

    Boutrot, Freddy; Meynard, Donaldo; Guiderdoni, Emmanuel; Joudrier, Philippe; Gautier, Marie-Françoise

    2007-03-01

    Plant non-specific lipid transfer proteins (nsLTPs) are encoded by a multigene family and support physiological functions, which remain unclear. We adapted an efficient ligation-mediated polymerase chain reaction (LM-PCR) procedure that enabled isolation of 22 novel Triticum aestivum nsLtp (TaLtp) genes encoding types 1 and 2 nsLTPs. A phylogenetic tree clustered the wheat nsLTPs into ten subfamilies comprising 1-7 members. We also studied the activity of four type 1 and two type 2 TaLtp gene promoters in transgenic rice using the 1-Glucuronidase reporter gene. The activities of the six promoters displayed both overlapping and distinct features in rice. In vegetative organs, these promoters were active in leaves and root vascular tissues while no beta-Glucuronidase (GUS) activity was detected in stems. In flowers, the GUS activity driven by the TaLtp7.2a, TaLtp9.1a, TaLtp9.2d, and TaLtp9.3e gene promoters was associated with vascular tissues in glumes and in the extremities of anther filaments whereas only the TaLtp9.4a gene promoter was active in anther epidermal cells. In developing grains, GUS activity and GUS immunolocalization data evidenced complex patterns of activity of the TaLtp7.1a, TaLtp9.2d, and TaLtp9.4a gene promoters in embryo scutellum and in the grain epicarp cell layer. In contrast, GUS activity driven by TaLtp7.2a, TaLtp9.1a, and TaLtp9.3e promoters was restricted to the vascular bundle of the embryo scutellum. This diversity of TaLtp gene promoter activity supports the hypothesis that the encoded TaLTPs possess distinct functions in planta.

  9. Human beta-glucuronidase. Measurement of its activity in gallbladder bile devoid of intrinsic interference.

    PubMed

    Ho, Y C; Ho, K J

    1988-04-01

    Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.

  10. Assessment of hazardous wastes for genotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMarini, D.M.; Houk, V.S.

    1987-09-01

    The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing processes were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 with and without Aroclor 1254-induced rat-liver S9. Ten of these wastes were fed by gavage to F-344 male rats, and the raw urines were assayed for mutagenicity in the presence of beta-glucuronidase in strain TA98 with S9. Six of these urines were extracted by C18/methanol elution, incubated withmore » beta-glucuronidase, and evaluated in strain TA98 with S9 and beta-glucuronidase. Fourteen of the wastes were examined for their ability to induce prophage lambda in Escherichia coli in a microsuspension assay. A second set of wastes, consisting of four industrial wastes, were evaluated in Salmonella and in a series of mammalian cell assays to measure mutagenicity, cytogenetic effects, and transformation.« less

  11. Neutrophhil function after exposure to polychlorinated biphenyls in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganey, P.E.; Denison, M.; Roth, R.A.

    1993-10-01

    Polychlorinated biphenyls (PCBs) are known to be immunotoxic, yet the effects on neutrophil (PMN) function are not well characterized. We incubated PMNs isolated from rat peritoneum with a mixture of PCB congeners, Aroclor 1242, in the absence or presence of either phorbol myristate acetate (PMA) to stimulate generation of supoxide anion (O[sub 2]) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) to induce degranulation (measured as release of [beta]-glucuronidase). Aroclor 1242 alone stimulated O[sub 2] production at a concentration of 10 [mu]g/ml. Significant cytotoxicity was not observed under these conditions. This concentration of Aroclor 1242 also increased O[sub 2] generation in PMNs activated with 20more » ng PMA/ml. In the presence of a concentration of PMA (2 ng/ml) that by itself did not stimulate production of O[sub 2], 1 [mu]g Aroclor 1242/ml caused significant generation of O[sub 2], indicating synergy between Aroclor 1242 and PMA. Aroclor 1242 caused release of [beta]-glucuronidase from quiescent PMNs; however, in PMNs stimulated with fMLP to undergo degranulation, Aroclor 1242 inhibited release of [beta]-glucuronidase.« less

  12. Cinnamate-4-hydroxylase expression in arabidopsis. Regulation in response to development and the environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell-Lelong, D.A.; Cusumano, J.C.; Meyer, K.

    1997-03-01

    Cinnamate-r-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic clone. The entire C4H coding sequence plus 2.9 kb of its promoter were isolated on a 5.4-kb HindIII fragment of this cosmid. Inspection of the promoter sequence revealed the presence of a number of putative regulatory motifs previously identified in the promoters of other phenylpropanoid pathway genes. The expression of C4H was analyzed by RNA blot hybridization analysismore » and in transgenic Arabidopsis carrying a C4H-{beta}-glucuronidase transcriptional fusion. C4H message accumulation was light-dependent, but was detectable even in dark-grown seedlings. Consistent with these data, C4H mRNA was accumulated to light-grown levels in etiolated det1-1 mutant seedlings. C4H is widely expressed in various Arabidopsis tissues, particularly in roots and cells undergoing lignification. The C4H-driven {beta}-glucuronidase expression accurately reflected the tissue-specificity and wound-inducibility of the C4H promoter indicated by RNA blot hybridization analysis. A modest increase in C4H expression was observed in the tt8 mutant of Arabidopsis. 77 refs., 5 figs.« less

  13. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase.

    PubMed

    Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji

    2010-01-01

    The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  14. Mutational analysis of a patient with mucopolysaccharidosis type VII, and identification of pseudogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, J.M.; Klinkenberg, M.; Wu, B.M.

    1993-03-01

    PCR of cDNA produced from patient fibroblasts allowed the authors to determine the paternal mutation in the first patient reported with [beta]-glucuronidase-deficiency mucopolysaccharidosis type VII (MPS VII). The G[r arrow]T transversion 1,881 bp downstream of the ATG translation initiation codon destroys an MboII restriction site and converts Trp627 to Cys (W627C). Digestion of genomic DNA PCR fragments with MboII indicated that the patient and the father were heterozygous for this missense mutation in exon 12. Failure to find cDNAs from patient RNA which did not contain this mutation suggested that the maternal mutation leads to greatly reduced synthesis or reducedmore » stability of mRNA from the mutant allele. In order to identify the maternal mutation, it was necessary to analyze genomic sequences. This approach was complicated by the finding of multiple unprocessed pseudogenes and/or closely related genes. Using PCR with a panel of human/rodent hybrid cell lines, the authors found that these pseudogenes were present over chromosomes 5-7, 20, and 22 and the Y chromosome. Conditions were defined which allowed them to amplify and characterize genomic sequences for the true [beta]-glucuronidase gene despite this background of related sequences. The patient proved to be heterozygous for a second mutation, in which a C[r arrow]T transition introduces a termination codon (R356STOP) in exon 7. The mother was also heterozygous for this mutation. Expression of a cDNA containing the maternal mutation produced no enzyme activity, as expected. Expression of the paternal mutation in COS-7 cells produced a surprisingly high (65% of control) level of activity. However, activity was 13% of control in transiently transfected murine MPS VII cells. The level of activity of this mutant allele appears to correlate with the level of overexpression. 39 refs., 5 figs., 1 tab.« less

  15. Effects of zinc and cholesterol/choleate on serum lipoproteins and the liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.H.; Chen, S.M.; Ogle, C.W.

    1989-01-01

    The effects of short-term treatment with orally-administered zinc sulfate and/or a mixture of cholesterol/choleate on serum lipoprotein and hepatic enzyme levels were studied. Administration of graded doses of zinc sulfate for 5 days, dose-dependently increased serum and hepatic zinc levels but depressed the serum high-density lipoprotein-cholesterol (HDL-C) concentration and liver cytochrome P-450 activity. However, it did not affect hepatic concentrations of malondialdehyde and free {beta}-glucuronidase. Cholesterol/choleate treatment for 5 days markedly damaged the liver, as reflected by elevations of hepatic concentrations of malondialdehyde (both in the mitochondrial and microsomal fractions) and of free {beta}-glucuronidase; total cholesterol and low-density lipoprotein-cholesterol inmore » the blood were increased, whereas HDL-C was decreased significantly. Concomitant administration of zinc sulfate with cholesterol/choleate further lowered HDL-C levels, but reversed the high hepatic concentrations of both malondialdehyde and free {beta}-glucuronidase. The present study indicates that both zinc ions and cholesterol can decrease circulatory HDL-C levels and that zinc protects against cholesterol-induced hepatic damage by reducing lysosomal enzyme release and preventing lipid peroxidation in the liver.« less

  16. Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis.

    PubMed

    Lu, Gang; Zou, Qingcheng; Guo, Deping; Zhuang, Xiaoying; Yu, Xiaolin; Xiang, Xun; Cao, Jiashu

    2007-09-01

    Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.

  17. Secretion Trap Tagging of Secreted and Membrane-Spanning Proteins Using Arabidopsis Gene Traps

    Treesearch

    Andrew T. Groover; Joseph R. Fontana; Juana M. Arroyo; Cristina Yordan; W. Richard McCombie; Robert A. Martienssen

    2003-01-01

    Secreted and membrane-spanning proteins play fundamental roles in plant development but pose challenges for genetic identification and characterization. We describe a "secretion trap" screen for gene trap insertions in genes encoding proteins routed through the secretory pathway. The gene trap transposon encodes a ß-glucuronidase reporter enzyme...

  18. Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata.

    PubMed

    Gherbi, Hassen; Nambiar-Veetil, Mathish; Zhong, Chonglu; Félix, Jessy; Autran, Daphné; Girardin, Raphaël; Vaissayre, Virginie; Auguy, Florence; Bogusz, Didier; Franche, Claudine

    2008-05-01

    In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.

  19. Transgene expression in pear (Pyrus communis L.) driven by a phloem-specific promoter

    USDA-ARS?s Scientific Manuscript database

    A gene expression cassette carrying ß-glucuronidase (uidA) reporter gene under the control of the promoter of the Arabidopsis sucrose-H+ symporter gene (AtSUC2) was introduced to pear plants via an Agrobacterium-mediated leaf-explant transformation procedure. Transgenic shoots were regenerated from...

  20. Bioactive metabolites from the fungus Nectria galligena, the main apple canker agent in Chile.

    PubMed

    Gutiérrez, Margarita; Theoduloz, Cristina; Rodríguez, Jaime; Lolas, Mauricio; Schmeda-Hirschmann, Guillermo

    2005-10-05

    The phytopathogenic fungus Nectria galligena Bres. is the most common canker disease agent of hardwood trees. The terpenoids colletochlorin B, colletorin B, ilicicolin C, E, and F, as well as the phytotoxin alpha,beta-dehydrocurvularin have been isolated from liquid cultures of N. galligena obtained from the xylem of infected apple trees in central Chile. Ilicicolin C and F and alpha,beta-dehydrocurvularin were active against Pseudomonas syringae with IC50 values of 28.5, 28.5, and 14.2 microg/mL, respectively, in the same range as streptomycin and penicillin G (11 and 15 microg/mL, respectively). All of the compounds showed moderate inhibitory activity toward the enzymes acetylcholinesterase (AChE) and beta-glucuronidase. The most active enzyme inhibitors were colletochlorin B and ilicicolin C and E, with IC50 values of 30-36 microg/mL in the AChE assay and 32-43 microg/mL in the beta-glucuronidase test. All of the chlorinated compounds showed some toxicity toward human lung fibroblasts, with IC50 values in the range of 64-120 microg/mL. alpha,beta-Dehydrocurvularin proved to be the most toxic compound, showing IC50 values less than 12 microg/mL. The effect of the isolated compounds on seed germination and radicle and epicotyl growth was assessed in lettuce and millet seeds. At 100 and 200 microg/disk, alpha,beta-dehydrocurvularin significantly reduced radicle length and epicotyl growth in Lactuca sativa. This is the first report on the occurrence of colletochlorin B, colletorin B, ilicicolin C, E, and F, as well as alpha,beta-dehydrocurvularin associated to N. galligena.

  1. The reversed terminator of octopine synthase gene on the Agrobacterium Ti plasmid has a weak promoter activity in prokaryotes.

    PubMed

    Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu

    2010-06-01

    Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.

  2. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro.

    PubMed

    Segretin, María Eugenia; Lentz, Ezequiel Matías; Wirth, Sonia Alejandra; Morgenfeld, Mauro Miguel; Bravo-Almonacid, Fernando Félix

    2012-04-01

    Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.

  3. [Microbiological and biochemical characteristics of inflammatory tissues in the periodontium].

    PubMed

    Surna, Algimantas; Sakalauskiene, Jurgina; Vitkauskiene, Astra; Saferis, Viktoras

    2008-01-01

    To investigate bacterial populations in subgingival and supragingival plaque samples of patients with inflammatory periodontal diseases and activities of the lysosomal enzymes--lysozyme, alkaline phosphatase, and beta-glucuronidase--in peripheral venous blood, in gingival crevicular fluid, and mixed nonstimulated saliva. The study included 60 patients with inflammatory periodontal diseases without any internal pathology and 24 periodontally healthy subjects. Molecular genetic assay (Micro-IDent plus, Germany) for complex identification of additional six periodontopathic bacteria was applied. The activity of lysozyme was determined turbidimetrically, the activity of alkaline phosphatase--spectrophotometrically with a "Monarch" biochemical analyzer, the activity beta-glucuronidase--according to the method described by Mead et al. and modified by Strachunskii. A statistically significant association between clinical and bacteriological data was found in the following cases: gingival bleeding in the presence of Eubacterium nodatum, Eikenella corrodens, Capnocytophaga spp. (P<0.01); pathological periodontal pockets in the presence of Peptostreptococcus micros (alpha< or =0.05 and beta< or =0.2), Fusobacterium nucleatum (alpha< or =0.05 and beta< or =0.2), Campylobacter rectus (alpha< or =0.05 and beta< or =0.2), and Capnocytophaga spp. (P<0.05); and satisfactory oral hygiene in the presence of all microorganisms investigated (P<0.05). The activity of lysozyme in gingival crevicular fluid and mixed nonstimulated saliva indicates the severity of periodontal inflammation. Based on clinical data, in assessing the amount of lysozyme in mixed nonstimulated saliva, sensitivity and specificity of 100% was found. Increased activities of lysozyme, alkaline phosphatase, and beta-glucuronidase were found in peripheral venous blood of patients with inflammatory periodontal disease as compared to control group. The main principles of the treatment of periodontal inflammatory diseases should be based on microorganism elimination, creation of individual treatment means affecting microflora in the mouth and immune system of macroorganisms.

  4. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis.

    PubMed

    Paul, A L; Daugherty, C J; Bihn, E A; Chapman, D K; Norwood, K L; Ferl, R J

    2001-06-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the beta-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia.

  5. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis

    NASA Technical Reports Server (NTRS)

    Paul, A. L.; Daugherty, C. J.; Bihn, E. A.; Chapman, D. K.; Norwood, K. L.; Ferl, R. J.

    2001-01-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the beta-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia.

  6. Signals of monocyte activation in patients with SLE.

    PubMed Central

    Kávai, M; Zsindely, A; Sonkoly, I; Major, M; Demján, I; Szegedi, G

    1983-01-01

    The Fc receptor mediated reaction, the beta-glucuronidase and the lactic dehydrogenase activities of monocytes and the serum lysozyme level were tested together with the circulating immune complex content of patients with systemic lupus erythematosus. Simultaneously with the increasing FC receptor-mediated reaction and the elevated enzyme activities of patient monocytes, the secretion of lysozyme and the immune complex content of the sera were higher than those of the controls. A positive correlation was demonstrated between the Fc receptor-mediated reaction, the beta-glucuronidase activity, the lysozyme secretion and the immune complex content of the sera. Thus, the monocytes of patients appeared to be activated by the circulating immune complexes. PMID:6839541

  7. Repression by sustained-release. beta. -glucuronidase inhibitors of chemical carcinogen-mediated induction of a marker oncofetal protein in rodents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walaszek, Z.; Hanausek-Walaszek, M.; Webb, T.E.

    1988-01-01

    The degree of induction of an oncofetal protein marker in rodents by selected chemical carcinogens has been correlated with changes in carcinogenicity induced by dietary D-glucaro-1,4-lactone (GL) based anticarcinogens. These potent anticarcinogens may act to increase the clearance of carcinogens as glucuronides through the inhibition of ..beta..-glucuronidase. The sustained-release forms are particularly effective, 1.5 mmol/kg of GL maintaining serum ..beta..-glucuronidase activity at or below 50% for only 1 h, while an equivalent amount of calcium glucarate (CGT) maintained this level of inhibition for over 5 h. CGT or other sustained-release inhibitors, when fed to rodents during administration of carcinogens thatmore » undergo glucuronidation, caused a marked reduction in the induction of the marker protein. For those systems where other markers of carcinogenesis were also assessed, it was determined the inhibition of marker-protein induction was quantitatively similar to both the inhibition of binding of the carcinogen to DNA and the subsequent induction of tumors in target organs. The following carcinogens were administered intraperitoneally: benzo(a)pryene; 7,12-demethylbenz(a)anthracene; 3-methylcholanthrene; 2-acetylaminofluorene; 2-naphthylamine; N-nitroso-N,N-dibutylamine; aflatoxin B1; 1-nitropyrene.« less

  8. A combination of PhP typing and β-d-glucuronidase gene sequence variation analysis for differentiation of Escherichia coli from humans and animals.

    PubMed

    Masters, N; Christie, M; Katouli, M; Stratton, H

    2015-06-01

    We investigated the usefulness of the β-d-glucuronidase gene variance in Escherichia coli as a microbial source tracking tool using a novel algorithm for comparison of sequences from a prescreened set of host-specific isolates using a high-resolution PhP typing method. A total of 65 common biochemical phenotypes belonging to 318 E. coli strains isolated from humans and domestic and wild animals were analysed for nucleotide variations at 10 loci along a 518 bp fragment of the 1812 bp β-d-glucuronidase gene. Neighbour-joining analysis of loci variations revealed 86 (76.8%) human isolates and 91.2% of animal isolates were correctly identified. Pairwise hierarchical clustering improved assignment; where 92 (82.1%) human and 204 (99%) animal strains were assigned to their respective cluster. Our data show that initial typing of isolates and selection of common types from different hosts prior to analysis of the β-d-glucuronidase gene sequence improves source identification. We also concluded that numerical profiling of the nucleotide variations can be used as a valuable approach to differentiate human from animal E. coli. This study signifies the usefulness of the β-d-glucuronidase gene as a marker for differentiating human faecal pollution from animal sources.

  9. Cloning and characterization of alpha-glucuronidase enzyme

    USDA-ARS?s Scientific Manuscript database

    Hemicellulose is the second largest source of biomass on Earth. Xylan, a polymer of beta-1,4-linked xylose residues, is a common component of hemicellulose. The enzymes xylanase and beta-xylosidase hydrolyze the xylan into xylose which can then be fermented into value-added products. However, the...

  10. The gene encoding the catalytically inactive beta-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs.

    PubMed

    Francisco, Perigio; Li, Jing; Smith, Steven M

    2010-07-15

    Genetic studies in Arabidopsis thaliana have shown that two members of the beta-amylase (BAM) family BAM3 and BAM4 are required for leaf starch breakdown at night. Both are plastid proteins and while BAM3 encodes an active BAM, BAM4 is not an active alpha-1,4-glucan hydrolase. To gain further insight into the possible function of BAM4 we constructed reporter genes using promoters for both BAM3 and BAM4 genes, driving beta-glucuronidase (GUS) and luciferase (LUC) expression in transgenic Arabidopsis plants. Both promoters directed expression in vascular tissue throughout the plant including cotyledons, leaves, petioles, stems, petals, siliques and roots. Tissue sections showed expression to be focused in phloem cells in stem and petiole. The BAM3 promoter was also expressed strongly throughout the photosynthetic tissues of leaves, sepals and siliques, whereas the BAM4 promoter was not. Conversely, the BAM4 promoter was active in root tip but the BAM3 promoter was not. To confirm these expression patterns and to compare with expression of other starch genes we carried-out RT-PCR analysis on RNA from vascular (replum) and non-vascular (valve) tissues of siliques. This confirmed that BAM4 expression together with RAM1 (BAM5) and GWD2 genes is stronger in the replum than the valve, whereas BAM3 is strong in both tissues. These results show that even though BAM3 and BAM4 genes apparently interact genetically in leaf starch metabolism, BAM4 is preferentially expressed in non-photosynthetic vascular tissue, so revealing a potentially greater level of complexity in the control of starch breakdown than had previously been recognised. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  11. High-frequency transformation of Lobelia erinus L. by Agrobacterium-mediated gene transfer.

    PubMed

    Tsugawa, H; Kagami, T; Suzuki, M

    2004-05-01

    A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a beta-glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3-4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high--45% per inoculated disc. Copyright 2004 Springer-Verlag

  12. Cloning and characterization of an alpha-glucuronidase from a mixed microbial population

    USDA-ARS?s Scientific Manuscript database

    Alpha-Glucuronidase enzymes play an essential role in the full enzymatic hydrolysis of hemicellulose. Up to this point, all genes encoding alpha-glucuronidase enzymes have been cloned from individual, pure culture strains. Using a high-throughput screening strategy, we have isolated the first alph...

  13. Sugar beet proteinase inhibitor (BvSTI) gene promoter is regulated by insects and wounding in transgenic Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    A regulatory sequence from a serine proteinase inhibitor gene (BvSTIpro) shown to be up-regulated in resistant interactions with a root pest of sugar beet, the sugar beet root maggot, was fused to the ß-glucuronidase (GUS) reporter gene to characterize its expression patterns in transgenic Nicotiana...

  14. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    PubMed

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  15. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves.

    PubMed

    Nieberl, P; Ehrl, C; Pommerrenig, B; Graus, D; Marten, I; Jung, B; Ludewig, F; Koch, W; Harms, K; Flügge, U-I; Neuhaus, H E; Hedrich, R; Sauer, N

    2017-05-01

    Sugar beet (Beta vulgaris L.) is one of the most important sugar-producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter. In contrast to the recently identified tonoplast-localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily. Transgenic Arabidopsis plants expressing the β-GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1-promoter showed GUS histochemical staining of their phloem; an anti-BvSUT1-antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers' yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton-coupled sucrose symporter in Xenopus laevis oocytes. Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Hematologic, cytochemical, ultrastructural, and molecular findings of Hepatozoon-infected flat-headed cats (Prionailurus planiceps).

    PubMed

    Salakij, Chaleow; Salakij, Jarernsak; Narkkong, Nual-Anong; Sirinarumitr, Theerapol; Pattanarangsan, Rattapan

    2008-03-01

    The flat-headed cat (Prionailurus planiceps) is a small wild cat of Southeast Asia and is considered extremely endangered. Little is known about the hematologic values, blood cell morphology, or hemoparasites of this species in relation to other Felidae. The objective of this study was to report basic hematologic values and describe the light microscopic, cytochemical, and ultrastructural characteristics of blood cells in 2 wild-caught flat-headed cats. In addition, molecular analysis was done of a Hepatozoon organism found in the neutrophils of both cats. Blood samples were collected into EDTA from the cephalic vein. A CBC, manual differential count, manual reticulocyte count, cytochemical stains (Sudan black B [SBB], alpha-naphthyl acetate esterase [ANAE], and beta-glucuronidase), and scanning and transmission electron microscopy were done using standard methods. HCT was slightly lower and reticulocyte counts and red cell distribution width were higher than the expected values for other species of cats. Hepatozoon organisms were found in the cytoplasm of neutrophils in both cats, but the number of infected neutrophils was very low (1%-2%). Neutrophils stained strongly positive for SBB, but were negative for ANAE and beta-glucuronidase. Hepatozoon-infected neutrophils were negative for SBB, but focally positive for ANAE and beta-glucuronidase. By transmission electron microscopy, gamonts of Hepatozoon sp were observed in neutrophils, and rarely free in plasma. Infected neutrophils had fewer specific granules and more mitochondria compared with noninfected neutrophils. PCR products of partial 18S rRNA revealed that the isolate of Hepatozoon in the flat-headed cats was closely related to that of the frog Hepatozoon sp. These results add to our understanding of hematologic values and blood cell morphology in Hepatozoon-infected flat-headed cats as well as the molecular analysis of the Hepatozoon organism, and may be useful for the health management and evaluation of hemoparasitic disease in this species.

  17. Orgyia pseudotsugata baculovirus p10 and polyhedron envelope protein genes: analysis of their relative expression levels and role in polyhedron structure.

    PubMed

    Gross, C H; Russell, R L; Rohrmann, G F

    1994-05-01

    To investigate the regulation of p10 and polyhedron envelope protein (PEP) gene expression and their role in polyhedron development, Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis viruses lacking these genes were constructed. Recombinant viruses were produced, in which the p10 gene, the PEP gene or both genes were disrupted with the beta-glucuronidase (GUS) or beta-galactosidase (lacZ) genes. GUS activity under the control of the PEP protein promoter was observed later in infection and its maximal expression was less than 10% the level for p10 promoter-GUS constructs. Tissues from O. pseudotsugata larvae infected with these recombinants were examined by electron microscopy. Cells from insects infected with the p10- viruses lacked p10-associated fibrillar structures, but fragments of polyhedron envelope-like structures were observed on the surface of some polyhedra. Immunogold labelling of cells infected with the p10-GUS+ virus with an antibody directed against PEP showed that the PEP was concentrated at the surface of polyhedra. Although polyhedra produced by p10 and PEP gene deletion mutants demonstrated what appeared to be a polyhedron envelope by transmission electron microscopy, scanning electron microscopy showed that they had irregular, pitted surfaces that were different from wild-type polyhedra. These data suggested that both p10 and PEP are important for the proper formation of the periphery of polyhedra.

  18. Intracisternal A-Particle Element Transposition into the Murine β-Glucuronidase Gene Correlates with Loss of Enzyme Activity: a New Model for β-Glucuronidase Deficiency in the C3H Mouse†

    PubMed Central

    Gwynn, Babette; Lueders, Kira; Sands, Mark S.; Birkenmeier, Edward H.

    1998-01-01

    The severity of human mucopolysaccharidosis type VII (MPS VII), or Sly syndrome, depends on the relative activity of the enzyme β-glucuronidase. Loss of β-glucuronidase activity can cause hydrops fetalis, with in utero or postnatal death of the patient. In this report, we show that β-glucuronidase activity is not detectable by a standard fluorometric assay in C3H/HeOuJ (C3H) mice homozygous for a new mutation, gusmps2J. These gusmps2J/gusmps2J mice are born and survive much longer than the previously characterized β-glucuronidase-null B6.C-H-2bm1/ByBir-gusmps (gusmps/gusmps) mice. Northern blot analysis of liver from gusmps2J/gusmps2J mice demonstrates a 750-bp reduction in size of β-glucuronidase mRNA. A 5.4-kb insertion in the Gus-sh nucleotide sequence from these mice was localized by Southern blot analysis to intron 8. The ends of the inserted sequences were cloned by inverse PCR and revealed an intracisternal A-particle (IAP) element inserted near the 3′ end of the intron. The sequence of the long terminal repeat (LTR) regions of the IAP most closely matches that of a composite LTR found in transposed IAPs previously identified in the C3H strain. The inserted IAP may contribute to diminished β-glucuronidase activity either by interfering with transcription or by destabilizing the message. The resulting phenotype is much less severe than that previously described in the gusmps/gusmps mouse and provides an opportunity to study MPS VII on a genetic background that clearly modulates disease severity. PMID:9774663

  19. Generation of β-glucuronidase reporter-tagged strain to monitor Ustilaginoidea virens infection in rice.

    PubMed

    Andargie, Mebeaselassie; Yang, Chao; Li, Jianxiong

    2016-12-01

    An Agrobacterium-mediated genetic transformation system for the rice false smut fungus Ustilaginoidea virens was developed using conidia as recipients. A binary vector, pCAMBIA1301-P gpdA -GUS-T trpC , was constructed. The gpdA promoter (P gpdA ) from Aspergillus nidulans was used to drive the expression of the β-glucuronidase (GUS) gene which enabled GUS activity visualization. The conidia transformation efficiency reached approximately 110 to 250 transformants per 1×10 5 conidia. Based on the analysis made on five successive generations of subcultures and PCR, the pCAMBIA1301-GUS cassette had integrated into the genomes of all transformants and clearly showed mitotic stability. The novel reporter vector constructed will promote the functional characterization of genes and the construction of genetically engineered strains of this important fungus. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    PubMed Central

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-01-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol. PMID:8165260

  1. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    PubMed

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  2. Adeno-associated virus vector-mediated transduction in the cat brain.

    PubMed

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  3. Mobility of the maize suppressor-mutator element in transgenic tobacco cells.

    PubMed Central

    Masson, P; Fedoroff, N V

    1989-01-01

    Maize Suppressor-mutator (Spm) transposable elements have been introduced into tobacco cells and a visual assay for Spm activity has been developed using a bacterial beta-glucuronidase gene. The Spm element is mobile in tobacco and can trans-activate excision of a transposition-defective Spm (dSpm) element either from a different site on the same transforming Ti plasmid or from a second plasmid. An Spm element expressed from the stronger cauliflower mosaic virus 35S promoter trans-activates transposition of a dSpm element earlier after its introduction into tobacco cells than an element expressed from its own promoter. Images PMID:2538837

  4. Systemic and Central Nervous System Correction of Lysosomal Storage in Mucopolysaccharidosis Type VII Mice

    PubMed Central

    Stein, Colleen S.; Ghodsi, Abdi; Derksen, Todd; Davidson, Beverly L.

    1999-01-01

    Mucopolysaccharidosis (MPS) type VII patients lack functional β-glucuronidase, leading to systemic and central nervous system dysfunction. In this study we tested whether recombinant adenovirus that encodes β-glucuronidase (Adβgluc), delivered intravenously and into the brain parenchyma of MPS type VII mice, could provide long-term transgene expression and correction of lysosomal distension. We also tested whether systemic treatment with the immunosuppressive anti-CD40 ligand antibody, MR-1, affected transgene expression. We found substantial plasma β-glucuronidase activity for over 9 weeks after gene transfer in the MR-1- treated group, with subsequent decline in activity corresponding to a delayed anti-β-glucuronidase antibody response. At 16 weeks, near wild-type amounts of β-glucuronidase activity and striking reduction of lysosomal pathology were detected in livers from mice that had received either MR-1 cotreatment or control antibody. In the lung and kidney, β-glucuronidase activity was markedly higher for the MR-1-treated group. β-Glucuronidase activity in the brain persisted independently of MR-1 treatment. Activity was intense in the injected hemisphere and was also evident in the noninjected cortex and striatum, with dramatic improvements in storage deposits in areas of both hemispheres. These results indicate that prolonged enzyme expression from transgenes delivered to deficient liver and brain can mediate pervasive correction and illustrate the potential for gene therapy of MPS and other lysosomal storage diseases. PMID:10074197

  5. Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia.

    PubMed

    Trombik, Tomasz; Jasinski, Michal; Crouzet, Jérome; Boutry, Marc

    2008-01-01

    ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.

  6. The Competence of Maize Shoot Meristems for Integrative Transformation and Inherited Expression of Transgenes.

    PubMed Central

    Zhong, H.; Sun, B.; Warkentin, D.; Zhang, S.; Wu, R.; Wu, T.; Sticklen, M. B.

    1996-01-01

    We have developed a novel and reproducible system for recovery of fertile transgenic maize (Zea mays L.) plants. The transformation was performed using microprojectile bombardment of cultured shoot apices of maize with a plasmid carrying two linked genes, the Streptomyces hygroscopicus phosphinothricin acetyltransferase gene (bar) and the potato proteinase inhibitor II gene, either alone or in combination with another plasmid containing the 5[prime] region of the rice actin 1 gene fused to the Escherichia coli [beta]-glucuronidase gene (gus). Bombarded shoot apices were subsequently multiplied and selected under 3 to 5 mg/L glufosinate ammonium. Co-transformation frequency was 100% (146/146) for linked genes and 80% (41/51) for unlinked genes. Co-expression frequency of the bar and gus genes was 57% (29/51). The co-integration, co-inheritance, and co-expression of bar, the potato proteinase inhibitor II gene, and gus in transgenic R0, R1, and R2 plants were confirmed. Localized expression of the actin 1-GUS protein in the R0 and R1 plants was extensively analyzed by histochemical and fluorometric assays. PMID:12226244

  7. A biochemical method for assessing the neurotoxic effects of misonidazole in the rat.

    PubMed Central

    Rose, G. P.; Dewar, A. J.; Stratford, I. J.

    1980-01-01

    A proven biochemical method for assessing chemically induced neurotoxicity has been applied to the study of the toxic effects of misonidazole (MISO) in the rat. This involves the fluorimetric measurement of beta-glucuronidase and beta-galactosidase activities in homogenates of rat nervous tissue. The tissues analysed were sciatic/posterior tibial nerve (SPTN) cut into 4 sections, trigeminal ganglia and cerebellum. MISO administered i.p. to Wistar rats in doses greater than 300 mg/kg/day for 7 consecutive days produced maximal increases in both beta-glucuronidase and beta-galactosidase activities in th SPTN at 4 weeks (140-180% of control values). The highest increases were associated with the most distal secretion of the nerve. Significant enzyme-activity changes were also found in the trigeminal ganglia and cerebellum of MISO-dosed rats. The greatest activity occurred 4-5 weeks after dosing, and was dose-related. It is concluded that, in the rat, MISO can produce biochemical changes consistent with a dying-back peripheral neuropathy, and biochemical changes suggestive of cerebellar damage. This biochemical approach would appear to offer a convenient quantitative method for the detection of neurotoxic effects of other potential radio-sensitizing drugs. PMID:7459223

  8. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli.

    PubMed

    Blume, B; Grierson, D

    1997-10-01

    The enzyme ACC oxidase, catalysing the last step in the biosynthesis of the plant hormone ethylene, is encoded by a small multigene family in tomato, comprising three members, LEACO1, LEACO2 and LEACO3. LEACO1 is the major gene expressed during ripening, leaf senescence, and wounding (Barry et al., 1996). To investigate the transcriptional regulation of ACC oxidase gene expression, chimeric fusions between the beta-glucuronidase reporter gene and 97 bp of 5' UTR plus 124, 396 and 1825 bp, respectively, of 5' untranscribed LEACO1 sequence were constructed and introduced into Lycopersicon esculentum (Mill cv. Ailsa Craig) and Nicotiana plumbaginifolia. Analysis of transgenic tomatoes indicated that the region containing nucleotides -124 to +97 of the LEACO1 gene is sufficient to confer a marked increase in GUS activity during fruit ripening, albeit at very low levels. Fusion of 396 and 1825 bp of LEACO1 upstream sequence resulted in strong and specific induction of GUS expression in situations known to be accompanied by enhanced ethylene production. Reporter gene expression was similar to that of the endogenous LEACO1 gene, with major increases especially during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers. Analysis of transgenic N. plumbaginifolia plants confirmed the pattern of LEACO1 promoter activity detected in tomato leaves and flowers. Reporter gene expression was also induced following wounding, treatment with ethylene, and pathogen infection. Histochemical analysis illustrated localized GUS activity in the pericarp of ripening fruit, abscission zones of senescent petioles and unfertilized flowers, and at wound sites. These results demonstrate that ACC oxidase is regulated at the transcriptional level in a wide range of cell types at different developmental stages and in response to several external stimuli.

  9. β-Glucuronidase as a Sensitive and Versatile Reporter in Actinomycetes ▿

    PubMed Central

    Myronovskyi, Maksym; Welle, Elisabeth; Fedorenko, Viktor; Luzhetskyy, Andriy

    2011-01-01

    Here we describe a versatile and sensitive reporter system for actinomycetes that is based on gusA, which encodes the β-glucuronidase enzyme. A series of gusA-containing transcriptional and translational fusion vectors were constructed and utilized to study the regulatory cascade of the phenalinolactone biosynthetic gene cluster. Furthermore, these vectors were used to study the efficiency of translation initiation at the ATG, GTG, TTG, and CTG start codons. Surprisingly, constructs using a TTG start codon showed the best activity, whereas those using ATG or GTG were approximately one-half or one-third as active, respectively. The CTG fusion showed only 5% of the activity of the TTG fusion. A suicide vector, pKGLP2, carrying gusA in its backbone was used to visually detect merodiploid formation and resolution, making gene targeting in actinomycetes much faster and easier. Three regulatory genes, plaR1, plaR2, and plaR3, involved in phenalinolactone biosynthesis were efficiently replaced with an apramycin resistance marker using this system. Finally, we expanded the genetic code of actinomycetes by introducing the nonproteinogenic amino acid N-epsilon-cyclopentyloxycarbonyl-l-lysine with the GusA protein as a reporter. PMID:21685164

  10. Intein-mediated assembly of a functional β-glucuronidase in transgenic plants

    PubMed Central

    Yang, Jianjun; Fox, George C.; Henry-Smith, Tina V.

    2003-01-01

    The DnaE intein in Synechocystis sp. strain PCC6803 is the first and only naturally split intein that has been identified so far. It is capable of catalyzing a protein trans-splicing mechanism to assemble a mature protein from two separate precursors. Therefore, it is a powerful tool for protein modification and engineering. Inteins have not been identified, nor have intein-mediated protein splicing reactions been demonstrated, in plant cells. In this paper, we describe the use of the Ssp DnaE split intein in transgenic plants for reconstitution of a protein trans-splicing reaction. We have synthesized artificial genes that encode for N-terminal half (Int-n) and C-terminal half (Int-c) fragments of Ssp DnaE split intein and divided β-glucuronidase (GUS) gene to encode GUS-n and GUS-c parts of the enzyme as reporter. The in-frame fusions of GUSn/Intn and Intc/GUSc were constructed and transfected into Arabidopsis. We have observed in vivo reassembly of functional β-glucuronidase when both GUSn/Intn and Intc/GUSc constructs were introduced into the same Arabidopsis genome either by cotransformation or through genetic crossing, hereby signifying an intein-mediated protein trans-splicing mechanism reconstituted in plant cells. PMID:12629210

  11. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

  12. Microarray Analysis of Thyroid Stimulating Hormone, Insulin-Like Growth Factor-1, and Insulin-Induced Gene Expression in FRTL-5 Thyroid Cells

    PubMed Central

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn

    2007-01-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240

  13. Z-membranes: artificial organelles for overexpressing recombinant integral membrane proteins.

    PubMed Central

    Gong, F C; Giddings, T H; Meehl, J B; Staehelin, L A; Galbraith, D W

    1996-01-01

    We have expressed a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase in transgenic tobacco cells. Electron microscope images of such cells demonstrate that overexpression of this fusion protein gives rise to a type of endoplasmic reticulum membrane domain in which adjacent membranes become zippered together apparently as a consequence of the oligomerizing action of beta-glucuronidase. These zippered (Z-) membranes lack markers of the endoplasmic reticulum (NADH cytochrome c reductase and ribosomes) and accumulate in the cells in the form of multilayered scroll-like structures (up to 2 micrometers in diameter; 20-50 per cell) without affecting plant growth. The discovery of Z-membranes has broad implications for biology and biotechnology in that they provide a means for accumulating large quantities of recombinant membrane proteins within discrete domains of native membranes. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8700911

  14. Development of A Flexible System for the Simultaneous Conversion of Biomass to Industrial Chemicals and the Production of Industrial Biocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Johnway; Hooker, Brian S.; Skeen, R S.

    2002-01-01

    A flexible system was developed for the simultaneous conversion of biomass to industrial chemicals and the production of industrial biocatalysts. In particular, the expression of a bacterial enzyme, beta-glucuronidase (GUS), was investigated using a genetically modified starch-degrading Saccharomyces strain in suspension cultures in starch media. Different sources of starch including corn and waste potato starch were used for yeast biomass accumulation and GUS expression studies under controls of inducible and constitutive promoters. A thermostable bacterial cellulase, Acidothermus cellulolyticus E1 endoglucanase gene was also cloned into an episomal plasmid expression vector and expressed in the starch-degrading Saccharomyces strain.

  15. An activity-based near-infrared glucuronide trapping probe for imaging β-glucuronidase expression in deep tissues.

    PubMed

    Cheng, Ta-Chun; Roffler, Steve R; Tzou, Shey-Cherng; Chuang, Kuo-Hsiang; Su, Yu-Cheng; Chuang, Chih-Hung; Kao, Chien-Han; Chen, Chien-Shu; Harn, I-Hong; Liu, Kuan-Yi; Cheng, Tian-Lu; Leu, Yu-Ling

    2012-02-15

    β-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of β-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of β-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. β-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near β-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified β-glucuronidase or β-glucuronidase-expressing CT26 cells (CT26/mβG) but not on bovine serum albumin or non-β-glucuronidase-expressing CT26 cells used as controls. β-glucuronidase-activated FITC-TrapG did not interfere with β-glucuronidase activity and could label bystander proteins near β-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mβG tumors, but only NIR-TrapG could image CT26/mβG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing β-glucuronidase activity in vivo.

  16. Does thrombin stimulation of human platelets proceed via a simultaneous Na/sup +/-H/sup +/ exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, T.A.; Katona, E.; Vasilescu, V.

    1986-03-05

    Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na/sup +/ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin dose dependence. These responses precede secretion of the contents of dense granules (serotonin) and, after 1 min, of lysosomes (..beta..-glucuronidase). These markers have been used to determine whether the Na/sup +/ influx and H/sup +/ efflux are sequential or simultaneous. They have examined these parameters in D/sub 2/O-Hepes buffers. NMR evidence indicates that equilibration is rapid, and virtually complete within the 3 minute pre-stimulation platelets equilibration period.more » The rate of depolarization is 70-80% slower in D/sub 2/O than in H/sub 2/O. The time to reach maximal depolarization is 5-10 sec longer, the extent of depolarization 60% inhibited, and the (H/sup +/) change 85-100% inhibited. The serotonin secretion is unaltered, and the ..beta..-glucuronidase secretion is 130-180% enhanced. 10/sup -4/ M amiloride inhibits Na/sup +/ influx, i.e. depolarization, and the pH change completely. Adjustment to pH/sub i/ 7.3 with NH/sub 4/Cl led to a 30-80% enhanced ..beta..-glucuronidase release upon thrombin exposure. These results suggest that the Na/sup +/ and H/sup +/ fluxes across the platelet membrane occur sequentially, the Na/sup +/ occurring first. Furthermore, granule secretion, previously shown by us to be independent of the existent Na/sup +/ gradient, depends on the cytoplasmic K/sup +/ and H/sup +/ concentrations.« less

  17. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinues, B.; Perez, J.; Bernal, M.L.

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A totalmore » of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.« less

  18. Active site mutant transgene confers tolerance to human β-glucuronidase without affecting the phenotype of MPS VII mice

    PubMed Central

    Sly, William S.; Vogler, Carole; Grubb, Jeffrey H.; Zhou, Mi; Jiang, Jinxing; Zhou, Xiao Yan; Tomatsu, Shunji; Bi, Yanhua; Snella, Elizabeth M.

    2001-01-01

    Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII. PMID:11226217

  19. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells.

    PubMed

    Wang, Z-Y; Bell, J; Lehmann, D

    2004-07-01

    Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric beta-glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.

  20. Metabolism of boldenone in man: gas chromatographic/mass spectrometric identification of urinary excreted metabolites and determination of excretion rates.

    PubMed

    Schänzer, W; Donike, M

    1992-01-01

    Urinary metabolites of boldenone (androsta-1,4-dien-17 beta-ol-3-one) following oral administration of boldenone (doses from 11 to 80 mg) to man were isolated from urine via XAD-2 adsorption and enzymatic hydrolysis with beta-glucuronidase from Escherichia coli. The isolated metabolites were derivatized with N-methyl-N-trimethylsilyltri- fluoroacetamide/trimethyliodosilane and analysed by gas chromatography/mass spectrometry with electron impact (EI) ionization at 70 eV. Boldenone (I) and four metabolites were identified after hydrolysis of the urine with beta-glucuronidase: 5 beta-androst-1-en-17 beta-ol-3-one (II), 5 beta-androst-1-ene-3 alpha, 17 beta-diol (III), 5 beta-androst-1-en-3 alpha-ol-17-one (IV) and 5 beta-androst-1-en-6 beta-ol-3,17-dione (V). Five further metabolites in low concentration were identified without enzymatic hydrolysis after treatment of the urine with potassium carbonate: 5 beta-androst-1-ene-3,17-dione (VI), 5 alpha-androst-1-ene-3,17-dione (VII), androsta-1,4-diene-3,17-dione (VIII), androsta-1,4-diene-6 beta,17 beta-diol-3-one (IX) and androsta-1,4-dien-6 beta-ol-3,17-dione (X). The identification of the metabolites is based on the gas chromatography retention index, high-performance liquid chromatography retention, EI mass spectrum, chemical reactions of the isolated metabolites, and synthesis of metabolites II, III, IV, VI and VII. The EI mass spectra of the bis-trimethylsilyl derivatives of boldenone and its metabolites display all intense molecular ions, M-15 ions and fragment ions originating from cleavage of the B-ring. The excreted metabolites can be separated in basic extractable labile conjugates and in stable conjugates. More than 95% of metabolites are excreted as stable conjugates.

  1. Selection of suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using quantitative real-time polymerase chain reaction.

    PubMed

    Zornhagen, K W; Kristensen, A T; Hansen, A E; Oxboel, J; Kjaer, A

    2015-12-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a sensitive technique for quantifying gene expression. Stably expressed reference genes are necessary for normalization of RT-qPCR data. Only a few articles have been published on reference genes in canine tumours. The objective of this study was to demonstrate how to identify suitable reference genes for normalization of genes of interest in canine soft tissue sarcomas using RT-qPCR. Primer pairs for 17 potential reference genes were designed and tested in archival tumour biopsies from six dogs. The geNorm algorithm was used to analyse the most suitable reference genes. Eight potential reference genes were excluded from this final analysis because of their dissociation curves. β-Glucuronidase (GUSB) and proteasome subunit, beta type, 6 (PSMB6) were most stably expressed with an M value of 0.154 and a CV of 0.053 describing their average stability. We suggest that choice of reference genes should be based on specific testing in every new experimental set-up. © 2014 John Wiley & Sons Ltd.

  2. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology.

    PubMed

    Ishizaki, Kimitsune; Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki

    2008-07-01

    Agrobacterium-mediated transformation has not been practical in pteridophytes, bryophytes and algae to date, although it is commonly used in model plants including Arabidopsis and rice. Here we present a rapid Agrobacterium-mediated transformation system for the haploid liverwort Marchantia polymorpha L. using immature thalli developed from spores. Hundreds of hygromycin-resistant plants per sporangium were obtained by co-cultivation of immature thalli with Agrobacterium carrying the binary vector that contains a reporter, the beta-glucuronidase (GUS) gene with an intron, and a selection marker, the hygromycin phosphotransferase (hpt) gene. In this system, individual gemmae, which arise asexually from single initial cells, were analyzed as isogenic transformants. GUS activity staining showed that all hygromycin-resistant plants examined expressed the GUS transgene in planta. DNA analyses verified random integration of 1-5 copies of the intact T-DNA between the right and the left borders into the M. polymorpha genome. The efficient and rapid Agrobacterium-mediated transformation of M. polymorpha should provide molecular techniques to facilitate comparative genomics, taking advantage of this unique model plant that retains many features of the common ancestor of land plants.

  3. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    PubMed

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  4. aguA, the Gene Encoding an Extracellular α-Glucuronidase from Aspergillus tubingensis, Is Specifically Induced on Xylose and Not on Glucuronic Acid

    PubMed Central

    de Vries, Ronald P.; Poulsen, Charlotte H.; Madrid, Susan; Visser, Jaap

    1998-01-01

    An extracellular α-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70°C. The α-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and β-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this α-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and α-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose. PMID:9440512

  5. Salivary and serum inflammatory mediators among pre-conception women with periodontal disease.

    PubMed

    Jiang, Hong; Zhang, Yiming; Xiong, Xu; Harville, Emily W; O, Karmin; Qian, Xu

    2016-12-15

    There have been inconsistent conclusions regarding the levels of inflammatory mediators in saliva and serum among people with or without periodontal disease. Although pre-conception has been put forward as the optimal time for the periodontal treatment in order to improving pregnancy outcomes, few studies have been conducted to examine inflammatory mediators in saliva and serum among pre-conception women. Pre-conception women were recruited between January 2012 and December 2014. Women were provided with an oral health examination to detect periodontal disease. Salivary and serum samples were collected at the same of examination. Inflammatory mediators includinginterleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNF-α) and beta-glucuronidase (β-glucuronidase) were tested and analyzed among women with overall periodontal disease (n = 442) or moderate/severe periodontal disease (n = 247). Results were compared to that in women with a healthy periodontium (n = 91). Significantly increased concentrations of inflammatory mediators of IL-1β, IL-6, TNF-α and β-glucuronidase in saliva and IL-1β, β-glucuronidase and TNF-α in serum were found among pre-conception women with moderate/severe periodontal disease, compared with women without periodontal disease. Significantly increased levels were also found in all the above saliva inflammatory mediators and in serum IL-1β and TNF-α among women with overall periodontal disease. The levels of all inflammatory mediators in saliva and almost all inflammatory mediators except IL-6 in serum significantly increased with severity of periodontal disease. Periodontal disease is highly associated with the elevated levels of inflammatory mediators in saliva and some mediators in serum among pre-conception women.

  6. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis.

    PubMed

    Iwasaki, T; Yamaguchi-Shinozaki, K; Shinozaki, K

    1995-05-20

    In Arabidopsis thaliana, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) but the gene does not include any sequence corresponding to the consensus ABA-responsive element (ABRE), RYACGTGGYR, in its promoter region. The cis-regulatory region of the rd22 promoter was identified by monitoring the expression of beta-glucuronidase (GUS) activity in leaves of transgenic tobacco plants transformed with chimeric gene fusions constructed between 5'-deleted promoters of rd22 and the coding region of the GUS reporter gene. A 67-bp nucleotide fragment corresponding to positions -207 to -141 of the rd22 promoter conferred responsiveness to dehydration and ABA on a non-responsive promoter. The 67-bp fragment contains the sequences of the recognition sites for some transcription factors, such as MYC, MYB, and GT-1. The fact that accumulation of rd22 mRNA requires protein synthesis raises the possibility that the expression of rd22 might be regulated by one of these trans-acting protein factors whose de novo synthesis is induced by dehydration or ABA. Although the structure of the RD22 protein is very similar to that of a non-storage seed protein, USP, of Vicia faba, the expression of the GUS gene driven by the rd22 promoter in non-stressed transgenic Arabidopsis plants was found mainly in flowers and bolted stems rather than in seeds.

  7. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases.

    PubMed

    Zcharia, Eyal; Jia, Juan; Zhang, Xiao; Baraz, Lea; Lindahl, Ulf; Peretz, Tamar; Vlodavsky, Israel; Li, Jin-Ping

    2009-01-01

    Heparanase, a mammalian endo-beta-D-glucuronidase, specifically degrades heparan sulfate proteoglycans ubiquitously associated with the cell surface and extracellular matrix. This single gene encoded enzyme is over-expressed in most human cancers, promoting tumor metastasis and angiogenesis. We report that targeted disruption of the murine heparanase gene eliminated heparanase enzymatic activity, resulting in accumulation of long heparan sulfate chains. Unexpectedly, the heparanase knockout (Hpse-KO) mice were fertile, exhibited a normal life span and did not show prominent pathological alterations. The lack of major abnormalities is attributed to a marked elevation in the expression of matrix metalloproteinases, for example, MMP2 and MMP14 in the Hpse-KO liver and kidney. Co-regulation of heparanase and MMPs was also noted by a marked decrease in MMP (primarily MMP-2,-9 and 14) expression following transfection and over-expression of the heparanase gene in cultured human mammary carcinoma (MDA-MB-231) cells. Immunostaining (kidney tissue) and chromatin immunoprecipitation (ChIP) analysis (Hpse-KO mouse embryonic fibroblasts) suggest that the newly discovered co-regulation of heparanase and MMPs is mediated by stabilization and transcriptional activity of beta-catenin. The lack of heparanase expression and activity was accompanied by alterations in the expression level of MMP family members, primarily MMP-2 and MMP-14. It is conceivable that MMP-2 and MMP-14, which exert some of the effects elicited by heparanase (i.e., over branching of mammary glands, enhanced angiogenic response) can compensate for its absence, in spite of their different enzymatic substrate. Generation of viable Hpse-KO mice lacking significant abnormalities may provide a promising indication for the use of heparanase as a target for drug development.

  8. alpha-L-iduronidase, beta-D-glucuronidase, and 2-sulfo-L-iduronate 2-sulfatase: preparation and characterization of radioactive substrates from heparin.

    PubMed

    Hopwood, J J

    1979-03-01

    Radioactive disaccharide substrates for alpha-L-iduronidase, beta-D-glucuronidase, and 2-sulfo-L-iduronate 2-sulfatase have been prepared from heparin by deaminative cleavage followed by reduction with NaBT4. Six disaccharides were isolated from this reaction mixture and identified. Acid hydrolysis of the major disaccharide, O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate (IdAs--Ms), produced 48% of O-(alpha-L-idopyranosyluronic acid)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate) (IdA--Ms) and 25% of O-(alpha-L-idopyranosyluronic acid)-(1 linked to 4)-2,5-anhydro-D-mannitol-l-t. The most-sensitive substrate for determining alpha-L-iduronidase activity was IdA--Ms which, when incubated with leucocyte and skin-fibroblast homogenates prepared from patients having a deficiency of alpha-L-iduronidase (Mucopolysaccharidosis Type I; MPS-I), was hydrolysed to yield 2,5-anhydro-D-mannitol-l-t 6-sulfate at a rate 50-times less than that found for normal control-preparations. Similarly, O-(beta-D-glucopyranosyluronic acid)-(1 linked to 4)-(2,5-anhydro-D-mannitol-l-t 6-sulfate) was degraded by whole-cell homogenates prepared from beta-D-glucuronidase-deficient (Mucopolysaccharidosis, Type VII) fibroblasts, to yield 2,5-anhydro-D-mannitol-l-t 5-sulfate at a rate 60-times less that that found for MPS-I and normal control-preparations. IdAs--Ms was degraded by 2-sulfo-L-iduronate 2-sulfatase at a rate more than 45-times greater than that found for O-(alpha-L-idopyranosyluronic acid 2-sulfate)-(1 linked to 4)-2,5-anhydro-D-mannitol-l-t. C-6 Sulfation of the anhydro-D-mannitol-l-t residue is an important structural determinant in the mechanism of action of both alpha-L-iduronidase and 2-sulfo-L-iduronate 2-sulfatase on disaccharide substrates.

  9. Transformation of pecan and regeneration of transgenic plants.

    PubMed

    McGranahan, G H; Leslie, C A; Dandekar, A M; Uratsu, S L; Yates, I E

    1993-09-01

    A gene transfer system developed for walnut (Juglans regia L.) was successfully applied to pecan (Carya illinoensis [Wang] K. Koch). Repetitively embryogenic somatic embryos derived from open-pollinated seed of 'Elliott', 'Wichita', and 'Schley' were co-cultivated with Agrobacterium strain EHA 101/pCGN 7001, which contains marker genes for beta-glucuronidase activity and resistance to kanamycin. Several modifications of the standard walnut transformation techniques were tested, including a lower concentration of kanamycin and a modified induction medium, but these treatments had no measurable effect on efficiency of transformation. Nineteen of the 764 viable inoculated embryos produced transgenic subclones; 13 of these were from the line 'Elliott'6, 3 from 'Schley'5/3, and 3 from 'Wichita'9. Transgenic embryos of 'Wichita'9 germinated most readily and three subclones were successfully micropropagated. Three transgenic plants of one of these subclones were obtained by grafting the tissue cultured shoots to seedling pecan rootstock in the greenhouse. Gene insertion, initially detected by GUS activity, was confirmed by detection of integrated T-DNA sequences using Southern analysis.

  10. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome

    PubMed Central

    Gloux, Karine; Berteau, Olivier; El oumami, Hanane; Béguet, Fabienne; Leclerc, Marion; Doré, Joël

    2011-01-01

    In the human gastrointestinal tract, bacterial β-D-glucuronidases (BG; E.C. 3.2.1.31) are involved both in xenobiotic metabolism and in some of the beneficial effects of dietary compounds. Despite their biological significance, investigations are hampered by the fact that only a few BGs have so far been studied. A functional metagenomic approach was therefore performed on intestinal metagenomic libraries using chromogenic glucuronides as probes. Using this strategy, 19 positive metagenomic clones were identified but only one exhibited strong β-D-glucuronidase activity when subcloned into an expression vector. The cloned gene encoded a β-D-glucuronidase (called H11G11-BG) that had distant amino acid sequence homologies and an additional C terminus domain compared with known β-D-glucuronidases. Fifteen homologs were identified in public bacterial genome databases (38–57% identity with H11G11-BG) in the Firmicutes phylum. The genomes identified derived from strains from Ruminococcaceae, Lachnospiraceae, and Clostridiaceae. The genetic context diversity, with closely related symporters and gene duplication, argued for functional diversity and contribution to adaptive mechanisms. In contrast to the previously known β-D-glucuronidases, this previously undescribed type was present in the published microbiome of each healthy adult/child investigated (n = 11) and was specific to the human gut ecosystem. In conclusion, our functional metagenomic approach revealed a class of BGs that may be part of a functional core specifically evolved to adapt to the human gut environment with major health implications. We propose consensus motifs for this unique Firmicutes β-D-glucuronidase subfamily and for the glycosyl hydrolase family 2. PMID:20615998

  11. Application of β-glucuronidase (GusA) as an effective reporter for extremely acidophilic Acidithiobacillus ferrooxidans.

    PubMed

    Wang, Huiyan; Fang, Liangyan; Wen, Qing; Lin, Jianqun; Liu, Xiangmei

    2017-04-01

    Acidithiobacillus ferrooxidans is a model organism for investigating metal sulfide bioleaching. The regulatory mechanism of gene expression by metabolizing various substrates is critical for understanding its role in bioleaching processes. However, no reporter has been successfully employed to study gene expression in A. ferrooxidans to date. In this study, a sensitive and robust reporter system based on β-glucuronidase (GusA) was described for feasible application in A. ferrooxidans. A set of vectors, which contained the transcriptional and translational fusions of gusA, were constructed and employed to analyze promoter activity and efficiency of translation initiation in A. ferrooxidans. Ptac and P2811 were screened out from ten tested promoters and could be used as strong promoters for gene overexpression in A. ferrooxidans. Among the four translational fusions of gusA with different start codons, ATG was most active, followed by TTG and GTG, while CTG showed the least activity. The transcriptional inhibition effect of an IclR-like transcription factor was also observed on its own encoding gene AFE_1668 as well as its neighboring AFE_1667. In addition, the specific chromogenic reaction of GusA could be detected and visualized by colonies of A. ferrooxidans containing gusA expression plasmids. Generally, the established GusA reporter system would be applied not only for quantitative analysis of promoter strength and its transcriptional regulation but also for qualitative colony screening in A. ferrooxidans in the future.

  12. Identification of Lactobacillus sakei genes induced during meat fermentation and their role in survival and growth.

    PubMed

    Hüfner, Eric; Markieton, Tobias; Chaillou, Stéphane; Crutz-Le Coq, Anne-Marie; Zagorec, Monique; Hertel, Christian

    2007-04-01

    Lactobacillus sakei is a lactic acid bacterium that is ubiquitous in the food environment and is one of the most important constituents of commercial meat starter cultures. In this study, in vivo expression technology (IVET) was applied to investigate gene expression of L. sakei 23K during meat fermentation. The IVET vector used (pEH100) contained promoterless and transcriptionally fused reporter genes mediating beta-glucuronidase activity and erythromycin resistance. A genomic library of L. sakei 23K was established, and the clones were subjected to fermentation in a raw-sausage model. Fifteen in carne-induced fusions were identified. Several genes encoded proteins which are likely to contribute to stress-related functions. One of these genes was involved in acquisition of ammonia from amino acids, and the remaining either were part of functionally unrelated pathways or encoded hypothetical proteins. The construction and use of isogenic mutants in the sausage model suggested that four genes have an impact on the performance of L. sakei during raw-sausage fermentation. Inactivation of the heat shock regulator gene ctsR resulted in increased growth, whereas knockout of the genes asnA2, LSA1065, and LSA1194 resulted in attenuated performance compared to the wild-type strain. The results of our study are the first to provide an insight into the transcriptional response of L. sakei when growing in the meat environment. In addition, this study establishes a molecular basis which allows investigation of bacterial properties that are likely to contribute to the ecological performance of the organism and to influence the final outcome of sausage fermentation.

  13. Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.

    2005-07-01

    We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.

  14. Calmodulin Gene Family in Potato: Developmental and Touch-Induced Expression of the mRNA Encoding a Novel Isoform

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Liu, Z. H.; An, G.; Poovaiah, B. W.

    1995-01-01

    Eight genomic clones of potato calmodulin (PCM1 to 8) were isolated and characterized. Sequence comparisons of different genes revealed that the deduced amino acid sequence of PCM1 had several unique substitutions, especially in the fourth Ca(2+)-binding area. The expression patterns of different genes were studied by northern analysis using the 3'-untranslated regions as probes. The expression of PCM1, 5, and 8 was highest in the stolon tip and it decreased during tuber development. The expression of PCM6 did not vary much in the tissues tested, except in the leaves, where the expression was lower; whereas, the expression of PCM4 was very low in all the tissues. The expression of PCM2 and PCM3 was not detected in any of the tissues tested. Among these genes, only PCM1 showed increased expression following touch stimulation. To study the regulation of PCM1, transgenic potato plants carrying the PCM1 promoter fused to the beta-glucuronidase (GUS) reporter gene were produced. GUS expression was found to be developmentally regulated and touch-responsive, indicating a positive correlation between the expression of PCM1 and GUS mRNAs. These results suggest that the 5'-flanking region of PCM1 controls developmental and touch-induced expression. X-Gluc staining patterns revealed that GUS localization is high in meristematic tissues such as the stem apex, stolon tip, and vascular regions.

  15. Effect of pentachlorophenol on the activation of 2,6-dinitrotoluene to genotoxic urinary metabolites in CD-1 mice: A comparison of G1 enzyme activities and urine mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, S.E.; Chadwick, R.W.; Creason, J.P.

    1991-01-01

    2,6-Dinitrotoluene (2,6-DNT) and pentachlorophenol (PCP) are used for industrial purposes and are found in the environment as hazardous contaminants. Because concurrent exposure to both compounds can occur, it is of interest to determine if organochlorine compounds potentiate the effect of nitroaromatic chemicals. A significant increase in mutagenicity was observed in urines from mice treated with 2,6-DNT alone and in combination with PCP. By week 4, mice that received both 2,6-DNT and PCP excreted urine that was more mutagenic than that from animals which received only 2,6-DNT. At weeks 2 and 4, mice were sacrificed and intestinal enzyme activities (nitroreductase, azomore » reductase, {beta}-glucuronidase, dechlorinase, and dehydrochlorinase) were quantitated. The enhanced genotoxicity observed in urines from 2,6-DNT/PCP-treated mice coincided with a decrease in nitroreductase and an increase in {beta}-glucuronidase activities in the small intestine.« less

  16. The membrane-stabilizing action of zinc carnosine (Z-103) in stress-induced gastric ulceration in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.H.; Luk, C.T.; Ogle, C.W.

    1991-01-01

    Zinc compounds have been shown to antagonize various types of gastric ulceration in rats. Zinc carnosine (Z-103), a newly developed agent was, therefore, examined for its antiulcer effect in stress-induced ulceration and also its membrane stabilizing action in rat stomachs. Cold-restraint stress induced severe hemorrhagic lesions together with increased mast cell degranulation and {beta}-glucuronidase release in the gastric glandular mucosa. A-103 pretreatment with a single oral dose reversed these actions in a dose-dependent manner. When the compound was incubated in concentrations of 10{sup {minus}7}, 10{sup {minus}6}, 10{sup {minus}5} or 10{sup {minus}4} M, with isolated hepatic lysosomes, it significantly reduced themore » spontaneous release of {beta}-glucuronidase in the medium. The present study not only demonstrates the antiulcer effect of Z-103 but also indicates that the protective action is likely to be mediated by its membrane-stabilizing action on mast cells and lysosomes in the gastric glandular mucosa.« less

  17. Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients.

    PubMed

    Kehrer, D F; Sparreboom, A; Verweij, J; de Bruijn, P; Nierop, C A; van de Schraaf, J; Ruijgrok, E J; de Jonge, M J

    2001-05-01

    This study was designed to evaluate irinotecan (CPT-11) disposition and pharmacodynamics in the presence and absence of the broad-spectrum antibiotic neomycin. Seven evaluable cancer patients experiencing diarrhea graded > or =2 after receiving CPT-11 alone (350 mg/m(2) i.v. once every 3 weeks) received the same dose combined with oral neomycin at 1000 mg three times per day (days -2 to 5) in the second course. Neomycin had no effect on the systemic exposure of CPT-11 and its major metabolites (P > or = 0.22). However, it changed fecal beta-glucuronidase activity from 7.03 +/- 1.76 microg/h/mg (phenolphthalein assay) to undetectable levels and decreased fecal concentrations of the pharmacologically active metabolite SN-38. Although neomycin had no significant effect on hematological toxicity (P > 0.05), diarrhea ameliorated in six of seven patients (P = 0.033). Our findings indicate that bacterial beta-glucuronidase plays a crucial role in CPT-11-induced diarrhea without affecting enterocycling and systemic SN-38 levels.

  18. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis.

    PubMed

    Kim, Mi Jung; Baek, Kon; Park, Chung-Mo

    2009-08-01

    Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The beta-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85-90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.

  19. Beta-glucuronidase and hexosaminidase are marker enzymes for different compartments of the endo-lysosomal system in mussel digestive cells.

    PubMed

    Izagirre, U; Angulo, E; Wade, S C; ap Gwynn, I; Marigómez, I

    2009-02-01

    In environmental toxicology, the most commonly used techniques used to visualise lysosomes in order to determine their responses to pollutants (LSC test: lysosomal structural changes test; LMS test: lysosomal membrane stability test) are based on the histochemical application of lysosomal marker enzymes. In mussel digestive cells, the marker enzymes used are beta-glucuronidase (beta-Gus) and hexosaminidase (Hex). The present work has been aimed at determining the distribution of these lysosomal marker enzymes in the various compartments of the endo-lysosomal system (ELS) of mussel digestive cells and at exploring whether intercellular transfer of lysosomal enzymes occurs between digestive and basophilic cells. Immunogold cytochemistry has allowed us to conclude that beta-Gus is present in every compartment of the digestive cell ELS, whereas Hex is not so widely distributed. Moreover, Hex is intimately linked to the lysosomal membrane, whereas beta-Gus appears to be not necessarily membrane-bound. Therefore, two populations of heterolysosomes with different enzyme load and membrane stability have been distinguished in the digestive cell. In addition, heterolysosomes of different electron density have been commonly observed merging together by contact; we suggest that some might act as storage granules for lysosomal enzymes. On the other hand, beta-Gus seems to be released to the digestive alveolar lumen in secretory lysosomes produced by basophilic cells and endocytosed by digestive cells. Regarding the implications of the present study on the interpretation of lysosomal biomarkers, we conclude that beta-Gus, but not Hex, histochemistry provides an appropriate marker for the LSC test and that, although both lysosomal marker enzymes can be employed in the LMS test, different values would be obtained depending on the marker enzyme employed.

  20. Characterization of a recombinant α-glucuronidase from Aspergillus fumigatus.

    PubMed

    Rosa, Lorena; Ravanal, María Cristina; Mardones, Wladimir; Eyzaguirre, Jaime

    2013-05-01

    The degradation of xylan requires the action of glycanases and esterases which hydrolyse, in a synergistic fashion, the main chain and the different substituents which decorate its structure. Among the xylanolytic enzymes acting on side-chains are the α-glucuronidases (AguA) (E.C. 3.2.1.139) which release methyl glucuronic acid residues. These are the least studies among the xylanolytic enzymes. In this work, the gene and cDNA of an α-glucuronidase from a newly isolated strain of Aspergillus fumigatus have been sequenced, and the gene has been expressed in Pichia pastoris. The gene is 2523 bp long, has no introns and codes for a protein of 840 amino acid residues including a putative signal peptide of 19 residues. The mature protein has a calculated molecular weight of 91,725 and shows 99 % identity with a putative α-glucuronidase from A. fumigatus A1163. The recombinant enzyme was expressed with a histidine tag and was purified to near homogeneity with a nickel nitriloacetic acid (Ni-NTA) column. The purified enzyme has a molecular weight near 100,000. It is inactive using birchwood glucuronoxylan as substrate. Activity is observed in the presence of xylooligosaccharides generated from this substrate by a family 10 endoxylanase and when a mixture of aldouronic acids are used as substrates. If, instead, family 11 endoxylanase is used to generate oligosaccharides, no activity is detected, indicating a different specificity in the cleavage of xylan by family 10 and 11 endoxylanases. Enzyme activity is optimal at 37 °C and pH 4.5-5. The enzyme binds cellulose, thus it likely possesses a carbohydrate binding module. Based on its properties and sequence similarities the catalytic module of the newly described α-glucuronidase can be classified in family 67 of the glycosyl hydrolases. The recombinant enzyme may be useful for biotechnological applications of α-glucuronidases. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. [Cloning and bioinformatic analysis and expression analysis of beta-glucuronidase in Scutellaria baicalensis].

    PubMed

    Guo, Shuang-shuang; Cheng, Lin; Yang, Li-min; Han, Mei

    2015-11-01

    The β-Glucuronidase gene (sbGUS) cDNA firstly from Scutellari abaicalensis leaf was cloned by RT-PCR, with GenBank accession number KR364726. The full length cDNA of sbGUS was 1 584 bp with an open reading frame (ORF), encoding an unstable protein with 527 amino acids. The bioinformatic analysis showed that the sbGUS encoding protein had isoelectric point (pI) of 5.55 and a calculated molecular weight about 58.724 8 kDa, with a transmembrane regions and signal peptide, had conserved domains of glycoside hydrolase super family and unintegrated trans-glycosidase catalytic structure. In the secondary structure, the percentage of alpha helix, extended strand, β-extended and random coil were 25.62%, 28.84%, 13.28% and 32.26%, respectively. The homologous analysis indicated the nucleotide sequence 98.93% similarity and the amino acid sequence 98.29% similarity with S. baicalensis (BAA97804.1), in the nine positions were different. The expression level of sGUS was the highest in root based on a real-time PCR analysis, followed by flower and stem, and the lowest was in stem. The results provide a foundation for exploring the molecular function of sbGUS involved in baicalcin biosynthesis based on synthetic biology approach in S. baicalensis plants.

  2. Identification of a Nicotiana plumbaginifolia plasma membrane H(+)-ATPase gene expressed in the pollen tube.

    PubMed

    Lefebvre, Benoit; Arango, Miguel; Oufattole, Mohammed; Crouzet, Jérôme; Purnelle, Bénédicte; Boutry, Marc

    2005-08-01

    In Nicotiana plumbaginifolia, plasma membrane H(+)-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the beta-glucuronidase (gusA) reporter gene. pNpPMA5-gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H(+)-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H(+)-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H(+)-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H(+)-ATPase regulatory domain and raises the question whether this isoform is still regulated.

  3. Networking Senescence-Regulating Pathways by Using Arabidopsis Enhancer Trap Lines1

    PubMed Central

    He, Yuehui; Tang, Weining; Swain, Johnnie D.; Green, Anthony L.; Jack, Thomas P.; Gan, Susheng

    2001-01-01

    The last phase of leaf development, generally referred to as leaf senescence, is an integral part of plant development that involves massive programmed cell death. Due to a sharp decline of photosynthetic capacity in a leaf, senescence limits crop yield and forest plant biomass production. However, the biochemical components and regulatory mechanisms underlying leaf senescence are poorly characterized. Although several approaches such as differential cDNA screening, differential display, and cDNA subtraction have been employed to isolate senescence-associated genes (SAGs), only a limited number of SAGs have been identified, and information regarding the regulation of these genes is fragmentary. Here we report on the utilization of enhancer trap approach toward the identification and analysis of SAGs. We have developed a sensitive large-scale screening method and have screened 1,300 Arabidopsis enhancer trap lines and have identified 147 lines in which the reporter gene GUS (β-glucuronidase) is expressed in senescing leaves but not in non-senescing ones. We have systematically analyzed the regulation of β-glucuronidase expression in 125 lines (genetically, each contains single T-DNA insertion) by six senescence-promoting factors, namely abscisic acid, ethylene, jasmonic acid, brassinosteroid, darkness, and dehydration. This analysis not only reveals the complexity of the regulatory circuitry but also allows us to postulate the existence of a network of senescence-promoting pathways. We have also cloned three SAGs from randomly selected enhancer trap lines, demonstrating that reporter expression pattern reflects the expression pattern of the endogenous gene. PMID:11402199

  4. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription.

    PubMed

    Ellerström, M; Stålberg, K; Ezcurra, I; Rask, L

    1996-12-01

    The promoter region (-309 to +44) of the Brassica napus storage protein gene napA was studied in transgenic tobacco by successive 5' as well as internal deletions fused to the reporter gene GUS (beta-glucuronidase). The expression in the two main tissues of the seed, the endosperm and the embryo, was shown to be differentially regulated. This tissue-specific regulation within the seed was found to affect the developmental expression during seed development. The region between -309 to -152, which has a large effect on quantitative expression, was shown to harbour four elements regulating embryo and one regulating endosperm expression. This region also displayed enhancer activity. Deletion of eight bp from position -152 to position -144 totally abolished the activity of the napA promoter. This deletion disrupted a cis element with similarity to an ABA-responsive element (ABRE) overlapping with an E-box, demonstrating its crucial importance for quantitative expression. An internal deletion of the region -133 to -120, resulted in increased activity in both leaves and endosperm and a decreased activity in the embryo. Within this region, a cis element similar to the (CA)n element, found in other storage protein promoters, was identified. This suggest that the (CA)n element is important for conferring seed specificity by serving both as an activator and a repressor element.

  5. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB.

    PubMed

    Aya, Koichiro; Ueguchi-Tanaka, Miyako; Kondo, Maki; Hamada, Kazuki; Yano, Kentaro; Nishimura, Mikio; Matsuoka, Makoto

    2009-05-01

    Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and beta-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-beta-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation.

  6. Cloning and characterization of alpha-glucuronidase enzymes from mixed cultures

    USDA-ARS?s Scientific Manuscript database

    Hemicellulose is second to cellulose as the most common carbohydrate source on the planet. Efficient utilization of this resource is essential to the economic viability of biomass refineries. Xylan, a primary component of hemicellulose, is a polymer of beta-1,4-linked xylose sugars. This polymer ...

  7. Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp.

    PubMed Central

    Montgomery, J; Pollard, V; Deikman, J; Fischer, R L

    1993-01-01

    The tomato fruit consists of a thick, fleshy pericarp composed predominantly of highly vacuolated parenchymatous cells, which surrounds the seeds. During ripening, the activation of gene expression results in dramatic biochemical and physiological changes in the pericarp. The polygalacturonase (PG) gene, unlike many fruit ripening-induced genes, is not activated by the increase in ethylene hormone concentration associated with the onset of ripening. To investigate ethylene concentration-independent gene transcription in ripe tomato fruit, we analyzed the expression of chimeric PG promoter-beta-glucuronidase (GUS) reporter gene fusions in transgenic tomato plants. We determined that a 1.4-kb PG promoter directs ripening-regulated transcription in outer pericarp but not in inner pericarp cells, with a sharp boundary of PG promoter activity located midway through the pericarp. Promoter deletion analysis indicated that a minimum of three promoter regions influence the spatial regulation of PG transcription. A positive regulatory region from -231 to -134 promotes gene transcription in the outer pericarp of ripe fruit. A second positive regulatory region from -806 to -443 extends gene activity to the inner pericarp. However, a negative regulatory region from -1411 to -1150 inhibits gene transcription in the inner pericarp. DNase I footprint analysis showed that nuclear proteins in unripe and ripe fruit interact with DNA sequences within each of these three regulatory regions. Thus, temporal and spatial control of PG transcription is mediated by the interaction of negative and positive regulatory promoter elements, resulting in gene activity in the outer pericarp but not the inner pericarp of ripe tomato fruit. The expression pattern of PG suggests that, although they are morphologically similar, there is a fundamental difference between the parenchymatous cells within the inner and outer pericarp. PMID:8400876

  8. Application of metabonomic strategy to discover an unreported active ingredient in LiuWeiDiHuang pills suppressing beta-glucuronidase.

    PubMed

    Xie, Baogang; Zhang, Zhirong; Gong, Tao; Zhang, Ningning; Wang, Huiyun; Zou, Huiqing

    2015-01-01

    Identification of the bioactive ingredient from traditional Chinese medicine (TCM) remains a challenging task by traditional approach that focuses on chemical isolation coupled with biological activity screening. Here, we present a metabonomics-based approach for bioactive ingredient discovery in LiuWeiDiHuang pills (LWPs). First, a non-targeted high-performance liquid chromatography ultraviolet (HPLC-UV) profiling of rat urine was used to discriminate urinary profiling intervened by LWPs. Orthogonal partial least-squares discriminant analysis (OPLS-DA) revealed that eight chromatographic peaks made a significant contribution to the classification of the LWPs group and the control group. Five of these chromatographic peaks were successfully isolated and identified as hippurate, genistein (GT), daidzein (DZ), and glucuronide conjugate of GT and that of DZ by mass spectroscopy (MS). Subsequently, we found that LWPs significantly decreased the activity of intestinal β-glucuronidase by 18 % and exerted a dose-dependent inhibitory effect on rat liver lysosomal fraction, suggesting that LWPs were a β-glucuronidase inhibitor. In the end, by inhibiting β-glucuronidase-guided isolation, D-glucaro-1,4-lactone, a previously unreported ingredient of LWPs, was identified by MS, MS/MS, and nuclear magnetic resonance spectroscopy. Our findings indicated that metabonomics might increase research productivity toward the drug targets and/or bioactive compounds from TCM.

  9. β-Glucuronidase is a suitable internal control gene for mRNA quantitation in pathophysiological and non-pathological livers.

    PubMed

    Yamaguchi, Hiromi; Matsumoto, Sawako; Ishibashi, Mariko; Hasegawa, Kiyoshi; Sugitani, Masahiko; Takayama, Tadatoshi; Esumi, Mariko

    2013-10-01

    The level of expression of housekeeping genes is in general considered stable, and a representative gene such as glyceraldehyde-3-phosphate dehydrogenase is commonly used as an internal control for quantitating mRNA. However, expression of housekeeping genes is not always constant under pathological conditions. To determine which genes would be most suitable as internal controls for quantitative gene expression studies in human liver diseases, we quantified 12 representative housekeeping genes in 27 non-cancerous liver tissues (normal, chronic hepatitis C with and without liver cirrhosis). We identified β-glucuronidase as the most suitable gene for studies on liver by rigorous statistical analysis of inter- and intra-group comparisons. We conclude that it is important to determine the most appropriate control gene for the particular condition to be analyzed. © 2013 Elsevier Inc. All rights reserved.

  10. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  11. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants.

    PubMed

    Hong, Jeum Kyu; Hwang, Byung Kook

    2009-01-01

    The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.

  12. EFFICACY OF B-GLUCURONIDASE ASSAY FOR IDENTIFICATION OF ESCHERICHIA COLI BY THE DEFINED SUBSTRATE TECHNOLOGY

    EPA Science Inventory

    In 1976, Kilian and Bulow described the association of B-glucuronidase with the genus Escherichia (97% positive) and suggested that a B-glucuronidase assay would be a useful identification test. ince that report, papers about the sensitivity and specificity of this enzyme for the...

  13. EFFICACY OF B-GLUCURONIDASE ASSAY FOR IDENTIFICATION OF ESCHERICHIA COLI BY THE DEFINED-SUBSTRATE TECHNOLOGY

    EPA Science Inventory

    In 1976, Kilian and Bulow described the association of B-Glucuronidase with the genus Escherichia (97% positive) and suggested that a B-Glucuronidase assay would be a useful identification test. ince that report, papers about the sensitivity and specificity of this enzyme for the...

  14. Radiographic evaluation of bones and joints in mucopolysaccharidosis I and VII dogs after neonatal gene therapy.

    PubMed

    Herati, Ramin Sedaghat; Knox, Van W; O'Donnell, Patricia; D'Angelo, Marina; Haskins, Mark E; Ponder, Katherine P

    2008-11-01

    Mucopolysaccharidosis I (MPS I) and MPS VII are due to deficient activity of the glycosaminoglycan-degrading lysosomal enzymes alpha-L-iduronidase and beta-glucuronidase, respectively, and result in abnormal bones and joints. Here, the severity of skeletal disease in MPS I and MPS VII dogs and the effects of neonatal gene therapy were evaluated. For untreated MPS VII dogs, the lengths of the second cervical vertebrae (C2) and the femur were only 56% and 84% of normal, respectively, and bone dysplasia and articular erosions, and joint subluxation were severe. Previously, we reported that neonatal intravenous injection of a retroviral vector (RV) with the appropriate gene resulted in expression in liver and blood cells, and high serum enzyme activity. In this study, we demonstrate that C2 and femurs of RV-treated MPS VII dogs were longer at 82% and 101% of normal, respectively, and there were partial improvements of qualitative abnormalities. For untreated MPS I dogs, the lengths of C2 and femurs (91% and 96% of normal, respectively) were not significantly different from normal dogs. Qualitative changes in MPS I bones and joints were generally modest and were partially improved with RV treatment, although cervical spine disease was severe and was difficult to correct with gene therapy in both models. The greater severity of skeletal disease in MPS VII than in MPS I dogs may reflect accumulation of chondroitin sulfate in cartilage in MPS VII, or could relate to the specific mutations. Neonatal RV-mediated gene therapy ameliorates, but does not prevent, skeletal disease in MPS I and MPS VII dogs.

  15. Apple (Malus x domestica).

    PubMed

    Dandekar, Abhaya M; Teo, Gianni; Uratsu, Sandra L; Tricoli, David

    2006-01-01

    Apple (Malus x domestica) is one of the most consumed fruit crops in the world. The major production areas are the temperate regions, however, because of its excellent storage capacity it is transported to distant markets covering the four corners of the earth. Transformation is a key to sustaining this demand - permitting the potential enhancement of existing cultivars as well as to investigate the development of new cultivars resistant to pest, disease, and storage problems that occur in the major production areas. In this paper we describe an efficient Agrobacterium tumefaciens-mediated transformation protocol that utilizes leaf tissues from in vitro grown plants. Shoot regeneration is selected with kanamycin using the selectable kanamycin phosphotransferase (APH(3)II) gene and the resulting transformants confirmed using the scorable uidA gene encoding the bacterial beta-glucuronidase (GUS) enzyme via histochemical staining. Transformed shoots are propagated, rooted to create transgenic plants that are then introduced into soil, acclimatized and transferred to the greenhouse from where they are taken out into the orchard for field-testing.

  16. Housekeeping gene expression during fetal brain development in the rat-validation by semi-quantitative RT-PCR.

    PubMed

    Al-Bader, Maie Dawoud; Al-Sarraf, Hameed Ali

    2005-04-21

    Mammalian gene expression is usually carried out at the level of mRNA where the amount of mRNA of interest is measured under different conditions such as growth and development. It is therefore important to use a "housekeeping gene", that does not change in relative abundance during the experimental conditions, as a standard or internal control. However, recent data suggest that expression of some housekeeping genes may vary with the extent of cell proliferation, differentiation and under various experimental conditions. In this study, the expression of various housekeeping genes (18S rRNA [18S], glyceraldehydes-3-phosphate dehydrogenase [G3PDH], beta-glucuronidase [BGLU], histone H4 [HH4], ribosomal protein L19 [RPL19] and cyclophilin [CY]) was investigated during fetal rat brain development using semi-quantitative RT-PCR at 16, 19 and 21 days gestation. It was found that all genes studied, with exception to G3PDH, did not show any change in their expression levels during development. G3PDH, on the other hand, showed increased expression with development. These results suggest that the choice of a housekeeping gene is critical to the interpretation of experimental results and should be modified according to the nature of the study.

  17. Dietary and demographic correlates of serum ß-glucuronidase activity

    PubMed Central

    Maruti, Sonia S.; Li, Lin; Chang, Jyh-Lurn; Prunty, JoAnn; Schwarz, Yvonne; Li, Shuying S.; King, Irena B.; Potter, John D.; Lampe, Johanna W.

    2010-01-01

    Background β-glucuronidase, an acid hydrolase that deconjugates glucuronides, may increase cancer risk; however, little is known about factors associated with human β-glucuronidase. Objective To examine whether dietary and demographic factors were associated with serum β-glucuronidase activity. Design We conducted a cross-sectional study among 279 healthy men and women, aged 20-40 years. Diet, categorized by botanical families and nutrient intakes, was assessed from 3-day food records and a validated semiquantitative food frequency questionnaire. Demographic factors were directly measured or self-reported. Adjusted mean β-glucuronidase activity across categories of exposure variables were calculated by multiple linear regression. Results Higher β-glucuronidase activity was significantly associated with being male, older age (≥30 years), non-Caucasian, overweight (≥ 25 kg/m2), and higher intakes of gamma-tocopherol. Conversely, lower β-glucuronidase activity was significantly associated with higher intakes of calcium, iron, and magnesium. A suggestive decrease in β-glucuronidase activity was observed for the botanical families, Cruciferae, Rutaceae, Compositae, Roseaceae, and Umbelliferae, but tests for trend were not statistically significant. Conclusions Several dietary and nondietary factors were associated with β-glucuronidase activity, however confirmation of these associations are needed. PMID:20099195

  18. Purification and characterization of the {alpha}-glucuronidase from Thermoanaerobacterium sp. strain JW/SL-YS485, an important enzyme for the utilization of substituted xylans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, W.; Obi, S.K.C.; Wiegel, J.

    1995-03-01

    A cell-associated {alpha}-glucuronidase was purified to gel electrophoretic homogeneity from the thermophilic anaerobic bacterium Thermoanaerobacterium sp. strain JW/SL-YS485. This enzyme had a pI of 4.65, a molecular weight of 130,000, and two subunits; the molecular weight of each subunit was 74,000. The enzyme exhibited the highest level of activity at pH 5.4 and 60{degrees}C, as determined by a 5-min assay. The K{sub m} and k{sub cat} values of the enzyme for 4-methylglucuronosyl xylobiose were 0.76 mM and 1,083 IU/{mu}mol, respectively. The Arrhenius energy was 26.4 kJ/mol. The specific activities of the enzyme with 4-0-methylglucuronosyl xylobiose, 4-0-methylglucuronosyl xylotriose, and 4-0-methylglucuronosyl xylotetraosemore » were 8.4, 4.8, and 3.9 IU/mg, respectively. The purified {alpha}-glucuronidase and a {beta}-xylosidase purified from the same organism interacted synergistically to hydrolyze 4-methylglucuronosyl xylotetraose.« less

  19. The GH67 α-glucuronidase of Paenibacillus curdlanolyticus B-6 removes hexenuronic acid groups and facilitates biodegradation of the model xylooligosaccharide hexenuronosyl xylotriose.

    PubMed

    Septiningrum, Krisna; Ohi, Hiroshi; Waeonukul, Rattiya; Pason, Patthra; Tachaapaikoon, Chakrit; Ratanakhanokchai, Khanok; Sermsathanaswadi, Junjarus; Deng, Lan; Prawitwong, Panida; Kosugi, Akihiko

    2015-04-01

    4-O-Methylglucuronic acid (MeGlcA) side groups attached to the xylan backbone through α-1,2 linkages are converted to hexenuronic acid (HexA) during alkaline pulping. α-Glucuronidase (EC 3.2.1.139) hydrolyzes 1,2-linked MeGlcA from xylooligosaccharides. To determine whether α-glucuronidase can also hydrolyze HexA-decorated xylooligosaccharides, a gene encoding α-glucuronidase (AguA) was cloned from Paenibacillus curdlanolyticus B-6. The purified protein degraded hexenuronosyl xylotriose (ΔX3), a model substrate prepared from kraft pulp. AguA released xylotriose and HexA from ΔX3, but the Vmax and kcat values for ΔX3 were lower than those for MeGlcA, indicating that HexA side groups may affect the hydrolytic activity. To explore the potential for biological bleaching, ΔX3 degradation was performed using intracellular extract from P. curdlanolyticus B-6. The intracellular extract, with synergistic α-glucuronidase and β-xylosidase activities, degraded ΔX3 to xylose and HexA. These results indicate that α-glucuronidase can be used to remove HexA from ΔX3 derived from pulp, reducing the need for chemical treatments in the pulping process. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes inmore » the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.« less

  2. Oral toxicity of beta-N-acetyl hexosaminidase to insects.

    PubMed

    Dowd, Patrick F; Johnson, Eric T; Pinkerton, T Scott

    2007-05-02

    Insect chitin is a potential target for resistance plant proteins, but plant-derived chitin-degrading enzymes active against insects are virtually unknown. Commercial beta-N-acetylhexosaminidase (NAHA), a chitin-degrading enzyme from jack bean Canavalia ensiformis, caused significant mortality of fall armyworm Spodoptera frugiperda larvae at 75 microg/gm, but no significant mortality was noted with Aspergillus niger NAHA. Maize Zea mays callus transformed to express an Arabidopsis thaliana clone that putatively codes for NAHA caused significantly higher mortality of cigarette beetle Lasioderma serricorne larvae and significantly reduced growth rates (as reflected by survivor weights) of S. frugiperda as compared to callus that expressed control cDNAs. Tassels from model line Hi-II maize (Z. mays) plants transformed with the NAHA gene fed to S. frugiperda caused significantly higher mortality than tassels transformed to express glucuronidase; mortality was significantly correlated with NAHA expression levels detected histochemically. Leaf disks from inbred Oh43 maize plants transformed with the NAHA gene on average had significantly less feeding by caterpillars than null transformants. Leaf disks of Oh43 transformants caused significant mortality of both S. frugiperda and corn earworm Helicoverpa zea larvae, which was associated with higher expression levels of NAHA detected by isoelectric focusing, histochemically, or with antibody. Overall, these results suggest that plant NAHA has a role in insect resistance. Introduction of NAHA genes or enhancement of activity through breeding or genetic engineering has the potential to significantly reduce insect damage and thereby indirectly reduce mycotoxins that are harmful to animals and people.

  3. Transferring cucumber mosaic virus-white leaf strain coat protein gene into Cucumis melo L. and evaluating transgenic plants for protection against infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, C.; Xue, B.; Yepes, M.

    1994-03-01

    A single regeneration procedure using cotyledon examples effectively regenerated five commercially grown muskmelon cultivars. This regeneration scheme was used to facilitate gene transfers using either Agrobacterium tumefaciens or microprojectile bombardment methods. In both cases, the transferred genes were from the T-DNA region of the binary vector plasmid pGA482GG/cp cucumber mosaic virus-white leaf strain (CMV-WL), which contains genes that encode neomycin phosphotransferase II (NPT II), [beta]-glucuronidase (GUS), and the CMV-WL coat protein (CP). Explants treated with pGA482GG/cpCMV-WL regenerated shoots on Murashige and Skoog medium containing 4.4 [mu]m 6-benzylaminopurine (BA), kanamycin (Km) at 150 mg[center dot]liter[sup [minus]1] and carbenicillin (Cb) at 500more » mg[center dot]liter[sup [minus]1]. The authors' comparison of A. tumefaciens- and microprojectile-mediated gene transfer procedures shows that both methods effectively produce nearly the same percentage of transgenic plants. R[sub 0] plants were first tested for GUS or NPT II expression, then the polymerase chain reaction (PCR) and other tests were used to verify the transfer of the NPT II, GUS, and CMV-WL CP genes.« less

  4. Specimen block counter-staining for localization of GUS expression in transgenic arabidopsis and tobacco

    NASA Technical Reports Server (NTRS)

    Kim, M. K.; Choi, J-W; Jeon, J-H; Franceschi, V. R.; Davin, L. B.; Lewis, N. G.

    2002-01-01

    A simple counter-staining procedure has been developed for comparative beta-glucuronidase (GUS) expression and anatomical localization in transgenic herbaceous arabidopsis and tobacco. This protocol provides good anatomical visualization for monitoring chimeric gene expression at both the organ and tissue levels. It can be used with different histochemical stains and can be extended to the study of woody species. The specimens are paraffin-embedded, the block is trimmed to reveal internal structure, safranin-O staining solution is briefly applied to the surface of the block, then washed off and, after drying, a drop of immersion oil is placed on the stained surface for subsequent photographic work. This gives tissue counter-staining with good structural preservation without loss of GUS staining product; moreover, sample observation is rapid and efficient compared to existing procedures.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of themore » bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.« less

  6. Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies

    PubMed Central

    2011-01-01

    Background Oncolytic viral tumor therapy is an emerging field in the fight against cancer with rising numbers of clinical trials and the first clinically approved product (Adenovirus for the treatment of Head and Neck Cancer in China) in this field. Yet, until recently no general (bio)marker or reporter gene was described that could be used to evaluate successful tumor colonization and/or transgene expression in other biological therapies. Methods Here, a bacterial glucuronidase (GusA) encoded by biological therapeutics (e.g. oncolytic viruses) was used as reporter system. Results Using fluorogenic probes that were specifically activated by glucuronidase we could show 1) preferential activation in tumors, 2) renal excretion of the activated fluorescent compounds and 3) reproducible detection of GusA in the serum of oncolytic vaccinia virus treated, tumor bearing mice in several tumor models. Time course studies revealed that reliable differentiation between tumor bearing and healthy mice can be done as early as 9 days post injection of the virus. Regarding the sensitivity of the newly developed assay system, we could show that a single infected tumor cell could be reliably detected in this assay. Conclusion GusA therefore has the potential to be used as a general marker in the preclinical and clinical evaluation of (novel) biological therapies as well as being useful for the detection of rare cells such as circulating tumor cells. PMID:21989091

  7. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    PubMed

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  8. Inhibition of cellular fatty acid synthase impairs replication of budded virions of Autographa californica multiple nucleopolyhedrovirus in Spodoptera frugiperda cells.

    PubMed

    Li, Jingfeng; Sun, Yu; Li, Yuying; Liu, Ximeng; Yue, Qi; Li, Zhaofei

    2018-05-07

    Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The activity of hydrolases of larval stages of Anisakis simplex (Nematoda).

    PubMed

    Lopieńska-Biernat, Elzbieta; Zółtowska, Krystyna; Rokicki, Jerzy

    2004-01-01

    Activity of hydrolases during the third and fourth larval stage of Anisakis simplex was identified by applying the API ZYM test method. In A. simplex larvae the activity of phosphatases was high, particularly that of acid phosphatase (40 nmol/mg(-1)). Among esterases lack of activity of lipase (C14) is worth noticing while the activity of esterases (C4) and (C8) was high. The activity of those later two enzymes was higher in L3 larvae than in L4 larvae. The highest activity in the subclass of glucosidases was recorded for beta-fucosidase and N-acetyl-beta-glucosaminidase. A higher activity in L3 larvae than in L4 larvae was recorded for: beta-glucuronidase and N-acetyl-beta-glucosaminidase (2-fold) and beta-fucosidase (3-fold). Differently the activity of beta-galactosidase and beta-glucosidase was higher in L4 larvae than in L3 larvae. The tests did not show activity of alpha-galactosidase, beta-glucosidase and alpha-mannosidase on both larval forms.

  10. The effects of chronic oral methyl mercury exposure on the lysosome system of rat kidney. Morphometric and biochemical studies.

    PubMed

    Fowler, B A; Brown, H W; Lucier, G W; Krigman, M R

    1975-03-01

    This report describes morphometric and biochemical changes in the renal lysosome system of rats exposed to 3, 5, or 10 p.p.m. concentrations of methyl mercury hydroxide in their drinking water for 4 weeks. Increased numbers of dense, granular lysosomes, previously found to contain mercury, were observed in tubule cells of rats receiving the 3 and 5 p.p.m. dose levels but not those of the 10 p.p.m. group. Tubule cells from animals given the 10 p.p;m. dose level displayed proteinaceous vacuoles with dense crystalloid structures, apical cytoplasmic extrusion, and cellular degeneration; Mitochondrial swelling within tubule cells of treated animals showed a marked dose-response relationship. Renal microsomal activity levels of ss-glucuronidase were strongly inhibited by methyl mercury hydroxide exposure at all dose levels, whereas the activity levels of acid phosphatase were unchanged. Lysosomal beta-glucuronidase was also inhibited by methyl mercury hydroxide exposure, whereas lysosomal acid phosphatase showed approximately a 2-fold increase in activity. The results are discussed in relation to the role of lysosomes in mediating the nephrotoxic effects of methyl mercury and other toxic trace metals.

  11. A fully human anti-Ep-CAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug

    PubMed Central

    de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M

    2002-01-01

    Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. British Journal of Cancer (2002) 86, 811–818. DOI: 10.1038/sj/bjc/6600143 www.bjcancer.com © 2002 Cancer Research UK PMID:11875747

  12. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hong, E-mail: Zhai.h@hotmail.com; Bai, Xi, E-mail: baixi@neau.edu.cn; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn

    2010-04-16

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not alteredmore » in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.« less

  13. A sensitive synthetic reporter for visualizing cytokinin signaling output in rice.

    PubMed

    Tao, Jinyuan; Sun, Huwei; Gu, Pengyuan; Liang, Zhihao; Chen, Xinni; Lou, Jiajing; Xu, Guohua; Zhang, Yali

    2017-01-01

    Cytokinins play many essential roles in plant growth and development, mainly through signal transduction pathways. Although the cytokinin signaling pathway in rice has been clarified, no synthetic reporter for cytokinin signaling output has been reported for rice. The sensitive synthetic reporter two-component signaling sensor ( TCSn ) is used in the model plant Arabidopsis; however, whether the reporter reflects the cytokinin signaling output pattern in rice remains unclear. Early-cytokinin-responsive type-A OsRR-binding element (A/G)GAT(C/T) was more clustered in the 15 type-A OsRRs than in the 13 control genes. Quantitative polymerase chain reaction analysis showed that the relative expression of seven type-A OsRRs in roots and shoots was significantly induced by exogenous cytokinin application, and that of seven OsRRs , mainly in roots, was inhibited by exogenous auxin application. We constructed a transgenic rice plant harboring a beta-glucuronidase (GUS) driven by the synthetic promoter TCSn . TCSn::GUS was expressed in the meristem of germinated rice seed and rice seedlings. Furthermore, TCSn::GUS expression in rice seedlings was induced specifically by exogenous cytokinin application and decreased by exogenous auxin application. Moreover, no obvious reduction in GUS levels was observed after three generations of selfing of transgenic plants, indicating that TCSn::GUS is not subject to transgene silencing. We report here a robust and sensitive synthetic sensor for monitoring the transcriptional output of the cytokinin signaling network in rice.

  14. Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane.

    PubMed

    Joyce, Priya; Kuwahata, Melissa; Turner, Nicole; Lakshmanan, Prakash

    2010-02-01

    A reproducible method for transformation of sugarcane using various strains of Agrobacterium tumefaciens (A. tumefaciens) (AGL0, AGL1, EHA105 and LBA4404) has been developed. The selection system and co-cultivation medium were the most important factors determining the success of transformation and transgenic plant regeneration. Plant regeneration at a frequency of 0.8-4.8% occurred only when callus was transformed with A. tumefaciens carrying a newly constructed superbinary plasmid containing neomycin phosphotransferase (nptII) and beta-glucuronidase (gusA) genes, both driven by the maize ubiquitin (ubi-1) promoter. Regeneration was successful in plants carrying the nptII gene but not the hygromycin phosphotransferase (hph) gene. NptII gene selection was imposed at a concentration of 150 mg/l paromomycin sulphate and applied either immediately or 4 days after the co-cultivation period. Co-cultivation on Murashige and Skoog (MS)-based medium for a period of 4 days produced the highest number of transgenic plants. Over 200 independent transgenic lines were created using this protocol. Regenerated plants appeared phenotypically normal and contained both gusA and nptII genes. Southern blot analysis revealed 1-3 transgene insertion events that were randomly integrated in the majority of the plants produced.

  15. High Resolution Crystal Structure of Human β-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    PubMed Central

    Hassan, Md. Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H.; Klei, Herbert E.; Korolev, Sergey; Sly, William S.

    2013-01-01

    Human β-glucuronidase (GUS) cleaves β-D-glucuronic acid residues from the non-reducing termini of glycosaminoglycan and its deficiency leads to mucopolysaccharidosis type VII (MPSVII). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases. The structure revealed several new details including a new glycan chain at Asn272, in addition to that previously observed at Asn173, and coordination of the glycan chain at Asn173 with Lys197 of the lysosomal targeting motif which is essential for phosphotransferase recognition. Analysis of the high resolution structure not only provided new insights into the structural basis for lysosomal targeting but showed significant differences between human GUS, which is medically important in its own right, and E. coli GUS, which can be selectively inhibited in the human gut to prevent prodrug activation and is also widely used as a reporter gene by plant biologists. Despite these differences, both human and E. coli GUS share a high structure homology in all three domains with most of the glycosyl hydrolases, suggesting that they all evolved from a common ancestral gene. PMID:24260279

  16. Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots.

    PubMed

    Sriskandarajah, Sridevy; Frello, Stefan; Jørgensen, Kirsten; Serek, Margrethe

    2004-08-01

    An efficient transformation system for Campanula carpatica was developed using Agrobacterium tumefaciens strains LBA4404 (harbouring the plasmid pBI121), and AGL0 (harbouring the plasmid pBEO210). This is the first report on the transformation of C. carpatica. Various factors affecting the transformation efficiency and subsequent regeneration were identified. The age of seedlings from which the explants for transformation studies were taken, and the growth conditions under which the seedlings were grown had a significant influence on the production of transformed shoots. Hypocotyls taken from 12-day-old seedlings grown in the dark were the most productive, with up to 25% of hypocotyls producing transformed shoots. Explants taken from 5-week-old seedlings produced only transformed callus. The medium used for co-cultivation and incubation also had a significant influence on transformation frequency and shoot regeneration. The cultivar "Blue Uniform" was more responsive than "White Uniform". Both bacterial strains and plasmids were equally effective in producing transformed tissue. Transformed shoots were selected on kanamycin medium, and the presence of the uidA and nptII genes in those selected shoots was confirmed by beta-glucuronidase and ELISA analyses, respectively.

  17. Pseudothionin-St1, a potato peptide active against potato pathogens.

    PubMed

    Moreno, M; Segura, A; García-Olmedo, F

    1994-07-01

    A 5-kDa polypeptide, pseudothionin Solanum tuberosum 1 (Pth-St1), which was active against Clavibacter michiganensis subspecies sepedonicus, a bacterial pathogen of potatoes, has been purified from the buffer-insoluble fraction of potato tubers by salt extraction and HPCL. Pth-St1 was also active against other potato pathogens tested (Pseudomonas solanacearum and Fusarium solani). The N-terminal amino acid sequence of this peptide was identical (except for a N/H substitution at position 2) to that deduced from a previously reported cDNA sequence (EMBL accession number X-13180), which had been misclassified as a Browman-Birk protease inhibitor. Pth-St1 did not inhibit either trypsin or insect alpha-amylase activities, and, in contrast with true thionins, did not affect cell-free protein synthesis or beta-glucuronidase activity. Northern-blot and tissue-print analyses showed that steady-state mRNA levels were highest in flowers (especially in petals), followed by tubers (especially in the epidermal cell layers and in leaf primordia), stems and leaves. Infection of leaves with a bacterial pathogen suspended in 10 mM MgCl2 switched off the gene, whereas mock inoculation with 10 mM MgCl2 alone induced higher mRNA levels.

  18. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors.

    PubMed

    Chan, Alfred A; Bashir, Mina; Rivas, Magali N; Duvall, Karen; Sieling, Peter A; Pieber, Thomas R; Vaishampayan, Parag A; Love, Susan M; Lee, Delphine J

    2016-06-21

    The microbiome impacts human health and disease. Until recently, human breast tissue and milk were presumed to be sterile. Here, we investigated the presence of microbes in the nipple aspirate fluid (NAF) and their potential association with breast cancer. We compared the NAF microbiome between women with a history of breast cancer (BC) and healthy control women (HC) using 16S rRNA gene amplicon sequencing. The NAF microbiome from BC and HC showed significant differences in community composition. Two Operational Taxonomic Units (OTUs) showed differences in relative abundances between NAF collected from BC and HC. In NAF collected from BC, there was relatively higher incidence of the genus Alistipes. By contrast, an unclassified genus from the Sphingomonadaceae family was relatively more abundant in NAF from HC. These findings reflect the ductal source DNA since there were no differences between areolar skin samples collected from BC and HC. Furthermore, the microbes associated with BC share an enzymatic activity, Beta-Glucuronidase, which may promote breast cancer. This is the first report of bacterial DNA in human breast ductal fluid and the differences between NAF from HC and BC. Further investigation of the ductal microbiome and its potential role in breast cancer are warranted.

  19. An in vivo and in vitro potential of Indian ayurvedic herbal formulation Triphala on experimental gouty arthritis in mice.

    PubMed

    Sabina, E P; Rasool, M

    2008-01-01

    In the present study, we have investigated the efficacy of Indian ayurvedic herbal formulation Triphala on monosodium urate crystal-induced inflammation in mice; an experimental model for gouty arthritis and compared it with that of the non-steroidal anti-inflammatory drug, Indomethacin. The anti-arthritic effect of Triphala was evaluated by measuring changes in the paw volume, lysosomal enzyme activities, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-alpha in control and monosodium urate crystal-induced mice. The levels of beta-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL). Triphala treatment (1 gm/kg/b.w. orally) significantly inhibited the paw volume and the levels of lysosomal enzymes, lipid peroxidation and inflammatory mediator tumour necrosis factor-alpha; however the anti-oxidant status was found to be increased in plasma, liver and spleen of monosodium urate crystal-induced mice when compared to control mice. In addition, beta-glucuronidase and lactate dehydrogenase level were reduced in Triphala (100 microg/ml) treated monosodium urate crystal-incubated polymorphonuclear leucocytes. In conclusion, the results obtained clearly indicated that Triphala exerted a strong anti-inflammatory effect against gouty arthritis.

  20. A study on the influence of different promoter and 5'UTR (URM) cassettes from Arabidopsis thaliana on the expression level of the reporter gene β glucuronidase in tobacco and cotton.

    PubMed

    Agarwal, Parul; Garg, Varsha; Gautam, Taru; Pillai, Beena; Kanoria, Shaveta; Burma, Pradeep Kumar

    2014-04-01

    Several reports of promoters from plants, viral and artificial origin that confer high constitutive expression are known. Among these the CaMV 35S promoter is used extensively for transgene expression in plants. We identified candidate promoters from Arabidopsis based on their transcript levels (meta-analysis of available microarray control datasets) to test their activity in comparison to the CaMV 35S promoter. A set of 11 candidate genes were identified which showed high transcript levels in the aerial tissue (i.e. leaf, shoot, flower and stem). In the initial part of the study binary vectors were developed wherein the promoter and 5'UTR region of these candidate genes (Upstream Regulatory Module, URM) were cloned upstream to the reporter gene β glucuronidase (gus). The promoter strengths were tested in transformed callus of Nicotiana tabacum and Gossypium hirsutum. On the basis of the results obtained from the callus, the influence of the URM cassettes on transgene expression was tested in transgenic tobacco. The URM regions of the genes encoding a subunit of photosystem I (PHOTO) and geranyl geranyl reductase (GGR) in A. thaliana genome showed significantly high levels of GUS activity in comparison to the CaMV 35S promoter. Further, when the 5'UTRs of both the genes were placed downstream to the CaMV 35S promoter it led to a substantial increase in GUS activity in transgenic tobacco lines and cotton callus. The enhancement observed was even higher to that observed with the viral leader sequences like Ω and AMV, known translational enhancers. Our results indicate that the two URM cassettes or the 5'UTR regions of PHOTO and GGR when placed downstream to the CaMV 35S promoter can be used to drive high levels of transgene expression in dicotyledons.

  1. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.].

    PubMed

    Li, L; Qu, R

    2004-01-01

    Common bermudagrass, Cynodon dactylon, is a widely used warm-season turf and forage species in the temperate and tropical regions of the world. Improvement of bermudagrass via biotechnology depends on improved tissue culture responses, especially in plant regeneration, and a successful scheme to introduce useful transgenes. When the concentration of 6-benzylaminopurine was adjusted in the culture medium, yellowish, compact calluses were observed from young inflorescence tissue culture of var. J1224. Nine long-term, highly regenerable callus lines (including a suspension-cultured line) were subsequently established, of which six were used for biolistic transformation. Five independent transgenic events, with four producing green plants, were obtained following hygromycin B selection from one callus line. Three transgenic events displayed resistance to the herbicide glufosinate, and one of these showed beta-glucuronidase activity since the co-transformation vector used in the experiments contained both the gusA and bar genes.

  2. High-mobility group B1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in canine lymphoma.

    PubMed

    Sterenczak, Katharina A; Joetzke, Alexa E; Willenbrock, Saskia; Eberle, Nina; Lange, Sandra; Junghanss, Christian; Nolte, Ingo; Bullerdiek, Jörn; Simon, Daniela; Murua Escobar, Hugo

    2010-12-01

    Canine lymphoma is a commonly occurring, spontaneously developing neoplasia similar to human non-Hodgkin's lymphoma and, thus, is used as a valuable model for human malignancy. HMGB1 and RAGE are strongly associated with tumour progression and vascularisation. Consequently, deregulated RAGE and HMGB1 may play an important role in the mechanisms involved in lymphoma progression. Expression patterns of HMGB1 and RAGE were analysed in 22 canine lymphoma and three canine non-neoplastic control samples via real time PCR and canine beta-glucuronidase gene (GUSB) as endogenous control. HMGB1 was up-regulated in the neoplastic samples, while RAGE expression remained inconspicuous. This study demonstrated similar mechanisms in lymphoma progression in humans and dogs due to overexpression of HMGB1, which was described in human lymphomas. RAGE remained stable in terms of expression indicating that the extracellular HMGB1-induced effects are regulated by HMGB1 itself.

  3. Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium.

    PubMed

    Chin, Dong Poh; Mishiba, Kei-ichiro; Mii, Masahiro

    2007-06-01

    Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for beta-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L(-1) gellan gum-solidified NDM containing 10 g L(-1) sucrose, 20 mg L(-1) hygromycin and 40 mg L(-1) meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 muM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.

  4. Stable transformation of rice (Oryza sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed.

    PubMed

    Cho, M-J; Yano, H; Okamoto, D; Kim, H-K; Jung, H-R; Newcomb, K; Le, V K; Yoo, H S; Langham, R; Buchanan, B B; Lemaux, P G

    2004-02-01

    A highly efficient and reproducible transformation system for rice ( Oryza sativa L. cv. Taipei 309) was developed using microprojectile bombardment of highly regenerative, green tissues. These tissues were induced from mature seeds on NB-based medium containing 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and high concentrations of cupric sulfate under dim light conditions; germinating shoots and roots were completely removed. Highly regenerative, green tissues were proliferated on the same medium and used as transformation targets. From 431 explants bombarded with transgenes [i.e. a hygromycin phosphotransferase ( hpt) gene plus one of a wheat thioredoxin h ( wtrxh), a barley NADP-thioredoxin reductase ( bntr), a maize Mutator transposable element ( mudrB) or beta-glucuronidase ( uidA; gus) gene], 28 independent transgenic events were obtained after an 8- to 12-week selection period, giving a 6.5% transformation frequency. Of the 28 independent events, 17 (61%) were regenerable. Co-transformation of the second introduced transgene was detected in 81% of the transgenic lines tested. Stable integration and expression of the foreign genes in T(0) plants and T(1) progeny were confirmed by DNA hybridization, western blot analyses and germination tests.

  5. A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum.

    PubMed

    Rud, Ida; Jensen, Peter Ruhdal; Naterstad, Kristine; Axelsson, Lars

    2006-04-01

    A synthetic promoter library (SPL) for Lactobacillus plantarum has been developed, which generalizes the approach for obtaining synthetic promoters. The consensus sequence, derived from rRNA promoters extracted from the L. plantarum WCFS1 genome, was kept constant, and the non-consensus sequences were randomized. Construction of the SPL was performed in a vector (pSIP409) previously developed for high-level, inducible gene expression in L. plantarum and Lactobacillus sakei. A wide range of promoter strengths was obtained with the approach, covering 3-4 logs of expression levels in small increments of activity. The SPL was evaluated for the ability to drive beta-glucuronidase (GusA) and aminopeptidase N (PepN) expression. Protein production from the synthetic promoters was constitutive, and the most potent promoters gave high protein production with levels comparable to those of native rRNA promoters, and production of PepN protein corresponding to approximately 10-15 % of the total cellular protein. High correlation was obtained between the activities of promoters when tested in L. sakei and L. plantarum, which indicates the potential of the SPL for other Lactobacillus species. The SPL enables fine-tuning of stable gene expression for various applications in L. plantarum.

  6. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rice, OsSPS1, shows the importance of sucrose synthesis in pollen germination.

    PubMed

    Hirose, Tatsuro; Hashida, Yoichi; Aoki, Naohiro; Okamura, Masaki; Yonekura, Madoka; Ohto, Chikara; Terao, Tomio; Ohsugi, Ryu

    2014-08-01

    The molecular function of an isoform of sucrose phosphate synthase (SPS) in rice, OsSPS1, was investigated using gene-disruption mutant lines generated by retrotransposon insertion. The progeny of the heterozygote of disrupted OsSPS1 (SPS1(+/-)) segregated into SPS1(+/+), SPS1(+/-), and SPS1(-/-) at a ratio of 1:1:0. This distorted segregation ratio, together with the expression of OsSPS1 in the developing pollen revealed by quantitative RT-PCR analysis and promoter-beta-glucuronidase (GUS) fusion assay, suggested that the disruption of OsSPS1 results in sterile pollen. This hypothesis was reinforced by reciprocal crosses of SPS1(+/-) plants with wild-type plants in which the disrupted OsSPS1 was not paternally transmitted to the progeny. While the pollen grains of SPS(+/-) plants normally accumulated starch during their development, pollen germination on the artificial media was reduced to half of that observed in the wild-type control. Overall, our data suggests that sucrose synthesis via OsSPS1 is essential in pollen germination in rice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Amoxapine Demonstrates Incomplete Inhibition of β-Glucuronidase Activity from Human Gut Microbiota.

    PubMed

    Yang, Wei; Wei, Bin; Yan, Ru

    2018-01-01

    Amoxapine has been demonstrated to be a potent inhibitor of Escherichia coli β-glucuronidase. This study aims to explore the factors causing unsatisfactory efficacy of amoxapine in alleviating CPT-11-induced gastrointestinal toxicity in mice and to predict the outcomes in humans. Amoxapine (100 µM) exhibited poor and varied inhibition on β-glucuronidase activity in gut microbiota from 10 healthy individuals and their pool (pool, 11.9%; individuals, 3.6%-54.4%) with IC 50 >100 µM and potent inhibition toward E. coli β-glucuronidase (IC 50 = 0.34 µM). p-Nitrophenol formation from p-nitrophenyl-β-D-glucuronide by pooled and individual gut microbiota fitted classical Michaelis-Menten kinetics, showing similar affinity (K m = 113-189 µM) but varied catalytic capability (V max = 53-556 nmol/h/mg). Interestingly, amoxapine showed distinct inhibitory effects (8.7%-100%) toward β-glucuronidases of 13 bacterial isolates (including four Enterococcus, three Streptococcus, two Escherichia, and two Staphylococcus strains; gus genes belonging to OTU1, 2 or 21) regardless of their genetic similarity or bacterial origin. In addition, amoxapine inhibited the growth of pooled and individual gut microbiota at a high concentration (6.3%-30.8%, 200 µM). Taken together, these findings partly explain the unsatisfactory efficacy of amoxapine in alleviating CPT-11-induced toxicity and predict a poor outcome of β-glucuronidase inhibition in humans, highlighting the necessity of using a human gut microbiota community for drug screening.

  8. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes.

    PubMed

    Rouws, L F M; Meneses, C H S G; Guedes, H V; Vidal, M S; Baldani, J I; Schwab, S

    2010-09-01

    To evaluate the colonization process of sugarcane plantlets and hydroponically grown rice seedlings by Gluconacetobacter diazotrophicus strain PAL5 marked with the gusA and gfp reporter genes. Sugarcane plantlets inoculated in vitro with PAL5 carrying the gfp::gusA plasmid pHRGFPGUS did not present green fluorescence, but beta-glucuronidase (GUS)-stained bacteria could be observed inside sugarcane roots. To complement this existing inoculation methodology for micropropagated sugarcane with a more rapid colonization assay, we employed hydroponically grown gnotobiotic rice seedlings to study PAL5-plant interaction. PAL5 could be isolated from the root surface (10(8) CFU g(-1)) and from surface-disinfected root and stem tissues (10(4) CFU g(-1)) of inoculated plants, suggesting that PAL5 colonized the internal plant tissues. Light microscopy confirmed the presence of bacteria inside the root tissue. After inoculation of rice plantlets with PAL5 marked with the gfp plasmid pHRGFPTC, bright green fluorescent bacteria could be seen colonizing the rice root surface, mainly at the sites of lateral root emergence, at root caps and on root hairs. The plasmids pHRGFPGUS and pHRGFPTC are valid tools to mark PAL5 and monitor the colonization of micropropagated sugarcane and hydroponic rice seedlings. These tools are of use to: (i) study PAL5 mutants affected in bacteria-plant interactions, (ii) monitor plant colonization in real time and (iii) distinguish PAL5 from other bacteria during the study of mixed inoculants.

  9. Characterization of a thermostable β-glucuronidase from Thermotoga maritima expressed in Arabidopsis thaliana.

    PubMed

    Xu, Jing; Tian, Yong-Sheng; Peng, Ri-He; Zhu, Bo; Gao, Jian-Jie; Yao, Quan-Hong

    2012-09-01

    TmGUSI, a gene identical to that encoding a thermostable β-glucuronidase in the hyperthermophilic anaerobe Thermotoga maritima, has been synthesized using a PCR-based two-step DNA synthesis and codon optimization for plants, and expressed in both Escherichia coli and Arabidopsis thaliana. TmGUSI expressed in transformed E. coli cells exhibited maximum hydrolytic activity at 65 °C and pH 6.5 and retained more than 80% activity after incubation at 85 °C for 30 min. TmGUSI activity in transgenic A. thaliana plants containing TmGUSI was also stable over the temperature range 65-80 °C. Our data suggest that β-glucuronidase from T. maritima can serve as a useful thermostable marker in higher plants.

  10. Synthesis and anti-inflammatory effect of chalcones and related compounds.

    PubMed

    Hsieh, H K; Lee, T H; Wang, J P; Wang, J J; Lin, C N

    1998-01-01

    Mast cell and neutrophil degranulations are the important players in inflammatory disorders. Combined with potent inhibition of chemical mediators released from mast cells and neutrophil degranulations, it could be a promising anti-inflammatory agent. 2',5'-Dihydroxychalcone has been reported as a potent chemical mediator and cyclooxygenase inhibitor. In an effort to continually develop potent anti-inflammatory agents, a novel series of chalcone, 2'- and 3'-hydroxychalcones, 2',5'-dihydroxychalcones and flavanones were continually synthesized to evaluate their inhibitory effects on the activation of mast cells and neutrophils and the inhibitory effect on phlogist-induced hind-paw edema in mice. A series of chalcones and related compounds were prepared by Claisen-Schmidt condensation of appropriate acetophenones with appropriate aromatic aldehyde and the anti-inflammatory activities of these synthetic compounds were studied on inhibitory effects on the activation of mast cells and neutrophils. Some chalcones showed strong inhibitory effects on the release of beta-glucuronidase and histamine from rat peritoneal mast cells stimulated with compound 48/80. Almost all chalcones and 4'-hydroxyflavanone exhibited potent inhibitory effects on the release of beta-glucuronidase and lysozyme from rat neutrophils stimulated with formyl-Met-Leu-Phe (fMLP). Some chalcones showed potent inhibitory effects on superoxide formation of rat neutrophils stimulated with fMLP/cytochalasin B (CB) or phorbol myristate acetate (PMA). 2',3-Dihydroxy-, 2',5'-dihydroxy-4-chloro-, and 2',5'-dihydroxychalcone showed remarkable inhibitory effects on hind-paw edema induced by polymyxin B in normal as well as in adrenalectomized mice. These results indicated that the anti-inflammatory effects of these compounds were mediated, at least partly, through the suppression of chemical mediators released from mast cells and neutrophils.

  11. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer.

    PubMed

    Cheng, X; Sardana, R; Kaplan, H; Altosaar, I

    1998-03-17

    Over 2,600 transgenic rice plants in nine strains were regenerated from >500 independently selected hygromycin-resistant calli after Agrobacterium-mediated transformation. The plants were transformed with fully modified (plant codon optimized) versions of two synthetic cryIA(b) and cryIA(c) coding sequences from Bacillus thuringiensis as well as the hph and gus genes, coding for hygromycin phosphotransferase and beta-glucuronidase, respectively. These sequences were placed under control of the maize ubiquitin promoter, the CaMV35S promoter, and the Brassica Bp10 gene promoter to achieve high and tissue-specific expression of the lepidopteran-specific delta-endotoxins. The integration, expression, and inheritance of these genes were demonstrated in R0 and R1 generations by Southern, Northern, and Western analyses and by other techniques. Accumulation of high levels (up to 3% of soluble proteins) of CryIA(b) and CryIA(c) proteins was detected in R0 plants. Bioassays with R1 transgenic plants indicated that the transgenic plants were highly toxic to two major rice insect pests, striped stem borer (Chilo suppressalis) and yellow stem borer (Scirpophaga incertulas), with mortalities of 97-100% within 5 days after infestation, thus offering a potential for effective insect resistance in transgenic rice plants.

  12. The GMD1 and GMD2 genes of Arabidopsis encode isoforms of GDP-D-mannose 4,6-dehydratase with cell type-specific expression patterns.

    PubMed

    Bonin, Christopher P; Freshour, Glenn; Hahn, Michael G; Vanzin, Gary F; Reiter, Wolf-Dieter

    2003-06-01

    l-Fucose (l-Fuc) is a monosaccharide constituent of plant cell wall polysaccharides and glycoproteins. The committing step in the de novo synthesis of l-Fuc is catalyzed by GDP-d-mannose 4,6-dehydratase, which, in Arabidopsis, is encoded by the GMD1 and GMD2 (MUR1) genes. To determine the functional significance of this genetic redundancy, the expression patterns of both genes were investigated via promoter-beta-glucuronidase fusions and immunolocalization of a Fuc-containing epitope. GMD2 is expressed in most cell types of the root, with the notable exception of the root tip where strong expression of GMD1 is observed. Within shoot organs, GMD1::GUS expression is confined to stipules and pollen grains leading to fucosylation of the walls of these cell types in the mur1 mutant. These results suggest that GMD2 represents the major housekeeping gene for the de novo synthesis of GDP-l-Fuc, whereas GMD1 expression is limited to a number of specialized cell types. We conclude that the synthesis of GDP-l-Fuc is controlled in a cell-autonomous manner by differential expression of two isoforms of the same enzyme.

  13. VOZ; isolation and characterization of novel vascular plant transcription factors with a one-zinc finger from Arabidopsis thaliana.

    PubMed

    Mitsuda, Nobutaka; Hisabori, Toru; Takeyasu, Kunio; Sato, Masa H

    2004-07-01

    A 38-bp pollen-specific cis-acting region of the AVP1 gene is involved in the expression of the Arabidopsis thaliana V-PPase during pollen development. Here, we report the isolation and structural characterization of AtVOZ1 and AtVOZ2, novel transcription factors that bind to the 38-bp cis-acting region of A. thaliana V-PPase gene, AVP1. AtVOZ1 and AtVOZ2 show 53% amino acid sequence similarity. Homologs of AtVOZ1 and AtVOZ2 are found in various vascular plants as well as a moss, Physcomitrella patens. Promoter-beta-glucuronidase reporter analysis shows that AtVOZ1 is specifically expressed in the phloem tissue and AtVOZ2 is strongly expressed in the root. In vivo transient effector-reporter analysis in A. thaliana suspension-cultured cells demonstrates that AtVOZ1 and AtVOZ2 function as transcriptional activators in the Arabidopsis cell. Two conserved regions termed Domain-A and Domain-B were identified from an alignment of AtVOZ proteins and their homologs of O. sativa and P. patens. AtVOZ2 binds as a dimer to the specific palindromic sequence, GCGTNx7ACGC, with Domain-B, which is comprised of a functional novel zinc coordinating motif and a conserved basic region. Domain-B is shown to function as both the DNA-binding and the dimerization domains of AtVOZ2. From highly the conservative nature among all identified VOZ proteins, we conclude that Domain-B is responsible for the DNA binding and dimerization of all VOZ-family proteins and designate it as the VOZ-domain.

  14. Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin.

    PubMed

    Licht, Tine R; Hansen, Max; Bergström, Anders; Poulsen, Morten; Krath, Britta N; Markowski, Jaroslaw; Dragsted, Lars O; Wilcks, Andrea

    2010-01-20

    Our study was part of the large European project ISAFRUIT aiming to reveal the biological explanations for the epidemiologically well-established health effects of fruits. The objective was to identify effects of apple and apple product consumption on the composition of the cecal microbial community in rats, as well as on a number of cecal parameters, which may be influenced by a changed microbiota. Principal Component Analysis (PCA) of cecal microbiota profiles obtained by PCR-DGGE targeting bacterial 16S rRNA genes showed an effect of whole apples in a long-term feeding study (14 weeks), while no effects of apple juice, purée or pomace on microbial composition in cecum were observed. Administration of either 0.33 or 3.3% apple pectin in the diet resulted in considerable changes in the DGGE profiles.A 2-fold increase in the activity of beta-glucuronidase was observed in animals fed with pectin (7% in the diet) for four weeks, as compared to control animals (P < 0.01). Additionally, the level of butyrate measured in these pectin-fed animal was more than double of the corresponding level in control animals (P < 0.01). Sequencing revealed that DGGE bands, which were suppressed in pectin-fed rats, represented Gram-negative anaerobic rods belonging to the phylum Bacteroidetes, whereas bands that became more prominent represented mainly Gram-positive anaerobic rods belonging to the phylum Firmicutes, and specific species belonging to the Clostridium Cluster XIVa.Quantitative real-time PCR confirmed a lower amount of given Bacteroidetes species in the pectin-fed rats as well as in the apple-fed rats in the four-week study (P < 0.05). Additionally, a more than four-fold increase in the amount of Clostridium coccoides (belonging to Cluster XIVa), as well as of genes encoding butyryl-coenzyme A CoA transferase, which is involved in butyrate production, was detected by quantitative PCR in fecal samples from the pectin-fed animals. Our findings show that consumption of apple pectin (7% in the diet) increases the population of butyrate- and beta-glucuronidase producing Clostridiales, and decreases the population of specific species within the Bacteroidetes group in the rat gut. Similar changes were not caused by consumption of whole apples, apple juice, purée or pomace.

  15. Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system.

    PubMed

    Arango, Jacobo; Salazar, Bertha; Welsch, Ralf; Sarmiento, Felipe; Beyer, Peter; Al-Babili, Salim

    2010-06-01

    A prerequisite for biotechnological improvements of storage roots is the availability of tissue-specific promoters enabling high expression of transgenes. In this work, we cloned two genomic fragments, pMe1 and pDJ3S, controlling the expression of a gene with unknown function from cassava (Manihot esculenta) and of the storage protein dioscorin 3 small subunit gene from yam (Dioscorea japonica), respectively. Using beta-glucuronidase as a reporter, the activities of pMe1 and pDJ3S were evaluated in independent transgenic carrot lines and compared to the constitutive CaMV35S and the previously described cassava p15 promoters. Activities of pMe1 and pDJ3S in storage roots were assessed using quantitative GUS assays that showed pDJ3S as the most active one. To determine organ specificities, uidA transcript levels in leaves, stems and roots were measured by real-time RT-PCR analyses showing highest storage root specificity for pDJ3S. Root cross sections revealed that pMe1 was highly active in secondary xylem. In contrast, pDJ3S was active in all root tissues except for the central xylem. The expression patterns caused by the cassava p15 promoter in carrot storage roots were consistent with its previously described activities for the original storage organ. Our data demonstrate that the pDJ3S and, to a lesser extent, the pMe1 regulatory sequences represent feasible candidates to drive high and preferential expression of genes in carrot storage roots.

  16. Nuclear targeting of the maize R protein requires two nuclear localization sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, M.W.; Raikhel, N.V.; Wessler, S.R.

    1993-02-01

    Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is foundmore » in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.« less

  17. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  18. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system

    PubMed Central

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g−1 of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples. PMID:22428884

  19. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  20. Assays of dioxins and dioxin-like compounds in actually contaminated soils using transgenic tobacco plants carrying a recombinant mouse aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    PubMed

    Inui, Hideyuki; Gion, Keiko; Utani, Yasushi; Wakai, Taketo; Kodama, Susumu; Eun, Heesoo; Kim, Yun-Seok; Ohkawa, Hideo

    2012-01-01

    The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.

  1. The acute toxicity of inhaled beryllium metal in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, P.J.; Finch, G.L.; Hoover, M.D.

    1990-01-01

    The authors exposed rats once by nose only for 50 min to a mean concentration of 800 [mu]g/m[sup 3] of beryllium metal to characterize the acute toxic effects within the lung. Histological changes within the lung and enzyme changes within bronchoalveolar lavage (BAL) fluid were evaluated at 3, 7, 10, 14, 31, 59, 115, and 171 days postexposure (dpe). Beryllium metal-exposed rats developed acute, necrotizing, hemorrhagic, exudative pneumonitis and intraalveolar fibrosis that peaked at 14 dpe. By 31 dpe, inflammatory lesions were replaced by minimal interstitial and intraalveolar fibrosis. Necrotizing inflammation was observed again at 59 dpe which progressed tomore » chronic-active inflammation by 115 dpe. Low numbers of diffusely distributed lymphocytes were also present but they were not associated with granulomas as is observed in beryllium-induced disease in man. Lymphocytes were not elevated in BAL samples collected from beryllium-exposed rats at any time after exposure. Lactate dehydrogenase (LDH), [beta]-glucuronidase, and protein levels were elevated in BAL fluid from 3 through 14 dpe but returned to near normal levels by 31 dpe. LDH increased once again at 59 dpe and remained elevated at 171 dpe. [beta]-Glucuronidase and protein levels were slightly, but not significantly, elevated from 31 through 171 dpe.« less

  2. Involvement of Ethylene in Stress-Induced Expression of the TLC1.1 Retrotransposon from Lycopersicon chilense Dun.1[w

    PubMed Central

    Tapia, Gerardo; Verdugo, Isabel; Yañez, Mónica; Ahumada, Iván; Theoduloz, Cristina; Cordero, Cecilia; Poblete, Fernando; González, Enrique; Ruiz-Lara, Simón

    2005-01-01

    The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt concentrations. Several stress-associated signaling molecules, including ethylene, methyl jasmonate, salicylic acid, and 2,4-dichlorophenoxyacetic acid, are capable of inducing TLC1 family expression in vivo. A representative of this family, named TLC1.1, was isolated from a genomic library from L. chilense. Transient expression assays in leaf protoplasts and stably transformed tobacco (Nicotiana tabacum) plants demonstrate that the U3 domain of the 5′-LTR region of this element can drive stress-induced transcriptional activation of the β-glucuronidase reporter gene. Two 57-bp tandem repeated sequences are found in this region, including an 8-bp motif, ATTTCAAA, previously identified as an ethylene-responsive element box in the promoter region of ethylene-induced genes. Expression analysis of wild-type LTR and single and double ethylene-responsive element box mutants fused to the β-glucuronidase gene shows that these elements are required for ethylene-responsive gene expression in protoplasts and transgenic plants. We suggest that ethylene-dependent signaling is the main signaling pathway involved in the regulation of the expression of the TLC1.1 element from L. chilense. PMID:16040666

  3. Environmental conditions affect transcription of the pectinase genes of Erwinia chrysanthemi 3937.

    PubMed Central

    Hugouvieux-Cotte-Pattat, N; Dominguez, H; Robert-Baudouy, J

    1992-01-01

    To depolymerize plant pectin, the phytopathogenic enterobacterium Erwinia chrysanthemi produces a series of enzymes which include a pectin-methyl-esterase encoded by the pem gene and five isoenzymes of pectate lyases encoded by the five genes pelA, pelB, pelC, pelD, and pelE. We have constructed transcriptional fusions between the pectinase gene promoters and the uidA gene, encoding beta-glucuronidase, to study the regulation of these E. chrysanthemi pectinase genes individually. The transcription of the pectinase genes is dependent on many environmental conditions. All the fusions were induced by pectic catabolic products and responded, to different degrees, to growth phase, catabolite repression, temperature, and nitrogen starvation. Transcription of pelA, pelD, and pelE was also increased in anaerobic growth conditions. High osmolarity of the culture medium increased expression of pelE but decreased that of pelD; the other pectinase genes were not affected. The level of expression of each gene was different. Transcription of pelA was very low under all growth conditions. The expression of the pelB, pelC, and pem genes was intermediate. The pelE gene had a high basal level of expression. Expression of pelD was generally the most affected by changes in culture conditions and showed a low basal level but very high induced levels. These differences in the expression of the pectinase genes of E. chrysanthemi 3937 presumably reflect their role during infection of plants, because the degradation of pectic polymers of the plant cell walls is the main determinant of tissue maceration caused by soft rot erwiniae. PMID:1447147

  4. Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings

    PubMed Central

    Tanaka, Kiwamu; Cho, Sung-Hwan; Lee, Hyeyoung; Pham, An Q.; Batek, Josef M.; Cui, Shiqi; Qiu, Jing; Khan, Saad M.; Joshi, Trupti; Zhang, Zhanyuan J.; Xu, Dong; Stacey, Gary

    2015-01-01

    Although lipo-chitooligosaccharides (LCOs) are important signal molecules for plant-symbiont interactions, a number of reports suggest that LCOs can directly impact plant growth and development, separate from any role in plant symbioses. In order to investigate this more closely, maize and Setaria seedlings were treated with LCO and their growth was evaluated. The data indicate that LCO treatment significantly enhanced root growth. RNA-seq transcriptomic analysis of LCO-treated maize roots identified a number of genes whose expression was significantly affected by the treatment. Among these genes, some LCO-up-regulated genes are likely involved in root growth promotion. Interestingly, some stress-related genes were down-regulated after LCO treatment, which might indicate reallocation of resources from defense responses to plant growth. The promoter activity of several LCO-up-regulated genes using a β-glucuronidase reporter system was further analysed. The results showed that the promoters were activated by LCO treatment. The data indicate that LCO can directly impact maize root growth and gene expression. PMID:26049159

  5. Molecular characterization of the sweet potato peroxidase SWPA4 promoter which responds to abiotic stresses and pathogen infection.

    PubMed

    Ryu, Sun-Hwa; Kim, Yun-Hee; Kim, Cha Young; Park, Soo-Young; Kwon, Suk-Yoon; Lee, Haeng-Soon; Kwak, Sang-Soo

    2009-04-01

    Previously, the swpa4 peroxidase gene has been shown to be inducible by a variety of abiotic stresses and pathogenic infections in sweet potato (Ipomoea batatas). To elucidate its regulatory mechanism at the transcriptional level under various stress conditions, we isolated and characterized the promoter region (2374 bp) of swpa4 (referred to as SWPA4). We performed a transient expression assay in tobacco protoplasts with deletions from the 5'-end of SWPA4 promoter fused to the beta-glucuronidase (GUS) reporter gene. The -1408 and -374 bp deletions relative to the transcription start site (+1) showed 8 and 4.5 times higher GUS expression than the cauliflower mosaic virus 35S promoter, respectively. In addition, transgenic tobacco plants expressing GUS under the control of -2374, -1408 or -374 bp region of SWPA4 promoter were generated and studied in various tissues under abiotic stresses and pathogen infection. Gel mobility shift assays revealed that nuclear proteins from sweet potato cultured cells specifically interacted with 60-bp fragment (-178/-118) in -374 bp promoter region. In silico analysis indicated that four kinds of cis-acting regulatory sequences, reactive oxygen species-related element activator protein 1 (AP1), CCAAT/enhancer-binding protein alpha element, ethylene-responsive element (ERE) and heat-shock element, are present in the -60 bp region (-178/-118), suggesting that the -60 bp region might be associated with stress inducibility of the SWPA4 promoter.

  6. Development of a Gd(III)-based receptor-induced magnetization enhancement (RIME) contrast agent for β-glucuronidase activity profiling.

    PubMed

    Chen, Shih-Hsien; Kuo, Yu-Ting; Singh, Gyan; Cheng, Tian-Lu; Su, Yu-Zheng; Wang, Tzu-Pin; Chiu, Yen-Yu; Lai, Jui-Jen; Chang, Chih-Ching; Jaw, Twei-Shiun; Tzou, Shey-Cherng; Liu, Gin-Chung; Wang, Yun-Ming

    2012-11-19

    β-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPβGu)]) for molecular imaging of β-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a β-glucuronidase substrate (β-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPβGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPβGu)] is due to the pendant β-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPβGu)] can be used for detection of β-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPβGu)] was elucidated by LC-MS. The kinetics of β-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPβGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of β-glucuronidase for [Gd(DOTA-FPβGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPβGu)] changes in response to the concentration of β-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPβGu)] showed significant change in MR image signal in the presence of β-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of β-glucuronidase.

  7. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors

    PubMed Central

    Chan, Alfred A.; Bashir, Mina; Rivas, Magali N.; Duvall, Karen; Sieling, Peter A.; Pieber, Thomas R.; Vaishampayan, Parag A.; Love, Susan M.; Lee, Delphine J.

    2016-01-01

    The microbiome impacts human health and disease. Until recently, human breast tissue and milk were presumed to be sterile. Here, we investigated the presence of microbes in the nipple aspirate fluid (NAF) and their potential association with breast cancer. We compared the NAF microbiome between women with a history of breast cancer (BC) and healthy control women (HC) using 16S rRNA gene amplicon sequencing. The NAF microbiome from BC and HC showed significant differences in community composition. Two Operational Taxonomic Units (OTUs) showed differences in relative abundances between NAF collected from BC and HC. In NAF collected from BC, there was relatively higher incidence of the genus Alistipes. By contrast, an unclassified genus from the Sphingomonadaceae family was relatively more abundant in NAF from HC. These findings reflect the ductal source DNA since there were no differences between areolar skin samples collected from BC and HC. Furthermore, the microbes associated with BC share an enzymatic activity, Beta-Glucuronidase, which may promote breast cancer. This is the first report of bacterial DNA in human breast ductal fluid and the differences between NAF from HC and BC. Further investigation of the ductal microbiome and its potential role in breast cancer are warranted. PMID:27324944

  8. The 5' untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants.

    PubMed

    Wever, Willem; McCallum, Emily J; Chakravorty, David; Cazzonelli, Christopher I; Botella, José R

    2010-08-01

    The structure and function of untranslated mRNA leader sequences and their role in controlling gene expression remains poorly understood. Previous research has suggested that the 5' untranslated region (5'UTR) of the Vigna radiata aminocyclopropane-1-carboxylate synthase synthase (VR-ACS1) gene may function as a translational enhancer in plants. To test such hypothesis we compared the translation enhancing properties of three different 5'UTRs; those from the VR-ACS1, the chlorophyll a/b binding gene from petunia (Cab22L; a known translational enhancer) and the Vigna radiata pectinacetylesterase gene (PAE; used as control). Identical constructs in which the coding region of the beta-glucuronidase (GUS) gene was fused to each of the three 5'UTRs and placed under the control of the cauliflower mosaic virus 35S promoter were prepared. Transient expression assays in tobacco cell cultures and mung bean leaves showed that the VR-ACS1 and Cab22L 5'UTRs directed higher levels of GUS activity than the PAE 5'UTR. Analysis of transgenic Arabidopsis thaliana seedlings, as well as different tissues from mature plants, confirmed that while transcript levels were equivalent for all constructs, the 5'UTRs from the VR-ACS1 and Cab22L genes can increase GUS activity twofold to fivefold compared to the PAE 5'UTR, therefore confirming the translational enhancing properties of the VR-ACS1 5'UTR.

  9. Optimal antidiarrhea treatment for antitumor agent irinotecan hydrochloride (CPT-11)-induced delayed diarrhea.

    PubMed

    Takasuna, K; Hagiwara, T; Watanabe, K; Onose, S; Yoshida, S; Kumazawa, E; Nagai, E; Kamataki, T

    2006-10-01

    An antitumor camptothecin derivative CPT-11 has proven a broad spectrum of solid tumor malignancy, but its severe diarrhea has often limited its more widespread use. We have demonstrated from a rat model that intestinal beta-glucuronidase may play a key role in the development of CPT-11-induced delayed diarrhea by the deconjugation of the luminal SN-38 glucuronide, and the elimination of the intestinal microflora by antibiotics or dosing of TJ-14, a Kampo medicine that contains beta-glucuronidase inhibitor baicalin, exerted a protective effect. In the present study, we assessed the efficacy of several potential treatments in our rat model to clarify which is the most promising treatment for CPT-11-induced delayed diarrhea. Oral dosing (twice daily from days -1 to 4) of streptomycin 20 mg/kg and penicillin 10 mg/kg (Str/Pen), neomycin 20 mg/kg and bacitracin 10 mg/kg (Neo/Bac), both of which inhibited almost completely the fecal beta-glucuronidase activity, or TJ-14 1,000 mg/kg improved the decrease in body weight and the delayed diarrhea symptoms induced by CPT-11 (60 mg/kg i.v. from days 1 to 4) to a similar extent. The efficacy was less but significant in activated charcoal (1,000 mg/kg p.o. twice daily from days -1 to 4). In a separate experiment using rats bearing breast cancer (Walker 256-TC), TJ-14, Neo/Bac, and charcoal at the same dose regimen improved CPT-11-induced intestinal toxicity without reducing CPT-11's antitumor activity. In contrast, oral dosing (twice a day) of cyclosporin A (50 mg/kg), a P-glycoprotein and cMOAT/MRP2 inhibitor or valproic acid (200 mg/kg), a UDP-glucuronosyltranferase inhibitor, exacerbated the intestinal toxicity without modifying CPT-11's antitumor activity. The result clearly demonstrated the ability of Neo/Bac, Str/Pen, and TJ-14, less but significant ability of activated charcoal, to ameliorate CPT-11-induced delayed-onset diarrhea, suggesting the treatments decreasing the exposure of the intestines to the luminal SN-38 are valuable for improvement of CPT-11-induced intestinal toxicity. In contrast, the treatments affecting the biliary excretion of CPT-11 and its metabolites might have undesirable results.

  10. Process and economic evaluation of the extraction and purification of recombinant beta-glucuronidase from transgenic corn

    PubMed

    Evangelista; Kusnadi; Howard; Nikolov

    1998-07-01

    A process model for the recovery and purification of recombinant beta-glucuronidase (rGUS) from transgenic corn was developed, and the process economics were estimated. The base-case bioprocessing plant operates 7500 h/year processing 1.74 million (MM) kg of transgenic corn containing 0.015% (db) rGUS. The process consists of milling the corn into flour, extraction of protein by using 50 mM sodium phosphate buffer, and rGUS purification by ion exchange and hydrophobic interaction chromatography. About 137 kg of rGUS of 83% (db) purity can be produced annually. The production cost amounted to $43 000/kg of rGUS. The cost of milling, protein extraction, and rGUS purification accounted for 6, 40, and 48% of annual operating cost, respectively. The cost of transgenic corn was 31% of the raw material costs or 6% of the annual operating cost. About 78% of the cost of buffer and water were incurred in the protein extraction section, while 88% of other consumables were from the purification section. The sensitivity analysis indicated that rGUS can be produced profitably from corn even at the 0.015% (db) expression level, assuming a selling price of $100 000/kg GUS. An increase in rGUS expression levels up to 0.08% significantly improves the process economics.

  11. Characterization of proflavine metabolites in rainbow trout.

    PubMed

    Yu, Z; Hayton, W L; Chan, K K

    1997-04-01

    Proflavine (3,6-diaminoacridine) has potential for use as an antiinfective in fish, and its metabolism by rainbow trout was therefore studied. Fourteen hours after intraarterial bolus administration of 10 mg/kg of proflavine, three metabolites were found in liver and bile, and one metabolite was found in plasma using reversed-phase HPLC with UV detection at 262 nm. Treatment with hydrochloric acid converted the three metabolites to proflavine, which suggested that the metabolites were proflavine conjugates. Treatment with beta-glucuronidase and saccharic acid 1,4-lactone, a specific beta-glucuronidase inhibitor, revealed that two metabolites were proflavine glucuronides. For determination of UV-VIS absorption and mass spectra, HPLC-purified metabolites were isolated from liver. Data from these experiments suggested that the proflavine metabolites were 3-N-glucuronosyl proflavine (PG), 3-N-glucuronosyl,6-N-acetyl proflavine (APG), and 3-N-acetylproflavine (AP). The identities of the metabolites were verified by chemical synthesis. When synthetic PG and AP were compared with the two metabolites isolated from trout, they had the same molecular weight as determined by matrix-assisted, laser desorption ionization, time-of-flight MS. In addition, they coeluted on HPLC under different mobile phase conditions. Finally, the in vitro incubation with liver subcellular preparations confirmed this characterization and provided the evidence that APG can be formed by glucuronidation of AP or acetylation of PG.

  12. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV. Glucuronidation.

    PubMed

    Griffeth, L K; Rosen, G M; Rauckman, E J

    1985-01-01

    A previously validated small mammal trauma model, hind-limb ischemia secondary to infrarenal aortic ligation in the rat, was utilized to investigate the effects of traumatic injury on hepatic glucuronidation activity. As was previously observed with hepatic oxidative drug metabolism, model trauma resulted in a significant decrease in the in vivo glucuronidation of chloramphenicol, with a 23% drop in clearance of this drug. The effect on in vivo pharmacokinetics appeared to result from a complex interaction between trauma's differential influences on conjugating enzyme(s), deconjugating enzyme(s), and hepatic UDP-glucuronic acid levels, as well as the relative physiological importance of these variables. Hepatic UDP-glucuronyltransferase activities towards both p-nitrophenol and chloramphenicol were elevated (44-54%) after model injury when measured in native hepatic microsomes. However, microsomes which had been "activated" by treatment with Triton X-100 showed no significant difference between control and traumatized animals. Serum beta-glucuronidase activities were elevated by 58%, while hepatic beta-glucuronidase rose by about 16%. Nevertheless, in vivo deconjugation showed no significant change. Model trauma also resulted in a 46% decrease in hepatic UDP-glucuronic acid content. Thus, the observed post-traumatic depression of in vivo chloramphenicol glucuronidation could be due either to a diminished availability of a necessary cofactor (UDP-glucuronic acid) or to an alteration in enzyme kinetics or function in vivo.

  13. Faecal coliform bacteria in Febros river (northwest Portugal): temporal variation, correlation with water parameters, and species identification.

    PubMed

    Cabral, João Paulo; Marques, Cristina

    2006-07-01

    Febros river water was sampled weekly, during 35 successive weeks, and analyzed for microbiological (total coliforms, faecal coliforms, faecal streptococci and enterococci) and chemical-physical (ammonia and temperature) parameters. All microbiological parameters were highly correlated with each other and with ammonia, suggesting that the simultaneous determination of all variables currently in use in the evaluation of the microbiological quality of waters is probably redundant, and could be simplified, and that ammonia should be tested as a sentinel parameter of the microbiological pollution load of Febros river. From the strains isolated from positive tubes of the faecal coliforms test (multiple tube fermentation technique) and retested in this assay, Escherichia coli, Klebsiella oxytoca and Klebsiella pneumoniae subsp. pneumoniae strains were positive, indicating that the faecal coliforms test is not totally specific for Escherichia coli, and can detect other bacteria. Considering that these Klebsiella spp. are not necessarily of faecal origin, it was concluded that the faecal coliforms test can overestimate true faecal pollution. From the strains isolated from positive tubes of the faecal coliforms procedure, only Escherichia coli strains were clearly positive in the beta-D-glucuronidase test. All other species were negative or very weakly positive, suggesting that the assay of the beta-D-glucuronidase activity is less prone to false positives than the faecal coliforms test in the quantification of Escherichia coli in environmental waters.

  14. 6-Shogaol inhibits monosodium urate crystal-induced inflammation--an in vivo and in vitro study.

    PubMed

    Sabina, Evan Prince; Rasool, Mahaboobkhan; Mathew, Lazar; Ezilrani, Panneerselvam; Indu, Haridas

    2010-01-01

    Gout is a rheumatic disease that is manifestated by an intense inflammation secondary to monosodium urate crystal deposition in joints. In the present study, we assessed the effect of 6-shogaol (isolated active principle from ginger) on monosodium urate crystal-induced inflammation in mice; an experimental model for gouty arthritis and compared it with that of the non-steroidal anti-inflammatory drug, indomethacin. Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and inflammatory mediator TNF-alpha were determined in control and monosodium urate crystal-induced mice. The levels of beta-glucuronidase and lactate dehydrogenase were also measured in monosodium urate crystal-incubated polymorphonuclear leucocytes (PMNL) in vitro. The levels of lysosomal enzymes, lipid peroxidation, and inflammatory mediator tumour necrosis factor-alpha and paw volume were increased significantly and the activities of anti-oxidant status were in turn decreased in monosodium urate crystal-induced mice, whereas these changes were reverted to near normal levels upon 6-shogaol administration. In vitro, 6-shogaol reduced the level of beta-glucuronidase and lactate dehydrogenase in monosodium urate crystal-incubated polymorphonuclear leucocytes in concentration dependent manner when compared to control cells. The present results clearly indicated that 6-shogaol exerted a strong anti-inflammatory effect and can be regarded as useful tool for the treatment of acute gouty arthritis. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

    PubMed Central

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.

    2012-01-01

    Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898

  16. Probiotic dahi containing Lactobacillus casei protects against Salmonella enteritidis infection and modulates immune response in mice.

    PubMed

    Jain, Shalini; Yadav, Hariom; Sinha, P R

    2009-06-01

    In the present study, effect of dahi containing probiotic Lactobacillus casei (probiotic dahi) was evaluated to modulate immune response against Salmonella enteritidis infection in mice. Animals were fed with milk products along with standard diet for 2 and 7 days prior to the S. enteritidis challenge and continued on the respective dairy food-supplemented diets during the postchallenge period. Translocation of S. enteritidis in spleen and liver, beta-galactosidase and beta-glucuronidase enzymatic activities and secretory IgA (sIgA) in intestinal fluid, lymphocyte proliferation, and cytokine (interleukin [IL]-2, IL-4, IL-6, and interferon-gamma [IFN-gamma]) production in cultured splenocytes were assessed on day 2, 5, and 8 of the postchallenge period. Colonization of S. enteritidis in liver and spleen was remarkably low in probiotic dahi-fed mice than mice fed milk and control dahi. The beta-galactosidase and beta-glucuronidase activities in intestinal fluid collected from mice prefed for 7 days with probiotic dahi were significantly lower at day 5 and 8 postchallenge than in mice fed milk and control dahi. Levels of sIgA and lymphocyte proliferation rate were also significantly increased in probiotic dahi-fed mice compared with the other groups. Production of IL-2, IL-6, and IFN-gamma increased, whereas IL-4 decreased in splenic lymphocytes collected from probiotic dahi-fed mice. Data showed that dahi prefed for 7 days before S. enteritidis challenge was more effective than when mice were prefed for 2 days with dahi. Moreover, probiotic dahi was more efficacious in protecting against S. enteritidis infection by enhancing innate and adaptive immunity than fermented milk and normal dahi. Results of the present study suggest that prefeeding of probiotic dahi may strengthen the consumer's immune system and may protect infectious agents like S. enteritidis.

  17. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H(+)-ATPase, and one of which is induced by mechanical stress.

    PubMed

    Oufattole, M; Arango, M; Boutry, M

    2000-04-01

    To analyze in detail the multigene family encoding the plasma-membrane H(+)-ATPase (pma) in Nicotiana plumbaginifolia Viv., five new pma genes (pma 5-9) were isolated. Three of these (pma 6, 8, 9) were fully characterized and classified into new and independent subfamilies. Their cell-type expression was followed by the beta-glucuronidase (gusA) reporter-gene method. While the pma8-gusA transgene was not expressed in transgenic tobacco, expression of the two other transgenes (pma6- and pma9-gusA) was found to be restricted to particular cell types. In the vegetative tissues, pma6-gusA expression was limited to the head cells of the leaf short trichomes, involved in secretion, and to the cortical parenchyma of the young nodes where the developing leaves and axillary flowering stalks join the stem. In the latter tissues, gene expression was enhanced by mechanical stress, suggesting that H(+)-ATPase might be involved in the strength of the tissues and their resistance to mechanical trauma. The pma9-gusA transgene was mainly expressed in the apical meristem of adventitious roots and axillary buds as well as in the phloem tissues of the stem, in which expression depended on the developmental stage. In flowers, pma9-gusA expression was limited to the mature pollen grains and the young fertilized ovules, while that of pma6-gusA was identified in most of the organs. Reverse transcription-polymerase chain reaction of leaf and stem RNA confirmed the expression of pma 6 and 9, while pma8 was found to be expressed in both organs at a lower level. In conclusion, although pma 6 and 9 had a more restricted expression pattern than the previously characterized pma genes, they were nevertheless expressed in cell types in which H(+)-ATPase had not been previously detected.

  18. Sperm shape abnormality and urine mutagenicity in mice treated with niclosamide.

    PubMed

    Vega, S G; Guzmán, P; García, L; Espinosa, J; Cortinas de Nava, C

    1988-02-01

    Niclosamide, a widely used anthelmintic drug in underdeveloped countries, is known to be mutagenic in the Salmonella typhimurium microsomal test system. The urine obtained from mice treated with niclosamide is mutagenic in the TA98 and TA1538 strains. Its effects on mouse-sperm morphology were evaluated in CD1 and (BALB/cJ x DBA/2J) F1 mice after 5 daily oral niclosamide doses of either 60, 80, 100 or 120 mg/kg. A statistically significant increase in abnormal sperm morphology was detected in both CD1 and (BALB/cJ x DBA/2J) F1 mice. No drug-related effects on testis weight nor on sperm count were observed in either genotype. Urine samples obtained from niclosamide-treated F1 mice were assayed with the Salmonella typhimurium strain TA1538 both in the absence and presence of beta-glucuronidase. In the absence of glucuronidase, urine mutagenicity increased with increasing dose and the highest doses were toxic. In the presence of glucuronidase, urine mutagenicity and toxicity also increased. Only at the highest dose (120 mg/kg), however, was there a positive correlation between the urine mutagenic activity and an increase in the number of abnormal sperm. The results of this study suggest that the increase in abnormal sperm depends on the systemic presence of non-conjugated niclosamide metabolites.

  19. Isolation and characterization of a novel calmodulin-binding protein from potato

    NASA Technical Reports Server (NTRS)

    Reddy, Anireddy S N.; Day, Irene S.; Narasimhulu, S. B.; Safadi, Farida; Reddy, Vaka S.; Golovkin, Maxim; Harnly, Melissa J.

    2002-01-01

    Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.

  20. Finger millet [Eleusine coracana (L.) Gaertn].

    PubMed

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation.

  1. Chromosome mapping of the human arrestin (SAG), {beta}-arrestin 2 (ARRB2), and {beta}-adrenergic receptor kinase 2 (ADRBK2) genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Sallese, M.; Stornaiuolo, A.

    1994-09-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor and its functional cofactor, {beta}-arrestin. Both {beta}ARK and {beta}-arrestin are members of multigene families. The family of G-protein-coupled receptor kinases includes rhodopsin kinase, {beta}ARK1, {beta}ARK2, IT11-A (GRK4), GRK5, and GRK6. The arrestin/{beta}-arrestin gene family includes arrestin (also known as S-antigen), {beta}-arrestin 1, and {beta}-arrestin 2. Here we report the chromosome mapping of the human genes for arrestin (SAG), {beta}arrestin 2 (ARRB2), and {beta}ARK2 (ADRBK2) by fluorescence in situ hybridization (FISH). FISH results confirmed the assignment ofmore » the gene coding for arrestin (SAG) to chromosome 2 and allowed us to refine its localization to band q37. The gene coding for {beta}-arrestin 2 (ARRB2) was mapped to chromosome 17p13 and that coding for {beta}ARK2 (ADRBK2) to chromosome 22q11. 17 refs., 1 fig.« less

  2. Identification of hydroxyropivacaine glucuronide in equine urine by ESI+/MS/MS.

    PubMed Central

    Harkins, J D; Karpiesiuk, W; Tobin, T; Dirikolu, L; Lehner, A F

    2000-01-01

    Ropivacaine is a local anesthetic that has a high potential for abuse in racing horses. It can be recovered from urine collected after administration as a hydroxylated metabolite following beta-glucuronidase treatment of the urine. Based on these findings, it has been inferred that ropivacaine is present in equine urine as a glucuronide metabolite; however, these metabolites have never been directly identified. Using ESI+/MS/MS, the presence of a [M+H]+ molecular ion of m/z 467 was demonstrated in urine corresponding to the calculated mass of a hydroxyropivacaine glucuronide +1. The abundance of this ion diminished after glucuronidase treatment with concomitant appearance of a m/z 291 peak, which is consistent with its hydrolysis to hydroxyropivacaine. In further work, the m/z 467 material was fragmented in the MS/MS system, yielding fragments interpretable as hydroxyropivacaine glucuronide. These data are consistent with the presence of a hydroxyropivacaine glucuronide in equine urine and constitute the first direct demonstration of a specific glucuronide metabolite in equine urine. PMID:10935884

  3. Effect of lipo-chitooligosaccharide on early growth of C 4 grass seedlings

    DOE PAGES

    Tanaka, Kiwamu; Cho, Sung -Hwan; Lee, Hyeyoung; ...

    2015-06-06

    Although lipo-chitooligosaccharides (LCOs) are important signal molecules for plant-symbiont interactions, a number of reports suggest that LCOs can directly impact plant growth and development, separate from any role in plant symbioses. In order to investigate this more closely, maize and Setaria seedlings were treated with LCO and their growth was evaluated. The data indicate that LCO treatment significantly enhanced root growth. RNA-seq transcriptomic analysis of LCO-treated maize roots identified a number of genes whose expression was significantly affected by the treatment. Among these genes, some LCO-up-regulated genes are likely involved in root growth promotion. Interestingly, some stress-related genes were down-regulatedmore » after LCO treatment, which might indicate reallocation of resources from defense responses to plant growth. The promoter activity of several LCO-up-regulated genes using a β-glucuronidase reporter system was further analysed. The results showed that the promoters were activated by LCO treatment. Lastly, the data indicate that LCO can directly impact maize root growth and gene expression.« less

  4. Assignment of the {beta}-arrestin 1 gene (ARRB1) to human chromosome 11q13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calabrese, G.; Morizio, E.; Palka, G.

    1994-11-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor, and its functional cofactor, {beta}-arrestin. {beta}ARK is a member of a multigene family, consisting of six known subtypes, which have also been named G-protein-coupled receptor kinases (GRK 1 to 6) due to the apparently unique functional association of such kinases with this receptor family. The gene for {beta}ARK1 has been localized to human chromosome 11q13. The four members of the arrestin/{beta}-arrestin gene family identified so far are arrestin, X-arrestin, {beta}-arrestin 1, and {beta}-arrestin 2. Here themore » authors report the chromosome mapping of the human gene for {beta}-arrestin 1 (ARRB1) to chromosome 11q13 by fluorescence in situ hybridization (FISH). Two-color FISH confirmed that the two genes coding for the functionally related proteins {beta}ARK1 and {beta}arrestin 1 both map to 11q13. 16 refs., 1 fig., 1 tab.« less

  5. Lentiviral-mediated gene therapy results in sustained expression of β-glucuronidase for up to 12 months in the gus(mps/mps) and up to 18 months in the gus(tm(L175F)Sly) mouse models of mucopolysaccharidosis type VII.

    PubMed

    Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon

    2014-09-01

    A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.

  6. Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.).

    PubMed

    Takakura, Y; Ito, T; Saito, H; Inoue, T; Komari, T; Kuwata, S

    2000-04-01

    A flower-predominant cDNA for a gene, termed OsChia 1;175, was isolated from a cDNA library of rice pistils. Northern blot and RT-PCR analyses revealed that the OsChia 1;175 gene is highly expressed in floral organs (pistils, stamens and lodicules at the heading stage) but not or at an extremely low level in vegetative organs. OsChia 1;175 encodes a protein that consists of 340 amino acid residues, and the putative mature protein shows 52% to 63% amino acid identity to class I chitinases of rice or other plants. The phylogenetic tree shows that the OsChia 1;175 protein is a new type of plant class I chitinase in rice. The expression of OsChia 1;175 in vegetative organs is not induced by several chemicals, UV, and wounding. The soluble putative mature OsChia 1;175 protein expressed in Escherichia coli exhibited chitinase activity in the assay with colloidal chitin as a substrate. Genomic Southern analysis revealed that the OsChia 1;175 gene was organized as a low-copy gene family. The rice genomic library was screened and a genome clone corresponding to OsChia 1;175 was isolated. The transcription start sites of the OsChia 1;175 gene were mapped by primer extension analysis. The 1.2 kb putative promoter region of the OsChia 1;175 gene was fused to the GUS (beta-glucuronidase) gene, and this chimeric gene was introduced to rice by Agrobacterium-mediated transformation. The flower-predominant gene expression was identified also in the transgenic rice plants. The high promoter activity was detected in the stigmas, styles, stamens and lodicules in transgenic plants. The possible functions of OsChia 1;175 are discussed.

  7. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    PubMed

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  8. Testicular effects of acrylonitrile in mice.

    PubMed

    Tandon, R; Saxena, D K; Chandra, S V; Seth, P K; Srivastava, S P

    1988-07-01

    Daily oral administration of acrylonitrile (10 mg/kg body weight) to mice for a period of 60 days caused a significant decrease in the activity of testicular sorbitol dehydrogenase and acid phosphatase, and an increase in that of lactate dehydrogenase and beta-glucuronidase. Histopathological studies revealed degeneration of the seminiferous tubules. A decrease in the sperm counts of the epididymal spermatozoa was also observed in the animals of the acrylonitrile-exposed group. These observations suggest that acrylonitrile may affect the male reproductive function by causing testicular injury.

  9. Characterization of arrangement and expression of the beta-2 microglobulin locus in the sandbar and nurse shark.

    PubMed

    Chen, Hao; Kshirsagar, Sarika; Jensen, Ingvill; Lau, Kevin; Simonson, Caitlin; Schluter, Samuel F

    2010-02-01

    Beta 2 microglobulin (beta2m) is an essential subunit of major histocompatibility complex (MHC) type I molecules. In this report, beta2m cDNAs were identified and sequenced from sandbar shark spleen cDNA library. Sandbar shark beta2m gene encodes one amino acid less than most teleost beta2m genes, and 3 amino acids less than mammal beta2m genes. Although sandbar shark beta2m protein contains one beta sheet less than that of human in the predicted protein structure, the overall structure of beta2m proteins is conserved during evolution. Germline gene for the beta2m in sandbar and nurse shark is present as a single locus. It contains three exons and two introns. CpG sites are evenly distributed in the shark beta2m loci. Several DNA repeat elements were also identified in the shark beta2m loci. Sequence analysis suggests that the beta2m locus is not linked to the MHC I loci in the shark genome.

  10. Agrobacterium tumefaciens supports DNA replication of diverse geminivirus types.

    PubMed

    Selth, Luke A; Randles, John W; Rezaian, M Ali

    2002-04-10

    We have previously shown that the soil-borne plant pathogen Agrobacterium tumefaciens supports the replication of tomato leaf curl geminivirus (Australian isolate) (TLCV) DNA. However, the reproducibility of this observation with other geminiviruses has been questioned. Here, we show that replicative DNA forms of three other geminiviruses also accumulate at varying levels in Agrobacterium. Geminiviral DNA constructs that lacked the ability to replicate in Agrobacterium were rendered replication-competent by changing their configuration so that two copies of the viral ori were present. Furthermore, we report that low-level replication of TLCV DNA can occur in Escherichia coli containing a dimeric TLCV construct in a high copy number plasmid. These findings were reinforced by expression studies using beta-glucuronidase which revealed that all six TLCV promoters are active in Agrobacterium, and two are functional in E. coli.

  11. Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. x Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation.

    PubMed

    Kayim, M; Ceccardi, T L; Berretta, M J G; Barthe, G A; Derrick, K S

    2004-11-01

    The protein p12 accumulates in leaves of trees with citrus blight (CB), a serious decline of unknown cause. The function of p12 is not known, but sequence analysis indicates it may be related to expansins. In studies to determine the function of p12, sense and antisense constructs were used to make transgenic Carrizo citrange using an Agrobacterium-mediated transformation system. Homogeneous beta-glucuronidase+ (GUS+) sense and antisense transgenic shoots were regenerated using kanamycin as a selective agent. Twenty-five sense and 45 antisense transgenic shoots were in vivo grafted onto Carrizo citrange for further analyses. In addition, 20 sense and 18 antisense shoots were rooted. The homogeneous GUS+ plants contained either the p12 sense or antisense gene (without the intron associated with the gene in untransformed citrus) as shown by PCR and Southern blotting. Northern blots showed the expected RNA in the sense and antisense plants. A protein of identical size and immunoreactivity was observed in seven of nine sense plants but not in nine antisense or non-transgenic plants. At the current stage of growth, there are no visual phenotypic differences between the transgenic and non-transgenic plants. Selected plants will be budded with sweet orange for field evaluation for resistance or susceptibility to CB and general rootstock performance.

  12. Production of herbicide-resistant transgenic Panax ginseng through the introduction of the phosphinothricin acetyl transferase gene and successful soil transfer.

    PubMed

    Choi, Y E; Jeong, J H; In, J K; Yang, D C

    2003-02-01

    Herbicide-resistant transgenic Panax ginseng plants were produced by introducing the phosphinothricin acetyl transferase (PAT) gene that confers resistance to the herbicide Basta (bialaphos) through Agrobacterium tumefaciens co-cultivation. Embryogenic callus gathered from cotyledon explants of P. ginseng were pre-treated with 0.5 M sucrose or 0.05 M MgSO(4 )before Agrobacterium infection. This pre-treatment process markedly enhanced the transient expression of the beta-glucuronidase (GUS) gene. Embryogenic callus was initially cultured on MS medium supplemented with 400 mg/l cefotaxime for 3 weeks and subsequently subcultured five times to a medium containing 25 mg/l kanamycin and 300 mg/l cefotaxime. Somatic embryos formed on the surfaces of kanamycin-resistant callus. Upon development into the cotyledonary stage, these somatic embryos were transferred to a medium containing 50 mg/l kanamycin and 5 mg/l gibberellic acid to induce germination and strong selection. Integration of the transgene into the plants was confirmed by polymerase chain reaction and Southern analyses. Transfer of the transgenic ginseng plantlets to soil was successfully accomplished via acclimatization in autoclaved perlite. Not all of the plantlets survived in soil that had not been autoclaved because of fungal infection, particularly in the region between the roots and leaves. Transgenic plants growing in soil were observed to be strongly resistant to Basta application.

  13. The Structural Basis of Substrate Recognition in an exo-beta-d-Glucosaminidase Involved in Chitosan Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammerts van Bueren, A.; Ghinet, M; Gregg, K

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role ofmore » E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.« less

  14. Gene therapy ameliorates cardiovascular disease in dogs with mucopolysaccharidosis VII.

    PubMed

    Sleeper, M M; Fornasari, B; Ellinwood, N M; Weil, M A; Melniczek, J; O'Malley, T M; Sammarco, C D; Xu, L; Ponder, K P; Haskins, M E

    2004-08-17

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease caused by deficient beta-glucuronidase (GUSB) activity resulting in defective catabolism of glycosaminoglycans (GAGs). Cardiac disease is a major cause of death in MPS VII because of accumulation of GAGs in cardiovascular cells. Manifestations include cardiomyopathy, mitral and aortic valve thickening, and aortic root dilation and may cause death in the early months of life or may be compatible with a fairly normal lifespan. We previously reported that neonatal administration of a retroviral vector (RV) resulted in transduction of hepatocytes, which secreted GUSB into the blood and could be taken up by cells throughout the body. The goal of this study was to evaluate the effect on cardiac disease. Six MPS VII dogs were treated intravenously with an RV-expressing canine GUSB. Echocardiographic parameters, cardiovascular lesions, and biochemical parameters of these dogs were compared with those of normal and untreated MPS VII dogs. RV-treated dogs were markedly improved compared with untreated MPS VII dogs. Most RV-treated MPS VII dogs had mild or moderate mitral regurgitation at 4 to 5 months after birth, which improved or disappeared when evaluated at 9 to 11 and at 24 months. Similarly, mitral valve thickening present early in some animals disappeared over time, whereas aortic dilation and aortic valve thickening were absent at all times. Both myocardium and aorta had significant levels of GUSB and reduction in GAGs.

  15. Integrating membrane transport with male gametophyte development and function through transcriptomics.

    PubMed

    Bock, Kevin W; Honys, David; Ward, John M; Padmanaban, Senthilkumar; Nawrocki, Eric P; Hirschi, Kendal D; Twell, David; Sze, Heven

    2006-04-01

    Male fertility depends on the proper development of the male gametophyte, successful pollen germination, tube growth, and delivery of the sperm cells to the ovule. Previous studies have shown that nutrients like boron, and ion gradients or currents of Ca2+, H+, and K+ are critical for pollen tube growth. However, the molecular identities of transporters mediating these fluxes are mostly unknown. As a first step to integrate transport with pollen development and function, a genome-wide analysis of transporter genes expressed in the male gametophyte at four developmental stages was conducted. Approximately 1,269 genes encoding classified transporters were collected from the Arabidopsis (Arabidopsis thaliana) genome. Of 757 transporter genes expressed in pollen, 16% or 124 genes, including AHA6, CNGC18, TIP1.3, and CHX08, are specifically or preferentially expressed relative to sporophytic tissues. Some genes are highly expressed in microspores and bicellular pollen (COPT3, STP2, OPT9), while others are activated only in tricellular or mature pollen (STP11, LHT7). Analyses of entire gene families showed that a subset of genes, including those expressed in sporophytic tissues, was developmentally regulated during pollen maturation. Early and late expression patterns revealed by transcriptome analysis are supported by promoter::beta-glucuronidase analyses of CHX genes and by other methods. Recent genetic studies based on a few transporters, including plasma membrane H+ pump AHA3, Ca2+ pump ACA9, and K+ channel SPIK, further support the expression patterns and the inferred functions revealed by our analyses. Thus, revealing the distinct expression patterns of specific transporters and unknown polytopic proteins during microgametogenesis provides new insights for strategic mutant analyses necessary to integrate the roles of transporters and potential receptors with male gametophyte development.

  16. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1.

    PubMed

    Hattori, T; Terada, T; Hamasuna, S

    1995-06-01

    Osem, a rice gene homologous to the wheat Em gene, which encodes one of the late-embryogenesis abundant proteins was isolated. The gene was characterized with respect to control of transcription by abscisic acid (ABA) and the transcriptional activator VP1, which is involved in the ABA-regulated gene expression during late embryo-genesis. A fusion gene (Osem-GUS) consisting of the Osem promoter and the bacterial beta-glucuronidase (GUS) gene was constructed and tested in a transient expression system, using protoplasts derived from a suspension-cultured line of rice cells, for activation by ABA and by co-transfection with an expression vector (35S-Osvp1) for the rice VP1 (OSVP1) cDNA. The expression of Osem-GUS was strongly (40- to 150-fold) activated by externally applied ABA and by over-expression of (OS)VP1. The Osem promoter has three ACGTG-containing sequences, motif A, motif B and motif A', which resemble the abscisic acid-responsive element (ABRE) that was previously identified in the wheat Em and the rice Rab16. There is also a CATGCATG sequence, which is known as the Sph box and is shown to be essential for the regulation by VP1 of the maize anthocyanin regulatory gene C1. Focusing on these sequence elements, various mutant derivatives of the Osem promoter in the transient expression system were assayed. The analysis revealed that motif A functions not only as an ABRE but also as a sequence element required for the regulation by (OS)VP1.

  17. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter.

    PubMed

    Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor

    2013-07-01

    The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.

  18. Inflammation-associated extracellular β-glucuronidase alters cellular responses to the chemical carcinogen benzo[a]pyrene.

    PubMed

    Shi, Q; Haenen, G R; Maas, L; Arlt, V M; Spina, D; Vasquez, Y Riffo; Moonen, E; Veith, C; Van Schooten, F J; Godschalk, R W L

    2016-09-01

    Neutrophils infiltrate tissues during inflammation, and when activated, they release β-glucuronidase. Since inflammation is associated with carcinogenesis, we investigated how extracellular β-glucuronidase changed the in vitro cellular response to the chemical carcinogen benzo(a)pyrene (B[a]P). For this we exposed human liver (HepG2) and lung (A549) cells to B[a]P in the presence or absence of β-glucuronidase. β-Glucuronidase reduced B[a]P-induced expression of CYP1A1 and CYP1B1 at 6 h after exposure, which did not depend on β-glucuronidase activity, because the inhibitor D-saccharic acid 1,4-lactone monohydrate did not antagonize the effect of β-glucuronidase. On the other hand, the inhibitory effect of β-glucuronidase on CYP expression was dependent on signalling via the insulin-like growth factor receptor (IGF2R, a known receptor for β-glucuronidase), because co-incubation with the IGF2R inhibitor mannose-6-phosphate completely abolished the effect of β-glucuronidase. Extracellular β-glucuronidase also reduced the formation of several B[a]P metabolites and B[a]P-DNA adducts. Interestingly, at 24 h of exposure, β-glucuronidase significantly enhanced CYP expression, probably because β-glucuronidase de-glucuronidated B[a]P metabolites, which continued to trigger the aryl hydrocarbon receptor (Ah receptor) and induced expression of CYP1A1 (in both cell lines) and CYP1B1 (in A549 only). Consequently, significantly higher concentrations of B[a]P metabolites and DNA adducts were found in β-glucuronidase-treated cells at 24 h. DNA adduct levels peaked at 48 h in cells that were exposed to B[a]P and treated with β-glucuronidase. Overall, these data show that β-glucuronidase alters the cellular response to B[a]P and ultimately enhances B[a]P-induced DNA adduct levels.

  19. Lack of specificity for the analysis of raltegravir using online sample clean-up liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Jourdil, Jean François; Bartoli, Mireille; Stanke-Labesque, Françoise

    2009-11-01

    Raltegravir is the first antiretroviral agent to target the human immunodeficiency virus-1 (HIV-1) integrase. It is indicated, in association with other antiretrovirals, in the treatment of acquired immunodeficiency syndrome (AIDS) in antiretroviral treatment-experienced adult patients with viral resistance. To evaluate the feasibility of raltegravir therapeutic drug monitoring, we developed a rapid and specific analytical method for the quantification of raltegravir in human plasma by online sample clean-up liquid chromatography-tandem mass spectrometry (LC-MS/MS). After protein precipitation (with 100 microL of acetonitrile/methanol (50/50)) of 25 microL of plasma, fast online matrix-clean-up was performed using a column switching program. The chromatographic step was optimized to separate raltegravir and its glucuronide metabolite (G-raltegravir). Multiple reaction monitoring (MRM) was used for detection of raltegravir and G-raltegravir. In the absence of G-raltegravir standard, G-raltegravir identification was confirmed by beta-glucuronidase pre-treatment. A total analysis of 3.8 min was needed to separate raltegravir to G-raltegravir. The method was linear between 10 and 3000 ng/mL for raltegravir. Analytical recovery was 94+/-1%. Variation coefficients ranged between 5% and 8.4%. Pre-treatment of plasma from a patient under raltegravir treatment with beta-glucuronidase suppressed G-raltegravir peak. We describe a fast online LC-MS/MS assay that is valid and reliable for the quantification of raltegravir, despite the lack of specificity that could occur in MRM scanning mode experiments.

  20. Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants.

    PubMed

    Yang, Jingli; Zhao, Bo; Kim, Yeon Bok; Zhou, Chenguang; Li, Chunyan; Chen, Yunlin; Zhang, Haizhen; Li, Cheng Hao

    2013-01-01

    An efficient transformation protocol was developed for Agrobacterium-mediated transformation of Phellodendron amurense Rupr. for using explants from mature seeds. The binary vector pCAMBIA1303, which contained hygromycin phosphotransferase (hptII) as a selectable marker gene and β-glucuronidase (GUS) as a reporter gene, was used for transformation studies. Different factors that affect survival of transformed buds, namely Agrobacterium infection method, bacterial strain, pre-culture duration, acetosyringone concentration, co-culture duration, and co-culture temperature were examined and optimized for transformation efficiency on the basis of GUS staining of hygromycin-resistant buds. Polymerase chain reaction (PCR), Southern blot and reverse transcription PCR confirmed the presence of the GUS gene. A transformation frequency of 13.1 % was achieved under optimized conditions for transformation (A. tumefaciens strain EHA105, 4 days co-cultivation at 4 °C, and infection of the pre-cultured mature-seed explants for 2 days). This is the first report of a successful genetic transformation protocol for P. amurense.

  1. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    PubMed

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.

  2. Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency.

    PubMed

    Rietz, Steffen; Holk, André; Scherer, Günther F E

    2004-09-01

    In Arabidopsis thaliana (L.) Heynh., the cytosolic, patatin-related phospholipase A enzymes comprise a family of ten genes designated AtPLAs thought to be involved in auxin and pathogen signalling [A. Holk et al. (2002) Plant Physiol 130:90-101]. One of these, AtPLA IIA, is investigated here by studying its transcriptional regulation through transgenic Arabidopsis plants containing the AtPLA IIA promoter (PIIA) fused to the beta-glucuronidase (GUS) gene. GUS activity appeared in leaves at 10-12 days and became increasingly stronger with age in all leaves. From the same age on, strong GUS activity was visible in the basal stipules of the rosette leaves. PIIA-dependent GUS activity was found in the older parts of the primary root (from 10 days on) and, later in development, in older parts of side roots, and the root cap. No GUS activity was detected in flower organs. PIIA-dependent GUS expression in 12-day-old plants was up-regulated after treatment by salicylic acid, Bion, wounding, 1-aminocyclopropane-1-carboxylic acid (ACC) and jasmonic acid. When transgenic PIIA:: uidA plants were grown devoid of iron, 9-day-old plants exhibited increased GUS activity in the leaves and, when devoid of phosphate, 11-day-old plants had increased GUS activity in the roots. In conclusion, this member of the patatin-related phospholipase A gene family showed properties of a defence and iron-stress and phosphate-stress gene, being transcriptionally up-regulated within hours or days.

  3. Blood cells transcriptomics as source of potential biomarkers of articular health improvement: effects of oral intake of a rooster combs extract rich in hyaluronic acid.

    PubMed

    Sánchez, Juana; Bonet, M Luisa; Keijer, Jaap; van Schothorst, Evert M; Mölller, Ingrid; Chetrit, Carles; Martinez-Puig, Daniel; Palou, Andreu

    2014-09-01

    The aim of the study was to explore peripheral blood gene expression as a source of biomarkers of joint health improvement related to glycosaminoglycan (GAG) intake in humans. Healthy individuals with joint discomfort were enrolled in a randomized, double-blind, placebo-controlled intervention study in humans. Subjects ate control yoghurt or yoghurt supplemented with a recently authorized novel food in Europe containing hyaluronic acid (65 %) from rooster comb (Mobilee™ as commercial name) for 90 days. Effects on functional quality-of-life parameters related to joint health were assessed. Whole-genome microarray analysis of peripheral blood samples from a subset of 20 subjects (10 placebo and 10 supplemented) collected pre- and post-intervention was performed. Mobilee™ supplementation reduced articular pain intensity and synovial effusion and improved knee muscular strength indicators as compared to placebo. About 157 coding genes were differentially expressed in blood cells between supplemented and placebo groups post-intervention, but not pre-intervention (p < 0.05; fold change ≥1.2). Among them, a reduced gene expression of glucuronidase-beta (GUSB), matrix metallopeptidase 23B (MMP23B), xylosyltransferase II (XYLT2), and heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) was found in the supplemented group. Correlation analysis indicated a direct relationship between blood cell gene expression of MMP23B, involved in the breakdown of the extracellular matrix, and pain intensity, and an inverse relationship between blood cell gene expression of HS6ST1, responsible for 6-O-sulfation of heparan sulfate, and indicators of knee muscular strength. Expression levels of specific genes in blood cells, in particular genes related to GAG metabolism and extracellular matrix dynamics, are potential biomarkers of beneficial effects on articular health.

  4. The pea END1 promoter drives anther-specific gene expression in different plant species.

    PubMed

    Gómez, María D; Beltrán, José-Pío; Cañas, Luis A

    2004-10-01

    END1 was isolated by an immunosubtractive approach intended to identify specific proteins present in the different pea (Pisum sativum L.) floral organs and the genes encoding them. Following this strategy we obtained a monoclonal antibody (mAbA1) that specifically recognized a 26-kDa protein (END1) only detected in anther tissues. Northern blot assays showed that END1 is expressed specifically in the anther. In situ hybridization and immunolocalization assays corroborated the specific expression of END1 in the epidermis, connective, endothecium and middle layer cells during the different stages of anther development. END1 is the first anther-specific gene isolated from pea. The absence of a practicable pea transformation method together with the fact that no END1 homologue gene exists in Arabidopsis prevented us from carrying out END1 functional studies. However, we designed functional studies with the END1 promoter in different dicot species, as the specific spatial and temporal expression pattern of END1 suggested, among other things, the possibility of using its promoter region for biotechnological applications. Using different constructs to drive the uidA (beta-glucuronidase) gene controlled by the 2.7-kb isolated promoter sequence we have proven that the END1 promoter is fully functional in the anthers of transgenic Arabidopsis thaliana (L.) Heynh., Nicotiana tabacum L. (tobacco) and Lycopersicon esculentum Mill. (tomato) plants. The presence in the -330-bp region of the promoter sequence of three putative CArG boxes also suggests that END1 could be a target gene of MADS-box proteins and that, subsequently, it would be activated by genes controlling floral organ identity.

  5. Evaluation of abalone β-glucuronidase substitution in current urine hydrolysis procedures.

    PubMed

    Malik-Wolf, Brittany; Vorce, Shawn; Holler, Justin; Bosy, Thomas

    2014-04-01

    This study examined the potential of abalone β-glucuronidase as a viable and cost effective alternative to current hydrolysis procedures using acid, Helix pomatia β-glucuronidase and Escherichia coli β-glucuronidase. Abalone β-glucuronidase successfully hydrolyzed oxazepam-glucuronide and lorazepam-glucuronide within 5% of the spiked control concentration. Benzodiazepines present in authentic urine specimens were within 20% of the concentrations obtained with the current hydrolysis procedure using H. pomatia β-glucuronidase. JWH 018 N-(5-hydroxypentyl) β-d-glucuronide was hydrolyzed within 10% of the control concentration. Authentic urine specimens showed improved glucuronide cleavage using abalone β-glucuronidase with up to an 85% increase of drug concentration, compared with the results obtained using E. coli β-glucuronidase. The JWH 018 and JWH 073 carboxylic acid metabolites also showed increased drug concentrations of up to 24%. Abalone β-glucuronidase was able to completely hydrolyze a morphine-3-glucuronide control, but only 82% of total morphine was hydrolyzed in authentic urine specimens compared with acid hydrolysis results. Hydrolysis of codeine and hydromorphone varied between specimens, suggesting that abalone β-glucuronidase may not be as efficient in hydrolyzing the glucuronide linkages in opioid compounds compared with acid hydrolysis. Abalone β-glucuronidase demonstrates effectiveness as a low cost option for enzyme hydrolysis of benzodiazepines and synthetic cannabinoids.

  6. ICI 182,780-regulated gene expression in DU145 prostate cancer cells is mediated by estrogen receptor-beta/NFkappaB crosstalk.

    PubMed

    Leung, Yuet-Kin; Gao, Ying; Lau, Kin-Mang; Zhang, Xiang; Ho, Shuk-Mei

    2006-04-01

    Estrogen receptor (ER)-beta is the predominant ER subtype in prostate cancer (PCa). We previously demonstrated that ICI 182,780 (ICI), but not estrogens, exerted dose-dependent growth inhibition on DU145 PCa cells by an ER-beta-mediated pathway. Transcriptional profiling detected a greater than three-fold upregulation of seven genes after a 12-hour exposure to 1 microM ICI. Semiquantitative reverse transcriptase polymerase chain reaction confirmed the upregulation of four genes by ICI: interleukin-12alpha chain, interleukin-8, embryonic growth/differentiation factor, and RYK tyrosine kinase. Treatment with an ER-beta antisense oligonucleotide reduced cellular ER-beta mRNA and induced loss of expression of these genes. Sequence analysis revealed the presence of consensus NFkappaB sites, but not estrogen-responsive elements, in promoters of all four genes. Reporter assay and chromatin immunoprecipitation experiments demonstrated that ICI-induced gene expression could be mediated by crosstalk between ER-beta and the NFkappaB signaling pathway, denoting a novel mechanism of ER-beta-mediated ICI action. Therefore, combined therapies targeting ER-beta and NFkappaB signaling may be synergistic as treatment for PCa.

  7. N-Glycosylation enhances functional and structural stability of recombinant β-glucuronidase expressed in Pichia pastoris.

    PubMed

    Zou, Shuping; Huang, Shen; Kaleem, Imdad; Li, Chun

    2013-03-10

    Recombinant β-glucuronidase (GUS) expressed in Pichia pastoris GS115 is an important glycoprotein, encoded by a gene with four potential N-glycosylation sites. To investigate the impact of N-linked carbohydrate moieties on the stability of recombinant GUS, it was deglycosylated by peptide-N-glycosidase F (PNGase-F) under native conditions. The enzymatic activities of the glycosylated and deglycosylated GUS were compared under various conditions such as temperature, pH, organic solvents, detergents and chaotropic agent. The results demonstrated that the glycosylated GUS retained greater fraction of maximum enzymatic activity against various types of denaturants compared with the deglycosylated. The conformational stabilities of both GUS were analyzed by monitoring the unfolding equilibrium by using the denaturant guanidinium chloride (dn-HCl). The glycosylated GUS displayed a significant increase in its conformational stability than the deglycosylated counterpart. These results affirmed the key role of N-glycosylation on the structural and functional stability of β-glucuronidase and could have potential applications in the functional enhancement of industrial enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Genome-Wide Prediction and Validation of Intergenic Enhancers in Arabidopsis Using Open Chromatin Signatures[OPEN

    PubMed Central

    Zhu, Bo; Zhang, Wenli; Jiang, Jiming

    2015-01-01

    Enhancers are important regulators of gene expression in eukaryotes. Enhancers function independently of their distance and orientation to the promoters of target genes. Thus, enhancers have been difficult to identify. Only a few enhancers, especially distant intergenic enhancers, have been identified in plants. We developed an enhancer prediction system based exclusively on the DNase I hypersensitive sites (DHSs) in the Arabidopsis thaliana genome. A set of 10,044 DHSs located in intergenic regions, which are away from any gene promoters, were predicted to be putative enhancers. We examined the functions of 14 predicted enhancers using the β-glucuronidase gene reporter. Ten of the 14 (71%) candidates were validated by the reporter assay. We also designed 10 constructs using intergenic sequences that are not associated with DHSs, and none of these constructs showed enhancer activities in reporter assays. In addition, the tissue specificity of the putative enhancers can be precisely predicted based on DNase I hypersensitivity data sets developed from different plant tissues. These results suggest that the open chromatin signature-based enhancer prediction system developed in Arabidopsis may serve as a universal system for enhancer identification in plants. PMID:26373455

  9. A comprehensive review of the prevalence of beta globin gene variations and the co-inheritance of related gene variants in Saudi Arabians with beta-thalassemia

    PubMed Central

    Alaithan, Mousa A.; AbdulAzeez, Sayed; Borgio, J. Francis

    2018-01-01

    Beta-thalassemia is a genetic disorder that is caused by variations in the beta-hemoglobin (HBB) gene. Saudi Arabia is among the countries most affected by beta-thalassemia, and this is particularly problematic in the Eastern regions. This review article is an attempt to compile all the reported mutations to facilitate further national-level studies to prepare a Saudi repository of HBB gene variations. In Saudi Arabians, IVSI-5 (G>C) and Cd 39 (C>T) are the most prevalent HBB gene variations out of 42 variations. The coinheritance of HBB gene variations with ATRX, HBA1, HBA2, HBA12, AHSP, and KLF1 gene variations were observed to be common in the Saudi population. National surveys on the molecular nature of hemoglobinopathies should be set up through collaborations between research centers from various regions to create a well-documented molecular data bank. This data bank can be used to develop a premarital screening program and lead to the best treatment and prevention strategies for beta-thalassemia. PMID:29619482

  10. Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil.

    PubMed

    Jones, E Eirian; Stewart, Alison; Whipps, John M

    2003-03-01

    A Coniothyrium minitans strain (T3) co-transformed with the genes for beta-glucuronidase (uidA) and hygromycin phosphotransferase (hph), the latter providing resistance to the antibiotic hygromycin B, was used to investigate the survival and infection of sclerotia of Sclerotinia sclerotiorum by C. minitans over time in four different soils. Infection of sclerotia was rapid in all cases, with the behaviour of transformant T3 and wild type parent A69 being similar. Differences were seen between the soils in the rate of infection of sclerotia by C. minitans and in their indigenous fungal populations. Amendment of agar with hygromycin B enabled the quantification of C. minitans in soil by dilution plating where there was a high background of other microorganisms. In Lincoln soil from New Zealand, which had a natural but low population of C. minitans, the hygromycin B resistance marker allowed the umambiguous discrimination of the applied transformed isolate from the indigenous hygromycin B sensitive one. In this soil, although the indigenous C. minitans population was detected from sclerotia, none were recovered on the dilution plates, indicating the increased sensitivity of C. minitans detection from soil using sclerotial baiting. C. minitans was a very efficient parasite, being able to infect a large proportion of sclerotia within a relatively short time from an initially low soil population. The addition of hygromycin B to agar also allowed the detection of C. minitans from decaying sclerotia by inhibiting secondary fungal colonisers. This is the first report to show that fungi colonising sclerotia already infected by C. minitans mask the detection of C. minitans from sclerotia rather than displacing the original parasite.

  11. Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs.

    PubMed

    de Dios Barajas-López, Juan; Serrato, Antonio Jesús; Olmedilla, Adela; Chueca, Ana; Sahrawy, Mariam

    2007-11-01

    Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for beta-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5' elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.

  12. Overestimation of Flavonoid Aglycones as a Result of the ex vivo Deconjugation of Glucuronides by the Tissue β-Glucuronidase

    PubMed Central

    Lu, Qing-Yi; Zhang, Lifeng; Eibl, Guido; Go, Vay-Liang W.

    2013-01-01

    Flavonoid glucuronides are the main circulating metabolites of flavonoids in humans and animals. There has been a growing interest in the biological function of glucuronides. In order to differentiate biological activity and to assess efficacy it is essential to accurately determine the levels of flavonoid aglycone and metabolic conjugate in vivo. Many organs and body fluids of humans and animals exhibit β-glucuronidase against flavonoid glucuronides. Studies have shown that β-glucuronidase within the tissues hydrolyzes glucuronides to their aglycones during the tissue extraction, leading to artificially higher reported tissue levels of aglycone than actual in vivo concentrations. The aims of this study were to estimate the extent by which the aglycones were overestimated and to investigate the use of saccharo-1,4-lactone, a β-glucuronidase inhibitor, to block the ex vivo hydrolysis of flavonoid glucuronides. Our data demonstrate that in mouse liver tissues and human tumor xenografts levels of quercetin and methylated quercetin aglycones could be over-estimated by 7 fold. The inhibition of deconjugation of quercetin and baicalein glucuronides by saccharo-1,4-lactone is dose-dependent. The amount of saccharo-1,4-lactone used to produce optimal inhibition of the enzyme activity is in the range of 15 – 24 μmol per gram of liver tissue. The use of β-glucuronidase inhibitor blocks the ex vivo deconjugation resulting in an accurate estimation of tissue levels of aglycone and conjugate. Our study described here can be extended to other animal models and human studies with different types of substrates of β-glucuronidase. PMID:24176739

  13. A novel mutation of the beta-globin gene promoter (-102 C>A) and pitfalls in family screening.

    PubMed

    Aguilar-Martinez, Patricia; Jourdan, Eric; Brun, Sophie; Cunat, Séverine; Giansily-Blaizot, Muriel; Pissard, Serge; Schved, Jean-François

    2007-12-01

    We describe a family with beta-thalassemia in which several pitfalls of genetic diagnoses were present. These include coherent family phenotypes with discrepancies in molecular findings because of nonpaternity, and a false beta-globin gene homozygous genotype due to a large deletion in the second locus. These findings underline the difficulties of family genetic studies and the need for tight relationship between professionals involved in laboratory studies and those in-charge of the clinical follow-up and genetic counselling. In this family, we also report a new silent beta-thalassemia mutation, -102 (C>A), in the distal CACCC box of the beta-globin gene promoter.

  14. Disruption of transforming growth factor-beta signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-gamma in rat hepatic stellate cells.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2007-01-01

    Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta signaling by curcumin induces gene expression of PPAR-gamma in activated HSC in vitro. Our studies provide novel insights into the molecular mechanisms of curcumin in the induction of PPAR-gamma gene expression and in the inhibition of HSC activation.

  15. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-12-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible.

  16. Lower serum oestrogen concentrations associated with faster intestinal transit.

    PubMed Central

    Lewis, S. J.; Heaton, K. W.; Oakey, R. E.; McGarrigle, H. H.

    1997-01-01

    Increased fibre intake has been shown to reduce serum oestrogen concentrations. We hypothesized that fibre exerts this effect by decreasing the time available for reabsorption of oestrogens in the colon. We tested this in volunteers by measuring changes in serum oestrogen levels in response to manipulation of intestinal transit times with senna and loperamide, then comparing the results with changes caused by wheat bran. Forty healthy premenopausal volunteers were placed at random into one of three groups. The first group took senna for two menstrual cycles then, after a washout period, took wheat bran, again for two menstrual cycles. The second group did the reverse. The third group took loperamide for two menstrual cycles. At the beginning and end of each intervention a 4-day dietary record was kept and whole-gut transit time was measured; stools were taken for measurement of pH and beta-glucuronidase activity and blood for measurement of oestrone and oestradiol and their non-protein-bound fractions and of oestrone sulphate. Senna and loperamide caused the intended alterations in intestinal transit, whereas on wheat bran supplements there was a trend towards faster transit. Serum oestrone sulphate fell with wheat bran (mean intake 19.8 g day(-1)) and with senna; total- and non-protein-bound oestrone fell with senna. No significant changes in serum oestrogens were seen with loperamide. No significant changes were seen in faecal beta-glucuronidase activity. Stool pH changed only with senna, in which case it fell. In conclusion, speeding up intestinal transit can lower serum oestrogen concentrations. PMID:9252210

  17. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode.

    PubMed

    Cho, H J; Farrand, S K; Noel, G R; Widholm, J M

    2000-01-01

    Cotyledon explants of 10 soybean [Glycine max (L.) Merr.] cultivars were inoculated with Agrobacterium rhizogenes strain K599 with and without binary vectors pBI121 or pBINm-gfp5-ER possessing both neomycin phosphotransferase II (nptII) and beta-glucuronidase (gus) or nptII and green fluorescent protein (gfp) genes, respectively. Hairy roots were produced from the wounded surface of 54-95% of the cotyledon explants on MXB selective medium containing 200 microg ml(-1) kanamycin and 500 microg ml(-1) carbenicillin. Putative individual transformed hairy roots were identified by cucumopine analysis and were screened for transgene incorporation using polymerase chain reaction. All of the roots tested were found to be co-transformed with T-DNA from the Ri-plasmid and the transgene from the binary vectors. Southern blot analysis confirmed the presence of the 35S-gfp5 gene in the plant genomes. Transgene expression was also confirmed by histochemical GUS assay and Western blot analysis for the GFP. Attempts to induce shoot formation from the hairy roots failed. Infection of hairy roots of the soybean cyst nematode (Heterodera glycines Ichinohe)-susceptible cultivar, Williams 82, with eggs of H. glycines race 1, resulted in the development of mature cysts about 4-5 weeks after inoculation. Thus the soybean cyst nematode could complete its entire life cycle in transformed soybean hairy-root cultures expressing GFP. This system should be ideal for testing genes that might impart resistance to soybean cyst nematode.

  18. Isolation and characterization of cDNA clones for human erythrocyte beta-spectrin.

    PubMed Central

    Prchal, J T; Morley, B J; Yoon, S H; Coetzer, T L; Palek, J; Conboy, J G; Kan, Y W

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical alpha (Mr 240,000) and beta (Mr 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. We report here the isolation and characterization of a human erythroid-specific beta-spectrin cDNA clone that encodes parts of the beta-9 through beta-12 repeat segments. This cDNA was used as a hybridization probe to assign the beta-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte beta-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the beta-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities. Images PMID:3478706

  19. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.

    PubMed

    Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala

    2006-06-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

  20. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity.

    PubMed

    Roberts, Adam B; Wallace, Bret D; Venkatesh, Madhu Kumar; Mani, Sridhar; Redinbo, Matthew R

    2013-08-01

    Bacterial β-glucuronidases expressed by the symbiotic intestinal microbiota appear to play important roles in drug-induced epithelial cell toxicity in the gastrointestinal (GI) tract. For the anticancer drug CPT-11 (irinotecan) and the nonsteroidal anti-inflammatory drug diclofenac, it has been shown that removal of the glucuronide moieties from drug metabolites by bacterial β-glucuronidases in the GI lumen can significantly damage the intestinal epithelium. Furthermore, selective disruption of bacterial β-glucuronidases by small molecule inhibitors alleviates these side effects, which, for CPT-11 {7-ethyl-10-[4-(1-piperidino)-1-piperidino]}, can be dose limiting. Here we characterize novel microbial β-glucuronidase inhibitors that inhibit Escherichia coli β-glucuronidase in vitro with Ki values between 180 nM and 2 μM, and disrupt the enzyme in E. coli cells, with EC50 values as low as 300 nM. All compounds are selective for E. coli β-glucuronidase without inhibiting purified mammalian β-glucuronidase, and they do not impact the survival of either bacterial or mammalian cells. The 2.8 Å resolution crystal structure of one inhibitor bound to E. coli β-glucuronidase demonstrates that it contacts and orders only a portion of the "bacterial loop" present in microbial, but not mammalian, β-glucuronidases. The most potent compound examined in this group was found to protect mice against CPT-11-induced diarrhea. Taken together, these data advance our understanding of the chemical and structural basis of selective microbial β-glucuronidase inhibition, which may improve human drug efficacy and toxicity.

  1. Molecular Insights into Microbial β-Glucuronidase Inhibition to Abrogate CPT-11 Toxicity

    PubMed Central

    Roberts, Adam B.; Wallace, Bret D.; Venkatesh, Madhu Kumar; Mani, Sridhar

    2013-01-01

    Bacterial β-glucuronidases expressed by the symbiotic intestinal microbiota appear to play important roles in drug-induced epithelial cell toxicity in the gastrointestinal (GI) tract. For the anticancer drug CPT-11 (irinotecan) and the nonsteroidal anti-inflammatory drug diclofenac, it has been shown that removal of the glucuronide moieties from drug metabolites by bacterial β-glucuronidases in the GI lumen can significantly damage the intestinal epithelium. Furthermore, selective disruption of bacterial β-glucuronidases by small molecule inhibitors alleviates these side effects, which, for CPT-11 {7-ethyl-10-[4-(1-piperidino)-1-piperidino]}, can be dose limiting. Here we characterize novel microbial β-glucuronidase inhibitors that inhibit Escherichia coli β-glucuronidase in vitro with Ki values between 180 nM and 2 μM, and disrupt the enzyme in E. coli cells, with EC50 values as low as 300 nM. All compounds are selective for E. coli β-glucuronidase without inhibiting purified mammalian β-glucuronidase, and they do not impact the survival of either bacterial or mammalian cells. The 2.8 Å resolution crystal structure of one inhibitor bound to E. coli β-glucuronidase demonstrates that it contacts and orders only a portion of the “bacterial loop” present in microbial, but not mammalian, β-glucuronidases. The most potent compound examined in this group was found to protect mice against CPT-11–induced diarrhea. Taken together, these data advance our understanding of the chemical and structural basis of selective microbial β-glucuronidase inhibition, which may improve human drug efficacy and toxicity. PMID:23690068

  2. Overestimation of flavonoid aglycones as a result of the ex vivo deconjugation of glucuronides by the tissue β-glucuronidase.

    PubMed

    Lu, Qing-Yi; Zhang, Lifeng; Eibl, Guido; Go, Vay Liang W

    2014-01-01

    Flavonoid glucuronides are the main circulating metabolites of flavonoids in humans and animals. There has been a growing interest in the biological function of glucuronides. In order to differentiate biological activity and to assess efficacy it is essential to accurately determine the levels of flavonoid aglycone and metabolic conjugate in vivo. Many organs and body fluids of humans and animals exhibit β-glucuronidase against flavonoid glucuronides. Studies have shown that β-glucuronidase within the tissues hydrolyzes glucuronides to their aglycones during the tissue extraction, leading to artificially higher reported tissue levels of aglycone than actual in vivo concentrations. The aims of this study were to estimate the extent by which the aglycones were overestimated and to investigate the use of saccharo-1,4-lactone, a β-glucuronidase inhibitor, to block the ex vivo hydrolysis of flavonoid glucuronides. Our data demonstrate that in mouse liver tissues and human tumor xenografts levels of quercetin and methylated quercetin aglycones could be over-estimated by 7-fold. The inhibition of deconjugation of quercetin and baicalein glucuronides by saccharo-1,4-lactone is dose-dependent. The amount of saccharo-1,4-lactone used to produce optimal inhibition of the enzyme activity is in the range of 15-24μmol per gram of liver tissue. The use of β-glucuronidase inhibitor blocks the ex vivo deconjugation resulting in an accurate estimation of tissue levels of aglycone and conjugate. Our study described here can be extended to other animal models and human studies with different types of substrates of β-glucuronidase. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Structure and expression of the rat CYP3A1 gene: isolation of the gene (P450/6betaB) and characterization of the recombinant protein.

    PubMed

    Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y

    1999-02-15

    A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.

  4. IL-1beta, but not BMP-7 leads to a dramatic change in the gene expression pattern of human adult articular chondrocytes--portraying the gene expression pattern in two donors.

    PubMed

    Saas, J; Haag, J; Rueger, D; Chubinskaya, S; Sohler, F; Zimmer, R; Bartnik, E; Aigner, T

    2006-10-01

    Anabolic and catabolic cytokines and growth factors such as BMP-7 and IL-1beta play a central role in controlling the balance between degradation and repair of normal and (osteo)arthritic articular cartilage matrix. In this report, we investigated the response of articular chondrocytes to these factors IL-1beta and BMP-7 in terms of changes in gene expression levels. Large scale analysis was performed on primary human adult articular chondrocytes isolated from two human, independent donors cultured in alginate beads (non-stimulated and stimulated with IL-1beta and BMP-7 for 48 h) using Affymetrix gene chips (oligo-arrays). Biostatistical and bioinformatic evaluation of gene expression pattern was performed using the Resolver software (Rosetta). Part of the results were confirmed using real-time PCR. IL-1beta modulated significantly 909 out of 3459 genes detectable, whereas BMP-7 influenced only 36 out of 3440. BMP-7 induced mainly anabolic activation of chondrocytes including classical target genes such as collagen type II and aggrecan, while IL-1beta, both, significantly modulated the gene expression levels of numerous genes; namely, IL-1beta down-regulated the expression of anabolic genes and induced catabolic genes and mediators. Our data indicate that BMP-7 has only a limited effect on differentiated cells, whereas IL-1beta causes a dramatic change in gene expression pattern, i.e. induced or repressed much more genes. This presumably reflects the fact that BMP-7 signaling is effected via one pathway only (i.e. Smad-pathway) whereas IL-1beta is able to signal via a broad variety of intracellular signaling cascades involving the JNK, p38, NFkB and Erk pathways and even influencing BMP signaling.

  5. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less

  6. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    PubMed

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5more » of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].« less

  9. Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants.

    PubMed

    Yang, Qingjie; Yuan, Dawei; Shi, Lianxuan; Capell, Teresa; Bai, Chao; Wen, Nuan; Lu, Xiaodan; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2012-10-01

    The accumulation of carotenoids in plants depends critically on the spatiotemporal expression profiles of the genes encoding enzymes in the carotenogenic pathway. We cloned and characterized the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter to determine its role in the regulation of carotenogenesis, because the native gene is expressed at high levels in petals, which contain abundant chromoplasts. We transformed tomato (Solanum lycopersicum cv. Micro-Tom) plants with the gusA gene encoding the reporter enzyme β-glucuronidase (GUS) under the control of the GlZEP promoter, and investigated the reporter expression profile at the mRNA and protein levels. We detected high levels of gusA expression and GUS activity in chromoplast-containing flowers and fruits, but minimal levels in immature fruits containing green chloroplasts, in sepals, leaves, stems and roots. GlZEP-gusA expression was strictly associated with fruit development and chromoplast differentiation, suggesting an evolutionarily-conserved link between ZEP and the differentiation of organelles that store carotenoid pigments. The impact of our results on current models for the regulation of carotenogenesis in plants is discussed.

  10. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica).

    PubMed

    Yu, Qingyue; Hao, Guodong; Zhou, Jianxin; Wang, Jingying; Evivie, Ejiroghene Ruona; Li, Jing

    2018-06-22

    Glucosinolates are a class of amino acid-derived specialized metabolites characteristic of the Brassicales order. Trp derived indolic glucosinolates are essential for the effective plant defense responses to a wide range of pathogens and herbivores. In Arabidopsis, MYB51 is the key transcription factor positively regulates indolic glucosinolate production by activating certain biosynthetic genes. In this study, we report the isolation and identification of a MYB51 from broccoli designated as BoMYB51. Overexpression of BoMYB51 in Arabidopsis increased indolic glucosinolate production by upregulating biosynthetic genes and resulted in enhanced flagellin22 (Flg22) induced callose deposition. The spatial expression pattern and responsive expression of BoMYB51 to several hormones and stress treatments were investigated by expressing the β-glucuronidase (GUS) reporter gene driven by BoMYB51 promotor in Arabidopsis and quantitative real-time PCR analysis in broccoli. Our study provides information on molecular characteristics of BoMYB51 and possible physiological process BoMYB51 may involve. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  12. Toxicity and mutagenicity of hymenoxon, sequiterpene lactone.

    PubMed

    Jones, D H; Kim, H L

    1981-12-01

    The oral LD50 of hymenoxon in Swiss white mice was found to be 241 +/- 37 mg/kg. No significant sex differences were observed. Pretreatment of male mice for 3 days using doses of 50 and 100 mg/kg hymenoxon failed to alter significantly pentobarbital sleeping time. Hymenoxon was found to be a direct-acting mutagen in the Salmonella/mammalian microsome test. Urine samples obtained from hymenoxon-treated mice were found to be negative activity when tested directly and when incubated with beta-glucuronidase. Hymenoxon did not produce lethal DNA damage as measured in the Escherichia coli polA or Bacillus subtilis recombinational assays.

  13. Biolistic transformation of Scoparia dulcis L.

    PubMed

    Srinivas, Kota; Muralikrishna, Narra; Kumar, Kalva Bharath; Raghu, Ellendula; Mahender, Aileni; Kiranmayee, Kasula; Yashodahara, Velivela; Sadanandam, Abbagani

    2016-01-01

    Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.

  14. Structural requirements of oleosin domains for subcellular targeting to the oil body.

    PubMed Central

    van Rooijen, G J; Moloney, M M

    1995-01-01

    We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295

  15. Transformation of Morinda citrifolia via simple mature seed imbibition method.

    PubMed

    Lee, J J; Ahmad, S; Roslan, H A

    2013-12-15

    Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.

  16. Quantification of 19-nortestosterone sulphate and boldenone sulphate in urine from male horses using liquid chromatography/tandem mass spectrometry.

    PubMed

    Grace, Philip B; Drake, Erica C; Teale, Philip; Houghton, Edward

    2008-10-01

    Following administration of the anabolic steroid 19-nortestosterone or its esters to the horse, a major urinary metabolite is 19-nortestosterone-17beta-sulphate. The detection of 19-nortestosterone in urine from untreated animals has led to it being considered a naturally occurring steroid in the male horse. Recently, we have demonstrated that the majority of the 19-nortestosterone found in extracts of 'normal' urine from male horses arises as an artefact through decarboxylation of the 19-carboxylic acid of testosterone. The aim of this investigation was to establish if direct analysis of 19-nortestosterone-17beta-sulphate by liquid chromatography/tandem mass spectrometry (LC/MS/MS) had potential for the detection of 19-nortestosterone misuse in the male horse. The high concentrations of sulphate conjugates of the female sex hormones naturally present in male equine urine were overcome by selective hydrolysis of the aryl sulphates using glucuronidase from Helix pomatia; this was shown to have little or no activity for alkyl sulphates such as 19-nortestosterone-17beta-sulphate. The 'free' phenolic steroids were removed by solid-phase extraction (SPE) prior to LC/MS/MS analysis. The method also allowed for the quantification of the sulphate conjugate of boldenone, a further anabolic steroid endogenous in the male equine with potential for abuse in sports. The method was applied to the quantification of these analytes in a population of samples. This paper reports the results of that study along with the development and validation of the LC/MS/MS method. The results indicate that while 19-nortestosterone-17beta-sulphate is present at low levels as an endogenous substance in urine from 'normal' male horses, its use as an effective threshold substance may be viable.

  17. Facile high-throughput forward chemical genetic screening by in situ monitoring of glucuronidase-based reporter gene expression in Arabidopsis thaliana

    PubMed Central

    Halder, Vivek; Kombrink, Erich

    2015-01-01

    The use of biologically active small molecules to perturb biological functions holds enormous potential for investigating complex signaling networks. However, in contrast to animal systems, the search for and application of chemical tools for basic discovery in the plant sciences, generally referred to as “chemical genetics,” has only recently gained momentum. In addition to cultured cells, the well-characterized, small-sized model plant Arabidopsis thaliana is suitable for cultivation in microplates, which allows employing diverse cell- or phenotype-based chemical screens. In such screens, a chemical's bioactivity is typically assessed either through scoring its impact on morphological traits or quantifying molecular attributes such as enzyme or reporter activities. Here, we describe a facile forward chemical screening methodology for intact Arabidopsis seedlings harboring the β-glucuronidase (GUS) reporter by directly quantifying GUS activity in situ with 4-methylumbelliferyl-β-D-glucuronide (4-MUG) as substrate. The quantitative nature of this screening assay has an obvious advantage over the also convenient histochemical GUS staining method, as it allows application of statistical procedures and unbiased hit selection based on threshold values as well as distinction between compounds with strong or weak bioactivity. At the same time, the in situ bioassay is very convenient requiring less effort and time for sample handling in comparison to the conventional quantitative in vitro GUS assay using 4-MUG, as validated with several Arabidopsis lines harboring different GUS reporter constructs. To demonstrate that the developed assays is particularly suitable for large-scale screening projects, we performed a pilot screen for chemical activators or inhibitors of salicylic acid-mediated defense signaling using the Arabidopsis PR1p::GUS line. Importantly, the screening methodology provided here can be adopted for any inducible GUS reporter line. PMID:25688251

  18. Functional overload increases beta-MHC promoter activity in rodent fast muscle via the proximal MCAT (betae3) site.

    PubMed

    Giger, Julia M; Haddad, Fadia; Qin, Anqi X; Baldwin, Kenneth M

    2002-03-01

    Functional overload (OL) of the rat plantaris muscle by the removal of synergistic muscles induces a shift in the myosin heavy chain (MHC) isoform expression profile from the fast isoforms toward the slow type I, or, beta-MHC isoform. Different length rat beta-MHC promoters were linked to a firefly luciferase reporter gene and injected in control and OL plantaris muscles. Reporter activities of -3,500, -914, -408, and -215 bp promoters increased in response to 1 wk of OL. The smallest -171 bp promoter was not responsive to OL. Mutation analyses of putative regulatory elements within the -171 and -408 bp region were performed. The -408 bp promoters containing mutations of the betae1, distal muscle CAT (MCAT; betae2), CACC, or A/T-rich (GATA), were still responsive to OL. Only the proximal MCAT (betae3) mutation abolished the OL response. Gel mobility shift assays revealed a significantly higher level of complex formation of the betae3 probe with nuclear protein from OL plantaris compared with control plantaris. These results suggest that the betae3 site functions as a putative OL-responsive element in the rat beta-MHC gene promoter.

  19. Laser Microdissection and Spatiotemporal Pinoresinol-Lariciresinol Reductase Gene Expression Assign the Cell Layer-Specific Accumulation of Secoisolariciresinol Diglucoside in Flaxseed Coats.

    PubMed

    Fang, Jingjing; Ramsay, Aïna; Renouard, Sullivan; Hano, Christophe; Lamblin, Frédéric; Chabbert, Brigitte; Mesnard, François; Schneider, Bernd

    2016-01-01

    The concentration of secoisolariciresinol diglucoside (SDG) found in flaxseed ( Linum usitatissimum L.) is higher than that found in any other plant. It exists in flaxseed coats as an SDG-3-hydroxy-3-methylglutaric acid oligomer complex. A laser microdissection method was applied to harvest material from different cell layers of seed coats of mature and developing flaxseed to detect the cell-layer specific localization of SDG in flaxseed; NMR and HPLC were used to identify and quantify SDG in dissected cell layers after alkaline hydrolysis. The obtained results were further confirmed by a standard molecular method. The promoter of one pinoresinol-lariciresinol reductase gene of L. usitatissimum ( LuPLR1 ), which is a key gene involved in SDG biosynthesis, was fused to a β-glucuronidase ( GUS ) reporter gene, and the spatio-temporal regulation of LuPLR1 gene expression in flaxseed was determined by histochemical and activity assays of GUS . The result showed that SDG was synthesized and accumulated in the parenchymatous cell layer of the outer integument of flaxseed coats.

  20. Laser Microdissection and Spatiotemporal Pinoresinol-Lariciresinol Reductase Gene Expression Assign the Cell Layer-Specific Accumulation of Secoisolariciresinol Diglucoside in Flaxseed Coats

    PubMed Central

    Fang, Jingjing; Ramsay, Aïna; Renouard, Sullivan; Hano, Christophe; Lamblin, Frédéric; Chabbert, Brigitte; Mesnard, François; Schneider, Bernd

    2016-01-01

    The concentration of secoisolariciresinol diglucoside (SDG) found in flaxseed (Linum usitatissimum L.) is higher than that found in any other plant. It exists in flaxseed coats as an SDG-3-hydroxy-3-methylglutaric acid oligomer complex. A laser microdissection method was applied to harvest material from different cell layers of seed coats of mature and developing flaxseed to detect the cell-layer specific localization of SDG in flaxseed; NMR and HPLC were used to identify and quantify SDG in dissected cell layers after alkaline hydrolysis. The obtained results were further confirmed by a standard molecular method. The promoter of one pinoresinol-lariciresinol reductase gene of L. usitatissimum (LuPLR1), which is a key gene involved in SDG biosynthesis, was fused to a β-glucuronidase (GUS) reporter gene, and the spatio-temporal regulation of LuPLR1 gene expression in flaxseed was determined by histochemical and activity assays of GUS. The result showed that SDG was synthesized and accumulated in the parenchymatous cell layer of the outer integument of flaxseed coats. PMID:27917190

  1. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  2. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  3. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  4. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  5. 40 CFR 174.525 - E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false E. coli B-D-glucuronidase enzyme as a... E. coli B-D-glucuronidase enzyme as a plant-incorporated protectant inert ingredient; exemption from the requirement of a tolerance. Residues of E. coli B-D-glucuronidase enzyme are exempt from the...

  6. Regional localization of the human integrin {beta}{sub 6} gene (ITGB6) to chromosome 2q24-q31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Ruiz, E.; Sanchez-Madrid, F.

    The heterodimer {alpha}{sub v}{beta}{sub 6} acts as a fibronectin receptor for human carcinoma cells. The authors report here the regional localization of the {beta}{sub 6} gene to 2q24-q31 by fluorescence in situ hybridization coupled with GTG-banding. This gene is located close to the region to which genes coding for the {alpha} subunits of the integrins VLA-4 and vitronectin receptor (ITGA4 and ITGAV, respectively) have been previously mapped (2q31-q32). These data suggest a proximal position of the integrin {beta}{sub 6} locus (ITGB6) on this integrin gene cluster. Futhermore, double-labeling in situ hybridization experiments performed with {alpha}{sub 4} and {alpha}{sub v} probesmore » indicated a telomeric position of ITGAV with respect to ITGA4. 22 refs., 2 figs.« less

  7. In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats

    NASA Technical Reports Server (NTRS)

    Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    2000-01-01

    In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.

  8. Behaviour and occurrence of estrogens in municipal sewage treatment plants--II. Aerobic batch experiments with activated sludge.

    PubMed

    Ternes, T A; Kreckel, P; Mueller, J

    1999-01-12

    Aerobic batch experiments containing a diluted slurry of activated sludge from a real sewage treatment plant (STP) near Frankfurt/Main were undertaken, in order to investigate the persistence of natural estrogens and contraceptives under aerobic conditions. The batch experiments showed that while in contact with activated sludge the natural estrogen 17 beta-estradiol was oxidized to estrone, which was further eliminated in the batch experiments in an approximate linear time dependence. Further degradation products of estrone were not observed. 16 alpha-hydroxyestrone was rapidly eliminated, again without detection of further degradation products. The contraceptive 17 alpha-ethinylestradiol was principally persistent under the selected aerobic conditions, whereas mestranol was rapidly eliminated and small portions of 17 alpha-ethinylestradiol were formed by demethylation. Additionally, two glucuronides of 17 beta-estradiol (17 beta-estradiol-17-glucuronide and 17 beta-estradiol-3-glucuronide) were cleaved in contact with the diluted activated sludge solution and thus 17 beta-estradiol was released. The glucuronidase activity of the activated sludge was further confirmed by the cleavage of 4-methylumbelliferyl-beta-D-glucuronide (MUF-beta-glucuronide) in a solution of a activated sludge slurry and Milli-Q-water (1:100, v/v). The turnover rate obtained was approximately steady state, with a turnover rate of 0.1 mumol/l for the released MUF. Hence, it is very likely that the glucuronic acid moiety of 17 beta-estradiol glucuronides and other estrogen glucuronides become cleaved in a real municipal STP, so that the concentrations of the free estrogens increase.

  9. Beta-glucuronidase activity in dried blood spots: Reduced technique with biochemical parameters determined.

    PubMed

    Cé, Jaqueline; Rodrigues, Melissa Tôrres; Käfer, Eduarda Tassoni; da Costa Moraes, Vitória; Coelho, Janice Carneiro

    2017-12-01

    Mucopolysaccharidoses (MPS) occur due to deficiency in the activity of enzymes that catalyze the breakdown of glycosaminoglycans. MPS VII is caused by deficiency of the beta-glucuronidase enzyme (GUSB). This study aimed to enhance the technique to measure GUSB activity by reducing the amount of reagents and the size of the DBS, as well as to determine some biochemical parameters of enzyme of healthy individuals. The measurement of GUSB in 3 and 1.2mm DBS (with reagents reduced 2.5- and fourfold) was correlated and the precision of the technique was tested. Optimal pH, Km and Vmax, and thermostability parameters were determined and time and temperature of sample storage were established. The correlations among the techniques were significant. Although the correlation coefficient was similar, fourfold reduction was selected. pH4.4 had the highest enzyme activity. GUSB's Km was 1.25mM, while Vmax was 594.48nmol/h/mL. After pre-incubation of the sample at 60°C, its activity dropped from 100% to 15.8% at 120min. GUSB activity significantly decreased after 45days of storage at 4, 25, and 37°C. This research allowed a previously described technique for MPS VII diagnosis to be adapted for smaller amounts of sample and reagents. That will facilitate the use of smaller amounts of samples, which may be used for other techniques and to save material. Given the importance of early MPS VII diagnosis due to the severity of the disease, using reliable diagnostic techniques in DBS is essential. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  10. Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: A comparison of prototypes.

    PubMed

    Stadler, Philipp; Blöschl, Günter; Vogl, Wolfgang; Koschelnik, Juri; Epp, Markus; Lackner, Maximilian; Oismüller, Markus; Kumpan, Monika; Nemeth, Lukas; Strauss, Peter; Sommer, Regina; Ryzinska-Paier, Gabriela; Farnleitner, Andreas H; Zessner, Matthias

    2016-09-15

    Detection of enzymatic activities has been proposed as a rapid surrogate for the culture-based microbiological pollution monitoring of water resources. This paper presents the results of tests on four fully automated prototype instruments for the on-site monitoring of beta-d-glucuronidase (GLUC) activity. The tests were performed on sediment-laden stream water in the Hydrological Open Air Laboratory (HOAL) during the period of March 2014 to March 2015. The dominant source of faecal pollution in the stream was swine manure applied to the fields within the catchment. The experiments indicated that instrument pairs with the same construction design yielded highly consistent results (R(2) = 0.96 and R(2) = 0.94), whereas the results between different designs were less consistent (R(2) = 0.71). Correlations between the GLUC activity measured on-site and culture-based Escherichia coli analyses over the entire study period yielded R(2) = 0.52 and R(2) = 0.47 for the two designs, respectively. The correlations tended to be higher at the event scale. The GLUC activity was less correlated with suspended sediment concentrations than with E. coli, which is interpreted in terms of indicator applicability and the time since manure application. The study shows that this rapid assay can yield consistent results over a long period of on-site operation in technically challenging habitats. Although the use of GLUC activity as a proxy for culture-based assays could not be proven for the observed habitat, the study results suggest that this biochemical indicator has high potential for implementation in early warning systems. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytotoxicity accompanied by oxidative stress in rat Sertoli cells: Possible role of mitochondrial fractions of Sertoli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, Hamdy A.A., E-mail: hamdyaali@yahoo.com; Khafagy, Rasha M.

    2011-05-01

    TCDD, as an endocrine disruptor, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underlying the testicular effects of TCDD, the potential toxicity of TCDD on Sertoli cells was investigated. Furthermore, the study aims to delineate whether mitochondrial fractions of Sertoli cells are involved in mediating the testicular effects of TCDD. Adult rat Sertoli cells were incubated with (5, 10 or 15 nM) of TCDD for 6, 12 or 24 h. Cell viability, lactate and LDH leakage into media along with lipid peroxidation, ROS generation, SOD, CAT, GPx, GR, {gamma}-GT and {beta}-glucuronidase activities, GSH content and {Delta}{psi}{submore » m} were measured. Superoxide anion production, COX and cardiolipin content were measured in mitochondrial fractions. Cell viability was significantly decreased while lactate and LDH leakage into media were increased. ROS generation along with lipid peroxidation was also increased. SOD, CAT, GPx, GR activities and GSH content were significantly decreased. {gamma}-GT and {beta}-glucuronidase activities were also decreased. Superoxide anion production was increased while COX activity and cardiolipin content were decreased in mitochondrial fractions. Moreover, the {Delta}{psi}{sub m} was significantly decreased as measured in Sertoli cells. In conclusion, TCDD impairs Sertoli cell functions and this effect is, at least in part, attributed to oxidative stress. We have also found that TCDD increases mitochondrial superoxide anion production and decreases {Delta}{psi}{sub m}, COX activity and mitochondrial cardiolipin content. Our findings suggest that mitochondria may play an important role in ROS production, leading to the TCDD-induced oxidative stress response and resulting toxicological consequences in rat Sertoli cells.« less

  12. A double-blind randomized placebo-controlled trial with short-term beta-glucuronidase therapy in children with chronic rhinoconjunctivitis and/or asthma due to dust mite allergy.

    PubMed

    Galli, E; Bassi, M S; Mora, E; Martelli, M; Gianni, S; Auricchio, G; Arabito, E; Rossi, P

    2006-01-01

    Enzyme potentiated desensitization, in which beta-glucuronidase (BG) is administered with low doses of mixed allergens, was proposed in the 1970s for specific immunotherapy. The BG currently commercially available in a purified and standardized preparation devoid of any allergen has been suggested as a regulator in the allergic immune response, acting on the cytokine-network of type 2 helper T cells. A double-blind trial with a single-dose of BG proved effective in preventing symptoms in adult patients with rhinoconjunctivitis due to grass pollens. The aim of this randomized double-blind placebo-controlled trial was to confirm the safety and effectiveness of double-dose intradermal BG immunotherapy in preventing symptoms in children suffering from chronic rhinoconjunctivitis and/or asthma due to dust mite. We randomized 125 children with dust-mite related chronic rhinoconjunctivitis and/or asthma to the BG treated group (67) or the placebo group (58). All patients were screened before treatment (TO), at BG or placebo administration (T1 and T3), and at 3 and 9 months after T1 (T2 and T4). Drug intake and bronchial, nasal and ocular symptoms were recorded in a diary. Patients in both groups completed the study and BG treatment was well tolerated without side effects. Significant differences in symptoms were observed, in particular for conjunctivitis (P= .008). The total drug intake for allergic symptoms was significantly lower in the treated group than in the placebo group (P<. 01). BG immunotherapy is efficacious, safe, and well tolerated in allergic children. Moreover, good compliance with the administration of 2 doses per year and the lack of significant side effects makes the benefit/risk ratio of this treatment particularly favorable.

  13. Ethylene Synthesis Regulated by Biphasic Induction of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Genes Is Required for Hydrogen Peroxide Accumulation and Cell Death in Ozone-Exposed Tomato1

    PubMed Central

    Moeder, Wolfgang; Barry, Cornelius S.; Tauriainen, Airi A.; Betz, Christian; Tuomainen, Jaana; Utriainen, Merja; Grierson, Donald; Sandermann, Heinrich; Langebartels, Christian; Kangasjärvi, Jaakko

    2002-01-01

    We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Expression of the genes encoding components of ethylene biosynthesis and perception, and biochemistry of ethylene synthesis suggested that ozone-induced ethylene synthesis in tomato is under biphasic control. In transgenic plants containing an LE-ACO1 promoter-β-glucuronidase fusion construct, β-glucuronidase activity increased rapidly at the beginning of the O3 exposure and had a spatial distribution resembling the pattern of extracellular H2O2 production at 7 h, which coincided with the cell death pattern after 24 h. Ethylene synthesis and perception were required for active H2O2 production and cell death resulting in visible tissue damage. The results demonstrate a selective ozone response of ethylene biosynthetic genes and suggest a role for ethylene, in combination with the burst of H2O2 production, in regulating the spread of cell death. PMID:12481074

  14. Simultaneous analysis of naphthols, phenanthrols, and 1-hydroxypyrene in urine as biomarkers of polycyclic aromatic hydrocarbon exposure: intraindividual variance in the urinary metabolite excretion profiles caused by intervention with beta-naphthoflavone induction in the rat.

    PubMed

    Elovaara, Eivor; Väänänen, Virpi; Mikkola, Jouni

    2003-04-01

    Two fluorimetric HPLC methods are described for the quantification of naphthols, phenanthrols and 1-hydroxypyrene (1-OHP) in urine specimens obtained from male Wistar rats exposed to naphthalene, phenanthrene and pyrene. The polycyclic aromatic hydrocarbons (PAHs) were given intraperitoneally, either alone (1.0 mmol/kg body weight) or as an equimolar mixture (0.33 mmol/kg), using the same dosages for repeated treatments on week 1 and week 2. Between these treatments, PAH-metabolizing activities encoded by aryl hydrocarbon (Ah) receptor-controlled genes were induced in the rats with beta-naphthoflavone (betaNF). Chromatographic separation of five phenanthrols (1-, 2-, 3-, 4-, and 9-isomers) was accomplished using two different RP C-18 columns. Despite selective detection (programmable wavelengths), the quantification limits in the urine ranged widely: 1-OHP (0.18 microg/l)

  15. Pituitary resistance to thyroid hormone associated with a base mutation in the hormone-binding domain of the human 3,5,3'-triiodothyronine receptor-beta.

    PubMed

    Sasaki, S; Nakamura, H; Tagami, T; Miyoshi, Y; Nogimori, T; Mitsuma, T; Imura, H

    1993-05-01

    Point mutations in the human T3 receptor-beta (TR beta) gene causing single amino acid substitutions have been identified in several different kindreds with generalized resistance to thyroid hormone. Until now, no study has been reported on the TR gene in cases of pituitary resistance (PRTH). In the present study, we analyzed the TR beta gene in a 30-yr-old Japanese female with PRTH. She exhibited clinical features of hyperthyroidism, elevated serum thyroid hormone levels accompanied by inappropriately increased secretion of TSH, mildly elevated basal metabolic rate, and increased urinary excretion of hydroxyproline. No pituitary tumor was detected. DNA fragments of exons 3-8 of the genomic TR beta gene were generated by the polymerase chain reaction and analyzed by a single stranded conformation polymorphism method. Exon 7 of the patient's TR beta gene showed an abnormal band, suggesting the existence of mutation(s). By subcloning and sequencing the DNA, a point mutation was identified in one allele at nucleotide 1297 (C to T), which altered the 333rd amino acid, arginine, to tryptophan. Neither of her apparently normal parents had any mutations of the TR beta gene. In vitro translation products of the mutant TR beta gene showed remarkably decreased T3-binding activity (Ka, 2.1 x 10(8) M-1; normal TR beta Ka, 1.1 x 10(10) M-1). Since the molecular defect detected in a patient with PRTH is similar to that seen in subjects with generalized resistance to thyroid hormone, both types of the syndrome may represent a continuous spectrum of the same etiological defect with variable tissue resistance to thyroid hormone.

  16. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  17. Reversible Heat-Induced Inactivation of Chimeric β-Glucuronidase in Transgenic Plants1

    PubMed Central

    Almoguera, Concepción; Rojas, Anabel; Jordano, Juan

    2002-01-01

    We compared the expression patterns in transgenic tobacco (Nicotiana tabacum) of two chimeric genes: a translational fusion to β-glucuronidase (GUS) and a transcriptional fusion, both with the same promoter and 5′-flanking sequences of Ha hsp17.7 G4, a small heat shock protein (sHSP) gene from sunflower (Helianthus annuus). We found that immediately after heat shock, the induced expression from the two fusions in seedlings was similar, considering chimeric mRNA or GUS protein accumulation. Surprisingly, we discovered that the chimeric GUS protein encoded by the translational fusion was mostly inactive in such conditions. We also found that this inactivation was fully reversible. Thus, after returning to control temperature, the GUS activity was fully recovered without substantial changes in GUS protein accumulation. In contrast, we did not find differences in the in vitro heat inactivation of the respective GUS proteins. Insolubilization of the chimeric GUS protein correlated with its inactivation, as indicated by immunoprecipitation analyses. The inclusion in another chimeric gene of the 21 amino-terminal amino acids from a different sHSP lead to a comparable reversible inactivation. That effect not only illustrates unexpected post-translational problems, but may also point to sequences involved in interactions specific to sHSPs and in vivo heat stress conditions. PMID:12011363

  18. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  19. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    PubMed

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P < 0.01) on a rotating rod than do wt littermates. We have also noted a lower body weight gain (P < 0.05) in Foxs1beta-gal/lbeta-gal males on a high-fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  20. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.

    PubMed

    Sawado, T; Igarashi, K; Groudine, M

    2001-08-28

    The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during erythroid differentiation. We have performed chromatin immunoprecipitation experiments to determine the recruitment of the erythroid-specific transactivator p45 NF-E2/MafK (p18 NF-E2) heterodimer and small Maf proteins to various regions in the globin gene locus before and after the induction of murine erythroleukemia (MEL) cell differentiation. We report that, before induction, the LCR is occupied by small Maf proteins, and, on erythroid maturation, the NF-E2 complex is recruited to the LCR and the active globin promoters, even though the promoters do not contain MAREs. This differentiation-coupled recruitment of NF-E2 complex correlates with a greater than 100-fold increase in beta-major globin transcription, but is not associated with a significant change in locus-wide histone H3 acetylation. These findings suggest that the beta-globin gene locus exists in a constitutively open chromatin conformation before terminal differentiation, and we speculate that recruitment of NF-E2 complex to the LCR and active promoters may be a rate-limiting step in the activation of beta-globin gene expression.

  1. Serum Zinc and β D Glucuronidase Enzyme Level in Type 2 Diabetes Mellitus with Periodontitis.

    PubMed

    Pushparani, D S

    2016-01-01

    The exact mechanism by which nutritional deficiency and lysosomal enzyme change, modify periodontal destruction has not yet been precisely defined. The study aimed to determine the serum zinc and β D glucuronidase enzyme level in the selected groups and how its increase or decrease levels are related to type 2 diabetes mellitus (T2DM) with periodontitis when compared to other groups. Six hundred subjects were selected and are categorized into four groups as Group I (control healthy subjects, n=150), Group II (T2DM with periodontitis, n=150), Group III (T2DM without periodontitis, n=150) and Group IV (Non-DM with periodontitis, n=150). The lab investigations included measuring fasting blood glucose, serum zinc and β D- glucuronidase levels. In the results, the level of serum zinc was found to be lesser in group III subjects and the activity of serum β D glucuronidase was found to be elevated nine times in group III (T2DM with periodontitis) and two times elevated in group II (T2DM without periodontitis) and group IV (Non-DM with periodontitis), when compared to control. Zinc has been reported to reduce the stabilization of lysosomal membranes. Periodontitis has been taken as the prime condition in this study and categorized as experimental groups. Perturbations in mineral metabolism are more pronounced in diabetic populations. When the level of zinc is decreased, the structural integrity of lysosomal membrane has been lost and it would have caused for the increased release of β D glucuronidase in T2DM with periodontitis.

  2. A budesonide prodrug accelerates treatment of colitis in rats.

    PubMed Central

    Cui, N; Friend, D R; Fedorak, R N

    1994-01-01

    Although oral glucocorticoids are the treatment of choice for moderate to severe ulcerative pancolitis, their systemic side effects and adrenal suppression account for considerable morbidity. An oral glucocorticoid-conjugate (prodrug), budesonide-beta-D-glucuronide, which is not absorbed in the small intestine but is hydrolysed by colonic bacterial and mucosal beta-glucuronidase to release free budesonide into the colon was synthesised. The objective of this study was to compare treatment with budesonide-beta-D-glucuronide with treatment with free budesonide by examining: (1) the healing of experimental colitis and (2) the extent of adrenal suppression. Pancolitis was induced with 4% acetic acid. Animals were then randomised to receive oral therapy for 72 hours with (1) budesonide-beta-D-glucuronide, (2) free budesonide, or (3) vehicle. Drug efficacy and colitic healing was determined by measuring gross colonic ulceration, myeloperoxidase activity, and in vivo colonic fluid absorption. Adrenal suppression was determined by measuring plasma adrenocorticotrophic hormone and serum corticosterone. Vehicle-treated colitis animals had gross ulceration, increased myeloperoxidase activity, and net colonic fluid secretion. Treatment with oral budesonide-beta-D-glucuronide accelerated all measures of colitis healing at a fourfold lower dose than did free budesonide. Furthermore, treatment with budesonide-beta-D-glucuronide did not result in adrenal suppression whereas free budesonide treatment did. A newly synthesised orally administered glucocorticoid-conjugate accelerates colitis healing with limited adrenal suppression. Development of an orally administered colon-specific steroid delivery system represents a novel approach to inflammatory bowel disease treatment. PMID:7959202

  3. Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels

    NASA Technical Reports Server (NTRS)

    Pierangeli, Silvia S.; Sonnenfeld, Gerald

    1989-01-01

    Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.

  4. Mature Luffa Leaves (Luffa cylindrica L.) as a Tool for Gene Expression Analysis by Agroinfiltration

    PubMed Central

    Błażejewska, Kamila; Kapusta, Małgorzata; Zielińska, Elżbieta; Tukaj, Zbigniew; Chincinska, Izabela A.

    2017-01-01

    We exploited the potential of cucurbits for ectopic gene expression. Agroinfiltration is a simple and commonly used method to obtain transient expression of foreign genes in plants. In contrast to in vitro transformation techniques, agroinfiltration can be used for genetic modification of mature plant tissues. Although the cucurbits are commonly used as model plants for molecular biology and biotechnology studies, to date there are no literature sources on the possibility of transient gene expression in mature cucurbit tissues. Our research has shown that mature leaves of Luffa cylindrica L. (luffa), in contrast to other cucurbit species, can be successfully transiently transformed with Agrobacterium tumefaciens. We efficiently transformed luffa leaves with a reporter gene encoding β-glucuronidase (GUS). The GUS activity in transiently transformed leaf tissues was detected within 24 h after the infiltration with bacteria. Additionally, we have shown that the activity of a transiently expressed the GUS gene can be monitored directly in the EDTA-exudates collected from the cut petioles of the agroinfiltrated leaves. The results suggest that luffa leaves can be useful as a plant expression system for studies of physiological and biochemical processes in cucurbits. PMID:28270826

  5. Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461.

    PubMed Central

    Videira, P; Fialho, A; Geremia, R A; Breton, C; Sá-Correia, I

    2001-01-01

    Biosynthesis of bacterial polysaccharide-repeat units proceeds by sequential transfer of sugars, from the appropriate sugar donor to an activated lipid carrier, by committed glycosyltransferases (GTs). Few studies on the mechanism of action for this type of GT are available. Sphingomonas paucimobilis A.T.C.C. 31461 produces the industrially important polysaccharide gellan gum. We have cloned the gelK gene from S. paucimobilis A.T.C.C. 31461. GelK belongs to family 1 of the GT classification [Campbell, Davies, Bulone, Henrissat (1997) Biochem. J. 326, 929-939]. Sequence similarity studies suggest that GelK consists of two protein modules corresponding to the -NH(2) and -CO(2)H halves, the latter possibly harbouring the GT activity. The gelK gene and the open reading frames coding for the -NH(2) (GelK(NH2)) and -CO(2)H (GelK(COOH)) halves were overexpressed in Escherichia coli. GelK and GelK(NH2) were present in both the soluble and membrane fractions of E. coli, whereas GelK(COOH) was only present in the soluble fraction. GelK catalysed the transfer of [(14)C]glucuronic acid from UDP-[(14)C]glucuronic acid into a glycolipid extracted from S. paucimobilis or E. coli, even in the presence of EDTA, and the radioactive sugar was released from the glycolipid by beta-1,4-glucuronidase. GelK was not able to use synthetic glucosyl derivatives as acceptors, indicating that the PP(i)-lipid moiety is needed for enzymic activity. Recombinant GelK(NH2) and GelK(COOH) did not show detectable activity. Based on the biochemical characteristics of GelK and on sequence similarities with N-acetylglucosaminyltransferase, we propose that GT families 1 and 28 form a superfamily. PMID:11513745

  6. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of phenolphthalein or aniline could easily be detected at least 106 times more sensitively. The preliminary results obtained on some biological samples have shown that β-glucuronidase levels could reasonably be measured by use of the nuclear technique. In addition, our results also indicate the potential application of the radiolabelling technique to measure very low β-glucuronidase levels in different biological samples in cancer research and other related fields. The objective of our study is to demonstrate the potential application of the nuclear measurement technique in different biological samples.

  7. Organization and control of genes encoding catabolic enzymes in Rhizobiaceae. Progress report, March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, D.; Ornston, L.N.

    1993-03-01

    Rhizobiaceae, a diverse bacterial group comprising rhizobia and agrobacteria, symbiotic partnership with plants form nitrogen-fixing nodules on plant roots or are plant pathogens. Phenolic compounds produced by plants serve as inducers of rhizobial nodulation genes and agrobacterial virulence genes reflect their capacity to utilize numerous aromatics, including phenolics, as a source of carbon and energy. In many microbes the aerobic degradation of numerous aromatic compounds to tricarboxylic acid cycle intermediates is achieved by the {beta}-ketoadipate pathway. Our initial studies focused on the organization and regulation of the ketoadipate pathway in Agrobacterium tumefaciens. We have cloned, identified and characterized a novelmore » regulatory gene that modulates expression of an adjacent pca (protocatechuate) structural gene, pcaD. Regulation of pcaD is mediated by the regulatory gene, termed pcaQ, in concert with the intermediate {beta}-carboxy-cis,cis-muconate. {beta}-carboxy-cis,cismuconate is an unstable chemical, not marketed commercially, and it is unlikely to permeate Escherichia coli cells if supplied in media. Because of these factors, characterization of pcaQ in E. coli required an in vivo delivery system for {beta}-carboxycis,cis-muconate. This was accomplished by designing an E. coli strain that expressed an Acinetobacter calcoaceticus pcaA gene for conversion of protocatechuate to {beta}-carboxy-cis,cis-muconate.« less

  8. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD genemore » region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.« less

  9. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Bender, M A; Groudine, Mark

    2003-04-15

    To investigate the molecular basis of beta-globin gene activation, we analyzed factor recruitment and histone modification at the adult beta-globin gene in wild-type (WT)/locus control region knockout (DeltaLCR) heterozygous mice and in murine erythroleukemia (MEL) cells. Although histone acetylation and methylation (Lys 4) are high before and after MEL differentiation, recruitment of the erythroid-specific activator NF-E2 to the promoter and preinitiation complex (PIC) assembly occur only after differentiation. We reported previously that targeted deletion of the LCR reduces beta-globin gene expression to 1%-4% of WT without affecting promoter histone acetylation. Here, we report that NF-E2 is recruited equally efficiently to the adult beta-globin promoters of the DeltaLCR and WT alleles. Moreover, the LCR deletion reduces PIC assembly only twofold, but has a dramatic effect on Ser 5 phosphorylation of RNA polymerase II and transcriptional elongation. Our results suggest at least three distinct stages in beta-globin gene activation: (1) an LCR-independent chromatin opening stage prior to NF-E2 recruitment to the promoter and PIC assembly; (2) an intermediate stage in which NF-E2 binding (LCR-independent) and PIC assembly (partially LCR-dependent) occur; and (3) an LCR-dependent fully active stage characterized by efficient pol II elongation. Thus, in its native location the LCR functions primarily downstream of activator recruitment and PIC assembly.

  10. Molecular analysis of abnormal hemoglobins in beta chain in Aegean region of Turkey and first reports of hemoglobin Andrew-Minneapolis and Hb Hinsdale from Turkey.

    PubMed

    Aykut, Ayça; Onay, Hüseyin; Durmaz, Asude; Karaca, Emin; Vergin, Canan; Aydınok, Yeşim; Özkınay, Ferda

    2015-07-01

    The Agean is one of the regions in Turkey where thalassemias and abnormal hemoglobins (Hbs) are prevalent. Combined heterozygosity of thalassemia mutations with a variety of structural Hb variants lead to an extremely wide spectrum of clinical and hematological phenotypes which is of importance for prenatal diagnosis. One hundred and seventeen patients and carriers diagnosed by hemoglobin electrophoresis (HPLC), at risk for abnormal hemoglobinopathies were screened for mutational analysis of the beta-globin gene. The full coding the 5' UTR, and the 3' UTR sequences of beta-globin gene (GenBank accession no. U01317) were amplified and sequenced. In this study, a total of 118 (12.24%) structural Hb variant alleles were identified in 1341 mutated beta-chain alleles in Medical Genetics Department of Ege University between January 2006 and November 2013. Here, we report the mutation spectrum of abnormal Hbs associated with the beta-globin gene in Aegean region of Turkey. In the present study, the Hb Hinsdale and Hb Andrew-Minneapolis variants are demonstrated for the first time in the Turkish population.

  11. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds.

    PubMed

    Waters, Brian M; Chu, Heng-Hsuan; Didonato, Raymond J; Roberts, Louis A; Eisley, Robynn B; Lahner, Brett; Salt, David E; Walker, Elsbeth L

    2006-08-01

    Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. Beta-glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues.

  12. A transgenic model of transactivation by the Tax protein of HTLV-I.

    PubMed

    Bieberich, C J; King, C M; Tinkle, B T; Jay, G

    1993-09-01

    The human T-lymphotropic virus type I (HTLV-I) Tax protein is a transcriptional regulatory protein that has been suggested to play a causal role in the development of several HTLV-I-associated diseases. Tax regulates expression of its own LTR and of certain cellular promoters perhaps by usurping the function of the host transcriptional machinery. We have established a transgenic mouse model system to define the spectrum of tissues in vivo that are capable of supporting Tax-mediated transcriptional transactivation. Transgenic mice carrying the HTLV-I LTR driving expression of the Escherichia coli beta-galactosidase (beta gal) gene were generated, and this LTR-beta gal gene was transcriptionally inactive in all tissues. When LTR-beta gal mice were mated to transgenic mice carrying the same LTR driving expression of the HTLV-I tax gene, mice that carried both transgenes showed restricted expression of the beta gal reporter gene in several tissues including muscle, bone, salivary glands, skin, and nerve. In addition, a dramatic increase in the number of beta gal-expressing cells was seen in response to wounding. These observations provide direct evidence for viral transactivation in vivo, delimit the tissues capable of supporting that transactivation, and provide a model system to study the mechanism of gene regulation by Tax.

  13. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta.

    PubMed

    Zhang, Lei; Davies, Laura J; Elling, Axel A

    2015-01-01

    Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  14. Diagnostic difficulty of beta-thalassemia syndrome in a multi-transfused patient: contribution of myelogram and studying parents.

    PubMed

    Trawinski, Élisabeth; Fenneteau, Odile; Le Mouel, Lou; Ithier, Ghislaine; Couque, Nathalie

    2017-10-01

    We report the case of a 5 year old, initially followed for congenital sideroblastic anemia, whose explorations reveal a complex family hemoglobinopathy. Myelogram performed in children, reveals dystrophic mature erythroblasts with hemoglobinization defect and basophil punctuations. These abnormalities point towards an abnormal synthesis of heme or globin chains. Iterative transfusions in child do not allow interpreting a search for abnormal hemoglobin. However, the analysis carried out in his parents, with increased HBA2 rate and microcytosis concluded in beta-thalassemia trait for father and mother. Knowing that beta-thalassemia syndrome is a genetic condition, usually recessive, the presence of beta-thalassemia trait in parents is in favor of a beta-thalassemia syndrome in child. This diagnostic hypothesis is confirmed by molecular study of globin genes that will reveal a complex hemoglobinopathie for all family's members. The parents are carriers for heterozygous mutation of β + thalassemia that the sick child presents in homozygous state supporting the diagnosis of beta-thalassemia syndrome. Moreover, a triple α globin gene is present respectively at heterozygous state for mother and at homozygous state for father and child. The triple α globin gene is a known factor of aggravation of beta-thalassemia and this clinical case with continuum observed, perfectly illustrates the intricacies between α and β globin genes.

  15. Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver

    PubMed Central

    Schreiber, Renate; Taschler, Ulrike; Wolinski, Heimo; Seper, Andrea; Tamegger, Stefanie N.; Graf, Maria; Kohlwein, Sepp D.; Haemmerle, Guenter; Zimmermann, Robert; Zechner, Rudolf; Lass, Achim

    2009-01-01

    Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with β-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl β-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism. PMID:19723663

  16. Genetic polymorphism of the beta-2 adrenergic receptor in atopic and non-atopic subjects.

    PubMed

    Potter, P C; Van Wyk, L; Martin, M; Lentes, K U; Dowdle, E B

    1993-10-01

    To investigate a possible genetic basis for reported differences in beta-2 receptor expression in atopic subjects, DNA from 42 atopic children (22 asthmatics and 22 with allergic rhinitis) and 30 non-atopic subjects was Southern blotted and Ban-1 restriction fragment polymorphisms (RFLPS) were studied using a 2.6 kb probe of the human beta-2 receptor gene. Two alleles 3.1 kb and 2.9 kb were identified. Homozygotes and heterozygotes for the two alleles were found with equal frequency in the atopic patients who had asthma and in those who had allergic rhinitis only. The gene frequencies for the upper and lower alleles were 0.45 and 0.55 respectively. Our studies do not provide evidence for an association between a particular polymorphic form of the human beta-2 receptor gene and atopy.

  17. Stat5-mediated regulation of the human type II 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene: activation by prolactin.

    PubMed

    Feltus, F A; Groner, B; Melner, M H

    1999-07-01

    Altered PRL levels are associated with infertility in women. Molecular targets at which PRL elicits these effects have yet to be determined. These studies demonstrate transcriptional regulation by PRL of the gene encoding the final enzymatic step in progesterone biosynthesis: 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3beta-HSD). A 9/9 match with the consensus Stat5 response element was identified at -110 to -118 in the human Type II 3beta-HSD promoter. 3beta-HSD chloramphenicol acetyltransferase (CAT) reporter constructs containing either an intact or mutated Stat5 element were tested for PRL activation. Expression vectors for Stat5 and the PRL receptor were cotransfected with a -300 --> +45 3beta-HSD CAT reporter construct into HeLa cells, which resulted in a 21-fold increase in reporter activity in the presence of PRL. Promoter activity showed an increased response with a stepwise elevation of transfected Stat5 expression or by treatment with increasing concentrations of PRL (max, 250 ng/ml). This effect was dramatically reduced when the putative Stat5 response element was removed by 5'-deletion of the promoter or by the introduction of a 3-bp mutation into critical nucleotides in the element. Furthermore, 32P-labeled promoter fragments containing the Stat5 element were shifted in electrophoretic mobility shift assay experiments using nuclear extracts from cells treated with PRL, and this complex was supershifted with antibodies to Stat5. These results demonstrate that PRL has the ability to regulate expression of a key human enzyme gene (type II 3beta-HSD) in the progesterone biosynthetic pathway, which is essential for maintaining pregnancy.

  18. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors

    PubMed Central

    2014-01-01

    Background Small membrane-permeable molecules are now widely used during maintenance and differentiation of embryonic stem cells of different species. In particular the glycogen synthase kinase 3 (GSK3) is an interesting target, since its chemical inhibition activates the Wnt/beta-catenin pathway. In the present comparative study four GSK3 inhibitors were characterized. Methods Cytotoxicity and potential to activate the Wnt/beta-catenin pathway were tested using the commonly used GSK3 inhibitors BIO, SB-216763, CHIR-99021, and CHIR-98014. Wnt/beta-catenin-dependent target genes were measured by quantitative PCR to confirm the Wnt-reporter assay and finally EC50-values were calculated. Results CHIR-99021 and SB-216763 had the lowest toxicities in mouse embryonic stem cells and CHIR-98014 and BIO the highest toxicities. Only CHIR-99021 and CHIR-98014 lead to a strong induction of the Wnt/beta-catenin pathway, whereas BIO and SB-216763 showed a minor or no increase in activation of the Wnt/beta-catenin pathway over the natural ligand Wnt3a. The data from the Wnt-reporter assay were confirmed by gene expression analysis of the TCF/LEF regulated gene T. Conclusions Out of the four tested GSK3 inhibitors, only CHIR-99021 and CHIR-98014 proved to be potent pharmacological activators of the Wnt/beta-catenin signaling pathway. But only in the case of CHIR-99021 high potency was combined with very low toxicity. PMID:24779365

  19. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors.

    PubMed

    Naujok, Ortwin; Lentes, Jana; Diekmann, Ulf; Davenport, Claudia; Lenzen, Sigurd

    2014-04-29

    Small membrane-permeable molecules are now widely used during maintenance and differentiation of embryonic stem cells of different species. In particular the glycogen synthase kinase 3 (GSK3) is an interesting target, since its chemical inhibition activates the Wnt/beta-catenin pathway. In the present comparative study four GSK3 inhibitors were characterized. Cytotoxicity and potential to activate the Wnt/beta-catenin pathway were tested using the commonly used GSK3 inhibitors BIO, SB-216763, CHIR-99021, and CHIR-98014. Wnt/beta-catenin-dependent target genes were measured by quantitative PCR to confirm the Wnt-reporter assay and finally EC50-values were calculated. CHIR-99021 and SB-216763 had the lowest toxicities in mouse embryonic stem cells and CHIR-98014 and BIO the highest toxicities. Only CHIR-99021 and CHIR-98014 lead to a strong induction of the Wnt/beta-catenin pathway, whereas BIO and SB-216763 showed a minor or no increase in activation of the Wnt/beta-catenin pathway over the natural ligand Wnt3a. The data from the Wnt-reporter assay were confirmed by gene expression analysis of the TCF/LEF regulated gene T. Out of the four tested GSK3 inhibitors, only CHIR-99021 and CHIR-98014 proved to be potent pharmacological activators of the Wnt/beta-catenin signaling pathway. But only in the case of CHIR-99021 high potency was combined with very low toxicity.

  20. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  1. Molecular analysis of Hb Q-H disease and Hb Q-Hb E in a Singaporean family.

    PubMed

    Tan, J; Tay, J S; Wong, Y C; Kham, S K; Bte Abd Aziz, N; Teo, S H; Wong, H B

    1995-01-01

    Hb Q (alpha 74Asp-His) results from a mutation in the alpha-gene such that abnormal alpha Q-chains are synthesized. The alpha Q-chains combine with the normal Beta A-chains to form abnormal Hb alpha 2Q beta 2A (Hb Q). Hb Q-H disease is rare, and has been reported only in the Chinese. We report here a Chinese family, were the mother diagnosed with Hb Q-H disease and the father with Hb E heterozygosity and a child with Hb Q-E-thalassemia. Thalassemia screening of the mother's blood revealed a Hb level of 6.8g/dl with low MCV and MCH. Her blood film was indicative of thalassemia. Cellulose acetate electrophoresis showed Hb H and Hb Q with the absence of Hb A. Globin chain biosynthesis was carried out and alpha Q- and beta-chains were detected. Normal alpha- chains were absent. Digestion of the mother's DNA with Bam HI and Bgl II followed by hybridization with the 1.5 kb alpha-Pst probe showed a two alpha-gene deletion on one chromosome and the -alpha Q chain mutant with the -alpha 4.2 defect on the other chromosome. DNA amplification studies indicated the two-gene deletion to be of the -SEA/ defect. The patient was concluded to possess Hb Q-H disease (--SEA/-alpha 4.2Q). Cellulose acetate electrophoresis of the father's blood showed the presence of Hb A, F and E. Molecular analysis of the father's DNA confirmed an intact set of alpha-genes (alpha alpha/alpha alpha). Globin chain biosynthesis of fetal blood of their child showed gamma, beta A, beta E, alpha A and alpha Q-chains. Molecular analysis of the child's DNA showed one alpha-gene deletion, thus giving a genotype of alpha alpha/-alpha 4.2Q beta beta E.

  2. Synergistic activation of the chicken mim-1 gene by v-myb and C/EBP transcription factors.

    PubMed Central

    Burk, O; Mink, S; Ringwald, M; Klempnauer, K H

    1993-01-01

    The retroviral oncogene v-myb encodes a transcriptional activator which is responsible for the activation of the mim-1 gene in myelomonocytic cells transformed by v-myb. The mim-1 promoter contains several myb consensus binding sites and has previously been shown to be regulated directly by v-myb. Here we report that the mim-1 gene is activated synergistically by v-myb and different C/EBP transcription factors. We have cloned a chicken C/EBP-related gene that is highly expressed in myeloid cells and identified it as the chicken homolog of C/EBP beta. A dominant-negative variant of chicken C/EBP beta interferes with the v-myb induced activation of the mim-1 gene in these cells, suggesting that C/EBP beta or another C/EBP transcription factor is required for the activation of mim-1 by v-myb. We found that C/EBP beta and other C/EBP transcription factors confer to fibroblasts the ability to induce the mim-1 gene in the presence of v-myb. Finally we show that, in contrast to v-myb, c-myb synergizes with C/EBP transcription factors only at low concentrations of c-myb protein. Our results suggest a role for C/EBP beta, and possibly for other C/EBP transcription factors, in v-myb function and in myeloid-specific gene activation. Images PMID:8491193

  3. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, January 1-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.

    1979-08-01

    This report summarizes results of ongoing experiments designed to develop automated flow-analysis assay methods for discerning damage to exfoliated respiratory tract cells in model test animals exposed by inhalation to physical and chemical agents associated with the production of synthetic fuels from oil shale and coal, the specific goal being the determination of atypical changes in exposed alveolar macrophages and epithelial cells. Animals were exposed to oil shale particles (raw and spent), silica, and polystyrene latex spheres via intratracheal instillation. Respiratory tract cells were obtained by lavaging the lungs with normal saline, stained with mithramycin for DNA content, and analyzedmore » using flow cytometric analysis methods. In addition to measuring DNA content, differential and total cell counts were made on all samples analyzed. DNA content frequency distribution histograms and cytology showed definite atypical changes resulting from exposure to shale and silica particulates when compared to the controls. To continue development of fluorescence staining methods for measuring intracellular enzymes in alveolar macrophages, studies were initiated for determining ..beta..-glucuronidase using naphthol AS-BI-..beta..-d-glucuronic acid as a fluorogenic substrate. As this new technology becomes adapted to analyzing pulmonary macrophages and epithelial cells, the measurement of physical and biochemical properties as a function of exposure to particulate and gaseous toxic agents related to the production of synthetic fuels will be increased. This analytical approach is designed to assist in the establishment of future guideline for estimating the risks to exposed humans.« less

  4. Triplication of a four-gene set during evolution of the goat beta-globin locus produced three genes now expressed differentially during development.

    PubMed Central

    Townes, T M; Fitzgerald, M C; Lingrel, J B

    1984-01-01

    Distinct hemoglobins are synthesized in goats at different stages of development, similar to humans. Embryonic hemoglobins (zeta 2 epsilon 2 and alpha 2 epsilon 2) are synthesized initially and are followed sequentially by fetal (alpha 2 beta F2), preadult (alpha 2 beta C2), and adult (alpha 2 beta A2) hemoglobins. To help understand the basis of these switches, the genes of the beta-globin locus have been cloned and their linkage arrangement has been determined by the isolation of lambda phage carrying overlapping inserts of genomic goat DNA. The locus extends over 120 kilobase pairs and consists of 12 genes arranged in the following order: epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F. Comparison of the nucleotide sequence of the 12 genes shows that the locus is organized into three homologous four-gene sets that presumably evolved by the triplication of an ancestral set of four genes (epsilon-epsilon-psi beta-beta). Interestingly, the three genes (beta C, beta A, and beta F) located at the ends of the four-gene sets are expressed at different stages of development. Therefore, the goat beta F-, beta C-, and beta A-globin genes appear to have evolved by a mechanism that includes the triplication of 40-50 kilobase pairs of DNA and the recruitment of newly formed genes for expression in fetal, preadult, and adult life. PMID:6593719

  5. Optimizing the fluorometric β-glucuronidase assay in ruminant milk for a more precise determination of mastitis.

    PubMed

    Larsen, Torben; Aulrich, Karen

    2012-02-01

    Activity of the enzyme β-glucuronidase (EC 3.2.1.31) is found in milk from ruminants with mastitis. However, the use of this enzymic activity as an indicator of mastitis has gained little attention possibly because of its low activity when compared with other mastitis indicators. The determination may therefore be less precise and the analytical procedure very time consuming and labour intensive. The present study optimized the fluorometric determination of the β-glucuronidase activity with respect to substrate concentration, pH, incubation time etc., validated the assay, and developed it into large scale analyses. The assay performance is satisfactory regarding precision, linearity etc., and it appears comparable to analogous fluorometric assays for mastitis indicators in milk. From a local dairy herd, 825 milk samples were analysed for potential mastitis indicators, i.e. β-glucuronidase, lactate dehydrogenase (LDH), alkaline phosphatase (AP), and N-acetyl-β-d-glucosaminidase (NAGase) activity, and for somatic cell counts (SCC) and the variables were compared. Activity of β-glucuronidase was moderately but significantly correlated to SCC (r=0·21; n=768) as well as the other mentioned variables (r=0·25-0·43; n=825). Simple indices based on β-glucuronidase and LDH or NAGase activity were tested as indicators of mastitis (SCC), but were not found to improve the diagnostic value. Future studies may further verify whether β-glucuronidase can compete with well-established indicators of mastitis in cows such as LDH or NAGase as well as determine whether β-glucuronidase activity, in combination with other indicators of mastitis, has an advantage. Nineteen milk samples from subclinical and latent cases of mastitis (individual quarters) were identified for specific pathogens (PCR method) and measured for β-glucuronidase activity. The activity was tested at four different pH levels (5·5, 6·0, 6·5 and 7·0) in order to investigate the possibility of discrimination between pathogens. However, all milk samples (strains of pathogens) had the same pH optimum for β-glucuronidase activity; this may indicate that enzymic activity from mammary tissue and leucocytes dominates over enzyme activity from bacterial cells.

  6. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    PubMed Central

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  7. Effect of saikosaponins and extracts of vinegar-baked Bupleuri Radix on the activity of β-glucuronidase.

    PubMed

    Chen, Xianzhi; Yu, Tongya; Chen, Zhenxing; Zhao, Ruizhi; Mao, Shirui

    2014-09-01

    In Traditional Chinese Medicine, liver targeting is usually achieved by coadministration with Vinegar-baked Radix Bupleuri (VBRB), but the mechanism is unclear. In this paper, the influence of VBRB on the activity of β-glucuronidase was investigated and compared with that of saikosaponins. The activity of β-glucuronidase was measured by microplate reader using a 4-nitrophenyl-β-d-glucuronide substrate. The change of 4-nitrophenol content was used to characterize the activity of β-glucuronidase. Bupleurum chinenes were found to be the inhibitor of β-glucuronidase. The inhibition rate of Bupleurum chinenes extracts BC1 (high molecular weight polysaccharides), BC2 (ethanol soluble/water insoluble component), BC3 (extracted by n-butanol, soluble in water), and BC4 (low molecular weight water soluble parts) on the activity of β-glucuronidase was found to be 45.15%, 33.94%, 24.94%, and 34.54%, respectively, after 1 h incubation, with BC1 showing the highest inhibition rate. In contrast, the saikosaponins were demonstrated to be the promoter of β-glucuronidase, with promotion rates of 333.56%, 217.04%, 247.87%, 149.75%, and 92.50% for saikosaponin standard samples A, B, B2, C, and D, respectively, (p<0.05). In conclusion, inhibiting the activity of β-glucuronidase might be one of the reasons why VBRB could influence drug distribution upon its coadministration with other drugs. Since saikosaponins and VBRB extracts have opposite effect, more attention should be paid to the content of saikosaponins in the extracts upon its application.

  8. Inhibitory effect of ciprofloxacin on β-glucuronidase-mediated deconjugation of mycophenolic acid glucuronide.

    PubMed

    Kodawara, Takaaki; Masuda, Satohiro; Yano, Yoshitaka; Matsubara, Kazuo; Nakamura, Toshiaki; Masada, Mikio

    2014-07-01

    The interaction between mycophenolate (MPA) and quinolone antibiotics such as ciprofloxacin is considered to reduce the enterohepatic recycling of MPA, which is biotransformed in the intestine from MPA glucuronide (MPAG) conjugate excreted via the biliary system; however, the molecular mechanism underlying this biotransformation of MPA is still unclear. In this study, an in vitro system was established to evaluate β-glucuronidase-mediated deconjugation and to examine the influence of ciprofloxacin on the enzymatic deconjugation of MPAG and MPA resynthesis. Resynthesis of MPA via deconjugation of MPAG increased in a time-dependent manner from 5 to 60 min in the presence of β-glucuronidase. Ciprofloxacin and phenolphthalein-β-d-glucuronide (PhePG), a typical β-glucuronidase substrate, significantly decreased the production of MPA from MPAG in the β-glucuronidase-mediated deconjugation system. In addition, enoxacin significantly inhibited the production of MPA from MPAG, while levofloxacin and ofloxacin had no inhibitory effect on MPA synthesis. Pharmacokinetic analysis revealed that ciprofloxacin showed a dose-dependent inhibitory effect on MPA production from MPAG via β-glucuronidase with a half-maximal inhibitory concentration (IC50 ) value of 30.4 µm. While PhePG inhibited the β-glucuronidase-mediated production of MPA from MPAG in a competitive manner, ciprofloxacin inhibited MPA synthesis via noncompetitive inhibition. These findings suggest that the reduction in the serum MPA concentration during the co-administration of ciprofloxacin is at least in part due to the decreased enterohepatic circulation of MPA because of noncompetitive inhibition of deconjugation of MPAG by intestinal β-glucuronidase. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Expression of the barley stripe mosaic virus RNA beta "triple gene block".

    PubMed

    Zhou, H; Jackson, A O

    1996-02-15

    Genomic RNA beta of barley strip mosaic virus (BSMV) contains four defined open reading frames (ORFs). These include the coat protein (beta a) and a "triple gene block" consisting of the beta b, beta c, and beta d ORFs that overlap one another. Two subgenomic beta RNAs (sgRNA beta 1 and sgRNA beta 2) with sizes of 2.5 and 0.96 kb were identified in BSMV-infected protoplasts, and their transcription initiation sites were mapped to nucleotides 789 and 2327, respectively, of RNA beta by primer extension experiments. In a cell-free wheat germ translation system, genomic RNA beta served as a mRNA only for the 22-kDa coat protein, and sgRNA beta 1 directed synthesis of only the 58-kDA beta b protein. However, with sgRNA beta 2, three proteins with sizes of 14, 17, and 23 kDa were synthesized. Both the 14- and the 23-kDa proteins were recognized by the beta d antibodies in vitro and in vivo. These results demonstrated that the 14-kDa protein was encoded by the beta d ORF and suggested that the 23-kDa protein, designated beta d', is a readthrough product of the amber stop codon of the beta d ORF. Mutagenesis of sgRNA beta 2 revealed that the 17-kDa protein was a product of the beta c ORF. Expression of sgRNA beta 1 and sgRNA beta 2 was also investigated with the chloramphenicol acetyl transferase (CAT) reporter gene in protoplasts coinfected with RNAs alpha and gamma plus chimeric RNA beta derivatives containing the CAT gene in-frame with the beta b, beta c, beta d, or beta d' ORFs. Elimination of the sgRNA beta 1 promoter abolished CAT expression from the beta b-CAT chimeric RNA, and removal of the sgRNA beta 2 promoter prevented CAT expression from the beta c-CAT, beta d-CAT, and beta d'-CAT chimeric RNAs. Taken together, these results demonstrate that the BSMV coat protein is the sole translation product of the genomic RNA beta, whereas sgRNA beta 1 serves as a messenger for translation of the beta b protein, and sgRNA beta 2 functions as a messenger for translation of beta c and beta d and the newly discovered beta d' protein. Additional mutagenesis experiments indicate that beta c is translated by a leaky scanning mechanism.

  10. Genetic Transformation of an argB Mutant of Aspergillus oryzae

    PubMed Central

    Hahm, Young Tae; Batt, Carl A.

    1988-01-01

    An argB mutant of Aspergillus oryzae NRRL 492 has been genetically transformed with the Aspergillus nidulans argB gene. Protoplasts were generated with a combination of Novozyme 234 and β-glucuronidase and regenerated on sucrose-stabilized minimal medium without arginine as described for A. nidulans. A frequency of 5 to 10 transformants per μg of DNA was obtained; however, most transformants appeared abortive. The A. nidulans argB gene and vector sequences appeared to be integrated into the A. oryzae chromosome. Images PMID:16347669

  11. Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies.

    PubMed

    Taha, Muhammad; Ullah, Hayat; Al Muqarrabun, Laode Muhammad Ramadhan; Khan, Muhammad Naseem; Rahim, Fazal; Ahmat, Norizan; Ali, Muhammad; Perveen, Shahnaz

    2018-01-01

    Thirty-two (32) bis-indolylmethane-hydrazone hybrids 1-32 were synthesized and characterized by 1 HNMR, 13 CNNMR and HREI-MS. All compounds were evaluated in vitro for β-glucuronidase inhibitory potential. All analogs showed varying degree of β-glucuronidase inhibitory potential ranging from 0.10 ± 0.01 to 48.50 ± 1.10 μM when compared with the standard drug d-saccharic acid-1,4-lactone (IC 50 value 48.30 ± 1.20 μM). Derivatives 1-32 showed the highest β-glucuronidase inhibitory potentials which is many folds better than the standard drug d-saccharic acid-1,4-lactone. Further molecular docking study validated the experimental results. It was proposed that bis-indolylmethane may interact with some amino acid residues located within the active site of β-glucuronidase enzyme. This study has culminated in the identification of a new class of potent β-glucuronidase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Selective intraarterial gene delivery into a canine meningioma.

    PubMed

    Chauvet, A E; Kesava, P P; Goh, C S; Badie, B

    1998-05-01

    The goal of this study was to evaluate gene delivery to a benign brain tumor. A recombinant adenovirus vector bearing the Escherichia coli beta-galactosidase reporter gene was selectively injected into the vascular supply of a spontaneously occurring canine olfactory groove meningioma. The tumor and a small amount of peritumoral brain tissue were removed 5 days after viral injection and stained with X-Gal to assess gene delivery. The authors noted significant beta-galactosidase gene expression by the tumor, but not by surrounding brain tissue. No obvious viral-related cytotoxicity was noted. The authors found that meningiomas can be successfully transduced by adenovirus vectors by using endovascular techniques.

  13. Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile

    PubMed Central

    Stringer, Andrea M; Gibson, Rachel J; Bowen, Joanne M; Logan, Richard M; Ashton, Kimberly; Yeoh, Ann SJ; Al-Dasooqi, Noor; Keefe, Dorothy MK

    2009-01-01

    Chemotherapy-induced diarrhoea is a major oncological problem, caused by the cytotoxic effects of cancer chemotherapy. Irinotecan is linked with severe mucositis and diarrhoea, the mechanisms of which remain poorly understood. Bacterial β-glucuronidase is thought to be involved in the metabolism of irinotecan, implicating the intestinal flora. Intestinal mucins may also be implicated in the development of chemotherapy-induced diarrhoea. Rats were treated with 200 mg/kg of irinotecan and killed at 96, 120 and 144 h. The rats were monitored for diarrhoea. Pathology and immunohistochemical staining was performed. The samples were cultured and faecal DNA was analysed using real-time polymerase chain reaction. Severe diarrhoea was observed from 72 to 96 h. A decrease in body mass was also observed after treatment. Significant changes in goblet cell numbers (both complete and cavitated cells) were observed in the small and large intestines. Changes in MUC gene expression were observed in the small intestine only. Modifications were observed to the intestinal flora profile, especially Escherichia coli, and an increase in the expression of β-glucuronidase was detected. In conclusion, irinotecan-induced diarrhoea may be caused by an increase in some β-glucuronidase-producing bacteria, especially E. coli, exacerbating the toxicity of active metabolites. Accelerated mucous secretion and mucin release may also contribute to the delayed onset of diarrhoea. PMID:19765103

  14. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    PubMed

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  15. Designing Allosteric Control into Enzymes by Chemical Rescue of Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deckert, Katelyn; Budiardjo, S. Jimmy; Brunner, Luke C.

    2012-08-07

    Ligand-dependent activity has been engineered into enzymes for purposes ranging from controlling cell morphology to reprogramming cellular signaling pathways. Where these successes have typically fused a naturally allosteric domain to the enzyme of interest, here we instead demonstrate an approach for designing a de novo allosteric effector site directly into the catalytic domain of an enzyme. This approach is distinct from traditional chemical rescue of enzymes in that it relies on disruption and restoration of structure, rather than active site chemistry, as a means to achieve modulate function. We present two examples, W33G in a {beta}-glycosidase enzyme ({beta}-gly) and W492Gmore » in a {beta}-glucuronidase enzyme ({beta}-gluc), in which we engineer indole-dependent activity into enzymes by removing a buried tryptophan side chain that serves as a buttress for the active site architecture. In both cases, we observe a loss of function, and in both cases we find that the subsequent addition of indole can be used to restore activity. Through a detailed analysis of {beta}-gly W33G kinetics, we demonstrate that this rescued enzyme is fully functionally equivalent to the corresponding wild-type enzyme. We then present the apo and indole-bound crystal structures of {beta}-gly W33G, which together establish the structural basis for enzyme inactivation and rescue. Finally, we use this designed switch to modulate {beta}-glycosidase activity in living cells using indole. Disruption and recovery of protein structure may represent a general technique for introducing allosteric control into enzymes, and thus may serve as a starting point for building a variety of bioswitches and sensors.« less

  16. Successful expression in pollen of various plant species of in vitro synthesized mRNA introduced by particle bombardment.

    PubMed

    Tanaka, T; Nishihara, M; Seki, M; Sakamoto, A; Tanaka, K; Irifune, K; Morikawa, H

    1995-05-01

    Gold particles coated with beta-glucuronidase (GUS) mRNA with a 5' cap structure that had been synthesized in vitro were introduced, by use of a pneumatic particle gun, into pollen grains of lily (Lilium longiflorum), freesia (Freesia refracta) and tulip (Tulipa gesneriana). A fluorometric assay for the GUS activity indicated that in vitro synthesized GUS mRNA introduced into these pollen cells by particle bombardment was successfully expressed. GUS activity in extracts of the bombarded lily pollen became detectable fluorometrically within 30 min after bombardment, peaked at 6 h, then gradually decreased. This activity changed as a function of the developmental stage of the pollen cell of lily.

  17. IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes.

    PubMed

    Dumoutier, L; Van Roost, E; Ameye, G; Michaux, L; Renauld, J C

    2000-12-01

    IL-TIF is a new cytokine originally identified as a gene induced by IL-9 in murine T lymphocytes, and showing 22% amino acid identity with IL-10. Here, we report the sequence and organization of the mouse and human IL-TIF genes, which both consist of 6 exons spreading over approximately 6 Kb. The IL-TIF gene is a single copy gene in humans, and is located on chromosome 12q15, at 90 Kb from the IFN gamma gene, and at 27 Kb from the AK155 gene, which codes for another IL-10-related cytokine. In the mouse, the IL-TIF gene is located on chromosome 10, also in the same region as the IFN gamma gene. Although it is a single copy gene in BALB/c and DBA/2 mice, the IL-TIF gene is duplicated in other strains such as C57Bl/6, FVB and 129. The two copies, which show 98% nucleotide identity in the coding region, were named IL-TIF alpha and IL-TIF beta. Beside single nucleotide variations, they differ by a 658 nucleotide deletion in IL-TIF beta, including the first non-coding exon and 603 nucleotides from the promoter. A DNA fragment corresponding to this deletion was sufficient to confer IL-9-regulated expression of a luciferase reporter plasmid, suggesting that the IL-TIF beta gene is either differentially regulated, or not expressed at all.

  18. Aldouronate utilization in Paenibacillus sp. strain JDR-2: Physiological and enzymatic evidence for coupling of extracellular depolymerization and intracellular metabolism.

    PubMed

    Nong, Guang; Rice, John D; Chow, Virginia; Preston, James F

    2009-07-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from decaying sweet gum wood, secretes a multimodular glycohydrolase family GH10 endoxylanase (XynA1) anchored to the cell surface. The gene encoding XynA1 is part of a xylan utilization regulon that includes an aldouronate utilization gene cluster with genes encoding a GH67 alpha-glucuronidase (AguA), a GH10 endoxylanase (XynA2), and a GH43 arabinofuranosidase/beta-xylosidase (XynB). Here we show that this Paenibacillus sp. strain is able to utilize methylglucuronoxylose (MeGAX(1)), an aldobiuronate product that accumulates during acid pretreatment of lignocellulosic biomass, and methylglucuronoxylotriose (MeGAX(3)), the product of the extracellular XynA1 acting on methylglucuronoxylan (MeGAX(n)). The average rates of utilization of MeGAX(n), MeGAX(1), and MeGAX(3) were 149.8, 59.4, and 54.3 microg xylose equivalents.ml(-1).h(-1), respectively, and were proportional to the specific growth rates on the substrates. AguA was active with MeGAX(1) and MeGAX(3), releasing 4-O-methyl-d-glucuronate alpha-1,2 linked to a nonreducing terminal xylose residue. XynA2 converted xylotriose, generated by the action of AguA on MeGAX(3), to xylose and xylobiose. The ability to utilize MeGAX(1) provides a novel metabolic potential for bioconversion of acid hydrolysates of lignocellulosics. The 2.8-fold-greater rate of utilization of polymeric MeGAX(n) than that of MeGAX(3) indicates that there is coupling of extracellular depolymerization, assimilation, and intracellular metabolism, allowing utilization of lignocellulosics with minimal pretreatment. Along with adjacent genes encoding transcriptional regulators and ABC transporter proteins, the aguA and xynA2 genes in the cluster described above contribute to the efficient utilization of aldouronates derived from dilute acid and/or enzyme pretreatment protocols applied to the conversion of hemicellulose to biofuels and chemicals.

  19. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin.

    PubMed

    Mor, Felix; Cohen, Irun R

    2013-02-19

    Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.

  20. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing; Sink, K C

    2004-12-01

    Transient expression studies using blueberry leaf explants and monitored by beta-glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 microM for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 microM AS. Explants were then placed on modified WPM supplemented with 1.0 mg l(-1) thidiazuron, 0.5 mg l(-1) alpha-naphthaleneacetic, 10 mg l(-1) kanamycin (Km), and 250 mg l(-1) cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 microE m(-2) s(-1) at 25 degrees C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.

  1. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance.

    PubMed

    Lin, Pei-Chi; Hwang, San-Gwang; Endo, Akira; Okamoto, Masanori; Koshiba, Tomokazu; Cheng, Wan-Hsing

    2007-02-01

    Abscisic acid (ABA) is an important phytohormone that plays a critical role in seed development, dormancy, and stress tolerance. 9-cis-Epoxycarotenoid dioxygenase is the key enzyme controlling ABA biosynthesis and stress tolerance. In this study, we investigated the effect of ectopic expression of another ABA biosynthesis gene, ABA2 (or GLUCOSE INSENSITIVE 1 [GIN1]) encoding a short-chain dehydrogenase/reductase in Arabidopsis (Arabidopsis thaliana). We show that ABA2-overexpressing transgenic plants with elevated ABA levels exhibited seed germination delay and more tolerance to salinity than wild type when grown on agar plates and/or in soil. However, the germination delay was abolished in transgenic plants showing ABA levels over 2-fold higher than that of wild type grown on 250 mm NaCl. The data suggest that there are distinct mechanisms underlying ABA-mediated inhibition of seed germination under diverse stress. The ABA-deficient mutant aba2, with a shorter primary root, can be restored to normal root growth by exogenous application of ABA, whereas transgenic plants overexpressing ABA2 showed normal root growth. The data reflect that the basal levels of ABA are essential for maintaining normal primary root elongation. Furthermore, analysis of ABA2 promoter activity with ABA2::beta-glucuronidase transgenic plants revealed that the promoter activity was enhanced by multiple prolonged stresses, such as drought, salinity, cold, and flooding, but not by short-term stress treatments. Coincidently, prolonged drought stress treatment led to the up-regulation of ABA biosynthetic and sugar-related genes. Thus, the data support ABA2 as a late expression gene that might have a fine-tuning function in mediating ABA biosynthesis through primary metabolic changes in response to stress.

  2. Cloning of the cDNA for a hematopoietic cell-specific protein related to CD20 and the {beta} subunit of the high-affinity IgE receptor: Evidence for a family of proteins with four membrane-spanning regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adra, C.N.; Morrison, P.; Lim, B.

    1994-10-11

    The authors report the cloning of the cDNA for a human gene whose mRNA is expressed specifically in hematopoietic cells. A long open reading frame in the 1.7-kb mRNA encodes a 214-aa protein of 25 kDa with four hydrophobic regions consistent with a protein that traverses the membrane four times. To reflect the structure and expression of this gene in diverse hematopoietic lineages of lymphoid and myeloid origin, the authors named the gene HTm{sub 4}. The protein is about 20% homologous to two other {open_quotes}four-transmembrane{close_quotes} proteins; the B-cell-specific antigen CD20 and the {beta} subunit of the high-affinity receptor for IgE,more » Fc{sub {epsilon}}RI{beta}. The highest homologies among the three proteins are found in the transmembrane domains, but conserved residues are also recognized in the inter-transmembrane domains and in the N and C termini. Using fluorescence in situ hybridization, they localized HTm{sub 4} to human chromosome 11q12-13.1, where the CD20 and Fc{sub {epsilon}}RI{beta} genes are also located. Both the murine homologue for CD20, Ly-44, and the murine Fc{sub {epsilon}}RI{beta} gene map to the same region in murine chromosome 19. The authors propose that the HTm{sub 4}, CD20, and Fc{sub {epsilon}}RI{beta} genes evolved from the same ancestral gene to form a family of four-transmembrane proteins. It is possible that other related members exist. Similar to CD20 and Fc{sub {epsilon}}RI{beta}, it is likely that Htm{sub 4} has a role in signal transduction and, like Fc{sub {epsilon}}RI{beta}, might be a subunit associated with receptor complexes.« less

  3. Intron-exon organization of the active human protein S gene PS. alpha. and its pseudogene PS. beta. : Duplication and silencing during primate evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploos van Amstel, H.; Reitsma, P.H.; van der Logt, C.P.

    The human protein S locus on chromosome 3 consists of two protein S genes, PS{alpha} and PS{beta}. Here the authors report the cloning and characterization of both genes. Fifteen exons of the PS{alpha} gene were identified that together code for protein S mRNA as derived from the reported protein S cDNAs. Analysis by primer extension of liver protein S mRNA, however, reveals the presence of two mRNA forms that differ in the length of their 5{prime}-noncoding region. Both transcripts contain a 5{prime}-noncoding region longer than found in the protein S cDNAs. The two products may arise from alternative splicing ofmore » an additional intron in this region or from the usage of two start sites for transcription. The intron-exon organization of the PS{alpha} gene fully supports the hypothesis that the protein S gene is the product of an evolutional assembling process in which gene modules coding for structural/functional protein units also found in other coagulation proteins have been put upstream of the ancestral gene of a steroid hormone binding protein. The PS{beta} gene is identified as a pseudogene. It contains a large variety of detrimental aberrations, viz., the absence of exon I, a splice site mutation, three stop codons, and a frame shift mutation. Overall the two genes PS{alpha} and PS{beta} show between their exonic sequences 96.5% homology. Southern analysis of primate DNA showed that the duplication of the ancestral protein S gene has occurred after the branching of the orangutan from the African apes. A nonsense mutation that is present in the pseudogene of man also could be identified in one of the two protein S genes of both chimpanzee and gorilla. This implicates that silencing of one of the two protein S genes must have taken place before the divergence of the three African apes.« less

  4. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment opportunities.

  5. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.).

    PubMed

    Yin, Tao; Wu, Hanying; Zhang, Shanglong; Lu, Hongyu; Zhang, Lingxiao; Xu, Yong; Chen, Daming; Liu, Jingmei

    2009-01-01

    A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.

  6. Interaction of Hb South Florida (codon 1; GTG-->ATG) and HbE, with beta-thalassemia (IVS1-1; G-->A): expression of different clinical phenotypes.

    PubMed

    Tan, Jin-Ai Mary Anne; Tan, Kim-Lian; Omar, Khairul Zaman; Chan, Lee-Lee; Wee, Yong-Chui; George, Elizabeth

    2009-09-01

    Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A). HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia. Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA. The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.

  7. Serum β-Glucuronidase Activity in Response to Fruit and Vegetable Supplementation: A Controlled Feeding Study

    PubMed Central

    Maruti, Sonia S.; Chang, Jyh-Lurn; Prunty, JoAnn; Bigler, Jeannette; Schwarz, Yvonne; Li, Shuying S.; Li, Lin; King, Irena B.; Potter, John D.; Lampe, Johanna W.

    2008-01-01

    Background Fruit and vegetable intake may lower the risk of some cancers. One hypothesized, but understudied, chemopreventive mechanism is that plant food constituents inhibit β-glucuronidase, an acid hydrolase that deconjugates glucuronides. Methods We conducted a cross-over feeding trial in 63 healthy women and men aged 20−40 years, to examine the effect of diet on serum β-glucuronidase activity. Participants were randomized to 2 two-week experimental diets with an intervening washout period: a diet high in selected citrus fruit, crucifers, and soy (F&V) and a diet devoid of fruits, vegetables, and soy (basal). Serum β-glucuronidase activity was measured during the pre-intervention, F&V, and basal periods. Linear mixed models were used to obtain effect estimates and 95% confidence intervals (CI). Results We observed statistically significantly higher β-glucuronidase activity during the F&V than the basal diet (ratio, F&V versus basal diet, 1.09; 95% CI, 1.05−1.13; P <0.01). These results were probably due to decreased β-glucuronidase activity during the basal diet (ratio, basal period versus pre-intervention, 0.93; 95% CI, 0.87−0.98; P=0.01), rather than increased enzyme activity during the F&V diet (ratio, F&V period versus pre-intervention, 1.01; 95% CI, 0.96−1.06; P=0.64). The diet-enzyme activity relation did not differ by sex (P interaction=0.30), but there was a suggestion of a short-term diet effect at 8 days versus 15 days (P interaction=0.06). Conclusion This intervention of selected fruits and vegetables did not lower β-glucuronidase activity. Further investigation is needed regarding what other foods and phytochemicals may influence β-glucuronidase activity and effect modifiers of this relation PMID:18628435

  8. DACH1 inhibits transforming growth factor-beta signaling through binding Smad4.

    PubMed

    Wu, Kongming; Yang, Ying; Wang, Chenguang; Davoli, Maria A; D'Amico, Mark; Li, Anping; Cveklova, Kveta; Kozmik, Zbynek; Lisanti, Michael P; Russell, Robert G; Cvekl, Ales; Pestell, Richard G

    2003-12-19

    The vertebrate homologues of Drosophila dachsund, DACH1 and DACH2, have been implicated as important regulatory genes in development. DACH1 plays a role in retinal and pituitary precursor cell proliferation and DACH2 plays a specific role in myogenesis. DACH proteins contain a domain (DS domain) that is conserved with the proto-oncogenes Ski and Sno. Since the Ski/Sno proto-oncogenes repress AP-1 and SMAD signaling, we hypothesized that DACH1 might play a similar cellular function. Herein, DACH1 was found to be expressed in breast cancer cell lines and to inhibit transforming growth factor-beta (TGF-beta)-induced apoptosis. DACH1 repressed TGF-beta induction of AP-1 and Smad signaling in gene reporter assays and repressed endogenous TGF-beta-responsive genes by microarray analyses. DACH1 bound to endogenous NCoR and Smad4 in cultured cells and DACH1 co-localized with NCoR in nuclear dotlike structures. NCoR enhanced DACH1 repression, and the repression of TGF-beta-induced AP-1 or Smad signaling by DACH1 required the DACH1 DS domain. The DS domain of DACH was sufficient for NCoR binding at a Smad4-binding site. Smad4 was required for DACH1 repression of Smad signaling. In Smad4 null HTB-134 cells, DACH1 inhibited the activation of SBE-4 reporter activity induced by Smad2 or Smad3 only in the presence of Smad4. DACH1 participates in the negative regulation of TGF-beta signaling by interacting with NCoR and Smad4.

  9. Genetic variations in the beta-tubulin gene and the internal transcribed spacer 2 region of Trichuris species from man and baboons.

    PubMed

    Hansen, Tina V A; Thamsborg, Stig M; Olsen, Annette; Prichard, Roger K; Nejsum, Peter

    2013-08-12

    The whipworm Trichuris trichiura has been estimated to infect 604 - 795 million people worldwide. The current control strategy against trichuriasis using the benzimidazoles (BZs) albendazole (400 mg) or mebendazole (500 mg) as single-dose treatment is not satisfactory. The occurrence of single nucleotide polymorphisms (SNPs) in codons 167, 198 or 200 of the beta-tubulin gene has been reported to convey BZ-resistance in intestinal nematodes of veterinary importance. It was hypothesised that the low susceptibility of T. trichiura to BZ could be due to a natural occurrence of such SNPs. The aim of this study was to investigate whether these SNPs were present in the beta-tubulin gene of Trichuris spp. from humans and baboons. As a secondary objective, the degree of identity between T. trichiura from humans and Trichuris spp. from baboons was evaluated based on the beta-tubulin gene and the internal transcribed spacer 2 region (ITS2). Nucleotide sequences of the beta-tubulin gene were generated by PCR using degenerate primers, specific primers and DNA from worms and eggs of T. trichiura and worms of Trichuris spp. from baboons. The ITS2 region was amplified using adult Trichuris spp. from baboons. PCR products were sequenced and analysed. The beta-tubulin fragments were studied for SNPs in codons 167, 198 or 200 and the ITS2 amplicons were compared with GenBank records of T. trichiura. No SNPs in codons 167, 198 or 200 were identified in any of the analysed Trichuris spp. from humans and baboons. Based on the ITS2 region, the similarity between Trichuris spp. from baboons and GenBank records of T. trichiura was found to be 98 - 99%. Single nucleotide polymorphisms in codon 167, 198 and 200, known to confer BZ-resistance in other nematodes, were absent in the studied material. This study does not provide data that could explain previous reports of poor BZ treatment efficacy in terms of polymorphism in these codons of beta-tubulin. Based on a fragment of the beta-tubulin gene and the ITS2 region sequenced, it was found that T. trichiura from humans and Trichuris spp. isolated from baboons are closely related and may be the same species.

  10. Genetic variations in the beta-tubulin gene and the internal transcribed spacer 2 region of Trichuris species from man and baboons

    PubMed Central

    2013-01-01

    Background The whipworm Trichuris trichiura has been estimated to infect 604 – 795 million people worldwide. The current control strategy against trichuriasis using the benzimidazoles (BZs) albendazole (400 mg) or mebendazole (500 mg) as single-dose treatment is not satisfactory. The occurrence of single nucleotide polymorphisms (SNPs) in codons 167, 198 or 200 of the beta-tubulin gene has been reported to convey BZ-resistance in intestinal nematodes of veterinary importance. It was hypothesised that the low susceptibility of T. trichiura to BZ could be due to a natural occurrence of such SNPs. The aim of this study was to investigate whether these SNPs were present in the beta-tubulin gene of Trichuris spp. from humans and baboons. As a secondary objective, the degree of identity between T. trichiura from humans and Trichuris spp. from baboons was evaluated based on the beta-tubulin gene and the internal transcribed spacer 2 region (ITS2). Methods Nucleotide sequences of the beta-tubulin gene were generated by PCR using degenerate primers, specific primers and DNA from worms and eggs of T. trichiura and worms of Trichuris spp. from baboons. The ITS2 region was amplified using adult Trichuris spp. from baboons. PCR products were sequenced and analysed. The beta-tubulin fragments were studied for SNPs in codons 167, 198 or 200 and the ITS2 amplicons were compared with GenBank records of T. trichiura. Results No SNPs in codons 167, 198 or 200 were identified in any of the analysed Trichuris spp. from humans and baboons. Based on the ITS2 region, the similarity between Trichuris spp. from baboons and GenBank records of T. trichiura was found to be 98 – 99%. Conclusions Single nucleotide polymorphisms in codon 167, 198 and 200, known to confer BZ-resistance in other nematodes, were absent in the studied material. This study does not provide data that could explain previous reports of poor BZ treatment efficacy in terms of polymorphism in these codons of beta-tubulin. Based on a fragment of the beta-tubulin gene and the ITS2 region sequenced, it was found that T. trichiura from humans and Trichuris spp. isolated from baboons are closely related and may be the same species. PMID:23938038

  11. A Novel Approach to Dissect the Abscission Process in Arabidopsis1[C][W][OA

    PubMed Central

    González-Carranza, Zinnia Haydee; Shahid, Ahmad Ali; Zhang, Li; Liu, Yang; Ninsuwan, Unchalee; Roberts, Jeremy Alan

    2012-01-01

    Abscission is the consequence of a specialized layer of cells undergoing a complex series of molecular and biochemical events. Analysis of the specific molecular changes associated with abscission is hampered by contamination from neighboring nonseparating tissues. Moreover, studies of abscission frequently involve the examination of events that take place in isolated segments of tissue exposed to nonphysiological concentrations of ethylene or indole-3-acetic acid for protracted periods (more than 24 h) of time. To resolve these problems, we have adopted the use of a transgenic line of Arabidopsis (Arabidopsis thaliana) where the promoter of an abscission-specific polygalacturonase gene (At2g41850/ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2) has been fused to a green fluorescent protein reporter. RNA was extracted from green fluorescent protein-tagged cells, released from abscising floral organs, and used to generate a complementary DNA library. This library was used to probe a microarray, and a population of abscission-related transcripts was studied in detail. Seven novel abscission-related genes were identified, four of which encode proteins of unknown function. Reverse transcription-polymerase chain reaction analyses and promoter fusions to the β-glucuronidase reporter gene confirmed the expression of these genes in the abscission zone and revealed other places of expression during seedling development. Three of these genes were studied further by crossing reporter lines to the abscission mutants inflorescence deficient in abscission (ida) and blade-on-petiole1 (bop1)/bop2 and an IDA-overexpressing line. Phenotypic analysis of an At3g14380 transfer DNA insertion line indicates that this gene plays a functional role in floral organ shedding. This strategy has enabled us to uncover new genes involved in abscission, and their possible contribution to the process is discussed. PMID:22992509

  12. Stable Transformation of Ferns Using Spores as Targets: Pteris vittata and Ceratopteris thalictroides1[W][OPEN

    PubMed Central

    Muthukumar, Balasubramaniam; Joyce, Blake L.; Elless, Mark P.; Stewart, C. Neal

    2013-01-01

    Ferns (Pteridophyta) are very important members of the plant kingdom that lag behind other taxa with regards to our understanding of their genetics, genomics, and molecular biology. We report here, to our knowledge, the first instance of stable transformation of fern with recovery of transgenic sporophytes. Spores of the arsenic hyperaccumulating fern Pteris vittata and tetraploid ‘C-fern Express’ (Ceratopteris thalictroides) were stably transformed by Agrobacterium tumefaciens with constructs containing the P. vittata actin promoter driving a GUSPlus reporter gene. Reporter gene expression assays were performed on multiple tissues and growth stages of gametophytes and sporophytes. Southern-blot analysis confirmed stable transgene integration in recovered sporophytes and also confirmed that no plasmid from A. tumefaciens was present in the sporophyte tissues. We recovered seven independent transformants of P. vittata and four independent C. thalictroides transgenics. Inheritance analyses using β-glucuronidase (GUS) histochemical staining revealed that the GUS transgene was stably expressed in second generation C. thalictroides sporophytic tissues. In an independent experiment, the gusA gene that was driven by the 2× Cauliflower mosaic virus 35S promoter was bombarded into P. vittata spores using biolistics, in which putatively stable transgenic gametophytes were recovered. Transformation procedures required no tissue culture or selectable marker genes. However, we did attempt to use hygromycin selection, which was ineffective for recovering transgenic ferns. This simple stable transformation method should help facilitate functional genomics studies in ferns. PMID:23933990

  13. Sickle cell disease caused by heterozygosity for Hb S and novel LCR deletion: Report of two patients.

    PubMed

    Koenig, Sara C; Becirevic, Esmira; Hellberg, Miriam S C; Li, Michael Y; So, Jason C C; Hankins, Jane S; Ware, Russell E; McMahon, Lillian; Steinberg, Martin H; Luo, Hong-Yuan; Chui, David H K

    2009-09-01

    The b-globin gene LCR is located approximately 6 kb upstream of the embryonic epsilon-globin gene, and is made up of five DNase I hypersensitive sites (HSs), HS 1-5. LCR plays a pivotal role in regulating the expression of downstream epsilon-, (G)gamma-, (A)gamma-, delta-, and beta-globin genes in cis [1]. Deletions removing the LCR and parts of the downstream beta-globin gene cluster in patients have been described [2]. These individuals present with a (gammadeltabeta)0-thalassemia carrier phenotype. We now report two patients with severe sickle cell disease who were compound heterozygous for Hb S mutation and novel LCR deletion. In one case, HS 1-3 were deleted; in the other, HS 1-5 were deleted. In both cases, the b-like globin genes in cis to the LCR deletions were intact. Genotypically, both patients appeared to have sickle cell trait. Coinherited with either LCR deletion, these individuals presented as sickle cell disease patients. The breakpoints of these LCR deletions were defined. These results affirm that HS 2 and 3 are primarily responsible for conferring erythroid specific high-level expression of cis-linked beta-like globin genes. Furthermore, LCR deletions might cause hemolytic disease of newborns.

  14. Synthesis and β-glucuronidase inhibitory potential of benzimidazole derivatives.

    PubMed

    Khan, Khalid Mohammed; Khan, Momin; Ambreen, Nida; Rahim, Fazal; Naureen, Shagufta; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang

    2012-05-01

    Benzimidazole derivatives 1-24 have been synthesized and their in vitro β-glucuronidase inhibitory activitiy was evaluated. Compounds 15 (IC50=6.33+/-0.40 μM), 7 (IC50=22.0+/-0.33 μM), 2 (IC50=23.1+/-1.78 μM), 17 (IC50=23.9+/-1.46 μM), and 3 (IC50=33.8+/-1.61 μM) showed more potent β-glucuronidase inhibitory activity than the standard (D-saccharic acid 1,4 lactone, IC50=48.4+/-1.25 μM). This study has identified a new series of potential β-glucuronidase inhibitors. A structure-activity relationship has also been studied.

  15. Sugar industry sponsorship of germ-free rodent studies linking sucrose to hyperlipidemia and cancer: An historical analysis of internal documents

    PubMed Central

    Kearns, Cristin E.; Apollonio, Dorie

    2017-01-01

    In 1965, the Sugar Research Foundation (SRF) secretly funded a review in the New England Journal of Medicine that discounted evidence linking sucrose consumption to blood lipid levels and hence coronary heart disease (CHD). SRF subsequently funded animal research to evaluate sucrose’s CHD risks. The objective of this study was to examine the planning, funding, and internal evaluation of an SRF-funded research project titled “Project 259: Dietary Carbohydrate and Blood Lipids in Germ-Free Rats,” led by Dr. W.F.R. Pover at the University of Birmingham, Birmingham, United Kingdom, between 1967 and 1971. A narrative case study method was used to assess SRF Project 259 from 1967 to 1971 based on sugar industry internal documents. Project 259 found a statistically significant decrease in serum triglycerides in germ-free rats fed a high sugar diet compared to conventional rats fed a basic PRM diet (a pelleted diet containing cereal meals, soybean meals, whitefish meal, and dried yeast, fortified with a balanced vitamin supplement and trace element mixture). The results suggested to SRF that gut microbiota have a causal role in carbohydrate-induced hypertriglyceridemia. A study comparing conventional rats fed a high-sugar diet to those fed a high-starch diet suggested that sucrose consumption might be associated with elevated levels of beta-glucuronidase, an enzyme previously associated with bladder cancer in humans. SRF terminated Project 259 without publishing the results. The sugar industry did not disclose evidence of harm from animal studies that would have (1) strengthened the case that the CHD risk of sucrose is greater than starch and (2) caused sucrose to be scrutinized as a potential carcinogen. The influence of the gut microbiota in the differential effects of sucrose and starch on blood lipids, as well as the influence of carbohydrate quality on beta-glucuronidase and cancer activity, deserve further scrutiny. PMID:29161267

  16. Sugar industry sponsorship of germ-free rodent studies linking sucrose to hyperlipidemia and cancer: An historical analysis of internal documents.

    PubMed

    Kearns, Cristin E; Apollonio, Dorie; Glantz, Stanton A

    2017-11-01

    In 1965, the Sugar Research Foundation (SRF) secretly funded a review in the New England Journal of Medicine that discounted evidence linking sucrose consumption to blood lipid levels and hence coronary heart disease (CHD). SRF subsequently funded animal research to evaluate sucrose's CHD risks. The objective of this study was to examine the planning, funding, and internal evaluation of an SRF-funded research project titled "Project 259: Dietary Carbohydrate and Blood Lipids in Germ-Free Rats," led by Dr. W.F.R. Pover at the University of Birmingham, Birmingham, United Kingdom, between 1967 and 1971. A narrative case study method was used to assess SRF Project 259 from 1967 to 1971 based on sugar industry internal documents. Project 259 found a statistically significant decrease in serum triglycerides in germ-free rats fed a high sugar diet compared to conventional rats fed a basic PRM diet (a pelleted diet containing cereal meals, soybean meals, whitefish meal, and dried yeast, fortified with a balanced vitamin supplement and trace element mixture). The results suggested to SRF that gut microbiota have a causal role in carbohydrate-induced hypertriglyceridemia. A study comparing conventional rats fed a high-sugar diet to those fed a high-starch diet suggested that sucrose consumption might be associated with elevated levels of beta-glucuronidase, an enzyme previously associated with bladder cancer in humans. SRF terminated Project 259 without publishing the results. The sugar industry did not disclose evidence of harm from animal studies that would have (1) strengthened the case that the CHD risk of sucrose is greater than starch and (2) caused sucrose to be scrutinized as a potential carcinogen. The influence of the gut microbiota in the differential effects of sucrose and starch on blood lipids, as well as the influence of carbohydrate quality on beta-glucuronidase and cancer activity, deserve further scrutiny.

  17. C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells

    PubMed Central

    Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho

    2017-01-01

    C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2. PMID:28046067

  18. C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells.

    PubMed

    Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho

    2017-01-01

    C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2.

  19. Transgene Expression Patterns Indicate That Spaceflight Affects Stress Signal Perception and Transduction in Arabidopsis1

    PubMed Central

    Paul, Anna-Lisa; Daugherty, Christine J.; Bihn, Elizabeth A.; Chapman, David K.; Norwood, Kelly L.L.; Ferl, Robert J.

    2001-01-01

    The use of plants as integral components of life support systems remains a cornerstone of strategies for long-term human habitation of space and extraterrestrial colonization. Spaceflight experiments over the past few decades have refined the hardware required to grow plants in low-earth orbit and have illuminated fundamental issues regarding spaceflight effects on plant growth and development. Potential incipient hypoxia, resulting from the lack of convection-driven gas movement, has emerged as a possible major impact of microgravity. We developed transgenic Arabidopsis containing the alcohol dehydrogenase (Adh) gene promoter linked to the β-glucuronidase (GUS) reporter gene to address specifically the possibility that spaceflight induces the plant hypoxia response and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. The staining patterns resulting from a 5-d mission on the orbiter Columbia during mission STS-93 indicate that the Adh/GUS reporter gene was activated in roots during the flight. However, the patterns of expression were not identical to terrestrial control inductions. Moreover, although terrestrial hypoxia induces Adh/GUS expression in the shoot apex, no apex staining was observed in the spaceflight plants. This indicates that either the normal hypoxia response signaling is impaired in spaceflight or that spaceflight inappropriately induces Adh/GUS activity for reasons other than hypoxia. PMID:11402191

  20. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  1. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals.

    PubMed

    Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M

    2008-07-25

    Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression profiles in different lineages.

  2. Mitochondrial Dysfunction Leads to Deconjugation of Quercetin Glucuronides in Inflammatory Macrophages

    PubMed Central

    Miki, Satomi; Shiba, Yuko; Minekawa, Shoko; Nishikawa, Tomomi; Mukai, Rie; Terao, Junji; Kawai, Yoshichika

    2013-01-01

    Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that mitochondrial dysfunction plays a crucial role in the deconjugation of quercetin glucuronides in macrophages. Collectively, this study contributes to clarifying the mechanism responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. PMID:24260490

  3. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less

  4. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat.

    PubMed

    Yip, Lian Yee; Aw, Chiu Cheong; Lee, Sze Han; Hong, Yi Shuen; Ku, Han Chen; Xu, Winston Hecheng; Chan, Jessalyn Mei Xuan; Cheong, Eleanor Jing Yi; Chng, Kern Rei; Ng, Amanda Hui Qi; Nagarajan, Niranjan; Mahendran, Ratha; Lee, Yuan Kun; Browne, Edward R; Chan, Eric Chun Yong

    2018-01-01

    The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295). © 2017 by the American Association for the Study of Liver Diseases.

  5. The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: correlation with beta-glucuronidase activity.

    PubMed

    Perez, Almudena; Gonzalez-Manzano, Susana; Jimenez, Rosario; Perez-Abud, Rocío; Haro, Jose M; Osuna, Antonio; Santos-Buelga, Celestino; Duarte, Juan; Perez-Vizcaino, Francisco

    2014-11-01

    Quercetin exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in hypertensive humans and animal models. We hypothesized that oral quercetin might induce vasodilator effects in humans and that they might be related to the deconjugation of quercetin-3-O-glucuronide (Q3GA). double blind, randomized, placebo-controlled trial. Fifteen healthy volunteers (26±5 years, 6 female) were given a capsule containing placebo, 200 or 400mg of quercetin in random order in three consecutive weeks. At 2h a dose-dependent increase in Q3GA was observed in plasma (∼0.4 and 1μM for 200 and 400mg, respectively) with minor levels of quercetin and isorhamnetin. No changes were observed in blood pressure. At 5h quercetin induced and increase in brachial arterial diameter that correlated with the product of the levels of Q3GA by the plasma glucuronidase activity. There was an increase in urinary levels of glutathione but there was no increase in nitrites plus nitrates. Quercetin and isorhamnetin also relaxed human umbilical arteries in vitro while Q3GA was without effect. In conclusions, quercetin exerts acute vasodilator effects in vivo in normotensive, normocholesterolemic human subjects. These results are consistent with the effects being due to the deconjugation of the metabolite Q3GA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization.

    PubMed

    Dalla Valle, Luisa; Nardi, Alessia; Belvedere, Paola; Toni, Mattia; Alibardi, Lorenzo

    2007-07-01

    Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds. Copyright 2007 Wiley-Liss, Inc.

  7. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    PubMed

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  8. Combination cancer therapy by hapten-targeted prodrug-activating enzymes and cytokines.

    PubMed

    Chuang, Kuo-Hsiang; Cheng, Chiu-Min; Roffler, Steve R; Lu, Yu-Lin; Lin, Shiu-Ru; Wang, Jaw-Yuan; Tzou, Wen-Shyong; Su, Yu-Cheng; Chen, Bing-Mae; Cheng, Tian-Lu

    2006-01-01

    Combination therapy can help overcome limitations in the treatment of heterogeneous tumors. In the current study, we examined whether multiple therapeutic agents could be targeted to anti-dansyl single-chain antibodies (DNS scFv) that were anchored on the plasma membrane of cancer cells. Functional DNS scFv could be stably expressed on CT-26 colon cancer cells both in vitro and in vivo. Dansyl moieties were covalently attached to recombinant beta-glucuronidase (betaG) and interleukin 2 (IL-2) via a flexible poly(ethylene glycol) linker to form DNS-PEG-betaG and DNS-PEG-IL-2 conjugates. The conjugates displayed enzymatic and splenocyte-stimulatory activities, respectively, that were similar to those of the unmodified proteins. The conjugates selectively bound CT-26 cells that expressed anti-DNS scFv (CT-26/DNS cells) but not CT-26 cells that expressed control scFv (CT-26/phOx cells). DNS-PEG-betaG preferentially activated a glucuronide prodrug (BHAMG) of p-hydroxy aniline mustard at CT-26/DNS cells in culture and accumulated in subcutaneous CT-26/DNS tumors after intravenous administration. Systemic administration of DNS-PEG-IL-2 or DNS-PEG-betaG and BHAMG significantly delayed the growth of CT-26/DNS but not control CT-26/phOx tumors. Combination treatment with DNS-PEG-betaG and BHAMG followed by DNS-PEG-IL-2 therapy significantly suppressed the growth of CT-26/DNS tumors as compared to either single-agent regimen. These results show that at least two DNS-modified therapeutic agents can be selectively delivered to DNS scFv receptors in vitro and in vivo, allowing combination therapy of DNS scFv-modified tumors.

  9. Heterozygous Hb Hope [beta136(H14)Gly --> Asp] in association with heterozygous beta0-thalassemia with apparent homozygous expression, in a Spanish patient.

    PubMed

    Beneitez, David; Carrera, Alícia; Duran-Suárez, Joan Ramón; Paz, Victoria; León, Antonio; García Talavera, Juan

    2006-01-01

    Hb Hope [beta136(H14)Gly --> Asp (GGT --> GAT)] has been found alone or in combination with other globin gene mutations in several African-American families, as well as in Japanese, Thai, Laotian, Cuban and Mauritanian families. We report the hematological and molecular characteristics of a heterozygous association of Hb Hope with beta0-thalassemia (thal) in a Spanish patient, in whom the level of expression of abnormal hemoglobin (Hb) by cation exchange high performance liquid chromatography (HPLC) and electrophoresis suggested initially a homozygous expression of the abnormal Hb, although sequencing of the polymerase chain reaction (PCR)-amplified beta-globin gene demonstrated a heterozygous genotype for Hb Hope. To the best of our knowledge, this is the first description of a case of Hb Hope in a Spanish family.

  10. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice.

    PubMed

    Shimotsuma, Motoshi; Okamura, Eiichi; Matsuzaki, Hitomi; Fukamizu, Akiyoshi; Tanimoto, Keiji

    2010-05-07

    Expression of the five beta-like globin genes (epsilon, Ggamma, Agamma, delta, beta) in the human beta-globin locus depends on enhancement by the locus control region, which consists of five DNase I hypersensitive sites (5'HS1 through 5'HS5). We report here a novel enhancer activity in 5'HS1 that appears to be potent in transfected K562 cells. Deletion analyses identified a core activating element that bound to GATA-1, and a two-nucleotide mutation that disrupted GATA-1 binding in vitro abrogated 5'HS1 enhancer activity in transfection experiments. To determine the in vivo role of this GATA site, we generated multiple lines of human beta-globin YAC transgenic mice bearing the same two-nucleotide mutation. In the mutant mice, epsilon-, but not gamma-globin, gene expression in primitive erythroid cells was severely attenuated, while adult beta-globin gene expression in definitive erythroid cells was unaffected. Interestingly, DNaseI hypersensitivity near the 5'HS1 mutant sequence was eliminated in definitive erythroid cells, whereas it was only mildly affected in primitive erythroid cells. We therefore conclude that, although the GATA site in 5'HS1 is critical for efficient epsilon-globin gene expression, hypersensitive site formation per se is independent of 5'HS1 function, if any, in definitive erythroid cells.

  11. All of the human beta-type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice.

    PubMed

    Okamura, Eiichi; Matsuzaki, Hitomi; Campbell, Andrew D; Engel, James Douglas; Fukamizu, Akiyoshi; Tanimoto, Keiji

    2009-12-01

    In primitive erythroid cells of human beta-globin locus transgenic mice (TgM), the locus control region (LCR)-proximal epsilon- and gamma-globin genes are transcribed, whereas the distal delta- and beta-globin genes are silent. It is generally accepted that the beta-globin gene is competitively suppressed by gamma-globin gene expression at this developmental stage. Previously, however, we observed that epsilon-globin gene expression was severely attenuated when its distance from the LCR was extended, implying that beta-globin gene might also be silenced because of its great distance from the LCR. Here, to clarify the beta-globin gene silencing mechanism, we established TgM lines carrying either gamma- or epsilon- plus gamma-globin promoter deletions, without significantly altering the distance between the beta-globin gene and the LCR. Precocious expression of delta- and beta-globin genes was observed in primitive erythroid cells of mutant, but not wild-type TgM, which was most evident when both the epsilon and gamma promoters were deleted. Thus, we clearly demonstrated that the repression of the delta- and beta-globin genes in primitive erythroid cells is dominated by competitive silencing by the epsilon- and gamma-globin gene promoters, and that epsilon- and the other beta-like globin genes might be activated by two distinct mechanisms by the LCR.

  12. Synthesis of benzimidazole derivatives as potent β-glucuronidase inhibitors.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Selvaraj, Manikandan; Rashwan, Hesham; Farhanah, Fatin Ummi; Rahim, Fazal; Kesavanarayanan, Krishnan Selvarajan; Ali, Muhammad

    2015-08-01

    Twenty five 4, 6-dichlorobenzimidazole derivatives (1-25) have been synthesized and evaluated against β-glucuronidase inhibitory activity. The compounds which actively inhibit β-glucuronidase activity have IC50 values ranging between 4.48 and 46.12 μM and showing better than standard d-saccharic acid 1,4 lactone (IC50=48.4 ± 1.25 μM). Molecular docking provided potential clues to identify interactions between the active molecules and the enzyme which further led us to identify plausible binding mode of all the benzimidazole derivatives. This study confirmed that presence of hydrophilic moieties is crucial to inhibit the human β-glucuronidase. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Transient Gene Expression in Maize, Rice, and Wheat Cells Using an Airgun Apparatus 1

    PubMed Central

    Oard, James H.; Paige, David F.; Simmonds, John A.; Gradziel, Thomas M.

    1990-01-01

    An airgun apparatus has been constructed for transient gene expression studies of monocots. This device utilizes compressed air from a commercial airgun to propel macroprojectile and DNA-coated tungsten particles. The β-glucuronidase (GUS) reporter gene was used to monitor transient expression in three distinct cell types of maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum). The highest level of GUS activity in cultured maize cells was observed when distance between stopping plate and target cells was adjusted to 4.3 centimeters. Efficiency of transformation was estimated to be 4.4 × 10−3. In a partial vacuum of 700 millimeters Hg, velocity of macroprojectile was measured at 520 meters per second with a 6% reduction in velocity at atmospheric pressure. A polyethylene film placed in the breech before firing contributed to a 12% increase in muzzle velocity. A 700 millimeters Hg level of vacuum was necessary for maximum number of transfornants. GUS expression was also detected in wheat leaf base tissue of microdissected shoot apices. High levels of transient gene expression were also observed in hard, compact embryogenic callus of rice. These results show that the airgun apparatus is a convenient, safe, and low-cost device for rapid transient gene expression studies in cereals. Images Figure 7 Figure 8 Figure 9 PMID:16667278

  14. Genus Beta Human Papillomavirus E6 Proteins Vary in Their Effects on the Transactivation of p53 Target Genes

    PubMed Central

    White, Elizabeth A.; Walther, Johanna; Javanbakht, Hassan

    2014-01-01

    ABSTRACT The genus beta human papillomaviruses (beta HPVs) cause cutaneous lesions and are thought to be involved in the initiation of some nonmelanoma skin cancers (NMSCs), particularly in patients with the genetic disorder epidermodysplasia verruciformis (EV). We have previously reported that at least two of the genus beta HPV E6 proteins bind to and/or increase the steady-state levels of p53 in squamous epithelial cells. This is in contrast to a well-characterized ability of the E6 proteins of cancer-associated HPVs of genus alpha HPV, which inactivate p53 by targeting its ubiquitin-mediated proteolysis. In this study, we have investigated the ability of genus beta E6 proteins from eight different HPV types to block the transactivation of p53 target genes following DNA damage. We find that the E6 proteins from diverse beta HPV species and types vary in their capacity to block the induction of MDM2, p21, and proapoptotic genes after genotoxic stress. We conclude that some genus beta HPV E6 proteins inhibit at least some p53 target genes, although perhaps not by the same mechanism or to the same degree as the high-risk genus alpha HPV E6 proteins. IMPORTANCE This study addresses the ability of various human papillomavirus E6 proteins to block the activation of p53-responsive cellular genes following DNA damage in human keratinocytes, the normal host cell for HPVs. The E6 proteins encoded by the high-risk, cancer-associated HPV types of genus alpha HPV have a well-established activity to target p53 degradation and thereby inhibit the response to DNA damage. In this study, we have investigated the ability of genus beta HPV E6 proteins from eight different HPV types to block the ability of p53 to transactivate downstream genes following DNA damage. We find that some, but not all, genus beta HPV E6 proteins can block the transactivation of some p53 target genes. This differential response to DNA damage furthers the understanding of cutaneous HPV biology and may help to explain the potential connection between some beta HPVs and cancer. PMID:24850740

  15. Gene encoding the human. beta. -hexosaminidase. beta. chain: Extensive homology of intron placement in the. alpha. - and. beta. -chain genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proia, R.L.

    1988-03-01

    Lysosomal {beta}-hexosaminidase is composed of two structurally similar chains, {alpha} and {beta}, that are the products of different genes. Mutations in either gene causing {beta}-hexosaminidase deficiency result in the lysosomal storage disease GM2-gangliosidosis. To enable the investigation of the molecular lesions in this disorder and to study the evolutionary relationship between the {alpha} and {beta} chains, the {beta}-chain gene was isolated, and its organization was characterized. The {beta}-chain coding region is divided into 14 exons distributed over {approx}40 kilobases of DNA. Comparison with the {alpha}-chain gene revealed that 12 of the 13 introns interrupt the coding regions at homologous positions.more » This extensive sharing of intron placement demonstrates that the {alpha} and {beta} chains evolved by way of the duplication of a common ancestor.« less

  16. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.

    PubMed

    Kotaka, Atsushi; Bando, Hiroki; Kaya, Masahiko; Kato-Murai, Michiko; Kuroda, Kouichi; Sahara, Hiroshi; Hata, Yoji; Kondo, Akihiko; Ueda, Mitsuyoshi

    2008-06-01

    Three beta-glucosidase- and two endoglucanase-encoding genes were cloned from Aspergillus oryzae, and their gene products were displayed on the cell surface of the sake yeast, Saccharomyces cerevisiae GRI-117-UK. GRI-117-UK/pUDB7 displaying beta-glucosidase AO090009000356 showed the highest activity against various substrates and efficiently produced ethanol from cellobiose. On the other hand, GRI-117-UK/pUDCB displaying endoglucanase AO090010000314 efficiently degraded barley beta-glucan to glucose and smaller cellooligosaccharides. GRI-117-UK/pUDB7CB codisplaying both beta-glucosidase AO090009000356 and endoglucanase AO090010000314 was constructed. When direct ethanol fermentation from 20 g/l barley beta-glucan as a model substrate was performed with the codisplaying strain, the ethanol concentration reached 7.94 g/l after 24 h of fermentation. The conversion ratio of ethanol from beta-glucan was 69.6% of the theoretical ethanol concentration produced from 20 g/l barley beta-glucan. These results showed that sake yeast displaying A. oryzae cellulolytic enzymes can be used to produce ethanol from cellulosic materials. Our constructs have higher ethanol production potential than the laboratory constructs previously reported.

  17. Isolation, purification, and structural characterization of flunixin glucuronide in the urine of greyhound dogs.

    PubMed

    Brady, T C; Kind, A J; Hyde, W H; Favrow, M; Hill, D W

    1998-04-01

    A urinary metabolite of flunixin in greyhound dogs was isolated and purified by a gradient-elution solid-phase extraction technique. The purified metabolite was shown to be hydrolyzed to free flunixin by strong base and by beta-glucuronidase, suggesting the presence of a C1-beta-glucuronide ester of flunixin. The metabolite was further characterized by positive-ion, tandem MS with electrospray ionization. Mass spectral data showed the presence of a protonated molecular ion (M+1) at m/z 473, which was consistent with the molecular weight of protonated flunixin glucuronide, and a product ion at m/z 297, which was consistent with the molecular weight of protonated flunixin. Collisionally induced dissociation of the m/z 297 product ion showed a fragmentation pattern consistent with that of standard flunixin. These data support the contention that this metabolite of flunixin in greyhound urine is the C1-beta-glucuronide of flunixin. Acyl glucuronide metabolites of some organic acid drugs have been shown to bind covalently to tissue proteins in vitro, in vivo, and ex vivo. The presence of this metabolite may, therefore, have pharmacokinetic and pharmacodynamic implications for flunixin in greyhound dogs, as well as in other animal species in which the acyl glucuronide of flunixin is a metabolite.

  18. Biochemical effects of vinyl chloride monomer on the liver of occupationally exposed workers.

    PubMed

    Saad, A A; el-Sewedy, S M; Bader, G A; Mousa, S M; Mahdy, M M

    2000-01-01

    We investigated the effects of vinyl chloride monomer exposure on the liver of 86 workers by measuring beta-glucuronidase, arylsulfatase A, adenosine deaminase, 5'-nucleotidase and routine liver function enzymes in the sera of the workers. In 21 of them, three or more of these parameters were raised, with a significant decrease in the level of blood glutathione and a significant increase in the enzyme activity level of glutathione S-transferase. Of these 21 workers, 14 had fatty liver infiltration, 8 of whom were also suffering from liver enlargement. Also, 4 workers had liver enlargement without fatty infiltration and 3 had enlarged spleens. The study highlights the need for vigilance in environmental monitoring and medical surveillance of workers exposed to this chemical.

  19. Concentration measurement of lysosome enzymes in blood by fluorimetric analysis method

    NASA Astrophysics Data System (ADS)

    Strinadko, Marina M.; Strinadko, Elena M.

    2002-02-01

    The diagnostics of heritable disease series and sugar diabetes, myocardial infarction, collagenosis and kidney diseases widely uses the measurement of lysosomic enzymes in blood. In the present research work the definition procedure of concentration (beta) -glucuronidase with the help of fluorimetric analysis is offered, which allows using microamounts of biological fluids and samples with low enzyme activity which is especially important in paediatric practice. Due to the sharp sensibility of fluorimetric analysis and high speed of luminescent reactions the procedure gives an opportunity to obtain the result in the minimum terms as well as the use of small amounts of reaction mixture. The incubation in large dilution leads thereby to the elimination of influence of endogenic inhibitors and activators.

  20. Studies on the pharmacological action of cactus: identification of its anti-inflammatory effect.

    PubMed

    Park, E H; Kahng, J H; Paek, E A

    1998-02-01

    The ethanol extracts of Opuntia ficus-indica fructus (EEOF) and Opuntia ficus-indica stem (EEOS) were prepared and used to evaluate the pharmacological effects of cactus. Both the extracts inhibited the writhing syndrome induced by acetic acid, indicating that they contains analgesic effect. The oral administrations of EEOF and EEOS suppressed carrageenan-induced rat paw edema and also showed potent inhibition in the leukocyte migration of CMC-pouch model in rats. Moreover, the extracts suppressed the release of beta-glucuronidase, a lysosomal enzyme in rat neutrophils. It was also noted that the extracts showed the protective effect on gastric mucosal layers. From the results it is suggested that the cactus extracts contain anti-inflammatory action having protective effect against gastric lesions.

  1. Mutagenicity studies of urine and faecal samples from rats treated orally with the food colourings Brown FK and Red 2G.

    PubMed

    Edwards, C N; Combes, R D

    1984-08-01

    Urine and faecal extracts from rats given Brown FK or Red 2G orally (800 mg/kg body weight) were investigated for mutagenicity. Extracts were subjected to liquid fluctuation and plate incorporation assays with Salmonella typhimurium strains TA98 and TA100 in the presence and absence of liver microsomes and/or a beta-glucuronidase-sulphatase preparation. Urine from Red 2G-treated rats only exhibited direct activity when coloured fractions from polyamide-column concentrates were tested with TA100. All other urines, as well as aqueous and ether faecal extracts from animals receiving either colouring, were no more mutagenic than the respective control extracts obtained from the same animals prior to dosing.

  2. Alteration of hairpin ribozyme specificity utilizing PCR.

    PubMed

    DeGrandis, P; Hampel, A; Galasinski, S; Borneman, J; Siwkowski, A; Altschuler, M

    1994-12-01

    We have developed a method by which a researcher can quickly alter the specificity of a trans hairpin ribozyme. Utilizing this PCR method, two oligonucleotides, and any target vector, new ribozyme template sequences can be generated without the synthesis of longer oligonucleotides. We have produced templates with altered specificity for both standard and modified (larger) ribozymes. After transcription, these ribozymes show specific cleavage activity with the new substrate beta-glucuronidase (GUS), and no activity against the original substrate (HIV-1, 5' leader sequence). Utilizing this technique, it is also possible to produce an inactive ribozyme that can be used as an antisense control. Applications of this procedure would provide a rapid and economical system for the assessment of trans ribozyme activity.

  3. Expression of the beta-catenin gene in the skin of embryonic geese during feather bud development.

    PubMed

    Wu, W; Xu, R F; Xiao, L; Xu, H; Gao, G

    2008-01-01

    beta-Catenin signaling has been reported to initiate feather bud development. In the present study, beta-catenin gene was isolated and identified from a cDNA library constructed using embryonic goose skin. Expression patterns of beta-catenin gene in the dorsal skin of goose embryos were investigated using the methods of semi-quantitative reverse transcription PCR, Northern blot analysis, and in situ hybridization. The sequence of beta-catenin was found highly conserved at the amino acid level, sharing 100, 99, and 99% identity with chicken, Chinese soft-shell turtle, and human sequences, respectively. Relatively high levels (62.51 +/- 7.11% to 101.74 +/- 7.29%) of beta-catenin mRNA were detected in the dorsal skin samples. The levels of beta-catenin expression were most prominent at the early stage from embryo day (E)10 to E20 and then significantly declined with the embryonic development. In situ hybridization demonstrated that at E10, beta-catenin expression was mainly observed at the surface periderm cells and the localized region of the epidermal layer. Because feather bud forms with an anterior-posterior orientation, strong staining was observed in the periderm layer and in the ectoderm and epidermis with a diffuse distribution within the internal area of the buds. The stronger staining was seen in the barb ridges than in the center pulp of the feather follicles at E18 and E20. In this study, expression of Shh as a marker gene for the bud development was examined paralleling with expression patterns of beta-catenin. It was found that the expression pattern of beta-catenin was almost similar spatially and temporally to that of Shh mRNA at the later stages of bud development. The differential beta-catenin mRNA expression in the goose dorsal skin may be essential for promoting the normal development of embryonic feather bud.

  4. Antibiotics in the human food chain: establishing no effect levels of tetracycline, neomycin, and erythromycin using a chemostat model of the human colonic microflora.

    PubMed

    Carman, Robert J; Simon, Mary Alice; Petzold, H Earl; Wimmer, Robert F; Batra, Monica R; Fernández, A Haydée; Miller, Margaret A; Bartholomew, Mary

    2005-11-01

    A chemostat model of the healthy human large bowel ecosystem was used to establish no effect levels for tetracycline, neomycin, and erythromycin. For each compound, the equivalent to four oral doses (0, 1.5, 15, and 150 mg/60 kg person/d) was studied. Concentrations of the test compounds in the chemostat medium were intended to simulate fecal levels that might be expected following consumption of food containing antibiotic residue and were based on published oral doses and fecal levels. We monitored the following parameters: short chain fatty acids, bile acids, sulfate reduction, azoreductase and nitroreductase activities, beta-glucosidase and beta-glucuronidase activities, a range of bacterial counts and, lastly, the susceptibility among sentinel bacteria to each test compound. Neomycin and erythromycin reduced bile acid metabolism. Neomycin elevated propionate levels and caused a marginal diminution in azoreductase activity. Based on our results, the no observed effect level (NOEL) of both tetracycline and erythromycin was 15 mg/60 kg person/d. The NOEL for neomycin was 1.5 mg/60 kg person/d.

  5. The human interleukin-1 alpha gene is located on the long arm of chromosome 2 at band q13.

    PubMed

    Lafage, M; Maroc, N; Dubreuil, P; de Waal Malefijt, R; Pébusque, M J; Carcassonne, Y; Mannoni, P

    1989-01-01

    Interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) are two biochemically distinct, but distantly related, polypeptidic cytokines that play a key role in inflammation, immunologic reactions, and tissue repair. Recently, it has been shown that IL-1 alpha is identical to hematopoietin 1, which was described as a hematopoietic growth factor acting on early progenitor cells in synergy with other hematopoietic growth factors. In this report we discuss our use of in situ hybridization on human prometaphase cells with a human IL-1 alpha cDNA probe to localize the human IL-1 alpha gene on the proximal part of the long arm of chromosome 2 at band q13, in the same chromosomal region as the IL-1 beta gene.

  6. A Plant Gene Up-Regulated at Rust Infection Sites

    PubMed Central

    Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.

    2002-01-01

    Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348

  7. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kazuki; Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180; Feril, Loreto B., E-mail: ferilism@yahoo.com

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA,more » which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.« less

  8. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development.

    PubMed

    Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2015-11-01

    TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Functional Analysis of the Arabidopsis TETRASPANIN Gene Family in Plant Growth and Development1[OPEN

    PubMed Central

    Wang, Feng; Muto, Antonella; Van de Velde, Jan; Neyt, Pia; Himanen, Kristiina; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2015-01-01

    TETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade. However, partial overlap was observed for many TET genes across the clades, correlating with few phenotypes in single mutants and, therefore, requiring double mutant combinations for functional investigation. Mutational analysis showed a role for TET13 in primary root growth and lateral root development and redundant roles for TET5 and TET6 in leaf and root growth through negative regulation of cell proliferation. Strikingly, a number of TET genes were expressed in embryonic and seedling progenitor cells and remained expressed until the differentiation state in the mature plant, suggesting a dynamic function over developmental stages. The cis-regulatory elements together with transcription factor-binding data provided molecular insight into the sites, conditions, and perturbations that affect TET gene expression and positioned the TET genes in different molecular pathways; the data represent a hypothesis-generating resource for further functional analyses. PMID:26417009

  10. β-glucuronidase use as a single internal control gene may confound analysis in FMR1 mRNA toxicity studies.

    PubMed

    Kraan, Claudine M; Cornish, Kim M; Bui, Quang M; Li, Xin; Slater, Howard R; Godler, David E

    2018-01-01

    Relationships between Fragile X Mental Retardation 1 (FMR1) mRNA levels in blood and intragenic FMR1 CGG triplet expansions support the pathogenic role of RNA gain of function toxicity in premutation (PM: 55-199 CGGs) related disorders. Real-time PCR (RT-PCR) studies reporting these findings normalised FMR1 mRNA level to a single internal control gene called β-glucuronidase (GUS). This study evaluated FMR1 mRNA-CGG correlations in 33 PM and 33 age- and IQ-matched control females using three normalisation strategies in peripheral blood mononuclear cells (PBMCs): (i) GUS as a single internal control; (ii) the mean of GUS, Eukaryotic Translation Initiation Factor 4A2 (EIF4A2) and succinate dehydrogenase complex flavoprotein subunit A (SDHA); and (iii) the mean of EIF4A2 and SDHA (with no contribution from GUS). GUS mRNA levels normalised to the mean of EIF4A2 and SDHA mRNA levels and EIF4A2/SDHA ratio were also evaluated. FMR1mRNA level normalised to the mean of EIF4A2 and SDHA mRNA levels, with no contribution from GUS, showed the most significant correlation with CGG size and the greatest difference between PM and control groups (p = 10-11). Only 15% of FMR1 mRNA PM results exceeded the maximum control value when normalised to GUS, compared with over 42% when normalised to the mean of EIF4A2 and SDHA mRNA levels. Neither GUS mRNA level normalised to the mean RNA levels of EIF4A2 and SDHA, nor to the EIF4A2/SDHA ratio were correlated with CGG size. However, greater variability in GUS mRNA levels were observed for both PM and control females across the full range of CGG repeat as compared to the EIF4A2/SDHA ratio. In conclusion, normalisation with multiple control genes, excluding GUS, can improve assessment of the biological significance of FMR1 mRNA-CGG size relationships.

  11. Increased β-glucuronidase activity in bronchoalveolar lavage fluid of children with bacterial lung infection: A case-control study.

    PubMed

    Panagiotopoulou, Evgenia C; Fouzas, Sotirios; Douros, Konstantinos; Triantaphyllidou, Irene-Eva; Malavaki, Christina; Priftis, Kostas N; Karamanos, Nikos K; Anthracopoulos, Michael B

    2015-11-01

    β-Glucuronidase is a lysosomal enzyme released into the extracellular fluid during inflammation. Increased β-glucuronidase activity in the cerebrospinal and peritoneal fluid has been shown to be a useful marker of bacterial inflammation. We explored the role of β-glucuronidase in the detection of bacterial infection in bronchoalveolar lavage fluid (BALF) of paediatric patients. In this case-control study, % polymorphonuclear cell count (PMN%), β-glucuronidase activity, interleukin-8 (IL-8), tumour necrosis factor-α (TNF-α) and elastase were measured in culture-positive (≥10(4) cfu/mL, C+) and -negative (C-) BALF samples obtained from children. A total of 92 BALF samples were analysed. The median β-glucuronidase activity (measured in nanomoles of 4-methylumbelliferone (4-MU)/mL BALF/h) was 246.4 in C+ (interquartile range: 71.2-751) and 21.9 in C- (4.0-40.8) (P < 0.001). The levels of TNF-α and IL-8 were increased in C+ as compared with C- (5.4 (1.7-12.6) vs 0.7 (0.2-6.2) pg/mL, P < 0.001 and 288 (76-4300) vs 287 (89-1566) pg/mL, P = 0.042, respectively). Elastase level and PMN% did not differ significantly (50 (21-149) vs 26 (15-59) ng/mL, P = 0.051 and 20 (9-40) vs 18 (9-34) %, P = 0.674, respectively). The area under the curve of β-glucuronidase activity (0.856, 95% confidence interval (CI): 0.767-0.920) was higher than that of TNF-α (0.718; 95% CI: 0.614-0.806; P = 0.040), IL-8 (0.623; 95% CI: 0.516-0.722; P = 0.001), elastase (0.645; 95% CI: 0.514-0.761; P = 0.008) and PMN% (0.526; 95 % CI: 0.418-0.632; P < 0.001). This study demonstrates a significant increase of β-glucuronidase activity in BALF of children with culture-positive bacterial inflammation. In our population β-glucuronidase activity showed superior predictive ability for bacterial lung infection than other markers of inflammation. © 2015 Asian Pacific Society of Respirology.

  12. The Molecular Epidemiology of Malaria in Western Kenya

    DTIC Science & Technology

    2002-09-01

    including tumor necrosis factor alpha (TNF- α), interleukin-10 (IL-10), transforming growth factor beta (TGF-β), interleukin-6 (IL-6), and interferon gamma...Ricard S, Troesch A, Mallet C, Generenaz L, Evans A, Arveiler D, Luc G, Ruidavets JB, Poirier O. Polymorphisms of the transforming growth factor- beta 1...transforming growth factor- beta 1 and tumour necrosis factor-alpha genes: a technical report. Transpl Immunol 1998 6(3): 193-7. 36. Olomolaiye OO

  13. Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon.

    PubMed Central

    Conley, P B; Lemaux, P G; Lomax, T L; Grossman, A R

    1986-01-01

    The polypeptide composition of the phycobilisome, the major light-harvesting complex of prokaryotic cyanobacteria and certain eukaryotic algae, can be modulated by different light qualities in cyanobacteria exhibiting chromatic adaptation. We have identified genomic fragments encoding a cluster of phycobilisome polypeptides (phycobiliproteins) from the chromatically adapting cyanobacterium Fremyella diplosiphon using previously characterized DNA fragments of phycobiliprotein genes from the eukaryotic alga Cyanophora paradoxa and from F. diplosiphon. Characterization of two lambda-EMBL3 clones containing overlapping genomic fragments indicates that three sets of phycobiliprotein genes--the alpha- and beta-allophycocyanin genes plus two sets of alpha- and beta-phycocyanin genes--are clustered within 13 kilobases on the cyanobacterial genome and transcribed off the same strand. The gene order (alpha-allophycocyanin followed by beta-allophycocyanin and beta-phycocyanin followed by alpha-phycocyanin) appears to be a conserved arrangement found previously in a eukaryotic alga and another cyanobacterium. We have reported that one set of phycocyanin genes is transcribed as two abundant red light-induced mRNAs (1600 and 3800 bases). We now present data showing that the allophycocyanin genes and a second set of phycocyanin genes are transcribed into major mRNAs of 1400 and 1600 bases, respectively. These transcripts are present in RNA isolated from cultures grown in red and green light, although lower levels of the 1600-base phycocyanin transcript are present in cells grown in green light. Furthermore, a larger transcript of 1750 bases hybridizes to the allophycocyanin genes and may be a precursor to the 1400-base species. Images PMID:3086870

  14. [Effect of tobacco smoking on albumin concentration and β-glucuronidase activity in urine of smelters].

    PubMed

    Bizonń, Anna; Witt, Katarzyna; Milnerowicz, Malgorzata; Milnerowicz, Halina

    2014-01-01

    The aim of present study was to estimate the nephrotoxicity of occupational exposure to heavy metals on albumin concentration and β-glucuronidase activity in the urine of smoking and non-smoking smelters. The study was performed in urine of 101 smoking and non-smoking smelters as well as 65 smoking and non-smoking male subjects unexposed to heavy metals. Section into smoking and non-smoking groups was made on basis on direct personal interview and by determination of serum cotinine concentration. The concentration of albumin in urine was measured with commercial test (Micro-Albumin ELISA Cat. No 5MA 74212, ORGENTEC Diagnostika Gmbh, Germany). The activity of β-glucuronidase in urine were determined in urine using 4-nitrophenyl β D-glucuronide (Cat. No 73677, Sigma Aldrich, Germany) as a substrate. We have observed higher albumin concentration and β-glucuronidase activity in urine of smoking and non-smoking smelters when compared to control groups. We have also found the influence of tobacco smoke as well as amount of cigarettes smoked on albumin concentration in urine of smoking smelters. A statistically significant difference was detected between activity of β-glucuronidase in urine of smoking and non-smoking smelters, which suggest as additional negative factor of exposure to tobacco smoke. Analyzing the impact of smoking intensity we have found higher albumin concentration and β-glucuronidase activity in urine of smelters smoking ≥20 cigarettes per day when compared to smelters smoking <20 cigarettes per day. The elevation of albumin concentration and β-glucuronidase activity in urine of workers occupational exposure to heavy metals and tobacco smoke indicated, that environmental exposure on these factors can disorders kidney functions.

  15. The Inhibitory Effect of Ciprofloxacin on the β-Glucuronidase-mediated Deconjugation of the Irinotecan Metabolite SN-38-G.

    PubMed

    Kodawara, Takaaki; Higashi, Takashi; Negoro, Yutaka; Kamitani, Yukio; Igarashi, Toshiaki; Watanabe, Kyohei; Tsukamoto, Hitoshi; Yano, Ryoichi; Masada, Mikio; Iwasaki, Hiromichi; Nakamura, Toshiaki

    2016-05-01

    The enterohepatic recycling of a drug consists of its biliary excretion and intestinal reabsorption, which is sometimes accompanied by hepatic conjugation and intestinal deconjugation reactions. β-Glucuronidase, an intestinal bacteria-produced enzyme, can break the bond between a biliary excreted drug and glucuronic acid. Antibiotics such as ciprofloxacin can reduce the enterohepatic recycling of glucuronide-conjugated drugs. In this study, we established an in vitro system to evaluate the β-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G to its active SN-38 form and the effect of ciprofloxacin thereon. SN-38 formation increased in a time-dependent manner from 5 to 30 min. in the presence of β-glucuronidase. Ciprofloxacin and phenolphthalein-β-D-glucuronide (PhePG), a typical β-glucuronidase substrate, significantly decreased SN-38-G deconjugation and, hence SN-38 formation. Similarly, the antibiotics enoxacin and gatifloxacin significantly inhibited the conversion of SN-38-G to SN-38, which was not observed for levofloxacin, streptomycin, ampicillin and amoxicillin/clavulanate. Ciprofloxacin showed a dose-dependent inhibitory effect on the β-glucuronidase-mediated conversion of SN-38-G to SN-38 with a half-maximal inhibitory concentration (IC50 ) value of 83.8 μM. PhePG and ciprofloxacin afforded the inhibition in a competitive and non-competitive manner, respectively. These findings suggest that the reduction in the serum SN-38 concentration following co-administration of ciprofloxacin during irinotecan treatment is due, at least partly, to the decreased enterohepatic circulation of SN-38 through the non-competitive inhibition of intestinal β-glucuronidase-mediated SN-38-G deconjugation. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors.

    PubMed

    Wang, Y; Smallwood, P M; Cowan, M; Blesh, D; Lawler, A; Nathans, J

    1999-04-27

    This study examines the mechanism of mutually exclusive expression of the human X-linked red and green visual pigment genes in their respective cone photoreceptors by asking whether this expression pattern can be produced in a mammal that normally carries only a single X-linked visual pigment gene. To address this question, we generated transgenic mice that carry a single copy of a minimal human X chromosome visual pigment gene array in which the red and green pigment gene transcription units were replaced, respectively, by alkaline phosphatase and beta-galactosidase reporters. As determined by histochemical staining, the reporters are expressed exclusively in cone photoreceptor cells. In 20 transgenic mice carrying any one of three independent transgene insertion events, an average of 63% of expressing cones have alkaline phosphatase activity, 10% have beta-galactosidase activity, and 27% have activity for both reporters. Thus, mutually exclusive expression of red and green pigment transgenes can be achieved in a large fraction of cones in a dichromat mammal, suggesting a facile evolutionary path for the development of trichromacy after visual pigment gene duplication. These observations are consistent with a model of visual pigment expression in which stochastic pairing occurs between a locus control region and either the red or the green pigment gene promotor.

  17. CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line

    NASA Technical Reports Server (NTRS)

    Sharina, Iraida G.; Martin, Emil; Thomas, Anthony; Uray, Karen L.; Murad, Ferid

    2003-01-01

    Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO). sGC is an obligatory heterodimer composed of alpha and beta subunits. We investigated human beta1 sGC transcriptional regulation in BE2 human neuroblastoma cells. The 5' upstream region of the beta1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs. The transcriptional start site of the beta1 sGC gene in BE2 cells was identified. The functional significance of consensus transcriptional factor binding sites proximal to the transcriptional start site was investigated by site deletions in the 800-bp promoter fragment. The elimination of CCAAT-binding factor (CBF) and growth factor independence 1 (GFI1) binding cores significantly diminished whereas deletion of the NF1 core elevated the transcription. Electrophoretic mobility-shift assay (EMSA) and Western analysis of proteins bound to biotinated EMSA probes confirmed the interaction of GFI1, CBF, and NF1 factors with the beta1 sGC promoter. Treatment of BE2 cells with genistein, known to inhibit the CBF binding to DNA, significantly reduced protein levels of beta1 sGC by inhibiting transcription. In summary, our study represents an analysis of the human beta1 sGC promoter regulation in human neuroblastoma BE2 cells and identifies CBF as a critically important factor in beta1 sGC expression.

  18. Human β-glucuronidase: structure, function, and application in enzyme replacement therapy.

    PubMed

    Naz, Huma; Islam, Asimul; Waheed, Abdul; Sly, William S; Ahmad, Faizan; Hassan, Imtaiyaz

    2013-10-01

    Lysosomal storage diseases occur due to incomplete metabolic degradation of macromolecules by various hydrolytic enzymes in the lysosome. Despite structural differences, most of the lysosomal enzymes share many common features including a lysosomal targeting motif and phosphotransferase recognition sites. β-Glucuronidase (GUSB) is an important lysosomal enzyme involved in the degradation of glucuronate-containing glycosaminoglycan. The deficiency of GUSB causes mucopolysaccharidosis type VII (MPSVII), leading to lysosomal storage in the brain. GUSB is a well-studied protein for its expression, sequence, structure, and function. The purpose of this review is to summarize our current understanding of sequence, structure, function, and evolution of GUSB and its lysosomal enzyme targeting. Enzyme replacement therapy reported for this protein is also discussed.

  19. [Genetic aspects of premature ovarian failure].

    PubMed

    Warenik-Szymankiewicz, Alina; Słopień, Radosław

    2005-01-01

    Among the causes of premature ovarian failure (POF) two groups of factors are reported: factors which lead to decrease of follicular number and factors which stimulate follicular atresia. In the first group genetic factors are the most important whereas in the second: enzymatic autoimmunological, iatrogenic, toxins and infections are reported. In 1986 familiar POF on the background of long arm of chromosome X deletion was reported. Other chromosomes which are important for normal ovarian function are: chromosome 21 (AIRE gene), chromosome 11 (gene of beta FSH, ATM gene), chromosome 3 (gene responsible for BEPS syndrome) and chromosome 2 (genes of FSH and LH receptors). In this review the role of these genes and results of several epidemiological studies are reported.

  20. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    PubMed

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  1. Variability and repertoire size of T-cell receptor V alpha gene segments.

    PubMed

    Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K

    The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.

  2. Limitations of commonly used internal controls for real-time RT-PCR analysis of renal epithelial-mesenchymal cell transition.

    PubMed

    Elberg, Gerard; Elberg, Dorit; Logan, Charlotte J; Chen, Lijuan; Turman, Martin A

    2006-01-01

    Progressive renal fibrotic disease is accompanied by the massive accumulation of myofibroblasts as defined by alpha smooth muscle actin (alphaSMA) expression. We quantitated gene expression using real-time RT-PCR analysis during conversion of primary cultured human renal tubular cells (RTC) to myofibroblasts after treatment with transforming growth factor-beta1 (TGF-beta1). We report herein the limitations of commonly used reference genes for mRNA quantitation. We determined the expression of alphaSMA and megakaryoblastic leukemia-1 (MKL1), a transcriptional regulator of alphaSMA, by quantitative real-time PCR using three common internal controls, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cyclophilin A and 18S rRNA. Expression of GAPDH mRNA and cyclophilin A mRNA, and to a lesser extent, 18S rRNA levels varied over time in culture and with exposure to TGF-beta1. Thus, depending on which reference gene was used, TGF-beta1 appeared to have different effects on expression of MKL1 and alphaSMA. RTC converting to myofibroblasts in primary culture is a valuable system to study renal fibrosis in humans. However, variability in expression of reference genes with TGF-beta1 treatment illustrates the need to validate mRNA quantitation with multiple reference genes to provide accurate interpretation of fibrosis studies in the absence of a universal internal standard for mRNA expression. 2006 S. Karger AG, Basel.

  3. Analysis of betaS and betaA genes in a Mexican population with African roots.

    PubMed

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  4. Impaired expression of importin/karyopherin {beta}1 leads to post-implantation lethality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Katsutaka; Yoshinobu, Kumiko; Imaizumi, Takashi

    2006-03-03

    Importin {beta}1 (Imp{beta})/karyopherin {beta}1 (Kpnb1) mediates the nuclear import of a large variety of substrates. This study aimed to investigate the requirement for the Kpnb1 gene in mouse development, using a gene trap line, B6-CB-Ayu8108 {sup GtgeoIMEG} (Ayu8108 {sup geo}), in which the trap vector was inserted into the promoter region of the Kpnb1 gene, but in reverse orientation of the Kpnb1 gene. Ayu8108 {sup geo/geo} homozygous embryos could develop to the blastocyst stage, but died before embryonic day 5.5, and expression of the Kpnb1 gene in homozygous blastocysts was undetectable. We also replaced the {beta}geo gene with Imp{beta} cDNAmore » through Cre-mediated recombination to rescue Imp{beta} expression. Homozygous mice for the rescued allele Ayu8108 {sup Imp{beta}}{sup /Imp{beta}} were born and developed normally. These results demonstrated that the cause of post-implantation lethality of Ayu8108 {sup geo/geo} homozygous embryos was impaired expression of the Kpnb1 gene, indicating indispensable roles of Imp{beta}1 in early development of mice.« less

  5. Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.

    PubMed

    Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M

    1997-08-01

    beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.

  6. Genetic variants of estrogen beta and leptin receptors may cause gynecomastia in adolescent.

    PubMed

    Eren, Erdal; Edgunlu, Tuba; Korkmaz, Huseyin Anil; Cakir, Esra Deniz Papatya; Demir, Korcan; Cetin, Esin Sakalli; Celik, Sevim Karakas

    2014-05-15

    Gynecomastia is a benign breast enlargement in males that affects approximately one-third of adolescents. The exact mechanism is not fully understood; however, it has been proposed that estrogen receptors and aromatase enzyme activity may play important roles in the pathogenesis of gynecomastia. While many studies have reported that aromatase enzyme (CYP19) gene polymorphism is associated with gynecomastia, only one study has shown a relationship between estrogen receptor (ER) alpha and beta gene polymorphism and gynecomastia. Thus, the aim of this study was to evaluate the relationships between CYP19 (rs2414096), ER alpha (rs2234693), ER beta (rs4986938), leptin (rs7799039), and leptin receptor (rs1137101) gene polymorphisms and gynecomastia. This study included 107 male adolescents with gynecomastia and 97 controls. Total serum testosterone (T) and estradiol (E2) levels were measured, and DNA was extracted from whole blood using the PCR-RFLP technique. The polymorphic distributions of CYP19, ER alpha, ER beta, leptin and leptin receptor genes were compared. The median E2 level was 12.41 (5.00-65.40) pg/ml in the control group and 16.86 (2.58-78.47) pg/ml in the study group (p<0.001). The median T level was 2.19 (0.04-7.04) ng/ml in the control group and 1.46 (0.13-12.02) ng/ml in the study group (p=0.714). There was a significant relationship between gynecomastia and leptin receptor rs1137101 (p=0.002) and ER beta receptor rs4986938 gene polymorphisms (p=0.002). According to our results, increased E2 level and ER beta gene rs4986938 polymorphism might explain why some adolescents have gynecomastia. Leptin receptor gene rs1137101 polymorphism might affect susceptibility to gynecomastia. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Novel beta-1,3-, 1,6-oligoglucan elicitor from Alternaria alternata 102 for defense responses in tobacco.

    PubMed

    Shinya, Tomonori; Ménard, Rozenn; Kozone, Ikuko; Matsuoka, Hideaki; Shibuya, Naoto; Kauffmann, Serge; Matsuoka, Ken; Saito, Mikako

    2006-06-01

    A novel elicitor that induces chitinases in tobacco BY-2 cells was isolated from Alternaria alternata 102. Six other fungi, including A. alternata IFO 6587, could not induce, or weakly induce chitinase activity. The purified elicitor was soluble in 75% methanol and showed the chitinase-inducing activity when applied at concentrations of as low as 25 ng x mL(-1). Structural determination by methylation analysis, reducing-end analysis, MALDI-TOF/MS, and NMR spectroscopy indicated that the elicitor was a mixture of beta-1,3-, 1,6-oligoglucans mostly with a degree of polymerization of between 8 and 17. Periodate oxidation of the elicitor suggested that the 1,6-linked and nonreducing terminal residues are essential for the elicitor activity. Further analysis of the elicitor responses in BY-2 cells indicated that the activity of this beta-1,3-, 1,6-glucan elicitor was about 1000 times more potent than that of laminarin, which is a known elicitor of defense responses in tobacco. Analyzing the expression of defense-related genes indicated that a phenylalanine ammonia-lyase gene and a coumaroyl-CoA O-methyltransferase gene were transiently expressed by this beta-1,3-, 1,6-glucan elicitor. The elicitor induced a weak oxidative burst but did not induce cell death in the BY-2 cells. In the tissue of tobacco plants, this beta-1,3-, 1,6-glucan elicitor induced the expression of basic PR-3 genes, the phenylpropanoid pathway genes, and the sesquiterpenoid pathway genes. In comparison with laminarin and laminarin sulfate, which are reported to be potent elicitors of defense responses in tobacco, the expression pattern of genes induced by the purified beta-1,3-, 1,6-glucan elicitor was more similar to that induced by laminarin than to that induced by laminarin sulfate.

  8. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  9. Recombination and mutation of class II histocompatibility genes in wild mice.

    PubMed

    Wakeland, E K; Darby, B R

    1983-12-01

    We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.

  10. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    PubMed

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  11. Efficiency of Particle-Bombardment-Mediated Transformation Is Influenced by Cell Cycle Stage in Synchronized Cultured Cells of Tobacco 1

    PubMed Central

    Iida, Asako; Yamashita, Toshiya; Yamada, Yasuyuki; Morikawa, Hiromichi

    1991-01-01

    Plasmid DNA pB1221 harboring β-glucuronidase gene was delivered to synchronized cultured tobacco (Nicotiana tabacum L. cv Bright Yellow-2) cells of different cell cycle stages by a pneumatic particle gun. The cells bombarded at M and G2 phases gave 4 to 6 times higher transformation efficiency than those bombarded at the S and G1 phases. ImagesFigure 2 PMID:16668589

  12. Polymorphism of Trp64Arg in beta3-adrenergic receptor gene among Bolivian people in rural areas at high and low altitudes.

    PubMed

    Karasaki, Yuji; Kashiwazaki, Hiroshi

    2004-01-01

    To investigate whether population differences in food and/or lifestyle could affect the distribution frequencies of polymorphism in the gene for beta3-adrenergic receptor (beta3-AR), the frequency of Trp64Arg polymorphism was studied among Bolivian people living in rural areas of high (about 4000 m above sea level) and low (about 300 m above sea level) altitudes. Genomic DNA samples of Bolivian subjects (n=508) were amplified by polymerase chain reaction (PCR) for part of the beta3-AR gene. The amplified PCR products were digested with restriction enzyme NciI and analysed by agarose gel electrophoresis. We found no significant difference in the frequency of Arg allele in the beta3-AR gene between 331 native low-altitude Bolivian subjects (18.1%) and 177 native high-altitude Bolivian subjects (17.5%). Body mass index was not associated with Trp64Arg polymorphism among native Bolivian adults. The frequency of this allele in the complete Bolivian population (18%) was lower than that reported in Pima Indians (32%), is comparable to the Japanese (19%) and is higher than several ethnic groups, including Finns (12%) and French (4%). Our data indicate that the altitude-related lifestyle of a population has had little influence on the frequency of Trp64Arg polymorphism and obesity in Bolivian natives.

  13. The alpha-subunit of the Arabidopsis heterotrimeric G protein, GPA1, is a regulator of transpiration efficiency.

    PubMed

    Nilson, Sarah E; Assmann, Sarah M

    2010-04-01

    Land plants must balance CO2 assimilation with transpiration in order to minimize drought stress and maximize their reproductive success. The ratio of assimilation to transpiration is called transpiration efficiency (TE). TE is under genetic control, although only one specific gene, ERECTA, has been shown to regulate TE. We have found that the alpha-subunit of the heterotrimeric G protein in Arabidopsis (Arabidopsis thaliana), GPA1, is a regulator of TE. gpa1 mutants, despite having guard cells that are hyposensitive to abscisic acid-induced inhibition of stomatal opening, have increased TE under ample water and drought stress conditions and when treated with exogenous abscisic acid. Leaf-level gas-exchange analysis shows that gpa1 mutants have wild-type assimilation versus internal CO2 concentration responses but exhibit reduced stomatal conductance compared with ecotype Columbia at ambient and below-ambient internal CO2 concentrations. The increased TE and reduced whole leaf stomatal conductance of gpa1 can be primarily attributed to stomatal density, which is reduced in gpa1 mutants. GPA1 regulates stomatal density via the control of epidermal cell size and stomata formation. GPA1 promoter::beta-glucuronidase lines indicate that the GPA1 promoter is active in the stomatal cell lineage, further supporting a function for GPA1 in stomatal development in true leaves.

  14. Effect of co-administration of cassava (Manihot esculenta Crantz) rich diet and alcohol in rats.

    PubMed

    Boby, R G; Indira, M

    2004-01-01

    The effects of co-administration of a cassava rich diet and alcohol in rats were investigated. The animals were divided into four groups (1) Control, (2) Alcohol, (3) Cassava and (4) Alcohol + Cassava. Consumption of alcohol along with cassava reduced the alcohol induced toxicity which was evidenced by the lower activities of GOT, GPT, GGT, acid phosphatase and alkaline phosphatase in the liver and serum of co-administered group. The pyruvate content in the blood increased while the lactate content, lactate/pyruvate ratio and the activity of LDH decreased in the blood due to co-administration. The blood cyanide content, serum thiocyanate content and the activities of rhodanase and beta-glucuronidase increased on co-administration. The histopathological studies also revealed that co-administration reduced the alcohol induced toxicity.

  15. Metabolism and pharmacokinetics of genipin and geniposide in rats.

    PubMed

    Hou, Y C; Tsai, S Y; Lai, P Y; Chen, Y S; Chao, P D L

    2008-08-01

    Geniposide, an iridoid glucoside, is a major constituent in the fruits of Gardenia jasminoides (Gardenia fruits), a popular Chinese herb. Genipin, the aglycone of geniposide, is used to prepare blue colorants in food industry and also a crosslinking reagent for biological tissue fixation. In this study, we investigated the metabolism and pharmacokinetics of genipin and geniposide in rats. Blood samples were withdrawn via cardiopuncture and the plasma samples were assayed by HPLC method before and after hydrolysis with sulfatase and beta-glucuronidase. The results indicated that after oral administration of genipin or Gardenia fruit decoction, genipin sulfate was a major metabolite in the bloodstream, whereas the parent forms of genipin and geniposide were not detected. Importantly, oral administration of 200mg/kg of genipin resulted in a mortality of 78% (7/9) in rats.

  16. Acute carbon tetrachloride induced lysosomal membrane damage and the membrane protecting effect of a new dihydroquinoline-type antioxidant.

    PubMed

    Toncsev, H; Pollák, Z; Kiss, A; Sréter, L; Fehér, J

    1982-01-01

    The authors examined the damage of lysosomal membrane caused by acute CCl4 intoxication by in vitro methods. They measured the acid phosphatase as well as beta-glucuronidase enzyme levels and determined the rate of release of these two enzymes. The in vivo changes in enzyme activity were extrapolated from the in vitro results. The CCl4 causes a significant increase in the permeability and rigidity of the lysosomal membrane. By oral and/or intraperitoneal administration of MTDQ the state of permeability can be improved or even corrected. On the basis of their results, the authors conclude that the lysosomal damage caused by CCl4 is mediated by peroxidation of lipids and the lysosomal membrane can be stabilised by MTDQ.

  17. Alternative polyadenylation of the gene transcripts encoding a rat DNA polymerase beta.

    PubMed

    Konopiński, R; Nowak, R; Siedlecki, J A

    1996-10-17

    Rat cells produce two different transcripts of DNA polymerase beta (beta-Pol). The low-molecular-weight transcript (1.4 kb) was already sequenced. We report here the cloning and sequencing of the full-length cDNA, corresponding to the high-molecular-weight (HMW) transcript (4.0 kb) of beta-Pol. Sequence data strongly suggest that both transcripts are produced from a single gene by alternative polyadenylation. The HMW transcript contains the entire 1.4 kb transcript sequence and additional 2.2 kb on the 3' end. The 3' UTR of the HMW transcript contains some regulatory sequences which are not present in the 1.4-kb transcript. The A + U-rich fragment and (GU)21 sequence are believed to influence the stability of the mRNA. The functional significance of the A-rich region locally destabilizing double-stranded secondary structure remains unknown.

  18. Equivalency testing of TTC Tergitol 7 agar (ISO 9308-1:2000) with five culture media for the detection of E. coli in water samples in Greece.

    PubMed

    Mavridou, A; Smeti, E; Mandilara, G; Mandilara, G; Boufa, P; Vagiona-Arvanitidou, M; Vantarakis, A; Vassilandonopoulou, G; Pappa, O; Roussia, V; Tzouanopoulos, A; Livadara, M; Aisopou, I; Maraka, V; Nikolaou, E; Mandilara, G

    2010-01-01

    In this study ten laboratories in Greece compared the performance of reference method TTC Tergitol 7 Agar (with the additional test of beta-glucuronidase production) with five alternative methods, to detect E. coli in water, in line with European Water Directive recommendations. The samples were prepared by spiking drinking water with sewage effluent following a standard protocol. Chlorinated and non-chlorinated samples were used. The statistical analysis was based on the mean relative difference of confirmed counts and was performed in line with ISO 17994. The results showed that in total, three of the alternative methods (Chromocult Coliform agar, Membrane Lauryl Sulfate agar and Trypton Bilex-glucuronidase medium) were not different from TTC Tergitol 7 agar (TTC Tergitol 7 agar vs Chromocult Coliform agar, 294 samples, mean RD% 5.55; vs MLSA, 302 samples, mean RD% 1; vs TBX, 297 samples, mean RD% -2.78). The other two alternative methods (Membrane Faecal coliform medium and Colilert 18/ Quantitray) gave significantly higher counts than TTC Tergitol 7 agar (TTC Tergitol 7 agar vs MFc, 303 samples, mean RD% 8.81; vs Colilert-18/Quantitray, 76 samples, mean RD% 18.91). In other words, the alternative methods generated performance that was as reliable as, or even better than, the reference method. This study will help laboratories in Greece overcome culture and counting problems deriving from the EU reference method for E. coli counts in water samples.

  19. Toward reducing immunogenicity of enzyme replacement therapy: altering the specificity of human β-glucuronidase to compensate for α-iduronidase deficiency.

    PubMed

    Chuang, Huai-Yao; Suen, Ching-Shu; Hwang, Ming-Jing; Roffler, Steve R

    2015-11-01

    Enzyme replacement therapy (ERT) is an effective treatment for many patients with lysosomal storage disorders caused by deficiency in enzymes involved in cell metabolism. However, immune responses that develop against the administered enzyme in some patients can hinder therapeutic efficacy and cause serious side effects. Here we investigated the feasibility of a general approach to decrease ERT immunogenicity by altering the specificity of a normal endogenous enzyme to compensate for a defective enzyme. We sought to identify human β-glucuronidase variants that display α-iduronidase activity, which is defective in mucopolysaccharidosis (MPS) type I patients. A human β-glucuronidase library was screened by the Enzyme Cleavable Surface-Tethered All-purpose Screen sYstem to isolate variants that exhibited 100-290-fold greater activity against the α-iduronidase substrate 4-methylumbelliferyl α-l-iduronide and 7900-24 500-fold enzymatic specificity shift when compared with wild-type β-glucuronidase. In vitro treatment of MPS I cells with the β-glucuronidase variants significantly restored lysosome appearance similar to treatment with α-iduronidase. Our study suggests that β-glucuronidase variants can be isolated to display α-iduronidase activity and produce significant phenotype improvement of MPS I cells. This strategy may represent a possible approach to produce enzymes that display therapeutic benefits with potentially less immunogenicity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Rapid enzymatic hydrolysis using a novel recombinant β-glucuronidase in benzodiazepine urinalysis.

    PubMed

    Morris, Ayodele A; Chester, Scot A; Strickland, Erin C; McIntire, Gregory L

    2014-10-01

    Only trace amounts of parent benzodiazepines are present in urine following extensive metabolism and conjugation. Thus, hydrolysis of glucuronides is necessary for improved detection. Enzyme hydrolysis is preferred to retain identification specificity, but can be costly and time-consuming. The assessment of a novel recombinant β-glucuronidase for rapid hydrolysis in benzodiazepine urinalysis is presented. Glucuronide controls for oxazepam, lorazepam and temazepam were treated with IMCSzyme™ recombinant β-glucuronidase. Hydrolysis efficiency was assessed at 55°C and at room temperature (RT) using the recommended optimum pH. Hydrolysis efficiency for four other benzodiazepines was evaluated solely with positive patient samples. Maximum hydrolysis of glucuronide controls at 5 min at RT (mean analyte recovery ≥ 94% for oxazepam and lorazepam and ≥ 80% for temazepam) was observed. This was considerably faster than the optimized 30 min incubation time for the abalone β-glucuronidase at 65°C. Mean analyte recovery increased at longer incubation times at 55°C for temazepam only. Total analyte in patient samples compared well to targets from abalone hydrolysis after recombinant β-glucuronidase hydrolysis at RT with no incubation. Some matrix effect, differential reactivity, conjugation variability and transformation impacting total analyte recovery were indicated. The unique potential of the IMCSzyme™ recombinant β-glucuronidase was demonstrated with fast benzodiazepine hydrolysis at RT leading to decreased processing time without the need for heat activation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. V(D)J recombination and allelic exclusion of a TCR beta-chain minilocus occurs in the absence of a functional promoter.

    PubMed

    Alvarez, J D; Anderson, S J; Loh, D Y

    1995-08-01

    Transcriptional activation of rearranging Ag receptor gene segments has been hypothesized to regulate their accessibility to V(D)J recombination. We analyzed the role of a functional promoter in the rearrangement of the murine TCR beta-chain locus using two transgenic minilocus constructs. These miniloci each contain an unrearranged V beta 8.3 gene. One has a wild-type V beta 8.3 gene, but the other has a V beta 8.3 gene with a promoter mutation that was previously shown to abrogate transcription in tissue culture. FACS analysis of thymus and lymph node cells from transgenic mouse lines showed that only the lines with the wild-type V beta 8.3 gene promoter express an 8.3 TCR beta-chain. Consistent with the protein expression data, V beta 8.3 gene transcripts were found only in the transgenic lines with the wild-type promoter. Using a quantitative PCR-based assay, it was shown that both types of transgenic lines recombine the V beta 8.3 gene at similar levels. Rearrangement of the transgenes was normal with respect to thymic development and junctional reading frame. Interestingly, both types of miniloci also underwent allelic exclusion in that recombination was blocked by the expression of a rearranged TCR beta-chain transgene. We conclude that a functional V beta gene promoter is not necessary for proper V(D)J recombination to occur.

  2. Repression of endogenous Smad7 by Ski.

    PubMed

    Denissova, Natalia G; Liu, Fang

    2004-07-02

    The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.

  3. Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii

    PubMed Central

    Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard

    2002-01-01

    Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052

  4. Production of MPS VII mouse (Gustm(hE540A·mE536A)Sly) doubly tolerant to human and mouse β-glucuronidase

    PubMed Central

    Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2006-01-01

    Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by β-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165

  5. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor.

    PubMed

    Boukhris, Ines; Dulermo, Thierry; Chouayekh, Hichem; Virolle, Marie-Joëlle

    2016-01-01

    Sco7697, a gene encoding a phytase, enzyme able to degrade phytate (myo-inositol 1,2,3,4,5,6-hexakis phosphate), the most abundant phosphorus storing compound in plants is present in the genome of S. coelicolor, a soil born bacteria with a saprophytic lifestyle. The expression of this gene was previously shown to be induced in conditions of Pi limitation by the response regulator PhoP binding to an operator sequence, the PHO box, located upstream of the -35 promoter sequence. A close examination of the promoter region of sco7697 revealed the presence of another putative operator site, a Direct Repeat (DR), located downstream of the -10 promoter sequence. In order to determine whether this DR played a role in regulation of sco7697 expression, different variants of the phytase gene promoter region were transcriptionally fused to the ß-glucuronidase reporter gene (GUS). As expected, deletion of the PHO box led to abolition of sco7697 induction in conditions of Pi limitation. Interestingly, alteration of the DR correlated with a dramatic increase of GUS expression but only when PhoP was present. These results demonstrated that this DR is the site of strong negative regulation by an unknown repressor. The latter would impede the necessary activation of phytase expression by PhoP. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silencing of an α-dioxygenase gene, Ca-DOX, retards growth and suppresses basal disease resistance responses in Capsicum annum.

    PubMed

    Hong, Chi Eun; Ha, Young-Im; Choi, Hyoju; Moon, Ju Yeon; Lee, Jiyoung; Shin, Ah-Young; Park, Chang Jin; Yoon, Gyeong Mee; Kwon, Suk-Yoon; Jo, Ick-Hyun; Park, Jeong Mee

    2017-03-01

    Alpha-dioxygenases (α-DOX) catalyzing the primary oxygenation of fatty acids to oxylipins were recently found in plants. Here, the biological roles of the pepper α-DOX (Ca-DOX) gene, which is strongly induced during non-host pathogen infection in chili pepper, were examined. Virus-induced gene silencing demonstrated that down-regulation of Ca-DOX enhanced susceptibility to bacterial pathogens and suppressed the hypersensitive response via the suppression of pathogenesis-related genes such as PR4, proteinase inhibitor II and lipid transfer protein (PR14). Ca-DOX-silenced pepper plants also exhibited more retarded growth with lower epidermal cell numbers and reduced cell wall thickness than control plants. To better understand regulation of Ca-DOX, transgenic Arabidopsis plants harboring the β-glucuronidase (GUS) reporter gene driven from a putative Ca-DOX promoter were generated. GUS expression was significantly induced upon avirulent pathogen infection in transgenic Arabidopsis leaves, whereas GUS induction was relatively weak upon virulent pathogen treatment. After treatment with plant hormones, early and strong GUS expression was seen after treatment of salicylic acid, whereas ethylene and methyl jasmonate treatments produced relatively weak and late GUS signals. These results will enable us to further understand the role of α-DOX, which is important in lipid metabolism, defense responses, and growth development in plants.

  7. MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line.

    PubMed

    Du, Mei-Jun; Lv, Xiang; Hao, De-Long; Zhao, Guo-Wei; Wu, Xue-Song; Wu, Feng; Liu, De-Pei; Liang, Chih-Chuan

    2008-01-01

    Evidences indicate that locus control region (LCR) of beta-globin spatially closes to the downstream active gene promoter to mediate the transcriptional activation by looping. DNA binding proteins may play an important role in the looping formation. NF-E2 is one of the key transcription factors in beta-globin gene transcriptional activation. To shed light on whether NF-E2 is involved in this process, DS19MafKsiRNA cell pools were established by specifically knocked down the expression of MafK/NF-E2 p18, one subunit of NF-E2 heterodimer. In the above cell pools, it was observed that the occupancy efficiency of NF-E2 on beta-globin gene locus and the expression level of beta-globin genes were decreased. H3 acetylation, H3-K4 methylation and the deposition of RNA polymerase II, but not the recruitment of GATA-1, were also found reduced at the beta-globin gene cluster. Chromosome Conformation Capture (3C) assay showed that the cross-linking frequency between the main NF-E2 binding site HS2 and downstream structural genes was reduced compared to the normal cell. This result demonstrated that MafK/NF-E2 p18 recruitment was involved in the physical proximity of LCR and active beta-globin genes upon beta-globin gene transcriptional activation.

  8. Association of Beta-Glucan Endogenous Production with Increased Stress Tolerance of Intestinal Lactobacilli▿

    PubMed Central

    Stack, Helena M.; Kearney, Niamh; Stanton, Catherine; Fitzgerald, Gerald F.; Ross, R. Paul

    2010-01-01

    The exopolysaccharide beta-glucan has been reported to be associated with many health-promoting and prebiotic properties. The membrane-associated glycosyltransferase enzyme (encoded by the gtf gene), responsible for microbial beta-glucan production, catalyzes the conversion of sugar nucleotides into beta-glucan. In this study, the gtf gene from Pediococcus parvulus 2.6 was heterologously expressed in Lactobacillus paracasei NFBC 338. When grown in the presence of glucose (7%, wt/vol), the recombinant strain (pNZ44-GTF+) displayed a “ropy” phenotype, while scanning electron microscopy (SEM) revealed strands of polysaccharide-linking neighboring cells. Beta-glucan biosynthesis was confirmed by agglutination tests carried out with Streptococcus pneumoniae type 37-specific antibodies, which specifically detect glucan-producing cells. Further analysis showed a ∼2-fold increase in viscosity in broth media for the beta-glucan-producing strain over 24 h compared to the control strain, which did not show any significant increase in viscosity. In addition, we analyzed the ability of beta-glucan-producing Lactobacillus paracasei NFBC 338 to survive both technological and gastrointestinal stresses. Heat stress assays revealed that production of the polysaccharide was associated with significantly increased protection during heat stress (60-fold), acid stress (20-fold), and simulated gastric juice stress (15-fold). Bile stress assays revealed a more modest but significant 5.5-fold increase in survival for the beta-glucan-producing strain compared to that of the control strain. These results suggest that production of a beta-glucan exopolysaccharide by strains destined for use as probiotics may afford them greater performance/protection during cultivation, processing, and ingestion. As such, expression of the gtf gene may prove to be a straightforward approach to improve strains that might otherwise prove sensitive in such applications. PMID:19933353

  9. Group A streptococcal infections of the pharynx in a rural population in south India.

    PubMed

    Menon, Thangam; Shanmugasundaram, S; Kumar, M Palani; Kumar, C P Girish

    2004-05-01

    There has been a resurgence in the incidence of rheumatic heart disease all over the world and hence surveillance and strain characterization are important. The aim of this study was to screen children in a rural community in south India for throat carriage of group A streptococci and to clinically assess them for signs of rheumatic heart disease. Throat swabs were collected from children (5-14 yr) in the village of Orathur, Tamil Nadu and cultured on tryptose blood agar plates. Beta haemolytic streptococci were serogrouped using Streptex kit and biotyped based on their ability to ferment carbohydrates and production of beta-glucuronidase enzyme. Blood samples were also collected and antibodies to streptolysin O demonstrated by latex agglutination tests. All the children were examined by a paediatrician; ECG and echocardiography were performed to assess cardiac function. Eighty of the 310 children included in the study had symptoms of acute respiratory infections; 16 of them grew beta haemolytic streptococci of which 8 belonged to group A (10%). Biotype 4 was most common. Antistreptolysin O (ASO) test did not correlate with culture results. Two of 310 children had rheumatic heart disease but both were culture negative. Pharyngeal carriage of group A streptococci was common in this population. The prevalence of rheumatic heart disease was 0.6 per cent. The study emphasizes the need for active surveillance and characterization of GAS isolates.

  10. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.

    PubMed

    Długosz, Marek; Wiktorowska, Ewa; Wiśniewska, Anita; Pączkowski, Cezary

    2013-01-01

    In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with β-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.

  11. Isolation of Persicaria minor sesquiterpene synthase promoter and its deletions for transgenic Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Omar, Aimi Farehah; Ismail, Ismanizan

    2016-11-01

    Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.

  12. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwak, Jungsug; Song, Taeyun; Song, Jie-Young

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cellmore » proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.« less

  13. β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Uchibori, Yoshie; Yonejima, Yasunori; Ashida, Hisashi; Kita, Keiko; Takahashi, Satomi; Ogawa, Jun

    2014-05-01

    Baicalin (baicalein 7-O-β-D-glucuronide) is one of the major flavonoid glucuronides found in traditional herbal medicines. Because its aglycone, baicalein, is absorbed more quickly and shows more effective properties than baicalin, the conversion of baicalin into baicalein by β-glucuronidase (GUS) has drawn the attention of researchers. Recently, we have found that Lactobacillus brevis subsp. coagulans can convert baicalin to baicalein. Therefore, we aimed to identify and characterize the converting enzyme from L. brevis subsp. coagulans. First, we purified this enzyme from the cell-free extracts of L. brevis subsp. coagulans and cloned its gene. Surprisingly, this enzyme was found to be a GUS belonging to glycoside hydrolase (GH) family 30 (designated as LcGUS30), and its amino acid sequence has little similarity with any GUS belonging to GH families 1, 2, and 79 that have been reported so far. We then established a high-level expression and simple purification system of the recombinant LcGUS30 in Escherichia coli. The detailed analysis of the substrate specificity revealed that LcGUS30 has strict specificity toward glycon but not toward aglycones. Interestingly, LcGUS30 prefers baicalin rather than estrone 3-(β-D-glucuronide), one of the human endogenous steroid hormones. These results indicated that L. brevis subsp. coagulans and LcGUS30 should serve as powerful tools for the construction of a safe bioconversion system for baicalin. In addition, we propose that this novel type of GUS forms a new group in subfamily 3 of GH family 30.

  14. Intravascular local gene transfer mediated by protein-coated metallic stent.

    PubMed

    Yuan, J; Gao, R; Shi, R; Song, L; Tang, J; Li, Y; Tang, C; Meng, L; Yuan, W; Chen, Z

    2001-10-01

    To assess the feasibility, efficiency and selectivity of adenovirus-mediated gene transfer to local arterial wall by protein-coated metallic stent. A replication-defective recombinant adenovirus carrying the Lac Z reporter gene for nuclear-specific beta-galactosidase (Ad-beta gal) was used in this study. The coating for metallic stent was made by immersing it in a gelatin solution containing crosslinker. The coated stents were mounted on a 4.0 or 3.0 mm percutaneous transluminal coronary angioplasty (PTCA) balloon and submersed into a high-titer Ad-beta gal viral stock (2 x 10(10) pfu/ml) for 3 min, and then implanted into the carotid arteries in 4 mini-swines and into the left anterior descending branch of the coronary artery in 2 mini-swines via 8F large lumen guiding catheters. The animals were sacrificed 7 (n = 4), 14 (n = 1) and 21 (n = 1) days after implantation, respectively. The beta-galactosidase expression was assessed by X-gal staining. The results showed that the expression of transgene was detected in all animal. In 1 of carotid artery with an intact intima, the beta-gal expression was limited to endothelial cells. In vessels with denuded endothelium, gene expression was found in the sub-intima, media and adventitia. The transfection efficiency of medial smooth muscle cells was 38.6%. In 2 animals sacrificed 7 days after transfection, a microscopic examination of X-gal-stained samples did not show evidence of transfection in remote organs and arterial segments adjacent to the treated arterial site. Adenovirus-mediated arterial gene transfer to endothelial, smooth muscle cells and adventitia by protein-coated metallic stent is feasible. The transfection efficiency is higher. The coated stent may act as a good carrier of adenovirus-mediated gene transfer and have a potential to prevent restenosis following PTCA.

  15. GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters.

    PubMed

    Miyata, Luzia Yuriko; Harakava, Ricardo; Stipp, Liliane Cristina Libório; Mendes, Beatriz Madalena Januzzi; Appezzato-da-Glória, Beatriz; de Assis Alves Mourão Filho, Francisco

    2012-11-01

    Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the β-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.

  16. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  17. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection.

    PubMed

    Wang, Yuna; Dang, Fengfeng; Liu, Zhiqin; Wang, Xu; Eulgem, Thomas; Lai, Yan; Yu, Lu; She, Jianju; Shi, Youliang; Lin, Jinhui; Chen, Chengcong; Guan, Deyi; Qiu, Ailian; He, Shuilin

    2013-02-01

    WRKY transcription factors are encoded by large gene families across the plant kingdom. So far, their biological and molecular functions in nonmodel plants, including pepper (Capsicum annuum) and other Solanaceae, remain poorly understood. Here, we report on the functional characterization of a new group I WRKY protein from pepper, termed CaWRKY58. Our data indicate that CaWRKY58 can be localized to the nucleus and can activate the transcription of the reporter β-glucuronidase (GUS) gene driven by the 35S core promoter with two copies of the W-box in its proximal upstream region. In pepper plants infected with the bacterial pathogen Ralstonia solanacearum, CaWRKY58 transcript levels showed a biphasic response, manifested in an early/transient down-regulation and late up-regulation. CaWRKY58 transcripts were suppressed by treatment with methyl jasmonate and abscisic acid. Tobacco plants overexpressing CaWRKY58 did not show any obvious morphological phenotypes, but exhibited disease symptoms of greater severity than did wild-type plants. The enhanced susceptibility of CaWRKY58-overexpressing tobacco plants correlated with the decreased expression of hypersensitive response marker genes, as well as various defence-associated genes. Consistently, CaWRKY58 pepper plants silenced by virus-induced gene silencing (VIGS) displayed enhanced resistance to the highly virulent R. solanacearum strain FJC100301, and this was correlated with enhanced transcripts of defence-related pepper genes. Our results suggest that CaWRKY58 acts as a transcriptional activator of negative regulators in the resistance of pepper to R. solanacearum infection. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  18. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3beta is implicated in the treatment of cervical carcinoma.

    PubMed

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3beta (GSK-3beta) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3beta(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3beta after transfection with GSK-3beta by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3beta (s9). Furthermore, we demonstrated GSK-3beta transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3beta was important to improve chemosensitization, indicating the significance of GSK-3beta-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  19. Regulation of expression of transgenes in developing fish.

    PubMed

    Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B

    1993-05-01

    The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.

  20. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Al Muqarrabin, Laode Muhammad Ramadhan; Zaki, Hamizah Mohd; Ahmat, Norizan; Nasir, Abdul; Khan, Fahad

    2016-10-01

    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Clonal expansion of T-cell receptor beta gene segment in the retrocochlear lesions of EAE mice.

    PubMed

    Cheng, K C; Lee, K M; Yoo, T J

    1998-01-01

    It has been reported that the T cell receptor V beta 8.2 (TcrbV8.2) gene segment is predominantly expressed in encephalomyelitic T cells responding to myelin basic protein (MBP) in experimental allergic encephalomyelitis (EAE) mice. We have demonstrated retrocochlear hearing loss in EAE mice in previous studies. Administration of a monoclonal antibody specific to the T cell receptor V beta 8 (TcrbV8) subfamily prevented both this type of hearing loss and the central nerve disease. In this study, we examined the role of the TcrbV8.2 gene segment in the retrocochlear lesions of EAE mice. A clonal expression of T cell receptor beta chain gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) was identified in the retrocochlear lesions. The TcrbV8.2 gene segment appears to recombine only with TcrbJ2.1 (32.1%) and TcrbJ2.7 (67.9%) gene segments. The TcrbJ2.7 gene segment has also been previously identified as the dominant TcrbJ gene in the lymph nodes of EAE mice. Only TcrbD2, with a length of 4 amino acids, was observed recombining with these TcrbV8.2 sequences. G and C nucleotides are predominantly expressed at the N regions between the V-D and D-J junctions. This dominant TcrbV gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) observed in the retrocochlear lesions has been identified in the MBP-specific T cells from the lymph nodes of EAE mice. These results suggest that a small subset of antigen-specific T cells migrate to, and expand at, the retrocochlear lesions, which leads to hearing loss.

  2. Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation.

    PubMed

    Rose, K; Allan, A; Gauldie, S; Stapleton, G; Dobbie, L; Dott, K; Martin, C; Wang, L; Hedlund, E; Seckl, J R; Gustafsson, J A; Lathe, R

    2001-06-29

    The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.

  3. Deletion of the human beta-globin LCR 5'HS4 or 5'HS1 differentially affects beta-like globin gene expression in beta-YAC transgenic mice.

    PubMed

    Fedosyuk, Halyna; Peterson, Kenneth R

    2007-01-01

    A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.

  4. Absorption of N-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao).

    PubMed

    Stark, Timo; Lang, Roman; Keller, Daniela; Hensel, Andreas; Hofmann, Thomas

    2008-10-01

    Besides flavan-3-ols, a family of N-phenylpropenoyl-L-amino acids (NPAs) has been recently identified as polyphenol/amino acid conjugates in the seeds of Theobroma cacao as well as in a variety of herbal drugs. Stimulated by reports on their biological activity, the purpose of this study was to investigate if these amides are absorbed by healthy volunteers after administration of a cocoa drink. For the first time, 12 NPAs were quantified in human urine by means of a stable isotope dilution analysis with LC-MS/MS (MRM) detection. A maximum amount was found in the urine taken 2 h after the cocoa consumption. The highest absolute amount of NPAs excreted with the urine was found for N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid (5), but the highest recovery rate (57.3 and 22.8%), that means the percentage amount of ingested amides excreted with the urine, were determined for N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid (6) and N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-tyrosine (13). In order to gain first insights into the NPA metabolism in vivo, urine samples were analyzed by LC-MS/MS before and after beta-glucuronidase/sulfatase treatment. As independent of the enzyme treatment the same NPA amounts were found in urine, there is strong evidence that these amides are metabolized neither via their O-glucuronides nor their O-sulfates. In order to screen for caffeic acid O-glucuronides as potential NPA metabolites, urine samples were screened by means of LC-MS/MS for caffeic acid 3-O-beta-D-glucuronide and 4-O-beta-D-glucuronide. But not even trace amounts of one of these glucuronides were detectable, thus excluding them as major NPA metabolites and underlining the importance of future investigations on a potential O-methylation or reduction of the N-phenylpropenoyl moiety in NPAs.

  5. The context of transcription start site regions is crucial for transcription of a plant tRNA(Lys)(UUU) gene group both in vitro and in vivo.

    PubMed

    Yukawa, Yasushi; Akama, Kazuhito; Noguchi, Kanta; Komiya, Masaaki; Sugiura, Masahiro

    2013-01-10

    Nuclear tRNA genes are transcribed by RNA polymerase III. The A- and B-boxes located within the transcribed regions are essential promoter elements for nuclear tRNA gene transcription. The Arabidopsis genome contains ten annotated genes encoding identical tRNA(Lys)(UUU) molecules, which are scattered on the five chromosomes. In this study, we prepared ten tDNA constructs including each of the tRNA(Lys)(UUU) coding sequences with their individual 5' and 3' flanking sequences, and assayed tRNA expression using an in vitro RNA polymerase III-dependent transcription system. Transcription levels differed significantly among the ten genes and two of the tRNA genes were transcribed at a very low level, despite possessing A- and B-boxes identical to those of the other tRNA genes. To examine whether the in vitro results were reproducible in vivo, the 5' flanking sequence of an amber suppressor tRNA gene was then replaced with those of the ten tRNA(Lys) genes. An in vivo experiment based on an amber suppressor tRNA that mediates suppression of a premature amber codon in a β-glucuronidase (GUS) reporter gene in plant tissues generated nearly identical results to those obtained in vitro. Analysis of mutated versions of the amber suppressor tRNA gene, which contained base substitutions around the transcription start site (TSS), showed that the context around the transcription start sites is a crucial determinant for transcription of plant tRNA(Lys)(UUU) both in vitro and in vivo. The above transcription regulation by context around TSS differed between tRNA genes and other Pol III-dependent genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism.

    PubMed

    Philippi, A; Roschmann, E; Tores, F; Lindenbaum, P; Benajou, A; Germain-Leclerc, L; Marcaillou, C; Fontaine, K; Vanpeene, M; Roy, S; Maillard, S; Decaulne, V; Saraiva, J P; Brooks, P; Rousseau, F; Hager, J

    2005-10-01

    Autism is a developmental disorder characterized by impairments in social interaction and communication associated with repetitive patterns of interest or behavior. Autism is highly influenced by genetic factors. Genome-wide linkage and candidate gene association approaches have been used to try and identify autism genes. A few loci have repeatedly been reported linked to autism. Several groups reported evidence for linkage to a region on chromosome 16p. We have applied a direct physical identity-by-descent (IBD) mapping approach to perform a high-density (0.85 megabases) genome-wide linkage scan in 116 families from the AGRE collection. Our results confirm linkage to a region on chromosome 16p with autism. High-resolution single-nucleotide polymorphism (SNP) genotyping and analysis of this region show that haplotypes in the protein kinase c-beta gene are strongly associated with autism. An independent replication of the association in a second set of 167 trio families with autism confirmed our initial findings. Overall, our data provide evidence that the PRKCB1 gene on chromosome 16p may be involved in the etiology of autism.

  7. Isolation and functional characterization of a lycopene beta-cyclase gene that controls fruit colour of papaya (Carica papaya L.).

    PubMed

    Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.

  8. PET imaging of β-glucuronidase activity by an activity-based 124I-trapping probe for the personalized glucuronide prodrug targeted therapy.

    PubMed

    Su, Yu-Cheng; Cheng, Ta-Chun; Leu, Yu-Ling; Roffler, Steve R; Wang, Jaw-Yuan; Chuang, Chih-Hung; Kao, Chien-Han; Chen, Kai-Chuan; Wang, Hsin-Ell; Cheng, Tian-Lu

    2014-12-01

    Beta-glucuronidase (βG) is a potential biomarker for cancer diagnosis and prodrug therapy. The ability to image βG activity in patients would assist in personalized glucuronide prodrug cancer therapy. However, whole-body imaging of βG activity for medical usage is not yet available. Here, we developed a radioactive βG activity-based trapping probe for positron emission tomography (PET). We generated a (124)I-tyramine-conjugated difluoromethylphenol beta-glucuronide probe (TrapG) to form (124)I-TrapG that could be selectively activated by βG for subsequent attachment of (124)I-tyramine to nucleophilic moieties near βG-expressing sites. We estimated the specificity of a fluorescent FITC-TrapG, the cytotoxicity of tyramine-TrapG, and the serum half-life of (124)I-TrapG. βG targeting of (124)I-TrapG in vivo was examined by micro-PET. The biodistribution of (131)I-TrapG was investigated in different organs. Finally, we imaged the endogenous βG activity and assessed its correlation with therapeutic efficacy of 9-aminocamptothecin glucuronide (9ACG) prodrug in native tumors. FITC-TrapG showed specific trapping at βG-expressing CT26 (CT26/mβG) cells but not in CT26 cells. The native TrapG probe possessed low cytotoxicity. (124)I-TrapG preferentially accumulated in CT26/mβG but not CT26 cells. Meanwhile, micro-PET and whole-body autoradiography results demonstrated that (124)I-TrapG signals in CT26/mβG tumors were 141.4-fold greater than in CT26 tumors. Importantly, Colo205 xenografts in nude mice that express elevated endogenous βG can be monitored by using infrared glucuronide trapping probes (NIR-TrapG) and suppressed by 9ACG prodrug treatment. (124)I-TrapG exhibited low cytotoxicity allowing long-term monitoring of βG activity in vivo to aid in the optimization of prodrug targeted therapy. ©2014 American Association for Cancer Research.

  9. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    PubMed

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  10. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.

    PubMed Central

    German, M S; Moss, L G; Wang, J; Rutter, W J

    1992-01-01

    The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125

  11. Association study of IL10, IL1beta, and IL1RN and schizophrenia using tag SNPs from a comprehensive database: suggestive association with rs16944 at IL1beta.

    PubMed

    Shirts, Brian H; Wood, Joel; Yolken, Robert H; Nimgaonkar, Vishwajit L

    2006-12-01

    Genetic association studies of several candidate cytokine genes have been motivated by evidence of immune dysfunction among patients with schizophrenia. Intriguing but inconsistent associations have been reported with polymorphisms of three positional candidate genes, namely IL1beta, IL1RN, and IL10. We used comprehensive sequencing data from the Seattle SNPs database to select tag SNPs that represent all common polymorphisms in the Caucasian population at these loci. Associations with 28 tag SNPs were evaluated in 478 cases and 501 unscreened control individuals, while accounting for population sub-structure using the genomic control method. The samples were also stratified by gender, diagnostic category, and exposure to infectious agents. Significant association was not detected after correcting for multiple comparisons. However, meta-analysis of our data combined with previously published association studies of rs16944 (IL1beta -511) suggests that the C allele confers modest risk for schizophrenia among individuals reporting Caucasian ancestry, but not Asians (Caucasians, n=819 cases, 1292 controls; p=0.0013, OR=1.24, 95% CI 1.09, 1.41).

  12. Annexin VI is a mannose-6-phosphate-independent endocytic receptor for bovine β-glucuronidase.

    PubMed

    Ramírez-Mata, Alberto; Michalak, Colette; Mendoza-Hernández, Guillermo; León-Del-Río, Alfonso; González-Noriega, Alfonso

    2011-10-01

    Endocytosis and transport of bovine liver β-glucuronidase to lysosomes in human fibroblasts are mediated by two receptors: the well-characterized cation-independent mannose 6-phosphate receptor (IGF-II/Man6PR) and an IGF-II/Man6PR-independent receptor, which recognizes a Ser-Trp*-Ser sequence present on the ligand. The latter receptor was detergent extracted from bovine liver membranes and purified. LC/ESI-MS/MS analysis revealed that this endocytic receptor was annexin VI (AnxA6). Several approaches were used to confirm this finding. First, the binding of bovine β-glucuronidase to the purified receptor from bovine liver membranes and His-tagged recombinant human AnxA6 protein was confirmed using ligand-blotting assays. Second, western blot analysis using antibodies raised against IGF-II/Man6PR-independent receptor as well as commercial antibodies against AnxA6 confirmed that the receptor and AnxA6 were indeed the same protein. Third, double immunofluorescence experiments in human fibroblasts confirmed a complete colocalization of the bovine β-glucuronidase and the AnxA6 receptor on the plasma membrane. Lastly, two cell lines were stably transfected with a plasmid containing the cDNA for human AnxA6. In both transfected cell lines, an increase in cell surface AnxA6 and in mannose 6-phosphate-independent endocytosis of bovine β-glucuronidase was detected. These results indicate that AnxA6 is a novel receptor that mediates the endocytosis of the bovine β-glucuronidase. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Variation in the Phenotypic Expression of B-Glucuronidase Deficiency

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.; And Others

    1975-01-01

    Presented are case studies of two children, 2-and 14 years-old, with widely differing manifestations of B-glucuronidase deficiency: one child was severly retarded with multiple anomalies, the other child exhibited milder symptoms with cardiovasculor involvement. (CL)

  14. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  15. Rapid Evolution of Beta-Keratin Genes Contribute to Phenotypic Differences That Distinguish Turtles and Birds from Other Reptiles

    PubMed Central

    Li, Yang I.; Kong, Lesheng; Ponting, Chris P.; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles. PMID:23576313

  16. Mechanism of Gene Expression of Arabidopsis Glutathione S-Transferase, AtGST1, and AtGST11 in Response to Aluminum Stress1

    PubMed Central

    Ezaki, Bunichi; Suzuki, Masakatsu; Motoda, Hirotoshi; Kawamura, Masako; Nakashima, Susumu; Matsumoto, Hideaki

    2004-01-01

    The gene expression of two Al-induced Arabidopsis glutathione S-transferase genes, AtGST1 and AtGST11, was analyzed to investigate the mechanism underlying the response to Al stress. An approximately 1-kb DNA fragment of the 5′-upstream region of each gene was fused to a β-glucuronidase (GUS) reporter gene (pAtGST1::GUS and pAtGST11::GUS) and introduced into Arabidopsis ecotype Landsberg erecta. The constructed transgenic lines showed a time-dependent gene expression to a different degree in the root and/or leaf by Al stress. The pAtGST1::GUS gene was induced after a short Al treatment (maximum expression after a 2-h exposure), while the pAtGST11::GUS gene was induced by a longer Al treatment (approximately 8 h for maximum expression). Since the gene expression was observed in the leaf when only the root was exposed to Al stress, a signaling system between the root and shoot was suggested in Al stress. A GUS staining experiment using an adult transgenic line carrying the pAtGST11::GUS gene supported this suggestion. Furthermore, Al treatment simultaneously with various Ca depleted conditions in root region enhanced the gene expression of the pAtGST11::GUS in the shoot region. This result suggested that the degree of Al toxicity in the root reflects the gene response of pAtGST11::GUS in the shoot via the deduced signaling system. Both transgenic lines also showed an increase of GUS activity after cold stress, heat stress, metal toxicity, and oxidative damages, suggesting a common induction mechanism in response to the tested stresses including Al stress. PMID:15047894

  17. Evaluation of transcriptional activity of the oestrogen receptor with sodium iodide symporter as an imaging reporter gene.

    PubMed

    Kang, Joo Hyun; Chung, June-Key; Lee, Yong Jin; Kim, Kwang Il; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2006-10-01

    Oestrogen receptors are ligand-dependent transcription factors whose activity is modulated either by oestrogens or by an alternative signalling pathway. Oestrogen receptors interact via a specific DNA-binding domain, the oestrogen responsive element (ERE), in the promoter region of sensitive genes. This binding leads to an initiation of gene expression and hormonal effects. To determine the transcriptional activity of the oestrogen receptor, we developed a molecular imaging system using sodium iodide symporter (NIS) as a reporter gene. The NIS reporter gene was placed under the control of an artificial ERE derived from pERE-TA-SEAP and named as pERE-NIS. pERE-NIS was transferred to MCF-7, human breast cancer cells, which highly expressed oestrogen receptor-alpha with lipofectamine. Stably expressing cells were generated by selection with G418 for 14 days. After treatment of 17beta-oestradiol and tamoxifen with serial doses, the (125)I uptake was measured for the determination of NIS expression. The inhibition of NIS activity was performed with 50 micromol x l(-1) potassium perchlorate. The MCF7/pERE-NIS treated with 17beta-oestradiol accumulated (125)I up to 70-80% higher than did non-treated cells. NIS expression was increased according to increasing doses of 17beta-oestradiol. MCF7/pERE-NIS treated with tamoxifen also accumulated (125)I up to 50% higher than did non-treated cells. Potassium perchlorate completely inhibited (125)I uptake. When MDA-MB231 cells, the oestrogen receptor-negative breast cancer cells, were transfected with pERE-NIS, (125)I uptake of MDA-MB-231/pERE-NIS did not increase. This pERE-NIS reporter system is sufficiently sensitive for monitoring transcriptional activity of the oestrogen receptor. Therefore, cis-enhancer reporter systems with ERE will be applicable to the development of a novel selective oestrogen receptor modulator with low toxicity and high efficacy.

  18. Breast cancer and steroid metabolizing enzymes: the role of progestogens.

    PubMed

    Pasqualini, Jorge R

    2009-12-01

    It is well documented that breast tissue, both normal and cancerous, contains all the enzymatic systems necessary for the bioformation and metabolic transformation of estrogens, androgens and progesterone. These include sulfatases, aromatase, hydroxysteroid-dehydrogenases, sulfotransferases, hydroxylases and glucuronidases. The control of these enzymes plays an important role in the development and pathogenesis of hormone-dependent breast cancer. As discussed in this review, various progestogens including dydrogesterone and its 20alpha-dihydro-derivative, medrogestone, promegestone, nomegestrol acetate and norelgestromin can reduce intratissular levels of estradiol in breast cancer by blocking sulfatase and 17beta-hydroxysteroid-dehydrogenase type 1 activities. A possible correlation has been postulated between breast cell proliferation and estrogen sulfotransferase activity. Progesterone is largely transformed in the breast; normal breast produces mainly 4-ene derivatives, whereas 5alpha-derivatives are most common in breast cancer tissue. It has been suggested that this specific conversion of progesterone may be involved in breast carcinogenesis. In conclusion, treatment with anti-aromatases combined with anti-sulfatase or 17beta-hydroxysteroid-dehydrogenase type 1 could provide new therapeutic possibilities in the treatment of patients with hormone-dependent breast cancer. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. A beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction.

    PubMed

    Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R

    2006-09-01

    Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.

  20. Genotypic and Phenotypic Characterization of Escherichia coli Isolates from Feces, Hands, and Soils in Rural Bangladesh via the Colilert Quanti-Tray System

    PubMed Central

    Islam, M. Aminul; Pickering, Amy J.; Roy, Subarna; Fuhrmeister, Erica R.; Ercumen, Ayse; Harris, Angela; Bishai, Jason; Schwab, Kellogg J.

    2014-01-01

    The increased awareness of the role of environmental matrices in enteric disease transmission has resulted in the need for rapid, field-based methods for fecal indicator bacteria and pathogen detection. Evidence of the specificity of β-glucuronidase-based assays for detection of Escherichia coli from environmental matrices relevant to enteric pathogen transmission in developing countries, such as hands, soils, and surfaces, is limited. In this study, we quantify the false-positive rate of a β-glucuronidase-based E. coli detection assay (Colilert) for two environmental reservoirs in Bangladeshi households (hands and soils) and three fecal composite sources (cattle, chicken, and humans). We investigate whether or not the isolation source of E. coli influences phenotypic and genotypic characteristics. Phenotypic characteristics include results of biochemical assays provided by the API-20E test; genotypic characteristics include the Clermont phylogroup and the presence of enteric and/or environmental indicator genes sfmH, rfaI, and fucK. Our findings demonstrate no statistically significant difference in the false-positive rate of Colilert for environmental compared to enteric samples. E. coli isolates from all source types are genetically diverse, representing six of the seven phylogroups, and there is no difference in relative frequency of phylogroups between enteric and environmental samples. We conclude that Colilert, and likely other β-glucuronidase-based assays, is appropriate for detection of E. coli on hands and in soils with low false-positive rates. Furthermore, E. coli isolated from hands and soils in Bangladeshi households are diverse and indistinguishable from cattle, chicken, and human fecal isolates, using traditional biochemical assays and phylogrouping. PMID:25548044

  1. Genotypic and phenotypic characterization of Escherichia coli isolates from feces, hands, and soils in rural Bangladesh via the Colilert Quanti-Tray System.

    PubMed

    Julian, Timothy R; Islam, M Aminul; Pickering, Amy J; Roy, Subarna; Fuhrmeister, Erica R; Ercumen, Ayse; Harris, Angela; Bishai, Jason; Schwab, Kellogg J

    2015-03-01

    The increased awareness of the role of environmental matrices in enteric disease transmission has resulted in the need for rapid, field-based methods for fecal indicator bacteria and pathogen detection. Evidence of the specificity of β-glucuronidase-based assays for detection of Escherichia coli from environmental matrices relevant to enteric pathogen transmission in developing countries, such as hands, soils, and surfaces, is limited. In this study, we quantify the false-positive rate of a β-glucuronidase-based E. coli detection assay (Colilert) for two environmental reservoirs in Bangladeshi households (hands and soils) and three fecal composite sources (cattle, chicken, and humans). We investigate whether or not the isolation source of E. coli influences phenotypic and genotypic characteristics. Phenotypic characteristics include results of biochemical assays provided by the API-20E test; genotypic characteristics include the Clermont phylogroup and the presence of enteric and/or environmental indicator genes sfmH, rfaI, and fucK. Our findings demonstrate no statistically significant difference in the false-positive rate of Colilert for environmental compared to enteric samples. E. coli isolates from all source types are genetically diverse, representing six of the seven phylogroups, and there is no difference in relative frequency of phylogroups between enteric and environmental samples. We conclude that Colilert, and likely other β-glucuronidase-based assays, is appropriate for detection of E. coli on hands and in soils with low false-positive rates. Furthermore, E. coli isolated from hands and soils in Bangladeshi households are diverse and indistinguishable from cattle, chicken, and human fecal isolates, using traditional biochemical assays and phylogrouping. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas.

    PubMed

    Souazé, Frédérique; Viardot-Foucault, Véronique; Roullet, Nicolas; Toy-Miou-Leong, Mireille; Gompel, Anne; Bruyneel, Erik; Comperat, Eva; Faux, Maree C; Mareel, Marc; Rostène, William; Fléjou, Jean-François; Gespach, Christian; Forgez, Patricia

    2006-04-01

    Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.

  3. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration

    PubMed Central

    Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST

    2014-01-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  4. Cloning and in-silico analysis of beta-1,3-xylanase from psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Nor, Nooraisyah Mohamad; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Murad, Abdul Munir Abdul

    2015-09-01

    A beta-1,3-xylanase (EC 3.2.1.32) gene from psychrophilic yeast, Glaciozyma antarctica has been identified via genome data mining. The enzyme was grouped into GH26 family based on Carbohydrate Active Enzyme (CaZY) database. The molecular weight of this protein was predicted to be 42 kDa and is expected to be soluble for expression. The presence of signal peptide suggested that this enzyme may be released extracellularly into the marine environment of the host's habitat. This supports the theory that such enzymatic activity is required for degradation of nutrients of polysaccharide origins into simpler carbohydrates outside the environment before it could be taken up inside the cell. The sequence for this protein showed very little conservation (< 30%) with other beta-1,3-xylanases from available databases. Based on the phylogenetic analysis, this protein also showed distant relationship to other xylanases from eukaryotic origin. The protein may have undergone major substitution in its gene sequence order to adapt to the cold climate. This is the first report of beta-1,3-xylanase gene isolated from a psychrophilic yeast.

  5. Hepatic effects of orally administered styrene in rats.

    PubMed

    Srivastava, S P; Das, M; Mushtaq, M; Chandra, S V; Seth, P K

    1982-08-01

    Adult male rats receiving styrene by gavage (200 or 400 mg kg-1, 6 days a week) for 100 days exhibited a significant dose-dependent increase in hepatic benzo[a]pyrene hydroxylase and aminopyrine-N-demethylase, a decrease in glutathione-S-transferase and no change in glucose-6-phosphatase. A decrease in the activity of mitochondrial succinic dehydrogenase and beta-glucuronidase was also observed. Activity of acid phosphatase was decreased only at the higher dose level. Levels of serum glutamic oxaloacetic transaminase and glutamic pyruvic transaminase were elevated only at the higher dose level. The absolute and relative weights of the liver of control and treated animals showed no significant difference. Histopathological studies of the liver tissue revealed tiny areas of focal necrosis, consisting of few degenerated hepatocytes and inflammatory cells at the higher dose level only.

  6. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus.

    PubMed

    Watson, G L; Sayles, J N; Chen, C; Elliger, S S; Elliger, C A; Raju, N R; Kurtzman, G J; Podsakoff, G M

    1998-12-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a genetic deficiency of beta-glucuronidase (GUS). We used a recombinant adeno-associated virus vector (AAV-GUS) to deliver GUS cDNA to MPS VII mice. The route of vector administration had a dramatic effect on the extent and distribution of GUS activity. Intramuscular injection of AAV-GUS resulted in high, localized production of GUS, while intravenous administration produced low GUS activity in several tissues. This latter treatment of MPS VII mice reduced glycosaminoglycan levels in the liver to normal and reduced storage granules dramatically. We show that a single administration of AAV-GUS can provide sustained expression of GUS in a variety of cell types and is sufficient to reverse the disease phenotype at least in the liver.

  7. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    PubMed Central

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  8. Proteolytic processing of the pro beta chain of beta-hexosaminidase occurs at basic residues contained within an exposed disulfide loop structure.

    PubMed

    Sagherian, C; Poroszlay, S; Vavougios, G; Mahuran, D

    1993-01-01

    Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes, Hex A (alpha beta) and Hex B (beta beta). The alpha and beta subunits are encoded by the HEXA and HEXB genes, respectively. Extensive homology in both the gene structures and deduced primary sequences demonstrate their common evolutionary origin. While undergoing similar proteolytic modifications in the lysosome, the pro beta polypeptide is additionally cleaved internally to produce the mature 24-30 kilodalton beta b and beta a chains. Previous data have suggested that this processing event occurs somewhere between residues Ser311 and Lys315. In this report we demonstrate that this area is located in a hydrophilic disulfide-loop structure (between Cys309 and Cys360). The cleavage event is prevented by the deletion through in vitro mutagenesis of the Arg312-Gln-Asn-Lys tetrapeptide or by its substitution with the aligned alpha residues (Gly-Ser-Glu-Pro). Reintroduction of either Arg312 or Lys315 reinstates the processing. Furthermore, we show that this area is not involved in lysosomal targeting of pro-Hex B, or in the increased stability or the variation in substrate specificity of the beta as compared with the alpha subunit. Our data suggest the presence of a novel lysosomal endoprotease. Like other endoproteases it is specific for basic amino acids; however, it cleaves on the amino-terminal side rather than the conventional carboxy-terminal side of such residues and then only if they are fully exposed to the lysosomal environment.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. β-Glucuronidase-coupled assays of glucuronoyl esterases.

    PubMed

    Fraňová, Lucia; Puchart, Vladimír; Biely, Peter

    2016-10-01

    Glucuronoyl esterases (GEs) are microbial enzymes with potential to cleave the ester bonds between lignin alcohols and xylan-bound 4-O-methyl-d-glucuronic acid in plant cell walls. This activity renders GEs attractive research targets for biotechnological applications. One of the factors impeding the progress in GE research is the lack of suitable substrates. In this work, we report a facile preparation of methyl esters of chromogenic 4-nitrophenyl and 5-bromo-4-chloro-3-indolyl β-D-glucuronides for qualitative and quantitative GE assay coupled with β-glucuronidase as the auxiliary enzyme. The indolyl derivative affording a blue indigo-type product is suitable for rapid and sensitive assay of GE in commercial preparations as well as for high throughput screening of microorganisms and genomic and metagenomic libraries. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Beta 2 adrenergic receptor gene restriction fragment length polymorphism and bronchial asthma.

    PubMed Central

    Ohe, M.; Munakata, M.; Hizawa, N.; Itoh, A.; Doi, I.; Yamaguchi, E.; Homma, Y.; Kawakami, Y.

    1995-01-01

    BACKGROUND--Beta 2 adrenergic dysfunction may be one of the underlying mechanisms responsible for atopy and bronchial asthma. The gene encoding the human beta 2 adrenergic receptor (beta 2ADR) has recently been isolated and sequenced. In addition, a two allele polymorphism of this receptor gene has been identified in white people. A study was carried out to determine whether this polymorphism is functionally important and has any relation to airways responsiveness, atopy, or asthma. METHODS--The subjects studied were 58 family members of four patients with atopic asthma. Restriction fragment length polymorphism (RFLP) with Ban-I digestion of the beta 2ADR gene was detected by a specific DNA probe with Southern blot analysis. Airways responses to inhaled methacholine and the beta 2 agonist salbutamol, the skin prick test, and serum IgE levels were also examined and correlated to the beta 2ADR gene RFLP. In addition, measurements of cAMP responses to isoproterenol in peripheral mononuclear cells were performed in 22 healthy subjects whose genotype for beta 2ADR was known. RESULTS--A two allele polymorphism (2.3 kb and 2.1 kb) of the beta 2ADR gene was detected in the Japanese population. Family members without allele 2.3 kb (homozygote of allele 2.1 kb) had lower airways responses to inhaled salbutamol than those with allele 2.3 kb. The incidence of asthma was higher in those without allele 2.3 kb than in those with allele 2.3 kb. The beta 2ADR gene RFLP had no relation to airways responses to methacholine and atopic status. cAMP responses in peripheral mononuclear cells of the subjects without allele 2.3 kb tended to be lower than those of the subjects with allele 2.3 kb. CONCLUSIONS--These results suggest that Ban-I RFLP of the beta 2ADR gene may have some association with the airways responses to beta 2 agonists and the incidence of bronchial asthma. Images PMID:7785006

  11. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity

    PubMed Central

    Zhong, Ze-yu; Sun, Bin-bin; Shu, Nan; Xie, Qiu-shi; Tang, Xian-ge; Ling, Zhao-li; Wang, Fan; Zhao, Kai-jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-zhu; Liu, Xiao-dong

    2016-01-01

    Aim: Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. Methods: The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Results: Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine

  12. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity.

    PubMed

    Zhong, Ze-Yu; Sun, Bin-Bin; Shu, Nan; Xie, Qiu-Shi; Tang, Xian-Ge; Ling, Zhao-Li; Wang, Fan; Zhao, Kai-Jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-Zhu; Liu, Xiao-Dong

    2016-07-01

    Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine

  13. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice.

    PubMed

    LoGuidice, Amanda; Wallace, Bret D; Bendel, Lauren; Redinbo, Matthew R; Boelsterli, Urs A

    2012-05-01

    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-D-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC₅₀ ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the C(max), half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-D-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure.

  14. Pharmacologic Targeting of Bacterial β-Glucuronidase Alleviates Nonsteroidal Anti-Inflammatory Drug-Induced Enteropathy in Mice

    PubMed Central

    LoGuidice, Amanda; Wallace, Bret D.; Bendel, Lauren; Redinbo, Matthew R.

    2012-01-01

    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-d-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC50 ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the Cmax, half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-d-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure. PMID:22328575

  15. Development of siRNA expression vector utilizing rock bream beta-actin promoter: a potential therapeutic tool against viral infection in fish.

    PubMed

    Zenke, Kosuke; Nam, Yoon Kwon; Kim, Ki Hong

    2010-01-01

    In the present study, we have developed short interfering RNA (siRNA) expression vector utilizing rock bream beta-actin promoter and examined the possible use for the inhibition of highly pathogenic fish virus, rock bream iridovirus (RBIV), replication in vitro. Initially, in order to express siRNA effectively, we added several modifications to wild-type rock bream beta-actin promoter. Next, we succeeded in knocking down the expression of enhanced green fluorescent protein reporter gene expression in fish cells using newly developed vector more effectively than the fugu U6 promoter-driven vector we described previously. Finally, we could observe that cells transfected with modified rock bream beta-actin promoter-driven siRNA expression vector targeting major capsid protein (MCP) gene of RBIV exhibited more resistance to RBIV challenge than other control cells. Our results indicate that this novel siRNA expression vector can be used as a new tool for therapeutics in virus infection in fish species.

  16. Function of Hevea brasiliensis NAC1 in dehydration-induced laticifer differentiation and latex biosynthesis.

    PubMed

    Cao, Yuxin; Zhai, Jinling; Wang, Qichao; Yuan, Hongmei; Huang, Xi

    2017-01-01

    HbNAC1 is a transcription factor in rubber plants whose expression is induced by dehydration, leading to latex biosynthesis. Laticifer is a special tissue in Hevea brasiliensis where natural rubber is biosynthesized and accumulated. In young stems of epicormic shoots, the differentiation of secondary laticifers can be induced by wounding, which can be prevented when the wounding site is wrapped. Using this system, differentially expressed genes were screened by suppression subtractive hybridization (SSH) and macroarray analyses. This led to the identification of several dehydration-related genes that could be involved in laticifer differentiation and/or latex biosynthesis, including a NAC transcription factor (termed as HbNAC1). Tissue sections confirmed that local tissue dehydration was a key signal for laticifer differentiation. HbNAC1 was localized at the nucleus and showed strong transcriptional activity in yeast, suggesting that HbNAC1 is a transcription factor. Furthermore, HbNAC1 was found to bind to the cis-element CACG in the promoter region of the gene encoding the small rubber particle protein (SRPP). Transgenic experiments also confirmed that HbNAC1 interacted with the SRPP promoter when co-expressed, and enhanced expression of the reporter gene β-glucuronidase occurred in planta. In addition, overexpression of HbNAC1 in tobacco plants conferred drought tolerance. Together, the data suggest that HbNAC1 might be involved in dehydration-induced laticifer differentiation and latex biosynthesis.

  17. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Tasneem; Opie, Lionel H.; Essop, M. Faadiel, E-mail: mfessop@sun.ac.za

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transientlymore » transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.« less

  18. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    NASA Astrophysics Data System (ADS)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated ( P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  19. Clinical features of early onset, familial Alzheimer`s disease linked to chromosome 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullan, M.; Bennett, C.; Figueredo, C.

    1995-02-27

    Early onset familial Alzheimer`s disease (AD) has an autosomal dominant mode of inheritance. Two genes are responsible for the majority of cases of this subtype of AD. Mutations in the {beta}-amyloid precursor protein ({beta}APP) gene on chromosome 21 have been shown to completely cosegregate with the disease. We and others have previously described the clinical features of families with {beta}APP mutations at the codon 717 locus in an attempt to define the phenotype associated with a valine to isoleucine (Val {r_arrow} Ile) or a valine to glycine (Val {r_arrow} Gly) change. More recently, a second locus for very early onsetmore » disease has been localized to chromosome 14. The results of linkage studies in some families suggesting linkage to both chromosomes have been explained by the suggestion of a second (centromeric) locus on chromosome 21. Here we report the clinical features and genetic analysis of a British pedigree (F74) with early onset AD in which neither the {beta}APP locus nor any other chromosome 21 locus segregates with the disease, but in which good evidence is seen for linkage on the long arm of chromosome 14. In particular we report marker data suggesting that the chromosome 14 disease locus is close to D14S43 and D14S77. Given the likelihood that F74 represents a chromosome 14 linked family, we describe the clinical features and make a limited clinical comparison with the {beta}APP717 Val {r_arrow} Ile and {beta}APP717 Val {r_arrow} Gly encoded families that have been previously described. We conclude that although several previously reported clinical features occur to excess in early onset familial AD, no single clinical feature demarcates either the chromosome 14 or {beta}APP codon 717 mutated families except mean age of onset. 52 refs., 2 figs., 5 tabs.« less

  20. Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia.

    PubMed

    Mishra, Ravi P N; Tisseyre, Pierre; Melkonian, Rémy; Chaintreuil, Clémence; Miché, Lucie; Klonowska, Agnieszka; Gonzalez, Sophie; Bena, Gilles; Laguerre, Gisèle; Moulin, Lionel

    2012-02-01

    The genetic diversity of 221 Mimosa pudica bacterial symbionts trapped from eight soils from diverse environments in French Guiana was assessed by 16S rRNA PCR-RFLP, REP-PCR fingerprints, as well as by phylogenies of their 16S rRNA and recA housekeeping genes, and by their nifH, nodA and nodC symbiotic genes. Interestingly, we found a large diversity of beta-rhizobia, with Burkholderia phymatum and Burkholderia tuberum being the most frequent and diverse symbiotic species. Other species were also found, such as Burkholderia mimosarum, an unnamed Burkholderia species and, for the first time in South America, Cupriavidus taiwanensis. The sampling site had a strong influence on the diversity of the symbionts sampled, and the specific distributions of symbiotic populations between the soils were related to soil composition in some cases. Some alpha-rhizobial strains taxonomically close to Rhizobium endophyticum were also trapped in one soil, and these carried two copies of the nodA gene, a feature not previously reported. Phylogenies of nodA, nodC and nifH genes showed a monophyly of symbiotic genes for beta-rhizobia isolated from Mimosa spp., indicative of a long history of interaction between beta-rhizobia and Mimosa species. Based on their symbiotic gene phylogenies and legume hosts, B. tuberum was shown to contain two large biovars: one specific to the mimosoid genus Mimosa and one to South African papilionoid legumes. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Rahim, Fazal; Wadood, Abdul; Khan, Huma; Ullah, Hayat; Salar, Uzma; Khan, Khalid Mohammed

    2016-10-01

    Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors

    NASA Astrophysics Data System (ADS)

    Khan, Khalid M.; Ambreen, Nida; Taha, Muhammad; Halim, Sobia A.; Zaheer-ul-Haq; Naureen, Shagufta; Rasheed, Saima; Perveen, Shahnaz; Ali, Sajjad; Choudhary, Mohammad Iqbal

    2014-05-01

    Using structure-based virtual screening approach, a coumarin derivative ( 1) was identified as β-glucuronidase inhibitor. A focused library of coumarin derivatives was synthesized by eco-benign version of chemical reaction, and all synthetic compounds were characterized by using spectroscopy. These compounds were found to be inhibitor of β-glucuronidase with IC50 values in a micromolar range. All synthetic compounds exhibited interesting inhibitory activity against β-glucuronidase, however, their potency varied substantially from IC50 = 9.9-352.6 µM. Of twenty-one compounds, four exhibited a better inhibitory profile than the initial hit 1. Interestingly, compounds 1e, 1k, 1n and 1p exhibited more potency than the standard inhibitor with IC50 values 34.2, 21.4, 11.7, and 9.9 µM, respectively. We further studied their dose responses and also checked our results by using detergent Triton ×-100. We found that our results are true and not affected by detergent.

  3. Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors.

    PubMed

    Khan, Khalid M; Ambreen, Nida; Taha, Muhammad; Halim, Sobia A; Zaheer-ul-Haq; Naureen, Shagufta; Rasheed, Saima; Perveen, Shahnaz; Ali, Sajjad; Choudhary, Mohammad Iqbal

    2014-05-01

    Using structure-based virtual screening approach, a coumarin derivative (1) was identified as β-glucuronidase inhibitor. A focused library of coumarin derivatives was synthesized by eco-benign version of chemical reaction, and all synthetic compounds were characterized by using spectroscopy. These compounds were found to be inhibitor of β-glucuronidase with IC50 values in a micromolar range. All synthetic compounds exhibited interesting inhibitory activity against β-glucuronidase, however, their potency varied substantially from IC50 = 9.9-352.6 µM. Of twenty-one compounds, four exhibited a better inhibitory profile than the initial hit 1. Interestingly, compounds 1e, 1k, 1n and 1p exhibited more potency than the standard inhibitor with IC50 values 34.2, 21.4, 11.7, and 9.9 µM, respectively. We further studied their dose responses and also checked our results by using detergent Triton ×-100. We found that our results are true and not affected by detergent.

  4. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid.

    PubMed

    Xiao, Huogen; Siddiqua, Mahbuba; Braybrook, Siobhan; Nassuth, Annette

    2006-07-01

    The C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding protein 1 (CBF/ DREB1) transcription factors control an important pathway for increased freezing and drought tolerance in plants. Three CBF/DREB1-like genes, CBF 1-3, were isolated from both freezing-tolerant wild grape (Vitis riparia) and freezing-sensitive cultivated grape (Vitis vinifera). The deduced proteins in V. riparia are 63-70% identical to each other and 96-98% identical to the corresponding proteins in V. vinifera. All Vitis CBF proteins are 42-51% identical to AtCBF1 and contain CBF-specific amino acid motifs, supporting their identification as CBF proteins. Grape CBF sequences are unique in that they contain 20-29 additional amino acids and three serine stretches. Agro-infiltration experiments revealed that VrCBF1b localizes to the nucleus. VrCBF1a, VrCBF1b and VvCBF1 activated a green fluorescent protein (GFP) or glucuronidase (GUS) reporter gene behind CRT-containing promoters. Expression of the endogenous CBF genes was low at ambient temperature and enhanced upon low temperature (4 degrees C) treatment, first for CBF1, followed by CBF2, and about 2 d later by CBF3. No obvious significant difference was observed between V. riparia and V. vinifera genes. The expression levels of all three CBF genes were higher in young tissues than in older tissues. CBF1, 2 and 3 transcripts also accumulated in response to drought and exogenous abscisic acid (ABA) treatment, indicating that grape contains unique CBF genes.

  5. 18F-FEAnGA for PET of β-glucuronidase activity in neuroinflammation.

    PubMed

    Antunes, Inês F; Doorduin, Janine; Haisma, Hidde J; Elsinga, Philip H; van Waarde, Aren; Willemsen, Antoon T M; Dierckx, Rudi A; de Vries, Erik F J

    2012-03-01

    Activation of microglia is a hallmark of inflammatory, infectious, and degenerative diseases of the central nervous system. Several studies have indicated that there is an increase in release of β-glucuronidase by activated microglia into the extracellular space at the site of neuroinflammation. β-glucuronidase is involved in the hydrolysis of glycosaminoglycans on the cell surface and the degradation of the extracellular matrix. Therefore, β-glucuronidase might be a biomarker for ongoing neurodegeneration induced by neuroinflammation. In this study, we investigated whether the PET tracer (18)F-FEAnGA was able to detect β-glucuronidase release during neuroinflammation in a rat model of herpes encephalitis. Male Wistar rats were intranasally inoculated with herpes simplex virus 1 (HSV-1) or phosphate-buffered saline as a control. (11)C-(R)-PK11195 and (18)F-FEAnGA small-animal PET scans were acquired for 60 min. Logan graphical analysis was used to calculate (18)F-FEAnGA distribution volumes (DV(Logan)) in various brain areas. After administration of (18)F-FEAnGA, the area under the activity concentration-versus-time curve of the whole brain was 2 times higher in HSV-1-infected rats than in control rats. In addition, the DV(Logan) of (18)F-FEAnGA was most increased in the frontopolar cortex, frontal cortex, bulbus olfactorius, cerebral cortex, cerebellum, and brainstem of HSV-1-infected rats, when compared with control rats. The conversion of (18)F-FEAnGA to 4-hydroxy-3-nitrobenzyl alcohol was found to be 1.6 times higher in HSV-1-infected rats than in control rats and correlated with the DV(Logan) of (18)F-FEAnGA in the same areas of the brain. Furthermore, the DV(Logan) of (18)F-FEAnGA also correlated with β-glucuronidase activity in the same brain regions. In addition, DV(Logan) of (18)F-FEAnGA showed a tendency to correlate with (11)C-(R)-PK11195 uptake (marker for activated microglia) in the same brain regions. Despite relatively low brain uptake, (18)F-FEAnGA was able to detect an increased release of β-glucuronidase during neuroinflammation.

  6. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015

    PubMed Central

    Hernández, Marta; Iglesias, M Rocío; Rodríguez-Lázaro, David; Gallardo, Alejandro; Quijada, Narciso M; Miguela-Villoldo, Pedro; Campos, Maria Jorge; Píriz, Segundo; López-Orozco, Gema; de Frutos, Cristina; Sáez, José Luis; Ugarte-Ruiz, María; Domínguez, Lucas; Quesada, Alberto

    2017-01-01

    Colistin resistance genes mcr-3 and mcr-1 have been detected in an Escherichia coli isolate from cattle faeces in a Spanish slaughterhouse in 2015. The sequences of both genes hybridised to same plasmid band of ca 250 kb, although colistin resistance was non-mobilisable. The isolate was producing extended-spectrum beta-lactamases and belonged to serotype O9:H10 and sequence type ST533. Here we report an mcr-3 gene detected in Europe following earlier reports from Asia and the United States. PMID:28797328

  7. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    PubMed

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.

  8. In Cellulo Examination of a Beta-Alpha Hybrid Construct of Beta-Hexosaminidase A Subunits, Reported to Interact with the GM2 Activator Protein and Hydrolyze GM2 Ganglioside

    PubMed Central

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J.; Samulski, R. Jude; Wakarchuk, Warren; Mark, Brian L.; Mahuran, Don J.

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939

  9. Mutants of Agrobacterium tumefaciens with elevated vir gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazour, G.J.; Ta, C.N.; Das, A.

    1991-08-15

    Expression of Agrobacterium tumefaciens virulence (vir) genes requires virA, virG, and a plant-derived inducing compound such as acetosyringone. To identify the critical functional domains of virA and virG, a mutational approach was used. Agrobacterium A136 harboring plasmid pGP159, which contains virA, virG, and a reporter virB:lacZ gene fusion, was mutagenized with UV light or nitrosoguanidine. Survivors that formed blue colonies on a plate containing 5-bromo-4-chloro-3-indolyl beta-D-galactoside were isolated and analyzed. Quantification of beta-galactosidase activity in liquid assays identified nine mutant strains. By plasmid reconstruction and other procedures, all mutations mapped to the virA locus. These mutations caused an 11- tomore » 560-fold increase in the vegetative level of virB:lacZ reporter gene expression. DNA sequence analysis showed that the mutations are located in four regions of VirA: transmembrane domain one, the active site, a glycine-rich region with homology to ATP-binding sites, and a region at the C terminus that has homology to the N terminus of VirG.« less

  10. An in vitro bioassay for xenobiotics using the SXR-driven human CYP3A4/lacZ reporter gene.

    PubMed

    Lee, Mi R; Kim, Yeon J; Hwang, Dae Y; Kang, Tae S; Hwang, Jin H; Lim, Chae H; Kang, Hyung K; Goo, Jun S; Lim, Hwa J; Ahn, Kwang S; Cho, Jung S; Chae, Kap R; Kim, Yong K

    2003-01-01

    The dose and time effect of nine xenobiotics, including 17beta-estradiol, corticosterone, dexamethasone, progesterone, nifedipine, bisphenol A, rifampicin, methamphetamine, and nicotine were investigated, in vitro, using human steroid and xenobiotics receptor (SXR)-binding sites on the human CYP3A4 promoter, which can enhance the linked lacZ reporter gene transcription. To test this, liver-specific SAP (human serum amyloid P component)-SXR (SAP/SXR) and human CYP3A4 promoter-regulated lacZ (hCYP3A4/lacZ) constructs were transiently transfected into HepG2 and NIH3T3 cells to compare the xenobiotic responsiveness between human and nonhuman cell lines. In the HepG2 cells, rifampicin, followed by corticosterone, nicotine, methamphetamine, and dexamethasone, exhibited enhanced levels of the lacZ transcript, whereas those of bisphenol A and nifedipine were found to be reduced. No significant responses were observed with 17beta-estradiol or progesterone. In addition, 17beta-estradiol and progesterone did not change the levels of the lacZ transcripts in the HepG2 cells, but did induce significant increases in the transcripts of the NIH3T3 cells. Treatment with corticosterone and dexamethasone, which were highly expressed in the HepG2 cells, did not affect the levels of the lacZ transcript in NIH3T3 cells. These results show that lacZ transcripts can be measured, rapidly and reproducibly, using reverse transcriptase-polymerase chain reaction (RT-PCR) based on the expression of the hCYP3A4/lacZ reporter gene, and was mediated by the SXR. Thus, this in vitro reporter gene bioassay is useful for measuring xenobiotic activities, and is a means to a better relevant bioassay, using human cells, human genes and human promoters, in order to get a closer look at actual human exposure.

  11. Arbuscular mycorrhizal fungi (Glomeromycota) harbour ancient fungal tubulin genes that resemble those of the chytrids (Chytridiomycota).

    PubMed

    Corradi, Nicolas; Hijri, Mohamed; Fumagalli, Luca; Sanders, Ian R

    2004-11-01

    The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.

  12. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.

    PubMed

    Millette, Katelyn; Georgia, Senta

    2017-10-05

    This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.

  13. In vitro fermentation of prebiotics by Lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity.

    PubMed

    Arenahalli Ningegowda, Madhu; Siddalingaiya Gurudutt, Prapulla

    2012-03-01

    Prebiotic Fructooligosaccharides (FOS) escape metabolism in upper GI tract undergo microbial metabolism in colon and thereby influence the nature, type and number of intestinal microbiota to improve host's health. The present study focuses on the ability of Lactobacillus plantarum CFR 2194 to utilize FOS as a selective carbon and energy source. The effect of fermentative metabolites of L. plantarum on the β-glucuronidase was also investigated. A total of 16 strains of lactobacilli were assessed for their ability to ferment oligosaccharides. L. plantarum CFR 2194, an isolate from kanjika was found to utilize FOS effectively. Lactic acid was the main metabolic end product, followed by acetic acid, butyric acid, formic acid and ethanol. The inhibitory effects of these metabolites have been confirmed through the reduction of β-glucuronidase activity. L. plantarum when co-cultured with β-glucuronidase producing E. coli, in a basal media containing FOS as an energy source, could inhibit the growth of the pathogen during the course of fermentation. The results showed that L. plantarum CFR 2194 has the ability to utilize the prebiotic FOS as a selective carbon and energy source. The organism could inhibit the growth of the pathogen which produces β-glucuronidase and lowered its activity by the metabolites of FOS which indicates the probable use of L. plantarum through dietary intervention in combating colon carcinogenesis.

  14. Selective and augmented β-glucuronidase expression combined with DOX-GA3 application elicits the potent suppression of prostate cancer.

    PubMed

    Wang, Longxin; Dong, Jie; Wei, Ming; Wen, Weihong; Gao, Jianping; Zhang, Zhengyu; Qin, Weijun

    2016-03-01

    The present study was carried out to evaluate the specific and amplified β-glucuronidase (βG) expression in prostate cancer cells by using a prostate‑specific antigen (PSA) promoter-controlled bicistronic adenovirus and to evaluate the specific killing of prostate cancer cells after the application of the prodrug DOX‑GA3. Bicistronic adenoviral expression vectors were constructed, and the effectiveness of specific and amplified expression was evaluated using luciferase and EGFP as reporter genes. βG expression was detected in LNCaP cells after they were infected with the βG‑expressing PSA promoter-controlled bicistronic adenovirus. MTT assays were conducted to evaluate the cytoxicity on the infected cells after the application of the prodrug DOX‑GA3. Tumor growth inhibition was also evaluated in nude mice after treatment with the βG‑expressing adenovirus and DOX‑GA3. Selective and amplified expression was observed in the PSA-producing LNCaP cells, but not in the PSA‑non‑producing DU145 cells. Potent cytotoxity and a strong bystander effect were observed in the LNCaP cells after infection with the βG‑expressing adenovirus and the application of DOX‑GA3. Intravenous injection of a GAL4 regulated bicistronic adenovirus vector constructed to express βG under the control of the PSA promoter (Ad/PSAP‑GV16‑βG) and the application of DOX‑GA3 strongly inhibited tumor growth and prolonged the survival time of tumor‑bearing nude mice. Selective and amplified βG expression together with the prodrug DOX‑GA3 had an increased antitumor effect, showing great potential for prostate cancer therapy.

  15. S-allylcysteine ameliorates isoproterenol-induced cardiac toxicity in rats by stabilizing cardiac mitochondrial and lysosomal enzymes.

    PubMed

    Padmanabhan, M; Mainzen Prince, P Stanely

    2007-02-13

    This study was aimed to evaluate the preventive role of S-allylcysteine (SAC) on mitochondrial and lysosomal enzymes in isoproterenol (ISO)-induced rats. Male albino Wistar rats were pretreated with SAC (50, 100 and 150 mg/kg) daily for a period of 45 days. After the treatment period, ISO (150 mg/kg) was subcutaneously injected to rats at an interval of 24 h for two days. The activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome C oxidase) were decreased significantly (p<0.05) in ISO-induced rats. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetyl glucosaminidase, beta-galactosidase, cathepsin-D and acid phosphatase) were increased significantly (p<0.05) in serum and heart of ISO-induced rats. Pretreatment with SAC (100 mg/kg and 150 mg/kg) for a period of 45 days increased significantly (p<0.05) the activities of mitochondrial and respiratory chain enzymes and decreased the activities of lysosomal enzymes significantly (p<0.05) in ISO-induced rats. Oral administration of SAC (50, 100 and 150 mg/kg) for a period of 45 days to normal rats did not show any significant (p<0.05) effect in all the parameters studied. The altered electrocardiogram (ECG) of ISO-treated rats was also restored to near normal by treatment with SAC (100 and 150 mg/kg). These results confirm the efficacy of SAC in alleviating ISO-induced cardiac damage.

  16. THE URINE PROTEOME FOR RADIATION BIODOSIMETRY: EFFECT OF TOTAL BODY VERSUS LOCAL KIDNEY IRRADIATION

    PubMed Central

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. We used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10 Gy dose of X-rays. Both TBI and LKI altered the urinary protein profile within 24 hours with noticeable differences in Gene Ontology categories. Some proteins including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2 were detected only in the TBI group. Some other proteins including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Up/Uc ratio and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation. PMID:20065682

  17. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  18. The urine proteome for radiation biodosimetry: effect of total body vs. local kidney irradiation.

    PubMed

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2010-02-01

    Victims of nuclear accidents or radiological terrorism are likely to receive varying doses of ionizing radiation inhomogeneously distributed over the body. Early biomarkers may be useful in determining organ-specific doses due to total body irradiation (TBI) or partial body irradiation. The authors used liquid chromatography and mass spectrometry to compare the effect of TBI and local kidney irradiation (LKI) on the rat urine proteome using a single 10-Gy dose of x-rays. Both TBI and LKI altered the urinary protein profile within 24 h with noticeable differences in gene ontology categories. Some proteins, including fetuin-B, tissue kallikrein, beta-glucuronidase, vitamin D-dependent calcium binding protein and chondroitin sulfate proteoglycan NG2, were detected only in the TBI group. Some other proteins, including major urinary protein-1, RNA binding protein 19, neuron navigator, Dapper homolog 3, WD repeat and FYVE domain containing protein 3, sorting nexin-8, ankycorbin and aquaporin were detected only in the LKI group. Protease inhibitors and kidney proteins were more abundant (fraction of total scans) in the LKI group. Urine protein (Up) and creatinine (Uc) (Up/Uc) ratios and urinary albumin abundance decreased in both TBI and LKI groups. Several markers of acute kidney injury were not detectable in either irradiated group. Present data indicate that abundance and number of proteins may follow opposite trends. These novel findings demonstrate intriguing differences between TBI and LKI, and suggest that urine proteome may be useful in determining organ-specific changes caused by partial body irradiation.

  19. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport.

    PubMed

    Lin, Shan-Hua; Kuo, Hui-Fen; Canivenc, Geneviève; Lin, Choun-Sea; Lepetit, Marc; Hsu, Po-Kai; Tillard, Pascal; Lin, Huey-Ling; Wang, Ya-Yun; Tsai, Chyn-Bey; Gojon, Alain; Tsay, Yi-Fang

    2008-09-01

    Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.1 (CHL1 for Chlorate resistant 1) and NRT1.2, have been shown to be involved in nitrate uptake. Functional analysis of cRNA-injected Xenopus laevis oocytes showed that NRT1.5 is a low-affinity, pH-dependent bidirectional nitrate transporter. Subcellular localization in plant protoplasts and in planta promoter-beta-glucuronidase analysis, as well as in situ hybridization, showed that NRT1.5 is located in the plasma membrane and is expressed in root pericycle cells close to the xylem. Knockdown or knockout mutations of NRT1.5 reduced the amount of nitrate transported from the root to the shoot, suggesting that NRT1.5 participates in root xylem loading of nitrate. However, root-to-shoot nitrate transport was not completely eliminated in the NRT1.5 knockout mutant, and reduction of NRT1.5 in the nrt1.1 background did not affect root-to-shoot nitrate transport. These data suggest that, in addition to that involving NRT1.5, another mechanism is responsible for xylem loading of nitrate. Further analyses of the nrt1.5 mutants revealed a regulatory loop between nitrate and potassium at the xylem transport step.

  20. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

Top