Science.gov

Sample records for betacellulin gene transduction

  1. Gene therapy with neurogenin3, betacellulin and SOCS1 reverses diabetes in NOD mice.

    PubMed

    Li, R; Buras, E; Lee, J; Liu, R; Liu, V; Espiritu, C; Ozer, K; Thompson, B; Nally, L; Yuan, G; Oka, K; Chang, B; Samson, S; Yechoor, V; Chan, L

    2015-11-01

    Islet transplantation for type 1 diabetes is limited by a shortage of donor islets and requirement for immunosuppression. We approached this problem by inducing in vivo islet neogenesis in non-obese diabetic (NOD) diabetic mice, a model of autoimmune diabetes. We demonstrate that gene therapy with helper-dependent adenovirus carrying neurogenin3 (Ngn3), an islet lineage-defining transcription factor, and betacellulin (Btc), an islet growth factor, leads to the induction of periportal insulin-positive cell clusters in the liver, which are rapidly destroyed. To specifically accord protection to these 'neo-islets' from cytokine-mediated destruction, we overexpressed suppressor of cytokine signaling 1 (SOCS1) gene, using a rat insulin promoter in combination with Ngn3 and Btc. With this approach, about half of diabetic mice attained euglycemia sustained for over 4 months, regain glucose tolerance and appropriate glucose-stimulated insulin secretion. Histological analysis revealed periportal islet hormone-expressing 'neo-islets' in treated mouse livers. Despite evidence of persistent 'insulitis' with activated T cells, these 'neo-islets' persist to maintain euglycemia. This therapy does not affect diabetogenicity of splenocytes, as they retain the ability to transfer diabetes. This study thus provides a proof-of-concept for engineering in vivo islet neogenesis with targeted resistance to cytokine-mediated destruction to provide a long-term reversal of diabetes in NOD mice.

  2. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  3. Betacellulin in Chronic Periodontitis Patients With and Without Type 2 Diabetes Mellitus: An Immunohistochemical Study

    PubMed Central

    Kalburgi, Nagaraj B.; Bilichodmath, Shivaprasad; Warad, Shivaraj B.; Ugale, Mahesh S.; Koregol, Arati C.; Bijjargi, Shobha C.

    2015-01-01

    Background The host immune response to bacterial dental plaque determines periodontal disease susceptibility by increasing the secretion of inflammatory cytokines. The Epidermal Growth Factor family cytokines stimulate proliferation and keratinization of cells in dermis and oral epithelium. Epidermal Growth Factor family consists of Amphiregulin, Betacellulin, Epiregulin, Epigen, Heparin binding Epidermal Growth Factor like growth factor and transforming Growth Factor-alpha. Aim The current study aimed to investigate expression of Betacellulin in chronic periodontitis patients with and without type 2 diabetes mellitus and thereby assessing role of betacellulin in periodontal health and disease. Materials and Methods Present study comprised of 90 participants, age ranges from 18 to 60-year-old, for the period of March 2010 to May 2011. Participants were categorized into three groups based Gingival index (GI), probing depth (PD) and clinical attachment loss (CA Loss). Group 1 consisted 30 individuals with clinically healthy periodontium, Group-2 consisted 30 individuals with GI>1, PD≥5 mm, and CA Loss>3 mm. Group-3 (Chronic Periodontitis with type 2 diabetes mellitus) consisted 30 with GI >1, PD≥5 mm, and CA Loss>3 mm. Immunohistochemical localization and quantification of Betacellulin was done in gingival tissue samples from all groups. Results Data showed expression of Betacellulin were higher in chronic periodontitis as compared to healthy. A positive correlation found in Betacellulin expression and Probing Depth in chronic periodontitis. Conclusion This footmark study impacts the role of Betacellulin in pathogenesis and progression of periodontal disease which will help in exploration of novel immunotherapeutic strategies and immunological research activity in this field. PMID:26673371

  4. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  5. Changes in gene expression and signal transduction in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.

    2001-01-01

    Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.

  6. Transduction-Like Gene Transfer in the Methanogen Methanococcus voltae

    PubMed Central

    Bertani, Giuseppe

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 × 10−5 (BES resistance) to a maximum of 10−3 (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae. PMID:10321998

  7. Transduction-like gene transfer in the methanogen Methanococcus voltae

    NASA Technical Reports Server (NTRS)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  8. Axonal-Transport-Mediated Gene Transduction in the Interior of Rat Bone

    PubMed Central

    Okabayashi, Toshitaka; Nakanishi, Kuniaki; Tsuchihara, Toyokazu; Arino, Hiroshi; Yoshihara, Yasuo; Tominaga, Susumu; Uenoyama, Maki; Suzuki, Shinya; Asagiri, Masataka; Nemoto, Koichi

    2010-01-01

    Background Gene transduction has been considered advantageous for the sustained delivery of proteins to specific target tissues. However, in the case of hard tissues, such as bone, local gene delivery remains problematic owing to anatomical accessibility limitations of the target sites. Methodology/Principal Findings Here, we evaluated the feasibility of exogenous gene transduction in the interior of bone via axonal transport following intramuscular administration of a nonviral vector. A high expression level of the transduced gene was achieved in the tibia ipsilateral to the injected tibialis anterior muscle, as well as in the ipsilateral sciatic nerve and dorsal root ganglia. In sciatic transection rats, the gene expression level was significantly lowered in bone. Conclusions/Significance These results suggest that axonal transport is critical for gene transduction. Our study may provide a basis for developing therapeutic methods for efficient gene delivery into hard tissues. PMID:20927397

  9. Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction

    PubMed Central

    Popa, Ovidiu; Landan, Giddy; Dagan, Tal

    2017-01-01

    Bacteriophages are recognized DNA vectors and transduction is considered as a common mechanism of lateral gene transfer (LGT) during microbial evolution. Anecdotal events of phage-mediated gene transfer were studied extensively, however, a coherent evolutionary viewpoint of LGT by transduction, its extent and characteristics, is still lacking. Here we report a large-scale evolutionary reconstruction of transduction events in 3982 genomes. We inferred 17 158 recent transduction events linking donors, phages and recipients into a phylogenomic transduction network view. We find that LGT by transduction is mostly restricted to closely related donors and recipients. Furthermore, a substantial number of the transduction events (9%) are best described as gene duplications that are mediated by mobile DNA vectors. We propose to distinguish this type of paralogy by the term autology. A comparison of donor and recipient genomes revealed that genome similarity is a superior predictor of species connectivity in the network in comparison to common habitat. This indicates that genetic similarity, rather than ecological opportunity, is a driver of successful transduction during microbial evolution. A striking difference in the connectivity pattern of donors and recipients shows that while lysogenic interactions are highly species-specific, the host range for lytic phage infections can be much wider, serving to connect dense clusters of closely related species. Our results thus demonstrate that DNA transfer via transduction occurs within the context of phage–host specificity, but that this tight constraint can be breached, on rare occasions, to produce long-range LGTs of profound evolutionary consequences. PMID:27648812

  10. Hypergravity signal transduction and gene expression in cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Kumei, Y.; Whitson, P. A.

    1994-01-01

    A number of studies have been conducted during space flight and with clinostats and centrifuges, suggesting that gravity effects the proliferation and differentiation of mammalian cells in vitro. However, little is known about the mechanisms by which mammalian cells respond to changes in gravitational stress. This paper summarizes studies designed to clarify the effects of hypergravity on the cultured human HeLa cells and to investigate the mechanism of hypergravity signal transduction in these cells.

  11. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.

    PubMed

    Horn, Peter A; Keyser, Kirsten A; Peterson, Laura J; Neff, Tobias; Thomasson, Bobbie M; Thompson, Jesse; Kiem, Hans-Peter

    2004-05-15

    The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.

  12. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    PubMed

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (P<0.0001). MRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (P<0.0001). However, no difference was observed in the expression of Arp2, Arp3 or other WASPs. A neutralizing anti-MRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (P<0.0001), and reversed the morphological effects of MRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  13. Insulin signal transduction pathways and insulin-induced gene expression.

    PubMed

    Keeton, Adam B; Amsler, Maggie O; Venable, Derwei Y; Messina, Joseph L

    2002-12-13

    Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.

  14. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  15. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  16. Mutations in olfactory signal transduction genes are not a major cause of human congenital general anosmia.

    PubMed

    Feldmesser, Ester; Bercovich, Dani; Avidan, Nili; Halbertal, Shmuel; Haim, Liora; Gross-Isseroff, Ruth; Goshen, Sivan; Lancet, Doron

    2007-01-01

    Anosmia affects the western world population, mostly the elderly, reaching to 5% in subjects over the age of 45 years and strongly lowering their quality of life. A smaller minority (about 0.01%) is born without a sense of smell, afflicted with congenital general anosmia (CGA). No causative genes for human CGA have been identified yet, except for some syndromic cases such as Kallman syndrome. In mice, however, deletion of any of the 3 main olfactory transduction components (guanidine triphosphate binding protein, adenylyl cyclase, and the cyclic adenosine monophosphate-gated channel) causes profound reduction of physiological responses to odorants. In an attempt to identify human CGA-related mutations, we performed whole-genome linkage analysis in affected families, but no significant linkage signals were observed, probably due to the small size of families analyzed. We further carried out direct mutation screening in the 3 main olfactory transduction genes in 64 unrelated anosmic individuals. No potentially causative mutations were identified, indicating that transduction gene variations underlie human CGA rarely and that mutations in other genes have to be identified. The screened genes were found to be under purifying selection, suggesting that they play a crucial functional role not only in olfaction but also potentially in additional pathways.

  17. Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells.

    PubMed

    Park, Jin Sung; Chang, Da-Young; Kim, Ji-Hoi; Jung, Jin Hwa; Park, JoonSeong; Kim, Se-Hyuk; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2013-02-22

    Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.

  18. Efficient preparation of cationized gelatin for gene transduction.

    PubMed

    Fukuyama, Naoto; Onuma, Tsuyoshi; Jujo, Shio; Tamai, Yoshifumi; Suzuki, Takahiro; Myojin, Kazunori; Tabata, Yasuhiko; Ishihara, Yoshimi; Takano, Jiro; Mori, Hidezo

    2006-07-20

    We previously reported gene therapy using cationized gelatin microspheres of φ20-32 μm, prepared from pig skin, as a transducing agent, but although the gelatin offered various advantages, its yield was extremely low (only 0.1%). In this study, we markedly improved the yield of φ20-32 μm cationized gelatin microspheres and prepared a newly less than φ20 μm cationized gelatin. Conventionally, cationized gelatin is prepared by cationization, particulation by agitation, and cross-linking. The yield is determined by the particulation step, for which we had used a three-necked distillation flask of 500 mL and an agitation speed of 420 rpm. The yield was significantly increased from 0.13 ± 0.02% to 8.80 ± 1.90% by using a smaller flask of 300 mL and an agitation speed of 25000 rpm (p < 0.01). We could also prepare cationized gelatin of less than φ20 μm, which had not been possible previously. We confirmed that efficient gene introduction into peritoneal macrophages could be achieved with the new cationized gelatin.

  19. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    PubMed

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  20. Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread.

    PubMed

    Volkova, Victoriya V; Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T

    2014-07-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli.

  1. Efficient Gene Transduction of Dispersed Islet Cells in Culture Using Fiber-Modified Adenoviral Vectors

    PubMed Central

    Hanayama, Hiroyuki; Ohashi, Kazuo; Utoh, Rie; Shimizu, Hirofumi; Ise, Kazuya; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Tsuchiya, Hiroyuki; Okano, Teruo; Gotoh, Mitsukazu

    2015-01-01

    To establish novel islet-based therapies, our group has recently developed technologies for creating functional neo-islet tissues in the subcutaneous space by transplanting monolithic sheets of dispersed islet cells (islet cell sheets). Improving cellular function and viability are the next important challenges for enhancing the therapeutic effects. This article describes the adenoviral vector-mediated gene transduction of dispersed islet cells under culture conditions. Purified pancreatic islets were obtained from Lewis rats and dissociated into single islet cells. Cells were plated onto laminin-5-coated temperature-responsive polymer poly(N-isopropylacrylamide)-immobilized plastic dishes. At 0 h, islet cells were infected for 1 h with either conventional type 5 adenoviral vector (Ad-CA-GFP) or fiber-modified adenoviral vector (AdK7-CA-GFP) harboring a polylysine (K7) peptide in the C terminus of the fiber knob. We investigated gene transduction efficiency at 48 h after infection and found that AdK7-CA-GFP yielded higher transduction efficiencies than Ad-CA-GFP at a multiplicity of infection (MOI) of 5 and 10. For AdK7-CA-GFP at MOI = 10, 84.4 ± 1.5% of islet cells were found to be genetically transduced without marked vector infection-related cellular damage as determined by viable cell number and lactate dehydrogenase (LDH) release assay. After AdK7-CA-GFP infection at MOI = 10, cells remained attached and expanded to nearly full confluency, showing that this adenoviral infection protocol is a feasible approach for creating islet cell sheets. We have shown that dispersed and cultured islet cells can be genetically modified efficiently using fiber-modified adenoviral vectors. Therefore, this gene therapy technique could be used for cellular modification or biological assessment of dispersed islet cells. PMID:26858906

  2. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  3. Grafting of Beads into Developing Chicken Embryo Limbs to Identify Signal Transduction Pathways Affecting Gene Expression.

    PubMed

    Mohammed, Rabeea H; Sweetman, Dylan

    2016-01-17

    Using chicken embryos it is possible to test directly the effects of either growth factors or specific inhibitors of signaling pathways on gene expression and activation of signal transduction pathways. This technique allows the delivery of signaling molecules at precisely defined developmental stages for specific times. After this embryos can be harvested and gene expression examined, for example by in situ hybridization, or activation of signal transduction pathways observed with immunostaining. In this video heparin beads soaked in FGF18 or AG 1-X2 beads soaked in U0126, a MEK inhibitor, are grafted into the limb bud in ovo. This shows that FGF18 induces expression of MyoD and ERK phosphorylation and both endogenous and FGF18 induced MyoD expression is inhibited by U0126. Beads soaked in a retinoic acid antagonist can potentiate premature MyoD induction by FGF18. This approach can be used with a wide range of different growth factors and inhibitors and is easily adapted to other tissues in the developing embryo.

  4. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction

    NASA Astrophysics Data System (ADS)

    Han, Jianfeng; Zhao, Dong; Zhong, Zhirong; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2010-03-01

    Recombinant adenovirus (Ad)-mediated gene therapy is an exciting novel strategy in cancer treatment. However, poor infection efficiency with coxsackievirus and adenovirus receptor (CAR) down-regulated cancer cell lines is one of the major challenges for its practical and extensive application. As an alternative method of viral gene delivery, a non-viral carrier using cationic materials could compensate for the limitation of adenovirus. In our study, adenovectors were complexed with a new synthetic polymer PEI-DEG-bis-NPC (PDN) based on polyethylenimine (PEI), and then the properties of the vehicle were characterized by measurement of size distribution, zeta potential and transmission electron microscopy (TEM). Enhancement of gene transduction by Ad/PDN complexes was observed in both CAR-overexpressing cell lines (A549) and CAR-lacking cell lines (MDCK, CHO, LLC), as a result of facilitating binding and cell uptake of adenoviral particles by the cationic component. Ad/PDN complexes also promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. These data suggest that a combination of viral and non-viral gene delivery methods may offer a new approach to successful cancer gene therapy.

  5. Prion Infection of Mouse Brain Reveals Multiple New Upregulated Genes Involved in Neuroinflammation or Signal Transduction

    PubMed Central

    Striebel, James F.; Race, Brent; Phillips, Katie; Chesebro, Bruce

    2014-01-01

    ABSTRACT Gliosis is often a preclinical pathological finding in neurodegenerative diseases, including prion diseases, but the mechanisms facilitating gliosis and neuronal damage in these diseases are not understood. To expand our knowledge of the neuroinflammatory response in prion diseases, we assessed the expression of key genes and proteins involved in the inflammatory response and signal transduction in mouse brain at various times after scrapie infection. In brains of scrapie-infected mice at pre- and postclinical stages, we identified 15 previously unreported differentially expressed genes related to inflammation or activation of the STAT signal transduction pathway. Levels for the majority of differentially expressed genes increased with time postinfection. In quantitative immunoblotting experiments of STAT proteins, STAT1α, phosphorylated-STAT1α (pSTAT1α), and pSTAT3 were increased between 94 and 131 days postinfection (p.i.) in brains of mice infected with strain 22L. Furthermore, a select group of STAT-associated genes was increased preclinically during scrapie infection, suggesting early activation of the STAT signal transduction pathway. Comparison of inflammatory markers between mice infected with scrapie strains 22L and RML indicated that the inflammatory responses and gene expression profiles in the brains were strikingly similar, even though these scrapie strains infect different brain regions. The endogenous interleukin-1 receptor antagonist (IL-1Ra), an inflammatory marker, was newly identified as increasing preclinically in our model and therefore might influence scrapie pathogenesis in vivo. However, in IL-1Ra-deficient or overexpressor transgenic mice inoculated with scrapie, neither loss nor overexpression of IL-1Ra demonstrated any observable effect on gliosis, protease-resistant prion protein (PrPres) formation, disease tempo, pathology, or expression of the inflammatory genes analyzed. IMPORTANCE Prion infection leads to Pr

  6. Sequential and γ-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth

    PubMed Central

    Stoeck, Alexander; Shang, Li; Dempsey, Peter J.

    2010-01-01

    Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic β-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent γ-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and γ-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro. PMID:20530572

  7. Systemic gene transfer reveals distinctive muscle transduction profile of tyrosine mutant AAV-1, -6, and -9 in neonatal dogs.

    PubMed

    Hakim, Chady H; Yue, Yongping; Shin, Jin-Hong; Williams, Regina R; Zhang, Keqing; Smith, Bruce F; Duan, Dongsheng

    2014-03-05

    The muscular dystrophies are a group of devastating genetic disorders that affect both skeletal and cardiac muscle. An effective gene therapy for these diseases requires bodywide muscle delivery. Tyrosine mutant adeno-associated virus (AAV) has been considered as a class of highly potent gene transfer vectors. Here, we tested the hypothesis that systemic delivery of tyrosine mutant AAV can result in bodywide muscle transduction in newborn dogs. Three tyrosine mutant AAV vectors (Y445F/Y731F AAV-1, Y445F AAV-6, and Y731F AAV-9) were evaluated. These vectors expressed the alkaline phosphatase reporter gene under transcriptional regulation of either the muscle-specific Spc5-12 promoter or the ubiquitous Rous sarcoma virus promoter. Robust skeletal and cardiac muscle transduction was achieved with Y445F/Y731F AAV-1. However, Y731F AAV-9 only transduced skeletal muscle. Surprisingly, Y445F AAV-6 resulted in minimal muscle transduction. Serological study suggests that the preexisting neutralization antibody may underlie the limited transduction of Y445F AAV-6. In summary, we have identified Y445F/Y731F AAV-1 as a potentially excellent systemic gene transfer vehicle to target both skeletal muscle and the heart in neonatal puppies. Our findings have important implications in exploring systemic neonatal gene therapy in canine models of muscular dystrophy.

  8. Signal transduction mechanism for glucagon-induced leptin gene expression in goldfish liver

    PubMed Central

    Yan, Ai-fen; Chen, Ting; Chen, Shuang; Tang, Dong-sheng; Liu, Fang; Jiang, Xiao; Huang, Wen; Ren, Chun-hua; Hu, Chao-qun

    2016-01-01

    Leptin is a peripheral satiety hormone that also plays important roles in energy homeostasis in vertebrates ranging from fish to mammals. In teleost fish, however, the regulatory mechanism for leptin gene expression still remains unclear. In this study, we found that glucagon, a key hormone in glucose homeostasis, was effective at elevating the leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cells incubation approaches. The responses of leptin-AI and leptin-AII mRNA to glucagon treatment were highly comparable. In contrast, blockade of local glucagon action could reduce the basal and induced leptin-AI and leptin-AII mRNA expression. The stimulation of leptin levels by glucagon was caused by the activation of adenylate cyclase (AC)/cyclic-AMP (cAMP)/ protein kinase A (PKA), and probably cAMP response element-binding protein (CREB) cascades. Our study described the effect and signal transduction mechanism of glucagon on leptin gene expression in goldfish liver, and may also provide new insight into leptin as a mediator in the regulatory network of energy metabolism in the fish model. PMID:27994518

  9. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  10. Intelligent bioengineering in vitiligo treatment: transdermal protein transduction of melanocyte-lineage-specific genes.

    PubMed

    Mou, Yi; Jiang, Xian; Du, Yu; Xue, Li

    2012-12-01

    Vitiligo is a common, incurable skin disease with a prevalence of about 1%. Although many vitiligo therapies are available in clinics, there is almost no one method that causes significant improvement in all vitiligo patients. Some have hypothesized that melanocyte dysfunction or deficiency underlies the loss of skin pigmentation observed in vitiligo. The autoimmune-mediated apoptosis of melanocytes might be an important part of the etiology of vitiligo, which prevents the formation of melanocytes in the skin. Here we propose a novel hypothesis for vitiligo treatment using in situ melanocyte regeneration induced by melanocyte-lineage-specific genes (MLSGs). This may serve as an intelligent bioengineering prototype. The hypothesis is based on the fact that MLSGs regulate melanocyte differentiation through epigenetic reprogramming, which includes microphthalmia-associated transcription factor (MITF), paired box 3 (PAX3), and Notch signaling. MITF directs the terminal differentiation of melanocytes, and PAX3 helps to establish the properties of the melanocyte stem cells. Notch signaling promotes adult stem cell proliferation and self-renewal. This process could be mimicked by Notch intracellular domain (NICD). MLSGs could also stimulate anti-apoptotic gene expression. Recent improvements in relevant biotechniques allow the transdermal delivery of MLSG proteins into the patient, where they enter cells through protein transduction. This process may promote melanocyte regeneration in situ with little impact on the hair follicular cycle or on carcinogenesis. This simple and efficient treatment may have significant impact on the treatment of vitiligo patients.

  11. Signal transduction mechanism for glucagon-induced leptin gene expression in goldfish liver.

    PubMed

    Yan, Ai-Fen; Chen, Ting; Chen, Shuang; Tang, Dong-Sheng; Liu, Fang; Jiang, Xiao; Huang, Wen; Ren, Chun-Hua; Hu, Chao-Qun

    2016-01-01

    Leptin is a peripheral satiety hormone that also plays important roles in energy homeostasis in vertebrates ranging from fish to mammals. In teleost fish, however, the regulatory mechanism for leptin gene expression still remains unclear. In this study, we found that glucagon, a key hormone in glucose homeostasis, was effective at elevating the leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cells incubation approaches. The responses of leptin-AI and leptin-AII mRNA to glucagon treatment were highly comparable. In contrast, blockade of local glucagon action could reduce the basal and induced leptin-AI and leptin-AII mRNA expression. The stimulation of leptin levels by glucagon was caused by the activation of adenylate cyclase (AC)/cyclic-AMP (cAMP)/ protein kinase A (PKA), and probably cAMP response element-binding protein (CREB) cascades. Our study described the effect and signal transduction mechanism of glucagon on leptin gene expression in goldfish liver, and may also provide new insight into leptin as a mediator in the regulatory network of energy metabolism in the fish model.

  12. Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens.

    PubMed

    Hiscox, Thomas J; Ohtani, Kaori; Shimizu, Tohru; Cheung, Jackie K; Rood, Julian I

    2014-12-01

    Clostridium perfringens is a Gram-positive rod that is widely distributed in nature and is the etiological agent of several human and animal diseases. The complete genome sequence of C. perfringens strain 13 has been determined and multiple two-component signal transduction systems identified. One of these systems, designated here as the MalNO system, was analyzed in this study. Microarray analysis was used to carry out functional analysis of a malO mutant. The results, which were confirmed by quantitative reverse-transcriptase PCR, indicated that genes putatively involved in the uptake and metabolism of maltose were up-regulated in the malO mutant. These effects were reversed by complementation with the wild-type malO gene. Growth of these isogenic strains in medium with and without maltose showed that the malO mutant recovered more quickly from maltose deprivation when compared to the wild-type and complemented strains, leading to the conclusion that the MalNO system regulates maltose utilization in C. perfringens. It is postulated that this regulatory network may allow this soil bacterium and opportunistic pathogen to respond to environmental conditions where there are higher concentrations of maltose or maltodextrins, such as in the presence of decaying plant material in rich soil.

  13. Hair cell stereociliary bundle regeneration by espin gene transduction after aminoglycoside damage and hair cell induction by Notch inhibition

    PubMed Central

    Taura, Akiko; Taura, Kojiro; Koyama, Yukinori; Yamamoto, Norio; Nakagawa, Takayuki; Ito, Juichi; Ryan, Allen F.

    2015-01-01

    Once inner ear hair cells (HCs) are damaged by drugs, noise or aging, their apical structures including the stereociliary arrays are frequently the first cellular feature to be lost. While this can be followed by progressive loss of HC somata, a significant number of HC bodies often remain even after stereociliary loss. However, in the absence of stereocilia they are nonfunctional. HCs can sometimes be regenerated by Atoh1 transduction or Notch inhibition, but they also may lack stereociliary bundles. It is therefore important to develop methods for the regeneration of stereocilia, in order to achieve HC functional recovery. Espin is an actin bundling protein known to participate in sterociliary elongation during development. We evaluated stereociliary array regeneration in damaged vestibular sensory epithelia in tissue culture, using viral vector transduction of two espin isoforms. Utricular HCs were damaged with aminoglycosides. The utricles were then treated with a γ-secretase inhibitor, followed by espin or control transduction and histochemistry. While γ-secretase inhibition increased the number of HCs, few had stereociliary arrays. In contrast, 46 hrs after espin1 transduction, a significant increase in hair-bundle-like structures was observed. These were confirmed to be immature stereociliary arrays by scanning electron microscopy. Increased uptake of FM1–43 uptake provided evidence of stereociliary function. Espin4 transduction had no effect. The results demonstrate that espin1 gene therapy can restore stereocilia on damaged or regenerated HCs. PMID:26886463

  14. Hair cell stereociliary bundle regeneration by espin gene transduction after aminoglycoside damage and hair cell induction by Notch inhibition.

    PubMed

    Taura, A; Taura, K; Koyama, Y; Yamamoto, N; Nakagawa, T; Ito, J; Ryan, A F

    2016-05-01

    Once inner ear hair cells (HCs) are damaged by drugs, noise or aging, their apical structures including the stereociliary arrays are frequently the first cellular feature to be lost. Although this can be followed by progressive loss of HC somata, a significant number of HC bodies often remain even after stereociliary loss. However, in the absence of stereocilia they are nonfunctional. HCs can sometimes be regenerated by Atoh1 transduction or Notch inhibition, but they also may lack stereociliary bundles. It is therefore important to develop methods for the regeneration of stereocilia, in order to achieve HC functional recovery. Espin is an actin-bundling protein known to participate in sterociliary elongation during development. We evaluated stereociliary array regeneration in damaged vestibular sensory epithelia in tissue culture, using viral vector transduction of two espin isoforms. Utricular HCs were damaged with aminoglycosides. The utricles were then treated with a γ-secretase inhibitor, followed by espin or control transduction and histochemistry. Although γ-secretase inhibition increased the number of HCs, few had stereociliary arrays. In contrast, 46 h after espin1 transduction, a significant increase in hair-bundle-like structures was observed. These were confirmed to be immature stereociliary arrays by scanning electron microscopy. Increased uptake of FM1-43 uptake provided evidence of stereociliary function. Espin4 transduction had no effect. The results demonstrate that espin1 gene therapy can restore stereocilia on damaged or regenerated HCs.

  15. Evaluation of ADA gene expression and transduction efficiency in ADA/SCID patients undergoing gene therapy.

    PubMed

    Carlucci, F; Tabucchi, A; Aiuti, A; Rosi, F; Floccari, F; Pagani, R; Marinello, E

    2004-10-01

    A capillary electrophoresis (CE) method was developed for ADA/SCID diagnosis and monitoring of enzyme replacement therapy, as well as for exploring the transfection efficiency for different retroviral vectors in gene therapy.

  16. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria.

    PubMed Central

    Crosa, J H

    1997-01-01

    Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and

  17. Comprehensive characterization of genes associated with the TP53 signal transduction pathway in various tumors.

    PubMed

    Ohnami, Shumpei; Ohshima, Keiichi; Nagashima, Takeshi; Urakami, Kenichi; Shimoda, Yuji; Saito, Junko; Naruoka, Akane; Hatakeyama, Keiichi; Mochizuki, Tohru; Serizawa, Masakuni; Ohnami, Sumiko; Kusuhara, Masatoshi; Yamaguchi, Ken

    2017-03-03

    The TP53 signal transduction pathway is an attractive target for cancer treatments. In this study, we conducted a comprehensive molecular evaluation of 907 patients with cancer in Japan to identify genomic alterations in the TP53 pathway. TP53 mutations were frequently detected in many cancers, except melanoma, thymic tumors, gastrointestinal stromal tumors, and renal cancers. The frequencies of non-synonymous single nucleotide variants (SNVs) in the TP53 family members TP63 and TP73 were relatively low, although genes with increased frequencies of SNVs were as follows: PTEN (11.7%) in breast cancer, CDKN2A (11.1 and 9.6%) in pancreas and head and neck cancers, and ATM (18.0 and 11.1%) in liver and esophageal cancers. MDM2 expression was decreased or increased in patients with mutant or wild-type TP53, respectively. CDKN1A expression was increased with mutant TP53 in head and neck cancers. Moreover, TP63 overexpression was characteristically observed in squamous cell carcinomas of the lung, esophagus, and head and neck region. Additionally, overexpression of TP63 and TP73 was frequently observed in thymomas. Our results reveal a spectrum of genomic alterations in the TP53 pathway that is characteristic of many tumor types, and these data may be useful in the trials of targeted therapies.

  18. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.

    PubMed

    Glöer, Jens; Thummer, Robert; Ullrich, Heike; Schmitz, Ruth A

    2008-12-01

    In the diazotroph Klebsiella pneumoniae, the nitrogen sensory protein GlnK mediates the cellular nitrogen status towards the NifL/NifA system that regulates transcription of the nitrogen fixation genes in response to ammonium and molecular oxygen. To identify amino acids of GlnK essential for this signal transduction by protein-protein interaction, we performed random point mutagenesis by PCR amplification under conditions of reduced Taq polymerase fidelity. Three thousand two hundred mutated glnK genes were screened to identify those that would no longer complement a K. pneumoniaeDeltaglnK strain for growth under nitrogen fixing conditions. Twenty-four candidates resulting in a Nif(-) phenotype were identified, carrying 1-11 amino acid changes in GlnK. Based on these findings, as well as structural data, several single mutations were introduced into glnK by site-directed mutagenesis, and the Nif phenotype and the respective effects on NifA-mediated nif gene induction was monitored in K. pneumoniae using a chromosomal nifK'-'lacZ fusion. Single amino acid changes resulting in significant nif gene inhibition under nitrogen limiting conditions were located within the highly conserved T-loop (A43G, A49T and N54D), the body of the protein (G87V and K79E) and in the C-terminal region (I100M, R103S, E106Q and D108G). Complex formation analyses between GlnK (wild-type or derivatives) and NifL or NifA in response to 2-oxoglutarate indicated that: (a) besides the T-loop, the C-terminal region of GlnK is essential for the interaction with NifL and NifA and (b) GlnK binds both proteins in the absence of 2-oxoglutarate, whereas, in the presence of 2-oxoglutarate, NifA is released but NifL remains bound to GlnK.

  19. Improved Intravitreal AAV-Mediated Inner Retinal Gene Transduction after Surgical Internal Limiting Membrane Peeling in Cynomolgus Monkeys.

    PubMed

    Takahashi, Kazuhisa; Igarashi, Tsutomu; Miyake, Koichi; Kobayashi, Maika; Yaguchi, Chiemi; Iijima, Osamu; Yamazaki, Yoshiyuki; Katakai, Yuko; Miyake, Noriko; Kameya, Shuhei; Shimada, Takashi; Takahashi, Hiroshi; Okada, Takashi

    2017-01-04

    The retina is an ideal target for gene therapy because of its easy accessibility and limited immunological response. We previously reported that intravitreally injected adeno-associated virus (AAV) vector transduced the inner retina with high efficiency in a rodent model. In large animals, however, the efficiency of retinal transduction was low, because the vitreous and internal limiting membrane (ILM) acted as barriers to transduction. To overcome these barriers in cynomolgus monkeys, we performed vitrectomy (VIT) and ILM peeling before AAV vector injection. Following intravitreal injection of 50 μL triple-mutated self-complementary AAV serotype 2 vector encoding EGFP, transduction efficiency was analyzed. Little expression of GFP was detected in the control and VIT groups, but in the VIT+ILM group, strong GFP expression was detected within the peeled ILM area. To detect potential adverse effects, we monitored the retinas using color fundus photography, optical coherence tomography, and electroretinography. No serious side effects associated with the pretreatment were observed. These results indicate that surgical ILM peeling before AAV vector administration would be safe and useful for efficient transduction of the nonhuman primate retina and provide therapeutic benefits for the treatment of retinal diseases.

  20. Induction of Human Blood Group A Antigen Expression on Mouse Cells, Using Lentiviral Gene Transduction

    PubMed Central

    Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.

    2010-01-01

    Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247

  1. RNA-Seq facilitates a new perspective on signal transduction and gene regulation in important plant pathogens.

    PubMed

    Vorhölter, Frank-Jörg

    2013-06-01

    RNA-Seq is opening new doors for the functional understanding of microorganisms. Advances in RNA-Seq technology are allowing investigators to focus their studies on specific functional questions. An interesting example is presented by An et al. (2013) in this issue of Molecular Microbiology. New genes were identified for proteins and ncRNAs when the authors concentrated on the role of the rpf genes, which code for key components of a signal transduction hub in the plant pathogen Xanthomonas campestris pv. campestris. Although rpf gene products were already known to be involved in controlling transcription of many genes, including those encoding several important virulence factors, novel and unexpected properties of this signal transduction system emerged from the RNA-Seq analysis. In addition to identifying new target genes influenced by the rpf genes, the study found that the regulons of RpfC and RpfG, the sensor and response regulator of the master two-component regulatory system, only partially overlapped, indicating that the Rpf signalling system is even more complex than previously appreciated.

  2. Analysis of transduction in wastewater bacterial populations by targeting the phage-derived 16S rRNA gene sequences.

    PubMed

    Del Casale, Antonio; Flanagan, Paul V; Larkin, Michael J; Allen, Christopher C R; Kulakov, Leonid A

    2011-04-01

    Bacterial 16S rRNA genes transduced by bacteriophages were identified and analyzed in order to estimate the extent of the bacteriophage-mediated horizontal gene transfer in the wastewater environment. For this purpose, phage and bacterial DNA was isolated from the oxidation tank of a municipal wastewater treatment plant. Phylogenetic analysis of the 16S rRNA gene sequences cloned from a phage metagenome revealed that bacteriophages transduce genetic material in several major groups of bacteria. The groups identified were as follows: Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Actinomycetales and Firmicutes. Analysis of the 16S rRNA gene sequences in the total bacterial DNA from the same sample revealed that several bacterial groups found in the oxidation tank were not present in the phage metagenome (e.g. Deltaproteobacteria, Nitrospira, Planctomycetes and many Actinobacteria genera). These results suggest that transduction in a wastewater environment occurs in several bacterial groups; however, not all species are equally involved into this process. The data also showed that a number of distinctive bacterial strains participate in transduction-mediated gene transfer within identified bacterial groupings. Denaturing gradient gel electrophoresis analysis confirmed that profiles of the transduced 16S rRNA gene sequences and those present in the whole microbial community show significant differences.

  3. Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants.

    PubMed

    Joshi, R K; Nayak, S

    2011-10-25

    Pathogen infection in plants is often limited by a multifaceted defense response triggered by resistance genes. The most prevalent class of resistance proteins includes those that contain a nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain. Over the past 15 years, more than 50 novel NBS-LRR class resistance genes have been isolated and characterized; they play a significant role in activating conserved defense-signaling networks. Recent molecular research on NBS-LRR resistance proteins and their signaling networks has the potential to broaden the use of resistance genes for disease control. Various transgenic approaches have been tested to broaden the disease resistance spectrum using NBS-LRR genes. This review highlights the recent progress in understanding the structure, function, signal transduction ability of NBS-LRR resistance genes in different host-pathogen systems and suggests new strategies for engineering pathogen resistance in crop plants.

  4. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    PubMed

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.

  5. Chronic persistent post-surgical pain following staging laparotomy for carcinoma of ovary and its relationship to signal transduction genes

    PubMed Central

    Saxena, Ashok Kumar; Chopra, Anand K; Banerjee, Basu Dev; Sharma, Tusha

    2016-01-01

    Background The present study was undertaken to evaluate the incidence of chronic persistent post-surgical pain (CPPP) and the role of signal transduction genes in patients undergoing staging laparotomy for carcinoma ovary. Methods The present observational study was undertaken following institutional ethical committee approval and informed consent from all the participants. A total 21 patients of ASA grade I to III with age 20−70 years, scheduled for elective staging laparotomy for carcinoma ovary were included. Patients were excluded if had other causes of pain, cognitive dysfunction or chronic neurological disorders. Statistical analysis of pool data was done using SPSS version-17. For various scales like GPE, PDQ, NPSI, the visual analogue scale (VAS), global perceived effect (GPE), the pain DETECT questionnaire (PDQ), and neuropathic pain symptoms inventory (NPSI), one factor repaeted measure ANOVA applied with simple contrast with baseline as on post-operative day 1 (considered as reference and compared with subsequent time-interval), and the P values were adjusted according to "Bonferroni adjustments". In patients with CPPP, the Δct values of mRNA expressions of genes at the end of postoperative day 90 were compared with the baseline control values by one factor repeated ANOVA. P value < 0.005 significant. Results The present study demonstrates 38.1% (8 out of 21 patients) incidence of CPPP. The functional status and quality of life as were observed to be significantly diminished in all patients with chronic pain. An up-regulation in the mRNA expression of signal transduction and a positive correlation was noted between the mRNA expression of signal transduction genes and VAS score in all patients with CPPP at the end of postoperative day 90. Conclusions The reported incidence of CPPP in patients with carcinoma ovary was 38.1%. An up-regulation and positive correlation between mRNA expression of signal transduction genes and VAS score depicts its potential

  6. Molecular characterization of SIG1, a Saccharomyces cerevisiae gene involved in negative regulation of G-protein-mediated signal transduction.

    PubMed Central

    Leberer, E; Dignard, D; Harcus, D; Whiteway, M; Thomas, D Y

    1994-01-01

    Two recessive mutations in the Saccharomyces cerevisiae SIG1 (suppressor of inhibitory G-protein) gene have been identified by their ability to suppress the signalling defect of dominant-negative variants of the mating response G-protein beta-subunit. The mutations and deletion of SIG1 enhance the sensitivity of the cells to pheromone and stimulate the basal transcription of a mating specific gene, FUS1, suggesting that Sig1p plays a negatively regulatory role in G beta gamma-mediated signal transduction. An additional function of Sig1p in vegetatively growing cells is suggested by the finding that the mutations and deletion of SIG1 cause temperature-sensitive growth defects. The SIG1 gene encodes a protein with a molecular weight of 65 kDa that contains at the amino-terminus two zinc finger-like sequence motifs. Epistasis experiments localize the action of Sig1p within the pheromone signalling pathway at a position at or shortly after the G-protein. We propose that Sig1p represents a novel negative regulator of G beta gamma-mediated signal transduction. Images PMID:8039500

  7. HRGRN: A Graph Search-Empowered Integrative Database of Arabidopsis Signaling Transduction, Metabolism and Gene Regulation Networks

    PubMed Central

    Dai, Xinbin; Li, Jun; Liu, Tingsong; Zhao, Patrick Xuechun

    2016-01-01

    The biological networks controlling plant signal transduction, metabolism and gene regulation are composed of not only tens of thousands of genes, compounds, proteins and RNAs but also the complicated interactions and co-ordination among them. These networks play critical roles in many fundamental mechanisms, such as plant growth, development and environmental response. Although much is known about these complex interactions, the knowledge and data are currently scattered throughout the published literature, publicly available high-throughput data sets and third-party databases. Many ‘unknown’ yet important interactions among genes need to be mined and established through extensive computational analysis. However, exploring these complex biological interactions at the network level from existing heterogeneous resources remains challenging and time-consuming for biologists. Here, we introduce HRGRN, a graph search-empowered integrative database of Arabidopsis signal transduction, metabolism and gene regulatory networks. HRGRN utilizes Neo4j, which is a highly scalable graph database management system, to host large-scale biological interactions among genes, proteins, compounds and small RNAs that were either validated experimentally or predicted computationally. The associated biological pathway information was also specially marked for the interactions that are involved in the pathway to facilitate the investigation of cross-talk between pathways. Furthermore, HRGRN integrates a series of graph path search algorithms to discover novel relationships among genes, compounds, RNAs and even pathways from heterogeneous biological interaction data that could be missed by traditional SQL database search methods. Users can also build subnetworks based on known interactions. The outcomes are visualized with rich text, figures and interactive network graphs on web pages. The HRGRN database is freely available at http://plantgrn.noble.org/hrgrn/. PMID:26657893

  8. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    DTIC Science & Technology

    2014-03-01

    Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury PRINCIPAL INVESTIGATOR: Robert E. Burke, MD...SUBTITLE 5a. CONTRACT NUMBER Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System...has been that the mature mammalian central nervous system (CNS), unlike the peripheral nervous system (PNS), is incapable of axon regeneration. There

  9. Transduction of renal cells in vitro and in vivo by adeno-associated virus gene therapy vectors.

    PubMed

    Lipkowitz, M S; Hanss, B; Tulchin, N; Wilson, P D; Langer, J C; Ross, M D; Kurtzman, G J; Klotman, P E; Klotman, M E

    1999-09-01

    There has been an increasing interest recently in the possibility of treating renal diseases using gene therapy. The ability to pursue gene therapy for renal diseases has been limited by the availability of an adequate system for gene delivery to the kidney. Adeno-associated virus (AAV) is a defective virus of the parvovirus family that has a number of properties attractive for renal gene delivery: recombinant AAV contains no viral genes; expression of genes delivered by these vectors does not activate cell-mediated immunity; the virus is able to transduce nondividing as well as dividing cells; and both wild-type and recombinant AAV integrate into the host chromosome resulting in long-term gene expression. Studies were performed to determine whether AAV can deliver reporter genes to kidney cells in vitro and in vivo. These studies show that AAV can deliver reporter genes with approximately equal efficiency to human mesangial, proximal tubule, thick ascending limb, collecting tubule, and renal cell carcinoma cells in primary culture. Immortalized mouse mesangial cells are transduced at a much greater efficiency. Transduction can be enhanced by pharmaceutical agents up to sevenfold in primary cells (transducing up to 20% of primary cells per well) and as much as 400-fold in immortalized mesangial cells. AAV delivered in vivo by intraparenchymal injection results in at least 3 mo of reporter gene expression in tubular epithelial, but not glomerular or vascular, cells at the injection site. These data indicate that AAV can deliver genes to renal cells both in vitro and in vivo resulting in prolonged gene expression, and thus AAV can be a useful tool for renal gene delivery.

  10. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction

    PubMed Central

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H.; Liberman, M. Charles

    2017-01-01

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a “designer” AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs. PMID:28367981

  11. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction.

    PubMed

    Suzuki, Jun; Hashimoto, Ken; Xiao, Ru; Vandenberghe, Luk H; Liberman, M Charles

    2017-04-03

    The use of viral vectors for inner ear gene therapy is receiving increased attention for treatment of genetic hearing disorders. Most animal studies to date have injected viral suspensions into neonatal ears, via the round window membrane. Achieving transduction of hair cells, or sensory neurons, throughout the cochlea has proven difficult, and no studies have been able to efficiently transduce sensory cells in adult ears while maintaining normal cochlear function. Here, we show, for the first time, successful transduction of all inner hair cells and the majority of outer hair cells in an adult cochlea via virus injection into the posterior semicircular canal. We used a "designer" AAV, AAV2/Anc80L65, in which the main capsid proteins approximate the ancestral sequence state of AAV1, 2, 8, and 9. Our injections also transduced ~10% of spiral ganglion cells and a much larger fraction of their satellite cells. In the vestibular sensory epithelia, the virus transduced large numbers of hair cells and virtually all the supporting cells, along with close to half of the vestibular ganglion cells. We conclude that this viral vector and this delivery route hold great promise for gene therapy applications in both cochlear and vestibular sense organs.

  12. Reconstitution of T cell receptor signaling in ZAP-70-deficient cells by retroviral transduction of the ZAP-70 gene.

    PubMed

    Taylor, N; Bacon, K B; Smith, S; Jahn, T; Kadlecek, T A; Uribe, L; Kohn, D B; Gelfand, E W; Weiss, A; Weinberg, K

    1996-11-01

    A variant of severe combined immunodeficiency syndrome (SCID) with a selective inability to produce CD8 single positive T cells and a signal transduction defect in peripheral CD4+ cells has recently been shown to be the result of mutations in the ZAP-70 gene. T cell receptor (TCR) signaling requires the association of the ZAP-70 protein tyrosine kinase with the TCR complex. Human T cell leukemia virus type I-transformed CD4+ T cell lines were established from ZAP-70-deficient patients and normal controls. ZAP-70 was expressed and appropriately phosphorylated in normal T cell lines after TCR engagement, but was not detected in T cell lines from ZAP-70-deficient patients. To determine whether signaling could be reconstituted, wild-type ZAP-70 was introduced into deficient cells with a ZAP-70 retroviral vector. High titer producer clones expressing ZAP-70 were generated in the Gibbon ape leukemia virus packaging line PG13. After transduction, ZAP-70 was detected at levels equivalent to those observed in normal cells, and was appropriately phosphorylated on tyrosine after receptor engagement. The kinase activity of ZAP-70 in the reconstituted cells was also appropriately upregulated by receptor aggregation. Moreover, normal and transduced cells, but not ZAP-70-deficient cells, were able to mobilize calcium after receptor ligation, indicating that proximal TCR signaling was reconstituted. These results indicate that this form of SCID may be corrected by gene therapy.

  13. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    PubMed Central

    Murlidharan, Giridhar; Sakamoto, Kensuke; Rao, Lavanya; Corriher, Travis; Wang, Dan; Gao, Guangping; Sullivan, Patrick; Asokan, Aravind

    2016-01-01

    Gene therapy using recombinant adeno-associated viral (AAV) vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9), which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137) in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities. PMID:27434683

  14. Up-regulation of JAM-1 in AR42J cells treated with activin A and betacellulin and the diabetic regenerating islets.

    PubMed

    Yoshikumi, Yukako; Ohno, Hideki; Suzuki, Junko; Isshiki, Masashi; Morishita, Yasuyuki; Ohnishi, Hirohide; Yasuda, Hiroshi; Omata, Masao; Fujita, Toshiro; Mashima, Hirosato

    2008-08-01

    Pancreatic AR42J cells demonstrate the pluripotency in precursor cells of the gut endoderm and also provide an excellent model system to study the differentiation of the pancreas. Using the mRNA differential display technique, we identified junctional adhesion molecule-1 (JAM-1), a component of the tight junction, was highly up-regulated during the differentiation of AR42J cells, although junctions were not formed. The expression level of JAM-1 showed an up-regulation in the mRNA level after 3 hours and in the protein level after 24 hours in [activin A + betacellulin]-treated AR42J cells. The expressions of its signaling molecules, PAR-3 and atypical PKC lambda, also increased after the addition of activin A + betacellulin. When JAM-1 was over-expressed in [activin A + betacellulin]-treated AR42J cells, tagged-JAM-1 was observed in cytoplasm as vesicular structures and JAM-1 was colocalized with Rab3B and Rab13, members of the Rab family expressed at tight junctions. In streptozotocin-induced regenerating islets, the expression of JAM-1 was also up-regulated in the mRNA level and the protein level. JAM-1 might therefore play an important role in the differentiation of AR42J cells and the regeneration of pancreatic islets.

  15. Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells.

    PubMed

    Kusumoto, M; Ogawa, T; Mizumoto, K; Ueno, H; Niiyama, H; Sato, N; Nakamura, M; Tanaka, M

    1999-08-01

    Evidence for a relationship between overexpression of wild-type p53 and telomerase activity remains controversial. We investigated whether p53 gene transduction could cause telomerase inhibition in pancreatic cancer cell lines, focusing on the relation of transduction to growth arrest, cell cycle arrest, and apoptotic cell death. The cells were infected with recombinant adenovirus expressing wild-type p53 or p21WAF1 at a multiplicity of infection of 100 or were continuously exposed to 10 microM VP-16, which is well known to induce apoptosis. Adenovirus-mediated p53 gene transduction caused G1 cell cycle arrest, apoptosis, and resultant growth inhibition in MIA PaCa-2 cells; the cell number 2 days after infection was 50% of preinfection value, and 13% of the cells were dead. Moreover, the transduction resulted in complete depression of telomerase activity through down-regulation of hTERT mRNA expression. In contrast, p21WAF1 gene transduction only arrested cell growth and cell cycle at G1 phase, and VP-16 treatment inhibited cell growth with G2-M arrest and apoptosis; after treatment, the cell number was 73% of pretreatment, and 12% of the cells were dead. Neither p21WAF1 gene transduction nor VP-16 treatment caused telomerase inhibition. Similar results were obtained in two other pancreatic cancer cell lines, SUIT-2 and AsPC-1. Thus, our results demonstrate that the p53 gene transduction directly inhibits telomerase activity, independent of its effects on cell growth arrest, cell cycle arrest, and apoptosis.

  16. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins.

    PubMed Central

    Epple, P; Apel, K; Bohlmann, H

    1995-01-01

    Two cDNAs encoding thionin preproteins have been isolated from Arabidopsis thaliana. The corresponding genes have been designated Thi2.1 and Thi2.2. Southern blot analysis suggests that A. thaliana most probably contains single genes for both thionins. Thi2.2 transcripts have a low basal level in seedlings and show circadian variation. Thi2.2 transcripts were also detected in rosette leaves. No potent elicitors have been found for the Thi2.2 gene. Transcripts of the Thi2.1 gene are not detectable in seedlings but are present in rosette leaves and at a very high level in flowers and in siliques. The expression of the Thi2.1 gene is highly inducible in seedlings by pathogens, silver nitrate, and methyl jasmonate, but not by salicylate, indicating that the gene is induced by a signal transduction pathway that is at least partly different from that for the pathogenesis-related proteins. PMID:8552715

  17. Identification of a signal transduction response sequence element necessary for induction of a Dictyostelium discoideum gene by extracellular cyclic AMP.

    PubMed Central

    Pavlovic, J; Haribabu, B; Dottin, R P

    1989-01-01

    The signal transduction pathways that lead to gene induction are being intensively investigated in Dictyostelium discoideum. We have identified by deletion and transformation analysis a sequence element necessary for induction of a gene coding for uridine diphosphoglucose pyrophosphorylase (UDPGP1) of D. discoideum in response to extracellular cyclic AMP (cAMP). This regulatory element is located 380 base pairs upstream of the transcription start site and contains a G+C-rich partially palindromic sequence. It is not required for transcription per se but is required for induction of the gene in response to the stimulus of extracellular cAMP. The cAMP response sequence is also required for induction of the gene during normal development. A second A+T-rich cis-acting region located immediately downstream of the cAMP response sequence appears to be essential for the basal level of expression of the UDPGP1 gene. The position of the cAMP response element coincides with a DNase I-hypersensitive site that is observed when the UDPGP1 gene is actively transcribed. Images PMID:2557538

  18. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors.

    PubMed

    Evans, B N; Rosenblatt, M I; Mnayer, L O; Oliver, K R; Dickerson, I M

    2000-10-06

    It is becoming clear that receptors that initiate signal transduction by interacting with G-proteins do not function as monomers, but often require accessory proteins for function. Some of these accessory proteins are chaperones, required for correct transport of the receptor to the cell surface, but the function of many accessory proteins remains unknown. We determined the role of an accessory protein for the receptor for calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide. We have previously shown that this accessory protein, the CGRP-receptor component protein (RCP), is expressed in CGRP responsive tissues and that RCP protein expression correlates with the biological efficacy of CGRP in vivo. However, the function of RCP has remained elusive. In this study stable cell lines were made that express antisense RCP RNA, and CGRP- and adrenomedullin-mediated signal transduction were greatly reduced. However, the loss of RCP did not effect CGRP binding or receptor density, indicating that RCP did not behave as a chaperone but was instead coupling the CGRP receptor to downstream effectors. A candidate CGRP receptor named calcitonin receptor-like receptor (CRLR) has been identified, and in this study RCP co-immunoprecipitated with CRLR indicating that these two proteins interact directly. Since CGRP and adrenomedullin can both signal through CRLR, which has been previously shown to require a chaperone protein for function, we now propose that a functional CGRP or adrenomedullin receptor consists of at least three proteins: the receptor (CRLR), the chaperone protein (RAMP), and RCP that couples the receptor to the cellular signal transduction pathway.

  19. Characterization and expression of genes involved in the ethylene biosynthesis and signal transduction during ripening of mulberry fruit.

    PubMed

    Liu, Changying; Zhao, Aichun; Zhu, Panpan; Li, Jun; Han, Leng; Wang, Xiling; Fan, Wei; Lü, Ruihua; Wang, Chuanhong; Li, Zhengang; Lu, Cheng; Yu, Maode

    2015-01-01

    Although ethylene is well known as an essential regulator of fruit development, little work has examined the role ethylene plays in the development and maturation of mulberry (Morus L.) fruit. To study the mechanism of ethylene action during fruit development in this species, we measured the ethylene production, fruit firmness, and soluble solids content (SSC) during fruit development and harvest. By comparing the results with those from other climacteric fruit, we concluded that Morus fruit are probably climacteric. Genes associated with the ethylene signal transduction pathway of Morus were characterized from M. notabilis Genome Database, including four ethylene receptor genes, a EIN2-like gene, a CTR1-like gene, four EIN3-like genes, and a RTE1-like gene. The expression patterns of these genes were analyzed in the fruit of M. atropurpurea cv. Jialing No.40. During fruit development, transcript levels of MaETR2, MaERS, MaEIN4, MaRTE, and MaCTR1 were lower at the early stages and higher after 26 days after full bloom (DAF), while MaETR1, MaEIL1, MaEIL2, and MaEIL3 remained constant. In ripening fruit, the transcripts of MaACO1 and MaACS3 increased, while MaACS1 and MaACO2 decreased after harvest. The transcripts of MaACO1, MaACO2, and MaACS3 were inhibited by ethylene, and 1-MCP (1-methylcyclopropene) upregulated MaACS3. The transcripts of the MaETR-like genes, MaRTE, and MaCTR1 were inhibited by ethylene and 1-MCP, suggesting that ethylene may accelerate the decline of MaETRs transcripts. No significant changes in the expression of MaEIN2, MaEIL1, and MaEIL3 were observed during ripening or in response to ethylene, while the expressions of MaEIL2 and MaEIL4 increased rapidly after 24 h after harvest (HAH) and were upregulated by ethylene. The present study provides insights into ethylene biosynthesis and signal transduction in Morus plants and lays a foundation for the further understanding of the mechanisms underlying Morus fruit development and ripening.

  20. Characterization and Expression of Genes Involved in the Ethylene Biosynthesis and Signal Transduction during Ripening of Mulberry Fruit

    PubMed Central

    Liu, Changying; Zhao, Aichun; Zhu, Panpan; Li, Jun; Han, Leng; Wang, Xiling; Fan, Wei; Lü, Ruihua; Wang, Chuanhong; Li, Zhengang; Lu, Cheng; Yu, Maode

    2015-01-01

    Although ethylene is well known as an essential regulator of fruit development, little work has examined the role ethylene plays in the development and maturation of mulberry (Morus L.) fruit. To study the mechanism of ethylene action during fruit development in this species, we measured the ethylene production, fruit firmness, and soluble solids content (SSC) during fruit development and harvest. By comparing the results with those from other climacteric fruit, we concluded that Morus fruit are probably climacteric. Genes associated with the ethylene signal transduction pathway of Morus were characterized from M. notabilis Genome Database, including four ethylene receptor genes, a EIN2-like gene, a CTR1-like gene, four EIN3-like genes, and a RTE1-like gene. The expression patterns of these genes were analyzed in the fruit of M. atropurpurea cv. Jialing No.40. During fruit development, transcript levels of MaETR2, MaERS, MaEIN4, MaRTE, and MaCTR1 were lower at the early stages and higher after 26 days after full bloom (DAF), while MaETR1, MaEIL1, MaEIL2, and MaEIL3 remained constant. In ripening fruit, the transcripts of MaACO1 and MaACS3 increased, while MaACS1 and MaACO2 decreased after harvest. The transcripts of MaACO1, MaACO2, and MaACS3 were inhibited by ethylene, and 1-MCP (1–methylcyclopropene) upregulated MaACS3. The transcripts of the MaETR-like genes, MaRTE, and MaCTR1 were inhibited by ethylene and 1-MCP, suggesting that ethylene may accelerate the decline of MaETRs transcripts. No significant changes in the expression of MaEIN2, MaEIL1, and MaEIL3 were observed during ripening or in response to ethylene, while the expressions of MaEIL2 and MaEIL4 increased rapidly after 24 h after harvest (HAH) and were upregulated by ethylene. The present study provides insights into ethylene biosynthesis and signal transduction in Morus plants and lays a foundation for the further understanding of the mechanisms underlying Morus fruit development and ripening. PMID

  1. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction

    SciTech Connect

    Roskelley, C.D.; Desprez, P.Y.; Bissell, M.J. )

    1994-12-20

    Extracellular matrix (ECM) profoundly influences the growth and differentiation of the mammary gland epithelium, both in culture and in vivo. Utilizing a clonal population of mouse mammary epithelial cells that absolutely requires an exogenous ECM for function, we developed a rapid assay to study signal transduction by ECM. Two components of the cellular response to a basement membrane overlay that result in the expression of the milk protein [beta]-casein were defined. The first component of this response involves a rounding and clustering of the cells that can be physically mimicked by plating the cells on a nonadhesive substratum. The second component is biochemical in nature, and it is associated with [beta][sub 1] integrin clustering and increased tyrosine phosphorylation. The second component is initiated in a morphology-independent manner, but the proper translation of this biochemical signal into a functional response requires cell rounding and cell clustering. Thus, physical and biochemical signal transduction events contribute to the ECM-dependent regulation of tissue-specific gene expression in mouse mammary epithelial cells. 44 refs., 6 figs.

  2. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    PubMed

    Sarwar, Zaara; Garza, Anthony G

    2015-09-14

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation.

  3. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes

    PubMed Central

    Sarwar, Zaara

    2015-01-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. PMID:26369581

  4. Transduction of the Streptococcus pyogenes bacteriophage Φm46.1, carrying resistance genes mef(A) and tet(O), to other Streptococcus species.

    PubMed

    Giovanetti, Eleonora; Brenciani, Andrea; Morroni, Gianluca; Tiberi, Erika; Pasquaroli, Sonia; Mingoia, Marina; Varaldo, Pietro E

    2014-01-01

    Φm46.1 - Streptococcus pyogenes bacteriophage carrying mef(A) and tet(O), respectively, encoding resistance to macrolides (M phenotype) and tetracycline - is widespread in S. pyogenes but has not been reported outside this species. Φm46.1 is transferable in vitro among S. pyogenes isolates, but no information is available about its transferability to other Streptococcus species. We thus investigated Φm46.1 for its ability to be transduced in vitro to recipients of different Streptococcus species. Transductants were obtained from recipients of Streptococcus agalactiae, Streptococcus gordonii, and Streptococcus suis. Retransfer was always achieved, and from S. suis to S. pyogenes occurred at a much greater frequency than in the opposite direction. In transductants Φm46.1 retained its functional properties, such as inducibility with mitomycin C, presence both as a prophage and as a free circular form, and transferability. The transductants shared the same Φm46.1 chromosomal integration site as the donor, at the 3' end of a conserved RNA uracil methyltransferase (rum) gene, which is an integration hotspot for a variety of genetic elements. No transfer occurred to recipients of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus salivarius, even though rum-like genes were also detected in the sequenced genomes of these species. A largely overlapping 18-bp critical sequence, where the site-specific recombination process presumably takes place, was identified in the rum genes of all recipients, including those of the species yielding no transductants. Growth assays to evaluate the fitness cost of Φm46.1 acquisition disclosed a negligible impact on S. pyogenes, S. agalactiae, and S. gordonii transductants and a noticeable fitness advantage in S. suis. The S. suis transductant also displayed marked overexpression of the autolysin-encoding gene atl.

  5. Design of a Retrovirus-Derived Vector for Expression and Transduction of Exogenous Genes in Mammalian Cells

    PubMed Central

    Perkins, Archibald S.; Kirschmeier, Paul T.; Gattoni-Celli, Sebastiano; Weinstein, I. Bernard

    1983-01-01

    We have developed a transfection vector for animal cells that contains long terminal repeat (LTR) sequences to promote expression. Plasmid p101/101, a derivative of plasmid pBR322 containing the complete Moloney murine sarcoma virus genome, was cut with restriction enzymes and religated so that both the 5′ and 3′ LTRs were retained and all but about 700 base pairs of the intervening viral sequences were removed. To test this vector, the Escherichia coli gene gpt was cloned into a unique PstI site, between the two LTRs, with guanine and cytosine tailing, a method that can be generalized for insertion of any DNA segment into this vector. When DNA from recombinant plasmids in which the gpt gene was inserted in the same transcriptional polarity as the LTR sequences was transfected onto murine or rat fibroblast cultures, we obtained a high yield of Gpt+ colonies. However, plasmid constructs with the gpt gene in the opposite polarity were virtually devoid of activity. With gpt in the proper orientation, restriction enzyme cuts within the LTRs or between the 5′ LTR and the gpt gene reduced transfection by more than 98%, whereas a cut between the gpt gene and the 3′ LTR gave an 80% reduction in activity. Thus, both 5′ and 3′ LTR sequences are essential for optimal gpt expression, although the 5′ LTR appears to play a more important role. When the LTR-gpt plasmid was transfected onto murine leukemia virus-infected mouse fibroblasts, we obtained evidence that RNA copies became pseudotyped into viral particles which could transfer the Gpt+ phenotype into rodent cells with extremely high efficiency. This vector should prove useful for high-efficiency transduction of a variety of genes in mammalian cells. Images PMID:6308426

  6. Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth C; Ritchie, Kimberly B; Paul, John H

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the

  7. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenes

    DTIC Science & Technology

    2015-12-01

    Tumorigenes PRINCIPAL INVESTIGATOR: Xiaoming Ju, MD CONTRACTING ORGANIZATION: Thomas Jefferson University Philadelphia, PA 19107 REPORT DATE: December 2015...COVERED (From - To) 30Sep2011 - 29Sep2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The Role of Retinal Determination Gene Network (RDGN) in...by DACH1 in vitro and in vivo and showed using ChIP analysis the binding of DACH1 to key target genes. We used genetic deletion studies to identify

  8. Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul

    2012-01-01

    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.

  9. Differential usage of signal transduction pathways defines two types of serum response factor target gene.

    PubMed

    Gineitis, D; Treisman, R

    2001-07-06

    Activation of the transcription factor serum response factor (SRF) is dependent on Rho-controlled changes in actin dynamics. We used pathway-specific inhibitors to compare the roles of actin dynamics, extracellular signal-regulated kinase (ERK) signaling, and phosphatidylinositol 3-kinase in signaling either to SRF itself or to four cellular SRF target genes. Serum, lysophosphatidic acid, platelet-derived growth factor, and phorbol 12-myristate 13-acetate (PMA) each activated transcription of a stably integrated SRF reporter gene dependent on functional RhoA GTPase. Inhibition of mitogen-activated protein kinase-ERK kinase (MEK) signalling reduced activation of the SRF reporter by all stimuli by about 50%, except for PMA, which was effectively blocked. Inhibition of phosphatidylinositol 3-kinase slightly reduced reporter activation by serum and lysophosphatidic acid but substantially inhibited activation by platelet-derived growth factor and PMA. Reporter induction by all stimuli was absolutely dependent on actin dynamics. Regulation of the SRF (srf) and vinculin (vcl) genes was similar to that of the SRF reporter gene; activation by all stimuli was Rho-dependent and required actin dynamics but was largely independent of MEK activity. In contrast, activation of fos and egr1 occurred independently of RhoA and actin polymerization but was almost completely dependent on MEK activation. These results show that at least two classes of SRF target genes can be distinguished on the basis of their relative sensitivity to RhoA-actin and MEK-ERK signaling pathways.

  10. Signal transduction controls heterogeneous NF-κB dynamics and target gene expression through cytokine-specific refractory states

    PubMed Central

    Adamson, Antony; Boddington, Christopher; Downton, Polly; Rowe, William; Bagnall, James; Lam, Connie; Maya-Mendoza, Apolinar; Schmidt, Lorraine; Harper, Claire V.; Spiller, David G.; Rand, David A.; Jackson, Dean A.; White, Michael R. H.; Paszek, Pawel

    2016-01-01

    Cells respond dynamically to pulsatile cytokine stimulation. Here we report that single, or well-spaced pulses of TNFα (>100 min apart) give a high probability of NF-κB activation. However, fewer cells respond to shorter pulse intervals (<100 min) suggesting a heterogeneous refractory state. This refractory state is established in the signal transduction network downstream of TNFR and upstream of IKK, and depends on the level of the NF-κB system negative feedback protein A20. If a second pulse within the refractory phase is IL-1β instead of TNFα, all of the cells respond. This suggests a mechanism by which two cytokines can synergistically activate an inflammatory response. Gene expression analyses show strong correlation between the cellular dynamic response and NF-κB-dependent target gene activation. These data suggest that refractory states in the NF-κB system constitute an inherent design motif of the inflammatory response and we suggest that this may avoid harmful homogenous cellular activation. PMID:27381163

  11. Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi

    PubMed Central

    Kuang, Jian-Fei; Wu, Jian-Yang; Zhong, Hai-Ying; Li, Cai-Qin; Chen, Jian-Ye; Lu, Wang-Jin; Li, Jian-Guo

    2012-01-01

    Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level. PMID:23443112

  12. Modified HIV-1 based lentiviral vectors have an effect on viral transduction efficiency and gene expression in vitro and in vivo.

    PubMed

    Park, F; Kay, M A

    2001-09-01

    Gene transfer using lentiviral vectors has been recently shown to be enhanced with cis-acting elements in a cell-type-dependent manner in vivo. For this reason, the study reported here was designed to modify lentiviral vectors that express lacZ, human factor IX (FIX), or human alpha1-anti-trypsin (AAT) to study the effect of different cis DNA elements on transduction efficiencies. We found that incorporation of the central polypurine tract sequence (cppt) increased transduction efficiency in vitro while increasing the transduction of non-cell-cycling hepatocytes in vivo. C57Bl/6 scid mice that were administered lentiviral vectors devoid of the cppt (2 x 10(8) transducing units (T.U.)/mouse) had 81% of their lacZ-transduced hepatocytes colabeled with the cell cycle marker 5'-bromo-2'-deoxyuridine (BrdU). In contrast, inclusion of the cppt reduced the colabeling in mouse hepatocytes by 50%. Further modifications in the lentiviral vectors were performed to enhance viral titer and gene expression. We found that the inclusion of a matrix attachment region (MAR) from immunoglobulin-kappa (Igkappa) significantly increased the transduction efficiency, as measured by transgene protein expression and proviral DNA copy number, compared with vectors without Igkappa MAR. In vitro studies using human hepatoma cells demonstrated a significant increase (two- to fourfold) in human AAT and human FIX production when the Igkappa MAR was incorporated. In vivo transduction of partially hepatectomized C57Bl/6 mice given an optimized lentiviral vector containing the cppt and Igkappa MAR (2 x 10(8) T.U./mouse) resulted in sustained therapeutic levels of serum FIX (approximately 65 ng/ml). Our study demonstrates the importance of cis-acting elements to enhancing the transduction ability of lentiviral vectors and the expression of vector transgenes.

  13. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors

    PubMed Central

    Merienne, Nicolas; Douce, Juliette Le; Faivre, Emilie; Déglon, Nicole; Bonvento, Gilles

    2013-01-01

    Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain. PMID:23847471

  14. Novel effects of Helicobacter pylori CagA on key genes of gastric cancer signal transduction: a comparative transfection study.

    PubMed

    Vaziri, Farzam; Peerayeh, Shahin N; Alebouyeh, Masoud; Maghsoudi, Nader; Azimzadeh, Pedram; Siadat, Seyed D; Zali, Mohammad R

    2015-04-01

    Helicobacter pylori (H. pylori) infection is now recognized as a worldwide problem. Helicobacter pylori CagA is the first bacterial oncoprotein to be identified in relation to human cancer. Helicobacter pylori CagA is noted for structural diversity in its C-terminal region (contains EPIYA motifs), with which CagA interacts with numerous host cell proteins. Deregulation of host signaling by translocated bacterial proteins provides a new aspect of microbial-host cell interaction. The aim of this study is to compare the cellular effects of two different CagA EPIYA motifs on identified signaling pathways involve in gastric carcinogenesis. To investigate the effects of CagA protein carboxyl region variations on the transcription of genes involved in gastric epithelial carcinogenesis pathways, the eukaryotic vector carrying the cagA gene (ABC and ABCCC types) was transfected into gastric cancer cell line. The 42 identified key genes of signal transduction involved in gastric cancer were analyzed at the transcription level by real-time PCR. The results of real-time PCR provide us important clue that the ABCCC oncoprotein variant can change the fate of the cell completely different from ABC type. In fact, these result proposed that the ABCCC type can induce the intestinal metaplasia, IL-8, perturbation of Crk adaptor proteins, anti-apoptotic effect and carcinogenic effect more significantly than ABC type. These data support our hypothesis of a complex interaction of host cell and these two different H. pylori effector variants that determines host cellular fate.

  15. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    DTIC Science & Technology

    2013-10-01

    Probasin-erbB2Δ (Pb-erbB2) transgenic mice to create triple transgenic mice, Dach1fl/fl/Pb-Cre/ Pb-erbB2. Using Dach1fl/fl/Probasin-Cre bi...growth, via a helix -turn- helix DNA interaction domain which was required to both repress CRPC growth and inhibit expression and secretion of a CXCL...of DACH1 in tumor growth in vivo using xenograft models . DACH1 inhibition of prostate cancer cellular invasion and migration required CXCL gene

  16. Reversal of diabetes through gene therapy of diabetic rats by hepatic insulin expression via lentiviral transduction.

    PubMed

    Elsner, Matthias; Terbish, Taivankhuu; Jörns, Anne; Naujok, Ortwin; Wedekind, Dirk; Hedrich, Hans-Jürgen; Lenzen, Sigurd

    2012-05-01

    Due to shortage of donor tissue a cure for type 1 diabetes by pancreas organ or islet transplantation is an option only for very few patients. Gene therapy is an alternative approach to cure the disease. Insulin generation in non-endocrine cells through genetic engineering is a promising therapeutic concept to achieve insulin independence in patients with diabetes. In the present study furin-cleavable human insulin was expressed in the liver of autoimmune-diabetic IDDM rats (LEW.1AR1/Ztm-iddm) and streptozotocin-diabetic rats after portal vein injection of INS-lentivirus. Within 5-7 days after the virus injection of 7 × 10(9) INS-lentiviral particles the blood glucose concentrations were normalized in the treated animals. This glucose lowering effect remained stable for the 1 year observation period. Human C-peptide as a marker for hepatic release of human insulin was in the range of 50-100 pmol/ml serum. Immunofluorescence staining of liver tissue was positive for insulin showing no signs of transdifferentiation into pancreatic β-cells. This study shows that the diabetic state can be efficiently reversed by insulin release from non-endocrine cells through a somatic gene therapy approach.

  17. Characterization of CitA-CitB signal transduction activating genes involved in anaerobic citrate catabolism in Escherichia coli.

    PubMed

    Yamamoto, Kaneyoshi; Matsumoto, Fumika; Minagawa, Shu; Oshima, Taku; Fujita, Nobuyuki; Ogasawara, Naotake; Ishihama, Akira

    2009-02-01

    In Escherichia coli, CitA is a membrane-associated sensor histidine kinase that phosphorylates CitB, the response regulator. It is predicated to play a key role in anaerobic citrate catabolism. The citrate-binding site in CitA is located within its periplasmic domain, while the cytoplasmic domain (CitA-C) is involved in autophosphorylation. We found that autophosphorylation in vitro of CitA-C was induced by DTT. Using the whole set of CitA-C derivatives containing Cys-Ala substitution(s), Cys at 529 was found to be essential to the redox-sensing of autophosphorylation. The phosphorylated CitA-C transferred a phosphate to CitB. DNase-I footprinting assay indicated that CitB specifically bound on the intergenic region between the citA and citC genes. These results characterize the molecular mechanism of the CitA-CitB signal transduction system in E. coli.

  18. Systematic identification of genes and transduction pathways involved in radio-adaptive response

    SciTech Connect

    Wu, Honglu

    2015-05-22

    Low doses of radiation have been shown to protect against the biological effects of later exposure to toxic levels of radiation. In this study, we propose to identify the molecular mechanisms of this adaptive response by systematically identifying the genes that play a role in radio-protection. In the original proposal, a human cell line that is well-documented to exhibit the radio-adaptive effect was to be used. In this revised study plan, we will use a mouse model, C57BL/6, which has also been well investigated for radio-adaptation. The goal of the proposed study is to enhance our understanding of cellular responses to low doses of radiation exposure at the molecular level.

  19. Ex vivo intracoronary gene transfer of adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants.

    PubMed

    Raissadati, Alireza; Jokinen, Janne J; Syrjälä, Simo O; Keränen, Mikko A I; Krebs, Rainer; Tuuminen, Raimo; Arnaudova, Ralica; Rouvinen, Eeva; Anisimov, Andrey; Soronen, Jarkko; Pajusola, Katri; Alitalo, Kari; Nykänen, Antti I; Lemström, Karl

    2013-11-01

    Heart transplant gene therapy requires vectors with long-lasting gene expression, high cardiotropism, and minimal pathological effects. Here, we examined transduction properties of ex vivo intracoronary delivery of adeno-associated virus (AAV) serotype 2, 8, and 9 in rat syngenic and allogenic heart transplants. Adult Dark Agouti (DA) rat hearts were intracoronarily perfused ex vivo with AAV2, AAV8, or AAV9 encoding firefly luciferase and transplanted heterotopically into the abdomen of syngenic DA or allogenic Wistar-Furth (WF) recipients. Serial in vivo bioluminescent imaging of syngraft and allograft recipients was performed for 6 months and 4 weeks, respectively. Grafts were removed for PCR-, RT-PCR, and luminometer analysis. In vivo bioluminescent imaging of recipients showed that AAV9 induced a prominent and stable luciferase activity in the abdomen, when compared with AAV2 and AAV8. However, ex vivo analyses revealed that intracoronary perfusion with AAV2 resulted in the highest heart transplant transduction levels in syngrafts and allografts. Ex vivo intracoronary delivery of AAV2 resulted in efficient transgene expression in heart transplants, whereas intracoronary AAV9 escapes into adjacent tissues. In terms of cardiac transduction, these results suggest AAV2 as a potential vector for gene therapy in preclinical heart transplants studies, and highlight the importance of delivery route in gene transfer studies.

  20. Molecular identification of candidate chemoreceptor genes and signal transduction components in the sensory epithelium of Aplysia.

    PubMed

    Cummins, S F; Leblanc, L; Degnan, B M; Nagle, G T

    2009-07-01

    An ability to sense and respond to environmental cues is essential to the survival of most marine animals. How water-borne chemical cues are detected at the molecular level and processed by molluscs is currently unknown. In this study, we cloned two genes from the marine mollusk Aplysia dactylomela which encode multi-transmembrane proteins. We have performed in situ hybridization that reveals expression and spatial distribution within the long-distance chemosensory organs, the rhinophores. This finding suggests that they could be receptors involved in binding water-borne chemicals and coupling to an intracellular signal pathway. In support of this, we found expression of a phospholipase C and an inositol trisphosphate receptor in the rhinophore sensory epithelia and possibly distributed within outer dendrites of olfactory sensory neurons. In Aplysia, mate attraction and subsequent reproduction is initiated by responding to a cocktail of water-borne protein pheromones released by animal conspecifics. We show that the rhinophore contraction in response to pheromone stimulants is significantly altered following phospholipase C inhibition. Overall, these data provide insight into the molecular components of chemosensory detection in a mollusk. An important next step will be the elucidation of how these coordinate the detection of chemical cues present in the marine environment and activation of sensory neurons.

  1. Disrupting actions of bisphenol A and malachite green on growth hormone receptor gene expression and signal transduction in seabream.

    PubMed

    Jiao, Baowei; Cheng, Christopher H K

    2010-06-01

    Environmental estrogen could mimic natural estrogens thereby disrupting the endocrine systems of human and animals. The actions of such endocrine disruptors have been studied mainly on reproduction and development. However, estrogen could also affect the somatotropic axis via multiple targets such as growth hormone (GH). In the present study, two endocrine disruptors were chosen to investigate their effects on the expression level and signal transduction of growth hormone receptor (GHR) in fish. Using real-time PCR, it was found that exposure to both the estrogenic (bisphenol A) and anti-estrogenic (malachite green) compounds could attenuate the expression levels of GHR1 and GHR2 in black seabream (Acanthopagrus schlegeli) hepatocytes. The expression level of IGF-I, the downstream effector of GHR activation in the liver, was decreased by bisphenol A but not by malachite green. Luciferase reporter assay of the beta-casein promoter was used to monitor GHR signaling in transfected cells. In the fish liver cell line Hepa-T1, both GHR1 and GHR2 signaling were attenuated by bisphenol A and malachite green. This attenuation could only occur in the presence of estrogen receptor, indicating that these agents probably produce their actions via the estrogen receptor. Results of the present study demonstrated that estrogenic or anti-estrogenic compounds could down-regulate the somatotropic axis in fish by affecting both the gene expression and signaling of GHR. In view of the increasing prevalence of these compounds in the environment, the impact on fish growth and development both in the wild and in aquaculture would be considerable.

  2. Efficient transduction of vascular smooth muscle cells with a translational AAV2.5 vector: a new perspective for in-stent restenosis gene therapy.

    PubMed

    Lompré, A-M; Hadri, L; Merlet, E; Keuylian, Z; Mougenot, N; Karakikes, I; Chen, J; Atassi, F; Marchand, A; Blaise, R; Limon, I; McPhee, S W J; Samulski, R J; Hajjar, R J; Lipskaia, L

    2013-09-01

    Coronary artery disease represents the leading cause of mortality in the developed world. Percutaneous coronary intervention involving stent placement remains disadvantaged by restenosis or thrombosis. Vascular gene therapy-based methods may be approached, but lack a vascular gene delivery vector. We report a safe and efficient long-term transduction of rat carotid vessels after balloon injury intervention with a translational optimized AAV2.5 vector. Compared with other known adeno-associated virus (AAV) serotypes, AAV2.5 demonstrated the highest transduction efficiency of human coronary artery vascular smooth muscle cells (VSMCs) in vitro. Local delivery of AAV2.5-driven transgenes in injured carotid arteries resulted in transduction as soon as day 2 after surgery and persisted for at least 30 days. In contrast to adenovirus 5 vector, inflammation was not detected in AAV2.5-transduced vessels. The functional effects of AAV2.5-mediated gene transfer on neointimal thickening were assessed using the sarco/endoplasmic reticulum Ca(2+) ATPase isoform 2a (SERCA2a) human gene, known to inhibit VSMC proliferation. At 30 days, human SERCA2a messenger RNA was detected in transduced arteries. Morphometric analysis revealed a significant decrease in neointimal hyperplasia in AAV2.5-SERCA2a-transduced arteries: 28.36±11.30 (n=8) vs 77.96±24.60 (n=10) μm(2), in AAV2.5-green fluorescent protein-infected, P<0.05. In conclusion, AAV2.5 vector can be considered as a promising safe and effective vector for vascular gene therapy.

  3. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    PubMed Central

    Giroux, Sébastien JD; Alves-Leiva, Celmar; Lécluse, Yann; Martin, Patrick; Albagli, Olivier; Godin, Isabelle

    2007-01-01

    Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC), precursors formed earlier in the yolk sac (YS) display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors) or early somite (hematopoietic precursors) stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ electroporation constitutes

  4. A Drosophila mechanosensory transduction channel.

    PubMed

    Walker, R G; Willingham, A T; Zuker, C S

    2000-03-24

    Mechanosensory transduction underlies a wide range of senses, including proprioception, touch, balance, and hearing. The pivotal element of these senses is a mechanically gated ion channel that transduces sound, pressure, or movement into changes in excitability of specialized sensory cells. Despite the prevalence of mechanosensory systems, little is known about the molecular nature of the transduction channels. To identify such a channel, we analyzed Drosophila melanogaster mechanoreceptive mutants for defects in mechanosensory physiology. Loss-of-function mutations in the no mechanoreceptor potential C (nompC) gene virtually abolished mechanosensory signaling. nompC encodes a new ion channel that is essential for mechanosensory transduction. As expected for a transduction channel, D. melanogaster NOMPC and a Caenorhabditis elegans homolog were selectively expressed in mechanosensory organs.

  5. Co-transduction of lentiviral and adenoviral vectors for co-delivery of growth factor and shRNA genes in mesenchymal stem cells-based chondrogenic system.

    PubMed

    Zhang, Feng; Yao, Yongchang; Su, Kai; Fang, Yu; Citra, Fudiman; Wang, Dong-An

    2015-09-01

    Gene delivery takes advantage of cellular mechanisms to express gene products and is an efficient way to deliver them into cells, influencing cellular behaviours and expression patterns. Among the delivery methods, viral vectors are applied due to their high efficiency. Two typical viral vectors for gene delivery include lentiviral vector for integrative transduction and adenoviral vector for transient episomal transduction, respectively. The selection and formulation of proper viral vectors applied to cells can modulate gene expression profiles and further impact the downstream pathways. In this study, recombinant lentiviral and adenoviral vectors were co-transduced in a synovial mesenchymal stem cells (SMSCs)-based articular chondrogenic system by which two transgenes were co-delivered - the gene for transforming growth factor (TGF)β3, to facilitate SMSC chondrogenesis, and the gene for small hairpin RNA (shRNA), targeting the mRNA of type I collagen (Col I) α1 chain to silence Col I expression and minimize fibrocartilage formation. Delivery of either gene could be achieved with either lentiviral or adenoviral vectors. Therefore, co-delivery of the two transgenes via the two types of vectors was performed to determine which combination was optimal for three-dimensional (3D) articular chondrogenesis to construct articular hyaline cartilage tissue. Suppression of Col I and expression of cartilage markers, including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP), were assessed at both the transcriptome and protein phenotypic levels. It was concluded that the combination of lentiviral-mediated TGFβ3 release and adenoviral-mediated shRNA expression (LV-T + Ad-sh) generally demonstrated optimal efficacy in engineered articular cartilage with SMSCs.

  6. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    PubMed Central

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  7. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway.

    PubMed

    Guan, Changhui; Rosen, Elizabeth S; Boonsirichai, Kanokporn; Poff, Kenneth L; Masson, Patrick H

    2003-09-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  8. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    NASA Technical Reports Server (NTRS)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  9. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization.

    PubMed

    Nguyen, Ha Thuy; Leipner, Jörg; Stamp, Peter; Guerra-Peraza, Orlene

    2009-02-01

    Unfavourable environmental conditions such as cold induce the transcription of a range of genes in plants in order to acclimate to these growth conditions. To better understand the cold acclimation of maize (Zea mays L.) it is important to identify components of the cold stress response. For this purpose, cold-induced genes were analysed using the PCR-select cDNA subtraction method. We identified several novel genes isolated from maize seedling exposed for 48h to 6 degrees C. Of 18 Zea mays cold-induced genes (ZmCOI genes) characterized, the majority share similarities with proteins with known function in signal transduction and photosynthesis regulation. RT-PCR was conducted for a selected group of genes, namely ZmCOI6.1, ZmACA1, ZmDREB2A and ZmERF3, confirming the induction by low temperature. In addition, it was found that their expression was strongly induced by other abiotic stresses such as drought and high salt concentration, by stress signalling molecules such as jasmonic acid, salicylic acid and abscisic acid, and by membrane rigidification. These results suggest that this group of genes is involved in a general response to abiotic stresses.

  10. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene

    PubMed Central

    Hsu, Cary; Jones, Stephanie A.; Cohen, Cyrille J.; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F.; Peng, Peter D.; Shen, Xinglei; Gomes, Theotonius J.; Dunbar, Cynthia E.; Munroe, David J.; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A.

    2007-01-01

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8+ T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus–based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28−, CD45RA−, CD45RO+, and CD62L−, a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen–specific T-cell receptors, the clone secreted IFN-γ upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15Rα expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation. PMID:17353346

  11. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene.

    PubMed

    Hsu, Cary; Jones, Stephanie A; Cohen, Cyrille J; Zheng, Zhili; Kerstann, Keith; Zhou, Juhua; Robbins, Paul F; Peng, Peter D; Shen, Xinglei; Gomes, Theotonius J; Dunbar, Cynthia E; Munroe, David J; Stewart, Claudia; Cornetta, Kenneth; Wangsa, Danny; Ried, Thomas; Rosenberg, Steven A; Morgan, Richard A

    2007-06-15

    Malignancies arising from retrovirally transduced hematopoietic stem cells have been reported in animal models and human gene therapy trials. Whether mature lymphocytes are susceptible to insertional mutagenesis is unknown. We have characterized a primary human CD8(+) T-cell clone, which exhibited logarithmic ex vivo growth in the absence of exogenous cytokine support for more than 1 year after transduction with a murine leukemia virus-based vector encoding the T-cell growth factor IL-15. Phenotypically, the clone was CD28(-), CD45RA(-), CD45RO(+), and CD62L(-), a profile consistent with effector memory T lymphocytes. After gene transfer with tumor-antigen-specific T-cell receptors, the clone secreted IFN-gamma upon encountering tumor targets, providing further evidence that they derived from mature lymphocytes. Gene-expression analyses revealed no evidence of insertional activation of genes flanking the retroviral insertion sites. The clone exhibited constitutive telomerase activity, and the presence of autocrine loop was suggested by impaired cell proliferation following knockdown of IL-15R alpha expression. The generation of this cell line suggests that nonphysiologic expression of IL-15 can result in the long-term in vitro growth of mature human T lymphocytes. The cytokine-independent growth of this line was a rare event that has not been observed in other IL-15 vector transduction experiments or with any other integrating vector system. It does not appear that the retroviral vector integration sites played a role in the continuous growth of this cell clone, but this remains under investigation.

  12. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    PubMed

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.

  13. Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus.

    PubMed

    Inoue, K; Kouadio, J L; Mosley, C S; Bauer, C E

    1995-01-17

    Anaerobic induction of light harvesting and reaction center gene expression involves two transacting factors termed RegA and RegB. Sequence and mutational analysis has indicated that RegA and RegB constitute cognate components of a prokaryotic sensory transduction cascade with RegB comprising a membrane-spanning sensor kinase and RegA a cytosolic response regulator. In this study we have purified RegA, as well as a truncated portion of RegB (RegB') and undertaken an in vitro analysis of autophosphorylation and phosphotransfer activities. Incubation of RegB' with [gamma-32P]ATP and MgCl2 resulted in phosphorylation of RegB' (RegB' approximately P) over a 20-min incubation period. Incubation of RegB' approximately P with RegA resulted in rapid transfer of the phosphate from RegB' to RegA. In analogy to other characterized prokaryotic sensory transduction components, mutational and chemical stability studies also indicate that RegB' is autophosphorylated at a conserved histidine and that RegA accepts the phosphate from RegB at a conserved aspartate.

  14. The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA

    PubMed Central

    Kuchinski, Kevin S.; Brimacombe, Cedric A.; Westbye, Alexander B.; Ding, Hao

    2016-01-01

    ABSTRACT The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (<1%) of cells in a stationary-phase culture. RcGTA particles deliver this DNA to surrounding R. capsulatus cells, and the DNA is integrated into the recipient genome though a process that requires homologs of natural transformation genes and RecA-mediated homologous recombination. Here, we report the identification of the LexA repressor, the master regulator of the SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5′ of typical SOS response coding sequences and also 5′ of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. IMPORTANCE This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability

  15. N-Acylethanolamines in Signal Transduction of Elicitor Perception. Attenuation of Alkalinization Response and Activation of Defense Gene Expression1

    PubMed Central

    Tripathy, Swati; Venables, Barney J.; Chapman, Kent D.

    1999-01-01

    In a recent study of N-acylphosphatidylethanolamine (NAPE) metabolism in elicitor-treated tobacco (Nicotiana tabacum L.) cells, we identified a rapid release and accumulation of medium-chain N-acylethanolamines (NAEs) (e.g. N-myristoylethanolamine or NAE 14:0) and a compensatory decrease in cellular NAPE (K.D. Chapman, S. Tripathy, B. Venables, A.D. Desouza [1998] Plant Physiol 116: 1163–1168). In the present study, we extend this observation and report a 10- to 50-fold increase in NAE 14:0 content in leaves of tobacco (cv Xanthi) plants treated with xylanase or cryptogein elicitors. Exogenously supplied synthetic NAE species affected characteristic elicitor-induced and short- and long-term defense responses in cell suspensions of tobacco and long-term defense responses in leaves of intact tobacco plants. In general, synthetic NAEs inhibited elicitor-induced medium alkalinization by tobacco cells in a time- and concentration-dependent manner. Exogenous NAE 14:0 induced expression of phenylalanine ammonia lyase in a manner similar to fungal elicitors in both cell suspensions and leaves of tobacco. NAE 14:0, but not myristic acid, activated phenylalanine ammonia lyase expression at submicromolar concentrations, well within the range of NAE 14:0 levels measured in elicitor-treated plants. Collectively, these results suggest that NAPE metabolism, specifically, the accumulation of NAE 14:0, are part of a signal transduction pathway that modulates cellular defense responses following the perception of fungal elicitors. PMID:10594117

  16. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways.

    PubMed

    Tuñón, M J; García-Mediavilla, M V; Sánchez-Campos, S; González-Gallego, J

    2009-03-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables, and beverages derived from plants. Reports have suggested that these compounds might be useful for the prevention of a number of diseases, partly due to their anti-inflammatory properties. It has been demonstrated that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, ciclooxygenase and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines or adhesion molecules. Modulation of the cascade of molecular events leading to the over-expression of those mediators include inhibition of transcription factors such as nuclear factor kappa B, activator protein 1, signal transducers and activators of transcription, CCAAT/enhancer binding protein and others. Effects on the binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen activated protein kinases. Although the numerous studies published with in vitro approaches allow identifying molecular mechanisms of flavonoid effects, the limited bioavailability of these molecules makes necessary validation in humans. Whatever the case, the data available make clear the potential utility of dietary flavonoids or new flavonoid-based agents for the possible treatment of inflammatory diseases. The present review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by flavonoids and the effects on cell signaling pathways responsible for their anti-inflammatory activity.

  17. Regulation of Leukemic Cell Differentiation through the Vitamin D Receptor at the Levels of Intracellular Signal Transduction, Gene Transcription, and Protein Trafficking and Stability

    PubMed Central

    Gocek, Elżbieta; Baurska, Hanna; Marchwicka, Aleksandra; Marcinkowska, Ewa

    2012-01-01

    1α,25-Dihydroxyvitamin D3 (1,25(OH)2D) exerts its biological activities through vitamin D receptor (VDR), which is a member of the superfamily of steroid receptors, that act as ligand-dependent transcription factors. Ligated VDR in complex with retinoid X receptor (RXR) binds to regulatory regions of 1,25(OH)2D-target genes. 1,25(OH)2D is able to induce differentiation of leukemic blasts towards macrophage-like cells. Many different acute myeloid leukemia (AML) cell lines respond to 1,25(OH)2D by increasing CD14 cell surface receptor, some additionally upregulate CD11b and CD11c integrins. In untreated AML cells VDR protein is present in cytosol at a very low level, even though its mRNA is continuously expressed. Ligation of VDR causes protein stabilization and translocation to the cell nuclei, where it regulates transcription of target genes. Several important groups of genes are regulated by 1,25(OH)2D in HL60 cells. These genes include differentiation-related genes involved in macrophage function, as well as a gene regulating degradation of 1,25(OH)2D, namely CYP24A1. We summarize here the data which demonstrate that though some cellular responses to 1,25(OH)2D in AML cells are transcription-dependent, there are many others which depend on intracellular signal transduction, protein trafficking and stabilization. The final effect of 1,25(OH)2D action in leukemic cells requires all these acting together. PMID:23213549

  18. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells.

    PubMed

    Levasseur, Dana N; Ryan, Thomas M; Pawlik, Kevin M; Townes, Tim M

    2003-12-15

    Although sickle cell anemia was the first hereditary disease to be understood at the molecular level, there is still no adequate long-term treatment. Allogeneic bone marrow transplantation is the only available cure, but this procedure is limited to a minority of patients with an available, histocompatible donor. Autologous transplantation of bone marrow stem cells that are transduced with a stably expressed, antisickling globin gene would benefit a majority of patients with sickle cell disease. Therefore, the development of a gene therapy protocol that corrects the disease in an animal model and is directly translatable to human patients is critical. A method is described in which unmobilized, highly purified bone marrow stem cells are transduced with a minimum amount of self-inactivating (SIN) lentiviral vector containing a potent antisickling beta-globin gene. These cells, which were transduced in the absence of cytokine stimulation, fully reconstitute irradiated recipients and correct the hemolytic anemia and organ pathology that characterize the disease in humans. The mean increase of hemoglobin concentration was 46 g/L (4.6 g/dL) and the average lentiviral copy number was 2.2; therefore, a 21-g/L /vector copy increase (2.1-g/dL) was achieved. This transduction protocol may be directly translatable to patients with sickle cell disease who cannot tolerate current bone marrow mobilization procedures and may not safely be exposed to large viral loads.

  19. Transductional mapping of ksgB and a new Tn5-induced kasugamycin resistance gene, ksgD, in Escherichia coli K-12.

    PubMed

    Fouts, K E; Barbour, S D

    1981-02-01

    We have mapped the Escherichia coli ksgB gene to min 36.5, 0.8 min from man and 0.7 min from aroD. A new kasugamycin resistance (Ksgr) gene, ksgD, has been isolated, using a transposon, Tn5. ksgD::TN5 is 44% cotransducible with sbcA, unlinked to trp, and unlinked to man (by P1 transduction). The ksgD::Tn5 has a late time of entry from HfrB7 (PO43). These data place ksgD clockwise from sbcA (which enters early from HfrB7) at min 30.4. The reistance of ksgB ksgD single and double mutant strains has been quantitated. Single mutations, ksgB or ksgD, gave resistance to 600 micrograms of kasugamycin per ml, whereas a ksgB ksgD strain was able to grow in the presence of kasugamycin levels in excess of 3,000 micrograms/ml. This indicates that the mechanisms of resistance coded for by the two genes are independent and synergistic.

  20. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato

    PubMed Central

    Gong, Pengjuan; Zhang, Junhong; Li, Hanxia; Yang, Changxian; Zhang, Chanjuan; Zhang, Xiaohui; Khurram, Ziaf; Zhang, Yuyang; Wang, Taotao; Fei, Zhangjun; Ye, Zhibiao

    2010-01-01

    To unravel the molecular mechanisms of drought responses in tomato, gene expression profiles of two drought-tolerant lines identified from a population of Solanum pennellii introgression lines, and the recurrent parent S. lycopersicum cv. M82, a drought-sensitive cultivar, were investigated under drought stress using tomato microarrays. Around 400 genes identified were responsive to drought stress only in the drought-tolerant lines. These changes in genes expression are most likely caused by the two inserted chromosome segments of S. pennellii, which possibly contain drought-tolerance quantitative trait loci (QTLs). Among these genes are a number of transcription factors and signalling proteins which could be global regulators involved in the tomato responses to drought stress. Genes involved in organism growth and development processes were also specifically regulated by drought stress, including those controlling cell wall structure, wax biosynthesis, and plant height. Moreover, key enzymes in the pathways of gluconeogenesis (fructose-bisphosphate aldolase), purine and pyrimidine nucleotide biosynthesis (adenylate kinase), tryptophan degradation (aldehyde oxidase), starch degradation (β-amylase), methionine biosynthesis (cystathionine β-lyase), and the removal of superoxide radicals (catalase) were also specifically affected by drought stress. These results indicated that tomato plants could adapt to water-deficit conditions through decreasing energy dissipation, increasing ATP energy provision, and reducing oxidative damage. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in tomato. PMID:20643807

  1. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    PubMed

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  2. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin

    PubMed Central

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G.; Corydon, Thomas J.; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-01-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo. PMID:26204415

  3. Sentra, a database of signal transduction proteins.

    SciTech Connect

    Maltsev, N.; Marland, E.; Yu, G. X.; Bhatnagar, S.; Lusk, R.; Mathematics and Computer Science

    2002-01-01

    Sentra (http://www-wit.mcs.anl.gov/sentra) is a database of signal transduction proteins with the emphasis on microbial signal transduction. The database was updated to include classes of signal transduction systems modulated by either phosphorylation or methylation reactions such as PAS proteins and serine/threonine kinases, as well as the classical two-component histidine kinases and methyl-accepting chemotaxis proteins. Currently, Sentra contains signal transduction proteins from 43 completely sequenced prokaryotic genomes as well as sequences from SWISS-PROT and TrEMBL. Signal transduction proteins are annotated with information describing conserved domains, paralogous and orthologous sequences, and conserved chromosomal gene clusters. The newly developed user interface supports flexible search capabilities and extensive visualization of the data.

  4. Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus.

    PubMed

    Watanabe, T; Sadamoto, Hitoshi; Aonuma, H

    2011-10-01

    Serotonin (5-HT) modulates various aspects of behaviours such as aggressive behaviour and circadian behaviour in the cricket. To elucidate the molecular basis of the cricket 5-HT system, we identified 5-HT-related genes in the field cricket Gryllus bimaculatus DeGeer. Complementary DNA of tryptophan hydroxylase and phenylalanine-tryptophan hydroxylase, which convert tryptophan into 5-hydroxy-L-tryptophan (5-HTP), and that of aromatic L-amino acid decarboxylase, which converts 5-HTP into 5-HT, were isolated from a cricket brain cDNA library. In addition, four 5-HT receptor genes (5-HT(1A) , 5-HT(1B) , 5-HT(2α) , and 5-HT(7) ) were identified. Expression analysis of the tryptophan hydroxylase gene TRH and phenylalanine-tryptophan hydroxylase gene TPH, which are selectively involved in neuronal and peripheral 5-HT synthesis in Drosophila, suggested that two 5-HT synthesis pathways co-exist in the cricket neuronal tissues. The four 5-HT receptor genes were expressed in various tissues at differential expression levels, suggesting that the 5-HT system is widely distributed in the cricket.

  5. Fetal gene transfer using lentiviral vectors and the potential for germ cell transduction in rhesus monkeys (Macaca mulatta).

    PubMed

    Lee, C Chang I; Jimenez, Daniel F; Kohn, Donald B; Tarantal, Alice F

    2005-04-01

    Genetic modification of germ cells in somatic gene therapy protocols is a concern, particularly with fetal approaches. This study focused on the potential for germ cell gene transfer post-fetal gene delivery using a human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vector pseudotyped with the vesicular stomatitis virus-glycoprotein (VSV-G). Rhesus monkey fetuses (n = 47) were administered vector supernatant (10(7) infectious particles per fetus) via the intraperitoneal (IP), intrapulmonary (Ipu), or intracardiac routes (Ica) under ultrasound guidance. Tissue harvests were performed near term or 3 months postnatal age, and genomic DNA obtained to analyze for vector sequences from collected sections of gonads and gonadal cells obtained by laser capture microdissection (germ cells, stroma, epithelium). Results indicated no evidence of germ cell gene transfer in fetuses or infants with Ipu or Ica routes of administration. However, evidence of the transgene (1.33 +/- 0.78 enhanced green fluorescent protein [EGFP] copies per copy epsilon-globin) was found in females, but not males, when using the IP administration approach (p < 0.05). The highest EGFP copies were detected on the surface epithelium (p < 0.05). The results of these studies suggest that the HIV-1-derived lentiviral vector pseudotyped with VSV-G may transduce a subpopulation of gonadal cells in female fetuses with IP administration, whereas no evidence of gene transfer was shown to occur in males or with organ-targeting approaches.

  6. Ceiling culture-derived proliferative adipocytes retain high adipogenic potential suitable for use as a vehicle for gene transduction therapy.

    PubMed

    Asada, Sakiyo; Kuroda, Masayuki; Aoyagi, Yasuyuki; Fukaya, Yoshitaka; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Satoh, Kaneshige; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2011-07-01

    Adipose tissue is expected to provide a source of proliferative cells for regenerative medicine and cell-transplantation therapies using gene transfer manipulation. We have recently identified ceiling culture-derived proliferative adipocytes (ccdPAs) from the mature adipocyte fraction as cells suitable as a therapeutic gene vehicle because of their stable proliferative capacity. In this study, we examined the capability of adipogenic differentiation of the ccdPAs compared with stromal vascular fraction (SVF)-derived progenitor cells (adipose-derived stem cells, ASCs) with regard to their multipotential ability to be converted to another lineage and therefore their potential to be used for regenerative medicine research. After in vitro passaging, the surface antigen profile and the basal levels of adipogenic marker genes of the ccdPAs were not obviously different from those of the ASCs. However, the ccdPAs showed increased lipid-droplet accumulation accompanied with higher adipogenic marker gene expression after stimulation of differentiation compared with the ASCs. The higher adipogenic potential of the ccdPAs than the ASCs from the SVF was maintained for 42 days in culture. Furthermore, the difference in the adipogenic response was enhanced after partial stimulation without indomethacin. These results indicate that the ccdPAs retain a high adipogenic potential even after in vitro passaging, thus suggesting the commitment of ccdPAs to stable mature adipocytes after autotransplantation, indicating that they may have potential for use in regenerative and gene-manipulated medicine.

  7. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy

    PubMed Central

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD. PMID:27408904

  8. Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy.

    PubMed

    Payne, Julia G; Takahashi, Ayuko; Higgins, Michelle I; Porter, Emily L; Suki, Bela; Balazs, Alejandro; Wilson, Andrew A

    2016-01-01

    In vivo gene delivery has long represented an appealing potential treatment approach for monogenic diseases such as α1-antitrypsin deficiency (AATD) but has proven challenging to achieve in practice. Alternate pseudotyping of recombinant adeno-associated virus (AAV) vectors is producing vectors with increasingly heterogeneous tropic specificity, giving researchers the ability to target numerous end-organs affected by disease. Herein, we describe sustained pulmonary transgene expression for at least 52 weeks after a single intratracheal instillation of AAV2/8 and characterize the multiple cell types transduced within the lung utilizing this approach. We demonstrate that lung-directed AAV2/8 is able to achieve therapeutic α-1 antitrypsin (AAT) protein levels within the lung epithelial lining fluid and that AAT gene delivery ameliorates the severity of experimental emphysema in mice. We find that AAV2/8 efficiently transduces hepatocytes in vivo after intratracheal administration, a finding that may have significance for AAV-based human gene therapy studies. These results support direct transgene delivery to the lung as a potential alternative approach to achieve the goal of developing a gene therapy for AATD.

  9. A Single Vector Platform for High-Level Gene Transduction of Central Neurons: Adeno-Associated Virus Vector Equipped with the Tet-Off System

    PubMed Central

    Sohn, Jaerin; Takahashi, Megumu; Okamoto, Shinichiro; Ishida, Yoko; Furuta, Takahiro

    2017-01-01

    Visualization of neurons is indispensable for the investigation of neuronal circuits in the central nervous system. Virus vectors have been widely used for labeling particular subsets of neurons, and the adeno-associated virus (AAV) vector has gained popularity as a tool for gene transfer. Here, we developed a single AAV vector Tet-Off platform, AAV-SynTetOff, to improve the gene-transduction efficiency, specifically in neurons. The platform is composed of regulator and response elements in a single AAV genome. After infection of Neuro-2a cells with the AAV-SynTetOff vector, the transduction efficiency of green fluorescent protein (GFP) was increased by approximately 2- and 15-fold relative to the conventional AAV vector with the human cytomegalovirus (CMV) or human synapsin I (SYN) promoter, respectively. We then injected the AAV vectors into the mouse neostriatum. GFP expression in the neostriatal neurons infected with the AAV-SynTetOff vector was approximately 40-times higher than that with the CMV or SYN promoter. By adding a membrane-targeting signal to GFP, the axon fibers of neostriatal neurons were clearly visualized. In contrast, by attaching somatodendritic membrane-targeting signals to GFP, axon fiber labeling was mostly suppressed. Furthermore, we prepared the AAV-SynTetOff vector, which simultaneously expressed somatodendritic membrane-targeted GFP and membrane-targeted red fluorescent protein (RFP). After injection of the vector into the neostriatum, the cell bodies and dendrites of neostriatal neurons were labeled with both GFP and RFP, whereas the axons in the projection sites were labeled only with RFP. Finally, we applied this vector to vasoactive intestinal polypeptide-positive (VIP+) neocortical neurons, one of the subclasses of inhibitory neurons in the neocortex, in layer 2/3 of the mouse primary somatosensory cortex. The results revealed the differential distribution of the somatodendritic and axonal structures at the population level. The

  10. Macrophage colony-stimulating factor gene transduction into human lung cancer cells differentially regulates metastasis formations in various organ microenvironments of natural killer cell-depleted SCID mice.

    PubMed

    Yano, S; Nishioka, Y; Nokihara, H; Sone, S

    1997-02-15

    We investigated whether local production of macrophage colony-stimulating factor (M-CSF), responsible for migration and activation of monocytes/macrophages at a tumor growth site, affected the metastatic pattern of lung cancer. For this, highly metastatic human squamous (RERF-LC-AI) or small (H69/VP) cell lung carcinoma cells were transduced with the human M-CSF gene inserted into pRc/CMV-MCSF to establish M-CSF-producing clones (MCSF-AI-9-18, MCSF-AI-9-24, and MCSF-VP-5). M-CSF gene transduction had no effect on the expression of surface antigen or on in vitro proliferation. After s.c. injection into SCID mice, the growth rates of M-CSF-producing cells were slower than those of parent or mock-transduced cells. In the metastatic model in SCID mice depleted of natural killer cells, RERF-LC-AI cells formed metastases mainly in the liver and kidneys, whereas H69/VP cells metastasized mainly to the liver and systemic lymph nodes. The numbers of metastatic colonies of MCSF-AI-9-18 and MCSF-AI-9-24 cells in the liver but not the kidneys were significantly reduced. The development of lymph node metastases of MCSF-VP-5 cells was also less than that of parent or mock-transduced cells. Treatment of SCID mice with anti-human M-CSF antibody resulted in a significant increase in liver metastases of their M-CSF gene transfectants. No significant differences were observed in the distributions in mice or in the in vitro invasive potentials of MCSF-AI-9-18 cells and Neo-AI-3 cells. These findings indicate that the antimetastatic effect of M-CSF may be specific to particular organs, suggesting the influence of heterogeneity of organ microenvironments on the metastasis of lung cancer.

  11. Determining the Limitations and Benefits of Noise in Gene Regulation and Signal Transduction through Single Cell, Microscopy-Based Analysis.

    PubMed

    Harton, Marie D; Batchelor, Eric

    2017-03-11

    Stochastic fluctuations, termed "noise," in the level of biological molecules can greatly impact cellular functions. While biological noise can sometimes be detrimental, recent studies have provided an increasing number of examples in which biological noise can be functionally beneficial. Rather than provide an exhaustive review of the growing literature in this field, in this review, we focus on single-cell studies based on quantitative microscopy that have generated a deeper understanding of the sources, characteristics, limitations, and benefits of biological noise. Specifically, we highlight studies showing how noise can help coordinate the expression of multiple downstream target genes, impact the channel capacity of signaling networks, and interact synergistically with oscillatory dynamics to enhance the sensitivity of signal processing. We conclude with a discussion of current challenges and future opportunities.

  12. Transduction of SIV-Specific TCR Genes into Rhesus Macaque CD8+ T Cells Conveys the Ability to Suppress SIV Replication

    PubMed Central

    Barsov, Eugene V.; Trivett, Matthew T.; Minang, Jacob T.; Sun, Haosi; Ohlen, Claes; Ott, David E.

    2011-01-01

    Background The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8+ T-cell control of SIV replication in CD4+ T cells, we asked whether TCRs isolated from rhesus macaque CD8+ T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8+ T cells obtained from an uninfected/unvaccinated animal. Principal Findings We transferred SIV-specific TCR genes isolated from rhesus macaque CD8+ T-cell clones with varying abilities to suppress SIV replication in vitro into CD8+ T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8+ T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNγ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones. Conclusions Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases. PMID:21886812

  13. Phosphorylation in halobacterial signal transduction.

    PubMed Central

    Rudolph, J; Tolliday, N; Schmitt, C; Schuster, S C; Oesterhelt, D

    1995-01-01

    Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli. Images PMID:7556066

  14. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in synechocystis.

    PubMed

    Shoumskaya, Maria A; Paithoonrangsarid, Kalyanee; Kanesaki, Yu; Los, Dmitry A; Zinchenko, Vladislav V; Tanticharoen, Morakot; Suzuki, Iwane; Murata, Norio

    2005-06-03

    In previous studies, we characterized five histidine kinases (Hiks) and the cognate response regulators (Rres) that control the expression of approximately 70% of the hyperosmotic stress-inducible genes in the cyanobacterium Synechocystis sp. PCC 6803. In the present study, we screened a gene knock-out library of Rres by RNA slot-blot hybridization and with a genome-wide DNA microarray and identified three Hik-Rre systems, namely, Hik33-Rre31, Hik10-Rre3, and Hik16-Hik41-Rre17, as well as another system that included Rre1, that were involved in perception of salt stress and transduction of the signal. We found that these Hik-Rre systems were identical to those that were involved in perception and transduction of the hyperosmotic stress signal. We compared the induction factors of the salt stress- and hyperosmotic stress-inducible genes that are located downstream of each system and found that these genes responded to the two kinds of stress to different respective extents. In addition, the Hik33-Rre31 system regulated the expression of genes that were specifically induced by hyperosmotic stress, whereas the system that included Rre1 regulated the expression of one or two genes that were specifically induced either by salt stress or by hyperosmotic stress. Our observations suggest that the perception of salt and hyperosmotic stress by the Hik-Rre systems is complex and that salt stress and hyperosmotic stress are perceived as distinct signals by the Hik-Rre systems.

  15. Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    PubMed Central

    Lewis, Travis B.; Glasgow, Joel N.; Glandon, Anya M.; Curiel, David T.; Standaert, David G.

    2010-01-01

    Background Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)–based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo. Methodology/Principal Findings Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. Conclusions/Significance These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development

  16. Quantitation of signal transduction.

    PubMed

    Krauss, S; Brand, M D

    2000-12-01

    Conventional qualitative approaches to signal transduction provide powerful ways to explore the architecture and function of signaling pathways. However, at the level of the complete system, they do not fully depict the interactions between signaling and metabolic pathways and fail to give a manageable overview of the complexity that is often a feature of cellular signal transduction. Here, we introduce a quantitative experimental approach to signal transduction that helps to overcome these difficulties. We present a quantitative analysis of signal transduction during early mitogen stimulation of lymphocytes, with steady-state respiration rate as a convenient marker of metabolic stimulation. First, by inhibiting various key signaling pathways, we measure their relative importance in regulating respiration. About 80% of the input signal is conveyed via identifiable routes: 50% through pathways sensitive to inhibitors of protein kinase C and MAP kinase and 30% through pathways sensitive to an inhibitor of calcineurin. Second, we quantify how each of these pathways differentially stimulates functional units of reactions that produce and consume a key intermediate in respiration: the mitochondrial membrane potential. Both the PKC and calcineurin routes stimulate consumption more strongly than production, whereas the unidentified signaling routes stimulate production more than consumption, leading to no change in membrane potential despite increased respiration rate. The approach allows a quantitative description of the relative importance of signal transduction pathways and the routes by which they activate a specific cellular process. It should be widely applicable.

  17. Transduction in Bacillus subtilis.

    PubMed

    THORNE, C B

    1962-01-01

    Thorne, Curtis B. (Fort Detrick, Frederick, Md.). Transduction in Bacillus subtilis. J. Bacteriol. 83:106-111. 1962.-A bacteriophage, SP-10, isolated from soil carries out general transduction in Bacillus subtilis. Phage propagated on a streptomycin-resistant mutant of the wild-type strain W-23 was capable of transducing to prototrophy strain 168 (indole(-)), as well as all of the auxotrophic mutants of W-23-S(r) tested, which included mutants requiring arginine, histidine, adenine, guanine, thiamine, leucine, or methionine. Although strain 168 was transduced by phage SP-10, lytic activity on this strain could not be detected and attempts to propagate the phage on it failed. Transductions occurred at frequencies in the range of 10(-6) to 10(-5) per plaque-forming unit. Homologous phage was ineffective, deoxyribonuclease had no effect on the frequency of transduction, and transduction was prevented by the addition of phage antiserum. Phage SP-10 was capable of lysogenizing strain W-23-S(r), and this condition was maintained through repeated growth and sporulation cycles in potato-extract medium. Although heating at 65 C for 60 min inactivated free phage particles, spores retained their lysogenic condition after such heat treatment. When heat-treated spores of the lysogenic cultures were used as inocula for growth in a nutrient broth-yeast extract-glucose medium, filtrates contained 10(9), or more, phage particles per ml.

  18. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    DTIC Science & Technology

    2013-05-01

    phosphorylates and thereby inhibits the GTPase activity of the tuberous sclerosis complex (TSC). This inhibition allows accumulation of activated GTP-bound...Sobue, 2009). Transduction of neurons with a constitutively active form of p70S6K induced the formation of multiple axons, whereas increased expression

  19. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    DTIC Science & Technology

    2015-03-01

    or the GTPase Rheb in a model of retrograde axonal degeneration induces axon growth by dopamine neurons. However, these molecules cannot be directly...eIF4E, to induce new axon growth. We have found that transduction of dopamine neurons of the SN by AAV eIF4E at three weeks after axonal destruction with...and then transduced the surviving dopamine neurons by use of an AAV1 vector with either a constitutively active mutant of the Akt kinase

  20. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  1. Signal transduction in Pneumocystis carinii: characterization of the genes (pcg1) encoding the alpha subunit of the G protein (PCG1) of Pneumocystis carinii carinii and Pneumocystis carinii ratti.

    PubMed Central

    Smulian, A G; Ryan, M; Staben, C; Cushion, M

    1996-01-01

    Pneumocystis carinii is a eukaryotic organism that causes pneumonia in immunocompromised hosts. The cell biology and life cycle of the organism are poorly understood primarily because of the lack of a continuous in vitro cultivation system. These limitations have prevented investigation of the organism's infectious cycle and hindered the rational development of new antimicrobial therapies and implementation of measures to prevent exposure to the organism or transmission. The interaction of P. carinii with its host and its environment may be critical determinants of pathogenicity and life cycle. Signal transduction pathways are likely to be critical in regulating these processes. G proteins are highly conserved members of the pathways important in many cellular events, including cell proliferation and environmental sensing. To characterize signal transduction pathways in P. carinii, we cloned a G-protein alpha subunit (G-alpha) of P. carinii carinii and P. carinii ratti by PCR amplification and hybridization screening. The gene encoding the G-alpha was present in single copy on a 450-kb chromosome of P.c. ratti. The 1,062-bp G-alpha open reading frame is interrupted by nine introns. The predicted polypeptide showed 29 to 53% identity with known fungal G-alpha proteins with greatest homology to Neurospora crassa Gna-2. Northern (RNA) blot analysis and immunoprecipitation demonstrated expression of the G-alpha mRNA and protein P. carinii isolated from heavily infected animals. Some alteration in the level of transcription was noted in short-term maintenance in starvation or rich medium. Characterization of signal transduction in P. carinii will permit a better understanding of the reproductive capacity and other cellular processes in this family or organisms that cannot be cultured continuously. PMID:8641768

  2. Gravitational Effects on Signal Transduction

    NASA Technical Reports Server (NTRS)

    Sytkowski, Arthur J.

    1999-01-01

    An understanding of the mechanisms by which individual cells perceive gravity and how these cells transduce and respond to gravitational stimuli is critical for the development of long-term manned space flight experiments. We now propose to use a well-characterized model erythroid cell system and to investigate gravitational perturbations of its erythropoietin (Epo) signaling pathway and gene regulation. Cells will be grown at 1-G and in simulated microgravity in the NASA Rotating Wall Vessel bioreactor (RWV). Cell growth and differentiation, the Epo-receptor, the protein kinase C pathway to the c-myc gene, and the protein phosphatase pathway to the c-myb gene will be studied and evaluated as reporters of gravitational stimuli. The results of these experiments will have impact on the problems of 1) gravitational sensing by individual cells, and 2) the anemia of space flight. This ground-based study also will serve as a Space Station Development Study in gravitational effects on intracellular signal transduction.

  3. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  4. In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: a novel form of enzyme replacement therapy for ADA deficiency.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Petersen, Denise; Wang, Xingchao; Dorey, Fred; Kil, Ki Soo; Aldrich, Melissa; Blackburn, Michael R; Kellems, Rodney E; Kohn, Donald B

    2006-06-01

    Using a mouse model of adenosine deaminase-deficient severe combined immune deficiency syndrome (ADA-deficient SCID), we have developed a noninvasive method of gene transfer for the sustained systemic expression of human ADA as enzyme replacement therapy. The method of delivery is a human immunodeficiency virus 1-based lentiviral vector given systemically by intravenous injection on day 1 to 2 of life. In this article we characterize the biodistribution of the integrated vector, the expression levels of ADA enzyme activity in various tissues, as well as the efficacy of systemic ADA expression to correct the ADA-deficient phenotype in this mouse model. The long-term expression of enzymatically active ADA achieved by this method, primarily from transduction of liver and lung, restored immunologic function and significantly extended survival. These studies illustrate the potential for sustained in vivo production of enzymatically active ADA, as an alternative to therapy by frequent injection of exogenous ADA protein.

  5. Effects of Zhichan powder on signal transduction and apoptosis-associated gene expression in the substantia nigra of Parkinson's disease rats

    PubMed Central

    Chen, Jiajun; Ma, Jinshu; Qiu, Yafei; Yi, Shihong; Liu, Yongmao; Zhou, Qingwei; Zhang, Pengguo; Wan, Quan; Kuang, Ye

    2012-01-01

    Previous studies have shown that Zhichan powder elevated immunity and suppressed oxidation in mice. Rat models of Parkinson’s disease were induced by stereotaxically injecting 6-hydroxydopamine into the substantia nigra. The rat models were intragastrically treated with Zhichan powder, which is composed of milkvetch root, ginseng, bunge swallowwort root, himalayan teasel root, Magnolia officinalis, Ligustrum lucidum Ait. and szechwan lovage rhizome. Immunohistochemistry and reverse transcription-PCR results demonstrated that mRNA and protein expression of tumor necrosis factor receptor 1, Fas, caspase-8, cytochrome C, Bax, caspase-3, and p53 significantly increased, but Bcl-2 expression significantly decreased in the substantia nigra of rats with Parkinson’s disease. Following Zhichan powder administration, mRNA and protein expression of tumor necrosis factor receptor 1, Fas, caspase-8, cytochrome C, Bax, caspase-3, and p53 diminished, but Bcl-2 expression increased in the rat substantia nigra. These results indicate that Zhichan powder regulates signal transduction protein expression, inhibits apoptosis, and exerts therapeutic effects on Parkinson’s disease. PMID:25558224

  6. Retrovirus transduction: Segregation of the viral transforming function and the Herpes Simplex virus tk gene in infectious friend spleen focus-forming virus thymidine kinase vectors

    SciTech Connect

    Joyner, A.L.; Bernstein, A.

    1983-12-01

    A series of deletions and insertions utilizing the herpesvirus thymidine kinase gene (tk) were constructed in the murine retrovirus Friend spleen focus-forming virus (SFFV). In all cases, the coding region for the SFFV-specific glycoprotein (gp55), which is implicated in erythroleukemic transformation, was left intact. These SFFV-TK and SFFV deletion vectors were analyzed for expression of tk and gp55 after DNA-mediated gene transfer. In addition, virus rescued by cotranfection of these vectors with Moloney murine leukemia virus was analyzed for infectious TK-transducing virus, gp55 expression, and erythroleukemia-inducing ability. The experiments demonstrated that deletions or insertions within the intron for the gp55 env gene can interfere with expression of gp55 after both DNA-mediated gene transfer and virus infection. In contrast, the gene transfer efficiency of the tk gene was unaffected in the SFFV-TK vectors, and high-titer infectious TK virus could be recovered. Revertant viruses capable of inducing erythroleukemia and expressing gp55 were generated after cotranfection of the SFFV-TK vectors with murine leukemia virus. The revertant viruses lost both tk sequences and the ability to transduce TK/sup -/ fibroblasts to a TK/sup +/ phenotype. These experiments demonstrate that segregation of the TK and erythroleukemia functions can occur in retrovirus vectors which initially carry both markers.

  7. Retrovirus transduction: segregation of the viral transforming function and the herpes simplex virus tk gene in infectious Friend spleen focus-forming virus thymidine kinase vectors.

    PubMed Central

    Joyner, A L; Bernstein, A

    1983-01-01

    A series of deletions and insertions utilizing the herpesvirus thymidine kinase gene (tk) were constructed in the murine retrovirus Friend spleen focus-forming virus (SFFV). In all cases, the coding region for the SFFV-specific glycoprotein (gp55), which is implicated in erythroleukemic transformation, was left intact. These SFFV-TK and SFFV deletion vectors were analyzed for expression of tk and gp55 after DNA-mediated gene transfer. In addition, virus rescued by cotransfection of these vectors with Moloney murine leukemia virus was analyzed for infectious TK-transducing virus, gp55 expression, and erythroleukemia-inducing ability. The experiments demonstrated that deletions or insertions within the intron for the gp55 env gene can interfere with expression of gp55 after both DNA-mediated gene transfer and virus infection. In contrast, the gene transfer efficiency of the tk gene was unaffected in the SFFV-TK vectors, and high-titer infectious TK virus could be recovered. Revertant viruses capable of inducing erythroleukemia and expressing gp55 were generated after cotransfection of the SFFV-TK vectors with murine leukemia virus. The revertant viruses lost both tk sequences and the ability to transduce TK- fibroblasts to a TK+ phenotype. These experiments demonstrate that segregation of the TK and erythroleukemia functions can occur in retrovirus vectors which initially carry both markers. Images PMID:6318088

  8. Pheromone Transduction in Moths

    PubMed Central

    Stengl, Monika

    2010-01-01

    Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth's physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors. PMID:21228914

  9. Signal Transduction in the Footsteps of Goethe and Schiller

    PubMed Central

    Friedrich, Karlheinz; Lindquist, Jonathan A; Entschladen, Frank; Serfling, Edgar; Thiel, Gerald; Kieser, Arnd; Giehl, Klaudia; Ehrhardt, Christina; Feller, Stephan M; Ullrich, Oliver; Schaper, Fred; Janssen, Ottmar; Hass, Ralf

    2009-01-01

    The historical town of Weimar in Thuringia, the "green heart of Germany" was the sphere of Goethe and Schiller, the two most famous representatives of German literature's classic era. Not yet entirely as influential as those two cultural icons, the Signal Transduction Society (STS) has nevertheless in the last decade established within the walls of Weimar an annual interdisciplinary Meeting on "Signal Transduction – Receptors, Mediators and Genes", which is well recognized as a most attractive opportunity to exchange results and ideas in the field. The 12th STS Meeting was held from October 28 to 31 and provided a state-of-the-art overview of various areas of signal transduction research in which progress is fast and discussion lively. This report is intended to share with the readers of CCS some highlights of the Meeting Workshops devoted to specific aspects of signal transduction. PMID:19193215

  10. Limits on information transduction through amplitude and frequency regulation of transcription factor activity.

    PubMed

    Hansen, Anders S; O'Shea, Erin K

    2015-05-18

    Signaling pathways often transmit multiple signals through a single shared transcription factor (TF) and encode signal information by differentially regulating TF dynamics. However, signal information will be lost unless it can be reliably decoded by downstream genes. To understand the limits on dynamic information transduction, we apply information theory to quantify how much gene expression information the yeast TF Msn2 can transduce to target genes in the amplitude or frequency of its activation dynamics. We find that although the amount of information transmitted by Msn2 to single target genes is limited, information transduction can be increased by modulating promoter cis-elements or by integrating information from multiple genes. By correcting for extrinsic noise, we estimate an upper bound on information transduction. Overall, we find that information transduction through amplitude and frequency regulation of Msn2 is limited to error-free transduction of signal identity, but not signal intensity information.

  11. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins.

    PubMed

    Vincent-Sealy, L V; Thomas, J D; Commander, P; Salmond, G P

    1999-08-01

    The dsbA genes, which encode major periplasmic disulfide-bond-forming proteins, were isolated from Erwinia carotovora subsp. carotovora (Ecc) and Erwinia carotovora subsp. atroseptica (Eca), and the dsbC gene, encoding another periplasmic disulfide oxidoreductase was isolated from Ecc. All three genes were sequenced and mutants deficient in these genes were created by marker exchange mutagenesis. The Ecc mutants were severely affected in activity and secretion of pectate lyase, probably due to the absence of functional PelC, which is predicted to require disulfide bond formation to achieve its correct conformation prior to secretion across the outer membrane. Similarly, endopolygalacturonase, also predicted to possess disulfide bonds, displayed reduced activity. The major Ecc cellulase (CelV) does not contain cysteine residues and was still secreted in dsbA-deficient strains. This observation demonstrated unequivocally that the localization and activity of the individual components of the Out apparatus are independent of disulfide bond formation. Surprisingly, cellulase activity was shown to be increased approximately two- to threefold in the DsbA mutant. This phenomenon resulted from transcriptional up-regulation of celV gene expression. In contrast, transcription of both pelC and peh were down-regulated in dsbA-deficient strains when compared to the wild-type. Protease (Prt) activity and secretion were unaffected in the Ecc dsbA mutant. Prt activity was considerably reduced in the double dsbA dsbC mutant. However Prt was secreted normally in this strain. The Eca dsbA mutant was found to be non-motile, suggesting that disulfide bond formation is essential for motility in this strain. All of the dsb mutants showed reduced tissue maceration in planta. These results suggest that a feedback regulation system operates in Ecc. In this system, defects in periplasmic disulfide bond formation act as a signal which is relayed to the transcription machinery regulating gene

  12. High efficiency retroviral mediated gene transduction into single isolated immature and replatable CD34(3+) hematopoietic stem/progenitor cells from human umbilical cord blood

    PubMed Central

    1993-01-01

    Umbilical cord blood is rich in hematopoietic stem and progenitor cells and has recently been used successfully in the clinic as an alternative source of engrafting and marrow repopulating cells. With the likelihood that cord blood stem/progenitor cells will be used for gene therapy to correct genetic disorders, we evaluated if a TK-neo gene could be directly transduced in a stable manner into single isolated subsets of purified immature hematopoietic cells that demonstrate self-renewed ability as estimated by colony replating capacity. Sorted CD34(3+) cells from cord blood were prestimulated with erythropoietin (Epo), steel factor (SLF), interleukin (IL)-3, and granulocyte-macrophage colony stimulating factor (GM-CSF) and transduced with the gene in two ways. CD34(3+) cells were incubated with retroviral-containing supernatant from TK-neo vector-producing cells, washed, and plated directly or resorted as CD34(3+) cells into single wells containing a single cell or 10 cells. Alternatively, CD34(3+) cells were sorted as a single cell/well and then incubated with viral supernatant. These cells were cultured with Epo, SLF, IL-3, and GM-CSF +/- G418. The TK-neo gene was introduced at very high efficiency into low numbers of or isolated single purified CD34(3+) immature hematopoietic cells without stromal cells as a source of virus or accessory cells. Proviral integration was detected in primary G418-resistant(R) colonies derived from single immature hematopoietic cells, and in cells from replated colonies derived from G418R-colony forming unit-granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) and -high proliferative potential colony forming cells (HPP-CFC). This demonstrates stable expression of the transduced gene into single purified stem/progenitor cells with replating capacity, results that should be applicable for future clinical studies that may utilize selected subsets of stem/progenitor cells for gene therapy. PMID:7504056

  13. Development of a Novel Prognostic Marker to Link a Potential Tumor Suppressor Gene at Chromosome 6q to Aberrant Signal Transduction Pathway in Breast Cancer

    DTIC Science & Technology

    2005-08-01

    frequency of LOH is found in 6q24 region in breast cancers Laforin gene EPM2A is located in 6q24 in human genome (9-11). The long arm of chromosome 6 is...in patients (Wang et al., 2002). Although defects in the EPM2a gene have not been implicated in cancers, EPM2a is located in 6q24 of the human genome ...lymphoma, we treated the genomic DNA with bisulfite and sequenced 4 PCR products covering 102 CpG di-nucleotides within the 5’-CpG island. Our preliminary

  14. Different efficacy of in vivo herpes simplex virus thymidine kinase gene transduction and ganciclovir treatment on the inhibition of tumor growth of murine and human melanoma cells and rat glioblastoma cells.

    PubMed

    Berenstein, M; Adris, S; Ledda, F; Wolfmann, C; Medina, J; Bravo, A; Mordoh, J; Chernajovsky, Y; Podhajcer, O L

    1999-01-01

    Initial studies have demonstrated the therapeutic efficacy for cancer treatment of in vivo transfer of the herpes simplex virus thymidine kinase gene followed by ganciclovir (GCV) treatment. However, recent studies have questioned the validity of this approach. Using retroviral vector-producing cells (VPC) as a source for in vivo gene transfer, we evaluated the efficacy of in vivo transduction of malignant cells using three different tumor cell models: B16 murine and IIB-MEL-LES human melanomas and a C6 rat glioblastoma. In vitro studies showed a bystander effect only in C6 cells. In vivo studies showed an inhibition of tumor growth in the two melanoma models when tumor cells were coinjected with VPC-producing retroviral vectors carrying the herpes simplex virus thymidine kinase gene, followed by GCV treatment; however, 100% of mice developed tumors in both models. Under similar experimental conditions, 70% (7 of 10) of syngeneic rats completely rejected stereotactically transferred C6 tumor cells; most of them (5 of 10) showed a prolonged survival. Treating established C6 tumors with VPC-producing retroviral vectors carrying the herpes simplex virus thymidine kinase gene and GCV led to the cure of 33% (4 of 12) of the animals. Rats that rejected tumor growth developed an antitumor immune memory, leading to a rejection of a stereotactic contralateral challenge with parental cells. The immune infiltrate, which showed the presence of T lymphocytes, macrophages, and polymorphonuclear cells at the site of the first injection and mainly T lymphocytes and macrophages at the site of tumor challenge, strengthened the importance of the immune system in achieving complete tumor rejection.

  15. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  16. Driving DNA transposition by lentiviral protein transduction

    PubMed Central

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2014-01-01

    Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction. PMID:25057443

  17. The presence of two distinct prolactin receptors in seabream with different tissue distribution patterns, signal transduction pathways and regulation of gene expression by steroid hormones.

    PubMed

    Huang, Xigui; Jiao, Baowei; Fung, Chun Kit; Zhang, Yong; Ho, Walter K K; Chan, Chi Bun; Lin, Haoran; Wang, Deshou; Cheng, Christopher H K

    2007-08-01

    Two prolactin receptors (PRLRs) encoded by two different genes were identified in the fugu and zebrafish genomes but not in the genomes of other vertebrates. Subsequently, two cDNA sequences corresponding to two PRLRs were identified in black seabream and Nile tilapia. Phylogenetic analysis of PRLR sequences in various vertebrates indicated that the coexistence of two PRLRs in a single species is a unique phenomenon in teleosts. Both PRLRs in teleosts (the classical one named as PRLR1, the newly identified one as PRLR2) resemble the long-form mammalian PRLRs. However, despite their overall structural similarities, the two PRLR subtypes in fish share very low amino acid similarities (about 30%), mainly due to differences in the intracellular domain. In particular, the Box 2 region and some intracellular tyrosine residues are missing in PRLR2. Tissue distribution study by real-time PCR in black seabream (sb) revealed that both receptors (sbPRLR1 and sbPRLR2) are widely expressed in different tissues. In gill, the expression level of sbPRLR2 is much higher than that of sbPRLR1. In the intestine, the expression of sbPRLR1 is higher than that of sbPRLR2. The expression levels of both receptors are relatively low in most other tissues, with sbPRLR1 generally higher than sbPRLR2. The sbPRLR1 and sbPRLR2 were functionally expressed in cultured human embryonic kidney 293 cells. Both receptors can activate the beta-casein and c-fos promoters; however, only sbPRLR1 but not sbPRLR2 can activate the Spi promoter upon receptor stimulation in a ligand-specific manner. These results indicate that both receptors share some common functions but are distinctly different from each other in mobilizing post-receptor events. When challenged with different steroid hormones, the two PRLRs exhibited very different gene expression patterns in the seabream kidney. The sbPRLR1 expression was up-regulated by estradiol and cortisol, whereas testosterone had no significant effect. For sbPRLR2

  18. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  19. Abundance of Antibiotic Resistance Genes in Bacteriophage following Soil Fertilization with Dairy Manure or Municipal Biosolids, and Evidence for Potential Transduction.

    PubMed

    Ross, Joseph; Topp, Edward

    2015-11-01

    Animal manures and municipal biosolids recycled onto crop production land carry antibiotic-resistant bacteria that can influence the antibiotic resistome of agricultural soils, but little is known about the contribution of bacteriophage to the dissemination of antibiotic resistance genes (ARGs) in this context. In this work, we quantified a set of ARGs in the bacterial and bacteriophage fractions of agricultural soil by quantitative PCR. All tested ARGs were present in both the bacterial and phage fractions. We demonstrate that fertilization of soil with dairy manure or human biosolids increases ARG abundance in the bacterial fraction but not the bacteriophage fraction and further show that pretreatment of dairy manure can impact ARG abundance in the bacterial fraction. Finally, we show that purified bacteriophage can confer increased antibiotic resistance to soil bacteria when combined with selective pressure. The results indicate that soilborne bacteriophage represents a substantial reservoir of antibiotic resistance and that bacteriophage could play a significant role in the horizontal transfer of resistance genes in the context of an agricultural soil microbiome. Overall, our work reinforces the advisability of composting or digesting fecal material prior to field application and suggests that application of some antibiotics at subclinical concentrations can promote bacteriophage-mediated horizontal transfer of ARGs in agricultural soil microbiomes.

  20. Toll signal transduction pathway in bivalves: complete cds of intermediate elements and related gene transcription levels in hemocytes of immune stimulated Mytilus galloprovincialis.

    PubMed

    Toubiana, Mylène; Rosani, Umberto; Giambelluca, Sonia; Cammarata, Matteo; Gerdol, Marco; Pallavicini, Alberto; Venier, Paola; Roch, Philippe

    2014-08-01

    Based on protein domain structure and organization deduced from mRNA contigs, 15 transcripts of the Toll signaling pathway have been identified in the bivalve, Mytilus galloprovincialis. Identical searches performed on publicly available Mytilus edulis ESTs revealed 11 transcripts, whereas searches performed in genomic and new transcriptome sequences of the Pacific oyster, Crassostrea gigas, identified 21 Toll-related transcripts. The remarkable molecular diversity of TRAF and IKK coding sequences of C. gigas, suggests that the sequence data inferred from Mytilus cDNAs may not be exhaustive. Most of the Toll pathway genes were constitutively and ubiquitously expressed in M. galloprovincialis, although at different levels, and clearly induced after in vivo injection with bacteria. Such over-transcription was more rapid and intense with Gram-negative than with Gram-positive bacteria. Injection of a fungus modulated the transcription of few Toll pathway genes, with the induction levels of TLR/MyD88 complex being always less intense. Purified LPS and β-glucans had marginal effect whereas peptidoglycans were ineffective. At the moment, we found no evidence of an IMD transcript in bivalves. In conclusion, mussels possess a complete Toll pathway which can be triggered either by Gram-positive or Gram-negative bacteria.

  1. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    SciTech Connect

    Chen, Hong-Zhang; Wu, Carol P.; Chao, Yu-Chan; Liu, Catherine Yen-Yen

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.

  2. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains

    PubMed Central

    1996-01-01

    Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line. PMID:8603916

  3. Comparison of hepatic-like cell production from human embryonic stem cells and adult liver progenitor cells: CAR transduction activates a battery of detoxification genes.

    PubMed

    Funakoshi, Natalie; Duret, Cédric; Pascussi, Jean-Marc; Blanc, Pierre; Maurel, Patrick; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2011-09-01

    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate.

  4. Molecular basis of mechanosensory transduction

    NASA Astrophysics Data System (ADS)

    Gillespie, Peter G.; Walker, Richard G.

    2001-09-01

    Mechanotransduction - a cell's conversion of a mechanical stimulus into an electrical signal - reveals vital features of an organism's environment. From hair cells and skin mechanoreceptors in vertebrates, to bristle receptors in flies and touch receptors in worms, mechanically sensitive cells are essential in the life of an organism. The scarcity of these cells and the uniqueness of their transduction mechanisms have conspired to slow molecular characterization of the ensembles that carry out mechanotransduction. But recent progress in both invertebrates and vertebrates is beginning to reveal the identities of proteins essential for transduction.

  5. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    PubMed

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  6. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  7. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  8. Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene.

    PubMed

    Iwabuchi, Minami; Narita, Miwako; Uchiyama, Takayoshi; Iwaya, Shunpei; Oiwa, Eri; Nishizawa, Yoshinori; Hashimoto, Shigeo; Bonehill, Aude; Kasahara, Noriyuki; Takizawa, Jun; Takahashi, Masuhiro

    2015-08-01

    The aim of the present study was to enhance the efficiency of leukemia immunotherapy by increasing the antigen-specific cytotoxic T lymphocyte-inducing ability of leukemia cells. The leukemic plasmacytoid dendritic cell line PMDC05 containing the HLA-A02/24 antigen, which was previously established in our laboratory (Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan), was used in the present study. It exhibited higher expression levels of CD80 following transduction with lentiviruses encoding the CD80 gene. This CD80-expressing PMDC05 was named PMDC11. In order to establish a more potent antigen-presenting cell for cellular immunotherapy of tumors or severe infections, PMDC11 cells were transduced with a constitutively active (ca) toll-like receptor 4 (TLR4) gene using the Tet-On system (caTLR4-PMDC11). CD8(+) T cells from healthy donors with HLA-A02 were co-cultured with mutant WT1 peptide-pulsed PMDC11, lipopolysaccharide (LPS)-stimulated PMDC11 or caTLR4-PMDC11 cells. Interleukin (IL)-2 (50 IU/ml) and IL-7 (10 ng/ml) were added on day three of culture. Priming with mutant WT1 peptide-pulsed PMDC11, LPS-stimulated PMDC11 or caTLR4-PMDC11 cells was conducted once per week and two thirds of the IL-2/IL-7 containing medium was replenished every 3-4 days. Immediately prior to the priming with these various PMDC11 cells, the cultured cells were analyzed for the secretion of interferon (IFN)-γ in addition to the percentage and number of CD8(+)/WT1 tetramer(+) T cells using flow cytometry. caTLR4-PMDC11 cells were observed to possess greater antigen-presenting abilities compared with those of PMDC11 or LPS-stimulated PMDC11 cells in a mixed leukocyte culture. CD8 T cells positive for the WT1 tetramer were generated following 3-4 weeks of culture and CD8(+)/WT1 tetramer+ T cells were markedly increased in caTLR4-PMDC11-primed CD8(+) T cell culture compared with PMDC11 or LPS-stimulated PMDC11-primed CD8(+) T

  9. Meeting Report: Teaching Signal Transduction

    ERIC Educational Resources Information Center

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of "teaching signal transduction." The purpose of the summer school was to offer both junior and senior university instructors a chance to…

  10. Bacteriophage Transduction in Staphylococcus epidermidis

    PubMed Central

    Olson, Michael E.; Horswill, Alexander R.

    2016-01-01

    The genetic manipulation of Staphylococcus epidermidis for molecular experimentation has long been an area of difficulty. Many of the traditional laboratory techniques for strain construction are laborious and hampered by poor efficiency. The ability to move chromosomal genetic markers and plasmids using bacteriophage transduction has greatly increased the speed and ease of S. epidermidis studies. These molecular genetic advances have advanced the S. epidermidis research field beyond a select few genetically tractable strains and facilitated investigations of clinically relevant isolates. PMID:24222465

  11. [ALPHA-ACTININS AND SIGNAL TRANSDUCTION PATHWAYS].

    PubMed

    Panyushev, N V; Tentler, D G

    2015-01-01

    Involvement of actin cytoskeleton proteins in signal transduction from cell surface to the nucleus, including regulation of transcription factors activity, has now been supported by a lot of experimental data. Here-with, cytoskeletal proteins may have different functions than ones they execute in the cytoplasm. Particularly, alpha-actinin 4 stabilizing actin microfilaments in the cytoplasm can translocate to the nucleus and change the activity of several transcription factors. Despite the lack of nuclear import signal and DNA binding domain, alpha-actinin 4 can bind to promoter sequences, and co-activate NF-κB-dependent transcription. Selective regulation of NF-κB gene targets may indicate involvement of alpha-actinin 4 in determining the specificity of cell response to NF-κB activation in cells of different types.

  12. Optimization of a retroviral vector for transduction of human CD34 positive cells.

    PubMed

    Szyda, Anna; Paprocka, Maria; Krawczenko, Agnieszka; Lenart, Katarzyna; Heimrath, Jerzy; Grabarczyk, Piotr; Mackiewicz, Andrzej; Duś, Danuta

    2006-01-01

    Human stem and progenitor cells have recently become objects of intensive studies as an important target for gene therapy and regenerative medicine. Retroviral vectors are among the most effective tools for genetic modification of these cells. However, their transduction efficiency strongly depends on the choice of the ex vivo transduction system. The aim of this study was to elaborate a system for retroviral vector transduction of human CD34 positive cells isolated from cord blood. The retroviral vector pMINV EGFP was chosen for transduction of two human erythroblastoid cell lines: KG-1a (CD34 positive) and K562 (CD34 negative). For vector construction, three promoters and two retroviral vector packaging cell lines were used. To optimize the physicochemical conditions of the transduction process, different temperatures of supernatant harvesting, the influence of centrifugation and the presence of transduction enhancing agents were tested. The conditions elaborated with KG-1a cells were further applied for transduction of CD34 positive cells isolated from cord blood. The optimal efficiency of transduction of CD34 positive cells with pMINV EGFP retroviral vector (26% of EGFP positive cells), was obtained using infective vector with LTR retroviral promoter, produced by TE FLY GA MINV EGFP packaging cell line. The transduction was performed in the presence of serum, at 37 degrees C, with co-centrifugation of cells with viral supernatants and the use of transduction enhancing agents. This study confirmed that for gene transfer into CD34 positive cells, the detailed optimization of each element of the transduction process is of great importance.

  13. Generalized transduction: new aspects of the events in the water column

    NASA Astrophysics Data System (ADS)

    Velimirov, B.; Chiura, H. X.; Kogure, K.

    2003-04-01

    Virus mediated transfer of genetic elements among bacteria in nature has become a major research topic in the last decade. Along with conjugation and transformation, transduction is a well-known mechanism resulting in horizontal gene transfer in procaryotic organisms. In the case of generalized transduction, all regions of the procaryotic chromosome or other genetic elements in the donor cell are transferred with nearly the same frequency to the recipient. The injection of this DNA induces the generation of stable transductants. Both virulent and temperate phages have the capability to induce general transduction.Within the frame of a study on intergeneric phage-mediated gene transfer between marine bacteria and enteric bacteria, namely an auxotrophic mutant of Escherichia coli (AB1157) we used virus like particles (VLPs) from an oligotrophic marine environment (Mediterranean Sea, West coast of Corsica) and obtained gene transfer frequencies ranging between 10-2 to 10-6 per viral particle. Consequently we had to assume that an important fraction of the VLPs obtained via ultrafiltration (Minitan Ultrafiltration System, Millipore, USA. 30 kDA cut-off filter) from surface seawater have the capability to induce general transduction. In the process of this investigation we made a number of new observations which were not compatible with the concept of general transduction. The obtained transductants were able to produce new VLPs, which had again the capability to induce transduction. In an attempt to characterize these particles we show that their appearance in the experiment was neither related to plaque formation nor to cell lysis and we discuss the concept of transduction in the light of new experimental evidence concerning transducing particles. Furthermore, a preliminary numerical model allowing an estimation of the transduction events, taking place in the water column within a year is presented.

  14. Highly efficient transduction of primary adult CNS and PNS neurons

    PubMed Central

    Levin, Evgeny; Diekmann, Heike; Fischer, Dietmar

    2016-01-01

    Delivery and expression of recombinant genes, a key methodology for many applications in biological research, remains a challenge especially for mature neurons. Here, we report easy, highly efficient and well tolerated transduction of adult peripheral and central neuronal populations of diverse species in culture using VSV-G pseudo-typed, recombinant baculovirus (BacMam). Transduction rates of up to 80% were reliably achieved at high multiplicity of infection without apparent neuro-cytopathic effects. Neurons could be transduced either shortly after plating or after several days in culture. Co-incubation with two different baculoviruses attained near complete co-localization of fluorescent protein expression, indicating multigene delivery. Finally, evidence for functional protein expression is provided by means of cre-mediated genetic recombination and neurite outgrowth assays. Recombinant protein was already detected within hours after transduction, thereby enabling functional readouts even in relatively short-lived neuronal cultures. Altogether, these results substantiate the usefulness of baculovirus-mediated transduction of mature neurons for future research in neuroscience. PMID:27958330

  15. Elevation of serum IgE level and peripheral eosinophil count during T lymphocyte-directed gene therapy for ADA deficiency: implication of Tc2-like cells after gene transduction procedure.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Yamada, M; Tame, A; Furuta, H; Kobayashi, I; Okano, M; Yanagihara, Y; Sakiyama, Y

    1998-11-01

    We have successfully carried out T-cell-directed gene therapy for a boy with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA SCID) and unexpectedly found an elevation of serum IgE level and peripheral eosinophil count during the course. More than 90% of transduced cells cultured for 7-11 days before infusion into the patient were positive for CD8 and expressed Th2-type cytokine genes such as IL-4, IL-5 and IL-13. Furthermore, CD4(+) T-depleted PBMC (peripheral blood mononuclear cells) from the patient synthesized IgE in vitro by stimulation with IL-4. Collectively, these results suggested that Tc2-like cells in the transduced cells have distinct immunological functions to help IgE synthesis and activate eosinophils.

  16. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers.

    PubMed

    Castellani, Stefano; Orlando, Clara; Carbone, Annalucia; Di Gioia, Sante; Conese, Massimo

    2016-11-23

    Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions.

  17. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers

    PubMed Central

    Castellani, Stefano; Orlando, Clara; Carbone, Annalucia; Di Gioia, Sante; Conese, Massimo

    2016-01-01

    Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions. PMID:27886077

  18. Effective transduction of osteogenic sarcoma cells by a baculovirus vector.

    PubMed

    Song, Sun U; Shin, Seok-Hwan; Kim, Soon-Ki; Choi, Gwang-Seong; Kim, Woo-Chul; Lee, Moon-Hee; Kim, Sei-Joong; Kim, In-Ho; Choi, Mi-Sook; Hong, Young-Jin; Lee, Kwan-Hee

    2003-03-01

    Efficient gene delivery of a baculovirus-derived vector (BV-p53-lacZ) to a human osteogenic sarcoma cell line, Saos-2, was serendipitously found while evaluating the vector for gene delivery to human p53-null tumour cells in a previous study. Therefore, we investigated other human, rat and mouse osteogenic sarcoma and other types of tumour cell lines for transduction efficiency via baculovirus vectors containing a lacZ reporter gene under the control of either a cytomegalovirus or Rous sarcoma virus promoter. The expression of beta-galactosidase protein, assessed by X-Gal staining and beta-galactosidase ELISA, demonstrated an extremely high level of transduction efficiency in some osteogenic sarcoma cell lines, such as U-2OS, Saos-2 and Saos-LM2. These human osteogenic sarcoma cell lines showed levels of beta-galactosidase expression 5-40 times greater than HepG2 cells, which were previously thought to be the mammalian cells most susceptible to baculovirus-mediated gene delivery. The level of acetylated histone proteins in these tumour lines did not correlate well with the high level of reporter gene expression. These results strongly suggest that some osteogenic sarcoma cells are highly susceptible to baculovirus-mediated gene delivery and that a baculovirus-derived vector is an efficient gene delivery vehicle into human osteogenic sarcoma cells.

  19. Meeting Report: Teaching Signal Transduction

    PubMed Central

    Kramer, IJsbrand; Thomas, Geraint

    2006-01-01

    In July, 2005, the European Institute of Chemistry and Biology at the campus of the University of Bordeaux, France, hosted a focused week of seminars, workshops, and discussions around the theme of “teaching signal transduction.” The purpose of the summer school was to offer both junior and senior university instructors a chance to reflect on the development and delivery of their teaching activities in this area. This was achieved by combining open seminars with restricted access workshops and discussion events. The results suggest ways in which systems biology, information and communication technology, Web-based investigations, and high standard illustrations might be more effectively and efficiently incorporated into modern cell biology courses. PMID:17012185

  20. Electromagnetic transduction of ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Passarelli, Frank; Alers, George; Alers, Ron

    2012-05-01

    Excitation and detection of ultrasonic vibrations without physical contact has proven to be of great commercial value. First used to excite the resonant vibration of bar shaped laboratory specimens in the 1930's, it was Bruce Thompson's contributions in 1973-5 that launched their practical application to a wide range of difficult NDE problems. As a fresh PhD, he championed the use of mathematical models for the electromagnetic transduction process in order to guide the design and construction of practical transducers. His early papers presented both theoretical and experimental results that exposed the wide range of wave types that could be generated along with the environmental conditions that could be overcome. Several laboratories around the world established research programs to apply the electromagnetic transducer (EMAT) to specific NDE problems. This paper will summarize those applications made by the authors.

  1. Mimicking photosynthetic solar energy transduction.

    PubMed

    Gust, D; Moore, T A; Moore, A L

    2001-01-01

    Increased understanding of photosynthetic energy conversion and advances in chemical synthesis and instrumentation have made it possible to create artificial nanoscale devices and semibiological hybrids that carry out many of the functions of the natural process. Artificial light-harvesting antennas can be synthesized and linked to artificial reaction centers that convert excitation energy to chemical potential in the form of long-lived charge separation. Artificial reaction centers can form the basis for molecular-level optoelectronic devices. In addition, they may be incorporated into the lipid bilayer membranes of artificial vesicles, where they function as components of light-driven proton pumps that generate transmembrane proton motive force. The proton gradient may be used to synthesize adenosine triphosphate via an ATP synthase enzyme. The overall energy transduction process in the liposomal system mimics the solar energy conversion system of a photosynthetic bacterium. The results of this research illustrate the advantages of designing functional nanoscale devices based on biological paradigms.

  2. Microbead-assisted retroviral transduction for clinical application.

    PubMed

    Heemskerk, Bianca; Jorritsma, Annelies; Gomez-Eerland, Raquel; Toebes, Mireille; Haanen, John B A G; Schumacher, Ton N M

    2010-10-01

    Retroviral transduction is the most commonly used strategy to obtain long-term expression of therapeutic genes. To efficiently transduce mammalian cells, a recombinant fibronectin molecule, RetroNectin, is generally used to juxtapose viral particles and cells, and thereby enhance viral uptake. Although this strategy has become widely adopted, in particular for the genetic modification of hematopoietic cells, several limitations apply. For example, it requires the use of culture systems that allow protein coating, something that is not possible for many of the closed cell culture systems that are used in clinical trials. Furthermore, efficient transduction is obtained only when culture systems can be exposed to centrifugation, an approach termed spin transduction. Here, we describe a novel and more potent strategy for the transduction of T cells that can be applied on a clinical scale. We show that RetroNectin can efficiently be coated onto epoxy-modified paramagnetic beads. After a blocking step, these beads can subsequently bind retroviral particles from viral supernatants, rendering such supernatants largely devoid of functional viral particles. Addition of these virus-loaded beads to activated T cells results in efficient retroviral infection. Importantly, transduction does not require the use of culture systems that are compatible with protein coating, nor is it dependent on centrifugation of either the viral supernatant or the cells. Finally, cell growth, phenotype, and function of spin-transduced versus bead-transduced cells are comparable. Viral coating of microbeads should facilitate the production of genetically modified cells, in particular for use in clinical trials.

  3. SENTRA, a database of signal transduction proteins.

    SciTech Connect

    D'Souza, M.; Romine, M. F.; Maltsev, N.; Mathematics and Computer Science; PNNL

    2000-01-01

    SENTRA, available via URL http://wit.mcs.anl.gov/WIT2/Sentra/, is a database of proteins associated with microbial signal transduction. The database currently includes the classical two-component signal transduction pathway proteins and methyl-accepting chemotaxis proteins, but will be expanded to also include other classes of signal transduction systems that are modulated by phosphorylation or methylation reactions. Although the majority of database entries are from prokaryotic systems, eukaroytic proteins with bacterial-like signal transduction domains are also included. Currently SENTRA contains signal transduction proteins in 34 complete and almost completely sequenced prokaryotic genomes, as well as sequences from 243 organisms available in public databases (SWISS-PROT and EMBL). The analysis was carried out within the framework of the WIT2 system, which is designed and implemented to support genetic sequence analysis and comparative analysis of sequenced genomes.

  4. Widespread Losses of Vomeronasal Signal Transduction in Bats

    PubMed Central

    Zhao, Huabin; Xu, Dong; Zhang, Shuyi; Zhang, Jianzhi

    2011-01-01

    The vertebrate vomeronasal system (VNS) detects intraspecific pheromones and environmental odorants. We sequenced segments of the gene encoding Trpc2, an ion channel crucial for vomeronasal signal transduction, in 11 species that represent all main basal lineages of Yinpterochiroptera, one of the two suborders of the order Chiroptera (bats). Our sequences show that Trpc2 is a pseudogene in each of the 11 bats, suggesting that all yinpterochiropterans lack vomeronasal sensitivity. The Trpc2 sequences from four species of Yangochiroptera, the other suborder of bats, suggest vomeronasal insensitivity in some but not all yangochiropterans. These results, together with the available morphological data from the bat VNS, strongly suggest multiple and widespread losses of vomeronasal signal transduction and sensitivity in bats. Future scrutiny of the specific functions of the VNS in the few bats that still retain the VNS may help explain why it is dispensable in most bats. PMID:20693241

  5. Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations.

    PubMed

    Denning, Warren; Das, Suvendu; Guo, Siqi; Xu, Jun; Kappes, John C; Hel, Zdenek

    2013-03-01

    Lentiviral vectors are widely used as effective gene-delivery vehicles. Optimization of the conditions for efficient lentiviral transduction is of a high importance for a variety of research applications. Presence of positively charged polycations reduces the electrostatic repulsion forces between a negatively charged cell and an approaching enveloped lentiviral particle resulting in an increase in the transduction efficiency. Although a variety of polycations are commonly used to enhance the transduction with retroviruses, the relative effect of various types of polycations on the efficiency of transduction and on the potential bias in the determination of titer of lentiviral vectors is not fully understood. Here, we present data suggesting that DEAE-dextran provides superior results in enhancing lentiviral transduction of most tested cell lines and primary cell cultures. Specific type and source of serum affects the efficiency of transduction of target cell populations. Non-specific binding of enhanced green fluorescent protein (EGFP)-containing membrane aggregates in the presence of DEAE-dextran does not significantly affect the determination of the titer of EGFP-expressing lentiviral vectors. In conclusion, various polycations and types of sera should be tested when optimizing lentiviral transduction of target cell populations.

  6. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    PubMed

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments.

  7. EDITORIAL: Special section on signal transduction Special section on signal transduction

    NASA Astrophysics Data System (ADS)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks

  8. Increased transduction efficiency of primary hematopoietic cells by physical colocalization of retrovirus and target cells.

    PubMed

    Hutchings, M; Moriwaki, K; Dilloo, D; Hoffmann, T; Kimbrough, S; Johnsen, H E; Brenner, M K; Heslop, H E

    1998-06-01

    Efficient gene transfer into hematopoietic stem cells offers a number of potential therapeutic applications. However, the relatively low titer of retroviral supernatants and the requirement for cell division to ensure integration have meant that transduction efficiency has been low. We have modified a flowthrough approach to cell transduction and have been able consistently to increase gene transfer efficiency into human hematopoietic progenitor cells. We transduced CD34 cells with retroviral vectors encoding a truncated nerve growth factor receptor (NGFR) or neo. Retroviral supernatant was pulled through 0.2-micron polycarbonated membranes, followed by placement of cells on the filter. In the absence of cytokines, the transduction efficiency of CD34 cells with a NGFR vector was increased 3-11-fold over that obtained at an identical MOI in liquid culture to produce 11%-44% transduction. Furthermore, both Thy1+ and Thy1- subsets in a total CD34 population were transduced with similar efficiency, and transduction with a neo vector, as measured by G418 resistance in clonogenic assays, increased 1.5-5-fold. The mechanism by which gene transfer is improved may reflect colocalization of cells and retrovirus. Costaining of cells transduced on the filter with an NGFR retrovirus with both an NGFR antibody and a gp70 antibody that recognizes viral coat protein revealed high-level coexpression. The levels of in vitro gene transfer we obtain are equivalent to those observed when CD34 cells are cocultured in liquid culture with cytokines. However, culture with cytokines may commit CD34 cells to differentiation and has produced disappointingly low levels of subsequent in vivo gene transfer. Gene marking studies using distinguishable retroviral vectors will provide a means of learning whether the effects of flowthrough transduction genuinely enhance the efficiency of gene transfer to human marrow-repopulating cells.

  9. Lymphatic Vessel Abnormalities Arising from Disorders of Ras Signal Transduction

    PubMed Central

    Sevick-Muraca, Eva M.; King, Philip D.

    2013-01-01

    A number of genetic diseases in man have been described in which abnormalities in the development and function of the lymphatic vascular (LV) system are prominent features. The genes that are mutated in these diseases are varied and include genes that encode lymphatic endothelial cell (LEC) growth factor receptors and their ligands and transcription factors that control LEC fate and function. In addition, an increasing number of genes have been identified that encode components of the Ras signal transduction pathway that conveys signals from cell surface receptors to regulate cell growth, proliferation and differentiation. Gene targeting studies performed in mice have confirmed that the LV system is particularly susceptible to perturbations in the Ras pathway. PMID:24183794

  10. Notch2 transduction by feline leukemia virus in a naturally infected cat.

    PubMed

    Watanabe, Shinya; Ito, Jumpei; Baba, Takuya; Hiratsuka, Takahiro; Kuse, Kyohei; Ochi, Haruyo; Anai, Yukari; Hisasue, Masaharu; Tsujimoto, Hajime; Nishigaki, Kazuo

    2014-04-01

    Feline leukemia virus (FeLV) induces neoplastic and nonneoplastic diseases in cats. The transduction of cellular genes by FeLV is sometimes observed and associated with neoplastic diseases including lymphoma and sarcoma. Here, we report the first natural case of feline Notch2 transduction by FeLV in an infected cat with multicentric lymphoma and hypercalcemia. We cloned recombinant FeLVs harboring Notch2 in the env gene. Notch2 was able to activate expression of a reporter gene, similar to what was previously reported in cats with experimental FeLV-induced thymic lymphoma. Our findings suggest that the transduction of Notch2 strongly correlates with FeLV-induced lymphoma.

  11. Targeting prostate cancer based on signal transduction and cell cycle pathways

    PubMed Central

    Lee, John T.; Lehmann, Brian D.; Terrian, David M.; Chappell, William H.; Stivala, Franca; Libra, Massimo; Martelli, Alberto M.; Steelman, Linda S.

    2008-01-01

    Prostate cancer remains a leading cause of death in men despite increased capacity to diagnose at earlier stages. After prostate cancer has become hormone independent, which often occurs after hormonal ablation therapies, it is difficult to effectively treat. Prostate cancer may arise from mutations and dysregulation of various genes involved in regulation signal transduction (e.g., PTEN, Akt, etc.,) and the cell cycle (e.g., p53, p21Cip1, p27Kip1, Rb, etc.,). This review focuses on the aberrant interactions of signal transduction and cell cycle genes products and how they can contribute to prostate cancer and alter therapeutic effectiveness. PMID:18594202

  12. Signal transduction by the Wnt family of ligands.

    PubMed Central

    Dale, T C

    1998-01-01

    The Wnt genes encode a large family of secreted polypeptides that mediate cell-cell communication in diverse developmental processes. The loss or inappropriate activation of Wnt expression has been shown to alter cell fate, morphogenesis and mitogenesis. Recent progress has identified Wnt receptors and components of an intracellular signalling pathway that mediate Wnt-dependent transcription. This review will highlight this 'core' Wnt signal-transduction pathway, but also aims to reveal the potential diversity of Wnt signalling targets. Particular attention will be paid to the overlap between developmental biology and oncogenesis, since recent progress shows Wnt signalling forms a paradigm for an interdisciplinary approach. PMID:9425102

  13. Gravitational sensory transduction chain in flagellates

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Richter, P.; Ntefidou, M.; Lebert, M.

    Earlier hypotheses have assumed that gravitactic orientation in flagellates, such as the photosynthetic unicell Euglena gracilis, is brought about by passive alignment of the cells in the water column by being tail heavy. A recent experiment on a sounding rocket (TEXUS 40) comparing immobilized cells with mobile cells demonstrated that the passive buoy effect can account for approximately 20% of the orientation of the cells in a gravity field. The cells show either positive or negative gravitaxis depending on other external or internal factors. Shortly after inoculation, the tendency of young cells to swim downward in the water column can be readily reverted by adding micromolar concentrations of some heavy metal ions including copper, cadmium or lead. The negative gravitaxis of older cells is converted into a positive one by stress factors such as increasing salinity or exposure to excessive visible or UV radiation. The mechanism for this switch seems to involve reactive oxygen species since the gravitactic sign change was suppressed when oxygen was removed by flushing the cell suspension with nitrogen. Also, the addition of radical scavengers (Trolox, ascorbic acid or potassium cyanide) abolished or reduced the gravitactic sign change. Addition of hydrogen peroxide induced a gravitactic sign change in the absence of external stress factors. The primary reception for the gravity vector seems to involve mechanosensitive ion channels which specifically gate calcium ions inward. We have identified several gene sequences for putative mechanosensory channels in Euglena and have applied RNAi to identify which of these channels are involved in graviperception. The influx of Ca 2+ activates calmodulin (CaM) which has been shown to be involved in the sensory transduction chain of graviorientation. It is known that an adenylyl cyclase is bound to the flagellar membrane in Euglena which is activated by CaM. This enzyme produces cAMP which has also been shown to be the key

  14. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  15. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes.

    PubMed

    Tubio, Jose M C; Li, Yilong; Ju, Young Seok; Martincorena, Inigo; Cooke, Susanna L; Tojo, Marta; Gundem, Gunes; Pipinikas, Christodoulos P; Zamora, Jorge; Raine, Keiran; Menzies, Andrew; Roman-Garcia, Pablo; Fullam, Anthony; Gerstung, Moritz; Shlien, Adam; Tarpey, Patrick S; Papaemmanuil, Elli; Knappskog, Stian; Van Loo, Peter; Ramakrishna, Manasa; Davies, Helen R; Marshall, John; Wedge, David C; Teague, Jon W; Butler, Adam P; Nik-Zainal, Serena; Alexandrov, Ludmil; Behjati, Sam; Yates, Lucy R; Bolli, Niccolo; Mudie, Laura; Hardy, Claire; Martin, Sancha; McLaren, Stuart; O'Meara, Sarah; Anderson, Elizabeth; Maddison, Mark; Gamble, Stephen; Foster, Christopher; Warren, Anne Y; Whitaker, Hayley; Brewer, Daniel; Eeles, Rosalind; Cooper, Colin; Neal, David; Lynch, Andy G; Visakorpi, Tapio; Isaacs, William B; van't Veer, Laura; Caldas, Carlos; Desmedt, Christine; Sotiriou, Christos; Aparicio, Sam; Foekens, John A; Eyfjörd, Jórunn Erla; Lakhani, Sunil R; Thomas, Gilles; Myklebost, Ola; Span, Paul N; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Van de Vijver, Marc; Vincent-Salomon, Anne; Van den Eynden, Gert G; Flanagan, Adrienne M; Futreal, P Andrew; Janes, Sam M; Bova, G Steven; Stratton, Michael R; McDermott, Ultan; Campbell, Peter J

    2014-08-01

    Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.

  16. Pseudotyped adeno-associated viral vector tropism and transduction efficiencies in murine wound healing.

    PubMed

    Keswani, Sundeep G; Balaji, Swathi; Le, Louis; Leung, Alice; Lim, Foong-Yen; Habli, Mounira; Jones, Helen N; Wilson, James M; Crombleholme, Timothy M

    2012-01-01

    Cell specific gene transfer and sustained transgene expression are goals of cutaneous gene therapy for tissue repair and regeneration. Adeno-associated virus serotype 2 (AAV2/2) mediated gene transfer to the skin results in stable transgene expression in the muscle fascicles of the panniculus carnosus in mice, with minimal gene transfer to the dermal or epidermal elements. We hypothesized that pseudotyped AAV vectors may have a unique and characteristic tropism and transduction efficiency profile for specific cells in the cutaneous wounds. We compared transduction efficiencies of cells in the epidermis, cells in the dermis, and the fascicles of the panniculus carnosus by AAV2/2 and three pseudotyped AAV vectors, AAV2/5, AAV2/7, and AAV2/8 in a murine excisional wound model. AAV2/5 and AAV2/8 result in significantly enhanced transduction of cells both in the epidermis and the dermis compared to AAV2/2. AAV2/5 transduces both the basilar and supra-basilar keratinocytes. In contrast, AAV2/8 transduces mainly supra-basilar keratinocytes. Both AAV2/7 and AAV2/8 result in more efficient gene transfer to the muscular panniculus carnosus compared to AAV2/2. The capsid of the different pseudotyped AAV vectors produces distinct tropism and efficiency profiles in the murine wound healing model. Both AAV2/5 and AAV2/8 administration result in significantly enhanced gene transfer. To further characterize cell specific transduction and tropism profiles of the AAV pseudotyped vectors, we performed in vitro experiments using human and mouse primary dermal fibroblasts. Our data demonstrate that pseudotyping strategy confers a differential transduction of dermal fibroblasts, with higher transduction of both human and murine cells by AAV2/5 and AAV2/8 at early and later time points. At later time points, AAV2/2 demonstrates increased transduction. Interestingly, AAV2/8 appears to be more efficacious in transducing human cells as compared to AAV2/5. The pseudotype-specific pattern of

  17. Meeting report: Signal transduction meets systems biology

    PubMed Central

    2012-01-01

    In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting “Signal Transduction: Receptors, Mediators and Genes” together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference. PMID:22546078

  18. The Cornucopia of Intestinal Chemosensory Transduction

    PubMed Central

    Bertrand, Paul P.

    2009-01-01

    The chemosensory transduction mechanisms that the gastrointestinal (GI) tract uses to detect chemical and nutrient stimuli are poorly understood. The GI tract is presented with a wide variety of stimuli including potentially harmful chemicals or toxins as well as ‘normal’ stimuli including nutrients, bacteria and mechanical forces. Sensory transduction is at its simplest the conversion of these stimuli into a neural code in afferent nerves. Much of the information encoded is used by the enteric nervous system to generate local reflexes while complementary information is sent to the central nervous system via afferents or by release of hormones to affect behaviour. This review focuses on the chemosensory transduction mechanisms present in the GI tract. It examines the expression and localisation of the machinery for chemosensory transduction. It summarises the types of cells which might be involved in detecting stimuli and releasing neuroactive transmitters. Finally, it highlights the idea that chemosensory transduction mechanisms in the GI tract utilise many overlapping and complementary mechanisms for detecting and transducing stimuli into reflex action. PMID:20582275

  19. AAV-mediated photoreceptor transduction of the pig cone-enriched retina

    PubMed Central

    Mussolino, C; della Corte, M; Rossi, S; Viola, F; Di Vicino, U; Marrocco, E; Neglia, S; Doria, M; Testa, F; Giovannoni, R; Crasta, M; Giunti, M; Villani, E; Lavitrano, M; Bacci, M L; Ratiglia, R; Simonelli, F; Auricchio, A; Surace, E M

    2011-01-01

    Recent success in clinical trials supports the use of adeno-associated viral (AAV) vectors for gene therapy of retinal diseases caused by defects in the retinal pigment epithelium (RPE). In contrast, evidence of the efficacy of AAV-mediated gene transfer to retinal photoreceptors, the major site of inherited retinal diseases, is less robust. In addition, although AAV-mediated RPE transduction appears efficient, independently of the serotype used and species treated, AAV-mediated photoreceptor gene transfer has not been systematically investigated thus so far in large animal models, which also may allow identifying relevant species-specific differences in AAV-mediated retinal transduction. In the present study, we used the porcine retina, which has a high cone/rod ratio. This feature allows to properly evaluate both cone and rod photoreceptors transduction and compare the transduction characteristics of AAV2/5 and 2/8, the two most efficient AAV vector serotypes for photoreceptor targeting. Here we show that AAV2/5 and 2/8 transduces both RPE and photoreceptors. AAV2/8 infects and transduces photoreceptor more efficiently than AAV2/5, similarly to what we have observed in the murine retina. The use of the photoreceptor-specific rhodopsin promoter restricts transgene expression to porcine rods and cones, and results in photoreceptor transduction levels similar to those obtained with the ubiquitous promoters tested. Finally, immunological, toxicological and biodistribution studies support the safety of AAV subretinal administration to the large porcine retina. The data presented here on AAV-mediated transduction of the cone-enriched porcine retina may affect the development of gene-based therapies for rare and common severe photoreceptor diseases. PMID:21412286

  20. Purinergic mechanosensory transduction and visceral pain

    PubMed Central

    2009-01-01

    In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown. PMID:19948030

  1. Purinergic mechanosensory transduction and visceral pain.

    PubMed

    Burnstock, Geoffrey

    2009-11-30

    In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  2. Signal transduction abnormalities in suicide: focus on phosphoinositide signaling system.

    PubMed

    Pandey, Ghanshyam N

    2013-11-01

    Suicide is a major public health concern and each year about one million people die by suicide worldwide. Recent studies suggest that suicide may be associated with specific neurobiological abnormalities. Earlier studies of neurobiology of suicide focused on abnormalities of the serotonergic mechanism. These studies suggested that some serotonin receptor subtypes may be abnormal in the postmortem brain of suicide victims. Since these receptors are linked to signal transduction pathways, abnormalities of signaling mechanisms have been recently studied in the postmortem brain of suicide victims. Of particular interest is the 5-hydroxytryptamine2A receptor-linked phosphoinositide signaling system. Several studies have focused on the abnormalities on the component of this signaling system and these studies suggest the abnormalities of G proteins, the effectors phospholipase C and the second or the third messenger systems, such as protein kinase A. Further studies revealed abnormalities in the downstream transcription factors such as the cyclic AMP response element binding protein and some of the targeted genes of these transcription factors. The most important gene in this aspect which has been studied in the suicide is the brain-derived neurotrophic factor. Here we critically review the studies focusing on these components of the phosphoinositide signaling system in the postmortem brain of both adult and teenage suicide victims. These studies provide a better understanding of the signal transduction abnormalities in suicide focusing on the phosphoinositide signaling pathway. These studies may lead to new therapeutic agents targeting specific sites in this signaling cascade.

  3. Characterization of retroviral infectivity and superinfection resistance during retrovirus-mediated transduction of mammalian cells.

    PubMed

    Liao, J; Wei, Q; Fan, J; Zou, Y; Song, D; Liu, J; Liu, F; Ma, C; Hu, X; Li, L; Yu, Y; Qu, X; Chen, L; Yu, X; Zhang, Z; Zhao, C; Zeng, Z; Zhang, R; Yan, S; Wu, T; Wu, X; Shu, Y; Lei, J; Li, Y; Zhang, W; Wang, J; Reid, R R; Lee, M J; Huang, W; Wolf, J M; He, T-C; Wang, J

    2017-04-07

    Retroviral vectors including lentiviral vectors are commonly-used tools to stably express transgenes or RNA molecules in mammalian cells. Their utilities are roughly divided into two categories, stable overexpression of transgenes and RNA molecules, which requires maximal transduction efficiency, or functional selection with retrovirus-based libraries, which takes advantage of retroviral superinfection resistance. However, the dynamic features of retrovirus-mediated transduction are not well-characterized. Here, we engineered two MSCV-based retroviral vectors expressing dual fluorescence proteins and antibiotic markers and analyzed virion production efficiency and virion stability, dynamic infectivity and superinfection resistance in different cell types, and strategies to improve transduction efficiency. We found that the highest virion production occurred between 60 and 72 h after transfection. The stability of the harvested virion supernatant decreased by >60% after three days in storage. We found that retrovirus infectivity varied drastically in the tested human cancer lines, while low transduction efficiency was partially overcome with increased virus titer, prolonged infection duration, and/or repeated infections. Furthermore, we demonstrated that retrovirus receptors PIT1 and PIT2 were lowly expressed in the analyzed cells, and that PIT1 and/or PIT2 overexpression significantly improved transduction efficiency in certain cell lines. Thus, our findings provide resourceful information for the optimal conditions of retroviral-mediated gene delivery.Gene Therapy accepted article preview online, 07 April 2017. doi:10.1038/gt.2017.24.

  4. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  5. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    PubMed

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  6. Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors.

    PubMed

    Wakamatsu, Nobuko; Collins, Jennifer B; Parker, Joel S; Tessema, Mathewos; Clayton, Natasha P; Ton, Thai-Vu T; Hong, Hue-Hua L; Belinsky, Steven; Devereux, Theodora R; Sills, Robert C; Lahousse, Stephanie A

    2008-07-01

    National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.

  7. The Physiology of Mechanoelectrical Transduction Channels in Hearing

    PubMed Central

    Fettiplace, Robert; Kim, Kyunghee X.

    2014-01-01

    Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1–100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca2+; two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca2+ influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca2+ also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer. PMID:24987009

  8. An Efficient Large-Scale Retroviral Transduction Method Involving Preloading the Vector into a RetroNectin-Coated Bag with Low-Temperature Shaking

    PubMed Central

    Dodo, Katsuyuki; Chono, Hideto; Saito, Naoki; Tanaka, Yoshinori; Tahara, Kenichi; Nukaya, Ikuei; Mineno, Junichi

    2014-01-01

    In retroviral vector-mediated gene transfer, transduction efficiency can be hampered by inhibitory molecules derived from the culture fluid of virus producer cell lines. To remove these inhibitory molecules to enable better gene transduction, we had previously developed a transduction method using a fibronectin fragment-coated vessel (i.e., the RetroNectin-bound virus transduction method). In the present study, we developed a method that combined RetroNectin-bound virus transduction with low-temperature shaking and applied this method in manufacturing autologous retroviral-engineered T cells for adoptive transfer gene therapy in a large-scale closed system. Retroviral vector was preloaded into a RetroNectin-coated bag and incubated at 4°C for 16 h on a reciprocating shaker at 50 rounds per minute. After the supernatant was removed, activated T cells were added to the bag. The bag transduction method has the advantage of increasing transduction efficiency, as simply flipping over the bag during gene transduction facilitates more efficient utilization of the retroviral vector adsorbed on the top and bottom surfaces of the bag. Finally, we performed validation runs of endoribonuclease MazF-modified CD4+ T cell manufacturing for HIV-1 gene therapy and T cell receptor-modified T cell manufacturing for MAGE-A4 antigen-expressing cancer gene therapy and achieved over 200-fold (≥1010) and 100-fold (≥5×109) expansion, respectively. In conclusion, we demonstrated that the large-scale closed transduction system is highly efficient for retroviral vector-based T cell manufacturing for adoptive transfer gene therapy, and this technology is expected to be amenable to automation and improve current clinical gene therapy protocols. PMID:24454964

  9. Discrete signal transduction pathway utilization by a neuropeptide (PACAP) and a cytokine (TNF-alpha) first messenger in chromaffin cells, inferred from coupled transcriptome-promoter analysis of regulated gene cohorts.

    PubMed

    Samal, Babru; Ait-Ali, Djida; Bunn, Stephen; Mustafa, Tomris; Eiden, Lee E

    2013-07-01

    Cultured bovine adrenal chromaffin cells (BCCs) are employed to study first messenger-specific signaling by cytokines and neurotransmitters occurring in the adrenal medulla following immune-related stress responses. Here, we show that the cytokine TNF-alpha, and the neuropeptide transmitter PACAP, acting through the TNFR2 and PAC1 receptors, activate distinct signaling pathways, with correspondingly distinct transcriptomic signatures in chromaffin cells. We have carried out a comprehensive integrated transcriptome analysis of TNF-alpha and PACAP gene regulation in BCCs using two microarray platforms to maximize transcript identification. Microarray data were validated using qRT-PCR. More than 90% of the transcripts up-regulated either by TNF-alpha or PACAP were specific to a single first messenger. The final list of transcripts induced by each first messenger was subjected to multiple algorithms to identify promoter/enhancer response elements for trans-acting factors whose activation could account for gene expression by either TNF-alpha or PACAP. Distinct groups of transcription factors potentially controlling the expression of TNF-alpha or PACAP-responsive genes were found: most of the genes up-regulated by TNF-alpha contained transcription factor binding sites for members of the Rel transcription factor family, suggesting TNF-alpha-TNFR2 signaling occurs mainly through the NF-KB signaling pathway. Surprisingly, EGR1 was predicted to be the primary transcription factor controlling PACAP-modulated genes, suggesting PACAP signaling to the nucleus occurs predominantly through ERK, rather than CREB activation. Comparison of TNFR2-dependent versus TNFR1-dependent gene induction, and EGR1-mediated transcriptional activation, may provide a pharmacological avenue to the unique pathways activated by the first messengers TNF-alpha and PACAP in neuronal and endocrine cells.

  10. Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes.

    PubMed

    Evans, T G

    2010-05-01

    This review centres upon the molecular regulation of osmotic stress responses in fishes, focusing on how osmosensing and signal transduction events co-ordinate changes in the activity and abundance of effector proteins during osmotic stress and how these events integrate into osmotic stress responses of varying magnitude. The concluding sections discuss the relevance of osmosensory signal transduction to the evolution of euryhalinity and present experimental approaches that may best stimulate future research. Iterating the importance of osmosensing and signal transduction during fish osmoregulation may be pertinent amidst the increased use of genomic technologies that typically focus solely on changes in the abundances of gene products, and may limit insight into critical upstream events that occur mainly through post-translational mechanisms.

  11. Vectofusin-1, a New Viral Entry Enhancer, Strongly Promotes Lentiviral Transduction of Human Hematopoietic Stem Cells

    PubMed Central

    Fenard, David; Ingrao, Dina; Seye, Ababacar; Buisset, Julien; Genries, Sandrine; Martin, Samia; Kichler, Antoine; Galy, Anne

    2013-01-01

    Gene transfer into hCD34+ hematopoietic stem/progenitor cells (HSCs) using human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) has several promising therapeutic applications. Yet, efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist such as fibronectin fragments and cationic compounds, but all present limitations. In this study, we describe a new transduction enhancer called Vectofusin-1, which is a short cationic peptide, active on several LV pseudotypes. Vectofusin-1 is used as a soluble additive to safely increase the frequency of transduced HSCs and to augment the level of transduction to one or two copies of vector per cell in a vector dose-dependent manner. Vectofusin-1 acts at the entry step by promoting the adhesion and the fusion between viral and cellular membranes. Vectofusin-1 is therefore a promising additive that could significantly ameliorate hCD34+ cell-based gene therapy. PMID:23653154

  12. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    PubMed Central

    Oakland, Mayumi; Maury, Wendy; McCray, Paul B; Sinn, Patrick L

    2013-01-01

    Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV)-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN) responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV) in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction. PMID:23360952

  13. Phosphoglycerolipids are master players in plant hormone signal transduction.

    PubMed

    Janda, Martin; Planchais, Severine; Djafi, Nabila; Martinec, Jan; Burketova, Lenka; Valentova, Olga; Zachowski, Alain; Ruelland, Eric

    2013-06-01

    Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.

  14. The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction.

    PubMed

    Prado, M A; Evans-Bain, B; Oliver, K R; Dickerson, I M

    2001-11-01

    G protein-coupled receptors are usually thought to act as monomer receptors that bind ligand and then interact with G proteins to initiate signal transduction. In this study we report an intracellular peripheral membrane protein named the calcitonin gene-related peptide (CGRP)-receptor component protein (RCP) required for signal transduction at the G protein-coupled receptor for adrenomedullin. Cell lines were made that expressed an antisense construct of the RCP cDNA, and in these cells diminished RCP expression correlated with loss of adrenomedullin signal transduction. In contrast, loss of RCP did not diminish receptor density or affinity, therefore RCP does not appear to act as a chaperone protein. Instead, RCP represents a novel class of protein required to couple the adrenomedullin receptor to the cellular signal transduction pathway. A candidate adrenomedullin receptor named the calcitonin receptor-like receptor (CRLR) has been described, which forms high affinity adrenomedullin receptors when co-expressed with the accessory protein receptor-activity modifying protein 2 (RAMP2). RCP co-immunoprecipitated with CRLR and RAMP2, indicating that a functional adrenomedullin receptor is composed of at least three proteins: the ligand binding protein (CRLR), an accessory protein (RAMP2), and a coupling protein for signal transduction (RCP).

  15. Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications.

    PubMed

    Wang, M; Sun, J; Crosby, A; Woodard, K; Hirsch, M L; Samulski, R J; Li, C

    2017-01-01

    Recent hemophilia B clinical trials using adeno-associated virus (AAV) gene delivery have demonstrated much lower coagulation factor IX (FIX) production in patients compared with the high levels observed in animal models and AAV capsid-specific cytotoxic T lymphocyte response elicited at high doses of AAV vectors. These results emphasize the necessity to explore effective approaches for enhancement of AAV transduction. Initially, we found that incubation of all AAV vectors with human serum enhanced AAV transduction. Complementary analytical experiments demonstrated that human serum albumin (HSA) directly interacted with the AAV capsid and augmented AAV transduction. The enhanced transduction was observed with clinical grade HSA. Mechanistic studies suggest that HSA increases AAV binding to target cells, and that the interaction of HSA with AAV does not interfere with the AAV infection pathway. Importantly, HSA incubation during vector dialysis also increased transduction. Finally, HSA enhancement of AAV transduction in a model of hemophilia B displayed greater than a fivefold increase in vector-derived circulating FIX, which improved the bleeding phenotype correction. In conclusion, incubation of HSA with AAV vectors supports a universal augmentation of AAV transduction and, more importantly, this approach can be immediately transitioned to the clinic for the treatment of hemophilia and other diseases.

  16. Signal transduction in the wound response of tomato plants.

    PubMed Central

    Bowles, D

    1998-01-01

    The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound-induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation-dephosphorylation in wound signalling. Finally, a new model for wound-induced pin gene expression is presented, arising from recent data from the author's laboratory. PMID:9800210

  17. In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors

    PubMed Central

    Richter, Maximilian; Saydaminova, Kamola; Yumul, Roma; Krishnan, Rohini; Liu, Jing; Nagy, Eniko-Eva; Singh, Manvendra; Izsvák, Zsuzsanna; Cattaneo, Roberto; Uckert, Wolfgang; Palmer, Donna; Ng, Philip; Haworth, Kevin G.; Kiem, Hans-Peter; Ehrhardt, Anja; Papayannopoulou, Thalia

    2016-01-01

    Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin−Sca1+Kit− cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy. PMID:27554082

  18. Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates

    PubMed Central

    Bell, Peter; Wang, Lili; Gao, Guangping; Haskins, Mark E.; Tarantal, Alice F.; McCarter, Robert J.; Zhu, Yanqing; Yu, Hongwei; Wilson, James M.

    2011-01-01

    Gene transfer vectors based on adeno-associated virus 8 (AAV8) are highly efficient in liver transduction and can be easily administered by intravenous injection. In mice, AAV8 transduces predominantly hepatocytes near central veins and yields lower transduction levels in hepatocytes in periportal regions. This transduction bias has important implications for gene therapy that aims to correct metabolic liver enzymes because metabolic zonation along the porto-central axis requires the expression of therapeutic proteins within the zone where they are normally localized. In the present study we compared the expression pattern of AAV8 expressing green fluorescent protein (GFP) in liver between mice, dogs, and non-human primates. We confirmed the pericentral dominance in transgene expression in mice with AAV8 when the liver-specific thyroid hormone-binding globulin (TBG) promoter was used but also observed the same expression pattern with the ubiquitous chicken β-actin (CB) and cytomegalovirus (CMV) promoters, suggesting that transduction zonation is not caused by promoter specificity. Predominantly pericentral expression was also found in dogs injected with AAV8. In contrast, in cynomolgus and rhesus macaques the expression pattern from AAV vectors was reversed, i.e. transgene expression was most intense around portal areas and less intense or absent around central veins. Infant rhesus macaques as well as newborn mice injected with AAV8 however showed a random distribution of transgene expression with neither portal nor central transduction bias. Based on the data in monkeys, adult humans treated with AAV vectors are predicted to also express transgenes predominantly in periportal regions whereas infants are likely to show a uniform transduction pattern in liver. PMID:21778099

  19. Polyethylenimine-cationized beta-catenin protein transduction activates the Wnt canonical signaling pathway more effectively than cationic lipid-based transduction.

    PubMed

    Kitazoe, Midori; Futami, Junichiro; Nishikawa, Mitsuo; Yamada, Hidenori; Maeda, Yoshitake

    2010-04-01

    The Wnt canonical signaling pathway is essential for the early development of eukaryotic organisms and plays a key role in cell proliferation, differentiation, and oncogenesis. Moreover, the Wnt canonical signaling pathway contributes to the self-renewal of mouse hematopoietic stem cells (HSCs). Here, we demonstrate artificial activation of the Wnt canonical signaling pathway by beta-catenin protein transduction. Constitutively active beta-catenin protein was introduced into human embryonic kidney HEK-293 cells using a polyethylenimine (PEI) cationization method, or with the BioPORTER protein transduction reagent. We have previously shown that modification with PEI effectively causes proteins to be internalized by living mammalian cells. PEI-cationized, constitutively active beta-catenin protein was added to HEK-293 cells, and induction of several Wnt/beta-catenin target genes was detected by real-time PCR. However, using BioPORTER to introduce active beta-catenin did not activate the Wnt canonical signaling pathway. Introduction of eGFPNuc (enhanced green fluorescent protein variant containing a nuclear localization signal) into HEK-293 cells using the BioPORTER reagent caused significant cell death, as determined by propidium iodide staining. In contrast, the PEI-modified eGFPNuc did not impair survival of HEK-293 cells. These results indicate that the Wnt canonical signaling pathway could be successfully activated by transduction of PEI-cationized active beta-catenin, and the PEI-cationization method is an effective and safe technology for protein transduction into mammalian cells.

  20. Signal transduction in T lymphocytes in microgravity

    NASA Technical Reports Server (NTRS)

    Cogoli, A.

    1997-01-01

    More than 120 experiments conducted in space in the last 15 years have shown that dramatic changes are occurring in several types of single cells during their exposure to microgravity. One focus of today's research on cells in space is on signal transduction, especially those steps involving the cytoskeleton and cell-cell interactions. Signal transduction is often altered in microgravity as well as in hypergravity. This leads to changes in cell proliferation, genetic expression and differentiation. Interesting examples are leukocytes, HeLa cells, epidermoid cells and osteoblastic cells. Signalling pathways were studied in T lymphocytes in microgravity by several investigators after the discovery that mitogenic activation in vitro is virtually nil at 0g. T cells are a good model to study signal transduction because three extracellular signals (mitogen, IL-1 and IL-2) are required for full activation, and two classical pathways (via proteins G and PKC) are activated within the cell. In addition, low molecular weight GTP-binding proteins (Ras and Rap) are interacting with the cytoskeleton. The data at 0g support the notion that the expression of IL-2 receptor is inhibited at 0g, while mitogen binding and the transmission of IL-1 by accessory cells occur normally. In addition, alterations of the cytoskeleton suggest that the interaction with Rap proteins is disturbed. Data obtained with phorbol esters indicate that the function of PKC is changed in microgravity. Similar conclusions are drawn from the results with epidermoid cells A431.

  1. Optical racetrack resonator transduction of nanomechanical cantilevers.

    PubMed

    Sauer, V T K; Diao, Z; Freeman, M R; Hiebert, W K

    2014-02-07

    Optomechanical transduction has demonstrated its supremacy in probing nanomechanical displacements. In order to apply nano-optomechanical systems (NOMS) as force and mass sensors, knowledge about the transduction responsivity (i.e. the change in measured optical transmission with nanomechanical displacement) and its tradeoffs with system design is paramount. We compare the measured responsivities of NOMS devices with varying length, optomechanical coupling strength gom, and optical cavity properties. Cantilever beams 1.5 to 5 μm long are fabricated 70 to 160 nm from a racetrack resonator optical cavity and their thermomechanical (TM) noise signals are measured. We derive a generic expression for the transduction responsivity of the NOMS in terms of optical and mechanical system parameters such as finesse, optomechanical coupling constant, and interaction length. The form of the expression holds direct insight as to how these parameters affect the responsivity. With this expression, we obtain the optomechanical coupling constants using only measurements of the TM noise power spectra and optical cavity transmission slopes. All optical pump/probe operation is also demonstrated in our side-coupled cantilever-racetrack NOMS. Finally, to assess potential operation in a gas sensing environment, the TM noise signal of a device is measured at atmospheric pressure.

  2. Mechanotransduction and auditory transduction in Drosophila.

    PubMed

    Kernan, Maurice J

    2007-08-01

    Insects are utterly reliant on sensory mechanotransduction, the process of converting physical stimuli into neuronal receptor potentials. The senses of proprioception, touch, and hearing are involved in almost every aspect of an adult insect's complex behavioral repertoire and are mediated by a diverse array of specialized sensilla and sensory neurons. The physiology and morphology of several of these have been described in detail; genetic approaches in Drosophila, combining behavioral screens and sensory electrophysiology with forward and reverse genetic techniques, have now revealed specific proteins involved in their differentiation and operation. These include three different TRP superfamily ion channels that are required for transduction in tactile bristles, chordotonal stretch receptors, and polymodal nociceptors. Transduction also depends on the normal differentiation and mechanical integrity of the modified cilia that form the neuronal sensory endings, the accessory structures that transmit stimuli to them and, in bristles, a specialized receptor lymph and transepithelial potential. Flies hear near-field sounds with a vibration-sensitive, antennal chordotonal organ. Biomechanical analyses of wild-type antennae reveal non-linear, active mechanical properties that increase their sensitivity to weak stimuli. The effects of mechanosensory and ciliary mutations on antennal mechanics show that the sensory cilia are the active motor elements and indicate distinct roles for TRPN and TRPV channels in auditory transduction and amplification.

  3. Genetic analysis of gravity signal transduction in roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  4. Protein transduction: cell penetrating peptides and their therapeutic applications.

    PubMed

    Wagstaff, Kylie M; Jans, David A

    2006-01-01

    Cell penetrating proteins or peptides (CPPs) have the ability to cross the plasma membranes of mammalian cells in an apparently energy- and receptor-independent fashion. Although there is much debate over the mechanism by which this "protein transduction" occurs, the ability of CPPs to translocate rapidly into cells is being exploited to deliver a broad range of therapeutics including proteins, DNA, antibodies, oligonucleotides, imaging agents and liposomes in a variety of situations and biological systems. The current review looks at the delivery of many such molecules by various CPPs, and their potential therapeutic application in a wide range of areas. CPP ability to deliver different cargoes in a relatively efficient and non-invasive manner has implications as far reaching as drug delivery, gene transfer, DNA vaccination and beyond. Although many questions remain to be answered and limitations on the use of CPPs exist, it is clear that this emerging technology has much to offer in a clinical setting.

  5. Mechanistic Insights in Ethylene Perception and Signal Transduction.

    PubMed

    Ju, Chuanli; Chang, Caren

    2015-09-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk.

  6. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    PubMed Central

    Wan, Li; Yao, Xinglei; Faiola, Francesco; Liu, Bojun; Zhang, Tianyuan; Tabata, Yasuhiko; Mizuguchi, Hiroyuki; Nakagawa, Shinsaku; Gao, Jian-Qing; Zhao, Robert Chunhua

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with multilineage potential, which makes them attractive tools for regenerative medicine applications. Efficient gene transfer into MSCs is essential not only for basic research in developmental biology but also for therapeutic applications involving gene-modification in regenerative medicine. Adenovirus vectors (Advs) can efficiently and transiently introduce an exogenous gene into many cell types via their primary receptors, the coxsackievirus and adenovirus receptors, but not into MSCs, which are deficient in coxsackievirus and adenovirus receptors expression. To overcome this problem, we developed an Adv coated with a spermine-pullulan (SP) cationic polymer and investigated its physicochemical properties and internalization mechanisms. We demonstrated that the SP coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. PMID:28008251

  7. The MiST2 database: a comprehensive genomics resource on microbial signal transduction.

    PubMed

    Ulrich, Luke E; Zhulin, Igor B

    2010-01-01

    The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extracytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 157 draft bacterial and archaeal genomes, which collectively contain more than 245 000 signal transduction proteins. The majority (66%) of these are one-component systems, followed by two-component proteins (26%), chemotaxis (6%), and finally ECF factors (2%).

  8. The MiST2 database: a comprehensive genomics resource on microbial signal transduction

    PubMed Central

    Ulrich, Luke E.; Zhulin, Igor B.

    2010-01-01

    The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extracytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 157 draft bacterial and archaeal genomes, which collectively contain more than 245 000 signal transduction proteins. The majority (66%) of these are one-component systems, followed by two-component proteins (26%), chemotaxis (6%), and finally ECF factors (2%). PMID:19900966

  9. Defective Antiviral Responses of Induced Pluripotent Stem Cells to Baculoviral Vector Transduction

    PubMed Central

    Chen, Guan-Yu; Hwang, Shiaw-Min; Su, Hung-Ju; Kuo, Chien-Yi; Luo, Wen-Yi; Lo, Kai-Wei; Huang, Cheng-Chieh; Chen, Chiu-Ling; Yu, Sheng-Han

    2012-01-01

    Genetic engineering of induced pluripotent stem cells (iPSCs) is important for their clinical applications, and baculovirus (BV) holds promise as a gene delivery vector. To explore the feasibility of using BV for iPSCs transduction, in this study we first examined how iPSCs responded to BV. We determined that BV transduced iPSCs efficiently, without inducing appreciable negative effects on cell proliferation, apoptosis, pluripotency, and differentiation. BV transduction slightly perturbed the transcription of 12 genes involved in the Toll-like receptor (TLR) signaling pathway, but at the protein level BV elicited no well-known cytokines (e.g., interleukin-6 [IL-6], tumor necrosis factor alpha [TNF-α], and beta interferon [IFN-β]) except for IP-10. Molecular analyses revealed that iPSCs expressed no TLR1, -6, -8, or -9 and expressed merely low levels of TLR2, -3, and -4. In spite of evident expression of such RNA/DNA sensors as RIG-I and AIM2, iPSCs barely expressed MDA5 and DAI (DNA-dependent activator of IFN regulatory factor [IRF]). Importantly, BV transduction of iPSCs stimulated none of the aforementioned sensors or their downstream signaling mediators (IRF3 and NF-κB). These data together confirmed that iPSCs responded poorly to BV due to the impaired sensing and signaling system, thereby justifying the transduction of iPSCs with the baculoviral vector. PMID:22623765

  10. Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortex

    PubMed Central

    Gerits, Annelies; Vancraeyenest, Pascaline; Vreysen, Samme; Laramée, Marie-Eve; Michiels, Annelies; Gijsbers, Rik; Van den Haute, Chris; Moons, Lieve; Debyser, Zeger; Baekelandt, Veerle; Arckens, Lutgarde; Vanduffel, Wim

    2015-01-01

    Abstract. Viral vector-mediated expression of genes (e.g., coding for opsins and designer receptors) has grown increasingly popular. Cell-type specific expression is achieved by altering viral vector tropism through crosspackaging or by cell-specific promoters driving gene expression. Detailed information about transduction properties of most recombinant adeno-associated viral vector (rAAV) serotypes in macaque cortex is gradually becoming available. Here, we compare transduction efficiencies and expression patterns of reporter genes in two macaque neocortical areas employing different rAAV serotypes and promoters. A short version of the calmodulin-kinase-II (CaMKIIα0.4) promoter resulted in reporter gene expression in cortical neurons for all tested rAAVs, albeit with different efficiencies for spread: rAAV2/5>>rAAV2/7>rAAV2/8>rAAV2/9>>rAAV2/1 and proportion of transduced cells: rAAV2/1>rAAV2/5>rAAV2/7=rAAV2/9>rAAV2/8. In contrast to rodent studies, the cytomegalovirus (CMV) promoter appeared least efficient in macaque cortex. The human synapsin-1 promoter preceded by the CMV enhancer (enhSyn1) produced homogeneous reporter gene expression across all layers, while two variants of the CaMKIIα promoter resulted in different laminar transduction patterns and cell specificities. Finally, differences in expression patterns were observed when the same viral vector was injected in two neocortical areas. Our results corroborate previous findings that reporter-gene expression patterns and efficiency of rAAV transduction depend on serotype, promoter, cortical layer, and area. PMID:26839901

  11. Tracing retinal vessel trees by transductive inference

    PubMed Central

    2014-01-01

    Background Structural study of retinal blood vessels provides an early indication of diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. These studies require accurate tracing of retinal vessel tree structure from fundus images in an automated manner. However, the existing work encounters great difficulties when dealing with the crossover issue commonly-seen in vessel networks. Results In this paper, we consider a novel graph-based approach to address this tracing with crossover problem: After initial steps of segmentation and skeleton extraction, its graph representation can be established, where each segment in the skeleton map becomes a node, and a direct contact between two adjacent segments is translated to an undirected edge of the two corresponding nodes. The segments in the skeleton map touching the optical disk area are considered as root nodes. This determines the number of trees to-be-found in the vessel network, which is always equal to the number of root nodes. Based on this undirected graph representation, the tracing problem is further connected to the well-studied transductive inference in machine learning, where the goal becomes that of properly propagating the tree labels from those known root nodes to the rest of the graph, such that the graph is partitioned into disjoint sub-graphs, or equivalently, each of the trees is traced and separated from the rest of the vessel network. This connection enables us to address the tracing problem by exploiting established development in transductive inference. Empirical experiments on public available fundus image datasets demonstrate the applicability of our approach. Conclusions We provide a novel and systematic approach to trace retinal vessel trees with the present of crossovers by solving a transductive learning problem on induced undirected graphs. PMID:24438151

  12. Cochlear transduction: an integrative model and review

    PubMed Central

    Brownell, William E.

    2009-01-01

    A model for cochlear transduction is presented that is based on considerations of the cell biology of its receptor cells, particularly the mechanisms of transmitter release at recepto-neural synapses. Two new interrelated hypotheses on the functional organization of the organ of Corti result from these considerations, one dealing with the possibility of electrotonic interaction between inner and outer hair cells and the other with a possible contributing source to acoustic emissions of cochlear origin that results from vesicular membrane turnover. PMID:6282796

  13. Signal transduction mechanisms in plants: an overview

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Thompson, G. Jr; Roux, S. J.

    2001-01-01

    This article provides an overview on recent advances in some of the basic signalling mechanisms that participate in a wide variety of stimulus-response pathways. The mechanisms include calcium-based signalling, G-protein-mediated-signalling and signalling involving inositol phospholipids, with discussion on the role of protein kinases and phosphatases interspersed. As a further defining feature, the article highlights recent exciting findings on three extracellular components that have not been given coverage in previous reviews of signal transduction in plants, extracellular calmodulin, extracellular ATP, and integrin-like receptors, all of which affect plant growth and development.

  14. The Molecular Basis of Mechanosensory Transduction

    PubMed Central

    Marshall, Kara L.; Lumpkin, Ellen A.

    2014-01-01

    Multiple senses including hearing, touch, and osmotic regulation, require the ability to convert force into an electrical signal: a process called mechanotransduction. Mechanotransduction occurs through specialized proteins that open an ion channel pore in response to a mechanical stimulus. Many of these proteins remain unidentified in vertebrates, but known mechanotransduction channels in lower organisms provide clues into their identity and mechanism. Bacteria, fruit flies, and nematodes have all been used to elucidate the molecules necessary for force transduction. This chapter discusses many different mechanical senses and takes an evolutionary approach to review the proteins responsible for mechanotransduction in various biological kingdoms. PMID:22399400

  15. Mechanisms of sensory transduction in the skin.

    PubMed

    Lumpkin, Ellen A; Caterina, Michael J

    2007-02-22

    Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.

  16. Intranuclear protein transduction through a nucleoside salvage pathway.

    PubMed

    Hansen, James E; Tse, Chung-Ming; Chan, Grace; Heinze, Emil R; Nishimura, Robert N; Weisbart, Richard H

    2007-07-20

    Regulation of gene expression by intranuclear transduction of macromolecules such as transcription factors is an alternative to gene therapy for the treatment of numerous diseases. The identification of an effective intranuclear delivery vehicle and pathway for the transport of therapeutic macromolecules across plasma and nuclear membranes, however, has posed a significant challenge. The anti-DNA antibody fragment 3E10 Fv has received attention as a novel molecular delivery vehicle due to its penetration into living cells with specific nuclear localization, absence of toxicity, and successful delivery of therapeutic cargo proteins in vitro and in vivo. Elucidation of the pathway that allows 3E10 Fv to cross cell membranes is critical to the development of new molecular therapies. Here we show that 3E10 Fv penetrates cells through a nucleoside salvage transporter. 3E10 Fv is unable to penetrate into cells deficient in the equilibrative nucleoside transporter ENT2, and reconstitution of ENT2 into ENT2-deficient cells restores 3E10 Fv transport into cell nuclei. Our results represent the first demonstration of protein transport through a nucleoside salvage pathway. We expect that our finding will facilitate a variety of methods of gene regulation in the treatment of human diseases, open up new avenues of research in nucleoside salvage pathways, and enhance our understanding of the pathophysiology of autoimmune diseases.

  17. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato

    PubMed Central

    Liu, Yongsheng; Roof, Sherry; Ye, Zhibiao; Barry, Cornelius; van Tuinen, Ageeth; Vrebalov, Julia; Bowler, Chris; Giovannoni, Jim

    2004-01-01

    Fruit constitutes a major component of human diets, providing fiber, vitamins, and phytonutrients. Carotenoids are a major class of compounds found in many fruits, providing nutritional benefits as precursors to essential vitamins and as antioxidants. Although recent gene isolation efforts and metabolic engineering have primarily targeted genes involved in carotenoid biosynthesis, factors that regulate flux through the carotenoid pathway remain largely unknown. Characterization of the tomato high-pigment mutations (hp1 and hp2) suggests the manipulation of light signal transduction machinery may be an effective approach toward practical manipulation of plant carotenoids. We demonstrate here that hp1 alleles represent mutations in a tomato UV-DAMAGED DNA-BINDING PROTEIN 1 (DDB1) homolog. We further demonstrate that two tomato light signal transduction genes, LeHY5 and LeCOP1LIKE, are positive and negative regulators of fruit pigmentation, respectively. Down-regulated LeHY5 plants exhibit defects in light responses, including inhibited seedling photomorphogenesis, loss of thylakoid organization, and reduced carotenoid accumulation. In contrast, repression of LeCOP1LIKE expression results in plants with exaggerated photomorphogenesis, dark green leaves, and elevated fruit carotenoid levels. These results suggest genes encoding components of light signal transduction machinery also influence fruit pigmentation and represent genetic tools for manipulation of fruit quality and nutritional value. PMID:15178762

  18. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato.

    PubMed

    Liu, Yongsheng; Roof, Sherry; Ye, Zhibiao; Barry, Cornelius; van Tuinen, Ageeth; Vrebalov, Julia; Bowler, Chris; Giovannoni, Jim

    2004-06-29

    Fruit constitutes a major component of human diets, providing fiber, vitamins, and phytonutrients. Carotenoids are a major class of compounds found in many fruits, providing nutritional benefits as precursors to essential vitamins and as antioxidants. Although recent gene isolation efforts and metabolic engineering have primarily targeted genes involved in carotenoid biosynthesis, factors that regulate flux through the carotenoid pathway remain largely unknown. Characterization of the tomato high-pigment mutations (hp1 and hp2) suggests the manipulation of light signal transduction machinery may be an effective approach toward practical manipulation of plant carotenoids. We demonstrate here that hp1 alleles represent mutations in a tomato UV-DAMAGED DNA-BINDING PROTEIN 1 (DDB1) homolog. We further demonstrate that two tomato light signal transduction genes, LeHY5 and LeCOP1LIKE, are positive and negative regulators of fruit pigmentation, respectively. Down-regulated LeHY5 plants exhibit defects in light responses, including inhibited seedling photomorphogenesis, loss of thylakoid organization, and reduced carotenoid accumulation. In contrast, repression of LeCOP1LIKE expression results in plants with exaggerated photomorphogenesis, dark green leaves, and elevated fruit carotenoid levels. These results suggest genes encoding components of light signal transduction machinery also influence fruit pigmentation and represent genetic tools for manipulation of fruit quality and nutritional value.

  19. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    NASA Astrophysics Data System (ADS)

    Zhao, Yanbin; Fent, Karl

    2016-02-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7–742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals.

  20. Optimization of adenovirus vectors for transduction in embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Tashiro, Katsuhisa

    2011-01-01

      Because embryonic stem (ES) cells and induced pluripotent stem (iPS) cells can differentiate into various types of cells in vitro, they are considered as a valuable model to understand the processes involved in the differentiation into functional cells as well as an unlimited source of cells for therapeutic applications. Efficient gene transduction method is one of the powerful tools for the basic researches and for differentiating ES and iPS cells into lineage-committed cells. Recently, we have developed an adenovirus (Ad) vector for efficient transduction into ES and iPS cells. We showed that Ad vectors containing the cytomegalovirus enhancer/β-actin promoter with β-actin intron (CA) promoter or the elongation factor (EF)-1α promoter were the appropriate for the transduction into ES and iPS cells. We also found that enforced expression of a PPARγ gene or a Runx2 gene into mouse ES and iPS cells by an optimized Ad vector markedly augmented the differentiation of adipocytes or osteoblasts, respectively. Thus, a gene transfer technique using an Ad vector could be an advantage for the regulation of stem cell differentiation and could be applied to regenerative medicine based on ES and iPS cells.

  1. Progestins alter photo-transduction cascade and circadian rhythm network in eyes of zebrafish (Danio rerio)

    PubMed Central

    Zhao, Yanbin; Fent, Karl

    2016-01-01

    Environmental progestins are implicated in endocrine disruption in vertebrates. Additional targets that may be affected in organisms are poorly known. Here we report that progesterone (P4) and drospirenone (DRS) interfere with the photo-transduction cascade and circadian rhythm network in the eyes of zebrafish. Breeding pairs of adult zebrafish were exposed to P4 and DRS for 21 days with different measured concentrations of 7–742 ng/L and 99-13´650 ng/L, respectively. Of totally 10 key photo-transduction cascade genes analyzed, transcriptional levels of most were significantly up-regulated, or normal down-regulation was attenuated. Similarly, for some circadian rhythm genes, dose-dependent transcriptional alterations were also observed in the totally 33 genes analyzed. Significant alterations occurred even at environmental relevant levels of 7 ng/L P4. Different patterns were observed for these transcriptional alterations, of which, the nfil3 family displayed most significant changes. Furthermore, we demonstrate the importance of sampling time for the determination and interpretation of gene expression data, and put forward recommendations for sampling strategies to avoid false interpretations. Our results suggest that photo-transduction signals and circadian rhythm are potential targets for progestins. Further studies are required to assess alterations on the protein level, on physiology and behavior, as well as on implications in mammals. PMID:26899944

  2. Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans.

    PubMed

    Smith, Heidi K; Luo, Linjiao; O'Halloran, Damien; Guo, Dagang; Huang, Xin-Yun; Samuel, Aravinthan D T; Hobert, Oliver

    2013-08-01

    Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion channel subunits, encoded by the tax-2 and tax-4 genes, are essential for ASE-mediated gustatory behavior. We describe here specific mechanistic features of cGMP-mediated signal transduction in the ASE neurons. First, we assess the specificity of the sensory functions of individual rGC proteins. We have previously shown that multiple rGC proteins are expressed in a left/right asymmetric manner in the functionally lateralized ASE neurons and are required to sense distinct salt cues. Through domain swap experiments among three different rGC proteins, we show here that the specificity of individual rGC proteins lies in their extracellular domains and not in their intracellular, signal-transducing domains. Furthermore, we find that rGC proteins are also sufficient to confer salt sensory responses to other neurons. Both findings support the hypothesis that rGC proteins are salt receptor proteins. Second, we identify a novel, likely downstream effector of the rGC proteins in gustatory signal transduction, a previously uncharacterized cyclic nucleotide-gated (CNG) ion channel, encoded by the che-6 locus. che-6 mutants show defects in gustatory sensory transduction that are similar to defects observed in animals lacking the tax-2 and tax-4 CNG channels. In contrast, thermosensory signal transduction, which also requires tax-2 and tax-4, does not require che-6, but requires another CNG, cng-3. We propose that CHE-6 may form together with two other CNG subunits, TAX-2 and TAX-4, a gustatory neuron-specific heteromeric CNG channel complex.

  3. Specificity in stress response: epidermal keratinocytes exhibit specialized UV-responsive signal transduction pathways.

    PubMed

    Adachi, Makoto; Gazel, Alix; Pintucci, Giuseppe; Shuck, Alyssa; Shifteh, Shiva; Ginsburg, Dov; Rao, Laxmi S; Kaneko, Takehiko; Freedberg, Irwin M; Tamaki, Kunihiko; Blumenberg, Miroslav

    2003-10-01

    UV light, a paradigmatic initiator of cell stress, invokes responses that include signal transduction, activation of transcription factors, and changes in gene expression. Consequently, in epidermal keratinocytes, its principal and frequent natural target, UV regulates transcription of a distinctive set of genes. Hypothesizing that UV activates distinctive epidermal signal transduction pathways, we compared the UV-responsive activation of the JNK and NFkappaB pathways in keratinocytes, with the activation of the same pathways by other agents and in other cell types. Using of inhibitors and antisense oligonucleotides, we found that in keratinocytes only UVB/UVC activate JNK, while in other cell types UVA, heat shock, and oxidative stress do as well. Keratinocytes express JNK-1 and JNK-3, which is unexpected because JNK-3 expression is considered brain-specific. In keratinocytes, ERK1, ERK2, and p38 are activated by growth factors, but not by UV. UVB/UVC in keratinocytes activates Elk1 and AP1 exclusively through the JNK pathway. JNKK1 is essential for UVB/UVC activation of JNK in keratinocytes in vitro and in human skin in vivo. In contrast, in HeLa cells, used as a control, crosstalk among signal transduction pathways allows considerable laxity. In parallel, UVB/UVC and TNFalpha activate the NFkappaB pathway via distinct mechanisms, as shown using antisense oligonucleotides targeted against IKKbeta, the active subunit of IKK. This implies a specific UVB/UVC responsive signal transduction pathway independent from other pathways. Our results suggest that in epidermal keratinocytes specific signal transduction pathways respond to UV light. Based on these findings, we propose that the UV light is not a genetic stress response inducer in these cells, but a specific agent to which epidermis developed highly specialized responses.

  4. Transductive face sketch-photo synthesis.

    PubMed

    Wang, Nannan; Tao, Dacheng; Gao, Xinbo; Li, Xuelong; Li, Jie

    2013-09-01

    Face sketch-photo synthesis plays a critical role in many applications, such as law enforcement and digital entertainment. Recently, many face sketch-photo synthesis methods have been proposed under the framework of inductive learning, and these have obtained promising performance. However, these inductive learning-based face sketch-photo synthesis methods may result in high losses for test samples, because inductive learning minimizes the empirical loss for training samples. This paper presents a novel transductive face sketch-photo synthesis method that incorporates the given test samples into the learning process and optimizes the performance on these test samples. In particular, it defines a probabilistic model to optimize both the reconstruction fidelity of the input photo (sketch) and the synthesis fidelity of the target output sketch (photo), and efficiently optimizes this probabilistic model by alternating optimization. The proposed transductive method significantly reduces the expected high loss and improves the synthesis performance for test samples. Experimental results on the Chinese University of Hong Kong face sketch data set demonstrate the effectiveness of the proposed method by comparing it with representative inductive learning-based face sketch-photo synthesis methods.

  5. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  6. Whole Body Skeletal Muscle Transduction in Neonatal Dogs with AAV-9

    PubMed Central

    Yue, Yongping; Shin, Jin-Hong; Duan, Dongsheng

    2011-01-01

    Gene therapy of muscular dystrophy requires systemic gene delivery to all muscles in the body. Adeno-associated viral (AAV) vectors have been shown to lead to body-wide muscle transduction after a single intravascular injection. Proof-of-principle has been demonstrated in mouse models of Duchenne muscular dystrophy and limb girdle muscular dystrophy. Before initiating clinical trials, it is important to validate these promising results in large animal models. More than a dozen canine muscular dystrophy models have been developed. Here, we outline a protocol for performing systemic AAV gene transfer in neonatal dogs. Implementing this technique in dystrophic dogs will accelerate translational muscular dystrophy research. PMID:21194038

  7. Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development REVIEW

    PubMed Central

    Clouse, Steven D.

    2011-01-01

    Brassinosteroid (BR) signal transduction research has progressed rapidly from the initial discovery of the BR receptor to a complete definition of the basic molecular components required to relay the BR signal from perception by receptor kinases at the cell surface to activation of a small family of transcription factors that regulate the expression of more than a thousand genes in a BR-dependent manner. These mechanistic advances have helped answer the intriguing question of how a single molecule, such as a hormone, can have dramatic pleiotropic effects on a broad range of diverse developmental pathways and have shed light on how BRs interact with other plant hormones and environmental cues to shape the growth of the whole plant. This review summarizes the current state of BR signal transduction research and then examines recent articles uncovering gene regulatory networks through which BR influences both vegetative and reproductive development. PMID:21505068

  8. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    SciTech Connect

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  9. Adenoviral transduction of enterocytes and M-cells using in vitro models based on Caco-2 cells: the coxsackievirus and adenovirus receptor (CAR) mediates both apical and basolateral transduction.

    PubMed

    Kesisoglou, Filippos; Schmiedlin-Ren, Phyllissa; Fleisher, David; Zimmermann, Ellen M

    2010-06-07

    Understanding virus-cell interaction is a key to the design of successful gene delivery vectors. In the present study we investigated Ad5 transduction of enterocytes and M-cells utilizing differentiated Caco-2 cells and cocultures of Caco-2 cells with lymphocytes. Transduction inhibition studies showed that CAR is the major receptor mediating apical and basolateral virus entry in differentiated Caco-2 cells. Integrins and heparan sulfate glycosaminoglycans do not appear to play a significant role. Immunofluorescence localized CAR to sites of cell-cell contact, with staining mostly observed on the cell perimeter. Staining was observed even in nonpermeabilized monolayers, suggesting apical accessibility of the receptor. Cocultures with mouse Peyer's patch lymphocytes or Raji B human lymphocytes were more susceptible to transduction than Caco-2 cells, and the effects were dose-dependent. Similar to Caco-2 cells, CAR and not integrins mediated apical transduction. In conclusion, contrary to other epithelial cell lines, both apical and basolateral transduction of absorptive enterocytes and M-cells is mediated by binding to CAR. The coculture system can be used to study the interactions between M-cells and gene delivery vectors.

  10. Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction

    PubMed Central

    Nakanishi, Hiroshi; Kurima, Kiyoto; Kawashima, Yoshiyuki; Griffith, Andrew J.

    2014-01-01

    Objective Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant (DFNA36) or recessive (DFNB7/B11) deafness. In this article, we describe the characteristics of DFNA36 and DFNB7/B11 deafness, the features of the Tmc1 mutant mouse strains, and recent advances in our understanding of TMC1 function. Methods Publications related to TMC1, DFNA36 or DFNB7/B11 were identified through PubMed. Results All affected DFNA36 subjects showed post-lingual, progressive, sensorineural hearing loss (HL), initially affecting high frequencies. In contrast, almost all affected DFNB7/B11 subjects demonstrated congenital or prelingual severe to profound sensorineural HL. The mouse Tmc1 gene also has dominant and recessive mutant alleles that cause HL in mutant strains, including Beethoven, deafness and Tmc1 knockout mice. These mutant mice have been instrumental for revealing that Tmc1 and its closely related paralog Tmc2 are expressed in cochlear and vestibular hair cells, and are required for hair cell mechanoelectrical transduction (MET). Recent studies suggest that TMC1 and TMC2 may be components of the long-sought hair cell MET channel. Conclusion TMC1 mutations disrupt hair cell MET. PMID:24933710

  11. Role for moesin in lipopolysaccharide-stimulated signal transduction.

    PubMed

    Iontcheva, Iveta; Amar, Salomon; Zawawi, Khalid H; Kantarci, Alpdogan; Van Dyke, Thomas E

    2004-04-01

    Moesin is a 78-kDa protein with diverse functions in linking the cytoskeleton to the membrane while controlling cell shape, adhesion, locomotion, and signaling. The aim of this study was to characterize the expression and localization of moesin in mononuclear phagocytes by using confocal microscopy, flow cytometry, immunoprecipitation, and Western blotting and to analyze the function of moesin as a lipopolysaccharide receptor, utilizing an antisense oligonucleotide approach to knock down the moesin gene. Results revealed that moesin is expressed on the surface of monocytes/macrophages and surface expression is increased after lipopolysaccharide stimulation. The total protein mass of moesin is increased in monocytes after lipopolysaccharide stimulation. Immunoprecipitation showed that moesin coprecipitates with TLR4, a well-known lipopolysaccharide receptor, suggesting an early role of moesin in the formation of the initiation complex for lipopolysaccharide signaling. Two antisense and two control sense oligonucleotides were synthesized and introduced every 4 h for 48 h in adherent macrophage-like cells. Cells were then stimulated with lipopolysaccharide for 4 h, and the supernatants were assayed for tumor necrosis factor alpha (TNF-alpha) production. Cell lysates were assayed for moesin expression by Western blotting immediately after the 48-h treatment period and also after 116 h of recovery to assess the return of moesin expression and function. Moesin gene expression was completely suppressed after 48 h of incubation with antisense oligonucleotides. The antisense elimination of moesin gene expression led to a significant reduction of lipopolysaccharide-induced TNF-alpha secretion. Restoration of moesin gene expression led to restoration of TNF-alpha production. These data suggest an important role for moesin in lipopolysaccharide-induced TNF-alpha production, highlighting its importance in lipopolysaccharide-mediated signal transduction.

  12. Transduction of mechanical strain in bone

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.

    1995-01-01

    One physiologic consequence of extended periods of weightlessness is the rapid loss of bone mass associated with skeletal unloading. Conversely, mechanical loading has been shown to increase bone formation and stimulate osteoblastic function. The mechanisms underlying mechanotransduction, or how the osteoblast senses and converts biophysical stimuli into cellular responses has yet to be determined. For non-innervated mechanosensitive cells like the osteoblast, mechanotransduction can be divided into four distinct phases: 1) mechanocoupling, or the characteristics of the mechanical force applied to the osteoblast, 2) biochemical coupling, or the mechanism through which mechanical strain is transduced into a cellular biochemical signal, 3) transmission of signal from sensor to effector cell and 4) the effector cell response. This review examines the characteristics of the mechanical strain encountered by osteoblasts, possible biochemical coupling mechanisms, and how the osteoblast responds to mechanical strain. Differences in osteoblastic responses to mechanical strain are discussed in relation to the types of strain encountered and the possible transduction pathways involved.

  13. Green Light to Illuminate Signal Transduction Events

    PubMed Central

    Balla, Tamas

    2009-01-01

    When cells are exposed to hormones that act on cell surface receptors, information is processed through the plasma membrane into the cell interior via second messengers generated in the inner leaflet of the plasma membrane. Individual biochemical steps along this cascade, starting with ligand binding to receptors to activation of guanine nucleotide binding proteins and their downstream effectors such as adenylate cyclase or phospholipase C, have been biochemically characterized. However, the complexity of temporal and spatial integration of these molecular events requires that they be studied in intact cells. The great expansion of fluorescent techniques and improved imaging technologies such as confocal- and TIRF microscopy combined with genetically engineered protein modules has provided a completely new approach to signal transduction research. Spatial definition of biochemical events followed with real-time temporal resolution has become a standard goal and we are breaking the resolution barrier of light microscopes with several new techniques. PMID:19818623

  14. Striatal Signal Transduction and Drug Addiction

    PubMed Central

    Philibin, Scott D.; Hernandez, Adan; Self, David W.; Bibb, James A.

    2011-01-01

    Drug addiction is a severe neuropsychiatric disorder characterized by loss of control over motivated behavior. The need for effective treatments mandates a greater understanding of the causes and identification of new therapeutic targets for drug development. Drugs of abuse subjugate normal reward-related behavior to uncontrollable drug-seeking and -taking. Contributions of brain reward circuitry are being mapped with increasing precision. The role of synaptic plasticity in addiction and underlying molecular mechanisms contributing to the formation of the addicted state are being delineated. Thus we may now consider the role of striatal signal transduction in addiction from a more integrative neurobiological perspective. Drugs of abuse alter dopaminergic and glutamatergic neurotransmission in medium spiny neurons of the striatum. Dopamine receptors important for reward serve as principle targets of drugs abuse, which interact with glutamate receptor signaling critical for reward learning. Complex networks of intracellular signal transduction mechanisms underlying these receptors are strongly stimulated by addictive drugs. Through these mechanisms, repeated drug exposure alters functional and structural neuroplasticity, resulting in transition to the addicted biological state and behavioral outcomes that typify addiction. Ca2+ and cAMP represent key second messengers that initiate signaling cascades, which regulate synaptic strength and neuronal excitability. Protein phosphorylation and dephosphorylation are fundamental mechanisms underlying synaptic plasticity that are dysregulated by drugs of abuse. Increased understanding of the regulatory mechanisms by which protein kinases and phosphatases exert their effects during normal reward learning and the addiction process may lead to novel targets and pharmacotherapeutics with increased efficacy in promoting abstinence and decreased side effects, such as interference with natural reward, for drug addiction. PMID

  15. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  16. Studying Cellular Signal Transduction with OMIC Technologies

    PubMed Central

    Landry, Benjamin D.; Clarke, David C.; Lee, Michael J.

    2016-01-01

    In the gulf between genotype and phenotype exists proteins and, in particular, protein signal transduction systems. These systems use a relatively limited parts list to respond to a much longer list of extracellular, environmental, and/or mechanical cues with rapidity and specificity. Most signaling networks function in a highly nonlinear and often contextual manner. Furthermore, these processes occur dynamically across space and time. Because of these complexities, systems and “OMIC” approaches are essential for the study of signal transduction. One challenge in using OMIC-scale approaches to study signaling is that the “signal” can take different forms in different situations. Signals are encoded in diverse ways such as protein-protein interactions, enzyme activities, localizations, or post-translational modifications to proteins. Furthermore, in some cases signals may be encoded only in the dynamics, duration, or rates of change of these features. Accordingly, systems-level analyses of signaling may need to integrate multiple experimental and/or computational approaches. As the field has progressed, the non-triviality of integrating experimental and computational analyses has become apparent. Successful use of OMIC methods to study signaling will require the “right” experiments and the “right” modeling approaches, and it is critical to consider both in the design phase of the project. In this review, we discuss common OMIC and modeling approaches for studying signaling, emphasizing the philosophical and practical considerations for effectively merging these two types of approaches to maximize the probability of obtaining reliable and novel insights into signaling biology. PMID:26244521

  17. Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication.

    PubMed

    Corrochano, Luis M; Kuo, Alan; Marcet-Houben, Marina; Polaino, Silvia; Salamov, Asaf; Villalobos-Escobedo, José M; Grimwood, Jane; Álvarez, M Isabel; Avalos, Javier; Bauer, Diane; Benito, Ernesto P; Benoit, Isabelle; Burger, Gertraud; Camino, Lola P; Cánovas, David; Cerdá-Olmedo, Enrique; Cheng, Jan-Fang; Domínguez, Angel; Eliáš, Marek; Eslava, Arturo P; Glaser, Fabian; Gutiérrez, Gabriel; Heitman, Joseph; Henrissat, Bernard; Iturriaga, Enrique A; Lang, B Franz; Lavín, José L; Lee, Soo Chan; Li, Wenjun; Lindquist, Erika; López-García, Sergio; Luque, Eva M; Marcos, Ana T; Martin, Joel; McCluskey, Kevin; Medina, Humberto R; Miralles-Durán, Alejandro; Miyazaki, Atsushi; Muñoz-Torres, Elisa; Oguiza, José A; Ohm, Robin A; Olmedo, María; Orejas, Margarita; Ortiz-Castellanos, Lucila; Pisabarro, Antonio G; Rodríguez-Romero, Julio; Ruiz-Herrera, José; Ruiz-Vázquez, Rosa; Sanz, Catalina; Schackwitz, Wendy; Shahriari, Mahdi; Shelest, Ekaterina; Silva-Franco, Fátima; Soanes, Darren; Syed, Khajamohiddin; Tagua, Víctor G; Talbot, Nicholas J; Thon, Michael R; Tice, Hope; de Vries, Ronald P; Wiebenga, Ad; Yadav, Jagjit S; Braun, Edward L; Baker, Scott E; Garre, Victoriano; Schmutz, Jeremy; Horwitz, Benjamin A; Torres-Martínez, Santiago; Idnurm, Alexander; Herrera-Estrella, Alfredo; Gabaldón, Toni; Grigoriev, Igor V

    2016-06-20

    Plants and fungi use light and other signals to regulate development, growth, and metabolism. The fruiting bodies of the fungus Phycomyces blakesleeanus are single cells that react to environmental cues, including light, but the mechanisms are largely unknown [1]. The related fungus Mucor circinelloides is an opportunistic human pathogen that changes its mode of growth upon receipt of signals from the environment to facilitate pathogenesis [2]. Understanding how these organisms respond to environmental cues should provide insights into the mechanisms of sensory perception and signal transduction by a single eukaryotic cell, and their role in pathogenesis. We sequenced the genomes of P. blakesleeanus and M. circinelloides and show that they have been shaped by an extensive genome duplication or, most likely, a whole-genome duplication (WGD), which is rarely observed in fungi [3-6]. We show that the genome duplication has expanded gene families, including those involved in signal transduction, and that duplicated genes have specialized, as evidenced by differences in their regulation by light. The transcriptional response to light varies with the developmental stage and is still observed in a photoreceptor mutant of P. blakesleeanus. A phototropic mutant of P. blakesleeanus with a heterozygous mutation in the photoreceptor gene madA demonstrates that photosensor dosage is important for the magnitude of signal transduction. We conclude that the genome duplication provided the means to improve signal transduction for enhanced perception of environmental signals. Our results will help to understand the role of genome dynamics in the evolution of sensory perception in eukaryotes.

  18. Report of an Army Workshop on Convergence Forecasting: Mechanochemical Transduction

    DTIC Science & Technology

    2012-07-01

    Breakout Session 1, Group 1.........................................................................10  Figure 3. Potential Ultrasound -Mediated...Capabilities in Mechanochemical Transduction ..........10  Figure 4. Factors that Limit Potential Ultrasound -Mediated Mechanochemical Transduction... ultrasound as a mechanism to induce mechanochemical reactions. If ultrasound is to be used to provide the mechanical energy for subsequent chemical

  19. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  20. Separate TRP channels mediate amplification and transduction in drosophila

    NASA Astrophysics Data System (ADS)

    Lehnert, Brendan P.; Baker, Allison E.; Wilson, Rachel I.

    2015-12-01

    Auditory receptor cells rely on mechanically-gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. We developed a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically-defined population of auditory receptors. We find that the TRPN family member NompC, which is necessary for the active amplification of motion by the auditory organ, is not required for transduction. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  1. The Membrane and Lipids as Integral Participants in Signal Transduction: Lipid Signal Transduction for the Non-Lipid Biochemist

    ERIC Educational Resources Information Center

    Eyster, Kathleen M.

    2007-01-01

    Reviews of signal transduction have often focused on the cascades of protein kinases and protein phosphatases and their cytoplasmic substrates that become activated in response to extracellular signals. Lipids, lipid kinases, and lipid phosphatases have not received the same amount of attention as proteins in studies of signal transduction.…

  2. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    SciTech Connect

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-05-10

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  3. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction.

    PubMed

    Chu, Yanjie; Oum, Yoon Hyeun; Carrico, Isaac S

    2016-01-01

    As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation.

  4. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development

    PubMed Central

    Wasternack, C.

    2007-01-01

    Background Jasmonates are ubiquitously occurring lipid-derived compounds with signal functions in plant responses to abiotic and biotic stresses, as well as in plant growth and development. Jasmonic acid and its various metabolites are members of the oxylipin family. Many of them alter gene expression positively or negatively in a regulatory network with synergistic and antagonistic effects in relation to other plant hormones such as salicylate, auxin, ethylene and abscisic acid. Scope This review summarizes biosynthesis and signal transduction of jasmonates with emphasis on new findings in relation to enzymes, their crystal structure, new compounds detected in the oxylipin and jasmonate families, and newly found functions. Conclusions Crystal structure of enzymes in jasmonate biosynthesis, increasing number of jasmonate metabolites and newly identified components of the jasmonate signal-transduction pathway, including specifically acting transcription factors, have led to new insights into jasmonate action, but its receptor(s) is/are still missing, in contrast to all other plant hormones. PMID:17513307

  5. Role of functionality in two-component signal transduction: A stochastic study

    NASA Astrophysics Data System (ADS)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  6. FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes

    SciTech Connect

    Borziak, Kirill; Jouline, Igor B

    2007-01-01

    Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similarity to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.

  7. Novel immunotherapeutic approaches to skin cancer treatments using protein transduction technology.

    PubMed

    Shibagaki, Naotaka; Okamoto, Takashi; Mitsui, Hiroshi; Inozume, Takashi; Kanzaki, Mirei; Shimada, Shinji

    2011-03-01

    Protein-transduction domains (PTDs) are short stretches of cationic amino acids that enable peptides, proteins, oligonucleotides, and other reagents to efficiently enter multiple cell types. Therefore, PTDs offer unique therapeutic opportunities for the treatment of many diseases. Previous studies examined the in vivo distribution of PTD-containing fusion proteins following administration via different routes, including portal vein, intravenous, intraperitoneal, and oral administration. Skin may be an appropriate target organ for this new molecular-carrier system; however, there are no studies on the in vivo kinetics and biological effects of PTD-containing proteins following intradermal application. Among the PTDs, poly-arginine peptides, especially nona-arginine (R9), is transported most efficiently with minimal cytotoxicity. Here, we review protein transduction technology from a different angle, as a novel tool in immunotherapeutic approaches to the skin cancers that depend on the biological characteristics of poly-arginine. This could be used in place of gene therapy for skin cancer patients.

  8. Primary Cilia Modulate IHH Signal Transduction in Response to Hydrostatic Loading of Growth Plate Chondrocytes

    PubMed Central

    Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy

    2011-01-01

    Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256

  9. Receptor component protein (RCP): a member of a multi-protein complex required for G-protein-coupled signal transduction.

    PubMed

    Prado, M A; Evans-Bain, B; Dickerson, I M

    2002-08-01

    The calcitonin-gene-related peptide (CGRP) receptor component protein (RCP) is a 148-amino-acid intracellular protein that is required for G-protein-coupled signal transduction at receptors for the neuropeptide CGRP. RCP works in conjunction with two other proteins to constitute a functional CGRP receptor: calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein 1 (RAMP1). CRLR has the stereotypical seven-transmembrane topology of a G-protein-coupled receptor; it requires RAMP1 for trafficking to the cell surface and for ligand specificity, and requires RCP for coupling to the cellular signal transduction pathway. We have made cell lines that expressed an antisense construct of RCP and determined that CGRP-mediated signal transduction was reduced, while CGRP binding was unaffected. Furthermore, signalling at two other endogenous G-protein-coupled receptors was unaffected, suggesting that RCP was specific for a limited subset of receptors.

  10. Signal transduction pathways leading to the production of IL-8 by human monocytes are differentially regulated by dexamethasone.

    PubMed Central

    Anttila, H S; Reitamo, S; Ceska, M; Hurme, M

    1992-01-01

    Previous studies have shown that IL-8 gene expression is enhanced by various stimuli, which induce different signal transduction pathways. A lipopolysaccharide (LPS)-induced pathway has been reported to be inhibited by glucocorticoids in monocytes. We have now examined the effect of dexamethasone on the LPS-induced and other signal transduction pathways leading to the production of IL-8 by human monocytes. Dexamethasone inhibited the production of IL-8 stimulated with a cyclic adenosine monophosphate analog or LPS. In contrast, dexamethasone had no significant effect on a phorbol ester (PMA)-stimulated IL-8 production. These results suggest that the signal transduction pathways leading to the production of IL-8 by human monocytes are differentially regulated by dexamethasone. PMID:1325308

  11. Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope.

    PubMed

    Eleftheriadou, Ioanna; Dieringer, Michael; Poh, Xuan Ying; Sanchez-Garrido, Julia; Gao, Yunan; Sgourou, Argyro; Simmons, Laura E; Mazarakis, Nicholas D

    2017-04-01

    Lentiviral vectors are gene delivery vehicles that integrate into the host genome of dividing and non-dividing mammalian cells facilitating long-term transgene expression. Lentiviral vector versatility is greatly increased by incorporating heterologous viral envelope proteins onto the vector particles instead of the native envelope, conferring on these pseudotyped vectors a modified tropism and host range specificity. We investigated the pseudotyping efficiency of HIV-1 based lentiviral vectors with alphaviral envelope proteins from the Chikungunya Virus (CHIKV-G) and Sindbis Virus (SINV-G). Following vector production optimisation, titres for the CHIKV-G pseudotype were comparable to the VSV-G pseudotype but those for the SINV-G pseudotype were significantly lower. High titre CHIKV-G pseudotyped vector efficiently transduced various human and mouse neural cell lines and normal human astrocytes (NHA) in vitro. Although transduction was broad, tropism for NHAs was observed. In vivo stereotaxic delivery in striatum, thalamus and hippocampus respectively in the adult rat brain revealed localised transduction restricted to striatal astrocytes and hippocampal dentate granule neurons. Transduction of different subtypes of granule neurons from precursor to post-mitotic stages of differentiation was evident in the sub-granular zone and dentate granule cell layer. No significant inflammatory response was observed, but comparable to that of VSV-G pseudotyped lentiviral vectors. Robust long-term expression followed for three months post-transduction along with absence of neuroinflammation, coupled to the selective and unique neuron/glial tropism indicates that these vectors could be useful for modelling and gene therapy studies in the CNS.

  12. SAM68: Signal Transduction and RNA Metabolism in Human Cancer

    PubMed Central

    Frisone, Paola; Pradella, Davide; Di Matteo, Anna; Belloni, Elisa; Ghigna, Claudia; Paronetto, Maria Paola

    2015-01-01

    Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting splicing regulatory sequences contribute to cancer phenotypes. Genome-wide studies have revealed more than 15,000 tumor-associated splice variants derived from genes involved in almost every aspect of cancer cell biology, including proliferation, differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to the STAR (signal transduction and activation of RNA metabolism) family of RBPs. SAM68 is involved in several steps of mRNA metabolism, from transcription to alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling pathways associated with cell response to stimuli, cell cycle transitions, and viral infections. Recent evidence has linked this RBP to the onset and progression of different tumors, highlighting misregulation of SAM68-regulated splicing events as a key step in neoplastic transformation and tumor progression. Here we review recent studies on the role of SAM68 in splicing regulation and we discuss its contribution to aberrant pre-mRNA processing in cancer. PMID:26273626

  13. A Comprehensive Map of CNS Transduction by Eight Recombinant Adeno-associated Virus Serotypes Upon Cerebrospinal Fluid Administration in Pigs

    PubMed Central

    Sorrentino, Nicolina Cristina; Maffia, Veronica; Strollo, Sandra; Cacace, Vincenzo; Romagnoli, Noemi; Manfredi, Anna; Ventrella, Domenico; Dondi, Francesco; Barone, Francesca; Giunti, Massimo; Graham, Anne-Renee; Huang, Yan; Kalled, Susan L; Auricchio, Alberto; Bacci, Maria Laura; Surace, Enrico Maria; Fraldi, Alessandro

    2016-01-01

    Cerebrospinal fluid administration of recombinant adeno-associated viral (rAAV) vectors has been demonstrated to be effective in delivering therapeutic genes to the central nervous system (CNS) in different disease animal models. However, a quantitative and qualitative analysis of transduction patterns of the most promising rAAV serotypes for brain targeting in large animal models is missing. Here, we characterize distribution, transduction efficiency, and cellular targeting of rAAV serotypes 1, 2, 5, 7, 9, rh.10, rh.39, and rh.43 delivered into the cisterna magna of wild-type pigs. rAAV9 showed the highest transduction efficiency and the widest distribution capability among the vectors tested. Moreover, rAAV9 robustly transduced both glia and neurons, including the motor neurons of the spinal cord. Relevant cell transduction specificity of the glia was observed after rAAV1 and rAAV7 delivery. rAAV7 also displayed a specific tropism to Purkinje cells. Evaluation of biochemical and hematological markers suggested that all rAAV serotypes tested were well tolerated. This study provides a comprehensive CNS transduction map in a useful preclinical large animal model enabling the selection of potentially clinically transferable rAAV serotypes based on disease specificity. Therefore, our data are instrumental for the clinical evaluation of these rAAV vectors in human neurodegenerative diseases. PMID:26639405

  14. Melanin, Radiation, and Energy Transduction in Fungi.

    PubMed

    Casadevall, Arturo; Cordero, Radames J B; Bryan, Ruth; Nosanchuk, Joshua; Dadachova, Ekaterina

    2017-03-01

    Melanin pigments are found in many diverse fungal species, where they serve a variety of functions that promote fitness and cell survival. Melanotic fungi inhabit some of the most extreme habitats on earth such as the damaged nuclear reactor at Chernobyl and the highlands of Antarctica, both of which are high-radiation environments. Melanotic fungi migrate toward radioactive sources, which appear to enhance their growth. This phenomenon, combined with the known capacities of melanin to absorb a broad spectrum of electromagnetic radiation and transduce this radiation into other forms of energy, raises the possibility that melanin also functions in harvesting such energy for biological usage. The ability of melanotic fungi to harness electromagnetic radiation for physiological processes has enormous implications for biological energy flows in the biosphere and for exobiology, since it provides new mechanisms for survival in extraterrestrial conditions. Whereas some features of the way melanin-related energy transduction works can be discerned by linking various observations and circumstantial data, the mechanistic details remain to be discovered.

  15. Glycosphingolipid–Protein Interaction in Signal Transduction

    PubMed Central

    Russo, Domenico; Parashuraman, Seetharaman; D’Angelo, Giovanni

    2016-01-01

    Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development. PMID:27754465

  16. Signal transduction disturbance related to hepatocarcinogenesis in mouse by prolonged exposure to Nanjing drinking water.

    PubMed

    Zhang, Rui; Sun, Jie; Zhang, Yan; Cheng, Shupei; Zhang, Xiaowei

    2013-09-01

    Toxicogenomic approaches were used to investigate the potential hepatocarcinogenic effects on mice by oral exposure to Nanjing drinking water (NJDW). Changes in the hepatic transcriptome of 3 weeks male mice (Mus musculus) were monitored and dissected after oral exposure to NJDW for 90 days. No preneoplastic and neoplastic lesions were observed in the hepatic tissue by the end of NJDW exposure. However, total of 746 genes were changed transcriptionally. Thirty-one percent of differentially expressed genes (DEGs) were associated with the functional categories of cell cycle regulation, adhesion, growth, apoptosis, and signal transduction, which are closely implicated in tumorigenesis and progression. Interrogation of Kyoto Encyclopedia of Genes and Genomes revealed that 43 DEGs were mapped to several crucial signaling pathways implicated in the pathogenesis of hepatocellular carcinoma (HCC). In signal transduction network constructed via Genes2Networks software, Egfr, Akt1, Atf2, Ctnnb1, Hras, Mapk1, Smad2, and Ccnd1 were hubs. Direct gene-disease relationships obtained from Comparative Toxicogenomics Database and scientific literatures revealed that the hubs have direct mechanism or biomarker relationships with hepatocellular preneoplastic lesions or hepatocarcinogenesis. Therefore, prolonged intake of NJDW without employing any indoor water treatment strategy might predispose mouse to HCC. Furthermore, Egfr, Akt1, Ctnnb1, Hras, Mapk1, Smad2, and Ccnd1 were identified as promising biomarkers of the potential combined hepatocarcinogenicity.

  17. Confocal Scanner for Highly Sensitive Photonic Transduction of Nanomechanical Resonators

    NASA Astrophysics Data System (ADS)

    Diao, Zhu; Losby, Joseph E.; Sauer, Vincent T. K.; Westwood, Jocelyn N.; Freeman, Mark R.; Hiebert, Wayne K.

    2013-06-01

    We show that a simple confocal laser scanning system can be used to couple light through grating couplers into nanophotonic circuits. The coupling efficiency is better than 15% per coupler. Our technique avoids using multi-axis fibre stages and is especially advantageous when the nanophotonic circuit is kept in vacuum, e.g., for nanomechanical resonator displacement transduction. This was demonstrated by recording the resonant response of a nanomechanical doubly clamped beam embedded in a race-track optical cavity. The nanophotonic transduction offers an increase of two orders of magnitude in transduction responsivity compared with conventional free-space optical interferometry.

  18. Identification and Validation of Small Molecules That Enhance Recombinant Adeno-associated Virus Transduction following High-Throughput Screens

    PubMed Central

    Nicolson, Sarah C.; Li, Chengwen; Hirsch, Matthew L.; Setola, Vincent

    2016-01-01

    ABSTRACT While the recent success of adeno-associated virus (AAV)-mediated gene therapy in clinical trials is promising, challenges still face the widespread applicability of recombinant AAV(rAAV). A major goal is to enhance the transduction efficiency of vectors in order to achieve therapeutic levels of gene expression at a vector dose that is below the immunological response threshold. In an attempt to identify novel compounds that enhance rAAV transduction, we performed two high-throughput screens comprising 2,396 compounds. We identified 13 compounds that were capable of enhancing transduction, of which 12 demonstrated vector-specific effects and 1 could also enhance vector-independent transgene expression. Many of these compounds had similar properties and could be categorized into five groups: epipodophyllotoxins (group 1), inducers of DNA damage (group 2), effectors of epigenetic modification (group 3), anthracyclines (group 4), and proteasome inhibitors (group 5). We optimized dosing for the identified compounds in several immortalized human cell lines as well as normal diploid cells. We found that the group 1 epipodophyllotoxins (teniposide and etoposide) consistently produced the greatest transduction enhancement. We also explored transduction enhancement among single-stranded, self-complementary, and fragment vectors and found that the compounds could impact fragmented rAAV2 transduction to an even greater extent than single-stranded vectors. In vivo analysis of rAAV2 and all of the clinically relevant compounds revealed that, consistent with our in vitro results, teniposide exhibited the greatest level of transduction enhancement. Finally, we explored the capability of teniposide to enhance transduction of fragment vectors in vivo using an AAV8 capsid that is known to exhibit robust liver tropism. Consistent with our in vitro results, teniposide coadministration greatly enhanced fragmented rAAV8 transduction at 48 h and 8 days. This study provides a

  19. TRIM5α variations influence transduction efficiency with lentiviral vectors in both human and rhesus CD34(+) cells in vitro and in vivo.

    PubMed

    Evans, Molly E; Kumkhaek, Chutima; Hsieh, Matthew M; Donahue, Robert E; Tisdale, John F; Uchida, Naoya

    2014-02-01

    Human immunodeficiency virus type 1 (HIV-1) vectors can transduce human hematopoietic stem cells (HSC), but transduction efficiency varies among individuals. The innate immune factor tripartite motif-containing protein 5α (TRIM5α) plays an important role for restriction of retroviral infection. In this study, we examined whether TRIM5α could account for variations in transduction efficiency using both an established rhesus gene therapy model and human CD34(+) cell culture. Evaluation of TRIM5α genotypes (Mamu-1, -2, -3, -4, -5, and TrimCyp) in 16 rhesus macaques that were transplanted with transduced CD34(+) cells showed a significant correlation between TRIM5α Mamu-4 and high gene marking in both lymphocytes and granulocytes 6 months after transplantation. Since significant human TRIM5α coding polymorphisms were not known, we evaluated TRIM5α expression levels in human CD34(+) cells from 14 donors. Three days after HIV-1 vector transduction, measured transduction efficiency varied significantly among donors and was negatively correlated with TRIM5α expression levels. In summary, transduction efficiency in both rhesus and human CD34(+) cells was influenced by TRIM5α variations (genotypes and expression levels). Our findings are important for both understanding and mitigating the variability of transduction efficiency for rhesus and human CD34(+) cells.

  20. The transduction properties of intercostal muscle mechanoreceptors

    PubMed Central

    Holt, Gregory A; Johnson, Richard D; Davenport, Paul W

    2002-01-01

    Background Intercostal muscles are richly innervated by mechanoreceptors. In vivo studies of cat intercostal muscle have shown that there are 3 populations of intercostal muscle mechanoreceptors: primary muscle spindles (1°), secondary muscle spindles (2°) and Golgi tendon organs (GTO). The purpose of this study was to determine the mechanical transduction properties of intercostal muscle mechanoreceptors in response to controlled length and velocity displacements of the intercostal space. Mechanoreceptors, recorded from dorsal root fibers, were localized within an isolated intercostal muscle space (ICS). Changes in ICS displacement and the velocity of ICS displacement were independently controlled with an electromagnetic motor. ICS velocity (0.5 – 100 μm/msec to a displacement of 2,000 μm) and displacement (50–2,000 μm at a constant velocity of 10 μm/msec) parameters encompassed the full range of rib motion. Results Both 1° and 2° muscle spindles were found evenly distributed within the ICS. GTOs were localized along the rib borders. The 1° spindles had the greatest discharge frequency in response to displacement amplitude followed by the 2° afferents and GTOs. The 1° muscle spindles also possessed the greatest discharge frequency in response to graded velocity changes, 3.0 spikes·sec-1/μm·msec-1. GTOs had a velocity response of 2.4 spikes·sec-1/μm·msec-1 followed by 2° muscle spindles at 0.6 spikes·sec-1/μm·msec-1. Conclusion The results of this study provide a systematic description of the mechanosenitivity of the 3 types of intercostal muscle mechanoreceptors. These mechanoreceptors have discharge properties that transduce the magnitude and velocity of intercostal muscle length. PMID:12392601

  1. Pheromones cause disease: pheromone/odourant transduction.

    PubMed

    Nicholson, B

    2001-09-01

    This paper compares two models of the sense of smell and demonstrates that the new model has advantages over the accepted model with implications for medical research. The accepted transduction model had an odourant or pheromone contacting an aqueous sensory lymph then movement through it to a receptor membrane beneath. If the odourant or pheromone were non-soluble, the odourant/pheromone supposedly would be bound to a soluble protein in the lymph to be carried across. Thus, an odourant/carrier protein complex physically moved through the receptor lymph/mucus to interact with a membrane bound receptor. After the membranous receptor interaction, the molecule would be deactivated and any odourant/pheromone-binding protein recycled. This new electrical chemosensory model being proposed here has the pheromone or other odourant generating an electrical event in the extra-cellular mucus. Before the pheromone arrives, proteins of the 'carrier class' dissolved in the receptor mucus slowly and continuously sequester ions. A sensed pheromonal chemical species sorbs to the mucus and immediately binds to the now ion-holding dissolved protein. The binding of the pheromone to the protein causes a measurable conformational change in the pheromone/odourant-binding protein, desequestering ions. Releasing the bound ions changes the potential differences across a nearby super-sensitive dendritic membrane resulting in dendrite excitation. Pheromones will be implicated in the aetiology of the infectious, psychiatric and autoimmune diseases. This is the third article in a series of twelve to systematically explore this contention (see references 1-9).

  2. The sensory transduction pathways in bacterial chemotaxis

    NASA Technical Reports Server (NTRS)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  3. Enhanced Baculovirus-Mediated Transduction of Human Cancer Cells by Tumor-Homing Peptides

    PubMed Central

    Mäkelä, Anna R.; Matilainen, Heli; White, Daniel J.; Ruoslahti, Erkki; Oker-Blom, Christian

    2006-01-01

    Tumor cells and vasculature offer specific targets for the selective delivery of therapeutic genes. To achieve tumor-specific gene transfer, baculovirus tropism was manipulated by viral envelope modification using baculovirus display technology. LyP-1, F3, and CGKRK tumor-homing peptides, originally identified by in vivo screening of phage display libraries, were fused to the transmembrane anchor of vesicular stomatitis virus G protein and displayed on the baculoviral surface. The fusion proteins were successfully incorporated into budded virions, which showed two- to fivefold-improved binding to human breast carcinoma (MDA-MB-435) and hepatocarcinoma (HepG2) cells. The LyP-1 peptide inhibited viral binding to MDA-MB-435 cells with a greater magnitude and specificity than the CGKRK and F3 peptides. Maximal 7- and 24-fold increases in transduction, determined by transgene expression level, were achieved for the MDA-MB-435 and HepG2 cells, respectively. The internalization of each virus was inhibited by ammonium chloride treatment, suggesting the use of a similar endocytic entry route. The LyP-1 and F3 peptides showed an apparent inhibitory effect in transduction of HepG2 cells with the corresponding display viruses. Together, these results imply that the efficiency of baculovirus-mediated gene delivery can be significantly enhanced in vitro when tumor-targeting ligands are used and therefore highlight the potential of baculovirus vectors in cancer gene therapy. PMID:16775347

  4. Evidence for a novel signal transduction pathway activated by platelet-derived growth factor and by double-stranded RNA

    SciTech Connect

    Hall, D.J.; Jones, S.D.; Rollins, B.J.; Stiles, C.D. ); Stiles, C.D. ); Kaplan, D.R.; Whitman, M. )

    1989-04-01

    Platelet-derived growth factor (PDGF) and the synthetic double-stranded RNA poly(I) x poly(C) (poly(I x C)) stimulate transcription of the JE gene in BALB/c-3T3 fibroblasts. The response of JE to poly(I x C) does not appear to be channeled through any known component of the PDGF receptor signal transduction apparatus. In addition, JE sequences upstream of the transcription start site are devoid of previously identified poly(I x C)-responsive elements, such as those found in the beta-interferon gene. These data suggest that a novel signal transduction pathway regulates the JE response to PDGF and double-stranded RNA. The c-myc and c-fos proto-oncogenes also respond to this pathway but with poor efficiency. However, this pathway operates very efficiently on other PDGF-inducible genes that encode the secretory proteins KC and M-CSF.

  5. Falsification of the ionic channel theory of hair cell transduction

    PubMed Central

    Rossetto, Michelangelo

    2013-01-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment. PMID:24563711

  6. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila

    PubMed Central

    Struhl, Gary; Greenwald, Iva

    2001-01-01

    The cleavage model for signal transduction by receptors of the LIN-12/Notch family posits that ligand binding leads to cleavage within the transmembrane domain, so that the intracellular domain is released to translocate to the nucleus and activate target gene expression. The familial Alzheimer's disease-associated protein Presenilin is required for LIN-12/Notch signaling, and several lines of evidence suggest that Presenilin mediates the transmembrane cleavage event that releases the LIN-12/Notch intracellular domain. However, doubt was cast on this possibility by a report that Presenilin is not required for the transducing activity of NECN, a constitutively active transmembrane form of Notch, in Drosophila. Here, we have reassessed this finding and show instead that Presenilin is required for activity of NECN for all cell fate decisions examined. Our results indicate that transmembrane cleavage and signal transduction are strictly correlated, supporting the cleavage model for signal transduction by LIN-12/Notch and a role for Presenilin in mediating the ligand-induced transmembrane cleavage. PMID:11134525

  7. Molecular characterization of a calmodulin involved in the signal transduction chain of gravitaxis in Euglena gracilis.

    PubMed

    Daiker, Viktor; Lebert, Michael; Richter, Peter; Häder, Donat-Peter

    2010-04-01

    The unicellular flagellate Euglena gracilis shows a negative gravitactic behavior. This is based on physiological mechanisms which in the past have been indirectly assessed. Meanwhile, it was possible to isolate genes involved in the signal transduction chain of gravitaxis. The DNA sequences of five calmodulins were found in Euglena, one of which was only known in its protein structure (CaM.1); the other four are new. The biosynthesis of the corresponding proteins of CaM.1-CaM.5 was inhibited by means of RNA interference to determine their involvement in the gravitactic signal transduction chain. RNAi of CaM.1 inhibits free swimming of the cells and pronounced cell-form aberrations. The division of cells was also hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Blockage of CaM.3 to CaM. 5 did not impair gravitaxis. In contrast, the blockage of CaM.2 has only a transient and not pronounced influence on motility and cell form, but leads to a total loss of gravitactic orientation for more than 30 days. This indicates that CaM.2 is an element in the signal transduction chain of gravitaxis in E. gracilis. The results are discussed with regard to the current working model of gravitaxis in E. gracilis.

  8. Optimized Lentiviral Transduction Protocols by Use of a Poloxamer Enhancer, Spinoculation, and scFv-Antibody Fusions to VSV-G.

    PubMed

    Anastasov, Nataša; Höfig, Ines; Mall, Sabine; Krackhardt, Angela M; Thirion, Christian

    2016-01-01

    Lentiviral vectors (LV) are widely used to successfully transduce cells for research and clinical applications. This optimized LV infection protocol includes a nontoxic poloxamer-based adjuvant combined with antibody-retargeted lentiviral particles. The novel poloxamer P338 demonstrates superior characteristics for enhancing lentiviral transduction over the best-in-class polybrene-assisted transduction. Poloxamer P338 exhibited dual benefits of low toxicity and high efficiency of lentiviral gene delivery into a range of different primary cell cultures. One of the major advantages of P338 is its availability in pharma grade and applicability as cell culture medium additive in clinical protocols. Lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) can be produced to high titers and mediate high transduction efficiencies in vitro. For clinical applications the need for optimized transduction protocols, especially for transduction of primary T and stem cells, is high. The successful use of retronectin, the second lentivirus enhancer available as GMP material, requires the application of specific coating protocols not applicable in all processes, and results in the need of a relatively high multiplicity of infection (MOI) to achieve effective transduction efficiencies for hematopoietic cells (e.g., CD34+ hematopoietic stem cells). Cell specificity of lentiviral vectors was successfully increased by displaying different ratios of scFv-fused VSV-G glycoproteins on the viral envelope. The system has been validated with human CD30+ lymphoma cells, resulting in preferential gene delivery to CD30+ cells, which was increased fourfold in mixed cell cultures, by presenting scFv antibody fragments binding to respective surface markers. A combination of spinoculation and poloxamer-based chemical adjuvant increases the transduction of primary T-cells by greater than twofold. The combination of poloxamer-based and scFv-retargeted LVs increased

  9. Platelet-activating factor: receptors and signal transduction.

    PubMed

    Chao, W; Olson, M S

    1993-06-15

    During the past two decades, studies describing the chemistry and biology of PAF have been extensive. This potent phosphoacylglycerol exhibits a wide variety of physiological and pathophysiological effects in various cells and tissues. PAF acts, through specific receptors and a variety of signal transduction systems, to elicit diverse biochemical responses. Several important future directions can be enumerated for the characterization of PAF receptors and their attendant signalling mechanisms. The recent cloning and sequence analysis of the gene for the PAF receptor will allow a number of important experimental approaches for characterizing the structure and analysing the function of the various domains of the receptor. Using molecular genetic and immunological technologies, questions relating to whether there is receptor heterogeneity, the precise mechanism(s) for the regulation of the PAF receptor, and the molecular details of the signalling mechanisms in which the PAF receptor is involved can be explored. Another area of major significance is the examination of the relationship between the signalling response(s) evoked by PAF binding to its receptor and signalling mechanisms activated by a myriad of other mediators, cytokines and growth factors. A very exciting recent development in which PAF receptors undoubtedly play a role is in the regulation of the function of various cellular adhesion molecules. Finally, there remain many incompletely characterized physiological and pathophysiological situations in which PAF and its receptor play a crucial signalling role. Our laboratory has been active in the elucidation of several tissue responses in which PAF exhibits major autocoid signalling responses, e.g. hepatic injury and inflammation, acute and chronic pancreatitis, and cerebral stimulation and/or trauma. As new experimental strategies are developed for characterizing the fine structure of the molecular mechanisms involved in tissue injury and inflammation, the

  10. Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment.

    PubMed Central

    Morrison, W D; Miller, R V; Sayler, G S

    1978-01-01

    Transduction of Pseudomonas aeruginosa streptomycin resistance by a generalized transducing phage, F116, was shown to occur during a 10-day incubation in a flow-through environmental test chamber suspended in a freshwater reservoir. Mean F116 transduction frequencies ranged from 1.4 X 10(-5) to 8.3 X 10(-2) transductants per recipient during the in situ incubation. These transduction frequencies were comparable to transduction frequencies determined in preliminary laboratory transduction experiments. The results demonstrate the potential for naturally occurring transduction in aquatic environments and concurrent environmental and ecological ramifications. Images PMID:103503

  11. Genome-wide RNAi screening identifies host restriction factors critical for in vivo AAV transduction.

    PubMed

    Mano, Miguel; Ippodrino, Rudy; Zentilin, Lorena; Zacchigna, Serena; Giacca, Mauro

    2015-09-08

    Viral vectors based on the adeno-associated virus (AAV) hold great promise for in vivo gene transfer; several unknowns, however, still limit the vectors' broader and more efficient application. Here, we report the results of a high-throughput, whole-genome siRNA screening aimed at identifying cellular factors regulating AAV transduction. We identified 1,483 genes affecting vector efficiency more than 4-fold and up to 50-fold, either negatively or positively. Most of these factors have not previously been associated to AAV infection. The most effective siRNAs were independent from the virus serotype or analyzed cell type and were equally evident for single-stranded and self-complementary AAV vectors. A common characteristic of the most effective siRNAs was the induction of cellular DNA damage and activation of a cell cycle checkpoint. This information can be exploited for the development of more efficient AAV-based gene delivery procedures. Administration of the most effective siRNAs identified by the screening to the liver significantly improved in vivo AAV transduction efficiency.

  12. Proteasome Inhibitors Decrease AAV2 Capsid derived Peptide Epitope Presentation on MHC Class I Following Transduction

    PubMed Central

    Finn, Jonathan D; Hui, Daniel; Downey, Harre D; Dunn, Danielle; Pien, Gary C; Mingozzi, Federico; Zhou, Shangzhen; High, Katherine A

    2009-01-01

    Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans. PMID:19904235

  13. AAV-Mediated Transduction and Targeting of Retinal Bipolar Cells with Improved mGluR6 Promoters in Rodents and Primates

    PubMed Central

    Lu, Q; Ganjawala, TH; Ivanova, E; Cheng, JG; Troilo, D; Pan, Z-H

    2016-01-01

    Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell-type specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the para-fovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies. PMID:27115727

  14. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates.

    PubMed

    Lu, Q; Ganjawala, T H; Ivanova, E; Cheng, J G; Troilo, D; Pan, Z-H

    2016-08-01

    Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.

  15. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    SciTech Connect

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  16. Efficient and Targeted Transduction of Nonhuman Primate Liver With Systemically Delivered Optimized AAV3B Vectors.

    PubMed

    Li, Shaoyong; Ling, Chen; Zhong, Li; Li, Mengxin; Su, Qin; He, Ran; Tang, Qiushi; Greiner, Dale L; Shultz, Leonard D; Brehm, Michael A; Flotte, Terence R; Mueller, Christian; Srivastava, Arun; Gao, Guangping

    2015-12-01

    Recombinant adeno-associated virus serotype 3B (rAAV3B) can transduce cultured human liver cancer cells and primary human hepatocytes efficiently. Serine (S)- and threonine (T)-directed capsid modifications further augment its transduction efficiency. Systemically delivered capsid-optimized rAAV3B vectors can specifically target cancer cells in a human liver cancer xenograft model, suggesting their potential use for human liver-directed gene therapy. Here, we compared transduction efficiencies of AAV3B and AAV8 vectors in cultured primary human hepatocytes and cancer cells as well as in human and mouse hepatocytes in a human liver xenograft NSG-PiZ mouse model. We also examined the safety and transduction efficacy of wild-type (WT) and capsid-optimized rAAV3B in the livers of nonhuman primates (NHPs). Intravenously delivered S663V+T492V (ST)-modified self-complementary (sc) AAV3B-EGFP vectors led to liver-targeted robust enhanced green fluorescence protein (EGFP) expression in NHPs without apparent hepatotoxicity. Intravenous injections of both WT and ST-modified rAAV3B.ST-rhCG vectors also generated stable super-physiological levels of rhesus chorionic gonadotropin (rhCG) in NHPs. The vector genome predominantly targeted the liver. Clinical chemistry and histopathology examinations showed no apparent vector-related toxicity. Our studies should be important and informative for clinical development of optimized AAV3B vectors for human liver-directed gene therapy.

  17. Hepatocyte Heparan Sulfate Is Required for Adeno-Associated Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo

    PubMed Central

    Zaiss, Anne K.; Foley, Erin M.; Lawrence, Roger; Schneider, Lina S.; Hoveida, Hamidreza; Secrest, Patrick; Catapang, Arthur B.; Yamaguchi, Yu; Alemany, Ramon; Shayakhmetov, Dmitry M.; Esko, Jeffrey D.

    2015-01-01

    ABSTRACT Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes. Ext1HEP mutant mice exhibit an 8-fold reduction of heparan sulfate in primary hepatocytes and a 5-fold reduction of heparan sulfate in whole liver tissue. Conditional hepatocyte Ext1 gene deletion greatly reduced AAV2 liver transduction following intravenous injection. Ad5 transduction requires blood coagulation factor X (FX); FX binds to the Ad5 capsid hexon protein and bridges the virus to HSPGs on the cell surface. Ad5.FX transduction was abrogated in primary hepatocytes from Ext1HEP mice. However, in contrast to the case with AAV2, Ad5 transduction was not significantly reduced in the livers of Ext1HEP mice. FX remained essential for Ad5 transduction in vivo in Ext1HEP mice. We conclude that while AAV2 requires HSPGs for entry into mouse hepatocytes, HSPGs are dispensable for Ad5 hepatocyte transduction in vivo. This study reopens the question of how adenovirus enters cells in vivo. IMPORTANCE Our understanding of how viruses enter cells, and how they can be used as therapeutic vectors to manage disease, begins with identification of the cell surface receptors to which viruses bind and which mediate viral entry. Both adeno-associated virus 2 and adenovirus 5 are currently thought to enter hepatocytes in vivo through heparan sulfate proteoglycans (HSPGs). However, direct evidence for these conclusions is lacking. Experiments presented herein, in which hepatic heparan sulfate synthesis was genetically abolished, demonstrated that HSPGs are not likely to function as hepatocyte Ad5 receptors in vivo. The data also demonstrate that HSPGs are required for hepatocyte transduction by AAV2. These

  18. Syntaxin 5-Dependent Retrograde Transport to the trans-Golgi Network Is Required for Adeno-Associated Virus Transduction

    PubMed Central

    Nonnenmacher, Mathieu E.; Cintrat, Jean-Christophe; Gillet, Daniel

    2014-01-01

    ABSTRACT Intracellular transport of recombinant adeno-associated virus (AAV) is still incompletely understood. In particular, the trafficking steps preceding the release of incoming AAV particles from the endosomal system into the cytoplasm, allowing subsequent nuclear import and the initiation of gene expression, remain to be elucidated fully. Others and we previously showed that a significant proportion of viral particles are transported to the Golgi apparatus and that Golgi apparatus disruption caused by the drug brefeldin A efficiently blocks AAV serotype 2 (AAV2) transduction. However, because brefeldin A is known to exert pleiotropic effects on the entire endosomal system, the functional relevance of transport to the Golgi apparatus for AAV transduction remains to be established definitively. Here, we show that AAV2 trafficking toward the trans-Golgi network (TGN) and the Golgi apparatus correlates with transduction efficiency and relies on a nonclassical retrograde transport pathway that is independent of the retromer complex, late endosomes, and recycling endosomes. AAV2 transduction is unaffected by the knockdown of syntaxins 6 and 16, which are two major effectors in the retrograde transport of both exogenous and endogenous cargo. On the other hand, inhibition of syntaxin 5 function by small interfering RNA silencing or treatment with cyclized Retro-2 strongly decreases AAV2 transduction and transport to the Golgi apparatus. This inhibition of transduction is observed with several AAV serotypes and a number of primary and immortalized cells. Together, our data strongly suggest that syntaxin 5-mediated retrograde transport to the Golgi apparatus is a broadly conserved feature of AAV trafficking that appears to be independent of the identity of the receptors used for viral attachment. IMPORTANCE Gene therapy constitutes a promising approach for the treatment of life-threatening conditions refractory to any other form of remedy. Adeno-associated virus (AAV

  19. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications

    PubMed Central

    GUO, ZHENGRONG; PENG, HUANYAN; KANG, JIWEN; SUN, DIANXING

    2016-01-01

    Cell-penetrating peptides (CPPs), also known as protein transduction domains, are a class of diverse peptides with 5–30 amino acids. CPPs are divided into cationic, amphipathic and hydrophobic CPPs. They are able to carry small molecules, plasmid DNA, small interfering RNA, proteins, viruses, imaging agents and other various nanoparticles across the cellular membrane, resulting in internalization of the intact cargos. However, the mechanisms of CPP internalization remain to be elucidated. Recently, CPPs have received considerable attention due to their high transduction efficiency and low cytotoxicity. These peptides have a significant potential for diagnostic and therapeutic applications, such as delivery of fluorescent or radioactive compounds for imaging, delivery of peptides and proteins for therapeutic application, and delivery of molecules into induced pluripotent stem cells for directing differentiation. The present study reviews the classifications and transduction mechanisms of CPPs, as well as their potential applications. PMID:27123243

  20. Signal Transduction in Histidine Kinases: Insights from New Structures

    PubMed Central

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  1. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10

    PubMed Central

    Gilkes, J A; Bloom, M D; Heldermon, C D

    2016-01-01

    Sanfilippo syndrome type B (mucopolysaccharidosis IIIB, MPS IIIB) is a lysosomal storage disease resulting from deficiency of N-acetyl-glucosaminidase (NAGLU) activity. To determine the possible therapeutic utility of recombinant adeno-associated virus (rAAV) in early gene therapy-based interventions, we performed a comprehensive assessment of transduction and biodistribution profiles of four central nervous system (CNS) administered rAAV serotypes, -5, -8, -9 and -rh10. To simulate optimal earliest treatment of the disease, each rAAV serotype was injected into the CNS of neonatal MPS IIIB and control animals. We observed marked differences in biodistribution and transduction profiles between the serotypes and this differed in MPS IIIB compared with healthy control mice. Overall, in control mice, all serotypes performed comparably, although some differences were observed in certain focal areas. In MPS IIIB mice, AAV8 was more efficient than AAV5, -9 and -rh10 for gene delivery to most structures analyzed, including the cerebral cortex, hippocampus and thalamus. Noteworthy, the pattern of biodistribution within the CNS varied by serotype and genotype. Interestingly, AAV8 also produced the highest green fluorescent protein intensity levels compared with any other serotype and demonstrated improved transduction in NAGLU compared with control brains. Importantly, we also show leakage of AAV8, -9 and -rh10, but not AAV5, from CNS parenchyma to systemic organs. Overall, our data suggest that AAV8 represents the best therapeutic gene transfer vector for early intervention in MPS IIIB. PMID:26674264

  2. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  3. Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.

    PubMed

    Auburn, Sarah; Fry, Andrew E; Clark, Taane G; Campino, Susana; Diakite, Mahamadou; Green, Angela; Richardson, Anna; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Molyneux, Malcolm E; Taylor, Terrie E; Haldar, Kasturi; Rockett, Kirk A; Kwiatkowski, Dominic P

    2010-04-01

    With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs) signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls) studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A) and 2B (ADORA2B), beta-adrenergic receptor kinase 1 (ADRBK1), adenylyl cyclase 9 (ADCY9), G protein beta subunit 3 (GNB3), and regulator of G protein signalling 2 (RGS2). Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency) appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37); P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s). Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies.

  4. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    PubMed

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001.

  5. Evidence for the presence of an NF-kappaB signal transduction system in Dictyostelium discoideum.

    PubMed

    Traincard, F; Ponte, E; Pun, J; Coukell, B; Veron, M

    1999-10-01

    The Rel/NF-kappaB family of transcription factors and regulators has so far only been described in vertebrates and arthropods, where they mediate responses to many extracellular signals. No counterparts of genes coding for such proteins have been identified in the Caenorhabditis elegans genome and no NF-kappaB activity was found in Saccharomyces cerevisiae. We describe here the presence of an NF-kappaB transduction pathway in the lower eukaryote Dictyostelium discoideum. Using antibodies raised against components of the mammalian NF-kappaB pathway, we demonstrate in Dictyostelium cells extracts the presence of proteins homologous to Rel/NF-kappaB, IkappaB and IKK components. Using gel-shift experiments in nuclear extracts of developing Dictyostelium cells, we demonstrate the presence of proteins binding to kappaB consensus oligonucleotides and to a GC-rich kappaB-like sequence, lying in the promoter of cbpA, a developmentally regulated Dictyostelium gene encoding the Ca(2+)-binding protein CBP1. Using immunofluorescence, we show specific nuclear translocation of the p65 and p50 homologues of the NF-kappaB transcription factors as vegetatively growing cells develop to the slug stage. Taken together, our results strongly indicate the presence of a complete NF-kappaB signal transduction system in Dictyostelium discoideum that could be involved in the developmental process.

  6. A Simple High Efficiency Intra-Islet Transduction Protocol Using Lentiviral Vectors.

    PubMed

    Jimenez-Moreno, Carmen Maria; Herrera-Gomez, Irene de Gracia; Lopez-Noriega, Livia; Lorenzo, Petra Isabel; Cobo-Vuilleumier, Nadia; Fuente-Martin, Esther; Mellado-Gil, Jose Manuel; Parnaud, Geraldine; Bosco, Domenico; Gauthier, Benoit Raymond; Martin-Montalvo, Alejandro

    2015-01-01

    Successful normalization of blood glucose in patients transplanted with pancreatic islets isolated from cadaveric donors established the proof-of-concept that Type 1 Diabetes Mellitus is a curable disease. Nonetheless, major caveats to the widespread use of this cell therapy approach have been the shortage of islets combined with the low viability and functional rates subsequent to transplantation. Gene therapy targeted to enhance survival and performance prior to transplantation could offer a feasible approach to circumvent these issues and sustain a durable functional β-cell mass in vivo. However, efficient and safe delivery of nucleic acids to intact islet remains a challenging task. Here we describe a simple and easy-to-use lentiviral transduction protocol that allows the transduction of approximately 80 % of mouse and human islet cells while preserving islet architecture, metabolic function and glucose-dependent stimulation of insulin secretion. Our protocol will facilitate to fully determine the potential of gene expression modulation of therapeutically promising targets in entire pancreatic islets for xenotransplantation purposes.

  7. Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila.

    PubMed

    Martín, F; Charro, M J; Alcorta, E

    2001-06-01

    The rutabaga and dunce genes, encode two enzymes of the cyclic adenosine monophosphate transduction pathway in Drosophila, adenylyl cyclase and cyclic adenosine monophosphate phosphodiesterase, respectively. Two main second messenger systems, depending on inositol 1,4,5-triphosphate and cyclic adenosine monophosphate, have been associated with olfaction in vertebrates as well as invertebrates. A relationship between the cyclic adenosine monophosphate signaling pathway and olfactory reception in Drosophila is suggested by the presence of cyclic nucleotide gated channels and cyclic-nucleotide modulated K+ channels in the antennae, the main olfactory organs. In this report, molecular, electrophysiological and behavioral data support the role of cyclic adenosine monophosphate in olfactory function for this species. Expression of both genes in the antennae has been shown by messenger ribonucleic acid analysis. Changes in the electroantennogram kinetics have been observed specifically on the slope of the initial rising phase, as predicted for processes that affect cyclic adenosine monophosphate concentration. Olfactory behavior changes due to both mutations were coherent with a functional meaning of the reported electrophysiological phenotype in olfactory perception. Sensitivity level increases or decreases for the mutants compared to the control line depending on the odorant. These results are compatible with some olfactory coding at the reception level by differential activation of a dual transduction system involving the inositol 1,4,5-triphosphate and cyclic adenosine monophosphate cascades.

  8. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  9. Molecular Analysis of the Graviperception Signal Transduction in the Flagellate Euglena

    NASA Astrophysics Data System (ADS)

    Häder, Donat; Daiker, Viktor; Richter, Peter; Lebert, Michael

    The unicellular flagellate Euglena gracilis perceives and reacts to the gravitational vector of the Earth. Recent results of experiments on parabolic rocket flights have revealed that the orientation can be explained by passive orientation only to a small extend while the remainder relies on an active physiological sensor and an internal sensory transduction chain. Our current working hypothesis is based on the fact that the cellular contents is heavier than the surrounding medium and consequently exerts pressure onto the lower membrane where it activates mechano-sensitive ion channels located at the front end under the trailing flagellum. We recently succeeded in identifying these channels as gene products of the TRP family. RNAi of the corresponding gene abolished graviperception. These channels allow a gated influx of calcium which depolarizes the internal electrical potential and eventually causes a course correction by the flagellar beating. The inwardly gated calcium binds to a specific calmodulin which is likewise an intrinsic element of the signal transduction chain. RNAi of the related mRNA also stopped graviperception. This calmodulin is thought to activate an adenylyl cyclase which generates cyclic AMP which in turn modulates the beating pattern of the flagellum.

  10. Autophagy-mediated catabolism of visual transduction proteins prevents retinal degeneration.

    PubMed

    Yao, Jingyu; Jia, Lin; Feathers, Kecia; Lin, Chengmao; Khan, Naheed W; Klionsky, Daniel J; Ferguson, Thomas A; Zacks, David N

    2016-12-01

    Autophagy is a lysosomal degradation pathway critical to preventing the accumulation of cytotoxic proteins. Deletion of the essential autophagy gene Atg5 from the rod photoreceptors of the retina (atg5(Δrod) mouse) results in the accumulation of the phototransduction protein transducin and the degeneration of these neurons. The purpose of this study is to test the hypothesis that autophagic degradation of visual transduction proteins prevents retinal degeneration. Targeted deletion of both Gnat1 (a gene encoding the α subunit of the heterotrimeric G-protein transducin) and Atg5 in the rod photoreceptors resulted in a significantly decreased rate of rod cell degeneration as compared to the atg5(Δrod) mouse retina, and considerable preservation of photoreceptors. Supporting this we used a novel technique to immunoprecipitate green fluorescent protein (GFP)-tagged autophagosomes from the retinas of the GFP-LC3 mice and demonstrated that the visual transduction proteins transducin and ARR/arrestin are associated with autophagosome-specific proteins. Altogether, this study shows that degradation of phototransduction proteins by autophagy is necessary to prevent retinal degeneration. In addition, we demonstrate a simple and easily reproducible immunoisolation technique for enrichment of autophagosomes from the GFP-LC3 mouse retina, providing a novel application to the study of autophagosome contents across different organs and specific cell types in vivo.

  11. Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection.

    PubMed

    Lipinski, Daniel M; Reid, Chris A; Boye, Sanford L; Peterson, James J; Qi, Xiaoping; Boye, Shannon E; Boulton, Michael E; Hauswirth, William W

    2015-11-01

    The ability to effectively deliver genetic material to vascular endothelial cells remains one of the greatest unmet challenges facing the development of gene therapies to prevent diseases with underlying vascular etiology, such as diabetes, atherosclerosis, and age-related macular degeneration. Herein, we assess the effectiveness of an rAAV2-based capsid mutant vector (Y272F, Y444F, Y500F, Y730F, T491V; termed QuadYF+TV) with strong endothelial cell tropism at transducing the vasculature after systemic administration. Intravenous injection of QuadYF+TV resulted in widespread transduction throughout the vasculature of several major organ systems, as assessed by in vivo bioluminescence imaging and postmortem histology. Robust transduction of lung tissue was observed in QuadYF+TV-injected mice, indicating a role for intravenous gene delivery in the treatment of chronic diseases presenting with pulmonary complications, such as α1-antitrypsin deficiency. The QuadYF+TV vector cross-reacted strongly with AAV2 neutralizing antibodies, however, indicating that a targeted delivery strategy may be required to maximize clinical translatability.

  12. The transduction of Coxsackie and Adenovirus Receptor-negative cells and protection against neutralizing antibodies by HPMA-co-oligolysine copolymer-coated adenovirus

    PubMed Central

    Wang, Chung-Huei K.; Chan, Leslie W.; Johnson, Russell N.; Chu, David S.H.; Shi, Julie; Schellinger, Joan G.; Lieber, Andre; Pun, Suzie H.

    2011-01-01

    Adenoviral (AdV) gene vectors offer efficient nucleic acid transfer into both dividing and non-dividing cells. However issues such as vector immunogenicity, toxicity and restricted transduction to receptor-expressing cells have prevented broad clinical translation of these constructs. To address this issue, engineered AdV have been prepared by both genetic and chemical manipulation. In this work, a polymer-coated Ad5 formulation is optimized by evaluating a series of N-(2-hydroxypropyl) methacrylamide (HPMA)-co-oligolysine copolymers synthesized by living polymerization techniques. This synthesis approach was used to generate highly controlled and well-defined polymers with varying peptide length (K5, K10 and K15), polymer molecular weight, and degradability to coat the viral capsid. The optimal formulation was not affected by the presence of serum during transduction and significantly increased Ad5 transduction of several cell types that lack the Coxsackie and Adenovirus Receptor (CAR) by up to 6-fold compared to unmodified AdV. Polymer-coated Ad5 also retained high transduction capability in the presence of Ad5 neutralizing antibodies. The critical role of heparan sulfate proteoglycans (HSPGs) in mediating cell binding and internalization of polymer-coated AdV was also demonstrated by evaluating transduction in HSPG-defective recombinant CHO cells. The formulations developed here are attractive vectors for ex vivo gene transfer in applications such as cell therapy. In addition, this platform for adenoviral modification allows for facile introduction of alternative targeting ligands. PMID:21959008

  13. The gravity persistent signal (gps) Mutants of Arabidopsis: Insights into Gravitropic Signal Transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, S.

    The gravitropic response of Arabidopsis stems is rapid with a visible within 30 min and vertical reorientation within 2 h. However, horizontal gravistimulation for 3 h at 4°C does not cause curvature. When the stems are subsequently placed in the vertical position at RT, they bend in response to the previous, horizontal gravistimulation. These results indicate that the gravity perception step can occur at 4°C, but that part of the response is sensitive to cold. At 4°C, starch-containing amyloplasts in the endodermis of the inflorescence stems sedimented normally but auxin transport was abolished indicating that the cold treatment affected early events of the signal transduction pathway that occur after amyloplast sedimentation but prior to auxin transport. The gps mutants of Arabidopsis are a unique group of mutants that respond abnormally after gravistimulation at 4°C. gps1 shows no response to the cold gravistimulation, gps2 bends the wrong way as compared to wild type and gps3 over responds, bending past the anticipated curvature. The mutants were selected from a T-DNA tagged population. Cloning strategies based on the tag have been employed to identify the genes disrupted. GPS1 was cloned using TAIL PCR and is At3g20130, a cytochrome P450, CYP705A22, of unknown function. GPS1p::GFP fusions are being used to determine temporal and spatial expression of GPS1. The mutation in gps3 appears to disrupt a non-coding region downstream of At1g43950 No function has yet been determined for this region, but it appears that the mutation disrupts transcription of a transcription factor homologous to the DNA binding domain of an auxin response factor (ARF) 9-like protein. The identity of GPS2 is as yet unknown. The gps mutants represent potentially three independent aspects of signal transduction in the gravitropic response: perception or retention of the gravity signal (gps1), determination of the polarity of the response (gps2), and the tissue specificity of the

  14. Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integration-deficient retroviral vectors.

    PubMed

    Schott, Juliane W; Jaeschke, Nico M; Hoffmann, Dirk; Maetzig, Tobias; Ballmaier, Matthias; Godinho, Tamaryin; Cathomen, Toni; Schambach, Axel

    2015-05-01

    Lentiviral and gammaretroviral vectors are state-of-the-art tools for transgene expression within target cells. The integration of these vectors can be deliberately suppressed to derive a transient gene expression system based on extrachromosomal circular episomes with intact coding regions. These episomes can be used to deliver DNA templates and to express RNA or protein. Importantly, transient gene transfer avoids the genotoxic side effects of integrating vectors. Restricting their applicability, episomes are rapidly lost upon dilution in dividing target cells. Addressing this limitation, we could establish comparably stable percentages of transgene-positive cells over prolonged time periods in proliferating cells by repeated transductions. Flow cytometry was applied for kinetic analyses to decipher the impact of individual parameters on the kinetics of fluoroprotein expression after episomal retransduction and to visualize sequential and simultaneous transfer of heterologous fluoroproteins. Expression windows could be exactly timed by the number of transduction steps. The kinetics of signal loss was affected by the cell proliferation rate. The transfer of genes encoding fluoroproteins with different half-lives revealed a major impact of protein stability on temporal signal distribution and accumulation, determining optimal retransduction intervals. In addition, sequential transductions proved broad applicability in different cell types and using different envelope pseudotypes without receptor overload. Stable percentages of cells coexpressing multiple transgenes could be generated upon repeated coadministration of different episomal vectors. Alternatively, defined patterns of transgene expression could be recapitulated by sequential transductions. Altogether, we established a methodology to control and adjust a temporally defined window of transgene expression using retroviral episomal vectors. Combined with the highly efficient cell entry of these vectors while

  15. DjlA negatively regulates the Rcs signal transduction system in Escherichia coli.

    PubMed

    Shiba, Yasuhiro; Matsumoto, Kouji; Hara, Hiroshi

    2006-02-01

    The Rcs signal transduction system of Escherichia coli regulating capsular polysaccharide synthesis (cps) genes is activated by overexpression of the djlA gene encoding a cytoplasmic membrane-anchored DnaJ-like protein. However, by monitoring the expression of a cpsB'-lac fusion in pgsA- and mdoH-null mutants in which the Rcs system is activated, we found that the Rcs activity was further increased by deletion of djlA and decreased by low-level extrachromosomal expression of djlA. Furthermore, deletion of djlA in a wild-type strain led to small but significant increase of the basal-level activity of the Rcs system. These results demonstrate that DjlA functions as a negative regulator of the Rcs system unless abnormally overproduced.

  16. Protein phosphorylation and its role in archaeal signal transduction

    PubMed Central

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  17. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  18. Empirical Properties of Multilingual Phone-To-Word Transduction

    DTIC Science & Technology

    2008-01-01

    EMPIRICAL PROPERTIES OF MULTILINGUAL PHONE-TO-WORD TRANSDUCTION Geoffrey Zweig Microsoft Research gzweig@microsoft.com Jon Nedel U.S. Department of...69–88, 2002. [2] G. Saon, G. Zweig , and D. Povey, “Anatomy of an extremely fast LVCSR decoder,” in Interspeech, 2005. [3] S. Ortmanns, H. Ney, and A

  19. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    PubMed

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms.

  20. Salmonella recD mutations increase recombination in a short sequence transduction assay.

    PubMed Central

    Miesel, L; Roth, J R

    1994-01-01

    We have identified recD mutants of Salmonella typhimurium by their ability to support growth of phage P22 abc (anti-RecBCD) mutants, whose growth is prevented by normal host RecBCD function. As in Escherichia coli, the recD gene of S. typhimurium lies between the recB and argA genes at min 61 of the genetic map. Plasmids carrying the Salmonella recBCD+ genes restore ATP-dependent exonuclease V activity to an E. coli recBCD deletion mutant. The new Salmonella recD mutations (placed on this plasmid) eliminate the exonuclease activity and enable the plasmid-bearing E. coli deletion mutant to support growth of phage T4 gene 2 mutants. The Salmonella recD mutations caused a 3- to 61-fold increase in the ability of a recipient strain to inherit (by transduction) a large inserted element (MudA prophage; 38 kb). In this cross, recombination events must occur in the short (3-kb) sequences that flank the element in the 44-kb transduced fragment. The effect of the recD mutation depends on the nature of the flanking sequences and is likely to be greatest when those sequences lack a Chi site. The recD mutation appears to minimize fragment degradation and/or cause RecBC-dependent recombination events to occur closer to the ends of the transduced fragment. The effect of a recipient recD mutation was eliminated if the donor P22 phage expressed its Abc (anti-RecBC) function. We hypothesize that in standard (high multiplicity of infection) P22-mediated transduction crosses, recombination is stimulated both by Chi sequences (when present in the transduced fragment) and by the phage-encoded Abc protein which inhibits the host RecBCD exonuclease. Images PMID:8021190

  1. Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat.

    PubMed

    Duisit, Ghislaine; Conrath, Hervé; Saleun, Sylvie; Folliot, Sebastien; Provost, Nathalie; Cosset, François-Loïc; Sandrin, Virginie; Moullier, Philippe; Rolling, Fabienne

    2002-10-01

    The purpose of our study was to evaluate lentiviral vector-mediated rat retinal transduction using simian immunodeficiency virus (SIV) pseudotyped with envelope proteins from vesicular stomatitis virus G glycoprotein (VSV-G), Mokola virus G protein (MK-G), amphotropic murine leukemia virus envelope (4070A-Env), influenza A virus hemagglutinin (HA), lymphocytic choriomeningitis virus G protein (LCMV-G), and RD114 retrovirus envelope (RD114-Env). The six pseudotyped lentivirus vectors carried CMV-driven green fluorescent protein (GFP) or beta-galactosidase (beta-gal) reporter genes. Intravitreal and subretinal injections of each pseudotyped recombinant SIV were performed in cohorts of Wistar rats. Our results showed that no transgene expression was detected after intravitreal injection of each pseudotyped SIV vector. Also, no transduction could be detected following subretinal injection of RD114 pseudotyped SIV vectors. However, selective transduction of retinal pigment epithelium (RPE) cells was repeatedly obtained after subretinal delivery of VSV-G, MK-G, 4070A-Env, HA, and LCMV-G pseudotyped SIV. GFP expression was maximum as soon as 4 days postadministration for VSV-G, MK-G, 4070A-Env, and HA pseudotypes, with no evidence of pseudotransduction for VSV-G. Maximum transgene expression was observed 3 weeks postinjection for LCMV-6. Importantly, HA and VSV-G pseudotyped SIV lead to such a high level of transgene expression that GFP-related toxicity occurred. Therefore, when a high level of GFP synthesis is achieved, replacement of enhanced GFP (egfp, Aequorea victoria) by a low-toxicity GFP (Renilla reniformis) cDNA is necessary to allow long-term expression.

  2. A cost-effective method to enhance adenoviral transduction of primary murine osteoblasts and bone marrow stromal cells

    PubMed Central

    Buo, Atum M; Williams, Mark S; Kerr, Jaclyn P; Stains, Joseph P

    2016-01-01

    We report here a method for the use of poly-l-lysine (PLL) to markedly improve the adenoviral transduction efficiency of primary murine osteoblasts and bone marrow stromal cells (BMSCs) in culture and in situ, which are typically difficult to transduce. We show by fluorescence microscopy and flow cytometry that the addition of PLL to the viral-containing medium significantly increases the number of green fluorescence protein (GFP)-positive osteoblasts and BMSCs transduced with an enhanced GFP-expressing adenovirus. We also demonstrate that PLL can greatly enhance the adenoviral transduction of osteoblasts and osteocytes in situ in ex vivo tibia and calvaria, as well as in long bone fragments. In addition, we validate that PLL can improve routine adenoviral transduction studies by permitting the use of low multiplicities of infection to obtain the desired biologic effect. Ultimately, the use of PLL to facilitate adenoviral gene transfer in osteogenic cells can provide a cost-effective means of performing efficient gene transfer studies in the context of bone research. PMID:27547486

  3. Elucidating the Functional Roles of Spatial Organization in Cross-Membrane Signal Transduction by a Hybrid Simulation Method.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2016-07-01

    The ligand-binding of membrane receptors on cell surfaces initiates the dynamic process of cross-membrane signal transduction. It is an indispensable part of the signaling network for cells to communicate with external environments. Recent experiments revealed that molecular components in signal transduction are not randomly mixed, but spatially organized into distinctive patterns. These patterns, such as receptor clustering and ligand oligomerization, lead to very different gene expression profiles. However, little is understood about the molecular mechanisms and functional impacts of this spatial-temporal regulation in cross-membrane signal transduction. In order to tackle this problem, we developed a hybrid computational method that decomposes a model of signaling network into two simulation modules. The physical process of binding between receptors and ligands on cell surfaces are simulated by a diffusion-reaction algorithm, while the downstream biochemical reactions are modeled by stochastic simulation of Gillespie algorithm. These two processes are coupled together by a synchronization framework. Using this method, we tested the dynamics of a simple signaling network in which the ligand binding of cell surface receptors triggers the phosphorylation of protein kinases, and in turn regulates the expression of target genes. We found that spatial aggregation of membrane receptors at cellular interfaces is able to either amplify or inhibit downstream signaling outputs, depending on the details of clustering mechanism. Moreover, by providing higher binding avidity, the co-localization of ligands into multi-valence complex modulates signaling in very different ways that are closely related to the binding affinity between ligand and receptor. We also found that the temporal oscillation of the signaling pathway that is derived from genetic feedback loops can be modified by the spatial clustering of membrane receptors. In summary, our method demonstrates the functional

  4. Proteomics Studies of Brassinosteroid Signal Transduction Using Prefractionation and Two-dimensional DIGE*

    PubMed Central

    Tang, Wenqiang; Deng, Zhiping; Oses-Prieto, Juan A.; Suzuki, Nagi; Zhu, Shengwei; Zhang, Xin; Burlingame, Alma L.; Wang, Zhi-Yong

    2008-01-01

    Signal transduction involves posttranslational modifications and protein-protein interactions, which can be studied by proteomics. In Arabidopsis, the steroid hormone (brassinosteroid (BR)) binds to the extracellular domain of a receptor kinase (BRI1) to initiate a phosphorylation/dephosphorylation cascade that controls gene expression and plant growth. Here we detected early BR signaling events and identified early response proteins using prefractionation and two-dimensional (2-D) DIGE. Proteomic changes induced rapidly by BR treatments were detected in phosphoprotein and plasma membrane (PM) fractions by 2-D DIGE but not in total protein extracts. LC-MS/MS analysis of gel spots identified 19 BR-regulated PM proteins and six proteins from phosphoprotein fractions. These include the BAK1 receptor kinase and BZR1 transcription factor of the BR signaling pathway. Both proteins showed spot shifts consistent with BR-regulated phosphorylation. In addition, in vivo phosphorylation sites were identified for BZR1, two tetratricopeptide repeat proteins, and a phosphoenolpyruvate carboxykinase (PCK1). Overexpression of a novel BR-induced PM protein (DREPP) partially suppressed the phenotypes of a BR-deficient mutant, demonstrating its important function in BR responses. Our study demonstrates that prefractionation coupled with 2-D DIGE is a powerful approach for studying signal transduction. PMID:18182375

  5. Proteomics studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE.

    PubMed

    Tang, Wenqiang; Deng, Zhiping; Oses-Prieto, Juan A; Suzuki, Nagi; Zhu, Shengwei; Zhang, Xin; Burlingame, Alma L; Wang, Zhi-Yong

    2008-04-01

    Signal transduction involves posttranslational modifications and protein-protein interactions, which can be studied by proteomics. In Arabidopsis, the steroid hormone (brassinosteroid (BR)) binds to the extracellular domain of a receptor kinase (BRI1) to initiate a phosphorylation/dephosphorylation cascade that controls gene expression and plant growth. Here we detected early BR signaling events and identified early response proteins using prefractionation and two-dimensional (2-D) DIGE. Proteomic changes induced rapidly by BR treatments were detected in phosphoprotein and plasma membrane (PM) fractions by 2-D DIGE but not in total protein extracts. LC-MS/MS analysis of gel spots identified 19 BR-regulated PM proteins and six proteins from phosphoprotein fractions. These include the BAK1 receptor kinase and BZR1 transcription factor of the BR signaling pathway. Both proteins showed spot shifts consistent with BR-regulated phosphorylation. In addition, in vivo phosphorylation sites were identified for BZR1, two tetratricopeptide repeat proteins, and a phosphoenolpyruvate carboxykinase (PCK1). Overexpression of a novel BR-induced PM protein (DREPP) partially suppressed the phenotypes of a BR-deficient mutant, demonstrating its important function in BR responses. Our study demonstrates that prefractionation coupled with 2-D DIGE is a powerful approach for studying signal transduction.

  6. Uncovering signal transduction networks from high-throughput data by integer linear programming.

    PubMed

    Zhao, Xing-Ming; Wang, Rui-Sheng; Chen, Luonan; Aihara, Kazuyuki

    2008-05-01

    Signal transduction is an important process that transmits signals from the outside of a cell to the inside to mediate sophisticated biological responses. Effective computational models to unravel such a process by taking advantage of high-throughput genomic and proteomic data are needed to understand the essential mechanisms underlying the signaling pathways. In this article, we propose a novel method for uncovering signal transduction networks (STNs) by integrating protein interaction with gene expression data. Specifically, we formulate STN identification problem as an integer linear programming (ILP) model, which can be actually solved by a relaxed linear programming algorithm and is flexible for handling various prior information without any restriction on the network structures. The numerical results on yeast MAPK signaling pathways demonstrate that the proposed ILP model is able to uncover STNs or pathways in an efficient and accurate manner. In particular, the prediction results are found to be in high agreement with current biological knowledge and available information in literature. In addition, the proposed model is simple to be interpreted and easy to be implemented even for a large-scale system.

  7. Transduction of aminergic and peptidergic signals in enteric neurones of the guinea-pig.

    PubMed Central

    Palmer, J M; Wood, J D; Zafirov, D H

    1987-01-01

    1. The biogenic amines 5-hydroxytryptamine (5-HT) and histamine, and the peptides bombesin, gastrin-releasing peptide (GRP), vasoactive intestinal peptide (VIP), cholecystokinin (CCK), substance P and calcitonin gene-related peptide (CGRP) each mimicked slow synaptic excitation (slow e.p.s.p.) when applied to myenteric neurones of the guinea-pig small intestine. 2. Stimulation of the catalytic activity of adenylate cyclase by forskolin and intraneuronal elevation of cyclic 3',5'-adenosine monophosphate (cyclic AMP) also mimicked the slow e.p.s.p. and the actions of the aminergic and peptidergic messengers. 3. Adenosine prevented stimulation of adenylate cyclase by forskolin and abolished the slow e.p.s.p.-like actions of forskolin. 4. Exposure of the neurones to adenosine prior to or during application of bombesin, GRP, VIP, CCK or histamine blocked the actions of these substances. 5. Pre-treatment with adenosine did not suppress the slow e.p.s.p.-like actions of substance P, CGRP or 5-HT. 6. The results suggest that signal transduction for bombesin, GRP, VIP, CCK and histamine involves stimulation of adenylate cyclase and second messenger function of cyclic AMP. Transduction mechanisms for 5-HT, substance P and CGRP appear not to involve second messenger function of cyclic AMP. PMID:3656177

  8. Vpx mediated degradation of SAMHD1 has only a very limited effect on lentiviral transduction rate in ex vivo cultured HSPCs☆

    PubMed Central

    Li, Duo; Schlaepfer, Erika; Audigé, Annette; Rochat, Mary-Aude; Ivic, Sandra; Knowlton, Caitlin N.; Kim, Baek; Keppler, Oliver T.; Speck, Roberto F.

    2016-01-01

    Understanding how to achieve efficient transduction of hematopoietic stem and progenitor cells (HSPCs), while preserving their long-term ability to self-reproduce, is key for applying lentiviral-based gene engineering methods. SAMHD1 is an HIV-1 restriction factor in myeloid and resting CD4+ T cells that interferes with reverse transcription by decreasing the nucleotide pools or by its RNase activity. Here we show that SAMHD1 is expressed at high levels in HSPCs cultured in a medium enriched with cytokines. Thus, we hypothesized that degrading SAMHD1 in HSPCs would result in more efficient lentiviral transduction rates. We used viral like particles (VLPs) containing Vpx, shRNA against SAMHD1, or provided an excess of dNTPs or dNs to study this question. Regardless of the method applied, we saw no increase in the lentiviral transduction rate. The result was different when we used viruses (HR-GFP-Vpx+) which carry Vpx and encode GFP. These viruses allow assessment of the effects of Vpx specifically in the transduced cells. Using HR-GFP-Vpx+ viruses, we observed a modest but significant increase in the transduction efficiency. These data suggest that SAMHD1 has some limited efficacy in blocking reverse transcription but the major barrier for efficient lentiviral transduction occurs before reverse transcription. PMID:26207584

  9. The relationship between the hierarchical position of proteins in the human signal transduction network and their rate of evolution

    PubMed Central

    2012-01-01

    Background Proteins evolve at disparate rates, as a result of the action of different types and strengths of evolutionary forces. An open question in evolutionary biology is what factors are responsible for this variability. In general, proteins whose function has a great impact on organisms’ fitness are expected to evolve under stronger selective pressures. In biosynthetic pathways, upstream genes usually evolve under higher levels of selective constraint than those acting at the downstream part, as a result of their higher hierarchical position. Similar observations have been made in transcriptional regulatory networks, whose upstream elements appear to be more essential and subject to selection. Less well understood is, however, how selective pressures distribute along signal transduction pathways. Results Here, I combine comparative genomics and directed protein interaction data to study the distribution of evolutionary forces across the human signal transduction network. Surprisingly, no evidence was found for higher levels of selective constraint at the upstream network genes (those occupying more hierarchical positions). On the contrary, purifying selection was found to act more strongly on genes acting at the downstream part of the network, which seems to be due to downstream genes being more highly and broadly expressed, performing certain functions and, in particular, encoding proteins that are more highly connected in the protein–protein interaction network. When the effect of these confounding factors is discounted, upstream and downstream genes evolve at similar rates. The trends found in the overall signaling network are exemplified by analysis of the distribution of purifying selection along the mammalian Ras signaling pathway, showing that upstream and downstream genes evolve at similar rates. Conclusions These results indicate that the upstream/downstream position of proteins in the signal transduction network has, in general, no direct effect

  10. Chemotactic signal transduction and phosphate metabolism as adaptive strategies during citrus canker induction by Xanthomonas citri.

    PubMed

    Moreira, Leandro Marcio; Facincani, Agda Paula; Ferreira, Cristiano Barbalho; Ferreira, Rafael Marine; Ferro, Maria Inês Tiraboshi; Gozzo, Fabio Cesar; de Oliveira, Julio Cezar Franco; Ferro, Jesus Aparecido; Soares, Márcia Regina

    2015-03-01

    The genome of Xanthomonas citri subsp. Citri strain 306 pathotype A (Xac) was completely sequenced more than 10 years; to date, few studies involving functional genomics Xac and its host compatible have been developed, specially related to adaptive events that allow the survival of Xac within the plant. Proteomic analysis of Xac showed that the processes of chemotactic signal transduction and phosphate metabolism are key adaptive strategies during the interaction of a pathogenic bacterium with its plant host. The results also indicate the importance of a group of proteins that may not be directly related to the classical virulence factors, but that are likely fundamental to the success of the initial stages of the infection, such as methyl-accepting chemotaxis protein (Mcp) and phosphate specific transport (Pst). Furthermore, the analysis of the mutant of the gene pstB which codifies to an ABC phosphate transporter subunit revealed a complete absence of citrus canker symptoms when inoculated in compatible hosts. We also conducted an in silico analysis which established the possible network of genes regulated by two-component systems PhoPQ and PhoBR (related to phosphate metabolism), and possible transcriptional factor binding site (TFBS) motifs of regulatory proteins PhoB and PhoP, detaching high degree of conservation of PhoB TFBS in 84 genes of Xac genome. This is the first time that chemotaxis signal transduction and phosphate metabolism were therefore indicated to be fundamental to the process of colonization of plant tissue during the induction of disease associated with Xanthomonas genus bacteria.

  11. Pathway logic modeling of protein functional domains in signal transduction.

    PubMed

    Talcott, C; Eker, S; Knapp, M; Lincoln, P; Laderoute, K

    2004-01-01

    Protein functional domains (PFDs) are consensus sequences within signaling molecules that recognize and assemble other signaling components into complexes. Here we describe the application of an approach called Pathway Logic to the symbolic modeling signal transduction networks at the level of PFDs. These models are developed using Maude, a symbolic language founded on rewriting logic. Models can be queried (analyzed) using the execution, search and model-checking tools of Maude. We show how signal transduction processes can be modeled using Maude at very different levels of abstraction involving either an overall state of a protein or its PFDs and their interactions. The key insight for the latter is our algebraic representation of binding interactions as a graph.

  12. High-sensitivity linear piezoresistive transduction for nanomechanical beam resonators

    NASA Astrophysics Data System (ADS)

    Sansa, Marc; Fernández-Regúlez, Marta; Llobet, Jordi; San Paulo, Álvaro; Pérez-Murano, Francesc

    2014-07-01

    Highly sensitive conversion of motion into readable electrical signals is a crucial and challenging issue for nanomechanical resonators. Efficient transduction is particularly difficult to realize in devices of low dimensionality, such as beam resonators based on carbon nanotubes or silicon nanowires, where mechanical vibrations combine very high frequencies with miniscule amplitudes. Here we describe an enhanced piezoresistive transduction mechanism based on the asymmetry of the beam shape at rest. We show that this mechanism enables highly sensitive linear detection of the vibration of low-resistivity silicon beams without the need of exceptionally large piezoresistive coefficients. The general application of this effect is demonstrated by detecting multiple-order modes of silicon nanowire resonators made by either top-down or bottom-up fabrication methods. These results reveal a promising approach for practical applications of the simplest mechanical resonators, facilitating its manufacturability by very large-scale integration technologies.

  13. A PKD Channel-based Biosensor for Taste Transduction

    NASA Astrophysics Data System (ADS)

    Wu, Chunsheng; Du, Liping; Hu, Liang; Zhang, Wei; Zhao, Luhang; Wang, Ping

    2011-09-01

    This study describes a micro electrode array (MEA)-based biosensor for taste transduction using heterologous expressed taste polycystic kidney disease-like (PKD) channels as molecular sensors. Taste PKD1L3/2L1 channels were expressed on the plasma membrane of human embryo kidney (HEK)-293 cells [1]. Then the cells were cultured on the surface of MEA chip [2] to record the responses of PKD channels to sour stimulations by monitoring membrane potential. The results indicate this MEA-based biosensor can record the special off-responses of PKD channels to sour stimulation in a non-invasive manner for a long term. It may provide an alternative tool for the research of taste transduction, especially for the characterization of taste ion channels.

  14. Maxwell's demon in biochemical signal transduction with feedback loop

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on `Maxwell's demon'--a feedback controller that utilizes information of individual molecules--have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  15. Colored Petri net modeling and simulation of signal transduction pathways.

    PubMed

    Lee, Dong-Yup; Zimmer, Ralf; Lee, Sang Yup; Park, Sunwon

    2006-03-01

    Presented herein is a methodology for quantitatively analyzing the complex signaling network by resorting to colored Petri nets (CPN). The mathematical as well as Petri net models for two basic reaction types were established, followed by the extension to a large signal transduction system stimulated by epidermal growth factor (EGF) in an application study. The CPN models based on the Petri net representation and the conservation and kinetic equations were used to examine the dynamic behavior of the EGF signaling pathway. The usefulness of Petri nets is demonstrated for the quantitative analysis of the signal transduction pathway. Moreover, the trade-offs between modeling capability and simulation efficiency of this pathway are explored, suggesting that the Petri net model can be invaluable in the initial stage of building a dynamic model.

  16. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    SciTech Connect

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F.; Borrisé, X.; San Paulo, A.

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  17. Signal Transduction in T Cell Activation and Tolerance

    DTIC Science & Technology

    1993-01-01

    wealth of new information regarding the mechanism by which these surface receptors influence intracellular biochemical events. Transmembrane...Ltd 98 7 1 5 Vi 86 Basic MI | I L I IF a 86 Basic Mechanisms - How can an understanding of signal transduction aid in our understand- ing of T...distribution of the r consensus sequence suggests that it may represent a common mechanism used by a variety of immune system receptors to couple to signal

  18. Soliton growth-signal transduction in topologically quantized T cells

    NASA Astrophysics Data System (ADS)

    Matsson, Leif

    1993-09-01

    A model for growth-signal transduction of the T cell and its growth factor, interleukin-2, is presented. It is obtained as a generalization of the usual rate equation and is founded on the observation that a definite number of receptor occupations must take place in order to promote transition to the S phase and subsequent DNA replication. The generalized rate equation is identified as the equation of motion of a Lagrangian field theory of Ginzburg-Landau (Goldstone) type. However it is not an ad hoc model but is a microscopic theory of the interaction of interleukin-2 and its receptor. The topological quantum number of the model is related to the observed definite number of receptor occupations required to elicit growth-signal transduction. Individual receptor quanta, up to this limit, are subjected to a type of Bose condensation. This collective excitation constitutes the growth signal in the form of a topological kink soliton which is then launched by the next potential receptor occupation that makes the interaction repulsive. The model provides a possible long-absent explanation of the triggering mechanism for growth-signal transduction by means of the ambivalent interaction, which switches sign after a definite number of receptor occupations. Moreover, it offers an explanation of how Nature screens out fractional signals in the growth-signal-transduction process of T cells. Although the model is derived for assumed point-like cells and certain other restrictions, the obtained dose-response curves are in striking agreement with proliferation data from studies of both the leukemic T cell line MLA-144 from gibbon ape and normal human T cells in, and without, the presence of monoclonal anti-Tac antibodies.

  19. Hair-bundle friction from transduction channels' gating forces

    NASA Astrophysics Data System (ADS)

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2015-12-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. We have shown recently that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle and thus provide a major source of damping [2]. We develop here a physical theory of passive hair-bundle mechanics that explains the origin of channel friction. We show that channel friction can be understood quantitatively by coupling the dynamics of the conformational change associated with channel gating to tip-link tension. As a result, varying channel properties affects friction, with faster channels producing smaller friction. The analysis emphasizes the dual role of transduction channels' gating forces, which affect both hair-bundle stiffness and drag. Friction originating from gating of ion channels is a general concept that is relevant to all mechanosensitive channels.

  20. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy

    PubMed Central

    Talukdar, Abdul; Faheem Khan, M.; Lee, Dongkyu; Kim, Seonghwan; Thundat, Thomas; Koley, Goutam

    2015-01-01

    Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz−1/2 and an outstanding responsivity of 170 nV fm−1, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms. PMID:26258983

  1. Key cancer cell signal transduction pathways as therapeutic targets.

    PubMed

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  2. Antibody mediated transduction of therapeutic proteins into living cells.

    PubMed

    Hansen, James E; Weisbart, Richard H; Nishimura, Robert N

    2005-09-16

    Protein therapy refers to the direct delivery of therapeutic proteins to cells and tissues with the goal of ameliorating or modifying a disease process. Current techniques for delivering proteins across cell membranes include taking advantage of receptor-mediated endocytosis or using protein transduction domains that penetrate directly into cells. The most commonly used protein transduction domains are small cell-penetrating peptides derived from such proteins as the HIV-1 Tat protein. A novel protein transduction domain developed as the single chain fragment (Fv) of a murine anti-DNA autoantibody, mAb 3E10, has recently been developed and used to deliver biologically active proteins to living cells in vitro. This review will provide a brief overview of the development of the Fv fragment and provide a summary of recent studies using Fv to deliver therapeutic peptides and proteins (such as a C-terminal p53 peptide, C-terminal p53 antibody fragment, full-length p53, and micro-dystrophin) to cells.

  3. Signal Transduction Pathways of TNAP: Molecular Network Analyses.

    PubMed

    Négyessy, László; Györffy, Balázs; Hanics, János; Bányai, Mihály; Fonta, Caroline; Bazsó, Fülöp

    2015-01-01

    Despite the growing body of evidence pointing on the involvement of tissue non-specific alkaline phosphatase (TNAP) in brain function and diseases like epilepsy and Alzheimer's disease, our understanding about the role of TNAP in the regulation of neurotransmission is severely limited. The aim of our study was to integrate the fragmented knowledge into a comprehensive view regarding neuronal functions of TNAP using objective tools. As a model we used the signal transduction molecular network of a pyramidal neuron after complementing with TNAP related data and performed the analysis using graph theoretic tools. The analyses show that TNAP is in the crossroad of numerous pathways and therefore is one of the key players of the neuronal signal transduction network. Through many of its connections, most notably with molecules of the purinergic system, TNAP serves as a controller by funnelling signal flow towards a subset of molecules. TNAP also appears as the source of signal to be spread via interactions with molecules involved among others in neurodegeneration. Cluster analyses identified TNAP as part of the second messenger signalling cascade. However, TNAP also forms connections with other functional groups involved in neuronal signal transduction. The results indicate the distinct ways of involvement of TNAP in multiple neuronal functions and diseases.

  4. Sympathetic vascular transduction is augmented in young normotensive blacks

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.

  5. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  6. Development of Optimized AAV Serotype Vectors for High-Efficiency Transduction at Further Reduced Doses.

    PubMed

    Ling, Chen; Li, Baozheng; Ma, Wenqin; Srivastava, Arun

    2016-08-01

    We have described the development of capsid-modified next-generation AAV vectors for both AAV2 and AAV3 serotypes, in which specific surface-exposed tyrosine (Y), serine (S), threonine (T), and lysine (K) residues on viral capsids were modified to achieve high-efficiency transduction at lower doses. We have also described the development of genome-modified AAV vectors, in which the transcriptionally inactive, single-stranded AAV genome was modified to achieve improved transgene expression. Here, we describe that combination of capsid modifications and genome modifications leads to the generation of optimized AAV serotype vectors, which transduce cells and tissues more efficiently, both in vitro and in vivo, at ∼20-30-fold reduced doses. These studies have significant implications in the potential use of the optimized AAV serotype vectors in human gene therapy.

  7. The C-Kit Receptor-Mediated Signal Transduction and Tumor-Related Diseases

    PubMed Central

    Liang, Jing; Wu, Yan-Ling; Chen, Bing-Jia; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-01-01

    As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases. PMID:23678293

  8. Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction.

    PubMed

    Skalski, Joseph H; Kottom, Theodore J; Limper, Andrew H

    2015-09-01

    Pneumocystis is a genus of ascomycetous fungi that are highly morbid pathogens in immunosuppressed humans and other mammals. Pneumocystis cannot easily be propagated in culture, which has greatly hindered understanding of its pathobiology. The Pneumocystis life cycle is intimately associated with its mammalian host lung environment, and life cycle progression is dependent on complex interactions with host alveolar epithelial cells and the extracellular matrix. The Pneumocystis cell wall is a varied and dynamic structure containing a dominant major surface glycoprotein, β-glucans and chitins that are important for evasion of host defenses and stimulation of the host immune system. Understanding of Pneumocystis cell signaling pathways is incomplete, but much has been deduced by comparison of the Pneumocystis genome with homologous genes and proteins in related fungi. In this mini-review, the pathobiology of Pneumocystis is reviewed, with particular focus on the life cycle, cell wall components and cell signal transduction.

  9. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity

    PubMed Central

    Miyagawa, Yoshitaka; Marino, Pietro; Verlengia, Gianluca; Uchida, Hiroaki; Goins, William F.; Yokota, Shinichiro; Geller, David A.; Yoshida, Osamu; Mester, Joseph; Cohen, Justus B.; Glorioso, Joseph C.

    2015-01-01

    The design of highly defective herpes simplex virus (HSV) vectors for transgene expression in nonneuronal cells in the absence of toxic viral-gene activity has been elusive. Here, we report that elements of the latency locus protect a nonviral promoter against silencing in primary human cells in the absence of any viral-gene expression. We identified a CTCF motif cluster 5′ to the latency promoter and a known long-term regulatory region as important elements for vigorous transgene expression from a vector that is functionally deleted for all five immediate-early genes and the 15-kb internal repeat region. We inserted a 16.5-kb expression cassette for full-length mouse dystrophin and report robust and durable expression in dystrophin-deficient muscle cells in vitro. Given the broad cell tropism of HSV, our design provides a nontoxic vector that can accommodate large transgene constructs for transduction of a wide variety of cells without vector integration, thereby filling an important void in the current arsenal of gene-therapy vectors. PMID:25775541

  10. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation.

    PubMed

    Dorel, C; Vidal, O; Prigent-Combaret, C; Vallet, I; Lejeune, P

    1999-09-01

    In a genetic screening directed to identify genes involved in biofilm formation, mutations in the cpxA gene were found to reduce biofilm formation by affecting microbial adherence to solid surfaces. This effect was detected in Escherichia coli K12 as well as in E. coli strains isolated from patients with catheter-related bacteremia. We show that the negative effect of the cpxA mutation on biofilm formation results from a decreased transcription of the curlin encoding csgA gene. The effect of the cpxA mutation could not be observed in cpxR- mutants, suggesting that they affect the same regulatory pathway. The cpxA101 mutation abolishes cpxA phosphatase activity and results in the accumulation of phosphorylated CpxR. Features of the strain carrying the cpxA101 mutation are a reduced ability to form biofilm and low levels of csgA transcription. Our results indicate that the cpxA gene increases the levels of csgA transcription by dephosphorylation of CpxR, which acts as a negative regulator at csgA. Thus, we propose the existence of a new signal transduction pathway involved in the adherence process in addition to the EnvZ-OmpR two-component system.

  11. Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity.

    PubMed

    Miyagawa, Yoshitaka; Marino, Pietro; Verlengia, Gianluca; Uchida, Hiroaki; Goins, William F; Yokota, Shinichiro; Geller, David A; Yoshida, Osamu; Mester, Joseph; Cohen, Justus B; Glorioso, Joseph C

    2015-03-31

    The design of highly defective herpes simplex virus (HSV) vectors for transgene expression in nonneuronal cells in the absence of toxic viral-gene activity has been elusive. Here, we report that elements of the latency locus protect a nonviral promoter against silencing in primary human cells in the absence of any viral-gene expression. We identified a CTCF motif cluster 5' to the latency promoter and a known long-term regulatory region as important elements for vigorous transgene expression from a vector that is functionally deleted for all five immediate-early genes and the 15-kb internal repeat region. We inserted a 16.5-kb expression cassette for full-length mouse dystrophin and report robust and durable expression in dystrophin-deficient muscle cells in vitro. Given the broad cell tropism of HSV, our design provides a nontoxic vector that can accommodate large transgene constructs for transduction of a wide variety of cells without vector integration, thereby filling an important void in the current arsenal of gene-therapy vectors.

  12. Stochastic model-assisted development of efficient low-dose viral transduction in microfluidics.

    PubMed

    Luni, Camilla; Michielin, Federica; Barzon, Luisa; Calabrò, Vincenza; Elvassore, Nicola

    2013-02-19

    Adenoviruses are commonly used in vitro as gene transfer vectors in multiple applications. Nevertheless, issues such as low infection efficiency and toxicity effects on host cells have not been resolved yet. This work aims at developing a new versatile tool to enhance the expression of transduced genes while working at low viral doses in a sequential manner. We developed a microfluidic platform with automatically controlled sequential perfusion stages, which includes 10 independent channels. In addition, we built a stochastic mathematical model, accounting for the discrete nature of cells and viruses, to predict not only the percentage of infected cells, but also the associated infecting-virus distribution in the cell population. Microfluidic system and mathematical model were coupled to define an efficient experimental strategy. We used human foreskin fibroblasts, infected by replication-incompetent adenoviruses carrying EGFP gene, as the testing system. Cell characterization was performed through fluorescence microscopy, followed by image analysis. We explored the effect of different aspects: perfusion, multiplicity of infection, and temporal patterns of infection. We demonstrated feasibility of performing efficient viral transduction at low doses, by repeated pulses of cell-virus contact. This procedure also enhanced the exogenous gene expression in the sequential microfluidic infection system compared to a single infection at a higher, nontoxic, viral dose.

  13. Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology.

    PubMed

    Suzuki, Yasuhiro

    2012-01-01

    Specific protein domains known as protein transduction domains (PTDs) can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs), we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP) in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT), to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  14. The insulin/TOR signal transduction pathway is involved in the nutritional regulation of juvenile hormone synthesis in Aedes aegypti.

    PubMed

    Pérez-Hedo, Meritxell; Rivera-Perez, Crisalejandra; Noriega, Fernando G

    2013-06-01

    Juvenile hormone (JH) levels must be modulated to permit the normal progress of development and reproductive maturation in mosquitoes. JH is part of a transduction system that assesses nutritional information and controls reproduction in mosquitoes. Adult female Aedes aegypti show nutritionally-dependent dynamic changes in corpora allata (CA) JH biosynthetic activities. A coordinated expression of most JH biosynthetic enzymes has been described in female pupae and adult mosquitoes; increases or decreases in transcript levels for all the enzymes were concurrent with increases or decreases in JH synthesis; suggesting that transcriptional changes are at least partially responsible for the dynamic changes of JH biosynthesis. The goal of the present study is to identify signaling network components responsible for the nutritional-dependent changes of JH synthesis in the CA of mosquitoes. The insulin/TOR signaling network plays a central role in the transduction of nutritional signals that regulate cell growth and metabolism in insects. These pathways have also been suggested as a link between nutritional signals and JH synthesis regulation in the CA of cockroaches and flies. We used a combination of in vitro studies and in vivo genetic knockdown experiments to explore nutritional signaling pathways in the CA. Our results suggest that the insulin/TOR pathway plays a role in the transduction of the nutritional information that regulates JH synthesis in mosquitoes. Transcriptional regulation of the genes encoding JH biosynthetic enzymes is at least partially responsible for these nutritionally modulated changes of JH biosynthesis.

  15. Comparative Transduction Efficiency of AAV Vector Serotypes 1–6 in the Substantia Nigra and Striatum of the Primate Brain

    PubMed Central

    Markakis, Eleni A; Vives, Kenneth P; Bober, Jeremy; Leichtle, Stefan; Leranth, Csaba; Beecham, Jeff; Elsworth, John D; Roth, Robert H; Samulski, R Jude; Redmond, D Eugene

    2009-01-01

    Vectors derived from adeno-associated virus (AAV) are promising candidates for neural cell transduction in vivo because they are nonpathogenic and achieve long-term transduction in the central nervous system. AAV serotype 2 (AAV2) is the most widely used AAV vector in clinical trials based largely on its ability to transduce neural cells in the rodent and primate brain. Prior work in rodents suggests that other serotypes might be more efficient; however, a systematic evaluation of vector transduction efficiency has not yet been performed in the primate brain. In this study, AAV viral vectors of serotypes 1–6 with an enhanced green-fluorescent protein (GFP) reporter gene were generated at comparable titers, and injected in equal amounts into the brains of Chlorocebus sabaeus. Vector injections were placed in the substantia nigra (SN) and the caudate nucleus (CD). One month after injection, immunohistochemistry for GFP was performed and the total number of GFP+ cells was calculated using unbiased stereology. AAV5 was the most efficient vector, not only transducing significantly more cells than any other serotype, but also transducing both NeuN+ and glial-fibrillary-acidic protein positive (GFAP+) cells. These results suggest that AAV5 is a more effective vector than AAV2 at delivering potentially therapeutic transgenes to the nigrostriatal system of the primate brain. PMID:20010918

  16. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    PubMed

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  17. The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways.

    PubMed

    Kwak, June M; Mäser, Pascal; Schroeder, Julian I

    2008-01-01

    Guard cells are located in the leaf epidermis and pairs of guard cells surround and form stomatal pores, which regulate CO(2) influx from the atmosphere into leaves for photosynthetic carbon fixation. Stomatal guard cells also regulate water loss of plants via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate a multitude of different stimuli to modulate stomatal apertures. Stomata open in response to light. Stomata close in response to drought stress, elevated CO(2), ozone and low humidity. In response to drought, plants synthesize the hormone abscisic acid (ABA) that triggers closing of stomatal pores. Guard cells have become a highly developed model system for dissecting signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. Many new findings have been made in the last few years. This chapter is an update of an electronic interactive chapter in the previous edition of The Arabidopsis Book (Mäser et al. 2003). Here we focus on mechanisms for which genes and mutations have been characterized, including signaling components for which there is substantial signaling, biochemical and genetic evidence. Ion channels have been shown to represent targets of early signal transduction mechanisms and provide functional signaling and quantitative analysis points to determine where and how mutations affect branches within the guard cell signaling network. Although a substantial number of genes and proteins that function in guard cell signaling have been identified in recent years, there are many more left to be identified and the protein-protein interactions within this network will be an important subject of future research. A fully interactive clickable electronic version of this publication can be accessed at the following web site: http://www-biology.ucsd.edu/labs/schroeder/clickablegc2/. The interactive clickable version includes the following

  18. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumourcells

    PubMed Central

    Paolo, A Di; Danesi, R; Nardini, D; Bocci, G; Innocenti, F; Fogli, S; Barachini, S; Marchetti, A; Bevilacqua, G; Tacca, M Del

    2000-01-01

    The aim of the present study was to assess the cytotoxicity of manumycin, a specific inhibitor of farnesyl:protein transferase, as well as its effects on protein isoprenylation and kinase-dependent signal transduction in COLO320-DM human colon adenocarcinoma which harbours a wild-type K- ras gene. Immunoblot analysis of isolated cell membranes and total cellular lysates of COLO320-DM cells demonstrated that manumycin dose-dependently reduced p21 ras farnesylation with a 50% inhibitory concentration (IC50) of 2.51 ± 0.11 μM and 2.68 ± 0.20 μM, respectively, while the geranylgeranylation of p21 rhoA and p21 rap1 was not affected. Manumycin dose-dependently inhibited (IC50= 2.40 ± 0.67 μM) the phosphorylation of the mitogen-activated protein kinase/extracellular-regulated kinase 2 (p42MAPK/ERK2), the main cytoplasmic effector of p21 ras, as well as COLO320-DM cell growth (IC50= 3.58 ± 0.27 μM) without affecting the biosynthesis of cholesterol. Mevalonic acid (MVA, 100 μM), a substrate of the isoprenoid synthesis, was unable to protect COLO320-DM cells from manumycin cytotoxicity. Finally, manumycin 1–25 μM for 24–72 h induced oligonucleosomal fragmentation in a dose- and time-dependent manner and MVA did not protect COLO320-DM cells from undergoing DNA cleavage. The present findings indicate that the inhibition of p21 ras processing and signal transduction by manumycin is associated with marked inhibition of cell proliferation and apoptosis in colon cancer cells and the effect on cell growth does not require the presence of a mutated ras gene for maximal expression of chemotherapeutic activity. © 2000 Cancer Research Campaign PMID:10732765

  19. Human HOXA5 homeodomain enhances protein transduction and its application to vascular inflammation

    SciTech Connect

    Lee, Ji Young; Park, Kyoung sook; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Sang Ki; Lee, Sang Do; Park, Jin Bong; Chang, Seok Jong; Jeon, Byeong Hwa

    2011-07-01

    Highlights: {yields} We have developed an E. coli protein expression vector including human specific gene sequences for protein cellular delivery. {yields} The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence. {yields} HOXA5-APE1/Ref-1 inhibited TNF-alpha-induced monocyte adhesion to endothelial cells. {yields} Human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins. -- Abstract: Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including human specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 {sup o}C was greater than in 4 {sup o}C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-{alpha}-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.

  20. Adeno-Associated Viral Vectors Based on Serotype 3b Use Components of the Fibroblast Growth Factor Receptor Signaling Complex for Efficient Transduction

    PubMed Central

    Messina, Emily L.; Nienaber, Jeffrey; Daneshmand, Mani; Villamizar, Nestor; Samulski, Jude; Milano, Carmelo

    2012-01-01

    Abstract Adeno-associated virus type 3b (AAV3b) has been largely ignored by gene therapists because of the inability of vectors based on this serotype to transduce target tissues efficiently. Here we describe a phenomenon unique to AAV3b in that vectors based on this serotype mediate enhanced transduction in the presence of heparin. Among the many biological functions attributed to heparin, its interaction with, and ability to regulate, several growth factors (GFs) and growth factor receptors (GFRs) has been well characterized. Using GFR-overexpressing cell lines, soluble GFs and heparins, as well as specific GFR inhibitors, we have demonstrated a requirement for fibroblast growth factor receptor-2 (FGFR2) and FGF1 in the heparin-mediated augmentation of AAV3b vector transduction. In contrast to AAV2, we establish that heparin can be used as an adjunct with AAV3b to further increase transduction in a variety of cells and target tissues, additionally suggesting that AAV3b may be an attractive viral vector for clinical use during procedures in which heparin is used. In summary, AAV3b exhibits FGFR2-dependent, markedly enhanced transduction efficiency in the presence of heparin and FGFs, which could make it a useful vector for gene therapy in a variety of human diseases. PMID:22680698

  1. Adeno-associated viral vectors based on serotype 3b use components of the fibroblast growth factor receptor signaling complex for efficient transduction.

    PubMed

    Messina, Emily L; Nienaber, Jeffrey; Daneshmand, Mani; Villamizar, Nestor; Samulski, Jude; Milano, Carmelo; Bowles, Dawn E

    2012-10-01

    Adeno-associated virus type 3b (AAV3b) has been largely ignored by gene therapists because of the inability of vectors based on this serotype to transduce target tissues efficiently. Here we describe a phenomenon unique to AAV3b in that vectors based on this serotype mediate enhanced transduction in the presence of heparin. Among the many biological functions attributed to heparin, its interaction with, and ability to regulate, several growth factors (GFs) and growth factor receptors (GFRs) has been well characterized. Using GFR-overexpressing cell lines, soluble GFs and heparins, as well as specific GFR inhibitors, we have demonstrated a requirement for fibroblast growth factor receptor-2 (FGFR2) and FGF1 in the heparin-mediated augmentation of AAV3b vector transduction. In contrast to AAV2, we establish that heparin can be used as an adjunct with AAV3b to further increase transduction in a variety of cells and target tissues, additionally suggesting that AAV3b may be an attractive viral vector for clinical use during procedures in which heparin is used. In summary, AAV3b exhibits FGFR2-dependent, markedly enhanced transduction efficiency in the presence of heparin and FGFs, which could make it a useful vector for gene therapy in a variety of human diseases.

  2. Vitrectomy Before Intravitreal Injection of AAV2/2 Vector Promotes Efficient Transduction of Retinal Ganglion Cells in Dogs and Nonhuman Primates.

    PubMed

    Tshilenge, Kizito-Tshitoko; Ameline, Baptiste; Weber, Michel; Mendes-Madeira, Alexandra; Nedellec, Steven; Biget, Marine; Provost, Nathalie; Libeau, Lyse; Blouin, Véronique; Deschamps, Jack-Yves; Le Meur, Guylène; Colle, Marie-Anne; Moullier, Philippe; Pichard, Virginie; Rolling, Fabienne

    2016-06-01

    Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.

  3. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins.

    PubMed

    Lovric, Jasmina; Mano, Miguel; Zentilin, Lorena; Eulalio, Ana; Zacchigna, Serena; Giacca, Mauro

    2012-11-01

    Gene therapy vectors based on the adeno-associated virus (AAV) are extremely efficient for gene transfer into post-mitotic cells of heart, muscle, brain, and retina. The reason for their exquisite tropism for these cells has long remained elusive. Here, we show that upon terminal differentiation, cardiac and skeletal myocytes downregulate proteins of the DNA damage response (DDR) and that this markedly induces permissivity to AAV transduction. We observed that expression of members of the MRN complex (Mre11, Rad50, Nbs1), which bind the incoming AAV genomes, faded in cardiomyocytes at ~2 weeks after birth, as well as upon myoblast differentiation in vitro; in both cases, withdrawal of the cells from the cell cycle coincided with increased AAV permissivity. Treatment of proliferating cells with short-interfering RNAs (siRNAs) against the MRN proteins, or with microRNA-24, which is normally upregulated upon terminal differentiation and negatively controls the Nbs1 levels, significantly increased permissivity to AAV transduction. Consistently, delivery of these small RNAs to the juvenile liver concomitant with AAV markedly improved in vivo hepatocyte transduction. Collectively, these findings support the conclusion that cellular DDR proteins inhibit AAV transduction and that terminal cell differentiation relieves this restriction.

  4. Genes

    MedlinePlus

    ... Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Genes URL of this page: //medlineplus.gov/ency/article/ ...

  5. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening

    PubMed Central

    Wang, Rui-Heng; Yuan, Xin-Yu; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level. PMID:27973616

  6. Phage ϕC2 Mediates Transduction of Tn6215, Encoding Erythromycin Resistance, between Clostridium difficile Strains

    PubMed Central

    Goh, Shan; Hussain, Haitham; Chang, Barbara J.; Emmett, Warren; Riley, Thomas V.; Mullany, Peter

    2013-01-01

    ABSTRACT In this work, we show that Clostridium difficile phage ϕC2 transduces erm(B), which confers erythromycin resistance, from a donor to a recipient strain at a frequency of 10−6 per PFU. The transductants were lysogenic for ϕC2 and contained the erm(B) gene in a novel transposon, Tn6215. This element is 13,008 bp in length and contains 17 putative open reading frames (ORFs). It could also be transferred at a lower frequency by filter mating. PMID:24255122

  7. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori.

    PubMed

    Pelliciari, Simone; Vannini, Andrea; Roncarati, Davide; Danielli, Alberto

    2015-01-01

    The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress. Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur toward apo-operators, while the binding toward holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur toward the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to antibiotics.

  8. Transduction of a Proteus vulgaris strain by a Proteus mirabilis bacteriophage.

    PubMed

    Coetzee, J N

    1975-08-01

    Only Proteus vulgaris strain PV127 out of many P. vulgaris, P. morganii and Providence strains was transduced to kanamycin resistance by high-frequency transducing variants, 5006MHFTk and 5006MHFTak, of phage 5006M, a general transducing phage for P. mirabilis strain PM5006. The phages adsorbed poorly to strain PV127 and did not form plaques. The transduction frequency of PV127 by these phages was 5 x 10(-8)/p.f.u. adsorbed. Phage 5006M increased the transduction frequencies. Abortive transductants were not detected. Transductants segregated kanamycin-sensitive clones at high frequency and this, together with data from the inactivation of transducing activity of lysates by ultraviolet irradiation, indicated that transduction was by lysogenization. The general transducing property of the phages was not expressed in transductions to auxotrophs of PV127. Transductants (type I) resulting from low multiplicities of phage input adsorbed phage to the same extent as PV127. This suggested a defect in the transducing particles (or host) because single phage 5006M infection converted strain PM5006 to non-adsorption of homologous phage. Type I transductants did not liberate phage, suggesting a defective phage maturation function. Transductants (type II) which arose from higher multiplicities of phage input did not adsorb phage, indicating possible heterogeneity among transducing particles. Phage derived from type II transductants adsorbed poorly to PV127 and transduced it to kanamycin resistance at frequencies similar to those of phages 5006MHFTk and 5006MHFTak, ruling out host-controlled modification as a cause of the low transduction frequencies. This phage transduced PM5006 to antibiotic resistance at high frequencies but generalized transduction was again not detected. It was suggested that general transduction could be performed by particles which, due to a different composition and/or mode of chromosomal integration, made material they carried susceptible to host

  9. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy.

    PubMed

    Pak, Ekaterina; Segal, Rosalind A

    2016-08-22

    The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.

  10. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  11. Modulation of signal transduction in cancer cells by phytosterols.

    PubMed

    Bradford, Peter G; Awad, Atif B

    2010-01-01

    Phytosterols are biofactors found enriched in plant foods such as seeds, grains, and legumes. Their dietary consumption is associated with numerous health benefits. Epidemiologic and experimental animal studies indicate that phytosterols are cancer chemopreventive agents particularly against cancers of the colon, breast, and prostate. Phytosterols impede oncogenesis and prevent cancer cell proliferation and survival. The molecular mechanisms underlying these beneficial actions involve effects on signal transduction processes which regulate cell growth and apoptosis. Phytosterols increase sphingomyelin turnover, ceramide formation, and liver X receptor activation. In concert, these actions slow cell cycle progression, inhibit cell proliferation, and activate caspase cascades and apoptosis in cancer cells.

  12. Transduction of nanovolt signals: Limits of electric-field detection

    NASA Astrophysics Data System (ADS)

    Kalmijn, J.

    1989-11-01

    Life scientists discussed the extreme electrical sensitivity of marine sharks, skates, and rays. After reviewing the results of earlier studies on the electric sense at the animal and system levels, the participants discussed the basic process of signal transduction in terms of voltage-sensitive ionic channels. Struck by the small charge displacements needed for excitation, they strongly recommended that sensory biologists, physiologists, and biophysicists join in a concerted effort to initiate new research on the ionic mechanisms of electric field detection. To obtain detailed information on the electroreceptive membrane and its ionic channels, high resolution recording techniques will be mandatory.

  13. Bio-inspired signal transduction with heterogeneous networks of nanoscillators

    NASA Astrophysics Data System (ADS)

    Cervera, Javier; Manzanares, José A.; Mafé, Salvador

    2012-02-01

    Networks of single-electron transistors mimic some of the essential properties of neuron populations, because weak electrical signals trigger network oscillations with a frequency proportional to the input signal. Input potentials representing the pixel gray level of a grayscale image can then be converted into rhythms and the image can be recovered from these rhythms. Networks of non-identical nanoscillators complete the noisy transduction more reliably than identical ones. These results are important for signal processing schemes and could support recent studies suggesting that neuronal variability enhances the processing of biological information.

  14. Towards blueprints for network architecture, biophysical dynamics and signal transduction.

    PubMed

    Coombes, Stephen; Doiron, Brent; Josić, Kresimir; Shea-Brown, Eric

    2006-12-15

    We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations and also coincidence detection in pairs of dendrites and dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools which will ultimately underpin systems neuroscience.

  15. Roles of lipid turnover in transmembrane signal transduction.

    PubMed

    Ganong, B R

    1991-11-01

    Cells of higher organisms respond to external stimuli with a cascade of intracellular biochemical events initiated by binding of a hormone, growth factor, or neurotransmitter to a specific cell surface receptor. Previously well-characterized signal transduction pathways involve cyclic nucleotides as intracellular second messengers. Over the past decade, increasing attention has been focused on other signaling pathways in which membrane lipids serve as second messengers or their precursors. This review describes current understanding of these pathways and points to recent discoveries likely to open new frontiers in the coming decade.

  16. The Drosophila secreted protein Argos regulates signal transduction in the Ras/MAPK pathway.

    PubMed

    Sawamoto, K; Okabe, M; Tanimura, T; Mikoshiba, K; Nishida, Y; Okano, H

    1996-08-25

    The Drosophila argos gene encodes a secreted protein with an EGF motif which acts as an inhibitor of cellular differentiation in multiple developmental processes. To investigate the cellular pathways regulated by Argos, we screened for mutations which could modify the phenotype caused by overexpression of argos. We show that the effects of argos overexpression on the eye and wing vein development are suppressed by gain-of-function mutations of the MAPKK/D-MEK gene (Dsor1/D-mek) and the MAPK/ERK-A gene (rolled) and were enhanced by loss-of-function mutations of Star. Loss-of-function mutations in components of the Ras/MAPK signaling cascade act as dominant suppressors of the phenotype caused by the argos null mutations. A loss-of-function argos mutation enhanced the overproduction of R7 neurons caused by gain-of-function alleles of Son of sevenless and Dsor1. Conversely, overexpression of argos inhibited formation of the extra R7 cells that was caused by high-level MAPK/ERK-A activity. A phenotype of the sev; argos double mutants revealed that sev is epistatic to argos. These results provide evidence that Argos negatively regulates signal transduction events in the Ras/MAPK cascade.

  17. Signal transduction-related responses to phytohormones and environmental challenges in sugarcane

    PubMed Central

    Rocha, Flávia R; Papini-Terzi, Flávia S; Nishiyama, Milton Y; Vêncio, Ricardo ZN; Vicentini, Renato; Duarte, Rodrigo DC; de Rosa, Vicente E; Vinagre, Fabiano; Barsalobres, Carla; Medeiros, Ane H; Rodrigues, Fabiana A; Ulian, Eugênio C; Zingaretti, Sônia M; Galbiatti, João A; Almeida, Raul S; Figueira, Antonio VO; Hemerly, Adriana S; Silva-Filho, Marcio C; Menossi, Marcelo; Souza, Gláucia M

    2007-01-01

    Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases

  18. Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis.

    PubMed

    Tomlin, G C; Hamilton, G E; Gardner, D C; Walmsley, R M; Stateva, L I; Oliver, S G

    2000-09-01

    Complementation studies and allele replacement in Saccharomyces cerevisiae revealed that PSA1/VIG9, an essential gene that encodes GDP-mannose pyrophosphorylase, is the wild-type SRB1 gene. Cloning and sequencing of the srb1-1 allele showed that it determines a single amino acid change from glycine to aspartic acid at residue 276 (srb1(D276)). Genetic evidence is presented showing that at least one further mutation is required for the sorbitol dependence of srb1(D276). A previously reported complementing gene, which this study has now identified as PDE2, is a multi-copy suppressor of sorbitol dependence and is not, as was previously suggested, the SRB1 gene. srb and pde2 mutants share a number of phenotypes, including lysis upon hypotonic shock and enhanced transformability. These data are consistent with the idea that the Ras/cAMP pathway might modulate cell-wall construction.

  19. Mechanical transduction mechanisms of RecA-like molecular motors.

    PubMed

    Liao, Jung-Chi

    2011-12-01

    A majority of ATP-dependent molecular motors are RecA-like proteins, performing diverse functions in biology. These RecA-like molecular motors consist of a highly conserved core containing the ATP-binding site. Here I examined how ATP binding within this core is coupled to the conformational changes of different RecA-like molecular motors. Conserved hydrogen bond networks and conformational changes revealed two major mechanical transduction mechanisms: (1) intra-domain conformational changes and (2) inter-domain conformational changes. The intra-domain mechanism has a significant hydrogen bond rearrangement within the domain containing the P-loop, causing relative motion between two parts of the protein. The inter-domain mechanism exhibits little conformational change in the P-loop domain. Instead, the major conformational change is observed between the P-loop domain and an adjacent domain or subunit containing the arginine finger. These differences in the mechanical transduction mechanisms may link to the underlying energy surface governing a Brownian ratchet or a power stroke.

  20. [Contractile proteins in chemical signal transduction in plant microspores].

    PubMed

    Roshchina, V V

    2005-01-01

    Involvement of contractile components in chemical signal transduction from the cell surface to the organelles was studied using unicellular systems. Neurotransmitters dopamine and serotonin as well as active forms of oxygen hydrogen peroxide and tert-butyl peroxide were used as chemical signals. Experiments were carried out on vegetative microspores of field horsetail Equisetum arvense and generative microspores (pollen) of amaryllis Hippeastrum hybridum treated with cytochalasin B (an inhibitor of actin polymerization in microfilaments), colchicine, and vinblastine (inhibitors of tubulin polymerization in microtubules). Both types of thus treated microspores demonstrated suppressed development, particularly, for cytochalasin B treatment. At the same time, an increased typical blue fluorescence of certain cell regions (along the cell wall and around nuclei and chloroplasts) where the corresponding contractile proteins could reside was observed. In contrast to anticontractile agents, dopamine, serotonin B, and the peroxides stimulated microspore germination. Microspore pretreatment with cytochalasin B and colchicine followed by the treatment with serotonin, dopamine, or the peroxides decreased the germination rate. Involvement of actin and tubulin in chemical signal transduction from the cell surface to the nucleus is proposed.

  1. Dual-transduction-mode sensing approach for chemical detection

    SciTech Connect

    Wang, Liang; Swensen, James S.

    2012-11-01

    Smart devices such as electronic nose have been developed for application in many fields like national security, defense, environmental regulation, health care, pipeline monitoring and food analysis. Despite a large array of individual sensors, these devices still lack the ability to identify a target at a very low concentration out of a mixture of odors, limited by a single type of transduction as the sensing response to distinguish one odor from another. Here, we propose a new sensor architecture empowering each individual sensor with multi-dimensional transduction signals. The resolving power of our proposed electronic nose is thereby multiplied by a set of different and independent variables which synergistically will provide a unique combined fingerprint for each analyte. We demonstrate this concept using a Light Emitting Organic Field-Effect Transistor (LEOFET). Sensing response has been observed on both electrical and optical output signals from a green LEOFET upon exposure to an explosive taggant, with optical signal exhibiting much higher sensitivity. This new sensor architecture opens a field of devices for smart detection of chemical and biological targets.

  2. Modeling of nociceptor transduction in skin thermal pain sensation.

    PubMed

    Xu, F; Wen, T; Lu, T J; Seffen, K A

    2008-08-01

    All biological bodies live in a thermal environment with the human body as no exception, where skin is the interface with protecting function. When the temperature moves out of normal physiological range, skin fails to protect and pain sensation is evocated. Skin thermal pain is one of the most common problems for humans in everyday life as well as in thermal therapeutic treatments. Nocicetors (special receptor for pain) in skin play an important role in this process, converting the energy from external noxious thermal stimulus into electrical energy via nerve impulses. However, the underlying mechanisms of nociceptors are poorly understood and there have been limited efforts to model the transduction process. In this paper, a model of nociceptor transduction in skin thermal pain is developed in order to build direct relationship between stimuli and neural response, which incorporates a skin thermomechanical model for the calculation of temperature, damage and thermal stress at the location of nociceptor and a revised Hodgkin-Huxley form model for frequency modulation. The model qualitatively reproduces measured relationship between spike rate and temperature. With the addition of chemical and mechanical components, the model can reproduce the continuing perception of pain after temperature has returned to normal. The model can also predict differences in nociceptor activity as a function of nociceptor depth in skin tissue.

  3. Transduction of resistance to some macrolide antibiotics in Staphylococcus aureus.

    PubMed

    PATTEE, P A; BALDWIN, J N

    1962-11-01

    Pattee, P. A. (Iowa State University, Ames) and J. N. Baldwin. Transduction of resistance to some macrolide antibiotics in Staphylococcus aureus. J. Bacteriol. 84:1049-1055. 1962.-By use of phage 80 of the International Typing Series, propagated on appropriate strains of Staphylococcus aureus, two related markers controlling resistance to certain macrolide antibiotics (erythromycin, oleandomycin, spiramycin, and carbomycin) were transduced among a variety of strains of S. aureus. Unlike the markers controlling penicillinase production and resistance to chlortetracycline and novobiocin, the determinants of resistance to the macrolide antibiotics were transduced at normal frequencies (at least 300 transductants per 10(9) phage) only to certain of the recipient strains. One of the markers studied appears to control an inducible enzyme system which is specifically induced by sub-inhibitory concentrations of erythromycin and which controls resistance to erythromycin, oleandomycin, spiramycin, and carbomycin. The other marker examined confers resistance to erythromycin, oleandomycin, spiramycin, and carbomycin, and shows no evidence of being dependent upon an inducible mechanism.

  4. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  5. Neutrophil cell surface receptors and their intracellular signal transduction pathways☆

    PubMed Central

    Futosi, Krisztina; Fodor, Szabina; Mócsai, Attila

    2013-01-01

    Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. PMID:23994464

  6. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice

    PubMed Central

    Ayano, Madoka; Kani, Takahiro; Kojima, Mikiko; Sakakibara, Hitoshi; Kitaoka, Takuya; Kuroha, Takeshi; Angeles-Shim, Rosalyn B; Kitano, Hidemi; Nagai, Keisuke; Ashikari, Motoyuki

    2014-01-01

    Under flooded conditions, the leaves and internodes of deepwater rice can elongate above the water surface to capture oxygen and prevent drowning. Our previous studies showed that three major quantitative trait loci (QTL) regulate deepwater-dependent internode elongation in deepwater rice. In this study, we investigated the age-dependent internode elongation in deepwater rice. We also investigated the relationship between deepwater-dependent internode elongation and the phytohormone gibberellin (GA) by physiological and genetic approach using a QTL pyramiding line (NIL-1 + 3 + 12). Deepwater rice did not show internode elongation before the sixth leaf stage under deepwater condition. Additionally, deepwater-dependent internode elongation occurred on the sixth and seventh internodes during the sixth leaf stage. These results indicate that deepwater rice could not start internode elongation until the sixth leaf stage. Ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS) method for the phytohormone contents showed a deepwater-dependent GA1 and GA4 accumulation in deepwater rice. Additionally, a GA inhibitor abolished deepwater-dependent internode elongation in deepwater rice. On the contrary, GA feeding mimicked internode elongation under ordinary growth conditions. However, mutations in GA biosynthesis and signal transduction genes blocked deepwater-dependent internode elongation. These data suggested that GA biosynthesis and signal transduction are essential for deepwater-dependent internode elongation in deepwater rice. Deepwater rice obtained the ability for rapid internode elongation to avoid drowning and adapt to flooded condition. How does it regulate internode elongation? Using both physiological and genetic approach, this paper shows that the plant hormone, gibberellin (GA) regulates internode elongation. PMID:24891164

  7. Signal Transduction Mechanisms of Alcoholic Fatty Liver Disease: Emerging Role of Lipin-1

    PubMed Central

    You, Min; Jogasuria, Alvin; Lee, Kwangwon; Wu, Jiashin; Zhang, Yanqiao; Lee, Yoon Kwang; Sadana, Prabodh

    2016-01-01

    Lipin-1, a mammalian phosphatidic acid phosphatase (PAP), is a bi-functional molecule involved in various signaling pathways via its function as a PAP enzyme in the triglyceride synthesis pathway and in the nucleus as a transcriptional co-regulator. In the liver, lipin-1 is known to play a vital role in controlling the lipid metabolism and inflammation process at multiple regulatory levels. Alcoholic fatty liver disease (AFLD) is one of the earliest forms of liver injury and approximately 8–20% of patients with simple steatosis can develop into more severe forms of liver injury, including steatohepatitis, fibrosis/cirrhosis, and eventually hepatocellular carcinoma (HCC). The signal transduction mechanisms for alcohol-induced detrimental effects in liver involves alteration of complex and multiple signaling pathways largely governed by a central and upstream signaling system, namely, sirtuin 1 (SIRT1)-AMP activated kinase (AMPK) axis. Emerging evidence suggests a pivotal role of lipin-1 as a crucial downstream regulator of SIRT1-AMPK signaling system that is likely to be ultimately responsible for development and progression of AFLD. Several lines of evidence demonstrate that ethanol exposure significantly induces lipin-1 gene and protein expression levels in cultured hepatocytes and in the livers of rodents, induces lipin-1-PAP activity, impairs the functional activity of nuclear lipin-1, disrupts lipin-1 mRNA alternative splicing and induces lipin-1 nucleocytoplasmic shuttling. Such impairment in response to ethanol leads to derangement of hepatic lipid metabolism, and excessive production of inflammatory cytokines in the livers of the rodents and human alcoholics. This review summarizes current knowledge about the role of lipin-1 in the pathogenesis of AFLD and its potential signal transduction mechanisms. PMID:26278388

  8. A Porcine Anterior Segment Perfusion and Transduction Model With Direct Visualization of the Trabecular Meshwork

    PubMed Central

    Loewen, Ralitsa T.; Roy, Pritha; Park, Daniel B.; Jensen, Adrianna; Scott, Gordon; Cohen-Karni, Devora; Fautsch, Michael P.; Schuman, Joel S.; Loewen, Nils A.

    2016-01-01

    Purpose To establish a consistent and affordable, high quality porcine anterior segment perfusion and transduction model that allows direct visualization of the trabecular meshwork. Methods Porcine anterior segments were cultured within 2 hours of death by removing lens and uvea and securing in a specially designed petri dish with a thin bottom to allow direct visualization of the trabecular meshwork with minimal distortion. Twenty-two control eyes (CO) with a constant flow rate were compared to eight gravity perfused eyes (COgr, 15 mm Hg). We established gene delivery to the TM using eGFP expressing feline immunodeficiency virus (FIV) vector GINSIN at 108 transducing units (TU) per eye (GINSIN_8, n = 8) and 107 TU (GINSIN_7, n = 8). Expression was assessed for 14 days before histology was obtained. Results Pig eyes were a reliable source for consistent and high quality anterior segment cultures with a low failure rate of 12%. Control eyes had an intraocular pressure (IOP) of 15.8 ± 1.9 mm Hg at fixed pump perfusion with 3 μL/min compared to gravity perfused COgr with imputed 3.7 ± 1.6 μL/min. Vector GINSIN_8 eyes experienced a transient posttransduction IOP increase of 44% that resolved at 48 hours; this was not observed in GINSIN_7 eyes. Expression was higher in GINSIN_8 than in GINSIN_7 eyes. Trabecular meshwork architecture was well preserved. Conclusions Compared with previously used human donor eyes, this inexpensive porcine anterior segment perfusion model is of sufficient, repeatable high quality to develop strategies of TM bioengineering. Trabecular meshwork could be observed directly. Despite significant anatomic differences, effects of transduction replicate the main aspects of previously explored human, feline and rodent models. PMID:27002293

  9. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper

    PubMed Central

    Wan, Gui-Jun; Wang, Wen-Jing; Xu, Jing-Jing; Yang, Quan-Feng; Dai, Ming-Jiang; Zhang, Feng-Jiao; Sword, Gregory A.; Pan, Wei-Dong; Chen, Fa-Jun

    2015-01-01

    Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE. PMID:26173003

  10. Sensory Transduction of the CO2 Response of Guard Cells

    SciTech Connect

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  11. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  12. Expression Analysis of Taste Signal Transduction Molecules in the Fungiform and Circumvallate Papillae of the Rhesus Macaque, Macaca mulatta

    PubMed Central

    Ishimaru, Yoshiro; Abe, Miki; Asakura, Tomiko; Imai, Hiroo; Abe, Keiko

    2012-01-01

    The molecular mechanisms of the mammalian gustatory system have been examined in many studies using rodents as model organisms. In this study, we examined the mRNA expression of molecules involved in taste signal transduction in the fungiform papillae (FuP) and circumvallate papillae (CvP) of the rhesus macaque, Macaca mulatta, using in situ hybridization. TAS1R1, TAS1R2, TAS2Rs, and PKD1L3 were exclusively expressed in different subsets of taste receptor cells (TRCs) in the FuP and CvP. This finding suggests that TRCs sensing different basic taste modalities are mutually segregated in macaque taste buds. Individual TAS2Rs exhibited a variety of expression patterns in terms of the apparent level of expression and the number of TRCs expressing these genes, as in the case of human TAS2Rs. GNAT3, but not GNA14, was expressed in TRCs of FuP, whereas GNA14 was expressed in a small population of TRCs of CvP, which were distinct from GNAT3- or TAS1R2-positive TRCs. These results demonstrate similarities and differences between primates and rodents in the expression profiles of genes involved in taste signal transduction. PMID:23029001

  13. Adenoviral vector tethering to metal surfaces via hydrolyzable cross-linkers for the modulation of vector release and transduction.

    PubMed

    Fishbein, Ilia; Forbes, Scott P; Chorny, Michael; Connolly, Jeanne M; Adamo, Richard F; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    2013-09-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolyzable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37 °C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolyzable cross-linkers with structure-specific release kinetics.

  14. Proliferation rates and gene expression profiles in human lymphoblastoid cell lines from patients with depression characterized in response to antidepressant drug therapy.

    PubMed

    Breitfeld, J; Scholl, C; Steffens, M; Brandenburg, K; Probst-Schendzielorz, K; Efimkina, O; Gurwitz, D; Ising, M; Holsboer, F; Lucae, S; Stingl, J C

    2016-11-15

    The current therapy success of depressive disorders remains in need of improvement due to low response rates and a delay in symptomatic improvement. Reliable functional biomarkers would be necessary to predict the individual treatment outcome. On the basis of the neurotrophic hypothesis of antidepressant's action, effects of antidepressant drugs on proliferation may serve as tentative individual markers for treatment efficacy. We studied individual differences in antidepressant drug effects on cell proliferation and gene expression in lymphoblastoid cell lines (LCLs) derived from patients treated for depression with documented clinical treatment outcome. Cell proliferation was characterized by EdU (5-ethynyl-2'-deoxyuridine) incorporation assays following a 3-week incubation with therapeutic concentrations of fluoxetine. Genome-wide expression profiling was conducted by microarrays, and candidate genes such as betacellulin-a gene involved in neuronal stem cell regeneration-were validated by quantitative real-time PCR. Ex vivo assessment of proliferation revealed large differences in fluoxetine-induced proliferation inhibition between donor LCLs, but no association with clinical response was observed. Genome-wide expression analyses followed by pathway and gene ontology analyses identified genes with different expression before vs after 21-day incubation with fluoxetine. Significant correlations between proliferation and gene expression of WNT2B, FZD7, TCF7L2, SULT4A1 and ABCB1 (all involved in neurogenesis or brain protection) were also found. Basal gene expression of SULT4A1 (P=0.029), and gene expression fold changes of WNT2B by ex vivo fluoxetine (P=0.025) correlated with clinical response and clinical remission, respectively. Thus, we identified potential gene expression biomarkers eventually being useful as baseline predictors or as longitudinal targets in antidepressant therapy.

  15. Differential sorting of human parathyroid hormone after transduction of mouse and rat salivary glands.

    PubMed

    Adriaansen, J; Perez, P; Goldsmith, C M; Zheng, C; Baum, B J

    2008-10-01

    Gene transfer to salivary glands leads to abundant secretion of transgenic protein into either saliva or the bloodstream. This indicates significant clinical potential, depending on the route of sorting. The aim of this study was to probe the sorting characteristics of human parathyroid hormone (hPTH) in two animal models for salivary gland gene transfer. PTH is a key hormone regulating calcium levels in the blood. A recombinant serotype 5 adenoviral vector carrying the hPTH cDNA was administered to the submandibular glands of mice and rats. Two days after delivery, high levels of hPTH were found in the serum of mice, leading to elevated serum calcium levels. Only low amounts of hPTH were found in the saliva. Two days after vector infusion into rats, a massive secretion of hPTH was measured in saliva, with little secretion into serum. Confocal microscopy showed hPTH in the glands, localized basolaterally in mice and apically in rats. Submandibular gland transduction was effective and the produced hPTH was biologically active in vivo. Whereas hPTH sorted toward the basolateral side in mice, in rats hPTH was secreted mainly at the apical side. These results indicate that the interaction between hPTH and the cell sorting machinery is different between mouse and rat salivary glands. Detailed studies in these two species should result in a better understanding of cellular control of transgenic secretory protein sorting in this tissue.

  16. Remodeling the clock: coactivators and signal transduction in the circadian clockworks

    NASA Astrophysics Data System (ADS)

    Weber, Frank

    2009-03-01

    Most organisms on earth such as cyanobacteria, fungi, plants, insects, animals, and humans synchronize their physiological and behavioral activities with the environmental cycles of day and night. Significant progress has been made in unraveling the genetic components that constitute a molecular circadian clock, which facilitates the temporal control of physiology and behavior. Clock genes assemble interlocked transcriptional/translational feedback loops that underlie the circadian oscillations. Recent investigations revealed that posttranslational regulation of clock proteins is crucial for functioning of the molecular oscillator and for precise temporal control of circadian transcription. This review provides an overview of the homologous clockworks in Drosophila and mammals, with a special focus on recent insights in the posttranslational regulation of clock proteins as well as the role of coactivators, repressors, and signal transduction for circadian controlled genome-wide transcription. The emerging mechanisms of clock gene regulation provide an understanding of the temporal control of transcription in general and the circadian orchestration of physiology and behavior in particular.

  17. Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrhine primates.

    PubMed

    Zhang, Jianzhi; Webb, David M

    2003-07-08

    Pheromones are water-soluble chemicals released and sensed by individuals of the same species to elicit social and reproductive behaviors or physiological changes; they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Humans and some related primates possess only vestigial VNOs and have no or significantly reduced ability to detect pheromones, a phenomenon not well understood at the molecular level. Here we show that genes encoding the TRP2 ion channel and V1R pheromone receptors, two components of the vomeronasal pheromone signal transduction pathway, have been impaired and removed from functional constraints since shortly before the separation of hominoids and Old World monkeys approximately 23 million years ago, and that the random inactivation of pheromone receptor genes is an ongoing process even in present-day humans. The phylogenetic distribution of vomeronasal pheromone insensitivity is concordant with those of conspicuous female sexual swelling and male trichromatic color vision, suggesting that a vision-based signaling-sensory mechanism may have in part replaced the VNO-mediated chemical-based system in the social/reproductive activities of hominoids and Old World monkeys (catarrhines).

  18. Remodeling the clock: coactivators and signal transduction in the circadian clockworks.

    PubMed

    Weber, Frank

    2009-03-01

    Most organisms on earth such as cyanobacteria, fungi, plants, insects, animals, and humans synchronize their physiological and behavioral activities with the environmental cycles of day and night. Significant progress has been made in unraveling the genetic components that constitute a molecular circadian clock, which facilitates the temporal control of physiology and behavior. Clock genes assemble interlocked transcriptional/translational feedback loops that underlie the circadian oscillations. Recent investigations revealed that posttranslational regulation of clock proteins is crucial for functioning of the molecular oscillator and for precise temporal control of circadian transcription. This review provides an overview of the homologous clockworks in Drosophila and mammals, with a special focus on recent insights in the posttranslational regulation of clock proteins as well as the role of coactivators, repressors, and signal transduction for circadian controlled genome-wide transcription. The emerging mechanisms of clock gene regulation provide an understanding of the temporal control of transcription in general and the circadian orchestration of physiology and behavior in particular.

  19. Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction

    PubMed Central

    Levites, Yona; Golde, Todd E.; Jankowsky, Joanna L.

    2014-01-01

    With the pace of scientific advancement accelerating rapidly, new methods are needed for experimental neuroscience to quickly and easily manipulate gene expression in the mouse brain. Here we describe a technique first introduced by Passini and Wolfe for direct intracranial delivery of virally-encoded transgenes into the neonatal mouse brain. In its most basic form, the procedure requires only an ice bucket and a microliter syringe. However, the protocol can also be adapted for use with stereotaxic frames to improve consistency for researchers new to the technique. The method relies on the ability of adeno-associated virus (AAV) to move freely from the cerebral ventricles into the brain parenchyma while the ependymal lining is still immature during the first 12-24 hr after birth. Intraventricular injection of AAV at this age results in widespread transduction of neurons throughout the brain. Expression begins within days of injection and persists for the lifetime of the animal. Viral titer can be adjusted to control the density of transduced neurons, while co-expression of a fluorescent protein provides a vital label of transduced cells. With the rising availability of viral core facilities to provide both off-the-shelf, pre-packaged reagents and custom viral preparation, this approach offers a timely method for manipulating gene expression in the mouse brain that is fast, easy, and far less expensive than traditional germline engineering. PMID:25286085

  20. A protocol for lentiviral transduction and downstream analysis of intestinal organoids.

    PubMed

    Van Lidth de Jeude, Jooske F; Vermeulen, Jacqueline L M; Montenegro-Miranda, Paula S; Van den Brink, Gijs R; Heijmans, Jarom

    2015-04-20

    Intestinal crypt-villus structures termed organoids, can be kept in sustained culture three dimensionally when supplemented with the appropriate growth factors. Since organoids are highly similar to the original tissue in terms of homeostatic stem cell differentiation, cell polarity and presence of all terminally differentiated cell types known to the adult intestinal epithelium, they serve as an essential resource in experimental research on the epithelium. The possibility to express transgenes or interfering RNA using lentiviral or retroviral vectors in organoids has increased opportunities for functional analysis of the intestinal epithelium and intestinal stem cells, surpassing traditional mouse transgenics in speed and cost. In the current video protocol we show how to utilize transduction of small intestinal organoids with lentiviral vectors illustrated by use of doxycylin inducible transgenes, or IPTG inducible short hairpin RNA for overexpression or gene knockdown. Furthermore, considering organoid culture yields minute cell counts that may even be reduced by experimental treatment, we explain how to process organoids for downstream analysis aimed at quantitative RT-PCR, RNA-microarray and immunohistochemistry. Techniques that enable transgene expression and gene knock down in intestinal organoids contribute to the research potential that these intestinal epithelial structures hold, establishing organoid culture as a new standard in cell culture.

  1. Pancreatic Transduction by Helper-Dependent Adenoviral Vectors via Intraductal Delivery

    PubMed Central

    Morró, Meritxell; Teichenne, Joan; Jimenez, Veronica; Kratzer, Ramona; Marletta, Serena; Maggioni, Luca; Mallol, Cristina; Ruberte, Jesus; Kochanek, Stefan; Bosch, Fatima

    2014-01-01

    Abstract Pancreatic gene transfer could be useful to treat several diseases, such as diabetes mellitus, cystic fibrosis, chronic pancreatitis, or pancreatic cancer. Helper-dependent adenoviral vectors (HDAds) are promising tools for gene therapy because of their large cloning capacity, high levels of transgene expression, and long-term persistence in immunocompetent animals. Nevertheless, the ability of HDAds to transduce the pancreas in vivo has not been investigated yet. Here, we have generated HDAds carrying pancreas-specific expression cassettes, that is, driven either by the elastase or insulin promoter, using a novel and convenient plasmid family and homologous recombination in bacteria. These HDAds were delivered to the pancreas of immunocompetent mice via intrapancreatic duct injection. HDAds, encoding a CMV-GFP reporter cassette, were able to transduce acinar and islet cells, but transgene expression was lost 15 days postinjection in correlation with severe lymphocytic infiltration. When HDAds encoding GFP under the control of the specific elastase promoter were used, expression was detected in acinar cells, but similarly, the expression almost disappeared 30 days postinjection and lymphocytic infiltration was also observed. In contrast, long-term transgene expression (>8 months) was achieved with HDAds carrying the insulin promoter and the secretable alkaline phosphatase as the reporter gene. Notably, transduction of the liver, the preferred target for adenovirus, was minimal by this route of delivery. These data indicate that HDAds could be used for pancreatic gene therapy but that selection of the expression cassette is of critical importance to achieve long-term expression of the transgene in this tissue. PMID:25046147

  2. A unifying metric for comparing thermomagnetic transduction utilizing magnetic entropy

    NASA Astrophysics Data System (ADS)

    Wetzlar, Kyle P.; Keller, Scott M.; Phillips, Makita R.; Carman, Gregory P.

    2016-12-01

    A method to compare the thermal to magnetic transduction efficiencies of different thermomagnetic systems was developed. The efficiencies of operating about a spin reorientation transition and the alternative ferromagnetic to paramagnetic transformation at the Curie point were directly compared. A case study was performed comparing Gd operating about its spin reorientation temperature and its Curie point. Additionally, a case study on NdCo5 operating about its spin reorientation temperature using experimentally derived values of the materials' temperature dependent magnetic properties was conducted. Analysis suggests that choosing the appropriate material and operating it about its transition produces considerable efficiencies (˜22%) as well as large harvestable energy densities (˜2.6 MJ/m3), which is an order of magnitude larger than Gd single domains operating about their Curie point (˜100 kJ/m3).

  3. MAPK Assays in Arabidopsis MAMP-PRR Signal Transduction.

    PubMed

    Chung, Hoo Sun; Sheen, Jen

    2017-01-01

    Activation of MAPK (Mitogen-Activated Protein Kinase) cascades after MAMP (Microbe-Associated Molecular Pattern) perception through PRR (Pattern Recognition Receptor) is one of the first conserved responses when plants encounter microbial organisms. Phosphorylation of various cellular factors in the MAMP-PRR pathway by MAPK cascades is critical for broad-spectrum plant innate immunity. Measurement of MAPK activation and identification of MAPK phosphorylation targets in the MAMP-PRR signal transduction pathway are essential to understand how plants reprogram their cellular processes to cope with unfavorable microbial attack. Here, we describe detailed protocols of three assays measuring MAPK activity after MAMP perception: (1) immune-blotting analysis with anti-phospho ERK1/2 antibody; (2) in-gel kinase assay using a general substrate myelin basic protein (MBP); (3) an in vitro kinase assay to evaluate phosphorylation of MAPK substrate candidates during MAMP-PRR signaling based on a protoplast expression system.

  4. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  5. Incremental Transductive Learning Approaches to Schistosomiasis Vector Classification

    NASA Astrophysics Data System (ADS)

    Fusco, Terence; Bi, Yaxin; Wang, Haiying; Browne, Fiona

    2016-08-01

    The key issues pertaining to collection of epidemic disease data for our analysis purposes are that it is a labour intensive, time consuming and expensive process resulting in availability of sparse sample data which we use to develop prediction models. To address this sparse data issue, we present the novel Incremental Transductive methods to circumvent the data collection process by applying previously acquired data to provide consistent, confidence-based labelling alternatives to field survey research. We investigated various reasoning approaches for semi-supervised machine learning including Bayesian models for labelling data. The results show that using the proposed methods, we can label instances of data with a class of vector density at a high level of confidence. By applying the Liberal and Strict Training Approaches, we provide a labelling and classification alternative to standalone algorithms. The methods in this paper are components in the process of reducing the proliferation of the Schistosomiasis disease and its effects.

  6. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  7. Molecular biology of thermosensory transduction in C. elegans.

    PubMed

    Aoki, Ichiro; Mori, Ikue

    2015-10-01

    As the environmental temperature prominently influences diverse biological aspects of the animals, thermosensation and the subsequent information processing in the nervous system has attracted much attention in biology. Thermotaxis in the nematode Caenorhabditis elegans is an ideal behavioral paradigm by which to address the molecular mechanism underlying thermosensory transduction. Molecular genetic analysis in combination with other physiological and behavioral studies revealed that sensation of ambient temperature is mediated mainly by cyclic guanosine monophosphate (cGMP) signaling in thermosensory neurons. The information of the previously perceived temperature is also stored within the thermosensory neurons, and the consequence of the comparison between the past and the present temperature is conveyed to the downstream interneurons to further regulate the motor-circuits that encode the locomotion.

  8. Protein transduction assisted by polyethylenimine-cationized carrier proteins.

    PubMed

    Kitazoe, Midori; Murata, Hitoshi; Futami, Junichiro; Maeda, Takashi; Sakaguchi, Masakiyo; Miyazaki, Masahiro; Kosaka, Megumi; Tada, Hiroko; Seno, Masaharu; Huh, Nam-ho; Namba, Masayoshi; Nishikawa, Mitsuo; Maeda, Yoshitake; Yamada, Hidenori

    2005-06-01

    Previously, we have reported that cationized-proteins covalently modified with polyethylenimine (PEI) (direct PEI-cationization) efficiently enter cells and function in the cytosol [Futami et al. (2005) J. Biosci. Bioeng. 99, 95-103]. However, it may be more convenient if a protein could be delivered into cells just by mixing the protein with a PEI-cationized carrier protein having a specific affinity (indirect PEI-cationization). Thus, we prepared PEI-cationized avidin (PEI-avidin), streptavidin (PEI-streptavidin), and protein G (PEI-protein G), and examined whether they could deliver biotinylated proteins and antibodies into living cells. PEI-avidin (and/or PEI-streptavidin) carried biotinylated GFPs into various mammalian cells very efficiently. A GFP variant containing a nuclear localization signal was found to arrive even in the nucleus. The addition of a biotinylated RNase A derivative mixed with PEI-streptavidin to a culture medium of 3T3-SV-40 cells resulted in remarkable cell growth inhibition, suggesting that the biotinylated RNase A derivative entered cells and digested intracellular RNA molecules. Furthermore, the addition of a fluorescein-labeled anti-S100C (beta-actin binding protein) antibody mixed with PEI-protein G to human fibroblasts resulted in the appearance of a fluorescence image of actin-like filamentous structures in the cells. These results indicate that indirect PEI-cationization using non-covalent interaction is as effective as the direct PEI-cationization for the transduction of proteins into living cells and for expression of their functions in the cytosol. Thus, PEI-cationized proteins having a specific affinity for certain molecules such as PEI-streptavidin, PEI-avidin and PEI-protein G are concluded to be widely applicable protein transduction carrier molecules.

  9. Intrinsic disorder mediates cooperative signal transduction in STIM1.

    PubMed

    Furukawa, Yukio; Teraguchi, Shunsuke; Ikegami, Takahisa; Dagliyan, Onur; Jin, Lin; Hall, Damien; Dokholyan, Nikolay V; Namba, Keiichi; Akira, Shizuo; Kurosaki, Tomohiro; Baba, Yoshihiro; Standley, Daron M

    2014-05-15

    Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein-protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca(2+) concentration. The oligomerization of STIM1, which triggers extracellular Ca(2+) influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca(2+) concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca(2+) concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca(2+) concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca(2+) influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca(2+) loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca(2+)-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.

  10. Influence of Unweighting on Insulin Signal Transduction in Muscle

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    2002-01-01

    Unweighting of the juvenile soleus muscle is characterized by an increased binding capacity for insulin relative to muscle mass due to sparing of the receptors during atrophy. Although carbohydrate metabolism and protein degradation in the unweighted muscle develop increased sensitivity to insulin in vivo, protein synthesis in vivo and system A amino acid transport in vitro do not appear to develop such an enhanced response. The long-term goal is to identify the precise nature of this apparent resistance in the insulin signal transduction pathway and to consider how reduced weight-bearing may elicit this effect, by evaluating specific components of the insulin signalling pathway. Because the insulin-signalling pathway has components in common with the signal transduction pathway for insulin-like growth factor (IGF-1) and potentially other growth factors, the study could have important implications in the role of weight-bearing function on muscle growth and development. Since the insulin signalling pathway diverges following activation of insulin receptor tyrosine kinase, the immediate specific aims will be to study the receptor tyrosine kinase (IRTK) and those branches, which lead to phosphorylation of insulin receptor substrate-1 (IRS-1) and of Shc protein. To achieve these broader objectives, we will test in situ, by intramuscular injection, the responses of glucose transport, system A amino acid transport and protein synthesis to insulin analogues for which the receptor has either a weaker or much stronger binding affinity compared to insulin. Studies will include: (1) estimation of the ED(sub 50) for each analogue for these three processes; (2) the effect of duration (one to four days) of unweighting on the response of each process to all analogues tested; (3) the effect of unweighting and the analogues on IRTK activity; and (4) the comparative effects of unweighting and analogue binding on the tyrosine phosphorylation of IRTK, IRS-1, and Shc protein.

  11. Intracellular Signal Transduction and Modification of the Tumor Microenvironment Induced by RET/PTCs in Papillary Thyroid Carcinoma

    PubMed Central

    Menicali, Elisa; Moretti, Sonia; Voce, Pasquale; Romagnoli, Serena; Avenia, Nicola; Puxeddu, Efisio

    2012-01-01

    RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications. Moreover, we will report on the effects of RET/PTCs on the tumor microenvironment. Finally, a short review of the literature on RET/PTC prognostic significance will be presented. PMID:22661970

  12. Blood Pressure Increases in OSA due to Maintained Neurovascular Sympathetic Transduction: Impact of CPAP

    PubMed Central

    Tamisier, Renaud; Tan, Can Ozan; Pepin, Jean-Louis; Levy, Patrick; Taylor, J. Andrew

    2015-01-01

    Study Objectives: To test the hypothesis that greater resting sympathetic activity in obstructive sleep apnea (OSA) syndrome would not induce a lesser sympathetic neurovascular transduction. Design: Case-controlled cohort study. Participants: 33 patients with newly diagnosed OSA without comorbidities and 14 healthy controls. Interventions: 6 months of continuous positive airway pressure (CPAP) treatment for OSA patients and follow-up for 9 healthy controls. Measurements and Results: We assessed resting sympathetic outflow and sympathetic neurovascular transduction. Sympathetic activity was directly measured (microneurography) at rest and in response to sustained isometric handgrip exercise. Neurovascular transduction was derived from the relationship of sympathetic activity and blood pressure to leg blood flow during exercise. Despite an elevated sympathetic activity of ∼50% in OSA compared to controls, neurovascular transduction was not different (i.e., absence of tachyphylaxis). After six months of CPAP, there were significant declines in diastolic pressure, averaging ∼4 mm Hg, and in sympathetic activity, averaging ∼20% with no change in transduction. Conclusions: Greater sympathetic activity in obstructive sleep apnea does not appear to be associated with lesser neurovascular transduction. Hence, elevated sympathetic outflow without lesser transduction may underlie the prevalent development of hypertension in this population that is well controlled by continuous positive airway pressure treatment. Citation: Tamisier R, Tan CO, Pepin JL, Levy P, Taylor JA. Blood pressure increases in OSA due to maintained neurovascular sympathetic transduction: impact of CPAP. SLEEP 2015;38(12):1973–1980. PMID:26039959

  13. Efficient Transduction of Human and Rhesus Macaque Primary T Cells by a Modified Human Immunodeficiency Virus Type 1-Based Lentiviral Vector.

    PubMed

    He, Huan; Xue, Jing; Wang, Weiming; Liu, Lihong; Ye, Chaobaihui; Cong, Zhe; Kimata, Jason T; Qin, Chuan; Zhou, Paul

    2017-03-01

    Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors efficiently transduce genes to human, but not rhesus, primary T cells and hematopoietic stem cells (HSCs). The poor transduction of HIV-1 vectors to rhesus cells is mainly due to species-specific restriction factors such as rhesus TRIM5α. Previously, several strategies to modify HIV-1 vectors were developed to overcome rhesus TRIM5α restriction. While the modified HIV-1 vectors efficiently transduce rhesus HSCs, they remain suboptimal for rhesus primary T cells. Recently, HIV-1 variants that encode combinations of LNEIE mutations in capsid (CA) protein and SIVmac239 Vif were found to replicate efficiently in rhesus primary T cells. Thus, the present study tested whether HIV-1 vectors packaged by a packaging construct containing these CA substitutions could efficiently transduce both human and rhesus primary CD4 T cells. To accomplish this, LNEIE mutations were made in the packaging construct CEMΔ8.9, and recombinant HIV-1 vectors packaged by Δ8.9 WT or Δ8.9 LNEIE were generated. Transduction rates, CA stability, and vector integration in CEMss-CCR5 and CEMss-CCR5-rhTRIM5α/green fluorescent protein cells, as well as transduction rates in human and rhesus primary CD4 T cells by Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors, were compared. Finally, the influence of rhesus TRIM5α variations in transduction rates to primary CD4 T cells from a cohort of 37 Chinese rhesus macaques was studied. While it maintains efficient transduction for human T-cell line and primary CD4 T cells, Δ8.9 LNEIE-packaged HIV-1 vector overcomes rhesus TRIM5α-mediated CA degradation, resulting in significantly higher transduction efficiency of rhesus primary CD4 T cells than Δ8.9 WT-packaged HIV-1 vector. Rhesus TRIM5α variations strongly influence transduction efficiency of rhesus primary CD4 T cells by both Δ8.9 WT or Δ8.9 LNEIE-packaged HIV-1 vectors. Thus, it is concluded that Δ8.9 LNEIE-packaged HIV-1

  14. Adeno-associated virus type 2-mediated transfer of ecotropic retrovirus receptor cDNA allows ecotropic retroviral transduction of established and primary human cells.

    PubMed

    Qing, K; Bachelot, T; Mukherjee, P; Wang, X S; Peng, L; Yoder, M C; Leboulch, P; Srivastava, A

    1997-07-01

    The cellular receptors that mediate binding and internalization of retroviruses have recently been identified. The concentration and accessibility of these receptors are critical determinants in accomplishing successful gene transfer with retrovirus-based vectors. Murine retroviruses containing ecotropic glycoproteins do not infect human cells since human cells do not express the receptor that binds the ecotropic glycoproteins. To enable human cells to become permissive for ecotropic retrovirus-mediated gene transfer, we have developed a recombinant adeno-associated virus type 2 (AAV) vector containing ecotropic retroviral receptor (ecoR) cDNA under the control of the Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter (vRSVp-ecoR). Established human cell lines, such as HeLa and KB, known to be nonpermissive for murine ecotropic retroviruses, became permissive for infection by a retroviral vector containing a bacterial gene for resistance to neomycin (RV-Neo(r)), with a transduction efficiency of up to 47%, following transduction with vRSVp-ecoR, as determined by the development of colonies that were resistant to the drug G418, a neomycin analog. No G418-resistant colonies were present in cultures infected with either vRSVp-ecoR or RV-Neo(r) alone. Southern and Northern blot analyses revealed stable integration and long-term expression, respectively, of the transduced murine ecoR gene in clonal isolates of HeLa and KB cells. Similarly, ecotropic retrovirus-mediated Neo(r) transduction of primary human CD34+ hematopoietic progenitor cells from normal bone marrow was also documented, but only following infection with vRSVp-ecoR. The retroviral transduction efficiency was approximately 7% without prestimulation and approximately 14% with prestimulation of CD34+ cells with cytokines, as determined by hematopoietic clonogenic assays. No G418-resistant progenitor cell colonies were present in cultures infected with either vRSVp-ecoR or RV-Neo(r) alone. These

  15. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila.

    PubMed

    Lehnert, Brendan P; Baker, Allison E; Gaudry, Quentin; Chiang, Ann-Shyn; Wilson, Rachel I

    2013-01-09

    Auditory receptor cells rely on mechanically gated channels to transform sound stimuli into neural activity. Several TRP channels have been implicated in Drosophila auditory transduction, but mechanistic studies have been hampered by the inability to record subthreshold signals from receptor neurons. Here, we develop a non-invasive method for measuring these signals by recording from a central neuron that is electrically coupled to a genetically defined population of auditory receptor cells. We find that the TRPN family member NompC, which is necessary for the active amplification of sound-evoked motion by the auditory organ, is not required for transduction in auditory receptor cells. Instead, NompC sensitizes the transduction complex to movement and precisely regulates the static forces on the complex. In contrast, the TRPV channels Nanchung and Inactive are required for responses to sound, suggesting they are components of the transduction complex. Thus, transduction and active amplification are genetically separable processes in Drosophila hearing.

  16. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata

    PubMed Central

    Shaik, Noor F.; Neal, Erin M.; Leone, Sarah G.; Cali, Brian J.; Peel, Michael T.; Grannas, Amanda M.; Wykoff, Dennis D.

    2016-01-01

    The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine. PMID:27015653

  17. HTLV type 1 Tax transduction in microglial cells and astrocytes by lentiviral vectors.

    PubMed

    Wrzesinski, S; Séguin, R; Liu, Y; Domville, S; Planelles, V; Massa, P; Barker, E; Antel, J; Feuer, G

    2000-11-01

    Infection with human T cell leukemia virus type 1 (HTLV-1) can result in the development of HAM/TSP, a nonfatal, chronic inflammatory disease involving neuronal degeneration and demyelination of the central nervous system. Elevated levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha), interleukin-6 (IL-6), and IL-1 observed in the cerebrospinal fluid of HAM-TSP patients suggest that cytokine dysregulation within the CNS is involved in neuropathogenesis. HTLV-1 infection and enhanced expression of TNF-alpha by microglial cells, astrocytes, and macrophages has been hypothesized to lead to the destruction of myelin and oligodendrocytes in the CNS. Although the association of HTLV-2 infection and development of neurological disease is more tenuous, HTLV-2 has also been found to be associated with peripheral neuropathies. To investigate the roles of HTLV Tax(1) and Tax(2) in the induction of cytokine disregulation in these cell types, we are currently developing gene delivery vectors based on human immunodeficiency virus type-1 (HIV-1) capable of stably coexpressing the HTLV-1 or -2 tax and eGFP reporter genes in primary human cells. Transduction frequencies of up to 50%, as assessed by eGFP expression, can be achieved in human monocyte-derived macrophages and in explanted cultures of human microglia. Preliminary data suggest that Tax(1) expression is sufficient to up-regulate the proinflammatory cytokine profile in explanted human microglial cells. Future experiments will compare and evaluate the effect of tax(1) and tax(2) gene expression on the cellular proinflammatory cytokine expression profile, as well as demonstrate the effects of transducing human fetal astrocytes and PBMC-derived macrophages.

  18. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.

    PubMed

    Iosue, Christine L; Attanasio, Nicholas; Shaik, Noor F; Neal, Erin M; Leone, Sarah G; Cali, Brian J; Peel, Michael T; Grannas, Amanda M; Wykoff, Dennis D

    2016-01-01

    The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine.

  19. Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage

    PubMed Central

    Brunger, Jonathan M.; Huynh, Nguyen P. T.; Guenther, Caitlin M.; Perez-Pinera, Pablo; Moutos, Franklin T.; Sanchez-Adams, Johannah; Gersbach, Charles A.; Guilak, Farshid

    2014-01-01

    The ability to develop tissue constructs with matrix composition and biomechanical properties that promote rapid tissue repair or regeneration remains an enduring challenge in musculoskeletal engineering. Current approaches require extensive cell manipulation ex vivo, using exogenous growth factors to drive tissue-specific differentiation, matrix accumulation, and mechanical properties, thus limiting their potential clinical utility. The ability to induce and maintain differentiation of stem cells in situ could bypass these steps and enhance the success of engineering approaches for tissue regeneration. The goal of this study was to generate a self-contained bioactive scaffold capable of mediating stem cell differentiation and formation of a cartilaginous extracellular matrix (ECM) using a lentivirus-based method. We first showed that poly-l-lysine could immobilize lentivirus to poly(ε-caprolactone) films and facilitate human mesenchymal stem cell (hMSC) transduction. We then demonstrated that scaffold-mediated gene delivery of transforming growth factor β3 (TGF-β3), using a 3D woven poly(ε-caprolactone) scaffold, induced robust cartilaginous ECM formation by hMSCs. Chondrogenesis induced by scaffold-mediated gene delivery was as effective as traditional differentiation protocols involving medium supplementation with TGF-β3, as assessed by gene expression, biochemical, and biomechanical analyses. Using lentiviral vectors immobilized on a biomechanically functional scaffold, we have developed a system to achieve sustained transgene expression and ECM formation by hMSCs. This method opens new avenues in the development of bioactive implants that circumvent the need for ex vivo tissue generation by enabling the long-term goal of in situ tissue engineering. PMID:24550481

  20. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks

    PubMed Central

    2015-01-01

    Abstract Background Molecular networks are the basis of biological processes. Such networks can be decomposed into smaller modules, also known as network motifs. These motifs show interesting dynamical behaviors, in which co-operativity effects between the motif components play a critical role in human diseases. We have developed a motif-searching algorithm, which is able to identify common motif types from the cancer networks and signal transduction networks (STNs). Some of the network motifs are interconnected which can be merged together and form more complex structures, the so-called coupled motif structures (CMS). These structures exhibit mixed dynamical behavior, which may lead biological organisms to perform specific functions. Results In this study, we integrate transcription factors (TFs), microRNAs (miRNAs), miRNA targets and network motifs information to build the cancer-related TF-miRNA-motif networks (TMMN). This allows us to examine the role of network motifs in cancer formation at different levels of regulation, i.e. transcription initiation (TF → miRNA), gene-gene interaction (CMS), and post-transcriptional regulation (miRNA → target genes). Among the cancer networks and STNs we considered, it is found that there is a substantial amount of crosstalking through motif interconnections, in particular, the crosstalk between prostate cancer network and PI3K-Akt STN. Conclusions To validate the role of network motifs in cancer formation, several examples are presented which demonstrated the effectiveness of the present approach. A web-based platform has been set up which can be accessed at: http://ppi.bioinfo.asia.edu.tw/pathway/. It is very likely that our results can supply very specific CMS missing information for certain cancer types, it is an indispensable tool for cancer biology research. PMID:25707690

  1. The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors.

    PubMed

    Xia, H; Mao, Q; Davidson, B L

    2001-07-01

    Treatment of inherited genetic diseases of the brain remains an intractable problem. Methods to improve the distribution of enzymes that are injected or expressed from transduced cells will be required for many human brain therapies. Recent studies showed that a peptide, the protein transduction domain (PTD) from HIV Tat, could improve the distribution of cytoplasmic reporter proteins when administered systemically as fusion proteins or cross-linked chimeras. The utility of this motif for noncytoplasmic proteins has not been determined. Here, we tested how the Tat motif affected uptake and biodistribution of the lysosomal enzyme beta-glucuronidase, the protein deficient in the disease mucopolysaccharidosis VII, when expressed from viral vectors. The Tat motif allowed for mannose-6-phosphate (M6P) independent uptake in vitro and significantly increased the distribution of beta-glucuronidase secreted from transduced cells after intravenous or direct brain injection in mice of recombinant vectors. Thus, enzymes modified to contain protein transduction motifs may represent a general strategy for improving the distribution of secreted proteins following in vivo gene transfer.

  2. Retroviral Transduction of Helper T Cells as a Genetic Approach to Study Mechanisms Controlling their Differentiation and Function

    PubMed Central

    Singh, Yogesh; Garden, Oliver A.; Lang, Florian; Cobb, Bradley S.

    2016-01-01

    Helper T cell development and function must be tightly regulated to induce an appropriate immune response that eliminates specific pathogens yet prevents autoimmunity. Many approaches involving different model organisms have been utilized to understand the mechanisms controlling helper T cell development and function. However, studies using mouse models have proven to be highly informative due to the availability of genetic, cellular, and biochemical systems. One genetic approach in mice used by many labs involves retroviral transduction of primary helper T cells. This is a powerful approach due to its relative ease, making it accessible to almost any laboratory with basic skills in molecular biology and immunology. Therefore, multiple genes in wild type or mutant forms can readily be tested for function in helper T cells to understand their importance and mechanisms of action. We have optimized this approach and describe here the protocols for production of high titer retroviruses, isolation of primary murine helper T cells, and their transduction by retroviruses and differentiation toward the different helper subsets. Finally, the use of this approach is described in uncovering mechanisms utilized by microRNAs (miRNAs) to regulate pathways controlling helper T cell development and function. PMID:27842353

  3. Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation.

    PubMed

    González-Fontes, Agustín; Navarro-Gochicoa, M Teresa; Camacho-Cristóbal, Juan J; Herrera-Rodríguez, M Begoña; Quiles-Pando, Carlos; Rexach, Jesús

    2014-03-01

    Plants sense and transmit nutrient-deprivation signals to the nucleus. This increasingly interesting research field advances knowledge of signal transduction pathways for mineral deficiencies. The understanding of this topic for most micronutrients, especially boron (B), is more limited. Several hypotheses have been proposed to explain how a B deprivation signal would be conveyed to the nucleus, which are briefly summarized in this review. These hypotheses do not explain how so many metabolic and physiological processes quickly respond to B deficiency. Short-term B deficiency affects the cytosolic Ca(2+) levels as well as root expression of genes involved in Ca(2+) signaling. We propose and discuss that Ca(2+) and Ca(2+)-related proteins - channels/transporters, sensor relays, and sensor responders - might have major roles as intermediates in a transduction pathway triggered by B deprivation. This hypothesis may explain how plants sense and convey the B-deprivation signal to the nucleus and modulate physiological responses. The possible role of arabinogalactan-proteins in the B deficiency signaling pathway is also taken into account.

  4. Transduction of human recombinant proteins into mitochondria as a protein therapeutic approach for mitochondrial disorders.

    PubMed

    Papadopoulou, Lefkothea C; Tsiftsoglou, Asterios S

    2011-11-01

    Protein therapy is considered an alternative approach to gene therapy for treatment of genetic-metabolic disorders. Human protein therapeutics (PTs), developed via recombinant DNA technology and used for the treatment of these illnesses, act upon membrane-bound receptors to achieve their pharmacological response. On the contrary, proteins that normally act inside the cells cannot be developed as PTs in the conventional way, since they are not able to "cross" the plasma membrane. Furthermore, in mitochondrial disorders, attributed either to depleted or malfunctioned mitochondrial proteins, PTs should also have to reach the subcellular mitochondria to exert their therapeutic potential. Nowadays, there is no effective therapy for mitochondrial disorders. The development of PTs, however, via the Protein Transduction Domain (PTD) technology offered new opportunities for the deliberate delivery of human recombinant proteins inside eukaryotic subcellular organelles. To this end, mitochondrial disorders could be clinically encountered with the delivery of human mitochondrial proteins (engineered via recombinant DNA and PTD technologies) at specific intramitochondrial sites to exert their function. Overall, PTD-mediated Protein Replacement Therapy emerges as a suitable model system for the therapeutic approach for mitochondrial disorders.

  5. Signal transduction in light-oxygen-voltage receptors lacking the adduct-forming cysteine residue.

    PubMed

    Yee, Estella F; Diensthuber, Ralph P; Vaidya, Anand T; Borbat, Peter P; Engelhard, Christopher; Freed, Jack H; Bittl, Robert; Möglich, Andreas; Crane, Brian R

    2015-12-09

    Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.

  6. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction.

    PubMed

    Goldmann, Wolfgang H

    2014-03-01

    Adherent cells, when mechanically stressed, show a wide range of responses including large-scale changes in their mechanical behaviour and gene expression pattern. This is in part facilitated by activating the focal adhesion (FA) protein p130Cas through force-induced conformational changes that lead to the phosphorylation by src family kinases. Janostiak et al. [Janostiak et al. Cell Mol Life Sci (2013) DOI 10.1007/s00018-013-1450-x] have reported that the phosphorylation site Y12 on the SH3 domain of p130Cas modulates the binding with vinculin, a prominent mechano-coupling protein in FAs. Tension changes in FAs (due to the anchorage of the SH3 domain and C-terminal) bring about an extension of the substrate domain of p130Cas by unmasking the phosphorylation sites. These observations demonstrate that vinculin is an important modulator of the p130Cas-mediated mechano-transduction pathway in cells. The central aim should be now to test that vinculin is critical for p130Cas incorporation into the focal adhesion complex and for transmitting forces to the p130Cas molecule.

  7. Information theory and signal transduction systems: from molecular information processing to network inference.

    PubMed

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design.

  8. RIG-I self-oligomerization is either dispensable or very transient for signal transduction.

    PubMed

    Louber, Jade; Kowalinski, Eva; Bloyet, Louis-Marie; Brunel, Joanna; Cusack, Stephen; Gerlier, Denis

    2014-01-01

    Effective host defence against viruses depends on the rapid triggering of innate immunity through the induction of a type I interferon (IFN) response. To this end, microbe-associated molecular patterns are detected by dedicated receptors. Among them, the RIG-I-like receptors RIG-I and MDA5 activate IFN gene expression upon sensing viral RNA in the cytoplasm. While MDA5 forms long filaments in vitro upon activation, RIG-I is believed to oligomerize after RNA binding in order to transduce a signal. Here, we show that in vitro binding of synthetic RNA mimicking that of Mononegavirales (Ebola, rabies and measles viruses) leader sequences to purified RIG-I does not induce RIG-I oligomerization. Furthermore, in cells devoid of endogenous functional RIG-I-like receptors, after activation of exogenous Flag-RIG-I by a 62-mer-5'ppp-dsRNA or by polyinosinic:polycytidylic acid, a dsRNA analogue, or by measles virus infection, anti-Flag immunoprecipitation and specific elution with Flag peptide indicated a monomeric form of RIG-I. Accordingly, when using the Gaussia Luciferase-Based Protein Complementation Assay (PCA), a more sensitive in cellula assay, no RIG-I oligomerization could be detected upon RNA stimulation. Altogether our data indicate that the need for self-oligomerization of RIG-I for signal transduction is either dispensable or very transient.

  9. RIG-I Self-Oligomerization Is Either Dispensable or Very Transient for Signal Transduction

    PubMed Central

    Louber, Jade; Kowalinski, Eva; Bloyet, Louis-Marie; Brunel, Joanna; Cusack, Stephen; Gerlier, Denis

    2014-01-01

    Effective host defence against viruses depends on the rapid triggering of innate immunity through the induction of a type I interferon (IFN) response. To this end, microbe-associated molecular patterns are detected by dedicated receptors. Among them, the RIG-I-like receptors RIG-I and MDA5 activate IFN gene expression upon sensing viral RNA in the cytoplasm. While MDA5 forms long filaments in vitro upon activation, RIG-I is believed to oligomerize after RNA binding in order to transduce a signal. Here, we show that in vitro binding of synthetic RNA mimicking that of Mononegavirales (Ebola, rabies and measles viruses) leader sequences to purified RIG-I does not induce RIG-I oligomerization. Furthermore, in cells devoid of endogenous functional RIG-I-like receptors, after activation of exogenous Flag-RIG-I by a 62-mer-5′ppp-dsRNA or by polyinosinic:polycytidylic acid, a dsRNA analogue, or by measles virus infection, anti-Flag immunoprecipitation and specific elution with Flag peptide indicated a monomeric form of RIG-I. Accordingly, when using the Gaussia Luciferase-Based Protein Complementation Assay (PCA), a more sensitive in cellula assay, no RIG-I oligomerization could be detected upon RNA stimulation. Altogether our data indicate that the need for self-oligomerization of RIG-I for signal transduction is either dispensable or very transient. PMID:25259935

  10. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis.

    PubMed

    Dhiman, Alisha; Bhatnagar, Sonika; Kulshreshtha, Parul; Bhatnagar, Rakesh

    2014-01-01

    Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  11. Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue

    PubMed Central

    Yee, Estella F.; Diensthuber, Ralph P.; Vaidya, Anand T.; Borbat, Peter P.; Engelhard, Christopher; Freed, Jack H.; Bittl, Robert; Möglich, Andreas; Crane, Brian R.

    2015-01-01

    Light–oxygen–voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications. PMID:26648256

  12. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Bécavin, Christophe; Victor, Jean–Marc

    2012-02-01

    Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.

  13. Signal transduction in podocytes—spotlight on receptor tyrosine kinases

    PubMed Central

    Reiser, Jochen; Sever, Sanja; Faul, Christian

    2014-01-01

    The mammalian kidney filtration barrier is a complex multicellular, multicomponent structure that maintains homeostasis by regulating electrolytes, acid–base balance, and blood pressure (via maintenance of salt and water balance). To perform these multiple functions, podocytes—an important component of the filtration apparatus—must process a series of intercellular signals. Integrating these signals with diverse cellular responses enables a coordinated response to various conditions. Although mature podocytes are terminally differentiated and cannot proliferate, they are able to respond to growth factors. It is possible that the initial response of podocytes to growth factors is beneficial and protective, and might include the induction of hypertrophic cell growth. However, extended and/or uncontrolled growth factor signalling might be maladaptive and could result in the induction of apoptosis and podocyte loss. Growth factors signal via the activation of receptor tyrosine kinases (RTKs) on their target cells and around a quarter of the 58 RTK family members that are encoded in the human genome have been identified in podocytes. Pharmacological inhibitors of many RTKs exist and are currently used in experimental and clinical cancer therapy. The identification of pathological RTK-mediated signal transduction pathways in podocytes could provide a starting point for the development of novel therapies for glomerular disorders. PMID:24394191

  14. Nanomechanical motion transduction with a scalable localized gap plasmon architecture

    NASA Astrophysics Data System (ADS)

    Roxworthy, Brian J.; Aksyuk, Vladimir A.

    2016-12-01

    Plasmonic structures couple oscillating electromagnetic fields to conduction electrons in noble metals and thereby can confine optical-frequency excitations at nanometre scales. This confinement both facilitates miniaturization of nanophotonic devices and makes their response highly sensitive to mechanical motion. Mechanically coupled plasmonic devices thus hold great promise as building blocks for next-generation reconfigurable optics and metasurfaces. However, a flexible approach for accurately batch-fabricating high-performance plasmomechanical devices is currently lacking. Here we introduce an architecture integrating individual plasmonic structures with precise, nanometre features into tunable mechanical resonators. The localized gap plasmon resonators strongly couple light and mechanical motion within a three-dimensional, sub-diffraction volume, yielding large quality factors and record optomechanical coupling strength of 2 THz.nm-1. Utilizing these features, we demonstrate sensitive and spatially localized optical transduction of mechanical motion with a noise floor of 6 fm.Hz-1/2, representing a 1.5 orders of magnitude improvement over existing localized plasmomechanical systems.

  15. Bacterial mechanosensitive channels as a paradigm for mechanosensory transduction.

    PubMed

    Martinac, Boris

    2011-01-01

    Research on bacterial mechanosensitive (MS) channels has since their discovery been at the forefront of the MS channel field due to extensive studies of the structure and function of MscL and MscS, two of the several different types of MS channels found in bacteria. Just a few years after these two MS channels were cloned their 3D structure was solved by X-ray crystallography. Today, the repertoire of multidisciplinary approaches used in experimental and theoretical studies following the cloning and crystallographic determination of the MscL and MscS structure has expanded by including electronparamagnetic resonance (EPR) and Förster resonance energy transfer (FRET) spectroscopy aided by computational modelling employing molecular dynamics as well as Brownian dynamics simulations, which significantly advanced the understanding of structural determinants of the gating and conduction properties of these two MS channels. These extensive multidisciplinary studies of MscL and MscS have greatly contributed to elucidation of the basic physical principles of MS channel gating by mechanical force. This review summarizes briefly the major experimental and conceptual advancements, which helped in establishing MscL and MscS as a major paradigm of mechanosensory transduction in living cells.

  16. P(II) signal transduction proteins: nitrogen regulation and beyond.

    PubMed

    Huergo, Luciano F; Chandra, Govind; Merrick, Mike

    2013-03-01

    The P(II) proteins are one of the most widely distributed families of signal transduction proteins in nature. They are pivotal players in the control of nitrogen metabolism in bacteria and archaea, and are also found in the plastids of plants. Quite remarkably, P(II) proteins control the activities of a diverse range of enzymes, transcription factors and membrane transport proteins, and in recent years the extent of these interactions has been recognized to be much greater than heretofore described. Major advances have been made in structural studies of P(II) proteins, including the solution of the first structures of P(II) proteins complexed with their targets. We have also begun to gain insights into how the key effector molecules, 2-oxoglutarate and ATP/ADP, influence the activities of P(II) proteins. In this review, we have set out to summarize our current understanding of P(II) biology and to consider where future studies of these extraordinarily adaptable proteins might lead us.

  17. Nanomechanical motion transduction with a scalable localized gap plasmon architecture

    PubMed Central

    Roxworthy, Brian J.; Aksyuk, Vladimir A.

    2016-01-01

    Plasmonic structures couple oscillating electromagnetic fields to conduction electrons in noble metals and thereby can confine optical-frequency excitations at nanometre scales. This confinement both facilitates miniaturization of nanophotonic devices and makes their response highly sensitive to mechanical motion. Mechanically coupled plasmonic devices thus hold great promise as building blocks for next-generation reconfigurable optics and metasurfaces. However, a flexible approach for accurately batch-fabricating high-performance plasmomechanical devices is currently lacking. Here we introduce an architecture integrating individual plasmonic structures with precise, nanometre features into tunable mechanical resonators. The localized gap plasmon resonators strongly couple light and mechanical motion within a three-dimensional, sub-diffraction volume, yielding large quality factors and record optomechanical coupling strength of 2 THz·nm−1. Utilizing these features, we demonstrate sensitive and spatially localized optical transduction of mechanical motion with a noise floor of 6 fm·Hz−1/2, representing a 1.5 orders of magnitude improvement over existing localized plasmomechanical systems. PMID:27922019

  18. A thermodynamic approach to energy transduction in mitochondria

    NASA Astrophysics Data System (ADS)

    Golfar, Bahareh; Nosrati, Mohsen; Shojaosadati, Seyed Abbas

    2010-04-01

    A model based on non-equilibrium thermodynamics has been extended for investigation of energy transduction in biological systems. Rate of free energy loss and efficiency of some mitochondria in energetic and thermogenic modes have been determined by means of this model. The theoretical results are in agreement with previous experimental ones indicating that the rate of free energy loss is greater in mitochondria with thermogenic function while the efficiency of oxidative phosphorylation appears to be less than energetic ones. Therefore, the model illustrates the principle that mitochondria with energetic role are able to store more energy in the form of adenosine triphosphate (ATP), while mitochondria with thermogenic function release more energy as heat and are thus less efficient in energy storage. Furthermore, the model introduces some thermodynamic criteria that can provide valuable information on whether the mitochondrion is functioning properly. After evaluation of some parameters for each mitochondrion, these criteria can be easily determined by means of the presented equations. Hence, the developed model can be widely used in medical, pharmaceutical, and biological studies.

  19. NO, nitrotyrosine, and cyclic GMP in signal transduction

    NASA Technical Reports Server (NTRS)

    Hanafy, K. A.; Krumenacker, J. S.; Murad, F.

    2001-01-01

    Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.

  20. In search of cellular control: signal transduction in context

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1998-01-01

    The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future.

  1. Allostery Wiring Map for Kinesin Energy Transduction and Its Evolution*

    PubMed Central

    Richard, Jessica; Kim, Elizabeth D.; Nguyen, Hoang; Kim, Catherine D.; Kim, Sunyoung

    2016-01-01

    How signals between the kinesin active and cytoskeletal binding sites are transmitted is an open question and an allosteric question. By extracting correlated evolutionary changes within 700+ sequences, we built a model of residues that are energetically coupled and that define molecular routes for signal transmission. Typically, these coupled residues are located at multiple distal sites and thus are predicted to form a complex, non-linear network that wires together different functional sites in the protein. Of note, our model connected the site for ATP hydrolysis with sites that ultimately utilize its free energy, such as the microtubule-binding site, drug-binding loop 5, and necklinker. To confirm the calculated energetic connectivity between non-adjacent residues, double-mutant cycle analysis was conducted with 22 kinesin mutants. There was a direct correlation between thermodynamic coupling in experiment and evolutionarily derived energetic coupling. We conclude that energy transduction is coordinated by multiple distal sites in the protein rather than only being relayed through adjacent residues. Moreover, this allosteric map forecasts how energetic orchestration gives rise to different nanomotor behaviors within the superfamily. PMID:27507814

  2. Signal transduction in cells of the immune system in microgravity.

    PubMed

    Ullrich, Oliver; Huber, Kathrin; Lang, Kerstin

    2008-10-28

    Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  3. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    PubMed

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  4. Impaired Transduction of R213 and Its Recovery by a Homologous Resident R Factor

    PubMed Central

    Yoshikawa, Masanosuke; Hirota, Yukinori

    1971-01-01

    Transduction by Plkc of drug-resistance markers of the factor R213 was shown to occur at an exceptionally low frequency (at less than 10−8 of the input phage), and they could not be transduced by P22. When the recipient cells carried a homologous R factor derived from R213, markers were transduced by Plkc at a normal frequency (at about 10−5 to 10−6 of the input phage). Derivative R factors, transducible by Plkc at a normal frequency but being transferred by conjugation at a frequency lower than that of the original R213, were obtained. This type of transductant often segregated R− cells. In addition, several transductants contained R factors which were transferred normally by conjugation but were transduced by Plkc at as low a frequency as the original R213. This type of transductant was an effective recipient for transduction by Plkc of R213 when apparently “cured” by acridine treatment. No such effective “cured” recipients were obtained from the transductants with derivatives of R213 transducible at a normal frequency. Two possible interpretations are presented: (i) R213 produces a bacteriocin-like substance upon transduction, or (ii) the genome size of R213 is too large for all of its determinants to be transduced. PMID:4929864

  5. Comparative Genomics of the Vertebrate Insulin/TOR Signal Transduction Pathway: A Network-Level Analysis of Selective Pressures

    PubMed Central

    Alvarez-Ponce, David; Aguadé, Montserrat; Rozas, Julio

    2011-01-01

    Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway. We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components. Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila. PMID:21149867

  6. The complete exon-intron structure of the 156-kb human gene NFKB1, which encodes the p105 and p50 proteins of transcription factors NF-{kappa}B and I{kappa}B-{gamma}: Implications for NF-{kappa}B-mediated signal transduction

    SciTech Connect

    Heron, E.; Deloukas, P.; van Loon, A.P.G.M.

    1995-12-10

    The NFKB1 gene encodes three proteins of the NF-{kappa}/Rel and I{kappa}B families: p105, p50, and (in mouse) I{kappa}B-{gamma}. We determined the complete genomic structure of human NFKB1. NFKB1 spans 156 kb and has 24 exons with introns varying between 40,000 and 323 bp in length. Although NFKB2, which encodes p100 and p52, also has 24 exons and has a comparable exon-intron structure, it is 20 times shorter than NFKB1. We propose that the long size of NFKB1 is important for transient activation of NF-{kappa}B complexes containing p50. I{kappa}B-{gamma} corresponds to the carboxyl-terminal half of p105. DNA sequence analysis showed that the 3{prime}-end of human intron 11 and the 5{prime}-end of exon 12 of NFKB1 are colinear with the 5{prime}-untranslated region of mouse I{kappa}B-{gamma} cDNA. I{kappa}B-{gamma} is thus likely to be generated by transcription starting within intron 11 and not by alternative splicing of the mouse mRNA encoding p105 and p50. 71 refs., 5 figs., 1 tab.

  7. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction

    PubMed Central

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-01-01

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology. PMID:26184222

  8. Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction.

    PubMed

    Marigó, Eloi; Sansa, Marc; Pérez-Murano, Francesc; Uranga, Arantxa; Barniol, Núria

    2015-07-14

    A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.

  9. Adeno-associated virus general transduction vectors: analysis of proviral structures.

    PubMed Central

    McLaughlin, S K; Collis, P; Hermonat, P L; Muzyczka, N

    1988-01-01

    We used two kinds of adeno-associated virus (AAV) vectors to transduce the neomycin resistance gene into human cells. The first of these (dl52-91) retains the AAV rep genes; the second (dl3-94) retains only the AAV terminal repeats and the AAV polyadenylation signal (428 base pairs). Both vectors could be packaged into AAV virions and produced proviral structures that were essentially the same. Thus, the AAV sequences that are required in cis for packaging (pac), integration (int), rescue (res), and replication (ori) of viral DNA are located within a 284-base-pair sequence that includes the terminal repeat. Most of the G418r cell lines (73%) contained proviruses which could be rescued (Res+) when the cells were superinfected with the appropriate helper viruses. Some produced high yields of viral DNA; other rescued at a 50-fold lower level. Most of the lines that were Res+ (79%) contained a tandem repeat of the AAV genome (2 to 20 copies) which was integrated randomly with respect to cellular DNA. Junctions between two consecutive AAV copies in a tandem array contained either one or two copies of the AAV terminal palindrome. Junctions between AAV and cellular sequences occurred predominantly at or within the AAV terminal repeat, but in some cases at internal AAV sequences. Two lines were seen that contained free episomal copies of AAV DNA. Res+ clones contained deleted proviruses or tandem repeats of a deleted genome. Occasionally, flanking cellular DNA was also amplified. There was no superinfection inhibition of AAV DNA integration. Our results suggest that AAV sequences are amplified by DNA replication either before or after integration and that the mechanism of replication is different from the one used during AAV lytic infections. In addition, we have described a new AAV general transduction vector, dl3-94, which provides the maximum amount of room for insertion of foreign DNA and integrates at a high frequency (80%). Images PMID:2835501

  10. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  11. Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance.

    PubMed

    Hatanpaa, Kimmo J; Burma, Sandeep; Zhao, Dawen; Habib, Amyn A

    2010-09-01

    Aberrant epidermal growth factor receptor (EGFR) signaling is common in cancer. Increased expression of wild type and mutant EGFR is a widespread feature of diverse types of cancer. EGFR signaling in cancer has been the focus of intense investigation for decades primarily for two reasons. First, aberrant EGFR signaling is likely to play an important role in the pathogenesis of cancer, and therefore, the mechanisms of EGFR-mediated oncogenic signaling are of interest. Second, the EGFR signaling system is an attractive target for therapeutic intervention. EGFR gene amplification and overexpression are a particularly striking feature of glioblastoma (GBM), observed in approximately 40% of tumors. GBM is the most common primary malignant tumor of the central nervous system in adults. In approximately 50% of tumors with EGFR amplification, a specific EGFR mutant (EGFRvIII, also known as EGFR type III, de2-7, Delta EGFR) can be detected. This mutant is highly oncogenic and is generated from a deletion of exons 2 to 7 of the EGFR gene, which results in an in-frame deletion of 267 amino acids from the extracellular domain of the receptor. EGFRvIII is unable to bind ligand, and it signals constitutively. Although EGFRvIII has the same signaling domain as the wild type receptor, it seems to generate a distinct set of downstream signals that may contribute to an increased tumorigenicity. In this review, we discuss recent progress in key aspects of EGFR signaling in GBM, focusing on neuropathology, signal transduction, imaging of the EGFR, and the role of the EGFR in mediating resistance to radiation therapy in GBM.

  12. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus.

    PubMed

    Zagorodnyuk, V P; Brookes, S J

    2000-08-15

    Extrinsic afferent neurons play an essential role in both sensation and reflex control of visceral organs, but their specialized morphological peripheral endings have never been functionally identified. Extracellular recordings were made from fine nerve trunks running between the vagus nerve and esophagus of the guinea pig. Mechanoreceptors, which responded to esophageal distension, fired spontaneously, had low thresholds to circumferential stretch, and were slowly adapting. Calibrated von Frey hairs (0.12 mN) were used to probe the serosal surface at 100-200 sites, which were mapped on a video image of the live preparation. Each stretch-sensitive unit had one to three highly localized receptive fields ("hot spots"), which were marked with Indian ink applied on the tip of the von Frey hair. Recorded nerve trunks were then filled anterogradely, using biotinamide in an artificial intracellular solution. Receptive fields were consistently associated with intraganglionic laminar endings (IGLEs) in myenteric ganglia, but not with other filled neuronal structures. The average distance of receptive fields to IGLEs was 73 +/- 14 microm (24 receptive fields, from 12 units; n = 5), compared to 374 +/- 17 microm for 240 randomly generated sites (n = 5; p < 0.001). After maintained probing on a single receptive field, spontaneous discharge of units was inhibited, as were responses to distension. During adapted discharge to maintained distension, interspike intervals were distributed in a narrow range. This indicates that multiple receptive fields interact to encode mechanical distortion in a graded manner. IGLEs are specialized transduction sites of mechanosensitive vagal afferent neurons in the guinea pig esophagus.

  13. New insights into transduction pathways that regulate boar sperm function.

    PubMed

    Hurtado de Llera, A; Martin-Hidalgo, D; Gil, M C; Garcia-Marin, L J; Bragado, M J

    2016-01-01

    Detailed molecular mechanisms mediating signal transduction cascades that regulate boar sperm function involving Ser/Thr and tyrosine phosphorylation of proteins have been reviewed previously. Therefore, this review will focus in those kinase pathways identified recently (<10 years) in boar spermatozoa that regulate different functional spermatozoa processes. AMP-activated protein kinase (AMPK) is a cell energy sensor kinase that was first identified in mammalian spermatozoa in 2012, and since then it has emerged as an essential regulator of boar sperm function. Signaling pathways leading to AMPK activation in boar sperm are highlighted in this review (PKA, CaMKKα/β, and PKC as well as Ca(2+) and cAMP messengers as upstream regulators). Interestingly, stimuli considered as cell stress (hyperosmotic stress, inhibition of mitochondrial activity, absence of intracellular Ca(2+)) markedly activate AMPK in boar spermatozoa. Moreover, AMPK plays a remarkable and necessary regulatory role in mammalian sperm function, controlling essential boar sperm functional processes such as motility, viability, mitochondrial membrane potential, organization and fluidity of plasma membrane, and outer acrosome membrane integrity. These mentioned processes are all required under fluctuating environment of spermatozoa when transiting through the female reproductive tract to achieve fertilization. An applied role of AMPK in artificial insemination techniques is also suggested as during boar seminal doses preservation at 17 °C, physiological levels of AMPK activity markedly increase (maximum on Day 7) and result essential to maintain the aforementioned fundamental sperm processes. Moreover, regulation of sperm function exerted by the glycogen synthase kinase 3 and Src family kinase pathways is summarized.

  14. Signal transduction through the IL-4 and insulin receptor families.

    PubMed

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Biomechanical Origins of Muscle Stem Cell Signal Transduction.

    PubMed

    Morrissey, James B; Cheng, Richard Y; Davoudi, Sadegh; Gilbert, Penney M

    2016-04-10

    Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.

  16. Angular-type furocoumarins from the roots of Angelica atropurpurea and their inhibitory activity on the NFAT signal transduction pathway.

    PubMed

    Nagasawa, Azumi; Sakasai, Mitsuyoshi; Sakaguchi, Daishi; Moriwaki, Shigeru; Nishizawa, Yoshinori; Kitahara, Takashi

    2014-12-01

    One new (1) and two known angular-type (2,3) furocoumarins, isoarchangelicin (1), archangelicin (2), and 2'-angeloyl-3'-isovaleryl vaginate (3), were isolated from the roots of Angelica atropurpurea. The structure of the new compound was established on the basis of one- and two-dimensional NMR spectra and other spectroscopic studies. The inhibitory activity of these three compounds and a deacylated form of archangelicin (4) on the nuclear factor of activated T cells (NFAT) signal transduction pathway was tested by NFAT-responsive luciferase reporter gene assay in cultured cells. Although 4 did not exhibit inhibitory activity on NFAT signaling, 1-3 exhibited dose-dependent inhibition with IC50 values of 16.5 (1), 9.0 (2), and 9.2 (3) μM.

  17. Two-component signal transduction system SaeRS is involved in competence and penicillin susceptibility in Staphylococcus epidermidis.

    PubMed

    Lou, Qiang; Ma, Yuanfang; Qu, Di

    2016-04-01

    Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, the S. epidermidis SaeRS was identified to negatively regulate the expression of genes involved in competence (comF, murF), cytolysis (lrgA), and autolysis (lytS) by DNA microarray or real-time RT-PCR analysis. In addition, saeRS mutant showed increased competence and higher susceptibility to antibiotics such as penicillin and oxacillin than the wild-type strain. The study will be helpful for understanding the characterization of the SaeRS in S. epidermidis.

  18. RIP4 is a target of multiple signal transduction pathways in keratinocytes: Implications for epidermal differentiation and cutaneous wound repair

    SciTech Connect

    Adams, Stephanie; Munz, Barbara

    2010-01-01

    Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-{kappa}B) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury and might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.

  19. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants.

    PubMed

    Gibbs, Daniel J; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M; Holdsworth, Michael J

    2015-09-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling.

  20. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter

    PubMed Central

    Cronin, Therese; Vandenberghe, Luk H; Hantz, Péter; Juttner, Josephine; Reimann, Andreas; Kacsó, Ágota–Enikő; Huckfeldt, Rachel M; Busskamp, Volker; Kohler, Hubertus; Lagali, Pamela S; Roska, Botond; Bennett, Jean

    2014-01-01

    In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (∼100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use. PMID:25092770

  1. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    PubMed

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future.

  2. Highly efficient tumor transduction and antitumor efficacy in experimental human malignant mesothelioma using replicating gibbon ape leukemia virus.

    PubMed

    Kubo, S; Takagi-Kimura, M; Logg, C R; Kasahara, N

    2013-12-01

    Retroviral replicating vectors (RRVs) have been shown to achieve efficient tumor transduction and enhanced therapeutic benefit in a wide variety of cancer models. Here we evaluated two different RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV), in human malignant mesothelioma cells. In vitro, both RRVs expressing the green fluorescent protein gene efficiently replicated in most mesothelioma cell lines tested, but not in normal mesothelial cells. Notably, in ACC-MESO-1 mesothelioma cells that were not permissive for AMLV-RRV, the GALV-RRV could spread efficiently in culture and in mice with subcutaneous xenografts by in vivo fluorescence imaging. Next, GALV-RRV expressing the cytosine deaminase prodrug activator gene showed efficient killing of ACC-MESO-1 cells in a prodrug 5-fluorocytosine dose-dependent manner, compared with AMLV-RRV. GALV-RRV-mediated prodrug activator gene therapy achieved significant inhibition of subcutaneous ACC-MESO-1 tumor growth in nude mice. Quantitative reverse transcription PCR demonstrated that ACC-MESO-1 cells express higher PiT-1 (GALV receptor) and lower PiT-2 (AMLV receptor) compared with normal mesothelial cells and other mesothelioma cells, presumably accounting for the distinctive finding that GALV-RRV replicates much more robustly than AMLV-RRV in these cells. These data indicate the potential utility of GALV-RRV-mediated prodrug activator gene therapy in the treatment of mesothelioma.

  3. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus

  4. A rapidly diverging EGF protein regulates species-specific signal transduction in early sea urchin development.

    PubMed

    Kamei, N; Swanson, W J; Glabe, C G

    2000-09-15

    The macromolecules mediating species-specific events during fertilization and early development and their molecular evolution are only beginning to be understood. We screened sea urchin ovary mRNA for species-specific gene products using representational differential analysis to identify unique transcripts in Strongylocentrotus franciscanus that are absent or divergent from a closely related species, S. purpuratus. One of the transcripts identified by this screening process is SfEGF-II, which contains four EGF repeats. SfEGF-II is orthologous to the previously reported genes S. purpuratus SpEGF-II and Anthocidaris crassispina AcEGF-II, encoding exogastrulation-inducing peptides (EGIP). EGF peptides derived from EGIP induce exogastrulation, a classical developmental defect, when added to embryos prior to gastrulation. The first three EGF repeats (EGF1-3) share 50 to 60% identity among the three species, but the fourth repeat (EGF4) is more divergent, displaying only 30% identity. Analysis of the sequence divergence indicates that the EGF-II genes display a relatively high nonsynonymous-to-synonymous ratio, a significant excess of radical compared to conservative amino acid substitutions, and a lack of polymorphism within SfEGF-II, indicating that these genes have been subjected to positive Darwinian selection. Recombinant EGF3 from S. franciscanus induces exogastrulation in both S. franciscanus and S. purpuratus. In contrast, recombinant EGF4 from both S. franciscanus and S. purpuratus induces exogastrula in a species-specific manner. In hybrid embryos, both species of EGF4 induce exogastrulation, suggesting that the receptor for this EGF molecule is expressed from both parental genomes during development. Both EGF3 and EGF4 induce the phosphorylation of membrane proteins of the blastula stage embryos, but EGF4 stimulates phosphorylation of proteins only in membranes prepared from homologous embryos, suggesting that it utilizes a unique pathway involving a species

  5. Efficient signal transduction by a chimeric yeast-mammalian G protein alpha subunit Gpa1-Gsalpha covalently fused to the yeast receptor Ste2.

    PubMed Central

    Medici, R; Bianchi, E; Di Segni, G; Tocchini-Valentini, G P

    1997-01-01

    Saccharomyces cerevisiae uses G protein-coupled receptors for signal transduction. We show that a fusion protein between the alpha-factor receptor (Ste2) and the Galpha subunit (Gpa1) transduces the signal efficiently in yeast cells devoid of the endogeneous STE2 and GPA1 genes. To evaluate the function of different domains of Galpha, a chimera between the N-terminal region of yeast Gpa1 and the C-terminal region of rat Gsalpha has been constructed. This chimeric Gpa1-Gsalpha is capable of restoring viability to haploid gpa1Delta cells, but signal transduction is prevented. This is consistent with evidence showing that the C-terminus of the homologous Galpha is required for receptor-G protein recognition. Surprisingly, a fusion protein between Ste2 and Gpa1-Gsalpha is able to transduce the signal efficiently. It appears, therefore, that the C-terminus of Galpha is mainly responsible for bringing the G protein into the close proximity of the receptor's intracellular domains, thus ensuring efficient coupling, rather than having a particular role in transmitting the signal. To confirm this conclusion, we show that two proteins interacting with each other (such as Snf1 and Snf4, or Ras and Raf), each of them fused either to the receptor or to the chimeric Galpha, allow efficient signal transduction. PMID:9405353

  6. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex-vivo

    PubMed Central

    Singh, Mandeep S.; Lipinski, Daniel M.; Barnea-Cramer, Alona O.; Walker, Nathan J.; Barnard, Alun R.; Hankins, Mark W.; MacLaren, Robert E.

    2016-01-01

    Gene therapy using adeno-associated viral vectors (AAV) for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4-/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4-/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex-vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treating retinal degenerations in which high levels of transgene expression are required. PMID:27416076

  7. Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates.

    PubMed

    Brunetti-Pierri, Nicola; Ng, Thomas; Iannitti, David A; Palmer, Donna J; Beaudet, Arthur L; Finegold, Milton J; Carey, K Dee; Cioffi, William G; Ng, Philip

    2006-04-01

    Helper-dependent adenoviral vectors (HDAds) are attractive vectors for liver-directed gene therapy because they can mediate sustained, high-level transgene expression without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic delivery because of a nonlinear dose response. Unfortunately, such high doses result in systemic vector dissemination and dose-dependent acute toxicity with potentially severe and lethal consequences. We hypothesize that the threshold to efficient hepatic transduction may be circumvented by delivering the vector into the surgically isolated liver via the portal vein. Total hepatic isolation was achieved by occluding hepatic inflow from the portal vein and hepatic artery and by occluding hepatic venous outflow at the inferior vena cava. We demonstrate in nonhuman primates that this approach resulted in significantly higher efficiency hepatic transduction with reduced systemic vector dissemination compared with systemic intravascular delivery. This method of delivery was associated with transient acute toxicity, the severity of which was variable. Importantly, stable, high levels of transgene expression were obtained for at least 665 days for one baboon and for at least 560 days for two baboons with no evidence of long-term toxicity.

  8. The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

    PubMed

    Jaskoll, T; Choy, H A; Melnick, M

    1996-05-01

    Lung morphogenesis has been shown to be regulated by glucocorticoids (CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor (GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatment in vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of the embryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13 --> E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic (E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-beta gene expression. Northern analysis of TGF-beta 1, TGF-beta 2, and TGF-beta 3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-beta 3 gene expression.

  9. Transduction of Nonhuman Primate Brain with Adeno-Associated Virus Serotype 1: Vector Trafficking and Immune Response

    PubMed Central

    Forsayeth, John; Mirek, Hanna; Munson, Keith; Bringas, John; Pivirotto, Phil; McBride, Jodi L; Davidson, Beverly L.; Bankiewicz, Krystof S.

    2009-01-01

    Abstract We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohisto-chemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm3 coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4+ lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2. PMID:19292604

  10. TRAIL-Induced Caspase Activation Is a Prerequisite for Activation of the Endoplasmic Reticulum Stress-Induced Signal Transduction Pathways.

    PubMed

    Lee, Dae-Hee; Sung, Ki Sa; Guo, Zong Sheng; Kwon, William Taehyung; Bartlett, David L; Oh, Sang Cheul; Kwon, Yong Tae; Lee, Yong J

    2016-05-01

    It is well known that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis can be initially triggered by surface death receptors (the extrinsic pathway) and subsequently amplified through mitochondrial dysfunction (the intrinsic pathway). However, little is known about signaling pathways activated by the TRAIL-induced endoplasmic reticulum (ER) stress response. In this study, we report that TRAIL-induced apoptosis is associated with the endoplasmic reticulum (ER) stress response. Human colorectal carcinoma HCT116 cells were treated with TRAIL and the ER stress-induced signal transduction pathway was investigated. During TRAIL treatment, expression of ER stress marker genes, in particular the BiP (binding immunoglobulin protein) gene, was increased and activation of the PERK (PKR-like ER kinase)-eIF2α (eukaryotic initiation factor 2α)-ATF4 (activating transcription factor 4)-CHOP (CCAAT-enhancer-binding protein homologous protein) apoptotic signal transduction pathway occurred. Experimental data from use of a siRNA (small interfering RNA) technique, caspase inhibitor, and caspase-3-deficient cell line revealed that TRAIL-induced caspase activation is a prerequisite for the TRAIL-induced ER stress response. TRAIL-induced ER stress was triggered by caspase-8-mediated cleavage of BAP31 (B cell receptor-associated protein 31). The involvement of the proapoptotic PERK-CHOP pathway in TRAIL-induced apoptosis was verified by using a PERK knockout (PERK(-/-)) mouse embryo fibroblast (MEF) cell line and a CHOP(-/-) MEF cell line. These results suggest that TRAIL-induced the activation of ER stress response plays a role in TRAIL-induced apoptotic death.

  11. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    SciTech Connect

    Zaro, Jennica L.; Shen Weichiang . E-mail: weishen@usc.edu

    2005-07-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine.

  12. Cardiac Gene Delivery in Large Animal Models: Antegrade Techniques.

    PubMed

    Watanabe, Shin; Leonardson, Lauren; Hajjar, Roger J; Ishikawa, Kiyotake

    2017-01-01

    Percutaneous antegrade coronary injection is among the least invasive cardiac selective gene delivery methods. However, transduction efficiency is quite low with a simple bolus antegrade injection. In order to improve the transduction efficiency using antegrade delivery, several additional approaches have been proposed.In this chapter, we briefly discuss important elements associated with intracoronary delivery methods and present protocols for three different catheter-based antegrade delivery techniques in a preclinical large animal model. Despite the lower transduction efficacy relative to more invasive delivery techniques, antegrade techniques have the advantage of being clinically well established and having safer profiles which is important when treating patients with cardiac disease.

  13. Ocular Localization and Transduction by Adenoviral Vectors Are Serotype-Dependent and Can Be Modified by Inclusion of RGD Fiber Modifications

    PubMed Central

    Ueyama, Kazuhiro; Mori, Keisuke; Shoji, Takuhei; Omata, Hidekazu; Gehlbach, Peter L.; Brough, Douglas E.; Wei, Lisa L.; Yoneya, Shin

    2014-01-01

    Purpose To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration. Methods Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter. Results GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month. Conclusions Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases. PMID:25232844

  14. Transduction and adaptation in spider slit sense organ mechanoreceptors.

    PubMed

    Juusola, M; French, A S

    1995-12-01

    1. Mechanoreceptor neurons in spider (Cupiennlus salei) slit sense organ were examined by intracellular current- and voltageclarry recordings. Steps and pseudorandomly modulated displacement stimuli were delivered to the mechanosensitive cuticular slits. The resulting responses were used to determine the response dynamics and signal-to-noise ratio (SNR) of mechanoelectrical transduction. 2. Neurons were separated into two groups that, in terms of their afferent discharges, displayed different adaptations to displacement stimuli. Both responded at the onset of the step but then adapted fully, either immediately or within 10-200 ms. Voltage-clamp recordings showed only small differences in the receptor currents of the two groups. 3. Displacement of the slit caused a large inward current that decayed in seconds to a steady level of approximately 10-25% of the initial transient. When adapted to a steady displacement, the neurons responded to superimposed displacements in the same direction with additional transient currents, whose decay could be fitted by two exponentials with time constants of approximately 10 and 100 ms. In contrast, displacement in the opposite direction caused small "outward" currents without obvious adaptation. This behavior persisted with increasing background displacements, suggesting a shift in the displacement-response curve along the displacement axis. 4. White noise stimulation supported the step data and confirmed that the receptor's sensitivity was independent of mean slit membrane displacement. When the relative displacement of the stimulus (i.e., strain) was held constant at different maintained backgrounds, the SNR of the neurons remained fairly constant at approximately 2-10 over the frequency range from 4 to 450 Hz. The receptor current frequency responses showed high-pass characteristics, with a two- to sevenfold enhancement of the response amplitude and a phase lag relative to the stimulus of 90 degrees at 300 Hz. Low coherence

  15. Mechanical transduction by ion channels: A cautionary tale

    PubMed Central

    Sachs, Frederick

    2016-01-01

    Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K+ selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc. The channels seem to function primarily as “fire alarms”, providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. “Newbies” need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual

  16. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  17. Directional transduction for guided wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Salas, Ken I.

    The principal objectives of structural health monitoring (SHM) are the detection, location, and classification of structural defects that may adversely affect the performance of engineering systems. Ultrasonic testing based on guided waves (GW) is one of the most promising solutions for SHM. These waves are capable of inspecting large structural areas, and can be made sensitive to specific defect types by controlling the testing parameters. A key challenge in the development of GW SHM systems is the lack of robust transduction devices for efficient structural interrogation. This dissertation presents the design, fabrication, and testing of the Composite Long-range Variable-length Emitting Radar (CLoVER) transducer. This device is composed of independent piezocomposite sectors capable of efficiently exciting highly directional GW for structural inspection. The first step in the development of the new device consists of formulating a theoretical model based on 3-D elasticity to characterize its GW excitation properties. In contrast to reduced structural theories, the developed model captures the multi-modal nature of GW at high frequencies (MHz-range). After a thorough numerical verification, the model is used to determine the efficiency of the transducer relative to conventional configurations under similar electric inputs. The in-house fabrication and characterization procedures for CLoVER transducers are described and applied to more conventional piezocomposite transducer geometries. The free strain performance of these conventional in-house actuators is shown to be similar to that of commercially available piezocomposite ones. An extensive experimental investigation is subsequently presented to assess the CLoVER GW excitation characteristics in isotropic and composite materials. The radiation patterns excited by these devices are spatially characterized using laser vibrometry, and the results confirm the ability of the devices to induce highly directional GW

  18. Neural transduction in Xenopus laevis lateral line system.

    PubMed

    Strelioff, D; Honrubia, V

    1978-03-01

    1. The process of neural excitation in hair cell systems was studied in an in vitro preparation of the Xenopus laevis (African clawed toad) lateral line organ. A specially designed stimulus chamber was used to apply accurately controlled pressure, water movement, or electrical stimuli, and to record the neural responses of the two afferent fibers innervating each organ or stitch. The objective of the study was to determine the characteristics of the neural responses to these stimuli, and thus gain insight into the transduction process. 2. A sustained deflection of the hair cell cilia due to a constant flow of water past the capula resulted in a maintained change in the mean firing rate (MFR) of the afferent fibers. The data also demonstrated that the neural response was proportional to the velocity of the water flow and indicated that both deflection and movement of the cilia were the effective physiological stimuli for this hair cell system. 3. The preparations responded to sinusoidal water movements (past the capula) over the entire frequency range of the stimulus chamber, 0.1-130 Hz, and were most sensitive between 10 and 40 Hz. The variation of the MFR and the percent modulation indicated that the average dynamic range of each organ was 23.5 dB. 4. The thresholds, if any, for sustained pressure changes and for sinusoidal pressure variations in the absence of water movements were very high. Due to the limitations of the stimulus chamber it was not possible to generate pressure stimuli of sufficient magnitude to elicit a neural response without also generating suprathreshold water-movement stimuli. Sustained pressures had no detectable effect on the neural response to water-movement stimuli. 5. The preparations were very sensitive to electrical potentials applied across the toad skin on which the hair cells were located. Potentials which made the ciliated surfaces of the hair cells positive with respect to their bases increased the MFR of the fibers, whereas

  19. Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes

    PubMed Central

    Gilkes, J.A.; Bloom, M.D.; Heldermon, C.D.

    2015-01-01

    Sanfilippo syndrome type B (MPS IIIB) is a lysosomal storage disease caused by a deficiency of N-acetyl-glucosaminidase (NAGLU) activity. Since early therapeutic intervention is likely to yield the most efficacious results, we sought to determine the possible therapeutic utility of rAAV in early gene therapy based interventions. Currently, the application of recombinant adeno-associated virus (AAV) vectors is one of the most widely used gene transfer systems, and represents a promising approach in the treatment of MPS IIIB. From a translational standpoint, a minimally invasive, yet highly efficient method of vector administration is ideal. The thalamus is thought to be the switchboard for signal relay in the central nervous system (CNS) and therefore represents an attractive target. To identify an optimal AAV vector for early therapeutic intervention, and establish whether thalamic administration represents a feasible therapeutic approach, we performed a comprehensive assessment of transduction and biodistribution profiles of four green fluorescent protein (GFP) bearing rAAV serotypes, -5, -8, -9 and -rh10, administered bilaterally into the thalamus. Of the four serotypes compared, AAV8 and -9 proved superior to AAV5 and -rh10 both in biodistribution and transduction efficiency profiles. Genotype differences in transduction efficiency and biodistribution patterns were also observed. Importantly, we conclude that AAV8 and to a lesser extent, AAV9 represent preferable candidates for early gene therapy based intervention in the treatment of MPS IIIB. We also highlight the feasibility of thalamic rAAV administration, and conclude that this method results in moderate rAAV biodistribution with limited treatment capacity, thus suggesting a need for alternate methods of vector delivery. PMID:27014573

  20. Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators.

    PubMed

    Nogales, Joaquina; Blanca-Ordóñez, Helena; Olivares, José; Sanjuán, Juan

    2013-03-01

    Conjugal transfer of Sinorhizobium meliloti and Rhizobium etli symbiotic plasmids are repressed by the transcriptional regulator RctA. Here we report on new key players in the signal transduction cascade towards S. meliloti pSym conjugation. We have identified S. meliloti pSymA gene SMa0974 as an orthologue of the R. etli rctB gene which is required to antagonize repression by RctA. In S. meliloti two additional genes, rctR and rctC participate in control of rctB expression. rctR (SMa0955) encodes a protein of the GntR family of transcriptional regulators involved in repression of rctB. A rctR mutant promotes pSymA conjugal transfer and displays increased transcription of tra, virB and rctB genes even in presence of wild-type rctA gene. Among genes repressed by RctR, rctC (SMa0961) encodes a response regulator required to activate rctB transcription and therefore for derepression of plasmid conjugative functions. We conclude that in both R. etli and S. meliloti pSym conjugal transfer is derepressed via rctB, however the regulatory cascades to achieve activation of rctB are probably different. Upstream of rctB, the S. meliloti pSym conjugal transfer is regulated through the concerted action of genes representing one- (rctR) and two-component (rctC) signal transduction systems in response to yet unidentified signals.

  1. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    PubMed Central

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal_2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress. PMID:20944214

  2. The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins.

    PubMed Central

    Tchernev, Velizar T.; Mansfield, Traci A.; Giot, Loic; Kumar, A. Madan; Nandabalan, Krishnan; Li, Ying; Mishra, Vishnu S.; Detter, John C.; Rothberg, Jonathan M.; Wallace, Margaret R.; Southwick, Frederick S.; Kingsmore, Stephen F.

    2002-01-01

    BACKGROUND:Chediak-Higashi syndrome (CHS) is an inherited immunodeficiency disease characterized by giant lysosomes and impaired leukocyte degranulation. CHS results from mutations in the lysosomal trafficking regulator (LYST) gene, which encodes a 425-kD cytoplasmic protein of unknown function. The goal of this study was to identify proteins that interact with LYST as a first step in understanding how LYST modulates lysosomal exocytosis. MATERIALS AND METHODS: Fourteen cDNA fragments, covering the entire coding domain of LYST, were used as baits to screen five human cDNA libraries by a yeast two-hybrid method, modified to allow screening in the activation and the binding domain, three selectable markers, and more stringent confirmation procedures. Five of the interactions were confirmed by an in vitro binding assay. RESULTS: Twenty-one proteins that interact with LYST were identified in yeast two-hybrid screens. Four interactions, confirmed directly, were with proteins important in vesicular transport and signal transduction (the SNARE-complex protein HRS, 14-3-3, and casein kinase II). CONCLUSIONS:On the basis of protein interactions, LYST appears to function as an adapter protein that may juxtapose proteins that mediate intracellular membrane fusion reactions. The pathologic manifestations observed in CHS patients and in mice with the homologous mutation beige suggest that understanding the role of LYST may be relevant to the treatment of not only CHS but also of diseases such as asthma, urticaria, and lupus, as well as to the molecular dissection of the CHS-associated cancer predisposition. PMID:11984006

  3. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates

    PubMed Central

    Nakane, Yusuke; Yoshimura, Takashi

    2014-01-01

    Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH) revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2) and thyroid hormone-inactivating enzymes (DIO3). Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH) in the pars tuberalis (PT) of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF)-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV). The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction. PMID:24959116

  4. Transduction of Recombinant M3-p53-R12 Protein Enhances Human Leukemia Cell Apoptosis

    PubMed Central

    Lu, Tsung Chi; Zhao, Guan- Hao; Chen, Yao Yun; Chien, Chia-Ying; Huang, Chi-Hung; Lin, Kwang Hui; Chen, Shen Liang

    2016-01-01

    Tumor suppressor protein p53 plays important roles in initiating cell cycle arrest and promoting tumor cell apoptosis. Previous studies have shown that p53 is either mutated or defective in approximately 50% of human cancers; therefore restoring normal p53 activity in cancer cells might be an effective anticancer therapeutic approach. Herein, we designed a chimeric p53 protein flanked with the MyoD N-terminal transcriptional activation domain (amino acids 1-62, called M3) and a poly-arginine (R12) cell penetrating signal in its N-and C-termini respectively. This chimeric protein, M3-p53-R12, can be expressed in E. coli and purified using immobilized metal ion chromatography followed by serial refolding dialysis. The purified M3-p53-R12 protein retains DNA-binding activity and gains of cell penetrating ability. Using MTT assay, we demonstrated that M3-p53-R12 inhibited the growth of K562, Jurkat as well as HL-60 leukemia cells carrying mutant p53 genes. Results from FACS analysis also demonstrated that transduction of M3-p53-R12 protein induced cell cycle arrest of these leukemia cells. Of special note, M3-p53-R12 has no apoptotic effect on normal mesenchymal stem cells (MSC) and leukocytes, highlighting its differential effects on normal and tumor cells. To sum up, our results reveal that purified recombinant M3-p53-R12 protein has functions of suppressing the leukemia cell lines' proliferation and launching cell apoptosis, suggesting the feasibility of using M3-p53-R12 protein as an anticancer drug. In the future we will test whether this chimeric protein can preferentially trigger the death of malignant cancer cells without affecting normal cells in animals carrying endogenous or xenographic tumors. PMID:27390612

  5. Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway

    PubMed Central

    Smith, J. Jeff; Albrecht, Kirk D.; Bowen, Tessa A.; Zdunek, Jeffrey K.; Troupe, Jared F.; Cuneo, Matthew J.; Webb, Colleen T.; Hellinga, Homme W.; Medford, June I.

    2011-01-01

    Background There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly sensitive and specific ligand sensing capabilities in receptors. Input from these proteins can be linked to gene expression through histidine kinase (HK) mediated signaling. Components of HK signaling systems are evolutionarily conserved between bacteria and plants. We previously reported that in response to cytokinin-mediated HK activation in plants, the bacterial response regulator PhoB translocates to the nucleus and activates transcription. Also, we previously described a plant visual response system, the de-greening circuit, a threshold sensitive reporter system that produces a visual response which is remotely detectable and quantifiable. Methodology/Principal Findings We describe assembly and function of a complete synthetic signal transduction pathway in plants that links input from computationally re-designed PBPs to a visual response. To sense extracellular ligands, we targeted the computational re-designed PBPs to the apoplast. PBPs bind the ligand and develop affinity for the extracellular domain of a chemotactic protein, Trg. We experimentally developed Trg fusions proteins, which bind the ligand-PBP complex, and activate intracellular PhoR, the HK cognate of PhoB. We then adapted Trg-PhoR fusions for function in plants showing that in the presence of an external ligand PhoB translocates to the nucleus and activates transcription. We linked this input to the de-greening circuit creating a detector plant. Conclusions/Significance Our system is modular and PBPs can theoretically be designed to bind most small molecules. Hence our system, with improvements, may allow plants to serve as a simple and

  6. Molecular regulation of angiogenesis and tumorigenesis by signal transduction pathways: evidence of predictable and reproducible patterns of synergy in diverse neoplasms.

    PubMed

    Arbiser, Jack L

    2004-04-01

    A large number of oncogenes, tumor suppressor genes, and signal transduction pathways have been described. Currently, a framework that allows prediction of tumor behavior based upon oncogenes, tumor suppressors, and signal transduction pathways is lacking. In 1869, Mendeleev published a periodic table of elements which allowed prediction of properties of elements based upon atomic weights that allowed prediction of chemical and physical properties of elements yet to be discovered. In this paper, I will discuss recurrent patterns of synergy found in the literature and our laboratory between tumor suppressor genes, oncogenes, and signaling pathways that allows one to predict the signaling pathway in a given tumor based upon the inactivation of a tumor suppressor gene. These patterns can be found in multiple different human neoplasms. Conversely, one can predict the inactivation of a tumor suppressor based upon the activation status of a signaling pathway. This knowledge can be used by a clinician or pathologist with access to immunohistochemistry to make predictions based upon simple technologies and determine the signaling pathways involved in a patient's tumor. These strategies may be useful in the design of prevention and treatment strategies for cancer.

  7. Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury.

    PubMed

    Petrosyan, H A; Alessi, V; Singh, V; Hunanyan, A S; Levine, J M; Arvanian, V L

    2014-12-01

    Adeno-associated viruses (AAVs) are a promising system for therapeutic gene delivery to neurons in a number of neurodegenerative conditions including spinal cord injuries (SCIs). Considering the role of macrophages and glia in the progression of 'secondary damage', we searched for the optimal vectors for gene transfer to both neurons and glia following contusion SCI in adult rats. Contusion models share many similarities to most human spinal cord traumas. Several AAV serotypes known for their neuronal tropism expressing enhanced green-fluorescent protein (GFP) were injected intraspinally following thoracic T10 contusion. We systematically compared the transduction efficacy and cellular tropism of these vectors for neurons, macrophages/microglia, oligodendrocytes, astrocytes and NG2-positive glial cells following contusion SCI. No additional changes in inflammatory responses or behavioral performance were observed for any of the vectors. We identified that AAV-rh10 induced robust transduction of both neuronal and glial cells. Even though efficacy to transduce neurons was comparable to already established AAV-1, AAV-5 and AAV-9, AAV-rh10 transduced significantly higher number of macrophages/microglia and oligodendrocytes in damaged spinal cord compared with other serotypes tested. Thus, AAV-rh10 carries promising potential as a gene therapy vector, particularly if both the neuronal and glial cell populations in damaged spinal cord are targeted.

  8. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

  9. Genetic Analysis of the Functions and Interactions of Components of the LevQRST Signal Transduction Complex of Streptococcus mutans

    PubMed Central

    Zeng, Lin; Das, Satarupa; Burne, Robert A.

    2011-01-01

    Transcription of the genes for a fructan hydrolase (fruA) and a fructose/mannose sugar:phosphotransferase permease (levDEFG) in Streptococcus mutans is activated by a four-component regulatory system consisting of a histidine kinase (LevS), a response regulator (