Physics and medicine: the Bevatron/Bevalac experience, 1979-1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lothrop, F.; Alonso, J.; Force, R.
1981-01-01
Heavy ion radiobiology has been integrated successfully into the research program at the Bevatron/Bevalac for the past several years. During the 1979 to 1980 year radiotherapy trials have been conducted side-by-side with the demanding program of heavy ion nuclear science research at this national facility. Careful attention is given to the scheduling of research on the SuperHILAC and Bevatron/Bevalac so that the nuclear science and biomedical programs at the Bevatron/Bevalac and the program at the SuperHILAC are served to maximum effect. Efforts to maximize the researchers' time have resulted in hardware, software, and operating improvements that offer a total machinemore » availability of about 90% and a user availability of about 80%. Fast beam switching and beam sharing permit virtually simultaneous use of the Bevatron/Bevalac by two or more users. Current beam delivery systems will be augmented in FY 1981 to provide two ion energies per Bevatron/Bevalac pulse.« less
Bevalac studies of magnet Cerenkov spectroscopy
NASA Technical Reports Server (NTRS)
1991-01-01
The attempt was made to identify the various contributions to the velocity resolution of Cerenkov detectors such as might be used in Astromag, to measure the magnitude of these contributions and assess their effect on the mass resolution of an isotope spectrometer for Astromag, and to perform Bevalac tests of magnet/Cerenkov spectroscopy. A first version of a new 5 in. photomultiplier tube was also tested that is designed for use in large magnetic fields.
Rethinking Big Science. Modest, mezzo, grand science and the development of the Bevalac, 1971-1993.
Westfall, Catherine
2003-03-01
Historians of science have tended to focus exclusively on scale in investigations of largescale research, perhaps because it has been easy to assume that comprehending a phenomenon dubbed "Big Science" hinges on an understanding of bigness. A close look at Lawrence Berkeley Laboratory's Bevalac, a medium-scale "mezzo science" project formed by uniting two preexisting machines--the modest SuperHILAC and the grand Bevatron--shows what can be gained by overcoming this preoccupation with bigness. The Bevalac story reveals how interconnections, connections, and disconnections ultimately led to the development of a new kind of science that transformed the landscape of large-scale research in the United States. Important lessons in historiography also emerge: the value of framing discussions in terms of networks, the necessity of constantly expanding and refining methodology, and the importance of avoiding the rhetoric of participants and instead finding words to tell our own stories.
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
Accelerator & Fusion Research Division 1991 summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.
Accelerator Fusion Research Division 1991 summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkner, Klaus H.
1991-12-01
This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.
Accelerator and fusion research division. 1992 Summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-01
This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirruccello, M.C.; Tobias, C.A.
1980-11-01
Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Heilbronn, L.; Miller, J.
1998-01-01
We report beam characterization and dosimetric measurements made using a 56Fe beam extracted from the Brookhaven National Laboratory Alternating Gradient Synchrotron (AGS) with a kinetic energy of 1087 MeV/nucleon. The measurements reveal that the depth-dose distribution of this beam differs significantly from that obtained with a 600 MeV/nucleon iron beam used in several earlier radiobiology experiments at the Lawrence Berkeley National Laboratory's BEVALAC. We present detailed measurements of beam parameters relevant for radiobiology, including track- and dose-averaged linear energy transfer (LET), fragment composition and LET spectra measured behind sample holders used in irradiations of biological samples. We also report measurements of fluence behind three depths (1.94, 4.68 and 9.35 g cm(-2)) of polyethylene targets with the 1087 MeV/nucleon beam, and behind 1.94 g cm(-2) of polyethylene with a 610 MeV/nucleon beam delivered by the AGS. These results are compared to earlier measurements with the 600 MeV/nucleon beam at the BEVALAC.
Bevalac Ion Beam Characterizations for Single Event Phenomena
1992-07-16
site. 13 REFERENCES 1. T. L. Criswell, P. R. Measel and K. L. Wablin, "Single Event Upset Testing with Relativistic Heavy Ions," IEEE Trans. Nucl. Sci...NS-31, 1559-1563, (1984). 2. T. L. Criswell, D. L. Oberg, J. L. Wert, P. R. Measel , and W. E. Wilson, "Measurement of SEU Thresholds and Cross
Bevalac Ion Beam Characterizations for Single Event Phenomena
1992-07-16
should be a prerequisite to any SEP study undertaken at a high energy accelerator site. 13 REFERENCES 1. T. L. Criswell, P. R. Measel and K. L. Wahlin...Wert, P. R. Measel , and W. E. Wilson, "Measurement of SEU Thresholds and Cross Sections at Fixed Incident Angles," IEEE Trans. Nucl. Sci., NS-34. 1316
Accelerator and Fusion Research Division. Annual report, October 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-03-01
Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project. (GHT)
Heavy ion therapy: Bevalac epoch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, J.R.
1993-10-01
An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)
The response of ionization chambers to relativistic heavy nuclei
NASA Technical Reports Server (NTRS)
Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.
1985-01-01
The LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, compared the response of a set of laboratory ionization chambers to beams of 26Fe, 36Kr, 54Xe, 67 Ho, and 79Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z sq scaling.
Light-ion therapy in the U.S.: From the Bevalac to ??
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jose R.; Castro, Joseph R.
2002-09-24
While working with E.O. Lawrence at Berkeley, R.R. Wilson in 1946 noted the potential for using the Bragg-peak of protons (or heavier ions) for radiation therapy. Thus began the long history of contributions from Berkeley to this field. Pioneering work by C.A. Tobias et al at the 184-Inch Synchrocyclotron led ultimately to clinical applications of proton and helium beams, with over 1000 patients treated through 1974 with high-energy plateau radiation; placing the treatment volume (mostly pituitary fields) at the rotational center of a sophisticated patient positioner. In 1974 the SuperHILAC and Bevatron accelerators at the Lawrence Berkeley Laboratory were joinedmore » by the construction of a 250-meter transfer line, forming the Bevalac, a facility capable of accelerating ions of any atomic species to relativistic energies. With the advent of these new beams, and better diagnostic tools capable of more precise definition of tumor volume and determination of the stopping point of charged-particle beams, large-field Bragg-peak therapy with ion beams became a real possibility. A dedicated Biomedical experimental area was developed, ultimately consisting of three distinct irradiation stations; two dedicated to therapy and one to radiobiology and biophysics. These facilities included dedicated support areas for patient setup and staging of animal and cell samples, and a central control area linked to the main Bevatron control room.« less
Stopping relativistic Xe, Ho, Au, and U nuclei in nuclear emulsions
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Fixsen, D. J.; Freier, P. S.
1985-01-01
Nuclei of Xe-54, Ho-67, Au-79 and U-92 accelerated at the Bevalac to energies between 1200 and 900 MeV/n were stopped in nuclear emulsions. The observed residual ranges were compared with those calculated from various models of energy loss and shown to be most consistent with a calculation that includes those higher order correction terms proposed previously to describe the energy loss of highly changed particles, for which the first Born approximation is not valid.
Stopping relativistic Xe, Ho, Au and U nuclei in nuclear emulsions
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Fixsen, D. J.; Freier, P. S.
1985-01-01
Nuclei of Xe-54, Ho-67, Au-79 and U-92 accelerated at the Bevalac to energies between 1200 and 900 MeV/n were stopped in nuclear emulsions. The observed residual ranges were compared with those calculated from various models of energy loss and shown to be most consistent with a calculation that includes those higher order correction terms proposed previously to describe the energy loss of highly charged particles, for which the first Born approximation is not valid.
The response of ionization chambers to relativistic heavy nuclei
NASA Technical Reports Server (NTRS)
Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.
1985-01-01
As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, the response of a set of laboratory ionization chambers were compared to beams of 26Fe, 36 Kr, 54Xe, 67 Ho, and 79 Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z squared scaling.
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.
1985-01-01
An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cerenkov counter is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed obtaining the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R sub c 5 GV.
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Wefel, J. P.; Crawford, H. J.; Greiner, D. E.; Lindstrom, P. J.; Schimmerling, W.; Symons, T. J. M.
1985-01-01
The fragmentation of a 225 MeV/n O-16 beam was investigated at the Bevalac. Preliminary cross sections for mass = 13, 14, 15 fragments are used to constrain the nuclear excitation functions employed in galactic propagation calculations. Comparison to cosmic ray isotonic data at low energies shows that in the cosmic ray source C-13/C approximately 2% and N-14/0=3-6%. No source abundance of N-15 is required with the current experimental results.
NASA Technical Reports Server (NTRS)
Malachowski, M. J.; Tobias, C. A.; Leith, J. T.
1977-01-01
A model system using Necturus maculosus, the common mudpuppy, was established for evaluating effects of radiation upon the light-sensing elements of the retina. Accelerated heavy ions of helium and neon from the Berkeley Bevalac were used. A number of criteria were chosen to characterize radiation damage by observing morphological changes with the scanning electron microscope. The studies indicated retina sensitivity to high-LET (neon) particles at radiation levels below 10 rads (7 particles per visual element) whereas no significant effects were seen from fast helium ions below 50 rads.
(Oncogenic action of ionizing radiation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.
Initial results from the Caltech/DRSI balloon-borne isotope experiment
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Christian, E. C.; Grove, J. E.; Lau, K. H.; Stone, E. C.; Rasmussen, I. L.; Laursen, S.
1985-01-01
The Caltech/DSRI balloonborne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May, 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approx. 1.5 to 2.2 GeV/nucleon depending on the element. During approximately 38 hours at float altitude, 100,000 events were recorded with Z or = 6 and incident energies approx. 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the preflight Bevalac calibration and the flight data.
Initial results from the Caltech/DSRI balloon-borne isotope experiment
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Christian, E. C.; Grove, J. E.; Lau, K. H.; Stone, E. C.; Rasmussen, I. L.; Laursen, S.
1985-01-01
The Caltech/DSRI balloon-borne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approximately 1.5 to 2.2 GeV/nucleon, depending on the element. During approximately 38 hours at float altitude, 10 to the 5th events were recorded with Z or = 6 and incident energies 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the pre-flight Bevalac calibration and the flight data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christman, E.A.; Appleby, A.; Jayko, M.
1980-07-01
Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.
The multiple Coulomb scattering of very heavy charged particles.
Wong, M; Schimmerling, W; Phillips, M H; Ludewigt, B A; Landis, D A; Walton, J T; Curtis, S B
1990-01-01
An experiment was performed at the Lawrence Berkeley Laboratory BEVALAC to measure the multiple Coulomb scattering of 650-MeV/A uranium nuclei in 0.19 radiation lengths of a Cu target. Differential distributions in the projected multiple scattering angle were measured in the vertical and horizontal planes using silicon position-sensitive detectors to determine particle trajectories before and after target scattering. The results were compared with the multiple Coulomb scattering theories of Fermi and Molière, and with a modification of the Fermi theory, using a Monte Carlo simulation. These theories were in excellent agreement with experiment at the 2 sigma level. The best quantitative agreement is obtained with the Gaussian distribution predicted by the modified Fermi theory.
Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.
Miller, J; Zeitlin, C
2016-06-01
Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis
NASA Technical Reports Server (NTRS)
Zeitlin, C. J.; Frankel, K. A.; Gong, W.; Heilbronn, L.; Lampo, E. J.; Leres, R.; Miller, J.; Schimmerling, W.
1994-01-01
A multi-element solid state detector has been designed to measure fluences of fragments produced near the beam axis by high energy heavy ion beams in thick targets. The detector is compact and modular, so as to be readily reconfigured according to the range of fragment charges and energies to be measured. Preamplifier gain settings and detector calibrations are adjustable remotely under computer control. We describe the central detector, its associated detectors and electronics, triggering scheme, data acquisition and particle identification techniques, illustrated by data taken with 600 MeV/u 56Fe beams and thick polyethylene targets at the LBL Bevalac. The applications of this work to space radiation protection are discussed.
Stopping of relativistic heavy ions in various media
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.
1986-01-01
The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Albergo, S.; Caccia, Z.
A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, butmore » within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.« less
Intermediate energy heavy ions: An emerging multi-disciplinary research tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, J.R.
1988-10-01
In the ten years that beams of intermediate energy ({approx}50 MeV/amu{le}E{le}{approx}2 GeV/amu) heavy ions (Z{le}92) have been available, an increasing number of new research areas have been opened up. Pioneering work at the Bevalac at the Lawrence Berkeley Laboratory, still the world's only source of the heaviest beams in this energy range, has led to the establishment of active programs in nuclear physics, atomic physics, cosmic ray physics, as well as biology and medicine, and industrial applications. The great promise for growth of these research areas has led to serious planning for new facilities capable of delivering such beams; severalmore » such facilities are now in construction around the world. 20 refs., 5 figs., 1 tab.« less
A program to measure new energetic particle nuclear interaction cross sections
NASA Astrophysics Data System (ADS)
Guzik, T. G.; Albergo, S.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Engelage, J.; Ferrando, P.; Flores, I.; Greiner, L.; Jones, F. C.; Knott, C. N.; Ko, S.; Lindstrom, P. J.; Mazotta, J.; Mitchell, J. W.; Romanski, J.; Potenza, R.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuve, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.; Zhang, X.
1994-10-01
The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy, and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z greater than or equal to 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the Lawrence Berkeley Laboratory Bevalac HISS facility with 20 projectiles from He-4 to Ni-58 in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.
Radiation effects in Caenorhabditis elegans - Mutagenesis by high and low LET ionizing radiation
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Schubert, Wayne W.; Marshall, Tamara M.; Benton, Eric R.; Benton, Eugene V.
1989-01-01
The nematode C. elegans was used to measure the effectiveness of high-energy ionized particles in the induction of three types of genetic lesions. Recessive lethal mutations in a 40-map unit autosomal region, sterility, and X-chromosome nondisjunction or damage were investigated. Induction rates were measured as a function of linear energy transfer, LET(infinity), for nine ions of atomic nunmber 1-57 accelerated at the BEVALAC accelerator. Linear kinetics were observed for all three types of lesions within the dose/fluence ranges tested and were found to vary strongly as a function of particle LET(infinity). Relative biological effectiveness (RBE) values of up to 4.2 were measured, and action cross sections were calculated and compared to mutagenic responses in other systems.
A critical review of RHIC experimental results
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
2014-07-01
The relativistic heavy-ion collider (RHIC) was constructed to achieve an asymptotic state of nuclear matter in heavy-ion collisions, a near-ideal gas of deconfined quarks and gluons denoted quark-gluon plasma or QGP. RHIC collisions are indeed very different from the hadronic processes observed at the Bevalac and AGS, but high-energy elementary-collision mechanisms are also non-hadronic. The two-component model (TCM) combines measured properties of elementary collisions with the Glauber eikonal model to provide an alternative asymptotic limit for A-A collisions. RHIC data have been interpreted to indicate formation of a strongly-coupled QGP (sQGP) or "perfect liquid". In this review, I consider the experimental evidence that seems to support such conclusions and alternative evidence that may conflict with those conclusions and suggest different interpretations.
A program to measure new energetic particle nuclear interaction cross sections
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Albergo, S.; Chen, C. X.; Costa, S.; Crawford, H. J.; Engelage, J.; Ferrando, P.; Flores, I.; Greiner, L.; Jones, F. C.
1994-01-01
The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy, and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z greater than or equal to 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the Lawrence Berkeley Laboratory Bevalac HISS facility with 20 projectiles from He-4 to Ni-58 in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.
Collective flow measurements with HADES in Au+Au collisions at 1.23A GeV
NASA Astrophysics Data System (ADS)
Kardan, Behruz; Hades Collaboration
2017-11-01
HADES has a large acceptance combined with a good mass-resolution and therefore allows the study of dielectron and hadron production in heavy-ion collisions with unprecedented precision. With the statistics of seven billion Au-Au collisions at 1.23A GeV recorded in 2012, the investigation of higher-order flow harmonics is possible. At the BEVALAC and SIS18 directed and elliptic flow has been measured for pions, charged kaons, protons, neutrons and fragments, but higher-order harmonics have not yet been studied. They provide additional important information on the properties of the dense hadronic medium produced in heavy-ion collisions. We present here a high-statistics, multidifferential measurement of v1 and v2 for protons in Au+Au collisions at 1.23A GeV.
NASA Astrophysics Data System (ADS)
Chen, C.-X.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.; Zhang, X.
1994-06-01
A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, 22Ne to 58Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.
Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.
Straume, T; Dobson, R L; Kwan, T C
1989-01-01
Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.
Calibration of a stack of NaI scintillators at the Berkeley Bevalac
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Lau, K.; Rasmussen, I. L.
1983-01-01
An analysis of the carbon and argon data reveals that essentially all of the charge-changing fragmentation reactions within the stack can be identified and removed by imposing the simple criteria relating the observed energy deposition profiles to the expected Bragg curve depositions. It is noted that these criteria are even capable of identifying approximately one-third of the expected neutron-stripping interactions, which in these cases have anomalous deposition profiles. The contribution of mass error from uncertainty in delta E has an upper limit of 0.25 percent for Mn; this produces an associated mass error for the experiment of about 0.14 amu. It is believed that this uncertainty will change little with changing gamma. Residual errors in the mapping produce even smaller mass errors for lighter isotopes, whereas photoelectron fluctuations and delta-ray effects are approximately the same independent of the charge and energy deposition.
NASA Astrophysics Data System (ADS)
Knott, C. N.; Albergo, S.; Caccia, Z.; Chen, C.-X.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.
1996-01-01
This paper reports the elemental production cross sections for 17 projectile-energy combinations with energies between 338 and 894 MeV/nucleon interacting in a liquid hydrogen target. These results were obtained from two runs at the LBL Bevalac using projectiles ranging from 22Ne to 58Ni. Cross sections were measured for all fragment elements with charges greater than or equal to half the charge of the projectile. The results show that, over the energy and ion range investigated, the general decrease in cross section with decreasing fragment charge is strongly modified by the isospin of the projectile ion. Significant additional modifications of the cross sections due to the internal structure of the nucleus have also been seen. These include both pairing and shell effects. Differences in the cross sections due to the differing energies of the projectile are also considerable.
Heavy ion fragmentation experiments at the bevatron
NASA Technical Reports Server (NTRS)
Heckman, H. H.
1976-01-01
Collaborative research efforts to study the fragmentation processes of heavy nuclei in matter using heavy ion beams of the Bevatron/Bevalac are described. The goal of the program is to obtain the single particle inclusive spectra of secondary nuclei produced at 0 deg by the fragmentation of heavy ion beam projectiles. The process being examined is B+T yields F + anything, where B is the beam nucleus, T is the target nucleus, and F is the detected fragment. The fragments F are isotopically identified by experimental procedures involving magnetic analysis, energy loss and time-of-flight measurements. Effects were also made to: (a) study processes of heavy nuclei in matter, (b) measure the total and partial production cross section for all isotopes, (c) test the applicability of high energy multiparticle interaction theory to nuclear fragmentation, (d) apply the cross section data and fragmentation probabilities to cosmic ray transport theory, and (e) search for systematic behavior of fragment production as a means to improve existing semi-empirical theories of cross-sections.
Hypoxic cell sensitizers and heavy charged-particle radiations.
Chapman, J. D.; Urtasun, R. C.; Blakely, E. A.; Smith, K. C.; Tobias, C. A.
1978-01-01
Stationary-phase populations of Chinese hamster V-79 cells were irradiated with 250 kV X-rays and the Bragg peaks (spread to a width of 4 cm) of energetic He-, C-, Ne-, and A-ion beams produced at the 184-inch cyclotron and BEVALAC at Lawrence Berkeley Laboratory. Survival curves were generated with each radiation for cells suspended in air-saturated and nitrogen-saturated medium with and without sensitizer present. The oxygen enhancement ratios (OERs) measured for X-rays with 1mM metronidazole and 0.5 mM misonidazole were 2.0 and 1.6 respectively. The OERs without sensitizer for He-, C-, Ne-, and A-ion Bragg peaks were 2.4, 1.7, 1.6 and 1.4 respectively. For each type of radiation tested the presence of hypoxic-cell sensitizers resulted in an additional reduction in the measured OERs, indicating that these drugs should be of benefit in the radiotherapy planned with these and other high LET radiations. PMID:277223
Lead, platinum and other heavy elements in the primary cosmic radiation: HEAO-3 results
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.
1986-01-01
An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cherenkov counter (Binns et al., 1981) is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed the determination of the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R(c) 5 GV. The observed ratio for Pb/Pt is distinctly lower than that predicted by any of the standard models for cosmic ray sources. It is possible that the difference is not an indication that the cosmic ray source composition is greatly different from that of the solar system, but rather that there is less Pb in the solar system and in the r-process than is assumed in the standard models.
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Eby, P. B.; Fountain, W. F.; Parnell, T. A.; Dong, B. L.; Gregory, J. C.; Takahashi, Y.; King, D. T.
1988-01-01
Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed.
A Green's function method for heavy ion beam transport
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Wilson, J. W.; Schimmerling, W.; Shavers, M. R.; Miller, J.; Benton, E. V.; Frank, A. L.; Badavi, F. F.
1995-01-01
The use of Green's function has played a fundamental role in transport calculations for high-charge high-energy (HZE) ions. Two recent developments have greatly advanced the practical aspects of implementation of these methods. The first was the formulation of a closed-form solution as a multiple fragmentation perturbation series. The second was the effective summation of the closed-form solution through nonperturbative techniques. The nonperturbative methods have been recently extended to an inhomogeneous, two-layer transport media to simulate the lead scattering foil present in the Lawrence Berkeley Laboratories (LBL) biomedical beam line used for cancer therapy. Such inhomogeneous codes are necessary for astronaut shielding in space. The transport codes utilize the Langley Research Center atomic and nuclear database. Transport code and database evaluation are performed by comparison with experiments performed at the LBL Bevalac facility using 670 A MeV 20Ne and 600 A MeV 56Fe ion beams. The comparison with a time-of-flight and delta E detector measurement for the 20Ne beam and the plastic nuclear track detectors for 56Fe show agreement up to 35%-40% in water and aluminium targets, respectively.
NASA Technical Reports Server (NTRS)
Heinrich, W.; Drechsel, H.; Brechtmann, C.; Beer, J.
1985-01-01
Charge changing nuclear collisions in plastic nuclear track detectors were studied using a new experimental technique of automatic track measurement for etched tracks in plastic detectors. Partial cross sections for the production of fragments of charge Z approximately 8 were measured for projectile nuclei of charge 9 approximately Z approximately 26 in the detector material CR39 and in silver. for this purpose three independent experiments were performed using Bevalac beams. The first one was an exposure of a stack of CR39 plastic plates to 1.8 GeV/nucl. Ar-40 nuclei. The second one was an exposure of another CR39 stack of 1.7 GeV/nucl. Fe-56 projectiles. In the third experiment a mixed stack of CR39 plates and silver foils was irradiated with 1.7 GeV/nucl. Fe-56 nuclei. Thus the measurement of nuclear cross sections in a light target (CR39 = C12H18O7) and as well in a heavy target (silver) was possible.
Mutagenic effects of heavy ion radiation in plants
NASA Astrophysics Data System (ADS)
Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.
1994-10-01
Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.
Target fragmentation in proton-nucleus and16O-nucleus reactions at 60 and 200 GeV/nucleon
NASA Astrophysics Data System (ADS)
Albrecht, R.; Awes, T. C.; Baktash, C.; Beckmann, P.; Claesson, G.; Berger, F.; Bock, R.; Dragon, L.; Ferguson, R. L.; Franz, A.; Garpman, S.; Glasow, R.; Gustafsson, H. Å.; Gutbrod, H. H.; Kampert, K. H.; Kolb, B. W.; Kristiansson, P.; Lee, I. Y.; Löhner, H.; Lund, I.; Obenshain, F. E.; Oskarsson, A.; Otterlund, I.; Peitzmann, T.; Persson, S.; Plasil, F.; Poskanzer, A. M.; Purschke, M.; Ritter, H. G.; Santo, R.; Schmidt, H. R.; Siemiarczuk, T.; Sorensen, S. P.; Stenlund, E.; Young, G. R.
1988-03-01
Target remnants with Z<3 from proton-nucleus and16O-nucleus reactions at 60 and 200 GeV/nucleon were measured in the angular range from 30° to 160° (-1.7<η<1.3) employing the Plastic Ball detector. The excitation energy of the target spectator matter in central oxygen-induced collisions is found to be high enough to allow for complete disintegration of the target nucleus into fragments with Z<3. The average longitudinal momentum transfer per proton to the target in central collisions is considerably higher in the case of16O-induced reactions (≈300 MeV/c) than in proton-induced reactions (≈130 MeV/c). The baryon rapidity distributions are roughly in agreement with one-fluid hydrodynamical calculations at 60 GeV/nucleon16O+Au but are in disagreement at 200 GeV/nucleon, indicating the higher degree of transparency at the higher bombarding energy. Both, the transverse momenta of target spectators and the entropy produced in the target fragmentation region are compared to those attained in head-on collisions of two heavy nuclei at Bevalac energies. They are found to be comparable or do even exceed the values for the participant matter at beam energies of about 1 2 GeV/nucleon.
Mutagenic effects of heavy ion radiation in plants
NASA Technical Reports Server (NTRS)
Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.
1994-01-01
Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.
Simulation of cosmic irradiation conditions in thick target arrangements
NASA Technical Reports Server (NTRS)
Theis, S.; Englert, P.; Reedy, R. C.; Arnold, J. R.
1986-01-01
One approach to simulate 2-pi irradiation conditions of planetary surfaces which has been widely applied in the past are bombardments of so called thick targets. A very large thick target was exposed recently to 2.1 GeV protons at the Bevatron-Bevalac in Berkeley. In a 100x100x180 cm steel-surrounded granodiorite target radioactive medium and high energy spallation products of the incident primary and of secondary particles were analyzed along the beam axis down to depths of 140 g/cm(2) in targets such as Cu, Ni, Co, Fe, T, Si, SiO2 and Al. Activities of these nuclides were exclusively determined via instrumental gamma-ray spectroscopy. Relative yields of neutron capture and spallation products induced in Co and Cu targets during the thick target bombardment are shown as a function of depth. The majority of the medium energy products such as Co-58 from Co targets exhibit a maximum at shallow depths of 40-60 g/cm(2) and then decrease exponentially. In a comparable 600 MeV proton bombarded thick target such a slight maximum for medium energy products was not observed. Rather, Co-58 activities in Co decreased steadily with the highest activity at the surface. The activities of the n-capture product Co-60 increase steadily starting at the surface. This indicates the rapidly growing flux of low energy neutrons within the target.
Nuclear Science Division annual report, October 1, 1984-September 30, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, J.
1986-09-01
This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimentalmore » papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.« less
(Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignerey, A.C.
1988-10-01
A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less
Failla Memorial Lecture: the future of heavy-ion science in biology and medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, C.A.
1985-07-01
An extensive review, with over 100 references, of the use of accelerator techniques in radiobiology is presented. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Heavy ions, when compared to low-LET radiation, have increased effectivenessmore » for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Heavy ions do not require the presence of oxygen for producing their effects. Heavy ions are effective in delaying or blocking the cell division process. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. The authors laboratory is in the process of proposing a research biomedical heavy-ion accelerator; the availability of such machines would greatly accelerate cancer and brain research with particle beams.« less
Genetic effects on heavy ions in drosophila
NASA Technical Reports Server (NTRS)
Kale, P. G.
1986-01-01
Drosophila sex-linked recessive lethal mutation test was used to study the dose response relation and relative biological effectiveness of heavy ions. The experiments were performed using the heavy ion beams at BEVALAC of Lawrence Berkeley Laboratory. These experiments were undertaken according to the proposed milestones and included Ne-20, A-40 and Fe-65 ions with respective energies of 600 MeV, 840 MeV and 850 MeV. At these energies several doses of these radiations ranging from 20 to 1280 R were used. Space radiation exposure to astronauts is supposed to be quite low and therefore very low dose experiments i.e., 20 R, were also performed for the three ions. The mutation response was measured in all germ cell types i.e., spermatozoa, spermatids, spermatocytes and spermatogonia of treated Drosophila males. A linear dose frequency relation was observed for most of the range except at high doses where the saturation effect was observed. Also, a very significant difference was observed among the sensitivity of the four germ cell stages where spermatozoa and spermatids were more sensitive. At the higher doses of this range, most of the spermatogonia and spermatocytes were killed. Although comparative and identical experiments with X-rays or neutrons have not been performed, the compassion of our data with the ones available in literature suggest that the heavy ions have a high rbe and that they are several times more effective than low LET X-rays. The rbe compared to neutrons however appears to be only slightly higher.
Mutagenesis in human cells with accelerated H and Fe ions
NASA Technical Reports Server (NTRS)
Kronenberg, Amy
1994-01-01
The overall goals of this research were to determine the risks of mutation induction and the spectra of mutations induced by energetic protons and iron ions at two loci in human lymphoid cells. During the three year grant period the research has focused in three major areas: (1) the acquisition of sufficient statistics for human TK6 cell mutation experiments using Fe ions (400 MeV/amu), Fe ions (600 MeV/amu) and protons (250 MeV/amu); (2) collection of thymidine kinase- deficient (tk) mutants or hypoxanthine phosphoribosyltransferase deficient (hprt) mutants induced by either Fe 400 MeV/amu, Fe 600 MeV/amu, or H 250 MeV/amu for subsequent molecular analysis; and (3) molecular characterization of mutants isolated after exposure to Fe ions (600 MeV/amu). As a result of the shutdown of the BEVALAC heavy ion accelerator in December 1992, efforts were rearranged somewhat in time to complete our dose-response studies and to complete mutant collections in particular for the Fe ion beams prior to the shutdown. These goals have been achieved. A major effort was placed on collection, re-screening, and archiving of 3 different series of mutants for the various particle beam exposures: tk-ng mutants, tk-sg mutants, and hprt-deficient mutants. Where possible, groups of mutants were isolated for several particle fluences. Comparative analysis of mutation spectra has occured with characterization of the mutation spectrum for hprt-deficient mutants obtained after exposure of TK6 cells to Fe ions (600 MeV/amu) and a series of spontaneous mutants.
NASA Astrophysics Data System (ADS)
Hei, Tom K.
2016-06-01
Ground based radiation research facilities are indispensable for a better understanding of the biological principles governing the responses of living organisms to space radiation and for advancing our knowledge in space radiation dosimetry and protection. 2015 marked the 20th anniversary of the first acquisition of space radiation biology and physics data at the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL) in Upton, New York. Use of the BNL AGS was the product of a collaborative agreement between NASA and BNL to promote the goals of NASA to "expand human presence in the solar system and to the surface of Mars and to advance exploration, science, innovation and benefits to humanity and international collaboration". This collaborative agreement signed on April 8th, 1994 built on previous work at the Lawrence Berkeley National Laboratory Bevalac and paved the way for the approval and construction of a dedicated space radiation laboratory at BNL, the NASA Space Radiation Laboratory (NSRL). In this volume we present three review articles: on the history of the creation of the NSRL, by Walter Schimmerling; on the physics-related research at the AGS and NSRL, by Jack Miller and Cary Zeitlin; and on the identification and evaluation of biomarkers for modeling cancer risk after exposure to space radiation, by Janice Pluth and her colleagues. It is the hope of the editors that our readers, and especially those relatively new to the field, will find these articles to be informative and interesting and that they will foster an appreciation of the importance of ground based radiation research in protecting the health of crew members as they venture out into the solar system in the coming decades.
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2006-07-01
Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.
Estimation of risk based on multiple events in radiation carcinogenesis of rat skin
NASA Astrophysics Data System (ADS)
Burns, F. J.; Jin, Y.; Garte, S. J.; Hosselet, S.
1994-10-01
In the multistage theory of carcinogenesis, cells progress to cancer through a series of discrete, irreversible, heritable genetic alterations or mutations. However data on radiation-induced cancer incidence in rat skin suggests that some part of an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to the following radiations: 1. an electron beam (LET = 0.34 keV/um, 2. a neon ion beam (LET = 25 keV/um and 3. an argon ion beam (LET = 125 keV/um. The latter 2 beams were generated by the Bevalac at the Lawrence Berkeley Laboratory, Berkeley, CA. About 6.0 cm2 of skin was irradiated per rat. The rats were observed every 6 weeks for at least 78 weeks and tumors were scored at first occurrence. Several histological types of cancer, including squamous and basal cell carcinomas, were induced. The cancer yield versus radiation dose was fitted by the quadratic equation (Y (D) = CLD + BD2), and the parameters C and B were estimated for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated in all tumors tested, although only a small proportion of neon-induced tumors showed similar activation. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable, linked event pathway at high LET; either pathway may advance the cell by 1 stage in the multistage model. The model, if validated, permits the direct calculation of cancer risk in rat skin in a way that can be subjected to experimental testing.
Failla Memorial lecture. The future of heavy-ion science in biology and medicine.
Tobias, C A
1985-07-01
Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell lines, known to be radioresistant to X rays, have exhibited greater sensitivity to heavy ions. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. Dose localization with helium ions has achieved excellent results for pituitary tumors, tumors adjacent to the spinal cord, and ocular melanomas. We are working on adapting silicon- and neon-ion beams for controlled therapy studies.(ABSTRACT TRUNCATED AT 400 WORDS)
Pilot Study on Long Term Effects of HZE Exposure on the Canine Brain
NASA Astrophysics Data System (ADS)
Budinger, T.; Brennan, K.; Pearlstein, R.
A ground-based pilot experiment was initiated in December 1992 to evaluate the long term effects on health and aging after HZE cosmic radiation of the canine brain. Six adult male beagle dogs (1 yr) from the UC Davis breeding colony at the Laboratory for Energy Related Health Research were researched in this study. Iron nuclei at 600 MeV/amu (180 keV/mm) were used to irradiate the whole brain. The fluence of 3 x 106 iron nuclei/ cm2 mimics the HZE exposure (all > He) for a 2- year mission to Mars. The HZE irradiation was a fully stripped iron particle beam at the LBNL BEVALAC. Using a Raster Scanner we were able to spread the beam to deliver a uniform dose over the brain. The total dose to the brain was 200 cGy. Four dogs were whole brain irradiated with iron and two dogs served as litter-mate controls. The control dogs received a similar amount of background neutron irradiation as the irradiated dogs. One of the control dogs died suddenly 3/98 of intestinal cancer unrelated to the brain irradiation. That brain was not harvested before autolysis had prevented analysis. Periodic PET metabolism and yearly MRI studies have been done on these dog's brain since irradiation. All dogs had yearly physical, neurological and blood chemistry work-ups. PET imaging was performed with the Donner 600-crystal high-resolution PET (2.6 mm resolution) and with the commercial PET, CTI/Siemens ECAT 951 PET Scanner (5 mm resolution). NMR imaging is performed with the 1 5T GE Signa at UCSF using T spoiled gradient imaging.1 sequences for T1 contrast at 1 mm resolution as well as a T2 weighted spin echo imaging sequence at 1 mm resolution. A major goal of this work is to present an accurate method for measuring surface areas and volumes of the irradiated vs the non-irradiated canine brain using MRI data which are isotropic in resolution at the 1 mm level. This allows us to monitor the changes in brain size with aging and radiation exposure. Nine years post irradiation, these dog brains (+ 3 additional age-matched controls) were in-situ perfused with 4% paraformaldehyde/01.M phosphate buffer. The brain was removed and fixed in the same fixative for 2 weeks. Brain sections were embedded in parafin and cut at 6 or 12 μm thickness. Histology included H&E, Luxol fast blue and Silver staining. Immunochemistry included Amyloidprecursor protein. There was no marked increase in amyloid plaque formation in the irradiated dogs. Imaging and histology results will be presented at the COSPAR conference.
Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine
NASA Technical Reports Server (NTRS)
Miller, J.; Heilbronn, L.; Zeitlin, C.
1999-01-01
Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL AGS) and the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan. Until fairly recently most of these experiments were done to investigate fundamental problems in nuclear physics, but with the increasing interest in heavy charged particles on the part of the space flight, radiobiology and radiotherapy communities, an increasing number of experiments are being directed at these areas. Some of these measurements are discussed in references therein. Over the past several years, our group has taken cross section and fluence data at the AGS and HIMAC for several incident beams with nuclear charge, Z, between 6 and 26 at energies between 290 and 1050 MeV/nucleon. Iron (Z = 26) has been studied most extensively, since it is the heaviest ion present in significant numbers in the GCR. Targets have included tissue-equivalent and proposed shielding materials, as well as a variety of elemental targets for cross section measurements. Most of the data were taken along the beam axis, but measurements have been made off-axis, as well. Here we present selected data and briefly discuss some implications for spacecraft and planetary habitat design.