Science.gov

Sample records for bi doped cdte

  1. Investigation of the origin of deep levels in CdTe doped with Bi

    SciTech Connect

    Saucedo, E.; Franc, J.; Elhadidy, H.; Horodysky, P.; Ruiz, C. M.; Bermudez, V.; Sochinskii, N. V.

    2008-05-01

    Combining optical (low temperature photoluminescence), electrical (thermoelectric effect spectroscopy), and structural (synchrotron X-ray powder diffraction) methods, the defect structure of CdTe doped with Bi was studied in crystals with dopant concentration in the range of 10{sup 17}-10{sup 19} at./cm{sup 3}. The semi-insulating state observed in crystals with low Bi concentration is assigned to the formation of a shallow donor level and a deep donor recombination center. Studying the evolution of lattice parameter with temperature, we postulate that the deep center is formed by a Te-Te dimer and their formation is explained by a tetrahedral to octahedral distortion, due to the introduction of Bi in the CdTe lattice. We also shows that this model agrees with the electrical, optical, and transport charge properties of the samples.

  2. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    SciTech Connect

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  3. Thermoelectric Properties of Bi Doped Tetrahedrite

    NASA Astrophysics Data System (ADS)

    Prem Kumar, D. S.; Chetty, R.; Femi, O. E.; Chattopadhyay, K.; Malar, P.; Mallik, R. C.

    2016-08-01

    Bi doped tetrahedrites with nominal compositions of Cu12Sb4-x Bi x S13 (x = 0, 0.2, 0.4, 0.6, 0.8) were synthesized by the solid state reaction method. Powder x-ray diffraction patterns confirmed that Cu12Sb4S13 (tetrahedrite structure) was the main phase, along with Cu3SbS4 and Cu3SbS3 as the secondary phases. Electron probe microanalysis provided the elemental composition of all the samples. It was confirmed that the main phase is the tetrahedrite phase with slight deviations in the stoichiometry. All the transport properties were measured between 423 K and 673 K. The electrical resistivity increased with an increase in Bi content for all the samples, possibly induced by the variation in the carrier concentration, which may be due to the influence of impurity phases. The increase in electrical resistivity with an increase in temperature indicates the degenerate semiconducting nature of the samples. The absolute Seebeck coefficient is positive throughout the temperature range indicating the p-type nature of the samples. The Seebeck coefficient for all the samples increased with an increase in Bi content as electrical resistivity. The variation of electrical resistivity and the Seebeck coefficient with doping can be attributed to the changes in the carrier concentration of the samples. The total thermal conductivity increases with an increase in temperature and decreases with an increase in the Bi content that could be due to the reduction in carrier thermal conductivity. The highest thermoelectric figure of merit (zT) ~0.84 at 673 K was obtained for the sample with x = 0.2 due to lower thermal conductivity (1.17 W/m K).

  4. Extrinsic doped n- and p-type CdTe layers grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Taskar, N. R.; Natarajan, V.; Bhat, I. B.; Grandhi, S. K.

    1988-01-01

    In this paper we report on the extrinsic n- and p-doping of CdTe layers, grown by organometallic vapor phase epitaxy. Triethylindium and arsine gas were used as n- and p-type dopants respectively, with doping levels of around 1017 cm-3 in both cases. Layers were grown on both semi-insulating CdTe and GaAs substrates. Layers grown on semi-insulating GaAs had an intervening 1-2 μm undoped CdTe layer to relieve the strain caused by the large (14.6%) lattice mismatch of the CdTe-GaAs combination. Van der Pauw measurements were made to evaluate the quality of these layers, and mobility values as high as 3600 cm2/V h- s obtained at 40 K for lightly doped n-type samples. Grown junctions, made using extrinsic doped layers, have resulted in diodes with excellent electrical characteristics.

  5. Extrinsic doped n- and p-type CdTe layers grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Taskar, N. R.; Natarajan, V.; Bhat, I. B.; Grandhi, S. K.

    1990-01-01

    In this paper we report on the extrinsic n- and p-doping of CdTe layers, grown by organometallic vapor phase epitaxy. Triethylindium and arsine gas were used as n- and p-type dopants respectively, with doping levels of around 10 17 cm -3 in both cases. Layers were grown on both semi-insulating CdTe and GaAs substrates. Layers grown on semi-insulating GaAs had an intervening 1-2 μm undoped CdTe layer to relieve the strain caused by the large (14.6%) lattice mismatch of the CdTe-GaAs combination. Van der Pauw measurements were made to evaluate the quality of these layers, and mobility values as high as 3600 cm 2/V h- s obtained at 40 K for lightly doped n-type samples. Grown junctions, made using extrinsic doped layers, have resulted in diodes with excellent electrical characteristics.

  6. SEMICONDUCTOR PHYSICS: Effects of Sn-doping on morphology and optical properties of CdTe polycrystalline films

    NASA Astrophysics Data System (ADS)

    Jin, Li; Linyu, Yang; Jikang, Jian; Hua, Zou; Yanfei, Sun

    2009-11-01

    Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycrystalline films were studied using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry, respectively. The results show that the lower molar ratio of Sn and CdTe conduces to a strongly preferential orientation of (111) in films and a larger grain size, which indicates that the crystallinity of films can be improved by appropriate Sn-doping. As the molar ratio of Sn and CdTe increases, the preferential orientation of (111) in films becomes weaker, the grain size becomes smaller, and the crystal boundary becomes indistinct, which indicates that the crystallization growth of films is incomplete. However, as the Sn content increases, optical absorption becomes stronger in the visible region. In summary, a strongly preferential orientation of (111) in films and a larger grain size can be obtained by appropriate Sn-doping (molar ratio of Sn : CdTe = 0.06 : 1), while the film retains a relatively high optical absorption in the visible region. However, Sn-doping has no obvious influence on the energy gap of CdTe films.

  7. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  8. Indium doping of CdTe polycrystalline films prepared by co-sputtering of CdTe-In-Cd targets

    NASA Astrophysics Data System (ADS)

    Becerril, M.; Zelaya-Angel, O.; Ramírez-Bon, R.; Espinoza-Beltrán, F. J.; González-Hernández, J.

    1997-01-01

    Indium doped CdTe polycrystalline films were grown on Corning glass substrates at room temperature by co-sputtering from a CdTe-Cd-In target. The elemental Cd and In were glued onto the CdTe target covering small areas. The electrical, structural, and optical properties were analyzed as a function of the concentration of both elements. It was found that when Cd and In are simultaneously incorporated, the electrical resistivity drops and the carrier concentration increases. In both cases the changes are of several orders of magnitude. From the results, we conclude that, using this deposition technique, n-type In doped CdTe polycrystalline films can be produced.

  9. Cu-doped CdS and its application in CdTe thin film solar cell

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Yang, Jun; Yang, Ruilong; Shen, Kai; Wang, Dezhao; Wang, Deliang

    2016-01-01

    Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the VCd- and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atom hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl2 annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures.

  10. Visualization of hormone binding proteins in vivo based on Mn-doped CdTe QDs

    NASA Astrophysics Data System (ADS)

    Liu, Fang fei; Yu, Ying; Lin, Bi xia; Hu, Xiao gang; Cao, Yu juan; Wu, Jian zhong

    2014-10-01

    Daminozide (B9) is a growth inhibitor with important regulatory roles in plant growth and development. Locating and quantifying B9-binding proteins in plant tissues will assist in investigating the mechanism behind the signal transduction of B9. In this study, red fluorescent Mn-doped CdTe quantum dots (CdTeMn QDs) were synthesized by a high-temperature hydrothermal process. Since CdTeMn QDs possess a maximum fluorescence emission peak at 610 nm, their fluorescence properties are more stable than those of CdTe QDs. A B9-CdTeMn probe was synthesized by coupling B9 with CdTeMn QDs. The fluorescence intensity of the probe is double that of CdTeMn QDs; its fluorescence stability is also superior under different ambient conditions. The probe retains the biological activity of B9 and is unaffected by interference from the green fluorescent protein present in plants. Therefore, we used this probe to label B9-binding proteins selectively in root tissue sections of mung bean seedlings. These proteins were observed predominantly on the surfaces of the cell membranes of the cortex and epidermal parenchyma.

  11. Bi-Se doped with Cu, p-type semiconductor

    DOEpatents

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  12. Cd self-doping of CdTe polycrystalline films by co-sputtering of CdTe-Cd targets

    NASA Astrophysics Data System (ADS)

    Picos-Vega, A.; Becerril, M.; Zelaya-Angel, O.; Ramírez-Bon, R.; Espinoza-Beltrán, F. J.; González-Hernández, J.; Jiménez-Sandoval, S.; Chao, B.

    1998-01-01

    Cadmium self-doped CdTe polycrystalline films were grown on Corning glass substrates at room temperature by cosputtering from a CdTe-Cd target. The electrical, structural, and optical properties of the films were analyzed as a function of the Cd concentration. Films with a stoichiometric composition, and slightly below and above it, were prepared. In films where the Te exceeds 50 at. %, it is found segregation of Te and its electrical resistivity is about 107 Ω cm. In those with an excess of Cd, the electrical resistivity drops several orders of magnitude, the carrier concentration increases, and the resistivity activation energy drops. From these results, we concluded that using this deposition method, n-type Cd self-doped CdTe polycrystalline films can be produced.

  13. Thermoelectric properties of Bi-doped PbTe composites

    NASA Astrophysics Data System (ADS)

    Popescu, A.; Datta, A.; Nolas, G. S.; Woods, L. M.

    2011-05-01

    An experimental and theoretical study is presented for n-type Bi-doped PbTe composites with different grain sizes and doping levels. The bulk polycrystalline composites were prepared by spark plasma sintering of the nanocrystals synthesized via micro-emulsion and direct precipitation. This technique is particularly attractive due to its low cost, its reproducibility, and the control of the composition and nanocrystal size that it affords. The thermoelectric properties of the synthesized specimens were experimentally measured and theoretically modeled. Our calculations reveal that the inclusion of electron/grain and phonon/grain interface scattering is crucial for the correct description and interpretation of the measured properties.

  14. Resonant Levels, Vacancies, and Doping in Bi2Te3, Bi2Te2Se, and Bi2Se3 Tetradymites

    NASA Astrophysics Data System (ADS)

    Wiendlocha, Bartlomiej

    2016-07-01

    The electronic structure of the tetradymites, Bi_2Te_3, Bi_2Te_2Se, and Bi_2Se_3, containing various dopants and vacancies, has been studied using first-principles calculations. We focus on the possibility of formation of resonant levels (RL), confirming the formation of RL by Sn in Bi_2Te_3 and predicting similar behavior of Sn in Bi_2Te_2Se and Bi_2Se_3. Vacancies, which are likely present on chalcogen atom sites in real samples of Bi_2Te_2Se and Bi_2Se_3, are also studied and their charged donor and resonant behavior discussed. Doping of vacancy-containing materials with regular acceptors, such as Ca or Mg, is shown to compensate the donor effect of vacancies, and n-p crossover, while increasing the dopant concentration, is observed. We verify that the RL on Sn is not disturbed by chalcogen vacancies in Bi_2Te_2Se or Bi_2Se_3, and for the Sn-doped materials with Se or Te vacancies, double doping, instead of heavy doping with Sn, is suggested as an effective way of obtaining the resonant level. This should help to avoid smearing of the RL, a possible reason for earlier unsuccessful experimental observation of the influence of the RL on the thermoelectric properties of Sn-doped Bi_2Te_2Se. Finally, we show that Al and Ga are possible new resonant impurities in tetradymites, hoping that this will stimulate further experimental studies.

  15. Multi-orbits observed in superconducting Nb-doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Lawson, Benjamin; Corbae, Paul; Li, Gang; Yu, Fan; Asaba, Tomoya; Tinsman, Colin; Qiu, Yunsheng; Hor, Yew San; Li, Lu

    Recently discovered superconducting niobium doped Bi2Se3 shows promise to realize new physical phenomenon including the coexistence of superconductivity and magnetic ordering and possibly topological superconductivity. To understand the new physics showcased in this system, a detailed knowledge of the electronic structure is needed. We present the first observation of quantum oscillations in the magnetization (the de Haas-van Alphen effect) of Nb-doped Bi2Se3. In the fully superconducting crystal, two distinct orbits are observed, in sharp contrast to Bi2Se3, Cu-doped Bi2Se3, and Sr-doped Bi2Se3. The multiple frequencies observed in our quantum oscillations, combined with our electrical transport studies, indicate the multi-orbit nature of the electronic state of Nb-doped Bi2Se3.

  16. Microwave synthesis and photocatalytic activity of Tb(3+) doped BiVO4 microcrystals.

    PubMed

    Wang, Ying; Liu, Fuyang; Hua, Yingjie; Wang, Chongtai; Zhao, Xudong; Liu, Xiaoyang; Li, Hongdong

    2016-12-01

    Tb(3+) doped BiVO4 has been successfully synthesized by a simple microwave-assisted hydrothermal method at 140°C for 30min. The structure, morphology and optical property of the Tb(3+) doped BiVO4 products have been systematically investigated. This study indicates that the incorporation of Tb(3+) could induce the conversion of structure from monoclinic to tetragonal for BiVO4. Furthermore, the as-obtained Tb(3+) doped BiVO4 samples showed an obvious morphological change: the hollow square rod-like BiVO4 crystal gradually changed to spindle-like crystal. The Tb(3+) doped BiVO4 products exhibited extraordinary photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. The doped BiVO4 at a molar ratio of 2at% (Tb and Bi) with a mixture of monoclinic and tetragonal phases showed and prominent photocatalytic degradation rate, which reached 99.9% in 120min. The results suggest that the differences in the photocatalytic activity of these BiVO4 crystals with different Tb(3+) doping concentrations can be attributed to the change of crystalline phases, and the coexistence of the monoclinic/tetragonal phases in BiVO4 products, which improve the efficient charge separation and transportation. PMID:27565962

  17. Fabrication of Bi-doped In2O3-ITO nanocomposites and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Gil Na, Han; Jung, Taek-Kyun; Lee, Ji-Woon; Hyun, Soong-Keun; Kwon, Yong Jung; Mirzaei, Ali; Kim, Tae-Bum; Shin, Young-Chul; Choi, Ho-Joon; Kim, Hyoun Woo; Jin, Changhyun

    2016-09-01

    For the first time, Bi-doped In2O3-indium tin oxide (ITO) nanocomposites were prepared on Si substrates with the assistance of a Au catalyst through the simple gas-phase transport of a mixture of Bi, In, and Sn powders. The square-shaped Bi-doped In2O3-ITO nanostructures were straight, a few hundreds of nanometres in width, and below a few tens of micrometres in length. Electron microscopy, x-ray diffraction, and energy-dispersive x-ray spectroscopy analyses indicated that the Bi-doped In2O3-ITO nanorods were single crystals with a basis of cubic In2O3 structures. The photoluminescence spectra revealed that the Bi-doped In2O3-ITO nanorods had a strong orange emission band centred at approximately 626 nm without any shoulder bands. The enhancement of orange emission might be due to the oxygen deficiencies of structural defects in the nanorods.

  18. Multiple Fermi surfaces in superconducting Nb-doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Lawson, B. J.; Corbae, Paul; Li, Gang; Yu, Fan; Asaba, Tomoya; Tinsman, Colin; Qiu, Y.; Medvedeva, J. E.; Hor, Y. S.; Li, Lu

    2016-07-01

    Topological insulator Bi2Se3 has shown a number of interesting physical properties. Doping Bi2Se3 with copper or strontium has been demonstrated to make the material superconducting and potentially even a topological superconductor. The recent discovery of superconducting niobium-doped Bi2Se3 reveals an exciting new physical phenomenon, the coexistence of superconductivity and magnetic ordering, as well as signatures of an odd-parity p -wave superconducting order. To understand this new phenomenon, a detailed knowledge of the electronic structure is needed. We present an observation of quantum oscillations in the magnetization (the de Haas-van Alphen effect) of Nb-doped Bi2Se3 . In the fully superconducting crystal, two distinct orbits are observed, in sharp contrast to Bi2Se3 , Cu-doped Bi2Se3 , and Sr-doped Bi2Se3 . The multiple frequencies observed in our quantum oscillations, combined with our electrical transport studies, indicate the multi-orbit nature of the electronic state of Nb-doped Bi2Se3 .

  19. One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities.

    PubMed

    Jiang, Chunli; Shen, Zhitao; Luo, Chunhua; Lin, Hechun; Huang, Rong; Wang, Yiting; Peng, Hui

    2016-08-01

    A facile one-pot strategy has been developed for the aqueous synthesis of Gd doped CdTe (Gd:CdTe) QDs as fluorescence and magnetic resonance imaging dual-modal agent. The prepared Gd:CdTe QDs showed narrow size distribution and the average size was less than 5nm. The amount of Gd(3+) dopant in Gd:CdTe QDs significantly affected the optical properties of obtained QDs. The highest PL QY for the prepared Gd:CdTe QDs was up to 42.5%. The QDs showed the weak toxicity and significant enhancement in MRI signal. The specific relaxivity value (r1) was determined to be 4.22mM(-1)s(-1). These properties make the prepared Gd:CdTe QDs be an effective dual-modal imaging agent and have great potential applications in biomedical field.

  20. One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities.

    PubMed

    Jiang, Chunli; Shen, Zhitao; Luo, Chunhua; Lin, Hechun; Huang, Rong; Wang, Yiting; Peng, Hui

    2016-08-01

    A facile one-pot strategy has been developed for the aqueous synthesis of Gd doped CdTe (Gd:CdTe) QDs as fluorescence and magnetic resonance imaging dual-modal agent. The prepared Gd:CdTe QDs showed narrow size distribution and the average size was less than 5nm. The amount of Gd(3+) dopant in Gd:CdTe QDs significantly affected the optical properties of obtained QDs. The highest PL QY for the prepared Gd:CdTe QDs was up to 42.5%. The QDs showed the weak toxicity and significant enhancement in MRI signal. The specific relaxivity value (r1) was determined to be 4.22mM(-1)s(-1). These properties make the prepared Gd:CdTe QDs be an effective dual-modal imaging agent and have great potential applications in biomedical field. PMID:27216651

  1. CdTe devices and method of manufacturing same

    SciTech Connect

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  2. Effects of Thallium Doping on the Transport Properties of Bi2Te3 Alloy

    NASA Astrophysics Data System (ADS)

    Yao, L.; Wu, F.; Wang, X. X.; Cao, R. J.; Li, X. J.; Hu, X.; Song, H. Z.

    2016-06-01

    Thallium-doped Tl x Bi2- x Te3 ( x = 0.0, 0.05, 0.1, and 0.2) nanopowders were synthesized by the hydrothermal method. The doping effect of thallium on the morphologies of the synthesized nanopowders was investigated. It was found that the doping of thallium can significantly change the morphologies of the synthesized nanopowders. The synthesized nanopowders were hot-pressed into bulk pellets and the doping effects of thallium on the transport properties of these pellets were investigated. The results show that the doping of thallium can enhance the Seebeck coefficient but increase the electrical resistivity. Moreover, the power factors of the thallium-doped samples decrease with the increasing of the thallium doping level as compared with the un-doped sample. This is attributed to the increase of the electrical resistivity and the disappearing of the flower-like morphologies of the doped nanopowders.

  3. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature.

    PubMed

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi(2)O(3) into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi(3+) is formed. By comparing with atomic spectral data, absorption bands at ∼320 , ∼500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi(0) transitions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively, and broadband NIR emission is assigned to the transition [Formula: see text].

  4. Magnetic Ordering In Superconducting Nb-doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Corbae, Paul; Lawson, Benjamin; Li, Gang; Yu, Fan; Asaba, Tomoya; Tinsman, Colin; Qui, Yusheng; Hor, Yew San; Li, Lu

    Coexistence of superconductivity and magnetic order has been suggested by early studies of topological superconductor candidate, niobium doped Bi2Se3. In order to elucidate the interesting physics of this coexistence, we performed highly sensitive torque magnetometry to study the material's magnetization. We observed a bump feature in the magnetization around 8 Tesla in both the superconducting and non-superconducting samples. This is distinct from the paramagnetic torque response of the parent compound, Bi2Se3, suggesting some interesting magnetic order in Nb-doped Bi2Se3.

  5. Orbital bi-stripes in highly doped bilayer manganites

    SciTech Connect

    Beale, T.A.W.; Spencer, P.D.; Hatton, P.D.; Wilkins, S.B.; Zimmermann, M. von; Brown, S.D.; Prabhakaran, D.; Boothroyd, A.T.

    2005-08-01

    We present high-resolution high-energy and resonant x-ray-diffraction results from La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} for x=0.55, 0.575, and 0.60. These compounds show superlattice reflections at wave vectors of (h{+-}{delta},k{+-}{delta},l) and (h{+-}2{delta},k{+-}2{delta},l), arising from orbital ordering with associated Jahn-Teller distortions and charge ordering, respectively. We observe a phase transition boundary between the x=0.55 and x=0.575 doping levels. Samples with x=0.55 display structural characteristics similar to those previously reported for x=0.5. Compared to this the long-range order in samples with x=0.55 and x=0.6 have a distinct change in wave-vector and correlation length. We attribute this to a new orbital bi-stripe phase, accompanied by weak, frustrated, charge ordering. The observed azimuthal dependence of the orbital order reflection supports the model proposed for this new phase.

  6. Thermoelectric properties of SnO2-based ceramics doped with Nd, Hf or Bi

    NASA Astrophysics Data System (ADS)

    Yanagiya, S.; Nong, N. V.; Sonne, M.; Pryds, N.

    2012-06-01

    We report the thermoelectric properties of Nd-, Hf-or Bi-doped SnO2-based ceramics prepared by solid-state sintering. Polycrystalline SnO2-based samples (Sn0.97Sb0.01Zn0.01M0.01O2, M = Nd, Hf or Bi) were prepared by solid-state reactions. We confirmed that Bi-doping increased the power factor due to both the enhanced electrical conductivity and Seebeck coefficient compared to the matrix material. The maximum power factor of 4.8 × 10-4 Wm-1K-2 was attained for the Bi-doped sample at 1060 K.

  7. Synthesis and photoactivity enhancement of Ba doped Bi{sub 2}WO{sub 6} photocatalyst

    SciTech Connect

    Li, Wen Ting; Huang, Wan Zhen; Zhou, Huan; Yin, Hao Yong; Zheng, Yi Fan; Song, Xu Chun

    2015-04-15

    Highlights: • The Ba-doped Bi{sub 2}WO{sub 6} photocatalyst have been synthesized by a hydrothermal route. • The photocatalytic activity of Bi{sub 2}WO{sub 6} was greatly enhanced by Ba-doping. • The effect of Ba on the catalytic activity of Bi{sub 2}WO{sub 6} was studied and discussed. - Abstract: In this study, Bi{sub 2}WO{sub 6} doped with different barium contents were successfully prepared by a simple hydrothermal route at 180 °C for 12 h. The as-synthesized samples were characterized in detailed by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffusere flectance spectroscopy (UV–vis DRS) and Brunauer–Emmet–Teller (BET) theory. Their photocatalytic activities were evaluated by photodegradation of Rhodamine B (RhB) under simulated solar light. As a result, the photocatalytic properties were enhanced after Ba doping and the Ba-doped Bi{sub 2}WO{sub 6} with R{sub Ba} = 0.15 showed the highest photocatalytic activities of 96.3% RhB was decomposed in 50 min. Close investigation revealed that the proper Ba doped into Bi{sub 2}WO{sub 6} could not only increases its BET surface area, decrease its crystalline size, but also act as electron traps and facilitate the separation of photogenerated electron–hole pairs. The mechanism of enhanced photocatalytic activities of Ba-doped Bi{sub 2}WO{sub 6} were further investigated.

  8. Fabrication of Cu-Doped Bi2Te3 Nanoplates and Their Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Peng, Nan; Bai, Yu; Ma, Dayan; Ma, Fei; Xu, Kewei

    2016-09-01

    Cu-doped Bi2Te3 hexagonal nanoplates were fabricated by a simple solvothermal method. Scanning electron microscopy and transmission electron microscopy characterization illustrated that the nanoplates are single-crystal ones with an average width of 300 nm and thickness in the range of 20-30 nm. It was demonstrated that Cu x Bi2Te3 nanoplates possess the lowest thermal conductivity (0.8-1.2 W/m K) at 300 K, which is mainly due to the enhanced phonon scattering by grain boundaries. Furthermore, the doped Cu could evidently enhance the power factor of Bi2Te3 through optimizing the carrier transport properties. As a result, Cu0.02Bi2Te3 nanoplates exhibit the best thermoelectric performance with a figure of merit of 0.33, which is more than two times higher than that of Bi2Te3 nanoplates.

  9. Modification of surface chemistry by lattice Sn doping in BiFeO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Sobhan, M.; Xu, Q.; Zhao, J.; Franklin, A.; Hu, Y.; Tse, J. S.; Wu, P.

    2015-07-01

    Results on X-ray near edge structure (XANES) study on Sn-doped BiFeO3 (BFO) nanofibers with varying Sn concentrations of 1%, 3%, and 5% are reported. The results indicate that the oxidation state of Sn ions in the BFO structure is +4. In addition, we observe a bismuth peak (Bi M 1) at 4000 eV in the XANES spectrum, suggesting the diffusion of Bi ions onto the surface of BFO nanostructure. The diffusion is attributed to the charge compensation between donor electrons from the Sn atoms and Bi vacancies. These findings are of high relevance to surface chemistry reactions in sensing and catalytic applications.

  10. Influence of Zn2+ doping on the crystal structure and optical-electrical properties of CdTe thin films

    NASA Astrophysics Data System (ADS)

    Kavitha, R.; Sakthivel, K.

    2015-10-01

    The present study reports the synthesis of Cd1-xZnxTe (x = 0, 0.025, 0.050, 0.075 and 0.100) nanocrystalline thin film through a simple two step method. In the first step fine nanoparticles of Cd1-xZnxTe was prepared by solvothermal microwave irradiation (SMI) technique and then deposited as thin film using dip-coating technique. X-ray diffraction study showed that films are polycrystalline with cubic phase, which are preferentially oriented along the (1 1 1) direction. No impurity phase was observed in the XRD pattern even after higher concentration of doping (x = 0.100) of Zn. FESEM study revealed that the films are homogeneous without cracks and pinholes. TEM micrographs revealed the particles are slightly agglomerated and lesser than 25 nm. The optical absorption study revealed that pure and doped CdTe films possess a direct band gap material with bandgap values between 2.39 and 2.63 eV (±0.02 eV). The values of optical bandgap increase with an increase in dopant (Zn) concentration from x = 0.025 to 0.10. The pure cadmium telluride (CdTe) nanocrystalline film shows a strong green emission peak centered at about 525 nm. The emission peaks of Cd1-xZnxTe nanocrystalline films are red shifted from 525 nm to 611 nm according to the dopant (Zn2+) concentration. The grains in the prepared films are uniformly distributed, which was confirmed by narrow full width at half maximum (FWHM) of the emission peaks (40-65 nm). The DC conductivity has increased by 1.25 and 4 orders as the concentration of dopant increases from x = 0.025 to 0.10 at room temperature (30 °C) and 150 °C respectively. The higher conductivity value is underpinned by the smaller activation energy value and is explained by thermionic emission mechanism.

  11. Optical properties of Bi 12TiO 20 doped with Al, P, Ag, Cu, Co and co-doped with Al+P single crystals

    NASA Astrophysics Data System (ADS)

    Marinova, V.

    2000-11-01

    Large optically homogeneous photorefractive Bi 12TiO 20 (BTO) single crystals doped with Al, P, Ag, Cu, Co and Al+P-co-doping were obtained by the Top Seeded Solution Growth Method (TSSG) in a Bi 2O 3 solution. A strong bleaching effect was observed for the Al, P, Ag and Al+P-doped crystals, whereas doping with Cu and Co induced a strong photochromic effect and increased the absorption coefficients in the red spectral region. Al, P, Al+P-doped crystals increased the values of optical rotator power, while Cu and Ag-doped crystals exhibited a strong decrease in optical activity in comparison with non-doped BTO. The influences of doping elements on the optical rotation power are discussed on the basis of two structural elementary cell units - MO 4 tetrahedra and BiO n polyhedra.

  12. Magnetic doping and kondo effect in bi(2)se(3) nanoribbons.

    PubMed

    Cha, Judy J; Williams, James R; Kong, Desheng; Meister, Stefan; Peng, Hailin; Bestwick, Andrew J; Gallagher, Patrick; Goldhaber-Gordon, David; Cui, Yi

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surface-to-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than approximately 2%, low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics.

  13. Effects of doping on transport properties in Cu-Bi-Se-based thermoelectric materials.

    PubMed

    Hwang, Jae-Yeol; Mun, Hyeon A; Kim, Sang Il; Lee, Ki Moon; Kim, Jungeun; Lee, Kyu Hyoung; Kim, Sung Wng

    2014-12-15

    The thermoelectric properties of Zn-, In-, and I-doped Cu1.7Bi4.7Se8 pavonite homologues were investigated in the temperature range from 300 to 560 K. On the basis of the comprehensive structural analysis using Rietveld refinement of synchrotron radiation diffraction for Cu(x+y)Bi(5-y)Se8 compounds with the inherently disordered crystallographic sites, we demonstrate a doping strategy that provides a simultaneous control for enhanced electronic transport properties by the optimization of carrier concentration and exceptionally low lattice thermal conductivity by the formation of point defects. Substituted Zn or In ions on Cu site was found to be an effective phonon scattering center as well as an electron donor, while doping on Bi site showed a moderate effect for phonon scattering. In addition, we achieved largely enhanced power factor in small amount of In doping on Cu site by increased electrical conductivity and moderately decreased Seebeck coefficient. Coupled with a low lattice thermal conductivity originated from intensified point defect phonon scattering by substituted In ions with host Cu ions, a thermoelectric figure of merit ZT of 0.24 at 560 K for Cu1.6915In0.0085Bi4.7Se8 was achieved, yielding 30% enhancement compared with that of a pristine Cu1.7Bi4.7Se8 at the same temperature.

  14. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    NASA Astrophysics Data System (ADS)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar

    2009-07-01

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi2O3 into elementary Bi. Darkening of bismuthate glass melted at 1300 °C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi3+ is formed. By comparing with atomic spectral data, absorption bands at ~320 , ~500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi0 transitions {}^{4}\\mathrm {S_{3/2}} \\to {}^{2}\\mathrm {P_{3/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {P_{1/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{5/2}} , {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2}}(2) and {}^{4}\\mathrm {S_{3/2}}\\to {}^{2}\\mathrm {D_{3/2 }}(1) , respectively, and broadband NIR emission is assigned to the transition {}^{2}\\mathrm {D_{3/2}(1)}\\to {}^{4}\\mathrm {S_{3/2}} .

  15. Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging.

    PubMed

    Laguna-Marco, M A; Piquer, C; Roca, A G; Boada, R; Andrés-Vergés, M; Veintemillas-Verdaguer, S; Serna, C J; Iadecola, A; Chaboy, J

    2014-09-14

    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.

  16. Preparation and Mixed Conductivity of Mn-DOPED Bi-Sr-Fe-BASED Perovskite Type Oxides

    NASA Astrophysics Data System (ADS)

    Baek, Doohyun; Takamura, Hitoshi

    2013-07-01

    Bi0.7Sr0.3FeO3-δ (BSF) with perovskite structure and Mn-doped BSFs were prepared by solid-state reaction and their mixed conductivities were discussed based on results of electrical conductivity and oxygen permeation measurement through membranes of those compounds. BSF showed only 2 S/cm at 800 °C suggesting that its charge unbalance is likely to be compensated by generation of oxygen vacancies. However, Mn-doping caused the increase of electrical conductivity and the decrease of oxygen permeation rate, that is, the extent of charge compensation by electron holes increased through Mn-doping.

  17. Change of sign of hall coefficient with variation of magnetic field in acceptor doped Bi

    NASA Astrophysics Data System (ADS)

    Banerjee, Dipali Chakravorty; Ghosh, Chandana; Bhattacharya, Ramendranarayan

    1989-11-01

    Change of sign of the Hall effect with magnetic field has been observed in doped Bi. A model for explaining this phenomenon has been proposed which can also explain some other related observations made by the present authors or by others working in the field. This model utilizes the process of excitation of carriers above the Fermi surface when the Fermi energy is small.

  18. Doping Dependence of the Electronic Interactions in Bi-2212 Cuprate Superconductors: Doped Antiferromagnets or Antiferromagnetic Fermi Liquids?

    SciTech Connect

    Ruebhausen, M.; Hammerstein, O.A.; Bock, A.; Merkt, U.; Rieck, C.T.; Guptasarma, P.; Hinks, D.G.; Klein, M.V.

    1999-06-01

    Electron-electron interactions in overdoped Bi-2212 are studied by inelastic light scattering. The optimally to slightly overdoped compounds exhibit two-magnon excitations with a dependence on the incident photon energy typical for doped antiferromagnets. For more overdoped samples, no two-magnon excitation is visible, indicating an antiferromagnetic correlation below twice the lattice parameter. In the same samples, the gap excitation shows a resonance similar to the two-magnon excitation. We interpret our results as a development towards a correlated Fermi liquid when the doping is increased. {copyright} {ital 1999} {ital The American Physical Society}

  19. Luminescent properties of Bi-doped boro-alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Denker, B.; Galagan, B.; Osiko, V.; Sverchkov, S.; Dianov, E.

    2007-03-01

    A new Bi-doped boro-alumino-phosphate glass (BAP) composition was developed. Absorption and emission spectra and luminescence decay kinetics were investigated. The emission spectrum consists of two wide bands in the visible (0.6 0.8 μm) and near-infrared (˜1.0 1.5 μm) ranges. The luminescence decay curve investigation has revealed a complicated behavior dependent on both excitation and registration wavelengths. In contrast to earlier investigated Bi-doped glasses, Bi:BAP has good technological properties and can be easily scaled. This makes the developed glass composition interesting for broadband tunable (˜1.0 1.5 μm) lasers and amplifiers.

  20. High Pressure XANES studies on Mn dopeHigh Pressure XANES studies on Mn doped Bi2 Te3

    NASA Astrophysics Data System (ADS)

    Light, Brian; Kumar, Ravhi; Baker, Jason; Dharmalingam, Prabhakaran; Park, Changyong; Unlv Team; Hpcat; Carnegie Institute Of Washington Collaboration

    Bi2Te3, Bi2Se3, and Sb2Te3 are narrow band-gap semiconductors have been extensively studied along with their alloys due to their promising technological applications as thermoelectric materials. More recently pressure induced superconductivity and structural transition have been observed in these materials around 7 GPa [1, 2]. Here we have performed high pressure x-ray near edge spectroscopy (XANES) measurements at Bi L-III edge on Mn (0.1) doped Bi2Te3 samples to understand the variation of the Bi valence across the pressure induced superconductivity regime. We have inferred notable changes in the Bi valence at high pressure conditions. The results will be discussed in detail. Work at the University of Nevada Las Vegas (ALC) is funded by U.S. Department of Energy Award DE-SC0001928. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH1135.

  1. Gd-doped BiFeO3 nanoparticles - A novel material for highly efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2013-06-01

    This communication reports a novel idea on dye-sensitized solar cells (DSSCs) fabricated using Gd-doped BiFeO3 nanoparticles with particle size between 26 and 30 nm. The effect of Gd-doping and smaller size of synthesized nanoparticles on the structural, morphological, optical and photo-electrochemical properties have been investigated. The high energy-conversion efficiency, 3.85%, has been achieved for 12% Gd-doped BiFeO3 DSSCs, which is more than 100% higher than the undoped BiFeO3. The possible origin of the observed performance of DSSCs has been explained on the basis of smaller size of the synthesized nanoparticles, doping of Gd and structural transformation with doping in BiFeO3.

  2. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM

    NASA Astrophysics Data System (ADS)

    Cross, Jeffrey S.; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr40,Ti60)O3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 1010 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  3. Peculiarities of radiative recombination in Vanadium-doped CdTe crystals

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander E.; Ivanov, V. Y.; Komirenko, Sergiy M.; Kavertsev, S. V.; Mischenko, L. A.

    1997-08-01

    Optical and photoelectrical properties of both as-grown and annealed at 600 C during five hours CdTe:V crystals with Vanadium concentration in liquid phase of 5 X 1018cm-3 and 5 X19cm-3 were investigated. Presented data are based on investigation of photoluminescence (PL) spectra and spectral dependence of photoconductivity (PC). The effect of PL band kindling has been detected with maximum at 1.55 eV in crystals of Nv equals 5 X 1018 cm-3 doping concentration. The effect is accompanied by dramatic increase of crystals' resistance. As mechanism responsible for formation of high- resistance state the self-compensation of the impurities with creation of complexes that include isolated Vanadium and vacancy in the metal sublattice is considered.

  4. Reinforced magnetic properties of Ni-doped BiFeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Hwang, J. S.; Yoo, Y. J.; Lee, Y. P.; Kang, J.-H.; Lee, K. H.; Lee, B. W.; Park, S. Y.

    2016-08-01

    Multiferroic materials attract considerable interest because of the wide range of potential applications such as spintronic devices, data storage devices and sensors. As a strong candidate for the applications among the limited list of single-phase multiferroic materials, BiFeO3 (BFO) is a quite attractive material due to its multiferroic properties at room temperature (RT). However, BFO is widely known to have large leakage current and small spontaneous polarization due to the existence of crystalline defects such as oxygen vacancies. Furthermore, the magnetic moment of pure BFO is very weak owing to its antiferromagnetic nature. In this paper, the effects of Ni2+ substitution on the magnetic properties of bulk BFO were investigated. BFO, and BiFe0.99Ni0.01O3, BiFe0.98Ni0.02O3 and BiFe0.97Ni0.03O3 (BFNO: Ni-doped BFO) ceramics were prepared by solid-state reaction and rapid sintering, and analyzed by structural and magnetic-property measurements. The leakage current density was measured at RT by using a standard ferroelectric tester. All the Ni-doped BFO samples exhibited the similar rhombohedral perovskite structure ( R3c) to that of BFO. The magnetic properties of Ni-doped BFO were much enhanced with respect to BFO prepared at the same conditions, because the enhanced ferromagnetic interaction is caused by the Fe/Ni coupling.

  5. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    NASA Astrophysics Data System (ADS)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  6. Energetic stability, oxidation states, and electronic structure of Bi-doped NaTaO3: a first-principles hybrid functional study.

    PubMed

    Joo, Paul H; Behtash, Maziar; Yang, Kesong

    2016-01-14

    We studied the defect formation energies, oxidation states of the dopants, and electronic structures of Bi-doped NaTaO3 using first-principles hybrid density functional theory calculations. Three possible structural models, including Bi-doped NaTaO3 with Bi at the Na site (Bi@Na), with Bi at the Ta site (Bi@Ta), and with Bi at both Na and Ta sites [Bi@(Na,Ta)], are constructed. Our results show that the preferred doping sites of Bi are strongly related to the preparation conditions of NaTaO3. It is energetically more favorable to form a Bi@Na structure under Na-poor conditions, to form a Bi@Ta structure under Na-rich conditions, and to form a Bi@(Na,Ta) structure under mildly Na-rich conditions. The Bi@Na doped model shows an n-type conducting character along with an expected blueshift of the optical absorption edge, in which the Bi atoms exist as Bi(3+) (6s(2)6p(0)). The Bi@Ta doped model has empty gap states consisting of Bi 6s states in its band gap, which can lead to visible-light absorption via the electron transition among the valence band, the conduction band, and the gap states. The Bi dopant is present as a Bi(5+) ion in this model, consistent with the experimental results. In contrast, the Bi@(Na,Ta) doped model has occupied gap states consisting of Bi 6s states in its band gap, and thus visible-light absorption is also expected in this system due to electron excitation from these occupied states to the conduction band, in which the Bi dopants exist as Bi(3+) ions. Our first-principles electronic structure calculations revealed the relationship between the Bi doping sites and the material preparation conditions, and clarified the oxidation states of Bi dopants in NaTaO3 as well as the origin of different visible-light photocatalytic hydrogen evolution behaviors in Bi@Ta and Bi@(Na,Ta) doped NaTaO3. This work can provide a useful reference for preparing a Bi-doped NaTaO3 photocatalyst with desired doping sites.

  7. Improvement of superconducting properties of (Bi, Pb)-2223phase by TlF3 doping

    NASA Astrophysics Data System (ADS)

    Saoudel, A.; Amira, A.; Mahamdioua, N.; Boudjadja, Y.; Varilci, A.; Altintas, S. P.; Terzioglu, C.

    2016-11-01

    In this work, the superconducting properties of thallium fluoride (TlF3)doped Bi1.8-xTlxPb0.35Sr2Ca2Cu3OyF3x(x=0-0.15)compounds are presented. The X-ray diffraction analysis shows that the proportion of (Bi, Pb)-2223phase is higher than the secondary (Bi, Pb)-2212one in all samples and its highest value is about 82.74%for x=0.05. From the resistivity curves, the highest values of the onset critical transition temperature (Tc.on), the offset critical transition temperature (Tc.off) are seen for x=0.10. The calculation of activation energy (U0) in the TAFF (thermally activation flux flow) region proves the positive effect of TlF3 doping on the dissipative behavior of energy near Tc.off. Flux pinning strength is enhanced by increasing TlF3content up to x=0.10, and decreased by the application of a magnetic field. The other superconducting parameters like T(Hc2), T(Hirr), ξ(0) and μ0Hc2(0) are also improved significantly by doping. The obtained results of Ac susceptibility measurements show that the onset temperature of diamagnetism is improved by TlF3 doping, in accordance with the resistivity results.

  8. The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses

    NASA Astrophysics Data System (ADS)

    Denker, B.; Galagan, B.; Osiko, V.; Shulman, I.; Sverchkov, S.; Dianov, E.

    2009-05-01

    The properties of IR emission centers are investigated in Bi-doped Mg-Al-silicate glasses having moderate melting temperatures to be fabricated by routine melting in alumina crucibles. The quadratic concentration dependence of absorption in the visible range indicates that the considered optical centers can be Bi2 dimers forming in a balanced chemical reaction in the glass melt. Their formation enthalpy is evaluated from their concentration variations with the synthesis temperature. The high (up to 85% at low concentrations) luminescence quantum yield and wide emission spectrum makes this glass a promising material for tunable lasers.

  9. Superconductivity in Pb-doped Bi-Ca-Sr-Cu-O system

    SciTech Connect

    Xia, J.S.; Fan, M.H.; He, Z.H.; Zhang, Q.R. ); Chen, J.; Chen, Z.Y.; Qian, Y.T. )

    1989-03-20

    A new superconducting transition near 100 {Kappa} was observed in the Pb-doped Bi-Ca-Sr-Cu-O samples. Compared with the 107 {Kappa} and 65 {Kappa} phases, the volume fraction of this superconducting phase is very small, but forms an effective connection between the grains of other two phases. It is suggested that the new phase plays an important role for T/sub c/ above 100 {Kappa} in the Bi/sub 2-chi/Pb/sub chi/Ca/sub 2/Sr/sub 2/Cu/sub 3/O/sub y/ system.

  10. Neutron diffraction study of Bi doped cubic spinel Co{sub 2}MnO{sub 4}

    SciTech Connect

    Rajeevan, N. E.; Kaushik, S. D.; Kumar, Ravi

    2015-06-24

    Polycrystalline Bi doped spinel Bi{sub x}Co{sub 2-x}MnO{sub 4} compounds were prepared by solid state reaction route. Room temperature neutron diffraction study reveals that all the compounds are formed in cubic phase and there is no change in the crystal structure due to Bi doping and the compound has cubic structure with Fd-3m space group. Cell parameter found to increase with respect to Bi doping and ferrimagnetic nature is established through magnetization. Low temperature neutron diffraction is carried out and emphasis the ferrimagnetic ordering in the samples of Bi{sub x}Co{sub 2-x}MnO{sub 4} series.

  11. Photoelectrochemical performance of W-doped BiVO4 thin films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Holland, S. Keith; Dutter, Melissa R.; Lawrence, David J.; Reisner, Barbara A.; DeVore, Thomas C.

    2014-01-01

    The effects of tungsten doping and hydrogen annealing on the photoelectrochemical (PEC) performance of bismuth vanadate (BiVO4) photoanodes for solar water splitting were studied. Thin films of BiVO were deposited on indium tin oxide-coated glass slides by ultrasonic spray pyrolysis of an aqueous solution containing bismuth nitrate and vanadium oxysulfate. Tungsten doping was achieved by adding either silicotungstic acid (STA) or ammonium metatungstate (AMT) to the precursor. The 1.7- to 2.2-μm-thick films exhibited a highly porous microstructure. Undoped films that were reduced at 375°C in 3% H exhibited the largest photocurrent densities under 0.1 W cm-2 AM1.5 illumination, where photocurrent densities of up to 1.3 mA cm-2 at 0.5 V with respect to Ag/AgCl were achieved. Films doped with 1% or 5% (atomic percent) tungsten from either STA or AMT exhibited reduced PEC performance and greater sample-to-sample performance variations. Powder x-ray diffraction data indicated that the films continue to crystallize in the monoclinic polymorph at low doping levels but crystallize in the tetragonal scheelite structure at higher doping. It is surmised that the phase and morphology differences promoted by the addition of W during the deposition process reduced the PEC performance as measured by photovoltammetry.

  12. Origin of ferromagnetism enhancement in bi-layer chromium-doped indium zinc oxides

    SciTech Connect

    Hsu, C. Y.

    2012-08-06

    This work demonstrates that by controlling the rapid thermal annealing temperature, amorphous chromium-doped indium zinc oxide films develop an amorphous-crystalline bi-layer structure and show magnetization up to {approx}30 emu/cm{sup 3}. The crystalline layer arises from significant out-diffusion of Zn from surfaces, leading to a large difference in the Zn:In ratio in amorphous and crystalline layers. Doped Cr ions in amorphous and crystalline layers form different valence configurations, creating a charge reservoir which transfers electrons through amorphous-crystalline interfaces and in turn enhances ferromagnetism.

  13. Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Gomez, Virginia; Bear, Joseph C.; McNaughter, Paul D.; McGettrick, James D.; Watson, Trystan; Charbonneau, Cecile; O'Brien, Paul; Barron, Andrew R.; Dunnill, Charles W.

    2015-10-01

    Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with ``Janus-like'' characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped particles under white light.Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with ``Janus-like'' characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped

  14. A combined method for synthesis of superconducting Cu doped Bi2Se3

    PubMed Central

    Wang, Meng; Song, Yanru; You, Lixing; Li, Zhuojun; Gao, Bo; Xie, Xiaoming; Jiang, Mianheng

    2016-01-01

    We present a two-step technique for the synthesis of superconducting CuxBi2Se3. Cu0.15Bi2Se3 single crystals were synthesized using the melt-growth method. Although these samples are non-superconducting, they can be employed to generate high quality superconducting samples if used as precursors in the following electrochemical synthesis step. Samples made from Cu0.15Bi2Se3 reliably exhibit zero-resistance even under the non-optimal quenching condition, while samples made from pristine Bi2Se3 require fine tuning of the quenching conditions to achieve similar performance. Moreover, under the optimal quenching condition, the average superconducting shielding fraction was still lower in the samples made from pristine Bi2Se3 than in the samples made from Cu0.15Bi2Se3. These results suggest that the pre-doped Cu atoms facilitate the formation of a superconducting percolation network. We also discuss the useful clues that we gathered about the locations of Cu dopants that are responsible for superconductivity. PMID:26936470

  15. Effects of stoichiometric doping in superconducting Bi-O-S compounds

    NASA Astrophysics Data System (ADS)

    Morice, Corentin; Artacho, Emilio; Dutton, Siân E.; Molnar, Daniel; Kim, Hyeong-Jin; Saxena, Siddharth S.

    2015-04-01

    Newly discovered Bi-O-S compounds remain an enigma in attempts to understand their electronic properties. A recent study of Bi4O4S3 has shown it to be a mixture of two phases, Bi2OS2 and Bi3O2S3, the latter being superconducting (Phelan et al 2013 J. Am. Chem. Soc. 135 5372-4). Using density functional theory, we explore the electronic structure of both the phases and the effect of the introduction of extra BiS2 bilayers. Our results demonstrate that the S2 layers dope the bismuth-sulphur bands and this causes metallisation. The bands at the Fermi level are of clear two-dimensional character. One band manifold is confined to the two adjacent, square-lattice bismuth-sulphur planes, a second manifold is confined to the square lattice of sulphur dimers. We show that the introduction of extra BiS2 bilayers does not influence the electronic structure. Finally, we also show that spin-orbit coupling does not have any significant effect on the states close to the Fermi level at the energy scale considered.

  16. Distinct Effect of Cr Bulk and Surface Doping on the Local Environment and Electronic Structure of Bi2 Se3

    NASA Astrophysics Data System (ADS)

    Yilmaz, Turgut; Pletikosic, Ivo; Valla, Tonica; Sinkovic, Boris

    We report on studies of Cr doping of Bi2Se3 by comparing surface doped with bulk doped Bi2Se3 films and their electronic and local structures studied by in-situ ARPES and core-level photoemission spectroscopies, respectively. In the case of surface doping we see the evidence for Cr substituting the Bi by observation of the extra feature in the Bi 5d photoemission spectra that increases with doping. On the other hand the Cr 3p spectra show two distinct chemical states indicating that there are two different Cr locations with different local electronic configuration. However, unlike theoretical expectations, the electronic structure measured at 15 K shows that surface states preserve gapless feature with well defined Dirac cone and presence of quantum well states, induced by doping. In contrast, the bulk Cr doped Bi2Se3 films show gapped surface states with gap energy as large as 100 meV even at room temperature, which is far above the reported ferromagnetic transition temperature. Yt and BS acknowledge support from University of Connecticut REP program.

  17. Effect of doping in the Bi-Sr-Ca-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Akbar, S. A.; Wong, M. S.; Botelho, M. J.; Sung, Y. M.; Alauddin, M.; Drummer, C. E.; Fair, M. J.

    1991-01-01

    The results of the effect of doping on the superconducting transition in the Bi-Sr-Ca-Cu-O system are reported. Samples were prepared under identical conditions with varying types (Pb, Sb, Sn, Nb) and amounts of dopants. All samples consisted of multiple phases, and showed stable and reproducible superconducting transitions. Stabilization of the well known 110 K phase depends on both the type and amount of dopant. No trace of superconducting phase of 150 K and above was observed.

  18. Thermoelectricity and superconductivity in pure and doped Bi2Te3 with Se

    NASA Astrophysics Data System (ADS)

    Rahnamaye Aliabad, H. A.; Kheirabadi, M.

    2014-01-01

    Thermoelectric and optoelectronic properties of pure and doped Bi2Te3 with Se have been investigated using full potential linearized augmented plane waves (FP-LAPWs). The generalized gradient approximation with spin orbit coupling (GGA+SOC) and the semi-classical Boltzmann transport theory are used. The calculated fundamental band gap of Bi2Te3 is 0.12 eV. The results of Pauli magnetic susceptibility show that the superconductivity transition temperature is about 5 K with different intensities for all compounds. The optical results show that metallic character is observed for energy range 1.60-6.35 eV. The obtained results are impotent for increasing the quality of thermoelectric and optoelectronic properties of materials based on Bi2Te3.

  19. Enhanced multiferroic characteristics in Fe-doped BiTiO ceramics

    NASA Astrophysics Data System (ADS)

    Chen, X. Q.; Yang, F. J.; Cao, W. Q.; Wang, H.; Yang, C. P.; Wang, D. Y.; Chen, K.

    2010-07-01

    Modification of Bi 4Ti 3O 12 multiferroic ceramics prepared by a conventional solid state reaction method were investigated by substituting Ti partly with Fe. The introduction of Fe does not change the layered perovskite structure of Bi 4Ti 3O 12. Upon increasing Fe content, the remnant polarization of the samples is enhanced. The magnetism of the ceramics at room temperature develops from diamagnetism to weak ferromagnetism with increasing Fe doping. The largest variations of 15% and 6% in remnant polarization and magnetization, achieved in a Bi 4Ti 1Fe 2O 12-δ sample after poling it in a magnetic field at 1 T and a DC electric field at 30 kV/cm for 10 min, are evidence of magnetoelectric coupling between the electric dipoles and magnetic dipoles at room temperature. The present results suggest a new candidate for a room temperature multiferroic material with enhanced properties.

  20. Transport Property Measurements in Doped Bi2Te3 Single Crystals Obtained via Zone Melting Method

    NASA Astrophysics Data System (ADS)

    Jariwala, Bhakti; Shah, Dimple; Ravindra, N. M.

    2015-06-01

    Single crystals of Se- and Fe-doped Bi2Te3 have been synthesized via the zone melting method. Energy-dispersive x-ray and x-ray powder diffraction analyses have been carried out to identify the constituent elements and determine the lattice parameters of the grown crystals. Surface topological features of the as-grown single crystals have been studied. The transport properties of doped stoichiometric Bi2Te3 single crystals have been studied by measuring the thermoelectric power and electrical conductivity in the temperature range from 303 K to 473 K. The thermoelectric power, S, effective mass, scattering parameter, and Fermi energy have been calculated from thermoelectric power measurements. The temperature dependence of the electrical conductivity, σ, shows that the dopants in the crystals are thermally activated. All the crystals exhibit semiconducting behavior as confirmed by the temperature dependence of σ and S. The effective mass of electrons and the effective density of states have been determined and are reported for Bi2Te3- x Se x (0 ≤ x ≤ 0.3) and Bi2- y Fe y Te3 (0 ≤ y ≤ 0.3).

  1. Bactericidal activity and mechanism of Ti-doped BiOI microspheres under visible light irradiation.

    PubMed

    Liang, Jialiang; Deng, Jun; Li, Mian; Xu, Tongyan; Tong, Meiping

    2016-11-01

    Ti doped BiOI microspheres were successfully synthesized through a solvothermal method. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra (DRS) spectroscopy, respectively. The as-synthesized microspheres had 3D hierarchical structures, and the morphologies and visible-light-driven (VLD) disinfection performances were found to be determined by the amount of loaded Ti. The incorporation of Ti in the lattice of BiOI broadened the band gap of BiOI and enhanced the VLD disinfection activity. Ti doped BiOI microspheres with the optimal Ti content exhibited excellent antibacterial performances against both representative Gram-negative and Gram-positive strains, which completely inactivated 3.0×10(7)CFUmL(-1)E. coli in 24min and 3.0×10(6)CFU mL(-1)S. aureus in 45min, respectively. Active species including h(+), e(-), O2(-) and H2O2 were found to play important roles in disinfection system. Moreover, the damage of cell membrane and emission of cytoplasm directly led to the inactivation.

  2. Atomic-Scale Magnetism of Cr-Doped Bi2Se3 Thin Film Topological Insulators.

    PubMed

    Liu, Wenqing; West, Damien; He, Liang; Xu, Yongbing; Liu, Jun; Wang, Kejie; Wang, Yong; van der Laan, Gerrit; Zhang, Rong; Zhang, Shengbai; Wang, Kang L

    2015-10-27

    Magnetic doping is the most common method for breaking time-reversal-symmetry surface states of topological insulators (TIs) to realize novel physical phenomena and to create beneficial technological applications. Here we present a study of the magnetic coupling of a prototype magnetic TI, that is, Cr-doped Bi2Se3, in its ultrathin limit which is expected to give rise to quantum anomalous Hall (QAH) effect. The high quality Bi2-xCrxSe3 epitaxial thin film was prepared using molecular beam epitaxy (MBE), characterized with scanning transimission electron microscopy (STEM), electrical magnetotransport, and X-ray magnetic circularly dichroism (XMCD) techniques, and the results were simulated using density functional theory (DFT) with spin-orbit coupling (SOC). We observed a sizable spin moment mspin = (2.05 ± 0.20) μB/Cr and a small and negative orbital moment morb = (-0.05 ± 0.02) μB/Cr of the Bi1.94Cr0.06Se3 thin film at 2.5 K. A remarkable fraction of the (CrBi-CrI)(3+) antiferromagnetic dimer in the Bi2-xCrxSe3 for 0.02 < x < 0.40 was obtained using first-principles simulations, which was neglected in previous studies. The spontaneous coexistence of ferro- and antiferromagnetic Cr defects in Bi2-xCrxSe3 explains our experimental observations and those based on conventional magnetometry which universally report magnetic moments significantly lower than 3 μB/Cr predicted by Hund's rule.

  3. Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis.

    PubMed

    Gomez, Virginia; Bear, Joseph C; McNaughter, Paul D; McGettrick, James D; Watson, Trystan; Charbonneau, Cecile; O'Brien, Paul; Barron, Andrew R; Dunnill, Charles W

    2015-11-14

    Bi-phasic or multi-phasic composite nanoparticles for use in photocatalysis have been produced by a new synthetic approach. Sol-gel methods are used to deposit multiple layers of active material onto soluble substrates. In this work, a layer of rutile (TiO2) was deposited onto sodium chloride pellets followed by an annealing step and a layer of anatase. After dissolving the substrate, bi-phasic nanoparticles containing half anatase and half rutile TiO2; with "Janus-like" characteristics are obtained. Nitrogen and neodymium doping of the materials were observed to enhance the photocatalytic properties both under UV and white light irradiation. The unique advantage of this synthetic method is the ability to systematically dope separate sides of the nanoparticles. Nitrogen doping was found to be most effective on the anatase side of the nanoparticle while neodymium was found to be most effective on the rutile side. Rhodamine B dye was effectively photodegraded by co-doped particles under white light.

  4. Tailoring surface phase transition and magnetic behaviors in BiFeO3 via doping engineering

    PubMed Central

    Yan, Feng; Xing, Guozhong; Wang, Rongming; Li, Lin

    2015-01-01

    The charge-spin interactions in multiferroic materials (e.g., BiFeO3) have attracted enormous attention due to their high potential for next generation information electronics. However, the weak and deficient manipulation of charge-spin coupling notoriously limits their commercial applications. To tailor the spontaneous charge and the spin orientation synergistically in BiFeO3 (BFO), in this report, the 3d element of Mn doping engineering is employed and unveils the variation of surface phase transition and magnetic behaviors by introducing chemical strain. The spontaneous ferroelectric response and the corresponding domain structures, magnetic behaviors and spin dynamics in Mn-doped BFO ceramics have been investigated systematically. Both the surface phase transition and magnetization were enhanced in BFO via Mn doping. The interaction between the spontaneous polarization charge and magnetic spin reorientation in Mn-doped BFO are discussed in detail. Moreover, our extensive electron paramagnetic resonance (EPR) results demonstrate that the 3d dopant plays a paramount role in the surface phase transition, which provides an alternative route to tune the charge-spin interactions in multiferroic materials. PMID:25774619

  5. X-ray absorption near-edge structure (XANES) studies on Sb-doped Bi2UO6 at Bi and U edges

    NASA Astrophysics Data System (ADS)

    Yadav, A. K.; Misra, N. L.; Dhara, Sangita; Phatak, Rohan; Poswal, A. K.; Jha, S. N.; Bhattacharyya, D.

    2013-02-01

    X-ray absorption spectroscopy (XAS) measurements at Bi and U LIII edges with synchrotron radiation have been carried out on Bi2-xSbxUO6 samples for x= 0.04, 0.08, 0.12, 0.16 and 0.40 which are possible by-products of Bi based coolant and Uranium based fuels in advanced high temperature nuclear reactors. The chemical shift of the Bi absorption edges in the samples have been determined accurately from the XANES region of the X-ray absorption spectra and have been explained in terms of the difference in electronegativity values of Sb and Bi. The chemical shift of absorption edges show systematic variation only upto x = 0.08 (i.e., 4% Sb doping), which shows that the Sb enter in the matrix properly up to 4% doping concentration. The local structure of U is found to remain unchanged on Sb doping indicating clearly that Sb dopants preferably replace Bi atoms.

  6. The Bi based superconductors doped with B 2O 3

    NASA Astrophysics Data System (ADS)

    Veverka, M.; Smrčková, O.; Sýkorová, D.; Vašek, P.

    1997-04-01

    The influence of the addition of B2O3on the properties of the oxide ceramic materials Bi-Pb-Sr-Ca-Cu-O was investigated. The samples with nominal com-posi-tion BiaPbbBcSr2Ca2Cu3Ox(a = 0.8-1.6,b = 0.06-0.26,c = 0.05-1.0) were prepared and studied by the measurement of the temperature dependence of the electrical resistivity and critical current density. The addition of a small amount of B2O3(c = 0.05,a = 1.8,b = 0.26) had positive influence on the critical current density. On the other hand, a high content of boron (c > 0.6,b = 0.26,a + b = 1.8) reversed the superconductor to an insulator.

  7. Superconductivity enhanced by Se doping in Eu3Bi2(S,Se)4F4

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Zhai, H. F.; Tang, Z. J.; Li, L.; Li, Y. K.; Chen, Q.; Chen, J.; Wang, Z.; Feng, C. M.; Cao, G. H.; Xu, Z. A.

    2015-07-01

    We investigated the negative-chemical-pressure effect of Eu3Bi2S4-x Se x F4 (0 ≤ x ≤ 2.0) by the partial substitution of S with Se. The crystalline lattice substantially expands as Se is doped, suggesting an effective negative chemical pressure. With Se/S doping, the charge-density-wave-like anomaly is suppressed, and meanwhile the superconducting transition temperature (T_c) is enhanced. For x = 2.0 , T c reaches 3.35 K and bulk superconductivity is confirmed by the strong diamagnetic signal, with shielding volume fraction over 90%. Magnetic-susceptibility, specific-heat and Hall-effect measurements reveal that the Se/S doping increases the carrier density, corresponding to the increase of the average Eu valence. Our work provides a rare paradigm of negative-chemical-pressure effect.

  8. W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Li, Wei; Wan, Wenchao; Zhang, Ruiyang; Lin, Yuanhua

    2015-06-01

    Polymer flooding is an effective way to enhance oil recovery (EOR). However, the treatment of the oily wastewater becomes an urgent issue. Photocatalysis is a promising approach for this purpose. In this report, W/Mo co-doped BiVO4 particles are synthesized by hydrothermal method. W/Mo co-doping could promote an effective separation of photogenerated carriers reflecting from the 6 times higher photocurrent density compared to pure BiVO4. The photodegradation of partially hydrolyzed polyacrylamide (HPAM) over 0.5 at.% W and 1.5 at.% Mo co-doped BiVO4 is 43% under UV-vis light irradiation for 3 h, which is much higher than that of pure BiVO4 (18%).

  9. Effect of Ce-DOPING on Structural and Electrical Properties of Dielectric Bi2Ti2O7 Thin Films

    NASA Astrophysics Data System (ADS)

    Jing, Xiangyang; Huang, Baibiao; Yao, Shushan; Zhang, Qi; Wang, Zeyan; Wang, Peng; Zheng, Liren

    Ce-doped Bi2Ti2O7 thin films have been successfully prepared on P-type Si substrates by a chemical solution deposition method. The structural properties of the films were studied by X-ray diffraction. The phase of Ce-doped Bi2Ti2O7 was more stable than that of Bi2Ti2O7 without Ce substitution. The films exhibited good insulating properties at room temperature. The dielectric constant of the films annealed at 700°C at 100 kHz was 168 and the dissipation factor was 0.038. All these results showed that Ce-doped Bi2Ti2O7 thin films could be used as storage capacitors in DRAM and MOS.

  10. Research on PEG modified Bi-doping lead dioxide electrode and mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Weihua; Yang, Wutao; Lin, Xiaoyan

    2012-05-01

    Bi-doping PbO2 electrode, which is called Bi-PbO2 for short, modified with different concentrations of polyethylene glycol (PEG) was prepared by electrodeposition method in this paper. The microstructure and electrochemical properties of the different modified electrodes were investigated using scanning electron microscopy, X-ray diffraction, Mott-Schottky, electrochemical impedance spectroscopy and linear sweep voltammetry techniques. The results show that adulteration of PEG has a noticeable improvement in the morphology of Bi-PbO2 electrode which can greatly decrease its particle size and enlarge its active surface area. Phenol degradation experiments reveal that the modified electrodes have excellent electro-catalytic activity and stability, and the optimal adulterate concentration of PEG is 8 g L-1. Electrochemical performance tests show that the modified electrodes exhibit more negative flatband potential (Efb), larger adsorption pseudo capacitance, lower adsorption resistance and higher oxygen evolution potential, and these characteristics promote the electro-catalytic activity of the Bi-PbO2 electrode. Finally, accelerated lifetime tests demonstrate that PEG modification can highly lengthen the service life of Bi-PbO2 electrode in its practical application.

  11. Passively Q-switched and mode-locked Nd:GGG laser with a Bi-doped GaAs saturable absorber.

    PubMed

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-06-16

    A simultaneously passively Q-switched and mode-locked (QML) Nd:GGG laser using a Bi-doped GaAs wafer as saturable absorber is accomplished for the first time. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. In comparison to the passively QML laser with GaAs, the QML laser with Bi-doped GaAs can generate more stable pulses with 99% modulation depth. The experiment results indicate that the Bi-doped GaAs could be an excellent saturable absorber for diode-pumped QML lasers.

  12. Passively Q-switched and mode-locked Nd:GGG laser with a Bi-doped GaAs saturable absorber.

    PubMed

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-06-16

    A simultaneously passively Q-switched and mode-locked (QML) Nd:GGG laser using a Bi-doped GaAs wafer as saturable absorber is accomplished for the first time. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. In comparison to the passively QML laser with GaAs, the QML laser with Bi-doped GaAs can generate more stable pulses with 99% modulation depth. The experiment results indicate that the Bi-doped GaAs could be an excellent saturable absorber for diode-pumped QML lasers. PMID:24977576

  13. Diode-pumped passively Q-switched Nd:GGG laser with a Bi-doped GaAs semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Cong, Wen; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Qiao, Hui; Liu, Ji

    2014-12-01

    Passive Q-switching of a diode-pumped Nd:GGG laser is demonstrated using Bi-doped GaAs as saturable absorber. The Bi-doped GaAs wafer is fabricated by ion implantation and subsequent annealing. Compared with the Q-switched laser by undoped GaAs semiconductor saturable absorber, the laser with Bi-doped GaAs as saturable absorber can produce higher output power, shorter pulses, higher single pulse energies and higher peak powers. These results suggest that Bi-doped GaAs can be a promising new candidate of semiconductor saturable absorber in Q-switched laser.

  14. Structural, optical and dielectric property of Co doped Bi{sub 2}Fe{sub 4}O{sub 9}

    SciTech Connect

    Swain, Smita Mohapatra, S. R. Sahoo, B. Singh, A. K.

    2014-04-24

    Multiferroic Bi{sub 2}Fe{sub 4}O{sub 9} and Co doped Bi{sub 2}Fe{sub 4}O{sub 9} are prepared by solid state route reaction method using bismuth oxide(Bi{sub 2}O{sub 3}), iron oxide(Fe{sub 2}O{sub 3}) and cobalt oxide (Co{sub 3}O{sub 4}). Their structural optical and dielectric properties are studied and compared. X-ray diffraction (XRD) results confirm that there is no change in crystal structure due to Co doping. From dielectric constant measurement we conclude that dielectric constant increases due to Co doping. UV-Visible plot shows due to Co doping bang gap energy increases.

  15. Interlayer-I-doped BiOIO3 nanoplates with an optimized electronic structure for efficient visible light photocatalysis.

    PubMed

    Sun, Yanjuan; Xiong, Ting; Dong, Fan; Huang, Hongwei; Cen, Wanglai

    2016-07-01

    The success in the synthesis of Bi-based layered photocatalysts with high photocatalytic activities has triggered intensive studies. Herein, we prepared interlayer-I-doped BiOIO3 nanoplates by a facile method. Interestingly, it was found that I atoms were doped into the BiOIO3 interlayers instead of substituting for the lattice atoms based on theoretical and experimental results. The interbedded I atoms endowed BiOIO3 with an extended light response from the UV to the visible region by narrowing the bandgap and generating a middle level. The enhanced oxidation capability via positive-shifting the valence band position and improved carrier separation efficiency via forming charge delivery channels at the adjacent two layers can be achieved simultaneously. As expected, I-intercalated BiOIO3 with an optimized electronic structure demonstrated outstanding NO removal ability under visible light irradiation, much superior to pure BiOIO3. The present success in fabricating interlayer-I-doped BiOIO3 would open a promising route to prepare other Bi-based layered semiconductors with efficient visible-light photocatalysis. PMID:27284595

  16. Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight

    PubMed Central

    Zhang, Ning; Chen, Da; Niu, Feng; Wang, Sen; Qin, Laishun; Huang, Yuexiang

    2016-01-01

    To investigate the effect of Gd doping on photocatalytic activity of BiFeO3 (BFO), Gd-doped BFO nanoparticles containing different Gd doping contents (Bi(1−x)GdxFeO3, x = 0.00, 0.01, 0.03, 0.05) were synthesized using a facile sol-gel route. The obtained products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectra, and ultraviolet-visible diffuse reflectance spectroscopy, and their photocatalytic activities were evaluated by photocatalytic decomposition of Rhodamine B in aqueous solution under visible light irradiation. It was found that the Gd doping content could significantly affect the photocatalytic activity of as-prepared Gd-doped BFO, and the photocatalytic activity increased with increasing the Gd doping content up to the optimal value and then decreased with further enhancing Gd doping content. To elucidate the enhanced photocatalytic mechanism of Gd-doped BFO, the trapping experiments, photoluminescence, photocurrent and electrochemical impedance measurements were performed. On the basis of these experimental results, the enhanced photocatalytic activities of Gd-doped BFO could be ascribed to the increased optical absorption, the efficient separation and migration of photogenerated charge carriers as well as the decreased recombination probability of electron-hole pairs derived from the Gd doping effect. Meanwhile, the possible photocatalytic mechanism of Gd-doped BFO was critically discussed. PMID:27198166

  17. Shape evolution of Eu-doped Bi{sub 2}WO{sub 6} and their photocatalytic properties

    SciTech Connect

    Xu, Xuetang Ge, Yuanxing Li, Bin Fan, Fangling Wang, Fan

    2014-11-15

    Highlights: • Hydrothermal synthesis of Eu-doped Bi{sub 2}WO{sub 6} micro/nanostructure without any additives. • Dopant and doping level affect the shape evolution and photocatalytic activities. • Eu-doped Bi{sub 2}WO{sub 6} exhibit superior photocatalytic activity in degradation of RhB. - Abstract: Europium-doped bismuth tungstate (Eu-doped Bi{sub 2}WO{sub 6}) was synthesized via hydrothermal method. The composition, structure, and microstructure of the products were characterized by X-ray diffraction and scanning electron microscopy. Depending on the doping level, nanoflakes and 3D hierarchical microspheres were formed. The photocatalytic activities of all products obtained were evaluated by the degradation of Rhodamine-B under visible light irradiation. A substantially improved photocatalytic performance of Eu-doped Bi{sub 2}WO{sub 6} is achieved. This study demonstrates a simple method that could produce stable photocatalysts with greatly enhanced performance.

  18. Influence of Sodium Fluoride Doping on Thermoelectric Properties of BiCuSeO

    NASA Astrophysics Data System (ADS)

    Novitskii, A. P.; Voronin, A. I.; Usenko, A. A.; Gorshenkov, M. V.; Khovaylo, V. V.; Shvanskaya, L. V.; Burkov, A. T.; Vasiliev, A. N.

    2016-03-01

    We examined the effect of NaF doping on the thermoelectric properties of p-type Bi1- x Na x CuSeO1- x F x ( x = 0, 0.05, 0.10, 0.15) synthesized by a facile method combining a solid-state reaction and spark plasma sintering. The substitution of Bi3+ by Na+ and O2- by F- led to an enhancement of electrical conductivity and a slight increase in thermal conductivity, while the Seebeck coefficient was slightly affected by the doping. The power factor (2.12 μW cm-1 K-2 at 923 K) and the low thermal conductivity resulted in the dimensionless figure of merit ZT 0.42 for Bi0.95Na0.05CuSeO0.95F0.05 at 923 K. The obtained results indicated that ZT was not improved by the double substitution at the bismuth and oxygen sites.

  19. The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping

    NASA Astrophysics Data System (ADS)

    Lu, Tianni; Zhang, Cuiping; Guo, Shengwu; Wu, Yifang; Li, Chengshan; Zhou, Lian

    2015-12-01

    Bi2Sr2Ca1-xYbxCu2O8+δ (Bi-2212) single crystals with x = 0.000, 0.005, 0.010 and 0.020 have been prepared by self-flux method. The influences of Yb doping on the formation of the dislocations in the lattice structures, as well as the related current carrying capability are investigated. Due to the SQUID measurement and the Bean model calculation, the maximum critical current density (Jc) is obtained when the Yb doping content is x = 0.010, though the Tc and the carrier concentration are not in the optimal region. Based on the HRTEM analyses of the Ca-O and Cu-O2 layers, the optimal dislocation density in the Cu-O2 layers is deduced according to the number of the dislocations per unit area. Besides, the sizes of the dislocations also prove the effectiveness of Yb substitution on the enhancement of the current carrying capability in Bi-2212 single crystals.

  20. Dynamic fatigue behaviour of Ag-doped Bi-2212 textured thin rods

    NASA Astrophysics Data System (ADS)

    Madre, M. A.; Rasekh, Sh; Diez, J. C.; Sotelo, A.

    2009-03-01

    The flexural strength of 1 wt.% Ag-doped Bi2Sr2CaCu2O8+δ thin rods textured by a laser heated floating zone was measured as a function of the environmental conditions (air versus water) at room temperature. Loading rates spanning three orders of magnitude (1, 10 and 100 μm/min) were used to explore their susceptibility to the environmental conditions. These mechanical tests were completed with electrical characterization (critical current at 77K and resistivity from 77 to 300 K) of samples submerged in distilled water for different time lengths (0, 12 and 120h). While Bi2Sr2CaCu2O8+δ has been shown, in previous works, to be unstable during contact with water molecules, the Ag-doped Bi-2212 textured rods tested in this work are very inert to the water environment, with respect to their mechanical and electrical properties, due to the presence of a narrow (approx150 μm) low textured outer ring formed in the growth process.

  1. Study of Dy-doped Bi2Te3: thin film growth and magnetic properties

    NASA Astrophysics Data System (ADS)

    Harrison, S. E.; Collins-McIntyre, L. J.; Zhang, S.-L.; Baker, A. A.; Figueroa, A. I.; Kellock, A. J.; Pushp, A.; Parkin, S. S. P.; Harris, J. S.; van der Laan, G.; Hesjedal, T.

    2015-06-01

    Breaking the time-reversal symmetry (TRS) in topological insulators (TIs) through ferromagnetic doping is an essential prerequisite for unlocking novel physical phenomena and exploring potential device applications. Here, we report the successful growth of high-quality (DyxBi1-x)2Te3 thin films with Dy concentrations up to x = 0.355 by molecular beam epitaxy. Bulk-sensitive magnetisation studies using superconducting quantum interference device magnetometry find paramagnetic behaviour down to 2 K for the entire doping series. The effective magnetic moment, μeff, is strongly doping concentration-dependent and reduces from ˜12.6 μB Dy-1 for x = 0.023 to ˜4.3 μB Dy-1 for x = 0.355. X-ray absorption spectra and x-ray magnetic circular dichroism (XMCD) at the Dy M4,5 edge are employed to provide a deeper insight into the magnetic nature of the Dy3+-doped films. XMCD, measured in surface-sensitive total-electron-yield detection, gives μeff = 4.2 μB Dy-1. The large measured moments make Dy-doped films interesting TI systems in which the TRS may be broken via the proximity effect due to an adjacent ferromagnetic insulator.

  2. Degradation and capacitance: voltage hysteresis in CdTe devices

    NASA Astrophysics Data System (ADS)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  3. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light

    NASA Astrophysics Data System (ADS)

    Luo, Yangyang; Tan, Guoqiang; Dong, Guohua; Ren, Huijun; Xia, Ao

    2016-02-01

    Tetragonal Gd-doped BiVO4 having enhanced photocatalytic activity have been synthesized by a facile microwave hydrothermal method. The structural analysis indicates that Gd doping can induce the phase transition from monoclinic to tetragonal BiVO4. The reaction results in precursor solutions imply that tetragonal GdVO4 seeds as crystal nucleus are the original and determined incentives to force the formation of tetragonal Gd-BiVO4. The influences of the surface defect, band structure, and BET surface area on the improved photocatalytic activities of tetragonal Gd-doped BiVO4 are investigated systematically. The results demonstrate that the more surface oxygen deficiencies as active sites and the excellent mobility and separation of photogenerated electrons and holes are beneficial to the enhancement of the photocatalytic performance of tetragonal Gd-BiVO4. The RhB photodegradation experiments indicate that the contribution of high photocatalytic activities under simulated sun-light is mainly from UV-light region due to the tetragonal structure feature. The best photocatalytic performance is obtained for tetragonal 10 at% Gd-BiVO4, of which the RhB degradation rate can reach to 96% after 120 min simulated sun-light irradiation. The stable tetragonal Gd-BiVO4 with efficient mineralization will be a promising photocatalytic material applied in water purification.

  4. Ultrahigh sensitivity of anomalous Hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films

    DOE PAGESBeta

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Jiles, D. C.

    2016-07-01

    Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi2Te3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in both cases, that ultrahigh Hall sensitivity can be obtained in Cr-doped Bi2Te3. Hall sensitivity reaches 1666 Ω/T in the sensor with the 15 nm TI thin film, which is higher than that of the conventional semiconductor HE sensor. The AHE of 65more » nm sensors is even stronger, which causes the sensitivity increasing to 2620 Ω/T. Furthermore, after comparing Cr-doped Bi2Te3 with the previously studied Mn-doped Bi2Te3 TI Hall sensor, the sensitivity of the present AHE sensor shows about 60 times higher in 65 nm sensors. Furthermore, the implementation of AHE sensors based on a magnetic-doped TI thin film indicates that the TIs are good candidates for ultrasensitive AHE sensors.« less

  5. Mo-doped BiVO4 photoanodes synthesized by reactive sputtering.

    PubMed

    Chen, Le; Toma, Francesca M; Cooper, Jason K; Lyon, Alan; Lin, Yongjing; Sharp, Ian D; Ager, Joel W

    2015-03-01

    We report a scalable and reproducible method for reactive co-sputtering of Mo-doped BiVO4 thin films with broad compositional control. Optimal photoanode performance is achieved at a Mo concentration of 3 at. %. Incorporation of Mo promotes growth of large grains and reduces majority carrier transport limitations, resulting in maximum AM1.5G photocurrent densities of 3.5 mA cm(-2) at 1.23 V vs. RHE in pH 6.8 buffer solution containing 0.1 M Na2 SO3 as a hole scavenger. Operation as a front-illuminated water oxidation photoanode is achieved by balancing the operational stability, catalytic activity, and parasitic optical absorption of a FeOOH oxygen evolution catalyst. FeOOH/Mo:BiVO4 thin film photoanodes enable water oxidation under the front-side illumination conditions used in integrated tandem water splitting devices. PMID:25705871

  6. Structural phase transitions in Ti-doped Bi1-xNdxFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Kalantari, Kambiz; Sterianou, Iasmi; Sinclair, Derek C.; Bingham, Paul A.; Pokorný, Jan; Reaney, Ian M.

    2012-03-01

    Recently, it was demonstrated that donor doping with Ti on the B-site significantly reduces the conductivity in Bi0.85Nd0.15FeO3 ceramics [Kalantari et al., Adv. Funct. Mater. 21, 3737 (2011)]. In this contribution, the phase transitions as a function of Nd concentration are investigated in 3% Ti doped Bi1-xNdxFeO3 ceramics. Paraelectric (PE) to ferroelectric (FE) transitions were observed for compositions with x ≤ 0.125 which manifested themselves as peaks in permittivity. In contrast, PE to antiferroelectric (AFE) transitions for 0.15 ≤ x ≤ 0.20 gave rise to a step-like change in the permittivity with x = 0.25 exhibiting no sharp anomalies and remaining PE until room temperature. The large volume change at the PE to FE/AFE transitions, reported by Levin and co-workers [Phys. Rev. B 81, 020103 (2011)] and observed here by dilatometry, coupled with their first-order character constrain the transitions to occur uniformly throughout the material in an avalanche-like manner. Hence, the anomalies in DSC, permittivity and thermal expansion occur over a commensurately narrow temperature interval. However, despite the large volume change and eye-catching anomalies in DSC, the latent heats for the transitions in Ti-doped Bi1-xNdxFeO3 are similar to Pb(Zr,Ti)O3 (1-3 kJ/mol) with each an order of magnitude greater than BaTiO3 (˜0.2 kJ/mol). A broad frequency dependent dielectric anomaly of unknown origin in the temperature range 250-450 °C was also observed in all samples.

  7. Synthesis and characterization of Bi-doped Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Fiameni, S.; Battiston, S.; Boldrini, S.; Famengo, A.; Agresti, F.; Barison, S.; Fabrizio, M.

    2012-09-15

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion for the middle high range of temperature. They are very attractive as they could replace lead-based compounds due to their low cost and non toxicity. They could also result in thermoelectric generator weight reduction (a key feature for the automotive application field). The high value of thermal conductivity of the silicide-based materials could be reduced by increasing the phonon scattering in the presence of nanosized crystalline grains without heavily interfering with the electrical conductivity of the thermoelectric material. Nanostructured materials were obtained under inert atmosphere through ball milling, thermal treatment and spark plasma sintering processes. In particular, the role of several bismuth doping amounts in Mg{sub 2}Si were investigated (Mg{sub 2}Si:Bi=1:x for x=0.01, 0.02 and 0.04 M ratio). The morphology, the composition and the structure of the samples were characterized by FE-SEM, EDS and XRD analyses after each process step. Moreover, the Seebeck coefficient analyses at high temperature and the electrical and thermal conductivity of the samples are presented in this work. The nanostructuring processes were affect by the MgO amount increase which influenced the thermoelectric properties of the samples mainly by reducing the electrical conductivity. With the aim of further increasing the scattering phenomena by interface or boundary effect, carbon nanostructures named Single Wall Carbon Nanohorns were added to the Mg{sub 2}Si in order to produce a nanocomposite material. The influence of the nanostructured filler on the thermoelectric material properties is also discussed. - Graphical abstract: Figure of merit (ZT) of Bi-doped samples and undoped Mg{sub 2}Si. A maximum ZT value of 0.39 at 600 Degree-Sign C was obtained for the nanocomposite material obtained adding Single Wall Carbon Nanohorns to the Bi 0.02 at% doped silicide. Highlights: Black

  8. The growth and characterization of Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Tseng, M.R.; Chu, J.J.; Huang, Y.T.; Wu, P.T. ); Wang, W.N. )

    1990-03-01

    The growth and characterization of Bi-Pb-Sr-Ca-Cu-O films on single-crystal (001)MgO substrates by rf magnetron sputtering with a single target are reported. The comparison of different post-annealing conditions revealed that the film annealed under controlled Pb potential gave best superconducting properties with {ital T}{sub {ital c}0} above 105 K. The proper doping of Pb not only accelerated the formation of the high-{ital T}{sub {ital c}} phase, but also improved the connectivity of high-{ital T}{sub {ital c}} grains.

  9. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  10. Doping change in the Bi-2212 superconductor directly induced by a hard X-ray nanobeam.

    PubMed

    Pagliero, Alessandro; Mino, Lorenzo; Borfecchia, Elisa; Truccato, Marco; Agostino, Angelo; Pascale, Lise; Enrico, Emanuele; De Leo, Natascia; Lamberti, Carlo; Martínez-Criado, Gema

    2014-03-12

    We describe the controlled use of a 17 keV X-ray synchrotron nanobeam to progressively change the oxygen doping level in Bi-2212 superconducting whisker-like single crystals. Our data combine structural and electrical information collected on the same crystals, showing a maximum change in the critical temperature Tc of 1.3 K and a maximum elongation of ∼1 Å in the c-axis length, compared to the as-grown conditions. Simulations of our experimental conditions by means of a finite element model exclude local heating induced by the X-ray nanobeam as a possible cause for the change in the doping level and suggest an important role of secondary electrons. These findings support the possible use of hard X-rays as a novel direct-writing, photoresist-free lithographic process for the fabrication of superconducting devices, with potential nanometric resolution and 3D capability.

  11. Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.

    2015-03-01

    Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.

  12. Molecular Doping the Topological Dirac Semimetal Na3Bi across the Charge Neutrality Point with F4-TCNQ.

    PubMed

    Edmonds, Mark T; Hellerstedt, Jack; O'Donnell, Kane M; Tadich, Anton; Fuhrer, Michael S

    2016-06-29

    We perform low-temperature transport and high-resolution photoelectron spectroscopy on 20 nm thin film topological Dirac semimetal Na3Bi grown by molecular beam epitaxy. We demonstrate efficient electron depletion ∼10(13) cm(-2) of Na3Bi via vacuum deposition of molecular F4-TCNQ without degrading the sample mobility. For samples with low as-grown n-type doping (1 × 10(12) cm(-2)), F4-TCNQ doping can achieve charge neutrality and even a net p-type doping. Photoelectron spectroscopy and density functional theory are utilized to investigate the behavior of F4-TCNQ on the Na3Bi surface. PMID:27309858

  13. The effect of K-na co-doping on the formation and particle size of Bi-2212 phase

    NASA Astrophysics Data System (ADS)

    Kır, M. Ebru; Özkurt, Berdan; Aytekin, M. Ersin

    2016-06-01

    Superconducting K-Na co-doped Bi2Sr2KxCa1Cu1.75Na0.25Oy (x=0, 0.05, 0.1 and 0.25) ceramics are prepared by a solid-state reaction method. It is clearly determined from XRD data that the characteristic peaks of Bi-2212 phase are observed in all samples. The resistivity measurements show that Tc (onset) values is gradually increasing as K content is increased. It is also found that K-Na co-doping influence the grain sizes for Bi-2212 phase significantly. The critical current densities as a function of magnetic field have been calculated from M-H hysteresis loops of samples according to Bean's critical model, indicating that K-Na co-doping cause higher Jc values than the pure ones.

  14. Enhanced thermoelectric properties of the hole-doped Bi2-xKxSr2Co2Oy ceramics

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Qinglin; Cao, Ruijuan; Wu, Fang; Hu, Xing; Song, Hongzhang

    2015-09-01

    In this paper, the influence of K element doping on the thermoelectric properties of the Bi2-xKxSr2Co2Oy (x = 0.00, 0.05, 0.10, 0.15, and 0.20) samples prepared by the solid-state reaction method were investigated from 333 K to 973 K. It was shown that due to the p-type K doping the electrical resistivity of the doped sample can be reduced remarkably as compared with the undoped sample, especially for the optimum doped sample Bi1.9K0.1Sr2Co2Oy. The Seebeck coefficients of the K doped samples have only a slight decrease as compared with the undoped sample. As a result of the remarkable reduction of the electrical resistivity the power factor of the doped sample have a significant improvement. The thermal conductivity of the samples is depressed due to the defects caused by K doping. As an overall result, the dimensionless figure of merit (ZT) of the Bi1.9K0.1Sr2Co2Oy sample reaches a maximum value of 0.3 at 973 K, being 93% higher than that of the undoped sample.

  15. Nanoclusters of CaSe in calcium-doped Bi2Se3 grown by molecular-beam epitaxy.

    PubMed

    Shang, Panju; Guo, Xin; Zhao, Bao; Dai, Xianqi; Bin, Li; Jia, Jinfeng; Li, Quan; Xie, Maohai

    2016-02-26

    In calcium (Ca) doped Bi2Se3 films grown by molecular beam epitaxy, nanoclusters of CaSe are revealed by high-angle annular dark field imaging and energy dispersive x-ray spectroscopy analysis using a scanning transmission electron microscope. As the interface between the ordinary insulator CaSe and topological insulator, Bi2Se3, can host topological nontrivial interface state, this represents an interesting material system for further studies. We show by first principles total energy calculations that aggregation of Ca atoms in Bi2Se3 is driven by energy minimization and a preferential intercalation of Ca in the van der Waals gap between quintuple layers of Bi2Se3 induces reordering of atomic stacking and causes an increasing amount of stacking faults in film. The above findings also provide an explanation of less-than-expected electrical carrier (hole) concentrations in Ca-doped samples.

  16. Effect of Ti doping on high pressure behavior of BiMn{sub 2}O{sub 5}

    SciTech Connect

    Pandey, K. K. Poswal, H. K. Sharma, Surinder M.; Kumar, Ravi

    2014-04-24

    Our high pressure x-ray diffraction studies on BiMn{sub 1.5}Ti{sub 0.5}O{sub 5} show iso-structural phase transition above 12 GPa similar to the one observed in undoped BiMn{sub 2}O{sub 5}; however anisotropic compressional behavior is found to be more enhanced in the doped case. Unlike undoped system, an anomalous lattice expansion along c axis has been observed in BiMn{sub 1.5}Ti{sub 0.5}O{sub 5} above 12 GPa; whereas the b lattice parameter has been found to be more compressible as compared to BiMn{sub 2}O{sub 5}. As doping with Ti reduces the magnetic interactions among Mn ions, the observed changes are suggestive of having adverse magnetic implications in the observed iso-structural phase transition.

  17. Growth and magnetic properties of Ni-doped Bi2Se3 topological insulator crystals

    NASA Astrophysics Data System (ADS)

    Yang, H.; Liu, L. G.; Zhang, M.; Yang, X. S.

    2016-09-01

    Transition metal doped topological insulators NixBi2-xSe3 were grown by the modified Bridgeman method. Their phase structures, electrical and magnetic transport properties were studied. The lattice constant c decreased with the increasing Ni concentration. All samples are highly c-axis oriented and exhibit weak metallic resistivity. The resistivity increased with both the increasing applied magnetic field and Ni concentration. The resistivity data could be fitted by different formulas below and above 30 K, respectively. The magnetic changed as the Ni dopant concentrations increased, which implied the nickel entering the matrix structure. For the sample with small amount of Ni (x=0.03), a behavior in the curves of temperature dependent of magnetism closely resembled a paramagnet. Bulk ferromagnetism was observed in highly doped samples (x≥0.05) from M(T) data. The samples with (x≥0.05) showed clear hysteresis loops, which suggested the existence of ferromagnetism ordering. All Ni-doped samples are observed with similar weak diamagnetic signals. It was considered that there were three possible origins of ferromagnetism: Ni-Se compound, the interaction of the doped Ni atoms and magnetic contamination.

  18. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Hu, Zhongqiang; Li, Qian; Li, Meiya; Wang, Qiangwen; Zhu, Yongdan; Liu, Xiaolian; Zhao, Xingzhong; Liu, Yun; Dong, Shuxiang

    2013-03-01

    We report a continuously tunable resistive switching behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterostructure for ferroelectric memristor application. The resistance of this memristor can be tuned up to 5 × 105% by applying voltage pulses at room temperature, which exhibits excellent retention and anti-fatigue characteristics. The observed memristive behavior is attributed to the modulation effect of the ferroelectric polarization reversal on the width of depletion region and the height of potential barrier of the p-n junction formed at the BiFeO3/Nb-doped SrTiO3 interface.

  19. Ferromagnetism and topological surface states of manganese doped Bi{sub 2}Te{sub 3}: Insights from density-functional calculations

    SciTech Connect

    Li, Yuanchang; Zou, Xiaolong; Li, Jia; Zhou, Gang

    2014-03-28

    Based on first-principles calculations, the electronic, magnetic, and topological characters of manganese (Mn) doped topological insulator Bi{sub 2}Te{sub 3} were investigated. The Mn substitutionally doped Bi{sub 2}Te{sub 3}, where Mn atoms tend to be uniformly distributed, was shown to be p-type ferromagnetic, arising from hole-mediated Ruderman-Kittel-Kasuya-Yosida interaction. Mn doping leads to an intrinsic band splitting at Γ point, which is substantially different from that of nonmagnetic dopant. The topological surface state of Bi{sub 2}Te{sub 3} is indeed gapped by Mn doping; however, the bulk conductance limits the appearance of an insulating state. Moreover, the n-type doping behavior of Bi{sub 2}Te{sub 3} is derived from Mn entering into the van der Waals gap of Bi{sub 2}Te{sub 3}.

  20. Enhanced multiferroic properties in scandium doped Bi{sub 2}Fe{sub 4}O{sub 9}

    SciTech Connect

    Dutta, Dimple P.; Tyagi, A. K.

    2013-02-05

    Undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been synthesized using sonochemical method. The phase purity of the samples was checked using powder X-rau diffraction technique. EDS analysis was done to confirm the extent of Sc{sup 3+} doping in the samples. The size and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM). The Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M-H relationship reported for bulk Bi{sub 2}Fe{sub 4}O{sub 9}. This is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc{sup 3+} dopant in varying concentrations in these Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9}(x = 0.1) nanoparticles. Hence it can be inferred that Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles shows promise as good multiferroic materials.

  1. Flowerlike C-doped BiOCl nanostructures: Facile wet chemical fabrication and enhanced UV photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Yu, Jiahui; Wei, Bo; Zhu, Lin; Gao, Hong; Sun, Wenjun; Xu, Lingling

    2013-11-01

    3D-flowerlike C-doped bismuth oxychloride (BiOCl) hierarchical structures have been synthesized through a facile, low temperature wet-chemical method using polyacrylamide (PAM) as both chelating and doping agents. The flowerlike products are composed of nanosheets, as verified by the scanning electron microscopy (SEM). The crystal structure and compositional characteristics were investigated by X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities of C-doped BiOCl samples with different amounts of PAM adding were investigated by the degradation of methyl orange (MO) dye and colorless phonel contaminant under ultra-violet light irradiation. The as-prepared C-doped BiOCl exhibited much higher photocatalytic activity than the pure one. Moreover, the best performance of the photo-degradation was observed on the sample synthesized by 0.4 g PAM adding. The results show that C-doped BiOCl can be used as a promising candidate for water-purification.

  2. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3

    PubMed Central

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-01-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications. PMID:27374782

  3. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3.

    PubMed

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-01-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications.

  4. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-07-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications.

  5. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    SciTech Connect

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  6. A new molecular precursor route for the synthesis of Bi-Y, Y-Nb and Bi-doped Y-Nb oxides at moderate temperatures

    SciTech Connect

    Bayot, D.A.; Dupont, A.M.; Devillers, Michel M.

    2007-03-15

    Yttrium-based multimetallic oxides containing bismuth and/or niobium were prepared by a method starting from pre-isolated stable water-soluble precursors which are complexes with the ethylenediaminetetraacetate ligand (edta). The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} (x=0.22, 0.25 and 0.3) and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form in a range of moderate temperatures (600-650 deg. C). This preparation method also allowed to stabilize at room temperature, without quenching, the tetragonal YNbO{sub 4} oxide in a distorted form (T'-phase) by calcining the precursor at 800 deg. C. When heated up to 1000 deg. C, this metastable T'-phase transforms into the metastable 'high-temperature' T oxide, which converts on cooling down to room temperature into the thermodynamically stable monoclinic M oxide. Doping the YNbO{sub 4} oxide with Bi{sup 3+} cations (0.5% and 1% Bi with respect to total Bi+Y amount) led at 800 deg. C to a mixture of the T'-phase and the thermodynamically stable monoclinic one. At 900 deg. C, the almost pure monoclinic structure was obtained. - Graphical abstract: Bi-Y, Nb-Y and Bi-doped Nb-Y oxides were prepared by a molecular precursors method from pre-isolated water-soluble edta-based complexes. The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form at the moderate temperature of 650 deg. C. A distorted tetragonal YNbO{sub 4} phase was also stabilized at room temperature by calcining the precursor at 800 deg. C, and the pure corresponding monoclinic oxide has been obtained near 1100 deg. C.

  7. Microstructure and interfacial chemistry of pure and La-doped BiFeO₃ thin films.

    PubMed

    Basu, Joysurya; Katoch, Rajesh; Garg, Ashish; Barry Carter, C

    2013-12-01

    We report on the microstructure and interfacial chemistry of thin films of pure and La-doped multiferroic bismuth ferrite (Bi1-x Lax FeO3 or BLFO), synthesized on Indium Tin Oxide-coated glass substrates by solution-deposition technique and studied using scanning transmission electron microscopy. Our results show that undoped and La-doped thin films are polycrystalline with distorted rhombohedral structure without any presence of any line or planar defect in the films. In addition, the films with La doping did not show any structural change and maintain the equilibrium structure. Cross section compositional analysis using X-ray energy dispersive spectrometry did not reveal either any interdiffusion of chemical species or formation of reaction product at the film-substrate interface. However, a closer examination of the microstructure of the films shows tiny pores along with the presence of approximately 2-3 nm thin amorphous layers, which may have significant influence on the functional properties of such films. PMID:24133020

  8. Optical Temperature Sensor Through Upconversion Emission from the Er3+ Doped SrBi8Ti7O27 Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zou, Hua; Wang, Xusheng; Hu, Yifeng; Zhu, Xiaoqing; Sui, Yongxing; Song, Zhitang

    2016-06-01

    Er doped SrBi8Ti7O27 (SBT) ferroelectric ceramics were prepared by a solid-state reaction technique. By Er doping, the intensive green upconversion emissions were recorded under 980 nm diode laser excitation with 20 mW. The fluorescence spectrum was investigated in the temperature range of 150-580 K. By the fluorescence intensity ratio technique, the green emission band was studied as a function of temperature with a maximum sensing sensitivity of 0.0028 at 510 K. These results indicate that the Er doped SBT ferroelectric ceramics are promising multifunctional sensing materials.

  9. Magnetic Cr doping of Bi2Se3: Evidence for divalent Cr from x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; van der Laan, G.; Collins-McIntyre, L. J.; Zhang, S.-L.; Baker, A. A.; Harrison, S. E.; Schönherr, P.; Cibin, G.; Hesjedal, T.

    2014-10-01

    Ferromagnetically doped topological insulators with broken time-reversal symmetry are a prerequisite for observing the quantum anomalous Hall effect. Cr-doped (Bi,Sb)2(Se,Te)3 is the most successful materials system so far, as it combines ferromagnetic ordering with acceptable levels of additional bulk doping. Here, we report a study of the local electronic structure of Cr dopants in epitaxially grown Bi2Se3 thin films. Contrary to the established view that the Cr dopant is trivalent because it substitutionally replaces Bi3+, we find instead that Cr is divalent. This is evidenced by the energy positions of the Cr K and L2,3 absorption edges relative to reference samples. The extended x-ray absorption fine structure at the K edge shows that the Cr dopants substitute on octahedral sites with the surrounding Se ions contracted by Δd =-0.36 Å, in agreement with recent band structure calculations. Comparison of the Cr L2,3 x-ray magnetic circular dichroism at T =5 K with multiplet calculations gives a spin moment of 3.64 μB/Crbulk, which is close to the saturation moment for Cr2+ d4. The reduced Cr oxidation state in doped Bi2Se3 is ascribed to the formation of a covalent bond between Cr d (eg) and Se p orbitals, which is favored by the contraction of the Cr-Se distances.

  10. STM Studies of Near-Optimal Doped Bi_2Sr_2CaCu_2O_8 delta

    SciTech Connect

    Kapitulnik, Aharon

    2010-04-05

    In this paper we summarize our STM studies of the density of electronic states in nearly optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8 + {delta}} in zero field. We report on the inhomogeneity of the gap structure, density of states modulations with four-lattice constant period, and coherence peak modulation.

  11. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    SciTech Connect

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Yu, Linwei E-mail: linwei.yu@polytechnique.edu

    2015-10-19

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  12. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Misra, Soumyadeep; Yu, Linwei; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-10-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  13. Synthetic conditions and their doping effect on {Beta}-K{sub 2}Bi{sub 8}Se{sub 13}.

    SciTech Connect

    Kyratsi, Th.; Kika, I.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Chrissafis, K.; Kanatzidis, M. G.

    2009-04-01

    In this work the synthetic conditions for K{sub 2}Bi{sub 8}Se{sub 13} and their effect on its thermoelectric properties were investigated. K{sub 2}Bi{sub 8}Se{sub 13} was prepared as a single phase using K{sub 2}Se and Bi{sub 2}Se{sub 3} as starting materials in a furnace or via a reaction using direct flame, followed by remelting or annealing. Seebeck coefficient measurements showed that the doping level in the material is sensitive to the synthetic conditions. Higher synthesis temperatures as well as the flame reaction technique followed by annealing gave more homogenous samples with higher Seebeck coefficient. IR optical spectroscopic measurements showed a wide range of doping level achieved among the different synthetic conditions. These findings suggest that synthetic conditions can act as a useful tool for the optimization of the thermoelectric properties of these materials.

  14. Electronic and transport properties of the Mn-doped topological insulator Bi2Te3 : A first-principles study

    NASA Astrophysics Data System (ADS)

    Carva, K.; Kudrnovský, J.; Máca, F.; Drchal, V.; Turek, I.; Baláž, P.; Tkáč, V.; Holý, V.; Sechovský, V.; Honolka, J.

    2016-06-01

    We present a first-principles study of the electronic, magnetic, and transport properties of the topological insulator Bi2Te3 doped with Mn atoms in substitutional (MnBi) and interstitial van der Waals gap positions (Mni), which act as acceptors and donors, respectively. The effect of native BiTe- and TeBi-antisite defects and their influence on calculated electronic transport properties is also investigated. We have studied four models representing typical cases, namely, (i) Bi2Te3 with and without native defects, (ii) MnBi defects with and without native defects, (iii) the same, but for Mni defects, and (iv) the combined presence of MnBi and Mni. It has been found that lattice relaxations around MnBi defects play an important role for both magnetic and transport properties. The resistivity is strongly influenced by the amount of carriers, their type, and by the relative positions of the Mn-impurity energy levels and the Fermi energy. Our results suggest strategies to tune bulk resistivities and also clarify the location of Mn atoms in samples. Calculations indicate that at least two of the considered defects have to be present simultaneously in order to explain the experimental observations, and the role of interstitials may be more important than expected.

  15. Effects of Bi doping on structural and magnetic properties of double perovskite oxides Sr2FeMoO6

    NASA Astrophysics Data System (ADS)

    Lan, Yaohai; Feng, Xiaomei; Zhang, Xin; Shen, Yifu; Wang, Ding

    2016-08-01

    A new series of double perovskite compounds Sr2 - δBixFeMoO6 have been synthesized by solid-state reaction. δ refers to the nominal doping content of Bi (δ = 0, 0.1, 0.2, 0.3, 0.4, 0.5), while the Bi content obtained by the Rietveld refinement is x = 0, 0.01, 0.05, 0.08, 0.10 and 0.12. Their crystal structure and magnetic properties are investigated. Rietveld analysis of the room temperature XRD data shows all the samples crystallize in the cubic crystal structure with the space group Fm 3 ‾ m and have no phase transition. SEM images show that substituted samples present a denser microstructure and bigger grains than Sr2FeMoO6, which is caused by a liquid sintering process due to the effumability of Bi. The unit cell volume increases with augment of Bi3+ concentration despite the smaller ionic radius Bi3+ compared with the Sr2+, which is attributed to the electronic effect. The degree of Fe/Mo order (η) increases first and then decreases to almost disappearance with augment of Bi doping, which is the result of contribution from electronic effect. Calculated saturation magnetization Ms(3) according to our phase separation likeness model matches well with the experimental ones. The observed variations of magnetoresistance (MR) are consistent with the Fe/Mo order (η) due to the internal connection with anti-site defect (ASD).

  16. Electronic structure and photocatalytic water splitting of lanthanum-doped Bi{sub 2}AlNbO{sub 7}

    SciTech Connect

    Li Yingxuan; Chen Gang Zhang Hongjie; Li Zhonghua

    2009-04-02

    Bi{sub 2-x}La{sub x}AlNbO{sub 7} (0 {<=} x {<=} 0.5) photocatalysts were synthesized by the solid-state reaction method and characterized by powder X-ray diffraction (XRD), infrared (IR) spectra and ultraviolet-visible (UV-vis) spectrophotometer. The band gaps of the photocatalysts were estimated from absorption edge of diffuse reflectance spectra, which were increased by the doping of lanthanum. It was found from the electronic band structure study that orbitals of La 5d, Bi 6p and Nb 4d formed a conduction band at a more positive level than Bi 6p and Nb 4d orbitals, which results in increasing the band gap. Photocatalytic activity for water splitting of Bi{sub 1.8}La{sub 0.2}AlNbO{sub 7} was about 2 times higher than that of nondoped Bi{sub 2}AlNbO{sub 7}. The increased photocatalytic activity of La-doped Bi{sub 2}AlNbO{sub 7} was discussed in relation to the band structure and the strong absorption of OH groups at the surface of the catalyst.

  17. Electronic structure of a superconducting topological insulator Sr-doped Bi{sub 2}Se{sub 3}

    SciTech Connect

    Han, C. Q.; Chen, W. J.; Zhu, Fengfeng; Yao, Meng-Yu; Li, H.; Li, Z. J.; Wang, M.; Gao, Bo F.; Guan, D. D.; Liu, Canhua; Qian, Dong Jia, Jin-Feng; Gao, C. L.

    2015-10-26

    Using high-resolution angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the atomic and low energy electronic structure of the Sr-doped superconducting topological insulators (Sr{sub x}Bi{sub 2}Se{sub 3}) was studied. Scanning tunneling microscopy shows that most of the Sr atoms are not in the van der Waals gap. After Sr doping, the Fermi level was found to move further upwards when compared with the parent compound Bi{sub 2}Se{sub 3}, which is consistent with the low carrier density in this system. The topological surface state was clearly observed, and the position of the Dirac point was determined in all doped samples. The surface state is well separated from the bulk conduction bands in the momentum space. The persistence of separated topological surface state combined with small Fermi energy makes this superconducting material a very promising candidate for the time reversal invariant topological superconductor.

  18. Color centers in Cu-doped Bi 12SiO 20 crystals

    NASA Astrophysics Data System (ADS)

    Potera, P.; Piecuch, A.

    2007-01-01

    The present work is devoted to the investigation of stable color centers that are induced by light illumination of Cu-doped Bi 12SiO 20 (BSO) single crystals. The induced stable absorption is characterized by wide band with maximum at 21,500 cm -1 and optical bleaching in the near-infrared region. We clearly attribute the observed changes to the increase in the Cu + concentration and decrease the Cu 2+ concentration as a result of electron trapping by Cu 2+ ions (Cu 2++e -→Cu +). The effect of heating in air on the absorption of light is studied. The decay activation energy of photochromic centers in BSO:Cu crystals is obtained from the transmission spectra.

  19. Photochromic absorption of Bi 12GeO 20 doped with copper

    NASA Astrophysics Data System (ADS)

    Borowiec, Miecysław Tadeusz

    1985-07-01

    The photochromine effect in Bi 12GeO 20 doped with Cu was investigated. The optical absorption of coloured and bleached crystals divides into well separated bands and lines. The very broad band in the visible-ultraviolet region is weakly temperature dependent, and is interpreted as the polaron absorption of small, bound polaron. The two, weak and quite broad absorption bands in the near-infrared and two in the visible are interpreted as the d-electron transition in the crystal field for Cu + ion in the interstitial site. The strongly temperature-dependent set of lines is interpreted as the zero-phonon line with phonon-assisted sidebands for Cu 2+ ion in the germanium site. The suggested model for the photochromic effect is the charge transfer process between the Cu 2+ center in interstitial and the polaron center connected with Cu 2+ ion in germanium site. Also a new viewpoint on Bi 12GeO 20 atomic structure is presented.

  20. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-х) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+х wt% Y3Fe5O12 (YIG) with х=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔЕ/ΔН characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔЕ/ΔН value of 0-3 composites with х=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  1. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-x) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+x wt% Y3Fe5O12 (YIG) with x=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔE/ΔH characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔE/ΔH value of 0-3 composites with x=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  2. Magnetic and structural properties of Mn-doped Bi2Se3 topological insulators

    NASA Astrophysics Data System (ADS)

    Tarasenko, R.; Vališka, M.; Vondráček, M.; Horáková, K.; Tkáč, V.; Carva, K.; Baláž, P.; Holý, V.; Springholz, G.; Sechovský, V.; Honolka, J.

    2016-01-01

    A thorough investigation is presented of the magnetic and structural properties of Mn-doped Bi2Se3 topological insulators grown by molecular beam epitaxy on top of insulating BaF2 (111) substrates. The magnetic properties have been studied in the temperature range from 2 K to 300 K in magnetic fields up to 7 T. The systems were further characterized by means of high-resolution X-ray diffraction, electron-microprobe analysis, and X-ray photoemission spectroscopy. Samples with the atomic concentration of Mn up to about 0.06 exhibit an almost perfect crystalline structure while, for higher Mn concentrations, diffuse scattering from defects is observed. Photoemission results suggest a localized non-metallic Mn 3d5 ground state which is weakly or intermediately coupled to the Bi2Se3 environment. The exchange interaction between the Mn moments leads to a ferromagnetic phase at low temperatures with a roughly linear relation between the Curie temperature and the atomic concentration of Mn.

  3. Effects of oxygen vacancy and N-doping on the electronic and photocatalytic properties of Bi{sub 2}MO{sub 6} (M=Mo, W)

    SciTech Connect

    Lai Kangrong; Wei Wei; Zhu Yingtao; Guo Meng; Dai Ying; Huang Baibiao

    2012-03-15

    The electronic properties of Bi{sub 2}MO{sub 6} (M=Mo and W) are studied by using the first-principles calculations. It is attributed to its smaller electron effective mass that Bi{sub 2}WO{sub 6} has higher photocatalytic activity than Bi{sub 2}MoO{sub 6}. The oxygen vacancy in Bi{sub 2}MO{sub 6} serves as a trapping center of photogenerated electrons and thus is in favor of the photocatalytic efficiency. Nitrogen-doping induces localized structure distortion and thus improves the separation of photogenerated electron-hole pairs. Moreover, band gaps decrease obviously with doping concentration increasing, therefore the photoabsorption edges will give rise to a redshift in Bi{sub 2}MO{sub 6}. - Graphical abstract: The oxygen vacancy in Bi{sub 2}WO{sub 6} serves as a trapping center of photogenerated electrons. Nitrogen-doping improves the separation of photogenerated electron-hole pairs. Moreover, band gaps decrease obviously with doping concentration increasing. Highlights: Black-Right-Pointing-Pointer The oxygen vacancy may serve as a trapping center of photogenerated electrons and thus promote the photocatalytic efficiency. Black-Right-Pointing-Pointer Nitrogen-doping induces localized structure distortion and thus improves the separation of photogenerated electron-hole pair. Black-Right-Pointing-Pointer The band gap decreases obviously with doping concentration increasing and thus the photoabsorption edges will redshift in Bi{sub 2}MO{sub 6}.

  4. Doping of BiScO3-PbTiO3 Ceramics for Enhanced Properties

    NASA Technical Reports Server (NTRS)

    Sehirlioglu, Alp; Sayir, Ali; Dynys, Fred

    2008-01-01

    High-temperature piezoelectrics are a key technology for aeronautics and aerospace applications such as fuel modulation to increase the engine efficiency and decrease emissions. The principal challenge for the insertion of piezoelectric materials is the limitation on upper use temperature which is due to low Curie-Temperature (T(sub c) and increasing electrical conductivity. BiScO3 -PbTiO3 (BS-PT) system is a promising candidate for improving the operating temperature for piezoelectric actuators due to its high TC (>400 C). Effects of Zr and Mn doping of the BS-PT ceramics have been studied and all electrical and electromechanical properties for Sc-deficient and Ti-deficient BS- PT ceramics are reported as a function of electrical field and temperature. Donor doping with Zr and Mn (in Sc deficient compositions) increased the DC-resistivity and decreased tan at all temperatures. Resulting ceramics exhibited saturated hysteresis loops with low losses and showed no dependence on the applied field (above twice the coercive field) and measurement frequency.

  5. The effects of Gd3+ doping on the physical structure and photocatalytic performance of Bi2MoO6 nanoplate crystals

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Wu, Zhen; Liu, Renyue; He, Hongbo; Fan, Wenhong; Xue, Shuangshuang

    2016-06-01

    Gd3+ doped Bi2MoO6 nanoplate crystals were fabricated by solvothermal combined calcination method. The effects of Gd3+ doping with different concentrations on the texture, crystal and optical properties of Bi2MoO6 were investigated by N2 physical adsorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Under simulated solar light irradiation, the influences of Gd3+doping on photocatalytic activity of Bi2MoO6 were evaluated by photocatalytic degradation of Rhodamine B. The characterization results showed that with Gd3+ doping, a contraction of lattice and a decrease in crystallite size occurred. Meanwhile, an increase in surface area over Gd3+ doped Bi2MoO6 was observed. Moreover, Gd3+ doping could obviously enhance the visible light harvesting of Bi2MoO6 and promoted the separation of photogenerated electrons and holes. With optimum Gd3+(6 wt%) doping, Gd/Bi2MoO6 exhibited the best activity and stability in degradation of Rhodamine B.

  6. Conduction and magnetization improvement of BiFeO{sub 3} multiferroic nanoparticles by Ag{sup +} doping

    SciTech Connect

    Ahmed, M.A.; Mansour, S.F.; El-Dek, S.I.; Abu-Abdeen, M.

    2014-01-01

    Graphical abstract: HRTEM micrographs of the samples BiFeO{sub 3}. - Highlights: • Flash auto combustion method was successful in the preparation of Ag doped BiFeO{sub 3} in nanosize. • Ag doping results in hexagonal platelet shapes up to x = 0.10, at x ≥ 0.15 needle shape predominates. • Mixed conduction is obtained in Ag doped samples. • This nanometric multiferroic could be recommended as attractive cathode for solid oxide fuel cell. - Abstract: Nanometric multiferroic namely Ag doped (BiFeO{sub 3}) was synthesized using flash auto combustion technique and glycine as a fuel. Single phase rhombohedral–hexagonal perovskite structure was obtained by annealing at 550 °C, as determined from XRD. High resolution transmission electron microscope (HRTEM) clarifies the hexagonal platelet shape with size 17.9 nm. Maximum room temperature AC conductivity was obtained at Ag content of x = 0.10. The results of this study promote the use of such multiferroic in solid oxide fuel cell applications.

  7. Enhanced thermoelectric figure of merit in strained Tl-doped Bi{sub 2}Se{sub 3}

    SciTech Connect

    Saeed, Y.; Singh, N.; Schwingenschlögl, U.

    2014-07-21

    We explain recent experimental findings on Tl-doped Bi{sub 2}Se{sub 3} by determining the electronic and transport properties by first-principles calculations and semi-classical Boltzmann theory. Though Tl-doping introduces a momentum-dependent spin-orbit splitting, the effective mass of the carriers is essentially not modified, while the band gap is reduced. Tl is found to be exceptional in this respect as other dopants modify the dispersion, which compromises thermoelectricity. Moreover, we demonstrate that only after Tl-doping strain becomes an efficient tool for enhancing the thermoelectric performance. A high figure of merit of 0.86 is obtained for strong p-doping (7 × 10{sup 20} cm{sup −3}, maximal power factor) at 500 K under 2% tensile strain.

  8. Effect of SnO, MgO and Ag2O Mix-doping on the Formation and Superconducting Properties of Bi-2223 Ag/tapes

    NASA Astrophysics Data System (ADS)

    Lu, X. Y.; Yi, D.; Chen, H.; Nagata, A.

    The Ag/tapes with the composition Bi1.8Pb0.4Sr1.9Ca2.1Cu3.5Oy + x wt% SnO + y wt% MgO + z wt% Ag2O (x = 0, 0.2, 0.4; y = 0, 0.2; z = 0, 0.2) were prepared by sintering at 835°C for 120 h after partial-melting at 845°C for 1 h. The individual SnO doping, SnO and Ag2O mix-doping, and SnO and MgO mix-doping all decrease the conversion of Bi-2212 phase to Bi-2223 phase. The tape with individual 0.4 wt% SnO doping shows the lowest conversion and the lowest critical current density. However, the SnO, MgO and Ag2O mix-doping increase the conversion of Bi-2212 phase to Bi-2223 phase. The tape with 0.2 wt% SnO, 0.2 wt% MgO and 0.2 wt%Ag2O mix-doping shows the highest proportion of Bi-2223 phase and the highest critical current density.

  9. Effects of K-Doping on Thermoelectric Properties of Bi1-x K x CuOTe

    NASA Astrophysics Data System (ADS)

    An, Tae-Ho; Lim, Young Soo; Seo, Won-Seon; Park, Cheol-Hee; Yoo, Mi Duk; Park, Chan; Lee, Chang Hoon; Shim, Ji Hoon

    2016-09-01

    The effects of K-doping on the thermoelectric properties of Bi1-x K x CuOTe (x = 0 to 0.08) have been investigated. The compounds were synthesized by a one-step solid-state reaction method and consolidated by a spark plasma sintering process. As the amount of K-doping was increased, the electrical and thermal conductivities increased while the Seebeck coefficient decreased due to increasing hole concentration. A ZT value of 0.69 was obtained for the compound K0.01Bi0.99CuOTe at 700 K, to the best of our knowledge the highest value reported for this material system. The origin of this enhanced ZT is discussed in terms of the density of states effective mass estimated by a single parabolic band model and electronic structures calculated based on density functional theory.

  10. Dielectric response of doped Bi12TiO20: Ru crystals in an alternating electric field

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Paima, K. I.

    2016-08-01

    The results of examination of AC dependences of capacitance and dielectric loss tangent of sillenite Bi12TiO20 crystals doped with ruthenium on frequency are presented. Non-Debye dispersion of dielectric coefficients is found in the frequency interval of 5 × 102-105 Hz, and a resonance phenomenon is observed. Polarization processes in the studied samples are attributed to relaxators associated with metal-oxygen vacancies and structural elements incorporating 6 s 2 lone-pair electrons.

  11. Effect of neutron irradiation on Tc of Pb-doped BiSrCaCuO superconductor

    NASA Astrophysics Data System (ADS)

    Herr, Young-Hoi; Lee, Kwang-Hee; Kim, Chan-Joong; Lee, Hee-Gyoun; Kim, Chun-Taik

    1989-09-01

    A Pb-doped BiSrCaCuO superconductor was irradiated in a TRIGA MARK III reactor up to a neutron fluence of 7.6 x 10 to the 17th n/sq cm. The measured superconducting transition temperature (Tc) after irradiation was decreased to 92.5 K from nonirradiated data of 102 K. The fractional decrease of the Tc was compared with results for other superconducting materials. Some recovery of irradiation-induced Tc decrease was observed.

  12. Deep red radioluminescence from a divalent bismuth doped strontium pyrophosphate Sr2P2O7:Bi2+

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Viana, Bruno; Pauporté, Thierry; Peng, Mingying

    2014-03-01

    Scintillation materials have been used widely in either military or civil areas, but most of them emit lights in the spectral range of ultraviolet or visible. There are few candidates with an emission in the spectral range of 650 to 1200nm. Here, we report a Bi2+ doped phosphor of Sr2P2O7:Bi2+, which once exposed to X-ray can emit deep red peaking at ~700nm due to the typical 2P3/2 to 2P1/2 transition of Bi2+. Deep red radioluminescence manifests the potential application of the phosphor as implantable scintillator for instance or other sensor which can obtain real time dose information and reduce serious radiation accidents in the case of radiation therapy.

  13. Synthesis, structure, and properties of Cu doped Bi 4V IIO 11 via EDTA-citrate gel process

    NASA Astrophysics Data System (ADS)

    Guo, Ming; Deng, Hongmei; Yang, Pingxiong

    2008-02-01

    The oxide ion conductor material, Cu doped Bi 4V IIO 11 (BICUVOX.10) powders were prepared by the combined EDTA (ethylene diamine tetra acetic acid)-citrate synthesis technology. The dried gel was annealed at various temperatures (400-600°C). Powders derived from dried precursor resulted in the mixed phases to BiVO 4 and high temperature γ-phase of Bi 4V IIO 11 by heat-treating below 400°C, and furthermore, yielded only pure γ-phase above 500°C. A simple surfactant-stabilized method was investigated for the preparation of well-dispersed nanoparticles. It was found that the deagglomeration treatment to the precursor by surfactant polyethylene glycol (PEG) 4000 was effective in improving the size distribution and annealing conditions of the BICUVOX.10 material.

  14. Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Li; Wang, Shouyu; Yin, Zi; Liu, Weifang; Xu, Xunling; Zhang, Chuang; Li, Xiu; Yang, Jiabin

    2016-09-01

    Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La0.1Bi0.9‑xSrxFeOy (LBSF, x = 0, 0.2, 0.4) with dopant Sr2+ ions were synthesized by the sol–gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ∼ 2.08 eV to ∼ 1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO3-based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO3. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104202 and 51572193).

  15. Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Li; Wang, Shouyu; Yin, Zi; Liu, Weifang; Xu, Xunling; Zhang, Chuang; Li, Xiu; Yang, Jiabin

    2016-09-01

    Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La0.1Bi0.9-xSrxFeOy (LBSF, x = 0, 0.2, 0.4) with dopant Sr2+ ions were synthesized by the sol-gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ˜ 2.08 eV to ˜ 1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO3-based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO3. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104202 and 51572193).

  16. The preparation of a Eu3+-doped ZnO bi-functional layer and its application in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wu, Na; Luo, Qun; Qiao, Xvsheng; Ma, Chang-Qi

    2015-12-01

    Recently, spectra conversion has been used to minimize energy loss in photovoltaic devices. In this work, we explore the development of a novel Eu3+-doped ZnO bi-functional layer for use in organic solar cells. The bi-functional layer acts as both a spectra conversion and an electron transporting layer. Compared to conventional spectra conversion layers, it has a simpler device structure, is easier to fabricate, and has a wider spectrum-sensitized region. A series of Eu3+-doped ZnO nanocrystals were synthesized using the simple solution route. X-ray powder diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-visible absorbance spectra were used to characterize the obtained ZnO nanocrystals. The results reveal that the size and bandgap of ZnO nanocrystals can be controlled through regulation of the doping concentration of Eu3+ ions. The energy transfer of ZnO → Eu3+ is observed by photoluminescence (PL) spectra. At a bandgap excitation of around 300-400 nm, a typical emission band from the Eu3+ is obtained. By employing the Eu3+- doped ZnO nanocrystals as a buffer layer in a P3HT:PC61BM bulk heterojunction device, the obtained performance is similar to the undoped ZnO device, indicating that the electrical properties of ZnO are not affected by Eu3+ doping. Due to the down-conversion energy transfer between ZnO and Eu3+, the external quantum efficiency of the ZnO:Eu3+ device at 300-400 nm is higher than that of the pure ZnO device, which subsequently leads to an increase in short circuit current density (J SC). This work proves that it is possible to improve the solar spectrum response in the ultraviolet region of organic solar cells effectively by incorporating the bi-functional layer.

  17. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3.

    PubMed

    Ye, Mao; Li, Wei; Zhu, Siyuan; Takeda, Yukiharu; Saitoh, Yuji; Wang, Jiajia; Pan, Hong; Nurmamat, Munisa; Sumida, Kazuki; Ji, Fuhao; Liu, Zhen; Yang, Haifeng; Liu, Zhengtai; Shen, Dawei; Kimura, Akio; Qiao, Shan; Xie, Xiaoming

    2015-01-01

    Magnetically doped topological insulators, possessing an energy gap created at the Dirac point through time-reversal-symmetry breaking, are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. Although several candidates of magnetically doped topological insulators were demonstrated to show long-range magnetic order, the realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)2Te3 system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)2Te3 using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial. Our results are important for material engineering in realizing the quantized anomalous Hall effect at higher temperatures. PMID:26582485

  18. Carrier-mediated ferromagnetism in the magnetic topological insulator Cr-doped (Sb,Bi)2Te3

    PubMed Central

    Ye, Mao; Li, Wei; Zhu, Siyuan; Takeda, Yukiharu; Saitoh, Yuji; Wang, Jiajia; Pan, Hong; Nurmamat, Munisa; Sumida, Kazuki; Ji, Fuhao; Liu, Zhen; Yang, Haifeng; Liu, Zhengtai; Shen, Dawei; Kimura, Akio; Qiao, Shan; Xie, Xiaoming

    2015-01-01

    Magnetically doped topological insulators, possessing an energy gap created at the Dirac point through time-reversal-symmetry breaking, are predicted to exhibit exotic phenomena including the quantized anomalous Hall effect and a dissipationless transport, which facilitate the development of low-power-consumption devices using electron spins. Although several candidates of magnetically doped topological insulators were demonstrated to show long-range magnetic order, the realization of the quantized anomalous Hall effect is so far restricted to the Cr-doped (Sb,Bi)2Te3 system at extremely low temperature; however, the microscopic origin of its ferromagnetism is poorly understood. Here we present an element-resolved study for Cr-doped (Sb,Bi)2Te3 using X-ray magnetic circular dichroism to unambiguously show that the long-range magnetic order is mediated by the p-hole carriers of the host lattice, and the interaction between the Sb(Te) p and Cr d states is crucial. Our results are important for material engineering in realizing the quantized anomalous Hall effect at higher temperatures. PMID:26582485

  19. Study of Ho-doped Bi{sub 2}Te{sub 3} topological insulator thin films

    SciTech Connect

    Harrison, S. E.; Collins-McIntyre, L. J.; Zhang, S. L.; Chen, Y. L.; Hesjedal, T.; Baker, A. A.; Figueroa, A. I.; Laan, G. van der; Kellock, A. J.; Pushp, A.; Parkin, S. S. P.; Harris, J. S.

    2015-11-02

    Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi{sub 2}Te{sub 3} thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μ{sub B}/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

  20. Calcination temperature influenced multiferroic properties of Ca-doped BiFeO{sub 3} nanoparticles

    SciTech Connect

    Dhir, Gitanjali Uniyal, Poonam; Verma, N. K.

    2015-06-24

    The influence of Ca-doping and particle size on structural, morphological and magnetic properties of BiFeO{sub 3} nanoparticles has been studied. A sol-gel method was employed for the synthesis of nanoparticles and their particle size was tailored by varying the calcination temperature. Structural analysis revealed a rhombohedral distortion induced by Ca-substitution. The broadening of diffraction peaks with decreasing calcination temperature was indicative of reduction in crystallite size. The morphological analysis revealed the formation of agglomerated nanoparticles having average particle size ranging from 10-15 and 50-55 nm for C4 and C6, respectively. The agglomeration is attributed to high surface energy of nanoparticles. Ferromagnetism has been displayed by all the synthesized nanoparticles. Enhancement of saturation magnetization with Ca-substitution is attributed to suppression of spin cycloid structure by the reduction in size, lattice distortion and creation of oxygen vacancies by the substitution of divalent ion at trivalent site. Further, this value increases as a function of decreasing particle size. Strong particle size effects on magnetic properties of the synthesized nanoparticles are owed to increasing surface to volume ratio. All these observations are indicative of strong dependence of multiferroism on particle size.

  1. Calcination temperature influenced multiferroic properties of Ca-doped BiFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhir, Gitanjali; Uniyal, Poonam; Verma, N. K.

    2015-06-01

    The influence of Ca-doping and particle size on structural, morphological and magnetic properties of BiFeO3 nanoparticles has been studied. A sol-gel method was employed for the synthesis of nanoparticles and their particle size was tailored by varying the calcination temperature. Structural analysis revealed a rhombohedral distortion induced by Ca-substitution. The broadening of diffraction peaks with decreasing calcination temperature was indicative of reduction in crystallite size. The morphological analysis revealed the formation of agglomerated nanoparticles having average particle size ranging from 10-15 and 50-55 nm for C4 and C6, respectively. The agglomeration is attributed to high surface energy of nanoparticles. Ferromagnetism has been displayed by all the synthesized nanoparticles. Enhancement of saturation magnetization with Ca-substitution is attributed to suppression of spin cycloid structure by the reduction in size, lattice distortion and creation of oxygen vacancies by the substitution of divalent ion at trivalent site. Further, this value increases as a function of decreasing particle size. Strong particle size effects on magnetic properties of the synthesized nanoparticles are owed to increasing surface to volume ratio. All these observations are indicative of strong dependence of multiferroism on particle size.

  2. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange.

    PubMed

    Wang, Min; Che, Yinsheng; Niu, Chao; Dang, Mingyan; Dong, Duo

    2013-11-15

    Eu-B co-doped BiVO4 visible-light-driven photocatalysts have been synthesized using the sol-gel method. The resulting materials were characterized by a series of joint techniques, including XPS, XRD, SEM, BET, and UV-vis DRS analyses. Compared with BiVO4 and B-BiVO4 photocatalysts, the Eu-B-BiVO4 photocatalysts exhibited much higher photocatalytic activity for methyl orange (MO) degradation under visible light irradiation. The optimal Eu doping content is 0.8 mol%. It was revealed that boron and europium were doped into the lattice of BiVO4 and this led to more surface oxygen vacancies, high specific surface areas, small crystallite size, a narrower band gap and intense light absorbance in the visible region. The doped Eu(III) cations can help in the separation of photogenerated electrons. The synergistic effects of boron and europium in doped BiVO4 were the main reason for improving visible light photocatalytic activity.

  3. Ferromagnetism below 10K in Mn-doped BiTe

    NASA Astrophysics Data System (ADS)

    Bos, J. W. G.; Lee, M.; Morosan, E.; Zandbergen, H. W.; Lee, W. L.; Ong, N. P.; Cava, R. J.

    2006-11-01

    Ferromagnetism is observed below 10K in [Bi0.75Te0.125Mn0.125]Te . This material has the BiTe structure, which is made from the stacking of two Te-Bi-Te-Bi-Te blocks and one Bi-Bi block per unit cell. Crystal structure analysis shows that Mn is localized in the Bi2 blocks, and is accompanied by an equal amount of TeBi antisite occupancy in the Bi2Te3 blocks. These TeBi antisite defects greatly enhance the Mn solubility. This is demonstrated by comparison of the [Bi1-xMnx]Te and [Bi1-2xTexMnx]Te series; in the former, the solubility is limited to x=0.067 , while the latter has xmax=0.125 . The magnetism in [Bi1-xMnx]Te changes little with x , while that for [Bi1-2xTexMnx]Te shows a clear variation, leading to ferromagnetism for x>0.067 . Magnetic hysteresis and the anomalous Hall effect are observed for the ferromagnetic samples.

  4. Effect of Co doping on structural, optical, magnetic and dielectric properties of Bi{sub 2}Fe{sub 4}O{sub 9}

    SciTech Connect

    Mohapatra, S. R.; Sahu, B.; Singh, A. K.; Kaushik, S. D.

    2015-06-24

    Polycrystalline Bi{sub 2}Fe{sub 4}O{sub 9} and 2% Co doped Bi{sub 2}Fe{sub 4}O{sub 9} were prepared by solid state reaction route. X-ray diffraction (XRD) result reveals that there is no change in the crystal structure due to Co doping and the compound has orthorhombic structure. UV-visible spectroscopy confirms the decrease in band gap due Co doping. Zero field cooled magnetization measurement at 100 Oe magnetic field shows substantial decrease in the magnetic transition temperature. Room temperature frequency dependent dielectric permittivity at 1V DC bias shows ∼10% increase in Co doped sample with respect to pure Bi{sub 2}Fe{sub 4}O{sub 9}.

  5. Samarium and Nitrogen Co-Doped Bi2 WO6 Photocatalysts: Synergistic Effect of Sm(3+) /Sm(2+) Redox Centers and N-Doped Level for Enhancing Visible-Light Photocatalytic Activity.

    PubMed

    Wang, Fangzhi; Li, Wenjun; Gu, Shaonan; Li, Hongda; Wu, Xue; Liu, Xintong

    2016-08-26

    Samarium and nitrogen co-doped Bi2 WO6 nanosheets were successfully synthesized by using a hydrothermal method. The crystal structures, morphology, elemental compositions, and optical properties of the prepared samples were investigated. The incorporation of samarium and nitrogen ions into Bi2 WO6 was proved by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. UV/Vis diffuse reflectance spectroscopy indicated that the samarium and nitrogen co-doped Bi2 WO6 possessed strong visible-light absorption. Remarkably, the samarium and nitrogen co-doped Bi2 WO6 exhibited higher photocatalytic activity than single-doped and pure Bi2 WO6 under visible-light irradiation. Radical trapping experiments indicated that holes (h(+) ) and superoxide radicals ((.) O2 (-) ) were the main active species. The results of photoluminescence spectroscopy and photocurrent measurements demonstrated that the recombination rate of the photogenerated electrons and holes pairs was greatly depressed. The enhanced activity was attributed to the synergistic effect of the in-built Sm(3+) /Sm(2+) redox pair centers and the N-doped level. The mechanism of the excellent photocatalytic activity of Sm-N-Bi2 WO6 is also discussed.

  6. Metal-insulator transition in variably doped (Bi(1-x)Sb(x))2Se3 nanosheets.

    PubMed

    Lee, Chee Huei; He, Rui; Wang, ZhenHua; Qiu, Richard L J; Kumar, Ajay; Delaney, Conor; Beck, Ben; Kidd, T E; Chancey, C C; Sankaran, R Mohan; Gao, Xuan P A

    2013-05-21

    Topological insulators are novel quantum materials with metallic surface transport but insulating bulk behavior. Often, topological insulators are dominated by bulk contributions due to defect induced bulk carriers, making it difficult to isolate the more interesting surface transport characteristics. Here, we report the synthesis and characterization of nanosheets of a topological insulator Bi2Se3 with variable Sb-doping levels to control the electron carrier density and surface transport behavior. (Bi(1-x)Sb(x))2Se3 thin films of thickness less than 10 nm are prepared by epitaxial growth on mica substrates in a vapor transport setup. The introduction of Sb in Bi2Se3 effectively suppresses the room temperature electron density from ∼4 × 10(13) cm(-2) in pure Bi2Se3 (x = 0) to ∼2 × 10(12) cm(-2) in (Bi(1-x)Sb(x))2Se3 at x ∼ 0.15, while maintaining the metallic transport behavior. At x ≳ ∼0.20, a metal-insulator transition (MIT) is observed, indicating that the system has transformed into an insulator in which the metallic surface conduction is blocked. In agreement with the observed MIT, Raman spectroscopy reveals the emergence of vibrational modes arising from Sb-Sb and Sb-Se bonds at high Sb concentrations, confirming the appearance of the Sb2Se3 crystal structure in the sample. These results suggest that nanostructured chalcogenide films with controlled doping can be a tunable platform for fundamental studies and electronic applications of topological insulator systems. PMID:23563061

  7. Bi2Se3 as a saturable absorber for ultrafast photonic applications of Yb-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Li, Kexuan; Tian, Jinrong; Song, Yanrong; Liu, Jinghui; Guoyu, Heyang; Xu, Runqin; Wang, Meng; Fang, Xiaohui

    2016-03-01

    We experimentally demonstrated a Q-switched mode-locked (QML) and a continuous-wave mode-locked (CWML) ytterbium-doped fiber lasers with topological insulator: Bi2Se3 as saturable absorber (SA) in all normal dispersion regime. The Bi2Se3-SA is conventionally composited by embedding Bi2Se3 nanoplatelets into polyvinyl alcohol thin film, which provides a modulation depth of 7.6% and a saturation intensity of 38.9 MW/cm2. Based on this SA, with different cavity length, ytterbium-doped fiber laser can be operated at QML and CWML state, respectively. In the QML operation, a Q-switched envelope has the shortest pulse width of 1.12 μs and the tunable repetition rate from 96 to 175 kHz. The largest pulse envelope energy is 39.6 nJ, corresponding to average output power of 6.93 mW. In the CWML operation, an environmentally stable dissipative soliton laser pulse with pulse duration of ˜210 ps is obtained. The single pulse energy is 0.83 nJ with the repetition rate of 11.38 MHz at the wavelength of 1037 nm.

  8. Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Das, Rajasree; Sharma, Sucheta; Mandal, Kalyan

    2016-03-01

    This paper demonstrates the impact of Ba2+ substitution on the structural, dielectric relaxation and AC conductivity properties of Bi1-xBaxFeO3 (0 ≤ x ≤ 0.25) ceramics. Ba doping incorporates rhombohedral to tetragonal structural transformation in perovskite BFO. XPS data shows change in oxygen vacancy concentration with Ba doping and it also suggests that schoimetry of the doped compounds is not maintained by creating mix valance state of Fe. Reduction in oxygen vacancy (OVs) in the doped samples is explained by Kroger-Vink notation. Arrhenius plot shows activation energy for dielectric relaxation of the doped samples lies between ~1.16 and 1.44 eV. AC conductivity of material decreases as Ba ion substitution increases in the parent compound. Electrical conductivity is attributed to the correlated barrier hopping (CBH) motion of the oxygen vacancies in the samples. Coulombic potential barrier (WM) height, calculated from Elliott model for CBH motion of charge carriers shows correlation with the activation energy of AC conductivity at low temperature. Activation energy value obtained from the impedance measurements of the samples implies short range migration of oxygen vacancies dominates the frequency dependent conductivity while the frequency independent part of conductivity is the result of long range migration of oxygen vacancies.

  9. Mn-doping induced ferromagnetism and enhanced superconductivity in Bi4 -xMnxO4S3 (0.075 ≤x ≤0.15 )

    NASA Astrophysics Data System (ADS)

    Feng, Zhenjie; Yin, Xunqing; Cao, Yiming; Peng, Xianglian; Gao, Tian; Yu, Chuan; Chen, Jingzhe; Kang, Baojuan; Lu, Bo; Guo, Juan; Li, Qing; Tseng, Wei-Shiuan; Ma, Zhongquan; Jing, Chao; Cao, Shixun; Zhang, Jincang; Yeh, N.-C.

    2016-08-01

    We demonstrate that Mn doping in the layered sulfides Bi4O4S3 leads to stable Bi4-xMnxO4S3 compounds that exhibit both long-range ferromagnetism and enhanced superconductivity for 0.075 ≤x ≤0.15 , with a possible record superconducting transition temperature (Tc) ˜15 K among all BiS2-based superconductors. We conjecture that the coexistence of superconductivity and ferromagnetism may be attributed to Mn doping in the spacer Bi2O2 layers away from the superconducting BiS2 layers, whereas the enhancement of Tc may be due to excess electron transfer to BiS2 from the Mn4 +/Mn3 + substitutions in Bi2O2 . This notion is empirically corroborated by the increased electron-carrier densities upon Mn doping, and by further studies of the Bi4-xAxO4S3 compounds (A = Co, Ni; x =0.1 , 0.125), where the Tc values remain comparable to that of the undoped Bi4O4S3 system (˜4.5 K) due to lack of 4+ valences in either Co or Ni ions for excess electron transfer to the BiS2 layers. These findings therefore shed new light on feasible pathways to enhance the Tc values of BiS2-based superconductors, although complete elucidation of the interplay between superconductivity and ferromagnetism in these anisotropic layered compounds awaits the development of single crystalline materials for further investigation.

  10. Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+

    NASA Astrophysics Data System (ADS)

    Yu, Benfang; Li, Meiya; Wang, Jing; Pei, Ling; Guo, Dongyun; Zhao, Xingzhong

    2008-09-01

    La3+ and V5+ co-doped Bi0.85La0.15Fe1-xVxO3 (BLFVx, x = 0-0.1) ceramics were prepared by a rapid liquid sintering technique. The effects of the V5+-doping content on the structure and electrical properties of BLFVx ceramics were investigated. In the range of the V5+ content x from 0 to 0.03, BLFVx ceramics had a polycrystalline perovskite structure with tiny residual Bi2O3, while an impurity phase appeared for x > 0.03. As the x increased from 0 to 0.1, both the leakage current density and the dielectric loss (tan δ) for BLFVx ceramics decreased gradually, while the dielectric constant (ɛr) first increased and then decreased gradually in this process, reaching a maximum value of 273 for x = 0.03. Among the BLFVx ceramics, the BLFVx=0.01 ceramic showed a well-saturated hysteresis loop with large remanent polarization (Pr) of 39.4 µC cm-2 and a low coercive electric field (Ec) of ±43.1 kV cm-1 under an applied electric field of ±75 kV cm-1. In addition, these ceramics exhibited good anti-fatigue characteristics after 2 × 1010 read/write polarization cycles. These suggested that La3+ and V5+ co-doping was beneficial for enhancing the dielectric, ferroelectric and anti-fatigue properties of the BLFVx ceramics.

  11. Microstructural, wetting, and mechanical characteristics of Sn-57.6Bi-0.4Ag alloys doped with metal-organic compounds

    NASA Astrophysics Data System (ADS)

    Oh, Sung-Tag; Lee, Jong-Hyun

    2014-03-01

    The metallurgical and mechanical properties of the commercial low-temperature solder alloy, Sn-57.6Bi-0.4Ag (wt. %), were altered by doping with each of Pd, Co, Zn, and Ni, through reactive reflow processing by using the appropriate metal-organic compound. The use of metal-acetates resulted in appropriate doping concentrations, while the use of metal-acetylacetonates and -stearates resulted in insufficient doping concentrations. This indicates that the degree of doping is strongly dependent on the nature of the metal-organic compound used in the reactive reflow process. Notably, a concurrent decrease in the melting point and the degree of undercooling were observed only in the case of the Pd-doped alloy. In addition, the Pd-doped alloy exhibited an increase in the fraction of the primary β-Sn phase in its microstructure, and greater wettability as tested on a Cu plate. Meanwhile, the Co-doped alloy exhibited a notable increase in the size and spacing of its lamellar structure, and the Ni-doped alloy showed a refinement of its lamellar structure. Accordingly, doping with Pd and Co mitigated the brittleness of the parent Sn-57.6Bi-0.4Ag alloy, which thereby showed a pronounced increase in its plastic displacement during shear tests. Considering the increase in wettability and reduction in brittleness of the original alloy, Pd is considered to be the most suitable dopant, among all the different doping elements analyzed in this study.

  12. Template-Engaged In Situ Synthesis of Carbon-Doped Monoclinic Mesoporous BiVO4: Photocatalytic Treatment of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Yao, Mingming; Gan, Lihua; Liu, Mingxian; Tripathi, Pranav K.; Liu, Yafei; Hu, Zhonghua

    2015-06-01

    In this paper, carbon-doped monoclinic scheelite mesoporous bismuth vanadate was synthesized through template-engaged in situ method. The bismuth nitrate pentahydrate and ammonia metavanadate were used as bismuth and vanadium precursors, respectively, glucose as carbon source, and mesoporous SiO2 aerogel as a hard template. Carbon-doped monoclinic mesoporous BiVO4 were obtained by heat treatment of BiVO4/glucose/template to carbonize glucose and form monoclinic crystal, followed by etching with NaOH solution to remove the SiO2 template. The samples were characterized by x-ray diffraction, N2 adsorption and desorption, UV-visible spectroscopy, Energy dispersive spectrometry, Raman spectroscopy, and Transmission electron microscopy. It was found that the sample with a carbon content of 0.5 wt.% possesses a specific surface area of 10.2 m2/g and has mesoporous structure with the most probable pore size of 13.9 nm. The band gap of carbon-doped monoclinic mesoporous BiVO4 was estimated to be 2.33 eV, indicating the superior photocatalytic activity under visible light. The photocatalytic efficiency of carbon-doped monoclinic mesoporous BiVO4 for the degradation of Rhodamine B under visible light (λ > 400 nm) in 120 min reaches 98.7%, Besides, the carbon-doped monoclinic mesoporous BiVO4 photocatalyst still showed high stability: 85% for Rhodamine B degradation after ten recycles.

  13. Ti doping-induced magnetic and morphological transformations in Sr- and Ca-substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Khomchenko, V. A.; Paixão, J. A.

    2016-04-01

    The investigation focuses on the crystal structure, microstructure, local ferroelectric and magnetic properties of the Bi0.9Sr0.1Fe1-x Ti x O3-δ (x  =  0.05, 0.1, 0.15; δ  =  (0.1  -  x)/2) multiferroics prepared by a solid-state reaction method. All the samples have been found to be isostructural with the pure BiFeO3 (the material crystallizes in a polar rhombohedral structure belonging to the space group R3c). It has been shown that the pattern of changes in the lattice parameters of the Bi0.9Sr0.1Fe1-x Ti x O3-δ samples can be interpreted as consistent with the doping-driven elimination of anion vacancies at x  ⩽  0.1 and the formation of cation vacancies at x  >  0.1. The readjustment of the defect structure associated with the mechanism of charge compensation in the aliovalent-substituted BiFeO3 is accompanied by correlated changes in the morphology, ferroelectric/ferroelastic domain structure and magnetic properties of the materials. In particular, it has been found that the deviation from the ideal (δ  =  0) cation-anion stoichiometry in the Bi0.9Sr0.1Fe1-x Ti x O3-δ system leads to a significant decrease in the average size of crystal grain and ferroelectric domains and gives rise to an antiferromagnetic-weak ferromagnetic transformation. Results of this study have been compared with those obtained for equally substituted samples of the Bi0.9Ca0.1Fe1-x Ti x O3-δ series (Khomchenko and Paixão 2015 J. Phys.: Condens. Matter 27 436002) to demonstrate how the variation in the chemical pressure introduced by the partial replacement of Bi3+ with bigger (Sr2+) and smaller (Ca2+) ions can affect the multiferroic behavior of Ti-doped bismuth ferrites.

  14. Preparation and characterization of Bi-doped TiO{sub 2} and its solar photocatalytic activity for the degradation of isoproturon herbicide

    SciTech Connect

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2011-11-15

    Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.

  15. Broadband near-infrared luminescence in gamma-irradiated Bi-doped alpha-BaB(2)O(4) single crystals.

    PubMed

    Su, Liangbi; Yu, Jun; Zhou, Peng; Li, Hongjun; Zheng, Lihe; Yang, Yan; Wu, Feng; Xia, Haiping; Xu, Jun

    2009-08-15

    Spectroscopic properties of as-grown and gamma-irradiated undoped and Bi-doped alpha-BBO (BaB(2)O(4)) single crystals were investigated. Bi(2+) and color centers in Bi:alpha-BBO crystals were investigated to be nonluminescent in the near-infrared (NIR) region. Broadband NIR luminescence at 1139 nm with a FWHM of 108 nm and a decay time of 526 mus was realized in Bi:alpha-BBO crystal through gamma irradiation. Bi(+) was attributed to be responsible for the NIR emission, which can be bleached by thermal annealing. The involved physical processes in Bi:alpha-BBO crystal during the courses of irradiation and heat annealing were tentatively established.

  16. Ferroelectric Sm-Doped BiMnO3 Thin Films with Ferromagnetic Transition Temperature Enhanced to 140 K

    PubMed Central

    2014-01-01

    A combined chemical pressure and substrate biaxial pressure crystal engineering approach was demonstrated for producing highly epitaxial Sm-doped BiMnO3 (BSMO) films on SrTiO3 single crystal substrates, with enhanced magnetic transition temperatures, TC up to as high as 140 K, 40 K higher than that for standard BiMnO3 (BMO) films. Strong room temperature ferroelectricity with piezoresponse amplitude, d33 = 10 pm/V, and long-term retention of polarization were also observed. Furthermore, the BSMO films were much easier to grow than pure BMO films, with excellent phase purity over a wide growth window. The work represents a very effective way to independently control strain in-plane and out-of-plane, which is important not just for BMO but for controlling the properties of many other strongly correlated oxides. PMID:25141031

  17. Effect of RF power on structural and magnetic properties of La doped Bi2Fe4O9 thin films

    NASA Astrophysics Data System (ADS)

    Santhiya, M.; Pugazhvadivu, K. S.; Balakrishnan, L.; Tamilarasan, K.

    2016-05-01

    Effect of RF power on structural and magnetic properties of lanthanum (La3+) doped Bi2Fe4O9 thin films grown on p-Si substrates by radio frequency (RF) magnetron sputtering has studied in this investigation. It is observed that the sputtering power affects the crystalline nature and magnetic properties of grown thin films. X-ray diffraction and Raman spectrum confirms that the Bi2Fe4O9 (BFO) thin films were crystallized well with orthorhombic structure. The BFO thin films which was prepared at sputtering power of 100 W have good crystallinity than those prepared at 40 W. The magnetic properties are investigated by vibrating sample magnetometer. The magnetic hysteresis perceptive loop shows that the anti-ferromagnetic behavior of the sample at room temperature. These results confirms that the crystallinity and magnetic properties of the BFO thin films were enhanced at the higher sputtering power (100 W).

  18. CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280

    SciTech Connect

    Albin, D.

    2011-05-01

    The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

  19. Fabrication of bidirectionally doped β-Bi2O3/TiO2-NTs with enhanced photocatalysis under visible light irradiation.

    PubMed

    Li, Deyi; Zhang, Yonggang; Zhang, Yalei; Zhou, Xuefei; Guo, Sujin

    2013-08-15

    Stable β-Bi2O3/TiO2-NTs photocatalyst with excellent visible-light-activity is successfully prepared by bidirectional doping. Stake structure of the TiO2-NTs provides a larger specific surface area and makes the contact area between the TiO2-NTs and β-Bi2O3 much larger; The stake structure of TiO2-NTs not only leads to a firmer combination of TiO2-NTs and β-Bi2O3, but also makes them dope one another deeply. The modification of Bi species into TiO2-NTs can form Bi-O-Ti chemical absorption bonds, then a localized impurity level is generated within the band gap. Electrons can be excited and transferred from the Bi(3+) impurity level to the conduction band (CB) of TiO2, similar to narrowing the band-gap of TiO2-NTs, resulting in a red shift of the absorption edge and an enhancement in visible-light activity. During annealing, Bi atoms are partially replaced by Ti atoms. The lattice of β-Bi2O3 is compressed around the Ti impurity, making the lattice dislocate and distort. This dislocation and distortion leads to an increase in the β-Bi2O3 valance band (VB), from 2.02 to 2.28 eV. Accordingly, the weak oxidability of β-Bi2O3 is improved, and its photocatalytic ability is further enhanced. Moreover, this lattice dislocation and distortion changes the Bi-O distances, thus remarkably improving the stability of the β-Bi2O3/TiO2-NTs.

  20. Terahertz Faraday Rotation in the Quantum Anomalous Hall System V-doped (Bi,Sb)2 Te3

    NASA Astrophysics Data System (ADS)

    Ozel, Ozge; Frenzel, Alex; Chang, Cui-Zu; Pilon, Daniel; Moodera, Jagadeesh; Gedik, Nuh; Gedik Group Team; Moodera Group Collaboration

    Time-reversal symmetry breaking in a topological insulator (TI) can be achieved by introducing ferromagnetism, which opens up a gap in the Dirac surface states. When the chemical potential is tuned to lie within the surface gap, the quantum anomalous Hall state emerges, which can be regarded as the quantum Hall state at zero external magnetic field. Recently, this state has been observed by static transport measurements in thin films of magnetically doped TIs. Time-domain terahertz spectroscopy has been demonstrated to be an effective probe of surface states and Hall effects in topological materials. Here, we use polarization modulation terahertz spectroscopy to study the intrinsic properties of massive Dirac electrons in V-doped (Bi,Sb)2Te3 via Faraday rotation measurements.

  1. Bi-doped fiber amplifier with a flat gain of 25  dB operating in the wavelength band 1320-1360  nm.

    PubMed

    Thipparapu, N K; Umnikov, A A; Barua, P; Sahu, J K

    2016-04-01

    Bismuth (Bi)-doped phosphosilicate fibers have been fabricated by the modified chemical vapor deposition (MCVD)-solution doping technique under different process conditions. The influence of fabrication conditions on unsaturable loss in fibers has been investigated. Pump wavelength dependent Bi gain has been studied to obtain a flat gain over a wide bandwidth. A diode pumped all-fiber Bi-doped amplifier with a flat gain of 25±1  dB from 1320-1360 nm (40 nm) has been demonstrated for -10  dBm of input signal power with a noise figure (NF) ranging from 4-6 dB. Moreover, a small signal gain of 29 dB and a NF of 4.5 dB at 1340 nm has been achieved for an input signal power of -30  dBm.

  2. Bi-doped fiber amplifier with a flat gain of 25  dB operating in the wavelength band 1320-1360  nm.

    PubMed

    Thipparapu, N K; Umnikov, A A; Barua, P; Sahu, J K

    2016-04-01

    Bismuth (Bi)-doped phosphosilicate fibers have been fabricated by the modified chemical vapor deposition (MCVD)-solution doping technique under different process conditions. The influence of fabrication conditions on unsaturable loss in fibers has been investigated. Pump wavelength dependent Bi gain has been studied to obtain a flat gain over a wide bandwidth. A diode pumped all-fiber Bi-doped amplifier with a flat gain of 25±1  dB from 1320-1360 nm (40 nm) has been demonstrated for -10  dBm of input signal power with a noise figure (NF) ranging from 4-6 dB. Moreover, a small signal gain of 29 dB and a NF of 4.5 dB at 1340 nm has been achieved for an input signal power of -30  dBm. PMID:27192276

  3. Effect of isovalent non-magnetic Fe-site doping on the electronic structure and spontaneous polarization of BiFeO{sub 3}

    SciTech Connect

    Singh, Poorva; Prasad, R.; Roy, Amritendu; Garg, Ashish

    2015-05-14

    We report the results of our first-principles calculations on the effect of isovalent, non-magnetic, Al{sup 3+} ion doping on the electronic structure and spontaneous polarization of multiferroic BiFeO{sub 3}. Our calculations reveal that Al{sup 3+} doping in BiFeO{sub 3} results in the reduction of Fe–O–Fe bond angle, leading to the weakening of antiferromagnetic superexchange interaction, further substantiated by the reduction of exchange interaction constant with increasing doping level. Lowering of well-depth is suggestive of reduced switching potential and improved P-E loop with lowered coercivity. Chemical bonding analysis by electron localization function shows that cation–oxygen bonding is of mixed ionic–covalent character, with marginal increase in the covalent character with increasing doping concentration. Large spontaneous polarization of undoped BiFeO{sub 3} is retained with lower doping level (6.25%), while for higher doping content (31.25%), the spontaneous polarization is reduced, primarily due to larger c/a ratio at higher doping level.

  4. Effects of low-level Ag doping on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}

    SciTech Connect

    Deis, T.A.; Eror, N.G.; Krishnaraj, P.; Prorok, B.C.; Lelovic, M.; Balachandran, U.

    1995-07-01

    Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} has been doped with silver, up to 10,000 ppm, in three ways: excess additions, substitution of Ag for Bi, and substitution of Ag for Sr. Effects of doping on the c-axis lattice parameter and critical temperature ({Tc}) were measured. Effects from doing were only observed in slow-cooled [10{degree}/hr] oxygen equilibrated samples. Doping by excess additions caused a small decrease in {Tc} and an increase in the c-axis length of the lattice. Doping by substitution, compared to excess Ag additions, caused a larger decrease in {Tc} and higher c-axis values for doping levels up to 1,000 ppm. Doping by substitution at higher levels (1,000--10,000 ppm) caused {Tc} to increase and the c-axis to decrease. Samples with similar substitutional doping levels exhibited comparable {Tc} values and samples with Ag substituted for Sr consistently exhibited higher c-axis values than samples that had equivalent amounts of Ag substituted for Bi.

  5. Leakage current phenomena in Mn-doped Bi(Na,K)TiO3-based ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Walenza-Slabe, J.; Gibbons, B. J.

    2016-08-01

    Mn-doped 80(Bi0.5Na0.5)TiO3-20(Bi0.5K0.5)TiO3 thin films were fabricated by chemical solution deposition on Pt/TiO2/SiO2/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, there were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ˜60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μion ≈ 1.7 × 10-12 cm2 V-1 s-1 and EA,ion ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.

  6. One-pot synthesis of Ag+ doped BiVO4 microspheres with enhanced photocatalytic activity via a facile hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhu, Shiwen; Li, Quanguo; Li, Feng; Cao, Wei; Li, Taohai

    2016-05-01

    The Ag+/BiVO4 photocatalyst was fabricated through a facile hydrothermal method by using K6V10O28·9H2O as the vanadium source. The impact of Ag+ on the product's structure and morphology was studied. It was shown that the amount of Ag+ has no effect on the product's crystal phases but plays an important role on the morphology of the nanoparticles that construct the shell of BiVO4 microspheres. In addition, the Ag+-doped photocatalysts have much higher photocatalytic activities in removing RhB and MB under the UV light illumination than the pure BiVO4. A possible photocatalytic mechanism was proposed in photoexcitation of the BiVO4 electrons which subsequently captured by the dopant. The present work may offer a novel route to reach higher photocatalytic activity by doping the Ag+ in the semiconductor catalysts.

  7. An investigation of Zr doping in NaBiTi2O6 perovskite by direct hydrothermal synthesis.

    PubMed

    Harunsani, Mohammad H; Woodward, David I; Thomas, Pam A; Walton, Richard I

    2015-06-21

    The direct crystallisation of perovskites NaBi(Ti(1-x)Zrx)(2)O(6) with x = 0, 0.01, 0.05 and 0.1 at 240 °C is achieved from aqueous alkali (NaOH) solutions of NaBiO(3), TiF(3) and ZrOCl(2). For each material, a single rhombohedral polymorph (R3c a∼ 5.51 Å, c∼ 13.50 Å) can be fitted to powder X-ray diffraction data, with Rietveld refinement showing a linear increase in lattice parameters and unit cell volume with increasing Zr content. Scanning electron microscopy shows micron-sized cube-shaped crystallites for each sample, with energy-dispersive X-ray analysis giving Bi : Ti : Zr ratios consistent with the expected substitution. Raman spectroscopy shows no perturbance of local structure upon Zr doping and the spectrum shows five broad bands, consistent with the literature on similar materials. Attempts to increase the Zr content further (x > 0.1) were unsuccessful by this hydrothermal synthesis method, leading instead to crystalline ZrO(2) by-products. For NaBiTi(2)O(6) and NaBi(Ti(0.99)Zr(0.01))(2)O(6) densified ceramics were prepared (∼95% density of crystallographic value) and their remnant polarisation was found to be reduced upon Zr substitution, along with a higher maximum piezoelectric coefficient, d33, measured and comparable permittivity and dielectric loss to other reported NaBiTi(2)O(6) materials. PMID:25677453

  8. Photoluminescence and electrical properties of Eu-doped (Na0.5Bi0.5)TiO3 ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwu; Zhao, Xiangyong; Deng, Hao; Chen, Chao; Lin, Di; Li, Xiaobing; Yan, Jun; Luo, Haosu

    2014-02-01

    Eu3+-doped Na0.5Bi0.5TiO3 (Eu:NBT) single crystals were grown by a top-seeded solution growth method. Photoluminescence emission and excitation spectra of Eu:NBT were investigated. The two transitions in 7F0 → 5D0 excitation spectra reveal that Eu3+ ions were incorporated into two adjacent crystallographic sites in NBT, i.e., Bi3+ and Na+ sites. The former has a symmetrical surrounding, while the later has a disordered environment, which was confirmed by decay curve measurements. The dielectric dispersion behavior was depressed and the piezoelectric and ferroelectric properties were improved after Eu doping.

  9. AlO x /LiF composite protection layer for Cr-doped (Bi,Sb)2Te3 quantum anomalous Hall films

    NASA Astrophysics Data System (ADS)

    Ou, Yunbo; Feng, Yang; Feng, Xiao; Hao, Zhenqi; Zhang, Liguo; Liu, Chang; Wang, Yayu; He, Ke; Ma, Xucun; Xue, Qikun

    2016-08-01

    We have realized robust quantum anomalous Hall samples by protecting Cr-doped (Bi,Sb)2Te3 topological insulator films with a combination of LiF and AlO x capping layers. The AlO x /LiF composite capping layer well keeps the quantum anomalous Hall states of Cr-doped (Bi,Sb)2Te3 films and effectively prevent them from degradation induced by ambient conditions. The progress is a key step towards the realization of the quantum phenomena in heterostructures and devices based on quantum anomalous Hall system. Project supported by the National Natural Science Foundation of China (Grant No. 11325421).

  10. Improved ferroelectric polarization of V-doped Bi6Fe2Ti3O18 thin films prepared by a chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Song, D. P.; Yang, J.; Yuan, B.; Zuo, X. Z.; Tang, X. W.; Chen, L.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2015-06-01

    We prepared V-doped Bi6Fe2Ti3O18 thin films on Pt/Ti/SiO2/Si (100) substrates by using a chemical solution deposition route and investigated the doping effect on the microstructure, dielectric, leakage, and ferroelectric properties of Bi6Fe2Ti3O18 thin films. The Bi5.97Fe2Ti2.91V0.09O18 thin film exhibits improved dielectric properties, leakage current, and ferroelectric properties. The incorporation of vanadium resulted in a substantially enhanced remnant polarization (2Pr) over 30 μC/cm2 in Bi5.97Fe2Ti2.91V0.09O18 thin film compared with 10 μC/cm2 in Bi6Fe2Ti3O18 thin film. It is demonstrated that the improved properties may stem from the improvement of crystallinity of the films with the contribution of suppressed oxygen vacancies and decreased mobility of oxygen vacancies caused by the V-doping. The results will provide a guidance to optimize the ferroelectric properties in Bi6Fe2Ti3O18 thin films by chemical solution deposition, which is important to further explore single-phase multiferroics in the n = 5 Aurivillius thin films.

  11. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  12. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator.

    PubMed

    Singh, Rahul; Shukla, K K; Kumar, A; Okram, G S; Singh, D; Ganeshan, V; Lakhani, Archana; Ghosh, A K; Chatterjee, Sandip

    2016-09-21

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases. PMID:27419361

  13. Growth mechanism and photocatalytic activity of self-organized N-doped (BiO)₂CO₃ hierarchical nanosheet microspheres from bismuth citrate and urea.

    PubMed

    Dong, Fan; Xiong, Ting; Wang, Rui; Sun, Yanjuan; Jiang, Yanke

    2014-05-14

    Synthesis of nano-/microstructured functional materials with 3D hierarchical microspheres structure has provided new opportunities for optimizing their physical and chemical properties. This work revealed a new growth mechanism of self-organized N-doped (BiO)2CO3 hierarchical microspheres which were fabricated by hydrothermal treatment of bismuth citrate and urea without an additive. Based on time-dependent observation, several evolution processes were believed to account for the formation of the self-organized N-doped (BiO)2CO3 hierarchical microspheres. Initially, crystallized (BiO)4CO3(OH)2 particles were formed during the nucleation and crystallization processes. Subsequently, the intermediate (BiO)4CO3(OH)2 reacted with CO3(2-) to generate (BiO)2CO3 growth nuclei on the surface of the CO2 bubbles which can act as heterogeneous nucleation centers. Next, the (BiO)2CO3 growth nuclei aggregated together after the consumption of CO2 bubbles with the increased concentration of OH(-) and further grew to be nanosheets. The microspheres constructed by small nanosheets further grew with the consumption of small particles. Finally, all (BiO)4CO3(OH)2 transformed to the (BiO)2CO3 phase, accompanied by the doping of N element into the lattice of (BiO)2CO3, and thereby, the well-defined N-doped (BiO)2CO3 hierarchical microspheres were shaped. Depending on the distance between neighboring CO2 bubbles, the resulting microspheres can be linked or dispersed. Besides, the gradual release of CO2 bubbles and CO3(2-) played a crucial role in controlling the nucleation and growth process, resulting in different sizes of microspheres. The fabricated N-doped (BiO)2CO3 hierarchical microspheres displayed admirably efficient and durable photocatalytic activity under both UV and visible light towards removal of NO, which is mainly attributed to the introduction of N element and the special hierarchical structure. This work provides new insights into the controlled synthesis of

  14. Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping

    NASA Astrophysics Data System (ADS)

    Liu, Xiaocun; Jin, Dou; Liang, Xin

    2016-09-01

    We demonstrate the improved thermoelectric properties of n-type lead-free transformable AgBiSe2 polymorphs by indium doping on silver sites. X-ray diffraction analysis suggests that complete solid solutions are well formed up to [In] = 0.02. Electrical conductivity and Seebeck coefficient behave in a routinely opposite manner due to the dominant role of the carrier concentration adjusted by the localized indium impurity levels, as also suggested by our density functional theory (DFT) calculations. As indium concentration increases, we observe a drastic variation of the thermoelectric transport properties with temperature, in the range of 450 to 580 K. By performing the isothermal electrical measurements, we attribute this interesting behavior to the ongoing α to β phase transformation process. The In 5s lone pair electrons, as indicated from our DFT calculations, increase the anharmonicity of the chemical bonds and enhance the phonon-phonon scattering. This, together with the introduced InAg .. point defects, further brings down the lattice thermal conductivity. The maximum thermoelectric figure of merit Z T is achieved at 773 K and increases from 0.3 for pristine AgBiSe2 to 0.7 for an optimal [In] = 0.015 doping, a more than two times enhancement.

  15. Co-doping induced coexistence of superconductivity and ferromagnetism in Bi3.9Co0.1O4S3

    NASA Astrophysics Data System (ADS)

    Yu, Chuan; Feng, Zhenjie; Yin, Xunqing; Li, Qing; Kang, Baojuan; Lu, Bo; Jing, Chao; Cao, Shixun; Zhang, Jincang

    2016-09-01

    The effects of Co doping on the physical properties of the Bi4O4S3 system was studied. We discovered that stable Bi3.9Co0.1O4S3 compound exhibits both long-range ferromagnetism and enhanced superconductivity with thermodynamic evidences for Tc ∼ 5.5 K. We found that there is an anomalous feature which represents superconducting transition in the hysteretic M-vs.-H loops for Bi3.9Co0.1O4S3 at T = 3 K.

  16. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    DOE PAGESBeta

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Metzger, Wyatt; Wei, Su -Huai

    2016-01-25

    In this study, Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance ptype doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu willmore » prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.« less

  17. Enhanced visible-light photocatalytic activities of porous olive-shaped sulfur-doped BiVO4-supported cobalt oxides

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenxuan; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Au, Chak Tong

    2013-04-01

    Porous S-doped bismuth vanadate with an olive-like morphology and its supported cobalt oxide (y wt% CoOx/BiVO4-δS0.08, y = 0.1, 0.8, and 1.6) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt% CoOx/BiVO4-δS0.08 photocatalysts were single-phase with a monoclinic scheetlite structure, a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.41 eV. There was the co-presence of surface Bi5+, Bi3+, V5+, V3+, Co3+, and Co2+ species in y wt% CoOx/BiVO4-δS0.08. The 0.8 wt% CoOx/BiVO4-δS0.08 sample performed the best for methylene blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and CoOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 0.8 wt% CoOx/BiVO4-δS0.08.

  18. Enhanced ferromagnetic properties in Ho and Ni co-doped BiFeO{sub 3} ceramics

    SciTech Connect

    Park, J. S.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.; Kang, J.-H.; Lee, B. W.

    2014-01-07

    The magnetic properties of polycrystalline Bi{sub 1-x}Ho{sub x}Fe{sub 1-y}Ni{sub y}O{sub 3} (x = 0, 0.1; y = 0, 0.03), which were prepared by the solid-state method, have been investigated. The powder X-ray diffraction reveals that all the samples are polycrystalline and show rhombohedral perovskite structure. The micro-Raman scattering studies confirm that Bi{sub 0.9}Ho{sub 0.1}Fe{sub 0.97}Ni{sub 0.03}O{sub 3} has a compressive lattice distortion induced by the simultaneous substitution of Ho and Ni ions at A and B-sites, respectively. From the magnetization dependences at room temperature, Bi{sub 0.9}Ho{sub 0.1}Fe{sub 0.97}Ni{sub 0.03}O{sub 3} has enhanced magnetization (0.2280 emu/g) and low coercive field (280 Oe). It was revealed that the Ni dopant plays an important role for the improved ferromagnetic properties and the Ho dopant favors the magnetic exchange interactions in the co-doped ceramic.

  19. Nitrogen-doped carbon and high-content alumina containing bi-active cobalt oxides for efficient storage of lithium.

    PubMed

    Wu, Bibo; Zhang, Shilin; Yao, Feng; Huo, Ruijie; Zhang, Fazhi; Xu, Sailong

    2016-01-15

    Low-content ultrathin coating of non-active alumina (Al2O3) has been extensively utilized as one of the most effective strategies to improve electrochemical performances of electrodes for lithium-ion batteries (LIBs), however, typically by employing expensive atomic layer deposition equipment. We herein demonstrate a simple preparation of high-content and well-dispersed Al2O3 (24.33wt.%)-containing multi-component composite (CoO/Co3O4/N-C/Al2O3) by calcination of melamine/CoAl-layered double hydroxide (CoAl-LDH) mixture. The resulting composite bundles the advantages expected to improve electrochemical performances: (i) bi-active CoO/Co3O4, (ii) highly conductive N-doped carbon, and (iii) N-doped carbon and high-content non-active Al2O3 as buffering reagents, as well as (iv) good distribution of bi- and non-active components resulted from the lattice orientation and confinement effect of the LDH layers. Electrochemical evaluation shows that the composite electrode delivers a highly enhanced reversible capacity of 1078mAhg(-1) after 50cycles at 100mAg(-1), compared with the bi-active CoO/Co3O4 mixtures with and without non-active Al2O3. Transmission electron microscopy/scanning electron microscopy observations and electrochemical impedance spectra experimentally provide the information on the good distributions of multiple components and the improved conductivity underlying the enhancements, respectively. Our LDH precursor-based preparation route may be extended to design and prepare various multi-component transition metal oxides for efficient lithium storage.

  20. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity.

    PubMed

    Sun, Yan; Zhang, Zuxing; Xie, Anjian; Xiao, Changhe; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua

    2015-09-01

    A novel ordered porous Bi2O3 inverse opal structure (IOS) was prepared using a polystyrene (PS) photonic crystal as the template for the first time. Nitrogen-doped carbon dots (N-CDs) were chosen to sensitize the as-prepared Bi2O3 IOS for improving photoelectrochemical performance and photocatalytic activity. The photocurrent density of the fabricated N-CDs/Bi2O3 IOS with favorable visible light absorption properties can achieve 0.75 mA cm(-2), which significantly enhanced performance two-, seven-, and thirty-fold compared with that of the CDs/Bi2O3 IOS, Bi2O3 IOS, and Bi2O3 nanoparticles (NPs), respectively. The N-CDs/Bi2O3 IOS also has increased photocatalytic activity for the decolorization of Rhodamine B (RhB), 4 times higher than Bi2O3 NPs. The above performance enhancement of N-CDs/Bi2O3 IOS is caused by the synergistic effect of N-CDs sensitization and the highly ordered IOS, which make it a promising material to be used in clean energy, solar cells, potential applications in water purification and so on.

  1. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity.

    PubMed

    Sun, Yan; Zhang, Zuxing; Xie, Anjian; Xiao, Changhe; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua

    2015-09-01

    A novel ordered porous Bi2O3 inverse opal structure (IOS) was prepared using a polystyrene (PS) photonic crystal as the template for the first time. Nitrogen-doped carbon dots (N-CDs) were chosen to sensitize the as-prepared Bi2O3 IOS for improving photoelectrochemical performance and photocatalytic activity. The photocurrent density of the fabricated N-CDs/Bi2O3 IOS with favorable visible light absorption properties can achieve 0.75 mA cm(-2), which significantly enhanced performance two-, seven-, and thirty-fold compared with that of the CDs/Bi2O3 IOS, Bi2O3 IOS, and Bi2O3 nanoparticles (NPs), respectively. The N-CDs/Bi2O3 IOS also has increased photocatalytic activity for the decolorization of Rhodamine B (RhB), 4 times higher than Bi2O3 NPs. The above performance enhancement of N-CDs/Bi2O3 IOS is caused by the synergistic effect of N-CDs sensitization and the highly ordered IOS, which make it a promising material to be used in clean energy, solar cells, potential applications in water purification and so on. PMID:26228490

  2. An ordered and porous N-doped carbon dot-sensitized Bi2O3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Zhang, Zuxing; Xie, Anjian; Xiao, Changhe; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua

    2015-08-01

    A novel ordered porous Bi2O3 inverse opal structure (IOS) was prepared using a polystyrene (PS) photonic crystal as the template for the first time. Nitrogen-doped carbon dots (N-CDs) were chosen to sensitize the as-prepared Bi2O3 IOS for improving photoelectrochemical performance and photocatalytic activity. The photocurrent density of the fabricated N-CDs/Bi2O3 IOS with favorable visible light absorption properties can achieve 0.75 mA cm-2, which significantly enhanced performance two-, seven-, and thirty-fold compared with that of the CDs/Bi2O3 IOS, Bi2O3 IOS, and Bi2O3 nanoparticles (NPs), respectively. The N-CDs/Bi2O3 IOS also has increased photocatalytic activity for the decolorization of Rhodamine B (RhB), 4 times higher than Bi2O3 NPs. The above performance enhancement of N-CDs/Bi2O3 IOS is caused by the synergistic effect of N-CDs sensitization and the highly ordered IOS, which make it a promising material to be used in clean energy, solar cells, potential applications in water purification and so on.

  3. Synthesis, structure and photoluminescence properties of Sm3+-doped BiOBr phosphor

    NASA Astrophysics Data System (ADS)

    Halappa, Pramod; Shivakumara, C.; Saraf, Rohit; Nagabhushana, H.

    2016-05-01

    Well-crystallized tetragonal layered BiOBr and Bi0.95Sm0.05OBr phosphors were prepared by the solid state method. These compounds were characterized using powder X-Ray diffraction and photoluminescence technique. In PL spectra, the electric dipole transitions dominate than other transitions which indicate that the Sm3+ ions occupy a site with an inversion center of BiOBr. CIE chromaticity diagram confirmed that these phosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs) for display device applications.

  4. Interplay of anisotropy and disorder in the doping-dependent melting and glass transitions of vortices in Bi2Sr2CaCu2O 8+delta.

    PubMed

    Beidenkopf, H; Verdene, T; Myasoedov, Y; Shtrikman, H; Zeldov, E; Rosenstein, B; Li, D; Tamegai, T

    2007-04-20

    We study the oxygen doping dependence of the equilibrium first-order melting and second-order glass transitions of vortices in Bi2Sr2CaCu2O 8+delta. Doping affects both anisotropy and disorder. Anisotropy scaling is shown to collapse the melting lines only where thermal fluctuations are dominant. Yet, in the region where disorder breaks that scaling, the glass lines are still collapsed. A quantitative fit to melting and replica symmetry-breaking lines of a 2D Ginzburg-Landau model further reveals that disorder amplitude weakens with doping, but to a lesser degree than thermal fluctuations, enhancing the relative role of disorder.

  5. Controllable growth of vertically aligned Bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs

    NASA Astrophysics Data System (ADS)

    Asemi, Morteza; Ghanaatshoar, Majid

    2016-09-01

    In this study, vertically aligned Bi-doped TiO2 nanorod arrays as photoanodes were successfully grown on the fluorine-doped tin oxide by hydrothermal method. Structural analysis showed that bismuth was successfully incorporated into the TiO2 lattice at low concentration, but at higher concentration, phase segregation of Bi2O3 in the TiO2 matrix was occurred. TiO2 nanorods with 3 % bismuth concentration had minimum electrical resistivity. As the solid-state electrolyte, Mg-doped CuCrO2 nanoparticles with p-type conductivity were synthesized by sol-gel method. The fabricated all-oxide solid-state dye-sensitized solar cells with Bi-doped TiO2 nanorods displayed better photovoltaic performance due to the presence of Bi. The improved cell performance was correlated with the higher dye loading, slower charge recombination rate and the higher electrical conductivity of the photoanodes. After mechanical pressing, the all-oxide solid-state DSSC exhibited enhanced photovoltaic performance due to the formation of the large neck between adjacent nanoparticles by mechanical sintering. The open-circuit photovoltage decay measurement of the devices and electrical conductivity of the nanoparticles before and after pressing revealed that the mechanical pressing technique reduces charge recombination rate and facilitates electron transport through the interconnected nanoparticles.

  6. Features of the charge-transport mechanism in layered Bi{sub 2}Te{sub 3} single crystals doped with chlorine and terbium

    SciTech Connect

    Abdullaev, N. A. Abdullaev, N. M.; Aliguliyeva, H. V.; Kerimova, T. G.; Mehdiyev, G. S.; Nemov, S. A.

    2011-01-15

    The temperature dependences (T = 5-300 K) of the resistivity in the plane of layers and in the direction perpendicular to the layers, as well as the Hall effect and the magnetoresistance (H < 80 kOe, T = 0.5-4.2 K) in Bi{sub 2}Te{sub 3} single crystals doped with chlorine and terbium, are investigated. It is shown that the doping of Bi{sub 2}Te{sub 3} with terbium atoms results in p-type conductivity and in increasing hole concentration. The doping of Bi{sub 2}Te{sub 3} with chlorine atoms modifies also the character of its conductivity instead of changing only the type from p to n. In the temperature dependence of the resistivity in the direction perpendicular to layers, a portion arises with the activation conductivity caused by the hopping between localized states. The charge-transport mechanism in Bi{sub 2}Te{sub 3} single crystals doped with chlorine is proposed.

  7. Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Wang, Rui; Li, Xinwei; Ho, Wing-Kei

    2014-11-01

    Various 3D N-doped (BiO)2CO3 (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N2 adsorption-desorption isotherms and UV-vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO)2CO3 samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO)2CO3 hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO)2CO3 and TiO2-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  8. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  9. Anomalous reduction of the switching voltage of Bi-doped Ge{sub 0.5}Se{sub 0.5} ovonic threshold switching devices

    SciTech Connect

    Seo, Juhee; Ahn, Hyung-Woo; Shin, Sang-yeol; Cheong, Byung-ki; Lee, Suyoun

    2014-04-14

    Switching devices based on Ovonic Threshold Switching (OTS) have been considered as a solution to overcoming limitations of Si-based electronic devices, but the reduction of switching voltage is a major challenge. Here, we investigated the effect of Bi-doping in Ge{sub 0.5}Se{sub 0.5} thin films on their thermal, optical, electrical properties, as well as on the characteristics of OTS devices. As Bi increased, it was found that both of the optical energy gap (E{sub g}{sup opt}) and the depth of trap states decreased resulting in a drastic reduction of the threshold voltage (V{sub th}) by over 50%. In addition, E{sub g}{sup opt} was found to be about three times of the conduction activation energy for each composition. These results are explained in terms of the Mott delocalization effect by doping Bi.

  10. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi2WO6 and their photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Dumrongrojthanath, Phattharanit; Thongtem, Titipun; Phuruangrat, Anukorn; Thongtem, Somchai

    2013-12-01

    In this research, 0-3 mol% Ag doped Bi2WO6 hierarchical multilayered flower-like assemblies were successfully synthesized by a simple hydrothermal method at 180 °C for 24 h. The XRD, FE-SEM, FTIR and Raman analyses revealed the presence of flower-like Russellite Bi2WO6 structures which were constructed from a large number of orderly arranged 2D layers of interconnected nanoplates. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under Xe visible light irradiation (λ > 420 nm). The 3 mol% Ag doped Bi2WO6 showed the highest photocatalytic activities of 98.20% within 180 min.

  11. Raman Spectroscopy Characterization of Se- Doped Bi{sub 12}SiO{sub 20} Crystals

    SciTech Connect

    Milenov, T. I.; Rafailov, P. M.; Yankova, L.; Veleva, M. N.; Dobreva, S.; Thomsen, C.; Egorysheva, A. V.; Skorikov, V. M.; Titorenkova, R.

    2010-01-21

    Crystals of BSO doped with Se are successfully grown by the Czochralski method. The measured concentration of Se is 1.75x10{sup 18} cm{sup -3} and of Fe is 6.4x10{sup 18} cm{sup -3}, i.e. the concentration of Fe is significantly increased. It is assumed that the doping takes place through the replacement 3Si{sup 4+}->(Se{sup 6+}+2Fe{sup 3+}). The doping-induced shift of the Raman-active A, E and F-modes is not significant and it is concluded that the lattice distortions caused by doping are very small in BSO crystals doped with Se at low concentrations. The doping with Se at high concentration leads to occasional second phase inclusions. It is observed that all A, E and F- modes in the Raman spectrum are downshifted with 2-5 cm{sup -1}. It is concluded that the doping with Se at high concentrations follows the same mechanism as those with low concentrations but the introduced lattice distortions are more significant.

  12. Surface chemical and photocatalytic consequences of Ca-doping of BiFeO3 as probed by XPS and H2O2 decomposition studies

    NASA Astrophysics Data System (ADS)

    Zaki, Mohamed I.; Ramadan, Wegdan; Katrib, Ali; Rabee, Abdallah I. M.

    2014-10-01

    Pure and Ca-doped Bi1-xCaxFeO3 samples were prepared with x = 0.0-0.2, adopting a sol-gel method. Previously reported studies performed on similarly composed and prepared samples revealed that Ca-doping, above solubility limit (namely at ≥10%-Ca), results in phase separation and formation of BiFeO3/α(γ)-Fe2O3 nanocomposite particles. Hetero p/n nanojunctions thus established were considered to help separating photo-generated electron-hole pairs and, therefore, explain consequent promotion of photo-Fenton catalytic activity of BiFeO3 towards methylene blue degradation in presence of H2O2 additive. However, the encompassed decomposition of H2O2 was not addressed. To bridge this gap of knowledge, the present investigation was designed to assess Ca-doping-effected surface chemical modifications and gauge its impact on the heterogeneous photo-/thermo-catalytic activity of BiFeO3 towards H2O2 decomposition, by means of X-ray photoelectron spectroscopy (XPS) and H2O2 decomposition gravimetry. XPS results revealed generation of high binding energy Bi 4f and Fe 2p states, as well as enhancement of the surface basicity, upon doping to 10%-Ca. These surface chemical consequences are rendered hardly detectable upon further increase of the dopant magnitude to 20%-Ca. In parallel, the H2O2 decomposition activity of the ferrite, under natural visible light, is enhanced to optimize upon Ca-doping at 10%, and, then, decreased on further doping to 20%. H2O2 decomposition experiments carried out in absence of light indicate that the doping promoting impact is reflected essentially in the photocatalytic activity. Accordingly, the observed surface chemical consequences of Ca-doping are considered to consolidate the p/n nanojunctions consequently established in the material bulk, by retarding recombination of visible light generated electron-hole pairs, thus enhancing the heterogeneous photocatalytic activity of BiFeO3.

  13. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  14. Facile synthesis of surface N-doped Bi2O2CO3: Origin of visible light photocatalytic activity and in situ DRIFTS studies.

    PubMed

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-04-15

    Bi2O2CO3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi2O2CO3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi2O2CO3, but also modifies the surface properties of Bi2O2CO3 through the interaction between CTAB and Bi2O2CO3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi2O2CO3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from NO bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi2O2CO3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to another relevant bismuth based photocatalyst, BiOCl, demonstrated that surface interstitial N doping could also be achieved in this case. Therefore, our current route seems to be a general option to modify the surface properties of bismuth based photocatalysts.

  15. Elucidating the driving force of superconductivity increase in compressed optimally doped Bi2Sr2CaCu2O8+x

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Jia; Struzhkin, Viktor; Zhang, Jian-Bo; Gavriliuk, Alexander; Goncharov, Alexander; Mao, Ho-Kwang; Lin, Hai-Qing; Gu, Genda

    An optimally doped cuprate Bi2Sr2CaCu2O8+x is as a perfect model system to explore the mechanism of superconductivity by applying pressure as one can avoid complicated competing orders in the underdoped regime and explore pure intrinsic effects rather than secondary effects related to change in the carrier concentration. Here, by carefully examining the collected high-pressure Raman spectra at low temperatures, we have observed an enhanced two-magnon mode and connected this to the observed 10 K increase in Tc (reaching more than 100 K for the first time) in the optimally doped Bi2Sr2CaCu2O8+x upon compression clearly delineating the effect of pressure-induced charge transfer that must suppress Tc for this optimally doped sample. Our finely designed experiments offer the direct and convincing evidence for identifying the magnetic fluctuations as the pairing interaction in cuprate superconductors.

  16. Doping dependence of normal-state transport properties in La- and Pb-doped Bi2Sr2CuOy

    NASA Astrophysics Data System (ADS)

    Wang, N. L.; Chong, Y.; Wang, C. Y.; Huang, D. J.; Mao, Z. Q.; Cao, L. Z.; Chen, Z. J.

    1993-02-01

    We report measurements of the electrical resistivity, thermoelectric power, and Hall coefficient on La- and Pb-doped Bi2Sr2CuOy compounds as a function of temperature. Both insulating and overdoped nonsuperconducting-metal samples have been obtained. Analysis of the electrical resistivity in the insulating region suggests that the conduction is governed by a variable-range-hopping mechanism in the low-temperature region. As the system changes from a superconductor to an overdoped nonsuperconducting-metal, the resistivity undergoes a change from a linear temperature dependence to a power-law temperature dependence with exponent n~1.5. This n~1.5 behavior occurs over a wide temperature range. Remarkable changes associated with the insulator-superconductor- nonsuperconducting-metal transition are also observed both in the thermoelectric power and the Hall coefficient. A significant difference is that the thermoelectric power becomes negative at the higher doping level, while the Hall coefficient remains positive. We explain the experimental results from a two-carrier model by assuming that the Cu 3d2x-y2 electrons undergo a change from a localized state to a partially delocalized state with an increase in the number of dopant O 2p holes.

  17. Structural investigation of Bi doped InSe chalcogenide thin films using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Shaveta; Sharma, Rita; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M.

    2015-05-01

    The infrared transparency of the chalcogenide glasses have been investigated presently for the CO/CO2 laser power in various medical diagnostic applications. The addition of Bi improves the chemical durability and broadens the IR transparency region of various chalcogenide glassy systems. In the present work, we have studied the effect of Bi addition on the structural properties of In-Se thin films by using the RAMAN spectroscopy. The melt quenched bulk ingot of BixIn25-xSe75 (1≤ x≤ 7) alloys were used for the vacuum thermal evaporation of films in a vacuum better than 10-5 mbar. RAMAN bands at 1575, 1354 and 525 cm-1 has been observed, while with the increase in the Bi concentration vibrational band disappear at 525 cm-1 in sample x=7.

  18. Superconductivity-Induced Self-Energy Evolution of the Nodal Electron in Optimally-Doped Bi2212

    SciTech Connect

    Lee, W.S.

    2010-05-03

    The temperature dependent evolution of the renormalization effect in optimally-doped Bi2212 along the nodal direction has been studied via angle-resolved photoemission spectroscopy. Fine structure is observed in the real part of the self-energy (Re{Sigma}), including a subkink and maximum, suggesting that electrons couple to a spectrum of bosonic modes, instead of just one mode. Upon cooling through the superconducting phase transition, the fine structures of the extracted Re{Sigma} exhibit a two-processes evolution demonstrating an interplay between kink renormalization and superconductivity. We show that this two-process evolution can be qualitatively explained by a simple Holstein model in which a spectrum of bosonic modes is considered.

  19. On the microscopic origin of the photochromic and photorefractive behavior of doped Bi 4Ge 3O 12 single crystals

    NASA Astrophysics Data System (ADS)

    Zaldo, C.; Diéguez, E.

    1992-09-01

    Doping Bi 4Ge 3O 12 single crystals with Co impurities enables the presence of a photochromic behavior which is induced at room temperature (rt) with ultraviolet (uv) light. As a consequence of the uv illumination a broad optical absorption from 1.0 to 4.1 eV is formed. This absorption is attributed to the creation and trapping of holes. The spectral efficiency of the damage and its thermal and optical stability have been characterized. Optically induced holographic gratings have been observed. They have been attributed mainly to a photorefractive effect. Some of those gratings exhibit a transient behavior that has been related to the simultaneous diffusion of electrons and holes. A microscopic model to account for the photochromic and photorefractive effects is discussed.

  20. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    SciTech Connect

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescence of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).

  1. Ionic liquid assisted microwave synthesis route towards color-tunable luminescence of lanthanide- doped BiPO4

    DOE PAGESBeta

    Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena

    2015-07-08

    Ln3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial shows intense luminescencemore » of different colors such as: orange (Sm3+), red (Eu3+), green (Tb3+) or even white (Dy3+).« less

  2. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    SciTech Connect

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. )

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  3. Growth of CdTe thin films on graphene by close-spaced sublimation method

    SciTech Connect

    Jung, Younghun; Yang, Gwangseok; Kim, Jihyun; Chun, Seungju; Kim, Donghwan

    2013-12-02

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400 nm/min with a bandgap energy of 1.45–1.49 eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes.

  4. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications. PMID:27143336

  5. Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition

    NASA Astrophysics Data System (ADS)

    Pare, Brijesh; Sarwan, Bhawna; Jonnalagadda, S. B.

    2011-10-01

    Manganese doped BiOCl has been synthesized by hydrolysis method and characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM) and diffusive reflectance spectra (DRS) methods. Interesting results have been obtained from diffusive reflectance spectra. XRD results show a decrease in the lattice parameter for Mn-doped BiOCl and UV-vis measurement reveals that there is a shift in the optical absorption edge toward higher wavelength, which indicates a decrease in the band gap upon Mn doping. The increased photocatalytic activity in degradation of malachite green dye by Mn-doped BiOCl might be due to increase in life time of photogenerated electrons and holes due to scavenging of electrons by Mn, charging the particle surface due to electron on the surface, which enhances the adsorption of dye molecules, or/and decreased crystallite size. The effect of key operating parameters have also been investigated. Complete mineralization has been confirmed by COD analysis. An assumptive reaction mechanism has also been proposed.

  6. CdTe Solar Cells: The Role of Copper

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  7. Effect of Bi2O3 on the structural and spectroscopic properties of Sm3+ ions doped sodiumfluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Arunkumar, S.; Marimuthu, K.

    2016-02-01

    Trivalent samarium ions doped bismuth sodiumfluoroborate glasses have been prepared with the chemical composition 40B2O3+(40-x)Na2CO3+xBi2O3+19CaF2+1Sm2O3 (where x = 0, 10, 20, 30 and 40 in wt%) following the conventional melt quenching technique. The structural and spectroscopic characterizations have been carried out using XRD, FTIR and UV-Vis-NIR, luminescence and decay measurements. Judd-Ofelt (JO) theory has been used to study the effect of local field environment around the Sm3+ ion site to calculate the radiative properties. Bonding parameters and JO intensity parameters (Ω2, Ω4, Ω6) were determined from the absorption spectra to explore the nature of bonding and symmetry around the Sm3+ ion site. The spectroscopic quality factor (χ = Ω4/Ω6) and asymmetry ratio (R/O) have been determined to elucidate the potential strength of the stimulated emission and asymmetry around the Sm3+ ion site in the prepared glasses. Using JO theory, various radiative properties like transition probability (A), effective bandwidth (Δλeff), stimulated emission cross-section (σpE) and branching ratio (βR) for the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 emission levels of the prepared glasses were determined and compared with the reported literature. The decay curves corresponding to the 4G5/2 level of the Sm3+ ions were measured and are found to be single exponential for lower Bi2O3 content and turn to become non-exponential for higher Bi2O3 content and is due to the donor to acceptor energy transfer through cross-relaxation process. Among the prepared glasses, 40BiNFBS glass exhibit higher A, βR, σpE and η values and is suggested for useful gain medium and reddish orange laser applications.

  8. Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2μm wavelength.

    PubMed

    Wu, Lin; Li, Dechun; Zhao, Shengzhi; Yang, Kejian; Li, Xiangyang; Wang, Reng; Liu, Ji

    2015-06-15

    We report the first demonstration of a diode pumped passively Q-switched Tm:LuAG laser near 2μm wavelength with Bi-doped or undoped GaAs wafer as saturable absorber. For Bi-doped GaAs saturable absorber, stable Q-switched pulses with duration of 63.3ns under a repetition rate of 132.7 kHz and pulse energy of 5.51μJ are generated. In comparison to the passively Q-switched laser with undoped GaAs saturable absorber, the laser with Bi-doped GaAs can produce shorter pulses and higher peak power at almost the same incident pump power. The results suggest that Bi-doped GaAs can be an attractive candidate of saturable absorber for Q-switched laser near 2μm wavelength.

  9. Structural, electrical and multiferroic properties of La-doped mullite Bi{sub 2}Fe{sub 4}O{sub 9} thin films

    SciTech Connect

    Raghavan, C.M.; Kim, J.W.; Kim, J.-W.; Kim, S.S.

    2015-10-15

    Highlights: • Chemical solution deposited La-doped Bi{sub 2}Fe{sub 4}O{sub 9} thin film. • Structural, electrical and multiferroic properties were investigated. • La-doped Bi{sub 2}Fe{sub 4}O{sub 9} exhibited enhanced electrical and multiferroic properties. - Abstract: Thin films of (Bi{sub 2−x}La{sub x})Fe{sub 4}O{sub 9} (x = 0 and x = 0.05) were prepared on Pt(1 1 1)/Ti/SiO{sub 2}/Si(1 0 0) substrates by using a chemical solution deposition method to investigate structural, microstructural, electrical and multiferroic properties. Both the thin films were crystallized in mullite type phases with orthorhombic structures containing no secondary and impurity phases, which was confirmed by X-ray diffraction and Raman spectroscopy studies. The (Bi{sub 1.95}La{sub 0.05})Fe{sub 4}O{sub 9} thin film exhibited improved electrical and multiferroic properties at room-temperature. The leakage current density of the (Bi{sub 1.95}La{sub 0.05})Fe{sub 4}O{sub 9} thin film was one order of magnitude lower than that of the Bi{sub 2}Fe{sub 4}O{sub 9} thin film. Furthermore, in the thin film form, (Bi{sub 2−x}La{sub x})Fe{sub 4}O{sub 9} exhibited better stability against electrical breakdowns and enhanced multiferroic properties.

  10. Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons

    NASA Astrophysics Data System (ADS)

    Hong, Seung Sae; Cha, Judy J.; Kong, Desheng; Cui, Yi

    2012-03-01

    A topological insulator is the state of quantum matter possessing gapless spin-locking surface states across the bulk band gap, which has created new opportunities from novel electronics to energy conversion. However, the large concentration of bulk residual carriers has been a major challenge for revealing the property of the topological surface state by electron transport measurements. Here we report the surface-state-dominant transport in antimony-doped, zinc oxide-encapsulated Bi2Se3 nanoribbons with suppressed bulk electron concentration. In the nanoribbon with sub-10-nm thickness protected by a zinc oxide layer, we position the Fermi levels of the top and bottom surfaces near the Dirac point by electrostatic gating, achieving extremely low two-dimensional carrier concentration of 2×1011 cm-2. The zinc oxide-capped, antimony-doped Bi2Se3 nanostructures provide an attractive materials platform to study fundamental physics in topological insulators, as well as future applications.

  11. Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor

    SciTech Connect

    Meevasana, W.

    2010-06-02

    A recent highlight in the study of high-Tc superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimally doped and strongly overdoped, nonsuperconducting single-layer Bi-cuprate (Bi{sub 2}Sr{sub 2}CuO{sub 6}). In addition to the appearance of a strong overall weakening, we also find that the weight of the self-energy in the overdoped system shifts to higher energies. We present evidence that this is related to a change in the coupling to c-axis phonons due to the rapid change of the c-axis screening in this doping range.

  12. Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film.

    PubMed

    Li, W; Claassen, M; Chang, Cui-Zu; Moritz, B; Jia, T; Zhang, C; Rebec, S; Lee, J J; Hashimoto, M; Lu, D-H; Moore, R G; Moodera, J S; Devereaux, T P; Shen, Z-X

    2016-09-07

    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb)2Te3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb)2Te3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Dirac point. Our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy.

  13. Crossover between two-dimensional surface state and three-dimensional bulk phase in Fe-doped Bi{sub 2}Te{sub 3}

    SciTech Connect

    Jo, Na Hyun; Lee, Kyujoon; Jung, Myung-Hwa; Kim, Jinsu; Jang, Jungwon; Kim, Jinhee

    2014-06-23

    In Fe-doped Bi{sub 2}Te{sub 3}, we have observed higher mobility, larger linear magnetoresistance, and anomalous quantum oscillations. The angle dependence of Shubnikov-de Haas (SdH) oscillations gives two different periodicities depending on the angle from the c-axis. The low-angle SdH period is identified with a surface origin, while the high-angle period is against the surface origin. The high-angle SdH period well agrees with the de Haas-van Alphen (dHvA) period with a bulk origin. The physical parameters obtained from the quantum oscillations support the crossover between two-dimensional surface state and three-dimensional bulk phase by Fe doping in Bi{sub 2}Te{sub 3}.

  14. Lanthanide Contraction Effect In Magnetic Thermoelectric Materials Of Rare Earth-doped Bi1.5Pb0.5Ca2Co2O8

    NASA Astrophysics Data System (ADS)

    Sutjahja, Inge Magdalena; Akbar, Taufik; Nugroho, Agung

    2010-12-01

    We report in this paper the result of synthesis and crystal structure characterization of magnetic thermoelectric materials of rare-earth-doped Bi1.5Pb0.5Ca2Co2O8, namely Bi1.5Pb0.5Ca1.9RE0.1Co2O8 (RE = La, Pr, Sm, Eu, Gd, Ho). Single phase samples have been prepared by solid state reaction process using precursors of Bi2O3, PbO, CaCO3, RE2O3, and Co3O4. The precursors were pulverized, calcinated, and sintered in air at various temperatures for several hours. Analysis of XRD data shows that Bi1.5Pb0.5Ca1.9RE0.1Co2O8 compound is a layered system consisting of an alternate stack of CoO2 layer and Bi2Sr2O4 block along the c-axis. The misfit structure along b-direction is revealed from the difference of the b-axis length belonging to two sublattices, namely hexagonal CdI2-type CoO2 layer and rock-salt (RS) NaCl-type Bi2Sr2O4 block, while they possess the common a- and c-axis lattice parameters and β angles. The overall crystal structure parameters (a, b, and c) increases with type of doping from La to Ho, namely by decreasing the ionic radii of rare-earth ion. We discuss this phenomenon in terms of the lanthanide contraction, an effect commonly found in the rare-earth compound, results from poor shielding of nuclear charge by 4f electrons. In addition, the values of b-lattice parameters in these rare-earth doped samples are almost the same with those belongs to undoped parent compound (Bi1.5Pb0.5Sr2Co2O8) and its related Y-doped (Bi1.5Pb0.5Ca1.9Y0.1Co2O8) samples, while the c-values reduced significantly in rare-earth doped samples, with opposite trend with those of variation of a-axis length. Morevover, the misfit degree in rare-earth doped compound is higher in compared to parent compound and Y-doped samples. We argue that these structural changes induced by rare-earth doping may provide information for the variation of electronic structure of Co-ions (Co3+ and Co4+), in particular their different spin states of low-spin, intermediate-spin, and high-spin. This, in

  15. Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film.

    PubMed

    Li, W; Claassen, M; Chang, Cui-Zu; Moritz, B; Jia, T; Zhang, C; Rebec, S; Lee, J J; Hashimoto, M; Lu, D-H; Moore, R G; Moodera, J S; Devereaux, T P; Shen, Z-X

    2016-01-01

    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb)2Te3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb)2Te3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Dirac point. Our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy. PMID:27599406

  16. Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film

    PubMed Central

    Li, W.; Claassen, M.; Chang, Cui-Zu; Moritz, B.; Jia, T.; Zhang, C.; Rebec, S.; Lee, J. J.; Hashimoto, M.; Lu, D.-H.; Moore, R. G.; Moodera, J. S.; Devereaux, T. P.; Shen, Z.-X.

    2016-01-01

    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb)2Te3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb)2Te3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Dirac point. Our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy. PMID:27599406

  17. Thermal properties of transition metals doped (A: Co, Ni and Cu) BiFe0.9A0.1O3

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2016-05-01

    The synthesis of pure and transition metals (Co, Ni and Cu) doped BiFeO3nanoparticles, a promising G-type antiferromagnetic material have been done by auto combustion method using citric acid as a fuel. Microstructural analyses were done by XRD and FTIR. The thermal stability of the sample was determined by thermo gravimetric analysis (TGA) and heat flow rate was plotted by differential scanning calorimetric (DSC).

  18. Magnetocaloric effect in pristine and Bi-doped Pr0.6Sr0.4MnO3 manganite

    NASA Astrophysics Data System (ADS)

    Daivajna, Mamatha D.; Rao, Ashok

    2016-11-01

    Near room temperature, magnetocaloric effect in pristine and Bi-doped Pr0.6Sr0.4MnO3 manganites has been studied using in-field heat capacity measurements. The Debye temperature (θD) for the pristine sample was estimated to be 522 K and its value increases to 530 K for the Bi-doped sample with x=0.05. The entropy associated with paramagnetic (PM) to ferromagnetic (FM) transition is found to be 2.4 J/mol K and 2.3 J/mol K for x=0 and 0.05 compositions respectively. The estimated values of adiabatic temperature ∆Tad for the samples with x=0 and x=0.05 are respectively 2.2 K and 1.9 K for 0-6 Tesla. The maximum isothermal change in entropy, ∆SM for the sample Pr0.6Sr0.4MnO3 with transition temperature 306 K is found to be 2.7 J/kg-K with application of external magnetic field of 2 T and for Bi-doped sample (with x=0.05) the isothermal change in entropy reduces to 2.0 J/kg-K. The calculated maximum values of the isothermal entropy changes, ∆SM for the pristine sample, vary in the range 1.7-3.9 J/kg-K for a magnetic field change of 1-6 T. The present results suggest that these compounds can be possible candidates as magnetic refrigerants. This results in a large relative cooling power (RCP) around 93.5 J kg-1 K for the pristine sample under an application of magnetic field of 2 T. On contrary, with Bi-doping, RCP decreases to 56 J kg-1 K at external field of 2 T.

  19. Thermal Expansion of n-Type Doped Bi2Te2.88Se0.12 and p-Type Doped Bi0.52Sb1.48Te3 Solid Solutions from -60°C to +60°C

    NASA Astrophysics Data System (ADS)

    Stern, Yu.; Pavlova, L.; Mironov, R.

    2010-09-01

    An automated dilatometric system was developed to measure the thermal expansion of solid materials from -60°C to +400°C. This system was then applied to measure the linear thermal expansions of n-type doped Bi2Te2.88Se0.12 and p-type doped Bi0.52Sb1.48Te3 solid solutions along the a-axis from -60°C to +60°C. The experiments were performed using a vertical “tube/push rod” dilatometer under constant-temperature conditions. The initial alloys were synthesized from Bi, Te, and Se or Sb (each at 99.999 mass% purity) in stoichiometric ratios. The method based on the correlation between the thermal expansion and the heat capacity was proposed to calculate the axial expansion coefficients along the c-axis.

  20. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    NASA Astrophysics Data System (ADS)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  1. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    NASA Astrophysics Data System (ADS)

    Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit

    2015-08-01

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  2. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations.

    PubMed

    Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals-Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  3. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    SciTech Connect

    Datta, Soumendu Baral, Sayan; Mookerjee, Abhijit; Kaphle, Gopi Chandra

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  4. Structural stability and depolarization of manganese-doped (Bi0.5Na0.5)1-xBaxTiO3 relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Fen; Tu, Chi-Shun; Chang, Ting-Lun; Chen, Pin-Yi; Chen, Cheng-Sao; Hugo Schmidt, V.; Anthoniappen, J.

    2014-10-01

    This work reveals that 0.5 mol. % manganese (Mn) doping in (Bi0.5Na0.5)1-xBaxTiO3 (x = 0 and 0.075) solid solutions can increase structural thermal stability, depolarization temperature (Td), piezoelectric coefficient (d33), and electromechanical coupling factor (kt). High-resolution X-ray diffraction and transmission electron microscopy reveal coexistence of rhombohedral (R) R3c and tetragonal (T) P4bm phases in (Bi0.5Na0.5)0.925Ba0.075TiO3 (BN7.5BT) and 0.5 mol. % Mn-doped BN7.5BT (BN7.5BT-0.5Mn). (Bi0.5Na0.5)TiO3 (BNT) and BN7.5BT show an R - R + T phase transition, which does not occur in 0.5 mol. % Mn-doped BNT (BNT-0.5Mn) and BN7.5BT-0.5Mn. Dielectric permittivity (ɛ') follows the Curie-Weiss equation, ɛ' = C/(T - To), above the Burns temperature (TB), below which polar nanoregions begin to develop. The direct piezoelectric coefficient (d33) and electromechanical coupling factor (kt) of BN7.5BT-0.5Mn reach 190 pC/N and 47%.

  5. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations.

    PubMed

    Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals-Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties. PMID:26328845

  6. The effect of Yttrium on the Ca and Sr planes of Y-doped Bi 2Sr 2Ca 1Cu 2O 8

    NASA Astrophysics Data System (ADS)

    Alméras, P.; Berger, H.; Margaritondo, G.

    1993-08-01

    Photoemission spectromicroscopy experiments on a series of Y-doped Bi 2Sr 2Ca 1Cu 2O 8 single crystals show that the doping changes the valence of copper as required for the observed modification of the critical temperature. The doping, however, affects with substitutional reactions not only the CaO planes, but also the SrO planes. Des expériences de photoémission sur une série de monocristaux de Bi 2Sr 2Ca 1Cu 2O 8 dopés avec de l'yttrium montrent que le dopage change la valence du cuivre, comme on dopage, pourtant, ne modifie pas seulement les plans CaO par des réactions de substitution, mais également les plans SrO. Esperimenti di fotoemissione condotti su una serie di monocristalli di Bi 2Sr 2Ca 2O 8 con impurezze di Y mostrano che tali impurezze modificano la valenza del rame, com'é indipendentemente reso necessario dal fatto che si osservano dei cambiamenti della temperature di transizione. Si nota peraltro che le impurezze non modificano solamente i piani CaO mediante reazioni di sostituzione, ma anche i piani SrO.

  7. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi{sub 2}Te{sub 2}Se

    SciTech Connect

    Kushwaha, S. K. Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-04-14

    A comparative study of the properties of topological insulator Bi{sub 2}Te{sub 2}Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10{sup 14} cm{sup −3}. Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E{sub F}) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E{sub F}. Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed.

  8. Synthesis of activated charcoal supported Bi-doped TiO2 nanocomposite under solar light irradiation for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chandraboss, V. L.; Kamalakkannan, J.; Senthilvelan, S.

    2016-11-01

    In this study, activated charcoal (AC) supported bismuth (Bi)-doped Titanium dioxide (TiO2) nanocomposite was synthesized by precipitation method. The photocatalytic activity of AC-Bi/TiO2 was investigated for the degradation of methylene blue (MB) in aqueous solution under solar light irradiation. The incorporation of Bi3+ into the TiO2 lattice shifts the absorbance of TiO2 to the visible region then the addition of high adsorption capacity activated charcoal to improve the efficiency of TiO2. AC-Bi/TiO2 is found to be more efficient than Bi/TiO2 and undoped TiO2 for the degradation of MB under solar light irradiation. Surface morphology and bulk composition of the composite was obtained using high resolution-scanning electron microscopy with energy dispersive X-ray analysis. The crystal structure evolution and elemental composition were analyzed by combining Fourier transform-Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The ultraviolet-visible (UV-vis) absorption spectra show that the absorption edge for the composite with Bi3+ has red shift as compared with that of undoped TiO2. UV-vis diffuse reflectance spectra demonstrated a decrease in the direct band gap of AC-Bi/TiO2. BET surface area, pore radius and pore volume of the materials were calculated by applying the BET equation to the sorption isotherms. The production of hydroxyl radicals (rad OH) on the surface of solar light irradiated materialswere detected by photoluminescence technique using coumarin as a probe molecule. The mechanism of photocatalytic effect of the AC-Bi/TiO2 was proposed for the degradation of MB under solar light irradiation.

  9. Enhancement emission intensity of CaMoO4 : Eu3+, Na+ phosphor via Bi co-doping and Si substitution for application to white LEDs

    NASA Astrophysics Data System (ADS)

    Xie, An; Yuan, Ximing; Hai, Shujie; Wang, Juanjuan; Wang, Fengxiang; Li, Liu

    2009-05-01

    Through the use of Bi as a co-activator and Si as a substituting element for the host lattice, red emitting Ca_{0.5}MoO_4\\,:\\,Eu^{3+}_{0.25-x} , Bi^{3+}_{x} , Na^{+}_{0.25} (x = 0, 0.005, 0.01, 0.05, 0.10, 0.15 and 0.20) and Ca_{0.5}Mo_{1-y}Si_yO_4\\,:\\,Eu^{3+}_{0.25} , Na^{+}_{0.25} (y = 0.005, 0.01, 0.02, 0.03, 0.04 and 0.05) phosphors were synthesized by the conventional solid state reaction method, respectively. The photo-luminescent results show all samples can be excited efficiently by UV (396 nm) and blue (467 nm) light and emit red light at 615 nm with line spectra, which are coupled well with the characteristic emission from UVLED and blue LED, respectively. In the Eu3+-Bi3+ co-doped system, both Eu3+ f-f transition and Bi3+ CT transition absorptions are observed in the excitation spectra, the intensities of the main emission line (5D0 → 7F2 transition of Eu3+ at 615 nm) are strengthened because of the energy transition from Bi3+ to Eu3+. The introduction of Si4+ ions did not change the position of the peaks but enhanced the emission intensity of Eu3+ under 396 nm excitations. The results showed that the optimal doping concentration of Bi3+ ions and Si4+ ions was 1 mol%, respectively.

  10. Picosecond pulse generation in a passively mode-locked Bi-doped fibre laser

    SciTech Connect

    Krylov, Aleksandr A; Kryukov, P G; Dianov, Evgenii M; Okhotnikov, Oleg G

    2009-10-31

    CW passive mode locking is achieved in a bismuth-doped fibre laser using a semiconductor saturable absorber mirror optimised for operation in the range 1100-1200 nm. The pump source is a cw ytterbium fibre laser (1075 nm, maximum output power of 2.7 W), and the pulse parameters can be tuned by varying the intracavity group velocity dispersion using a diffraction grating pair. Stable laser pulses are obtained with a duration down to {tau}{sub p} {approx} 1.1 ps. (control of laser radiation parameters)

  11. First principles study on the structural, magnetic, electronic and optical properties of un-doped and La-doped BiFe0.75Mn0.125Ti0.125O3

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Chen, Wei; Gao, Ning; Zhu, Yiyi; Mao, Weiwei; Chu, Liang; Zhang, Jian; Yang, Jianping; Li, Xing'ao; Huang, Wei

    2016-10-01

    Based on the generalized gradient approximation (GGA), the structural, magnetic, electronic and optical properties of BiFe0.75Ti0.125Mn0.125O3 (TM) and Bi1 - yLayFe0.75Ti0.125Mn0.125O3 (y = 0.125, 0.25) (LTM) were researched by the first principles. Compared with the pure BiFeO3 (zero magnetic moment), the magnetic moment of TM gets improved greatly and the value computed here is ∼ 3μB, while La doping almost has no effect on that of TM. Ti and Mn co-doping converts the indirect band gap of BiFeO3 (2.20 eV) to a direct band gap of TM (0.95 eV). The bandwidth of TM is similar to that of LTM1 (1 La atom, y = 0.125) within the tolerance, but smaller than that of LTM2 (2 La atoms, y = 0.25). This is consistent with their gradually increased absorption edges to infrared region, and suggests that doping La into the B sites of TM makes it more potential application on photovoltaic. According to the results of reflectivity, (Ti, Mn)-codoped BiFeO3 is transparent, while LTM is nontransparent in the visible light region which indicates more potential valuable for visible-light-responsive devices. To gain some insight into the optical properties of the samples, three relationships have been discussed: (1) the reflectivity and energy loss function, (2) the extinction coefficient and the imaginary part of the dielectric function, and (3) the refractive index and the real part of the dielectric function.

  12. Topological transition in Bi1-xSbx studied as a function of Sb doping

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kousa, Yuka; Taskin, Alexey A.; Takeichi, Yasuo; Nishide, Akinori; Kakizaki, Akito; D'Angelo, Marie; Lefevre, Patrick; Bertran, Francois; Taleb-Ibrahimi, Amina; Komori, Fumio; Kimura, Shin-Ichi; Kondo, Hiroshi; Ando, Yoichi; Matsuda, Iwao

    2011-12-01

    Spin- and angle-resolved photoemission spectroscopy measurements were performed on Bi1-xSbx samples at x=0.04, 0.07, and 0.21 to study the change of the surface band structure from nontopological to topological. Energy shift of the T and Ls bulk bands with Sb concentration is quantitatively evaluated. An edge state becomes topologically nontrivial at x=0.04. An additional trivial edge state appears at the L band gap that forms at x>0.04 and apparently hybridize with the nontrivial edge state. A scenario for the topological transition mechanism is presented. Related issues of self-energy and temperature dependence of the surface state are also considered.

  13. Photoluminescence, enhanced ferroelectric, and dielectric properties of Pr{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} multifunctional ceramics

    SciTech Connect

    Zou, Hua; Yu, Yao; Li, Jun; Cao, Qiufeng; Wang, Xusheng; Hou, Junwei

    2015-09-15

    Pr{sup 3+}-doped SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) multifunctional ceramics were synthesized by the conventional solid state method. The photoluminescence (PL) excitation and emission spectra, enhanced ferroelectric and dielectric properties were investigated. The X-ray diffraction (XRD) and FESEM analyses indicated that the samples were simple phase and uniform flake-structure. Under the 250–350 nm ultraviolet (UV) excitations, the red emission was obtained and the optimal emission intensity was investigated when Pr doping level was 0.005 mol. With the increasing of the Pr{sup 3+} ion contents, the ferroelectric properties were enhanced obviously. As a new multifunctional material, the Pr{sup 3+}-doped SBN ceramics could be used for a wide range of application, such as integrated electro-optical devices.

  14. Magneto-optical Kerr effect in Cr-doped (Bi,Sb)2Te3 Thin Films

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Yao, Bing; Richardella, Anthony; Kandala, Abhinav; Fraleigh, Robert; Lee, Joon Sue; Samarth, Nitin; Yeats, Andrew; Awschalom, David D.

    2014-03-01

    When a three-dimensional (3D) topological insulator (TI) is interfaced with magnetism, the breaking of time reversal symmetry results in new phenomena such as the recently observed quantum anomalous Hall effect [C.-Z. Zhang et al., Science340, 167 (2013)]. Thus motivated, we use the polar-mode magneto-optical Kerr effect (MOKE) to probe the temperature- and field-dependent magnetization in molecular beam epitaxy grown Cr-doped thin films of the 3D TI (Bi,Sb)2Te3. Square MOKE hysteresis loops observed at low temperatures indicate robust ferromagnetism with a perpendicular magnetic anisotropy and Curie temperature that varies from ~ 5 K to ~ 150 K, depending on sample details. A key question is the nature of the ferromagnetism: is it a carrier-mediated mechanism, Van Vleck mechanism or due to extrinsic clusters? We address this issue by varying the magnetic ion concentration and carrier density via sample composition as well as by varying the chemical potential by back gating. Finally, we use spatially-resolved MOKE to image the magnetization in these samples. Supported by ONR and DARPA.

  15. Effect of Sn doping on nonlinear optical properties of quaternary Se-Sn-(Bi,Te) chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-08-01

    The aim of this work is to report the effect of Sn doping on the third order nonlinear optical properties of chalcogenide Se84-xTe15Bi1.0Snx thin films. Melt quenching technique has been used for the preparation of bulk chalcogenide glasses. Thin films of the studied composition are deposited on cleaned glass substrate by thermal evaporation technique. Optical band gap (Eg) is calculated by using Tauc extrapolation method and is found to increase from 1.27 eV to 1.64 eV with the incorporation of Sn content. Stryland approach is utilized for the calculation of two photon absorption coefficient (β2). The nonlinear refractive index (n2) and third order susceptibility (χ(3) are calculated using Tichy and Ticha approach. The result shows that nonlinear refractive index (n2) follows the same trend as that of linear refractive index (n). The values of n2 of studied composition as compared to pure silica are 1000-5000 times higher.

  16. IR-induced nonlinear optics in Ge-doped Bi 12TiO 20 large-sized nanocrystallites

    NASA Astrophysics Data System (ADS)

    Kityk, I. V.; Majchrowski, A.; Sahraoui, B.

    2005-01-01

    Photoinduced non-linear optical effects in large-sized (up to 25 nm) nanocrystallites (NC) of Ge-doped Bi 12TiO 20 (BTO:Ge) incorporated within olygoether photopolymer matrix have been studied. Photoinduced second harmonic generation (PISHG) was measured. Nd:YAG pulsed laser (λ=1.06 μm) was used as a source of photoinducing light. As a fundamental light source for the SHG and two-photon absorption, Er:LiYF 4 laser (λ=2.065 μm) was used. We have found that with increasing IR pump power density, the output doubled frequency SHG signal (λ=1.03 μm) increases and achieves its maximum value at the pump power density about 0.45 GW/cm 2 and NC size about 12 nm.The values of second-order optical susceptibilities were almost 20% larger than for the pure BTO NC single crystals. With decreasing temperature below 60 K, the SHG signal increases achieving maximal value at LHeT.

  17. Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses

    SciTech Connect

    Carcelen, V.; Rodriguez-Fernandez, J.; Dieguez, E.; Hidalgo, P.

    2010-05-15

    The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53x10{sup 8} {Omega} cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71x10{sup 5} {Omega} cm).

  18. Effect of Sn doping on nonlinear optical properties of quaternary Se-Sn-(Bi,Te) chalcogenide thin films

    SciTech Connect

    Yadav, Preeti Sharma, Ambika

    2015-08-28

    The aim of this work is to report the effect of Sn doping on the third order nonlinear optical properties of chalcogenide Se{sub 84-x}Te{sub 15}Bi{sub 1.0}Sn{sub x} thin films. Melt quenching technique has been used for the preparation of bulk chalcogenide glasses. Thin films of the studied composition are deposited on cleaned glass substrate by thermal evaporation technique. Optical band gap (E{sub g}) is calculated by using Tauc extrapolation method and is found to increase from 1.27 eV to 1.64 eV with the incorporation of Sn content. Stryland approach is utilized for the calculation of two photon absorption coefficient (β{sub 2}). The nonlinear refractive index (n{sub 2}) and third order susceptibility (χ{sup (3}) are calculated using Tichy and Ticha approach. The result shows that nonlinear refractive index (n{sub 2}) follows the same trend as that of linear refractive index (n). The values of n{sub 2} of studied composition as compared to pure silica are 1000-5000 times higher.

  19. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    PubMed Central

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  20. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    PubMed

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-08-14

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  1. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    PubMed

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  2. Ferromagnetism of magnetically doped topological insulators in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films

    SciTech Connect

    Ni, Y.; Zhang, Z. Hadimani, R. L.; Tuttle, G.; Jiles, D. C.; Nlebedim, I. C.

    2015-05-07

    We investigated the effect of magnetic doping on magnetic and transport properties of Bi{sub 2}Te{sub 3} thin films. Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi{sub 2}Te{sub 3} and increases the magnetization of Cr{sub x}Bi{sub 2−x}Te{sub 3}. When x = 0.14 and 0.29, ferromagnetism appears in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism of the ferromagnetism can be described better with 3D-Heisenberg model than with mean field model. Our work may benefit for the practical applications of magnetic topological insulators in spintronics and magnetoelectric devices.

  3. Host-Sensitized NIR Quantum Cutting Emission in Nd(3+) Doped GdNbO4 Phosphors and Effect of Bi(3+) Ion Codoping.

    PubMed

    Shahi, Praveen Kumar; Singh, Priyam; Rai, Shyam Bahadur; Bahadur, Amresh

    2016-02-15

    Host-sensitized near-infrared quantum cutting (QC) emission has been demonstrated in Nd(3+) doped Gd(1-x)Nd(x)NbO4 phosphors for various x values. Further, the effect of Bi(3+) ion addition as a sensitizer on near-infrared QC is studied in detail. X-ray diffraction confirms a monoclinic structure for pure and Nd(3+) doped phosphors. Pulsed laser excitation at 266 nm of Gd(1-x)Nd(x)NbO4 and Gd(0.99-x)Nd(x)Bi(0.01)NbO4 causes efficient room-temperature energy transfer from the NbO4(3-) to the Nd(3+) ions and the NbO4(3-) and Bi(3+) ions to the Nd(3+) ions, respectively, which emits more than one near-infrared photon for single impinging ultraviolet photon. The emission band of Nd(3+) shows unusual character where the intensity of the (4)F(3/2)-(4)I(9/2) transition at 888 nm is higher than the intensity of the transition (4)F(3/2)-(4)I(11/2) at 1064 nm, due to energy transfer from GdNbO4 host to Nd(3+) ion. Using photoluminescence lifetime studies, the quantum cutting efficiencies are found to be the maximum 166% and 172% for Gd(0.95)Nd(0.05)NbO4 and Gd(0.94)Nd(0.05)Bi(0.01)NbO4, respectively. The present study could establish Nd(3+) ion as an alternative of Yb(3+) ion for near-infrared quantum cutting. This work facilitates the probing of Nd(3+) ions doped phosphor materials for next generation Si-solar cells.

  4. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  5. Thermoelectric properties of homogeneously and non-homogeneously doped CdTe15/16M1/16 (M=N, P, As, Sb) and Cd15/16TeM1/16 (M=Na, K, Rb, Cs)

    NASA Astrophysics Data System (ADS)

    Yang, X. H.; Qin, X. Y.; Li, D.; Zhang, J.; Song, C. J.; Liu, Y. F.; Wang, L.; Xin, H. X.

    2015-11-01

    The electrical transport properties of p-doped semiconductors CdTe15/16M1/16 (M=N, P, As, Sb) and Cd15/16TeM1/16 (M=Na, K, Rb, Cs) with two configurations are investigated through first-principles calculations combined with Boltzmann transport theory under the relaxation time approximation. It is found that N and Cs atoms in the homogeneous structure induce much sharper electron densities of states (DOSs) and flatter energy bands at the valence band edges than the rest of doped elements, resulting in much larger Seebeck coefficients. The calculations reveal that most of the Seebeck coefficients and electrical conductivities are impacted unfavorably by the conglomeration of impurity atoms considered. Though the power factors for homogeneous doping of N and Cs are comparatively smaller, the electronic figures of merit are much larger at 800-1000 K than the rest ones due to much smaller electronic thermal conductivities, therefore probably enhancing the thermoelectric figures of merit. The results show that doping the elements with electronegativities distinct from the host atoms can enhance the Seebeck coefficients and the thermoelectric performances of bulk semiconductors efficiently if the energy levels of doped atoms resonate with those of host atoms and the arrangement of doped atoms is modulated appropriately to avoid deteriorating the sharpness of the DOS (or transport distribution).

  6. Defect properties of Sb- and Bi-doped CuInSe{sub 2}: The effect of the deep lone-pair s states

    SciTech Connect

    Park, Ji-Sang; Yang, Ji-Hui; Ramanathan, Kannan; Wei, Su-Huai

    2014-12-15

    Bi or Sb doping has been used to make better material properties of polycrystalline Cu{sub 2}(In,Ga)Se{sub 2} as solar cell absorbers, including the experimentally observed improved electrical properties. However, the mechanism is still not clear. Using first-principles method, we investigate the stability and electronic structure of Bi- and Sb-related defects in CuInSe{sub 2} and study their effects on the doping efficiency. Contrary to previous thinking that Bi or Sb substituted on the anion site, we find that under anion-rich conditions, the impurities can substitute on cation sites and are isovalent to In because of the formation of the impurity lone pair s states. When the impurities substitute for Cu, the defects act as shallow double donors and help remove the deep In{sub Cu} level, thus resulting in the improved carrier life time. On the other hand, under anion-poor conditions, impurities at the Se site create amphoteric deep levels that are detrimental to the device performance.

  7. Synthesis, thermal and electrical properties of Al-doped Bi4V1.8Cu0.2O10.7

    NASA Astrophysics Data System (ADS)

    Essalim, R.; Ammar, A.; Tanouti, B.; Mauvy, F.

    2016-08-01

    Partial substitution of copper with aluminum in Bi4V1.8Cu0.2O10.7 has led to the Bi4V1.8Cu0.2-xAlxO10.7+x/2 solid solution. X-ray diffraction and thermal analysis have shown that the compounds with x=0.05 and x=0.10 are tetragonal with γ‧ form of Bi4V2O11, while the compound with x=0.15 is of β polymorph. The effect of Al3+ doping on electrical conductivity has been studied using Electrochemical Impedance Spectroscopy. The electrical conductivity of doped samples along with the amount of Al3+ has been studied by electrochemical impedance spectroscopy in the temperature range 250-700 °C. The slope changes observed in the Arrhenius plots agree with the microstructural transitions occurring in these compounds. The highest ionic conductivity values are obtained for the sample with x=0.05.

  8. Red, Yellow, Blue and Green Emission from Eu(3+), Dy(3+) and Bi(3+) Doped Y2O3nano-Phosphors.

    PubMed

    Devi, Hemam Jenee; Singh, Wairokpam Rameshwor; Loitongbam, Romeo Singh

    2016-05-01

    Rare earth elements (RE = Eu(3+)& Dy(3+))and Bi(3+) doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22-24 nm size range were obtained in this method. The respective RE and Bi(3+) doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu(3+)), yellow (Dy(3+)), blue and green (Bi(3+))emitting phosphors.

  9. The layered double hydroxide route to Bi-Zn co-doped TiO₂ with high photocatalytic activity under visible light.

    PubMed

    Benalioua, Bahia; Mansour, Meriem; Bentouami, Abdelhadi; Boury, Bruno; Elandaloussi, El Hadj

    2015-05-15

    In this work, a co-doped Bi-Zn-TiO₂ photocatalist is synthesized by an original synthesis route of layered double hydroxide followed by heat treatment at 670 °C. After characterization the photocatalyst efficiency is estimated by the photo-discoloration of an anionic dye (indigo carmine) under visible light and compare to TiO₂-P25 as reference material. In this new photocatalyst, anatase and ZnO wurtzite are the only identified crystalline phase, rutile and Bi₂O₃ being undetected. Moreover, the binding energy of Bi determined (XPS analysis) is different from the one of Bi in Bi₂O₃. Compared to TiO₂-P25, the absorption is red shifted (UV-vis DRS) and the Bi-Zn-TiO₂ photocatalyst showed sorption capacity toward indigo carmine higher than that TiO₂-P25. The kinetics of the photo-discoloration is faster with Bi-Zn-TiO₂ than with TiO₂-P25. Indeed, a complete discoloration is obtained after 70 min and 120 min in the presence of Bi-Zn-TiO₂ and TiO₂-P25 respectively. The identification of the responsible species on photo-discoloration was carried out in the presence of different scavengers. The study showed that the first responsible is h(+) specie with a moderate contribution of superoxide anion radical and a minor contribution of the hydroxyl radical. The material showed high stability after five uses with the same rate of photo-discoloration. PMID:25699677

  10. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals

    PubMed Central

    Zheng, Dahuai; Kong, Yongfa; Liu, Shiguo; Chen, Muling; Chen, Shaolin; Zhang, Ling; Rupp, Romano; Xu, Jingjun

    2016-01-01

    For a long time that optical damage was renamed as photorefraction, here we find that the optical damage resistance and photorefraction can be simultaneously enhanced in MgO and Bi2O3 co-doped LiNbO3 (LN:Bi,Mg). The photorefractive response time of LN:Bi,Mg was shortened to 170 ms while the photorefractive sensitivity reached up to 21 cm2/J. Meanwhile, LN:Bi,Mg crystals could withstand a light intensity higher than 106  W/cm2 without apparent optical damage. Our experimental results indicate that photorefraction doesn’t equal to optical damage. The underground mechanism was analyzed and attributed to that diffusion dominates the transport process of charge carriers, that is to say photorefraction causes only slight optical damage under diffusion mechanism, which is very important for the practical applications of photorefractive crystals, such as in holographic storage, integrated optics and 3D display. PMID:26837261

  11. X-ray absorption spectroscopic analyses and fluorescence emission characteristics of PbO-Bi203-Ga203 glasses doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Choi, Yong Gyu; Kim, Kyong-Hon; Chernov, Vladimir A.; Heo, Jong

    1999-12-01

    A representative of heavy metal oxide glasses, i.e., a PbO- Bi2O3-Ga2O3 glass, was investigated to identify the network structure of the glass and the electronic transition properties of rare-earth ions doped. X-ray absorption spectroscopic analyses showed that gallium forms GaO4 tetrahedral units with an average Ga-O bond length of approximately 1.87 A. Lead forms both PbO3 and PbO4 polyhedra, but the fraction of PbO4 decreases with decreasing PbO content. Bismuth in glasses constructs BiO5 and BiO6 polyhedra, which have a similar coordination scheme of the (alpha) -Bi2O3 crystal. Formation of three-coordinated oxygens is necessary to compensate shortage of oxygens to be two-fold coordinated. These glasses exhibit a relatively good thermal stability as well as the lowest phonon energy among oxide glasses, and thereby enhance numerous fluorescence emissions that are quenched in the conventional oxide glasses. Magnitudes of multiphonon relaxation are the lowest among oxide glasses and comparable to those of fluoride glasses. Fluorescence emission characteristics of Pr3+: 1.3 micrometer and Er3+: 2.7 micrometer were discussed in detail. In addition, influence of OH- on the Nd3+: 1.3 micrometer emission was analyzed. Further research efforts on impurity minimization and fiberization may realize a new oxide-based fiber-optic host.

  12. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals.

    PubMed

    Zheng, Dahuai; Kong, Yongfa; Liu, Shiguo; Chen, Muling; Chen, Shaolin; Zhang, Ling; Rupp, Romano; Xu, Jingjun

    2016-01-01

    For a long time that optical damage was renamed as photorefraction, here we find that the optical damage resistance and photorefraction can be simultaneously enhanced in MgO and Bi2O3 co-doped LiNbO3 (LN:Bi,Mg). The photorefractive response time of LN:Bi,Mg was shortened to 170 ms while the photorefractive sensitivity reached up to 21 cm(2)/J. Meanwhile, LN:Bi,Mg crystals could withstand a light intensity higher than 10(6)  W/cm(2) without apparent optical damage. Our experimental results indicate that photorefraction doesn't equal to optical damage. The underground mechanism was analyzed and attributed to that diffusion dominates the transport process of charge carriers, that is to say photorefraction causes only slight optical damage under diffusion mechanism, which is very important for the practical applications of photorefractive crystals, such as in holographic storage, integrated optics and 3D display. PMID:26837261

  13. Synthesis of Pt doped Bi2O3/RuO2 photocatalysts for hydrogen production from water splitting using visible light.

    PubMed

    Hsieh, S H; Lee, G J; Chen, C Y; Chen, J H; Ma, S H; Horng, T L; Chen, K H; Wu, J J

    2012-07-01

    This study was focused on the preparation of modified bismuth oxide photocatalysts, including Ru and Pt doped Bi2O3, using sonochemically assisted method to enhance their photocatalytic activity. The crystalline phase composition and surface structure of Bi2O3 photocatalysts were examined using SEM, XRD, UV-visible spectroscopy, and XPS. Optical characterizations have indicated that the Bi2O3 presents the photoabsorption properties shifting from UV light region into visible light which is approaching towards the edge of 470 nm. According to the experimental results, visible-light-driven photocatalysis for water splitting with the addition of 0.3 M Na2SO3 and 0.03 M H2C2O4 as sacrificing agents demonstrates that Pt/Bi2O3-RuO2 catalyst could increase the amount of hydrogen evolution, which is around 11.6 and 14.5 micromol g(-1) h(-1), respectively. Plausible formation mechanisms of modified bismuth oxide and reaction mechanisms of photocatalytic water splitting have been proposed. PMID:22966683

  14. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper.

    PubMed

    Gao, Lei; Huang, Wei; Zhang, Jing Dong; Zhu, Tao; Zhang, Han; Zhao, Chu Jun; Zhang, Wei; Zhang, Hua

    2014-08-10

    We have demonstrated the passive Q-switching mode-locking operation in an erbium-doped fiber (EDF) laser by using topological insulator Bi(2)Se(3) deposited on fiber taper, whose damage threshold can be further increased by the large evanescent field interacting length. Due to the low saturation intensity, stable Q-switched mode-locked fiber lasers centered at 1562 nm can be generated at a pump power of 10 mW. The temporal and spectral characteristics for different pump strengths have also been investigated. To the best of our knowledge, it is the first time a Q-switched mode-locked EDF laser based on the fiber taper deposited by Bi(2)Se(3) was generated. PMID:25320919

  15. Free energy landscape approach to aid pure phase synthesis of transition metal (X=Cr, Mn and Fe) doped bismuth titanate (Bi2Ti2O7)

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric L.; Huda, Muhammad N.

    2016-06-01

    A density functional theory study of Cr, Mn and Fe substitutions in Bi2Ti2O7 (BTO) photocatalysts is presented. We performed a stability analysis from our total energy calculations and have determined formations of dopant inspired phases are detrimental to the overall photocatalytic performance of X-doped BTO. From our calculated formation energies and electronic structures it is shown that X substitution of Ti is least stable and should be associated with formation of secondary phases more so than X substitution of Bi. This result contradicts the many experimental studies which suggest transition metal dopants always substitute Ti in BTO, but on the other hand, explains the poor photocatalytic response beyond what has become known as the critical dopant concentration.

  16. Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Li, Meiya; Pei, Ling; Yu, Benfang; Guo, Dongyun; Zhao, Xingzhong

    2009-06-01

    Ce-doped Bi1-xCexFeO3 (BCFOx) thin films with x = 0-0.12 were successfully prepared on SnO2 : F(FTO)/glass substrates by chemical solution deposition. The BCFOx films showed a gradual phase transition from a rhombohedral to a pseudotetragonal structure with increase in the Ce content. The substitution of Bi with Ce greatly reduced the leakage current and the dielectric loss of the BCFOx films, which showed an Ohmic conduction mechanism. The BCFOx films with x = 0.06 exhibited a well squared-shaped P-E hysteresis loop with a remanent polarization (2Pr) of 92.3 µC cm-2 and an improved anti-fatigue characteristic after 1010 read/write polarization cycles.

  17. Q-switched mode-locked erbium-doped fiber laser based on topological insulator Bi(2)Se(3) deposited fiber taper.

    PubMed

    Gao, Lei; Huang, Wei; Zhang, Jing Dong; Zhu, Tao; Zhang, Han; Zhao, Chu Jun; Zhang, Wei; Zhang, Hua

    2014-08-10

    We have demonstrated the passive Q-switching mode-locking operation in an erbium-doped fiber (EDF) laser by using topological insulator Bi(2)Se(3) deposited on fiber taper, whose damage threshold can be further increased by the large evanescent field interacting length. Due to the low saturation intensity, stable Q-switched mode-locked fiber lasers centered at 1562 nm can be generated at a pump power of 10 mW. The temporal and spectral characteristics for different pump strengths have also been investigated. To the best of our knowledge, it is the first time a Q-switched mode-locked EDF laser based on the fiber taper deposited by Bi(2)Se(3) was generated.

  18. Wide frequencies range of spin excitations in a rare-earth Bi-doped iron garnet with a giant Faraday rotation

    NASA Astrophysics Data System (ADS)

    Parchenko, Sergii; Stupakiewicz, Andrzej; Yoshimine, Isao; Satoh, Takuya; Maziewski, Andrzej

    2013-10-01

    Ultrafast magnetization dynamics of a rare-earth Bi-doped garnet were studied using an optical pump-probe technique via the inverse Faraday effect. We observed a wide range of frequency modes of the magnetization precession, covering two orders of magnitude. The excitation efficiency of low-frequency precessions in the GHz range, together with a significant beating effect, strongly depended on the amplitude of the external magnetic field. On the contrary, high-frequency precession was independent of the external magnetic field. The obtained results may be exploited in the development of wide class of microwave and magneto-optical devices.

  19. Tuning ferroic states in La doped BiFeO{sub 3}-PbTiO{sub 3} displacive multiferroic compounds

    SciTech Connect

    Cótica, L. F.; Freitas, V. F.; Protzek, O. A.; Eiras, J. A.; Garcia, D.; Yokaichiya, F.; Santos, I. A.; Guo, R.; Bhalla, A. S.

    2014-07-21

    In this manuscript, X-ray and high-resolution neutron powder diffraction investigations, associated with Rietveld refinements, magnetic hysteresis curves and a modeling of electron-density distributions around the ions, are used to describe the driving forces responsible for tuning the ferroic states in La doped (0.6)BiFeO{sub 3}-(0.4)PbTiO{sub 3} compositions. The intrinsic relations between the ferroic orders and the structural arrangements (angles, distances and electron-density distributions around the ions) are revealed, helping in the understanding of some aspects comprising the ferroic properties of perovskite-based displacive multiferroic compounds.

  20. Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Wang, Hsin; Menchhofer, Paul A.; Kiggans, James O.

    2013-11-01

    Since many thermoelectrics are brittle in nature with low mechanical strength, improving their mechanical properties is important to fabricate devices such as thermoelectric power generators and coolers. In this work, multiwalled carbon nanotubes (CNTs) were incorporated into polycrystalline Bi0.4Sb1.6Te3 through powder processing, which increased the flexural strength from 32 MPa to 90 MPa. Electrical and thermal conductivities were both reduced in the CNT containing materials, leading to unchanged figure of merit. Dynamic Young's and shear moduli of the composites were lower than the base material, while the Poisson's ratio was not affected by CNT doping.

  1. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  2. Structural and optical modification in Bi doped As{sub 40}S{sub 60} thin films

    SciTech Connect

    Naik, Ramakanta; Chinnaiyah, S. S.; Ganesan, R.

    2015-06-24

    The influence of substitution of Bi atom instead of S atoms on the structural and optical properties of thin films of As{sub 40}S{sub 60} are reported. The density is found to be increased with the addition Bi heavy metal into As{sub 2}S{sub 3}. The amorphous to polycrystalline structure of the bulk sample is observed for Bi more than 7%. The glass transition temperature is found to be decreased with addition of Bi. The absorption edge shifts to shorter wavelength, thereby decreasing optical band gap of Bi{sub x}As{sub 40}S{sub 60-x} (x=0,2 and 4% here) film. The optical parameter change is discussed from the stand point of chemical bonds formed in the films and related to the defect states produced due to incorporation of Bi atoms in place of chalcogenide S atoms.

  3. Design of epitaxial CdTe solar cells on InSb substrates

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-11-01

    Epitaxial CdTe has been shown by others to have a radiative recombination rate approaching unity, high carrier concentration, and low defect density. It has, therefore, become an attractive candidate for high-efficiency solar cells, perhaps becoming competitive with GaAs. The choice of substrate is a key design feature for epitaxial CdTe solar cells, and several possibilities (CdTe, Si, GaAs, and InSb) have been investigated by others. All have challenges, and these have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a close lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. Three strategies to address the band-offset problem are investigated by numerical simulation: heavy doping of the back part of the CdTe layer, incorporation of an intermediate CdMgTe or CdZnTe layer, and the formation of an InSb tunnel junction. Lastly, wach of these strategies is predicted to be helpful for higher cell performance, but a combination of the first two should be most effective.

  4. Design of epitaxial CdTe solar cells on InSb substrates

    DOE PAGESBeta

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-11-01

    Epitaxial CdTe has been shown by others to have a radiative recombination rate approaching unity, high carrier concentration, and low defect density. It has, therefore, become an attractive candidate for high-efficiency solar cells, perhaps becoming competitive with GaAs. The choice of substrate is a key design feature for epitaxial CdTe solar cells, and several possibilities (CdTe, Si, GaAs, and InSb) have been investigated by others. All have challenges, and these have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a closemore » lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. Three strategies to address the band-offset problem are investigated by numerical simulation: heavy doping of the back part of the CdTe layer, incorporation of an intermediate CdMgTe or CdZnTe layer, and the formation of an InSb tunnel junction. Lastly, wach of these strategies is predicted to be helpful for higher cell performance, but a combination of the first two should be most effective.« less

  5. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres.

    PubMed

    Sporea, D; Mihai, L; Neguţ, D; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-01-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres. PMID:27440386

  6. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres

    PubMed Central

    Sporea, D.; Mihai, L.; Neguţ, D.; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-01-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres. PMID:27440386

  7. Luminescent, dielectric, and ferroelectric properties of Pr doped Bi{sub 7}Ti{sub 4}NbO{sub 21} multifunctional ceramics

    SciTech Connect

    Zou, Hua; Hui, Xinwei; Wang, Xusheng Li, Jun; Li, Yanxia; Yao, Xi; Peng, Dengfeng

    2013-12-14

    Pr doped Bi{sub 7}Ti{sub 4}NbO{sub 21} (BTN) multifunctional ceramics were prepared by a conventional sintering technique and their luminescent, dielectric, and ferroelectric properties were investigated. The X-ray diffraction data showed that the samples were single phase, and the scanning electron microscopy image indicated that the ceramics had flake-like grains with uniform thickness. The red emission was observed under the ultraviolet and blue light excitation at room temperature. The thermal quench of luminescence was measured and the result indicated that Pr doped BTN ceramics might be potentially applied in luminescent probes and temperature sensors. With the increasing Pr{sup 3+} content, the intensity of the photoluminescence increased initially and then decreased due to concentration quenching; The Curie temperature T{sub c} was slightly shifted to the lower temperature; the ferroelectric properties was almost unchanged by doping. As a new multifunctional material, the Pr doped BTN ceramics could be used for a wide range of application, such as integrated electro-optical devices.

  8. γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres

    NASA Astrophysics Data System (ADS)

    Sporea, D.; Mihai, L.; Neguţ, D.; Luo, Yanhua; Yan, Binbin; Ding, Mingjie; Wei, Shuen; Peng, Gang-Ding

    2016-07-01

    We investigate the effects of γ irradiation on bismuth active centres (BACs) and related photoluminescence properties of bismuth/erbium co-doped silica fibre (BEDF), [Si] ~28, [Ge] ~1.60, [Al] ~0.10, [Er] ~ <0.10 and [Bi] ~0.10 atom%, fabricated by in-situ solution doping and Modified Chemical Vapor Deposition (MCVD). The samples were irradiated at 1 kGy, 5 kGy, 15 kGy, 30 kGy and 50 kGy doses, and dose rate of 5.5 kGy/h, at room temperature. The optical properties of BEDF samples are tested before and after γ irradiation. We found that high dose γ irradiation could significantly influence the formation and composition of BACs and their photoluminescence performance, as important changes in absorption and emission properties associated with the 830 nm pump produces the direct evidence of γ irradiation effects on BAC-Si. We notice that the saturable to unsaturable absorption ratio at pump wavelength could be increased with high dose γ irradiation, indicating that emission and pump efficiency could be increased by γ irradiation. Our experimental results also reveal good radiation survivability of the BEDF under low and moderate γ irradiation. Our investigation suggests the existence of irradiation related processing available for tailoring the photoluminescence properties and performance of bismuth doped/co-doped fibres.

  9. Effects of K doping on structural and superconducting properties of Bi{sub 1.5}Pb{sub 0.5}Sr{sub 1.8}CaCu{sub 2}O{sub 8+δ} compounds

    SciTech Connect

    Belala, K; Mosbah, M. F.

    2013-12-16

    Two kinds of potassium doped Bi(Pb)2212 samples are used to investigate the effect of doping the Bi(Pb)2212 ((Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}) phase by potassium (K): In the first one K is substituted on the Sr site; In the second one K is added. Using the solid state method reaction samples of Bi{sub 1.5}Pb{sub 0.5}(Sr{sub 1.8−x}K{sub x})CaCu{sub 2}O{sub 8+d} and Bi{sub 1.5}Pb{sub 0.5}Sr{sub 1.8}CaCu{sub 2}O{sub 8+d}K{sub x} (0 ≤ x≤ 0.05) have been prepared from powders of carbonates and primary oxides having purity over 99%. The samples have been characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and resistivity versus temperature measurements. Results show how the kind and the rate of doping by potassium affects the structural and transport properties of Bi(Pb)2212 phase.

  10. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst.

    PubMed

    Dong, Fan; Sun, Yanjuan; Fu, Min; Ho, Wing-Kei; Lee, Shun Cheng; Wu, Zhongbiao

    2012-01-10

    Novel N-doped (BiO)(2)CO(3) hierarchical microspheres (N-BOC) were fabricated by a facile one-pot template free method on the basis of hydrothermal treatment of bismuth citrate and urea in water for the first time. The N-BOC sample was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, N(2) adsorption-desorption isotherms, and Fourier transform-infrared spectroscopy. The N-BOC was constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets led to the formation of hierarchical framework with mesopores, which is favorable for efficient transport of reaction molecules and harvesting of photoenergy. Due to the in situ doped nitrogen substituting for oxygen in the lattice of (BiO)(2)CO(3), the band gap of N-BOC was reduced from 3.4 to 2.5 eV, making N-BOC visible light active. The N-BOC exhibited not only excellent visible light photocatalytic activity, but also high photochemical stability and durability during repeated and long-term photocatalytic removal of NO in air due to the special hierarchical structure. This work demonstrates that the facile fabrication method for N-BOC combined with the associated outstanding visible light photocatalytic performance could provide new insights into the morphology-controlled fabrication of nanostructured photocatalytic materials for environmental pollution control. PMID:22122119

  11. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    NASA Astrophysics Data System (ADS)

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-08-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH‑ absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10‑21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

  12. Effect of doping of vanadium ions on crystal structure, dielectric and magnetic properties of Bi0.8Ba0.2FeO3 multiferroic

    NASA Astrophysics Data System (ADS)

    Godara, Priyanka; Agarwal, Ashish; Ahlawat, Neetu; Sanghi, Sujata; Kaswan, Kavita

    2016-05-01

    Synthesis of Bi0.8Ba0.2Fe1-xVxO3 multiferroics (with x=0.0, 0.02 and 0.04 having code V0, V2 and V4, respectively) have been done by solid-state reaction technique. The structural, magnetic and electrical characterization of the prepared ceramics have been carried out using X-ray diffraction, Vibrating sample magnetometry and impedance spectroscopy, respectively. Rietveld refinement studies show that all samples have rhombohedral structure (R3c). The observed lattice distortion is due to the difference in the ionic radii of parent ions and doped ions. Sizeable M-H hysteresis loops revealed the transformation of antiferromagnetic BiFeO3 (BFO) into ferromagnetic with Ba and V addition. The highest values of coercive field ~4.5 kOe and saturation magnetization ~1.14 emu/g are observed for V0 and V2 samples, respectively. The dielectric properties were improved with the co-doping as compared with the pure BFO compound due to structural distortion and decrease of oxygen vacancies by addition of higher valence V5+ cation.

  13. Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

    PubMed Central

    Han, Kexuan; Zhang, Peng; Wang, Shunbin; Guo, Yanyan; Zhou, Dechun; Yu, Fengxia

    2016-01-01

    In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd–Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm3+ ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH− absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10−21 cm2) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm3+: 4F3 → 3H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation (3H6 + 3H4 → 3F4 + 3F4) rate. Our results suggest that the Tm3+ doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system. PMID:27506152

  14. Quantized Hall Effect and Shubnikov-de Haas Oscillations in Highly Doped Bi2Se3: Evidence for Layered Transport of Bulk Carriers

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Tian, Jifa; Miotkowski, Ireneusz; Shen, Tian; Hu, Jiuning; Qiao, Shan; Chen, Yong P.

    2012-05-01

    Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass oscillations accompanied by quantized Hall resistances (Rxy) in highly doped n-type Bi2Se3 with bulk carrier concentrations of few 1019cm-3. Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c-axis component of the magnetic field controls the Landau level formation. The quantized step size in 1/Rxy is found to scale with the sample thickness, and average ˜e2/h per quintuple layer. We show that the observed magnetotransport features do not come from the sample surface, but arise from the bulk of the sample acting as many parallel 2D electron systems to give a multilayered quantum Hall effect. In addition to revealing a new electronic property of Bi2Se3, our finding also has important implications for electronic transport studies of topological insulator materials.

  15. Quantized Hall effect and Shubnikov-de Haas oscillations in highly doped Bi2Se3: evidence for layered transport of bulk carriers.

    PubMed

    Cao, Helin; Tian, Jifa; Miotkowski, Ireneusz; Shen, Tian; Hu, Jiuning; Qiao, Shan; Chen, Yong P

    2012-05-25

    Bi2Se3 is an important semiconductor thermoelectric material and a prototype topological insulator. Here we report observation of Shubnikov-de Hass oscillations accompanied by quantized Hall resistances (R(xy)) in highly doped n-type Bi2Se3 with bulk carrier concentrations of few 10(19) cm(-3). Measurements under tilted magnetic fields show that the magnetotransport is 2D-like, where only the c-axis component of the magnetic field controls the Landau level formation. The quantized step size in 1/R(xy) is found to scale with the sample thickness, and average ~e(2)/h per quintuple layer. We show that the observed magnetotransport features do not come from the sample surface, but arise from the bulk of the sample acting as many parallel 2D electron systems to give a multilayered quantum Hall effect. In addition to revealing a new electronic property of Bi2Se3, our finding also has important implications for electronic transport studies of topological insulator materials. PMID:23003290

  16. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia.

    PubMed

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4(+) generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  17. Primary Phase Field of the Pb-Doped 2223 High-Tc Superconductor in the (Bi, Pb)-Sr-Ca-Cu-O System

    PubMed Central

    Wong-Ng, W.; Cook, L. P.; Kearsley, A.; Greenwood, W.

    1999-01-01

    Both liquidus and subsolidus phase equilibrium data are of central importance for applications of high temperature superconductors in the (Bi, Pb)-Sr-Ca-Cu-O system, including material synthesis, melt processing and single crystal growth. The subsolidus equilibria of the 110 K high-Tc Pb-doped 2223 ([Bi, Pb], Sr, Ca, Cu) phase and the location of the primary phase field (crystallization field) have been determined in this study. For the quantitative determination of liquidus data, a wicking technique was developed to capture the melt for quantitative microchemical analysis. A total of 29 five-phase volumes that include the 2223 phase as a component was obtained. The initial melt compositions of these volumes range from a mole fraction of 7.3 % to 28.0 % for Bi, 11.3 % to 27.8 % for Sr, 1.2 % to 19.4 % for Pb, 9.8 % to 30.8 % for Ca, and 17.1 % to 47.0 % for Cu. Based on these data, the crystallization field for the 2223 phase was constructed using the convex hull technique. A section of this “volume” was obtained by holding two components of the composition at the median value, allowing projection on the other three axes to show the extent of the field.

  18. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia.

    PubMed

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-22

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4(+) generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  19. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    NASA Astrophysics Data System (ADS)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  20. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    PubMed Central

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  1. High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes.

    PubMed

    Zhou, Lite; Zhao, Chenqi; Giri, Binod; Allen, Patrick; Xu, Xiaowei; Joshi, Hrushikesh; Fan, Yangyang; Titova, Lyubov V; Rao, Pratap M

    2016-06-01

    BiVO4 has become the top-performing semiconductor among photoanodes for photoelectrochemical water oxidation. However, BiVO4 photoanodes are still limited to a fraction of the theoretically possible photocurrent at low applied voltages because of modest charge transport properties and a trade-off between light absorption and charge separation efficiencies. Here, we investigate photoanodes composed of thin layers of BiVO4 coated onto Sb-doped SnO2 (Sb:SnO2) nanorod-arrays (Sb:SnO2/BiVO4 NRAs) and demonstrate a high value for the product of light absorption and charge separation efficiencies (ηabs × ηsep) of ∼51% at an applied voltage of 0.6 V versus the reversible hydrogen electrode, as determined by integration of the quantum efficiency over the standard AM 1.5G spectrum. To the best of our knowledge, this is one of the highest ηabs × ηsep efficiencies achieved to date at this voltage for nanowire-core/BiVO4-shell photoanodes. Moreover, although WO3 has recently been extensively studied as a core nanowire material for core/shell BiVO4 photoanodes, the Sb:SnO2/BiVO4 NRAs generate larger photocurrents, especially at low applied voltages. In addition, we present control experiments on planar Sb:SnO2/BiVO4 and WO3/BiVO4 heterojunctions, which indicate that Sb:SnO2 is more favorable as a core material. These results indicate that integration of Sb:SnO2 nanorod cores with other successful strategies such as doping and coating with oxygen evolution catalysts can move the performance of BiVO4 and related semiconductors closer to their theoretical potential.

  2. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    SciTech Connect

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  3. Atomic-force microscopy and photoluminescence of nanostructured CdTe

    SciTech Connect

    Babentsov, V.; Sizov, F.; Franc, J.; Luchenko, A.; Svezhentsova, E. Tsybrii, Z.

    2013-09-15

    Low-dimensional CdTe nanorods with a diameter of 10-30 nm and a high aspect ratio that reaches 100 are studied. The nanorods are grown by the physical vapor transport method with the use of Bi precipitates on the substrates. In addition, thin films of closely packed CdTe nanorods with the transverse dimensions {approx}(100-200) nm are grown. Atomic-force microscopy shows that the cross sections of all of the nanorods were hexagonally shaped. By photoluminescence measurements, the inference about the wurtzite structure of CdTe is supported, and the structural quality, electron-phonon coupling, and defects are analyzed. On the basis of recent ab initio calculations, the nature of defects responsible for the formation of deep levels in the CdTe layers and bulk crystals are analyzed.

  4. High-Rate LiTi2(PO4)3@N-C Composite via Bi-nitrogen Sources Doping.

    PubMed

    Sun, Dan; Xue, Xia; Tang, Yougen; Jing, Yan; Huang, Bin; Ren, Yu; Yao, Yan; Wang, Haiyan; Cao, Guozhong

    2015-12-30

    Mesoporous LiTi2(PO4)3@nitrogen-rich doped carbon composites have been synthesized by a novel bi-nitrogen sources doping strategy. Tripolycyanamide (C3H6N6) and urea are proposed for the first time as both nitrogen and carbon sources to achieve a homogeneous nitrogen-doped carbon coating layer via an in situ method. The electrode delivers ultrahigh rate performance and outstanding cycling stability in lithium ion batteries (LIBs). In an organic electrolyte system, the electrode demonstrates high discharge capacities of 120 mAh g(-1) and 87 mAh g(-1) at 20C and 50C, respectively. Moreover, 89.5% of initial discharge capacity is retained after 1000 cycles at 10C. When used as an anode for aqueous LIBs, the electrode also demonstrates superior rate capability with the discharge capacity of 103 mAh g(-1) at 10C, corresponding to 84% of that at 1C. Outstanding cycling stability with capacity retention of 91.2% after 100 cycles at 30 mA g(-1) and 90.4% over 400 cycles at 150 mA g(-1) are also demonstrated. The uniform nitrogen-rich carbon coating and unique mesoporous structure play important roles in effectively suppressing the charge-transfer resistance and facilitating Li ion/electron diffusion, thus leading to the superior electrochemical properties. PMID:26633580

  5. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films

    SciTech Connect

    Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.; Coldea, A. I.; Hesjedal, T.; Baker, A. A.; Harrison, S. E.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Laan, G. van der

    2014-12-15

    We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 μ{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μ{sub B}/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  6. Ti doping-driven magnetic and morphological changes in multiferroic ceramics of Bi0.9La0.1FeO3

    NASA Astrophysics Data System (ADS)

    Khomchenko, V. A.; Paixão, J. A.

    2015-09-01

    Investigation of the crystal structure, microstructure, local ferroelectric, and magnetic properties of the Bi0.9La0.1Fe1-y Ti y O3 (0  ⩽  y  ⩽  0.1) perovskites has been carried out at room temperature to shed light on the conditions that favor the appearance of spontaneous magnetization in the polar phase of BiFeO3-based multiferroics. The compounds have been shown to possess the noncentrosymmetric rhombohedral structure (space group R3c) specific to the antiferromagnetic (cycloidal) phase of the parent Bi0.9La0.1FeO3. A gradual suppression of the rhombohedral distortions and a decrease of the ferroelectric polarization have been found in the series with increasing Ti content. The substitution dramatically affects the morphology of the ceramic samples: a drastic (from ~10 μm for y = 0 to ~1 μm for 0.02  ⩽  y  ⩽  0.1) decrease of the average grain size has been revealed. The decrease is accompanied by the formation of a nanodimensional ferroelectric domain structure. The origin of the morphological changes has been explained by the charge-compensating mechanism that involves the formation of lattice defects in the donor-doped materials. It has been proposed that the same mechanism can be responsible for the substitution-induced removal of the cycloidal modulation resulting in the establishment of a weak ferromagnetic state in the Bi0.9La0.1Fe1-y Ti y O3 series.

  7. Positron probing of gamma-irradiated Ge doped with P, As, Sb, and Bi: Changes in atomic structures of defects due to n→ p conversion

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.

    2009-12-01

    The emission of the high-momentum annihilation radiation from the subvalent ion core shells and electron density around a positron localized at a vacancy-group-V-impurity atom complexes produced in oxygen-lean Ge doped with P, As, Sb, and Bi by irradiation with 60Co gamma-rays at room temperature have been investigated with the help of the angular correlation of annihilation radiation (ACAR) before and after n→ p conversion. The probability of positron annihilation in the subvalent shells of atoms incorporated in dominant radiation centers was found to be dependent on the ratio of the ion core radii ri(P 5+, As 5+)/ ri(Ge 4+)<1 and ri(Sb 5+, Bi 5+)/ ri(Ge 4+)>1, respectively. In passing from P to As impurity atoms the activation energy Δ Ee of electron emission to be detected by DLTS measurements is increased by ~(+0.017 eV) vs. the increase of the electron density parameter to be reconstructed by ACAR data, Δ r‧ s= r‧ s(As)- r‧ s(P)≈0.029 a.u. On the contrary, in passing from Sb to Bi impurity atoms, Δ Ee value is decreased by ~(-0.028 eV) whereas the electron density parameter rises by Δ r‧ s= r‧ s(Bi)- r‧ s(Sb)≈0.04 a.u. After n→ p conversion a marked decrease in both the electron density and the number of ion cores around the positron points to the fact that the radiation-produced complexes with group-V-impurity atoms (P, As, Sb, Bi) are of a multi-vacancy character. The deep acceptor states in the forbidden gap ( Ev+0.1), ( Ev+0.12), ( Ev+0.16) eV to be attributed to the P-, As-, Sb-, and Bi-containing multi-vacancy centers, respectively, were found to contribute to lessening the electron density around the trapped positron. It is argued that a close similarity of the As 5+ and Ge 4+ ion cores results in a small (but marked) augmentation in the electron density around the positron in As-containing multi-vacancy centers after n→ p conversion. A trend for inward relaxation of the ion cores is observed in all radiation-produced centers

  8. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Hao, Jing; Zhou, Jianping; Liu, Peng

    2016-05-01

    Single-crystalline bare Bi2O2CO3 (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi2O2CO3 (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi2O2CO3 flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV-vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi2O2CO3 under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  9. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ

    DOE PAGESBeta

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; Amorese, A.; Brookes, N. B.; Dellea, G.; Lee, W. -S.; Minola, M.; Schmitt, T.; Yoshida, Y.; et al

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less

  10. High multi-photon visible upconversion emissions of Er{sup 3+} singly doped BiOCl microcrystals: A photon avalanche of Er{sup 3+} induced by 980 nm excitation

    SciTech Connect

    Li, Yongjin; Song, Zhiguo Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi

    2013-12-02

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} (green) and {sup 4}F{sub 9/2} (red) levels of Er{sup 3+} ions were observed from Er{sup 3+} singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er{sup 3+} ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er{sup 3+} ions doping.

  11. Structural, optical and transport properties of transition metals doped (A: Co, Ni and Cu) BiFe{sub 0.9}A{sub 0.1}O{sub 3}

    SciTech Connect

    Parveen, Azra Agrawal, Shraddha; Naqvi, A. H.

    2015-06-24

    Nanoparticles of pure and Transition metals doped (Co, Ni and Cu) BiFeO{sub 3} of the composition BiFe{sub 0.9}A{sub 0.1}O{sub 3} (A = Co, Ni and Cu) have been successfully synthesized by sol gel auto combustion method using citric acid as a chelating agent and calcinated at 300°C. Microstructural analyses were done by XRD, TEM and SEM techniques. The crystallite size was resolute by powder X-ray diffraction technique whereas, UV-VIS technique was used to study the optical properties and band gap (Eg) of all samples. The variation of a. c. conductivity has been studied as function of frequency. It was observed that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. It was also observed that doping of Transition Metals affects the optical properties effectively and band gaps were also increased.

  12. Dielectric behavior and ac conductivity in Aurivillius Bi4Ti3O12 doped by antiferromagnetic BiFeO3

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Tian, Z. M.; Yuan, S. L.; Duan, H. N.; Qiu, Y.

    2012-06-01

    Bi5Ti3FeO15 ceramics were synthesized by the solid state reaction. XRD analysis shows a single phase perovskite structure with no impurities identified. Two obvious dielectric anomalies around 1007 and 1090 K were exhibited by this material, indicating that there are two phase transitions. While no peak was found in the tan δ-T curve. In addition, the conduction loss activation energies calculated at 476-639 K, 652-966 K, and 980-1095 K are 0.156, 0.262, and 0.707 eV, respectively. Polarization versus electric field hysteresis loops associated with 2Pr of 6.08 μC/cm2 and 2Ec of 59 kV/cm were obtained.

  13. Effect of divalent (Sr, Ba) doping on the structural and magnetic properties of BiFeO{sub 3}

    SciTech Connect

    Rangi, Manisha Sanghi, Sujata; Agarwal, Ashish; Jangra, Sandhaya; Singh, Ompal

    2015-06-24

    The effect of divalent substitution on the crystal structure and magnetic properties of BiFeO{sub 3} has been investigated using X-ray diffraction and magnetic measurements technique. Single phase Bi{sub 0.8}A{sub 0.2}FeO{sub 3} (A= Sr, Ba) multiferroics have been synthesized by solid state reaction method. Rietveld analysis of the XRD patterns revealed that the prepared ceramics exhibit rhombohedral structure with space group R3c. M–H hysteresis loops were recorded at 5K revealed that Sr and Ba substitution transformed antiferromagnetic BiFeO3 into weak ferromagnetic. The enhanced magnetization with Sr and Ba addition is confirmed by the MT curve recorded at 1T. It is closely related to intrinsic structural distortion and modification of the antiparallel spin structure.

  14. 808-nm diode-pumped dual-wavelength passively Q-switched Nd:LuLiF4 laser with Bi-doped GaAs

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Li, T.; Li, D. C.; Zhao, S. Z.; Li, G. Q.; Hang, Y.; Zhang, P. X.; Li, X. Y.; Qiao, H.

    2015-09-01

    Diode-pumped CW and passively Q-switched Nd:LuLiF4 lasers with stable, synchronous dual-wavelength operations near 1047 and 1053 nm were demonstrated for the first time. The maximal CW output power of 821 mW was obtained at an incident pump power of 6.52 W. Employing high quality Bi-doped GaAs as saturable absorber, stable dual-wavelength Q-switched operation was realized. Under 6.52 W incident pump power, the minimal pulse duration of 1.5 ns, the largest single pulse energy of 11.32 μJ, and the highest peak power of 7.25 kW were achieved.

  15. Influence of Zr{sup 4+} doping on structural and electrical properties of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramic

    SciTech Connect

    Nayak, P. Panigrahi, S.; Badapanda, T.

    2015-06-24

    This article reports a systematic study of doping effects on the structural and electrical properties of layer structured strontium bismuth titanate ceramic. In this study monophasic SrBi{sub 4}Ti{sub 4-x}Zr{sub x}O{sub 15} with x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25 ceramics were synthesized from the solid-state reaction route. X-ray diffraction analysis shows that the Zr-modified SBT ceramics have a pure four-layer Aurivillius phase structure. Dielectric properties revealed that the diffuseness of phase transition increases where as corresponding permittivity value decrease with increasing Zr content. Piezoelectric properties of SBTZ ceramics were improved by the modification of Zirconium ion. Moreover, the reason behind for improvement of piezoelectric properties of modified SBTZ ceramics was also discussed.

  16. Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application

    NASA Astrophysics Data System (ADS)

    Tang, Zhenhua; Zeng, Jia; Xiong, Ying; Tang, Minghua; Xu, Dinglin; Cheng, Chuanpin; Xiao, Yongguang; Zhou, Yichun

    2013-12-01

    The Ce and Mn co-doped BiFeO3 (BCFMO) thin films were synthesized on Pt/Ti/SiO2/Si substrates using a sol-gel method. The unipolar resistive switching (URS) and bipolar resistive switching (BRS) behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large ROFF/RON ratio (>80), long retention time (>105 s) and low programming voltages (<1.5 V). Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC) and Schottky emission were observed as the conduction mechanisms of the devices.

  17. Spectroscopic properties of Bi2ZnOB2O6 single crystals doped with Pr3+ ions: Absorption and luminescence investigations

    NASA Astrophysics Data System (ADS)

    Kasprowicz, D.; Brik, M. G.; Jaroszewski, K.; Pedzinski, T.; Bursa, B.; Głuchowski, P.; Majchrowski, A.; Michalski, E.

    2015-09-01

    Nonlinear optical Bi2ZnOB2O6 single crystals doped with Pr3+ ions were grown using the Kyropoulos method. The absorption and luminescence properties of these new systems were investigated for the first time. The crystals are characterized by the large values of nonlinear optical coefficients. Effective luminescence of the Pr3+ ions makes this system an excellent candidate for the near-infrared (NIR) and/or ultraviolet (UV) to visible (VIS) laser converters. Based on the obtained experimental spectroscopic data, detailed analysis of the absorption and luminescence spectra was performed using the conventional Judd-Ofelt theory. Those transitions, which can be potentially used for laser applications of the Pr3+ ion, have been identified. In addition to the intensity parameters Ω2, Ω4, Ω6 the branching ratios and radiative lifetimes were estimated for all possible transitions in the studied spectral region.

  18. Energy storage property in lead free gd doped Na1/2Bi1/2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Zannen, Moneim; Lahmar, Abdelilah; Khemakhem, Hamadi; El Marssi, Mimoun

    2016-11-01

    The Effect of Gadolinium ion incorporation on structure, dielectric and ferroelectric properties of lead-free Na1/2Bi1/2TiO3 (NBT) ceramic was investigated. X-ray diffraction allowed the identification of a pure phase isostructural to NBT. Dielectric measurements showed more pronounced anomalies in the range of depolarization temperature when Gd was added. Antiferroelectric-like behavior with a double pinched hysteresis loop was observed versus temperature in the doped phase. The energy-storage density (W) was calculated using the P-E loops data and was found to vary from 0.45 J cm-3 at room temperature to 0.85 J cm-3 at 413 K, which is promising for energy storage application.

  19. Electron-beam induced disorder effects in optimally doped Bi2Sr2CaCu2O8+x single crystal samples

    NASA Astrophysics Data System (ADS)

    Vobornik, I.; Berger, H.; Pavuna, D.; Margaritondo, G.; Forro, L.; Grioni, M.; Rullier-Albenque, F.; Onellion, M.; EPFL Collaboration; Laboratoire Des Solides Irradiés Collaboration

    2000-03-01

    We report on the effects of electron-beam induced disorder in optimally doped Bi2Sr2CaCu2O8+x single crystal samples, measured with angle-resolved photoemission. In the superconducting state, the disorder fills in the gap, without changing the binding energy or the width of the narrow coherent feature.[1] In the normal state, disorder leads to an anisotropic pseudogap in angle-resolved photoemission, with the largest pseudogap near the (0,p) point and no pseudogap in the direction.[2,3] We discuss implications of these data. 1. I. Vobornik et.al., Phys. Rev. Lett. 82 , 3128 (1999). 2. I. Vobornik, Ph.D. thesis, EPFL, Lausanne, Switzerland, October, 1999. 3. I. Vobornik et.al., unpublished.

  20. Resistive switching properties of Ce and Mn co-doped BiFeO{sub 3} thin films for nonvolatile memory application

    SciTech Connect

    Tang, Zhenhua; Zeng, Jia; Tang, Minghua Xu, Dinglin; Cheng, Chuanpin; Xiao, Yongguang; Zhou, Yichun; Xiong, Ying

    2013-12-15

    The Ce and Mn co-doped BiFeO{sub 3} (BCFMO) thin films were synthesized on Pt/Ti/SiO{sub 2}/Si substrates using a sol-gel method. The unipolar resistive switching (URS) and bipolar resistive switching (BRS) behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large R{sub OFF}/R{sub ON} ratio (>80), long retention time (>10{sup 5} s) and low programming voltages (<1.5 V). Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC) and Schottky emission were observed as the conduction mechanisms of the devices.

  1. Up-conversion luminescence and optical temperature-sensing properties of Er3+-doped perovskite Na0.5Bi0.5TiO3 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhou, Hong; Wang, Xiaoxia; Pan, Anlian

    2016-11-01

    In this work we demonstrate the preparation of Er3+ doped perovskite ferroelectric Na0.5Bi0.5TiO3 nanocrystals and their application in temperature sensing. The samples were synthesized via a facile hydrothermal method. Upconversion emission at 528 nm and 547 nm from two thermodynamically coupled excited states of Er3+ were recorded in the temperature from 80 K to 480 K under the excitation of a 980 nm diode laser. The emission intensity ratio (I528/I547) as a function of the temperature was investigated. A sensitivity of 0.0053 K-1 is observed at 400 K, suggesting they are promising candidate for nanothermometers.

  2. Broadband 1.5- μm emission of high erbium-doped Bi 2O 3-B 2O 3-Ga 2O 3 glasses

    NASA Astrophysics Data System (ADS)

    Fan, Huiyan; Wang, Guonian; Li, Kefeng; Hu, Lili

    2010-07-01

    High Erbium-doped glass showing the wider 1.5-μm emission band is reported in the Bi 2O 3-B 2O 3-Ga 2O 3 system and its thermal stability and optical properties such as absorption, emission spectra, absorption and stimulated emission cross-sections and fluorescence lifetime are investigated. Compared with other glass hosts, the gain bandwidth properties of high Er 3+ content in BBG glass are better than those of tellurite, germanate, silicate and phosphate glasses. The broad and flat 4I 13/2→ 4I 15/2 emission and the larger stimulated emission cross-section of Er 3+ ions around 1.5 μm enable it to be used as a host material for potential broadband optical amplifiers at C and L bands in the microchip configuration.

  3. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  4. Nonadiabatic small-polaron hopping conduction in Li-doped and undoped Bi4Sr3Ca3CuyOx (0<=y<=5)

    NASA Astrophysics Data System (ADS)

    Mollah, S.; Som, K. K.; Bose, K.; Chakravorty, A. K.; Chaudhuri, B. K.

    1992-11-01

    Detailed experimental results of temperature- and CuO-concentration-dependent dc conductivities of semiconducting Bi4Sr3Ca3CuyOx (y=0 to 5) and Li-doped Bi4Sr3Ca3-zLizCu4Ox (z=0.1, 0.5, and 1.0) glasses are reported. The variation of activation energy with glass compositions dominates the conductivity. Unlike many glasses with transition-metal ions, a strong preexponential factor containing the ``small-polaron'' tunneling term [exp(-2αR)] is observed. Nonadiabatic small-polaron hopping mechanism is found to be appropriate for explaining the conductivity data of both glass systems. Addition of alkali-metal ions decreases the conductivities and causes appreciable change of some model parameters obtained from least-squares fittings of the experimental data. The overall thermal behavior of the electrical conductivities of the glasses, however, remains unaltered. This indicates that small (less than 10 wt.%) amount of Li or other alkali-metal ions in these glasses acts as a flux to keep the oxygen content fixed in the corresponding glass-ceramic (superconducting) phases. This in turn helps increase the superconducting transition temperature of the glass ceramics and also lower the sintering and melting temperatures of the glasses.

  5. Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1-x)Se.

    PubMed

    Park, Hyun S; Lee, Heung Chan; Leonard, Kevin C; Liu, Guanjie; Bard, Allen J

    2013-07-22

    Photoelectrochemical water splitting to generate H2 and O2 using only photon energy (with no added electrical energy) has been demonstrated with dual n-type-semiconductor (or Z-scheme) systems. Here we investigated two different Z-scheme systems; one is comprised of two cells with the same metal-oxide semiconductor (W- and Mo-doped bismuth vanadate), that is, Pt-W/Mo-BiVO4, and the other is comprised of the metal oxide and a chalcogenide semiconductor, that is, Pt-W/Mo-BiVO4 and Zn(0.2)Cd(0.8)Se. The redox couples utilized in these Z-scheme configurations were I(-)/IO3(-) or S(2-)/S(n)(2-), respectively. An electrochemical analysis of the system in terms of cell components is shown to illustrate the behavior of the complete photoelectrochemical Z-scheme water-splitting system. H2 gas from the unbiased photolysis of water was detected using gas chromatography-mass spectroscopy and using a membrane-electrode assembly. The electrode configuration to achieve the maximum conversion efficiency from solar energy to chemical energy with the given materials and the Z-scheme is discussed. Here, the possibilities and challenges of Z-scheme unbiased photoelectrochemical water-splitting devices and the materials to achieve practical solar-fuel generation are discussed.

  6. Thermoelectric Properties of Cu-doped Bi2Te2.85Se0.15 Prepared by Pulse-Current Sintering Under Cyclic Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Mimura, Naoki; Takimura, Kodai; Morito, Shigekazu; Kikuchi, Kotaro

    2016-03-01

    N-type Cu-doped Bi2Te2.85Se0.15 thermoelectric materials were prepared by pulse-current sintering under cyclic uniaxial pressure, and the effect of the cyclic uniaxial pressure on texture and thermoelectric properties was investigated. Cu x Bi2Te2.85Se0.15 ( x = 0-0.03) powder prepared by mechanical alloying was sintered at 673 K using pulse-current heating under 100 MPa of cyclic uniaxial pressure. X-ray diffraction patterns and electron backscattered diffraction analyses showed that the cyclic uniaxial pressure was effective for texture control. The flattened crystal grains were stacked in the thickness direction of the sintered materials and the hexagonal c-plane strongly tended to align in the direction perpendicular to the uniaxial pressure. As a result of this crystal alignment, the electrical resistivity in the direction perpendicular to the uniaxial pressure became smaller than that of equivalent samples prepared with a constant uniaxial pressure. The smaller resistivity led to a larger power factor, and the figure of merit was improved by the application of cyclic uniaxial pressure.

  7. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise.

  8. Fluorometric sensing of ultralow As(III) concentrations using Ag doped hollow CdS/ZnS bi-layer nanoparticles.

    PubMed

    Boxi, Siddhartha Sankar; Paria, Santanu

    2015-12-21

    Arsenic poisoning from drinking water has been an important global issue in recent years. Because of the high level toxicity of arsenic to human health, an easy, inexpensive, low level and highly selective detection technique is of great importance to take any early precautions. This study reports the synthesis of Ag doped hollow CdS/ZnS bi-layer (Ag-h-CdS/ZnS) nanoparticles for the easy fluorometric determination of As(iii) ions in the aqueous phase. The hollow bi-layer structures were synthesized by a sacrificial core method using AgBr as the sacrificial core and the core was removed by dissolution in an ammonium hydroxide solution. The synthesized nanoparticles were characterized using different instrumental techniques. A good linear relationship was obtained between fluorescence quenching intensity and As(iii) concentration in the range of 0.75-22.5 μg L(-1) at neutral pH with a limit of detection as low as 0.226 μg L(-1). PMID:26541652

  9. Microstructure and electrical properties in W/Nb co-doped Aurivillius phase Bi{sub 4}Ti{sub 3}O{sub 12} piezoelectric ceramics

    SciTech Connect

    Peng, Zhihang; Chen, Qiang; Chen, Yu; Xiao, Dingquan; Zhu, Jianguo

    2014-11-15

    Highlights: • W/Nb codoped BIT ceramics were prepared by the mixed oxides route. • High nd{sup 0} electronic configuration of W/Nb reduces the lattice distortion and T{sub C}. • Oxygen vacancy is responsible for dielectric relaxation and DC conduction process. • W/Nb additives significantly enhanced the piezoelectric coefficient d{sub 33} value. • BWNb-10 ceramics possessed large remnant polarization and a wide sintering window. - Abstract: Aurivillius-type Bi{sub 4}Ti{sub 3-x}W{sub x/2}Nb{sub x/2}O{sub 12} ceramics were prepared by a conventional solid-state sintering method. The XRD patterns demonstrated that all compositions were a single three layered crystalline structure, involving a reduction of lattice distortion with an increase in W/Nb doping level. The electrical properties including dielectric, electrical conduction and piezoelectric properties were tailored by W/Nb additives. The Curie-temperature decreased, whereas the electrical resistivity drastically increased with introduction of W/Nb donor dopants. As a result, a high electric field can be applied during the poling process. The Bi{sub 4}Ti{sub 2.9}W{sub 0.05}Nb{sub 0.05}O{sub 12} ceramics exhibited optimum piezoelectric coefficient (d{sub 33} ∼22.8 pC/N), large remnant polarization (2P{sub r} ∼26.8 μC/cm{sup 2} @ 200 °C) together with a high Curie temperature (T{sub C} ∼635 °C). Furthermore, this composition possessed a wide sintering window with outstanding piezoelectric properties. These parameters indicate that Bi{sub 4}Ti{sub 2.9}W{sub 0.05}Nb{sub 0.05}O{sub 12}-based ceramic is a promising candidate for high temperature piezoelectric applications.

  10. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  11. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation

    NASA Astrophysics Data System (ADS)

    Jiang, Xing-an; Jiang, Xiang-ping; Chen, Chao; Tu, Na; Chen, Yun-jing; Zhang, Ban-chao

    2016-03-01

    Na0.5Bi4.5- x Eu x Ti4O15 (NBT- x Eu3+) ceramics with x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT-0.25Eu3+ ceramics show the strongest red and orange emissions corresponding to the 5D0 → 7F2 (617 nm) and 5D0 → 7F1 (596 nm) transitions, respectively. The strongest excitation band around 465 nm matches well with the emission wavelength of commercial InGaN-based blue LED chip, indicating that Eu3+-doped NBT ceramics may be used as potential environmental friendly red-orange phosphor for W-LEDs application. As an inherent ferroelectric and piezoelectric material, the electrical properties of this potentially multifunctional electro-optical material have been also studied. The introduction of Eu3+ distinctly increased the Curie temperature ( T C ) of NBT- x Eu3+ ceramics from 640°C to 711°C as x ranges from 0 to 0.40. For higher temperature applications, the electrical conductivity was also investigated. The conduction of charge carriers in high-temperature range originates from the conducting electrons from the ionization of oxygen vacancies. High T C and low tan δ makes Eu3+-doped NBTceramic also suitable for high temperature piezoelectric sensor applications and electro-optical integration.

  12. Topological insulator: Bi{sub 2}Se{sub 3}/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser

    SciTech Connect

    Guo, Bo; Yao, Yong Yang, Yan-Fu; Yuan, Yi-Jun; Wang, Rui-Lai; Wang, Shu-Guang; Ren, Zhong-Hua; Yan, Bo

    2015-02-14

    We experimentally demonstrate a multi-wavelength ultrafast erbium-doped fiber laser incorporating a μm-scale topological insulator: Bi{sub 2}Se{sub 3}/Polyvinyl Alcohol film as both an excellent saturable absorber for mode-locking and a high-nonlinear medium to induce a giant third order optical nonlinear effect for mitigating the mode competition of erbium-doped fiber laser and stabilizing the multi-wavelength oscillation. By properly adjusting the pump power and the polarization state, the single-, dual-, triple-, four-wavelength mode-locking pulse could be stably initiated. For the four-wavelength operation, we obtain its pulse width of ∼22 ps and a fundamental repetition rate of 8.83 MHz. The fiber laser exhibits the maximum output power of 9.7 mW with the pulse energy of 1.1 nJ and peak power of 50 W at the pump power of 155 mW. Our study shows that the simple, stable, low-cost multi-wavelength ultrafast fiber laser could be applied in various potential fields, such as optical communication, biomedical research, and radar system.

  13. Spectroscopic properties of B2O3-PbO-Bi2O3-GeO2 glass doped with Sm3+ and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera, A.; Buchner, S.; Camerini, R. V.; Jacinto, C.; Balzaretti, N. M.

    2016-02-01

    Heavy metal oxide B2O3-PbO-Bi2O3-GeO2 transparent glass doped with Sm3+ was synthesized and implanted with Au+ using energy of 300 keV and fluence of 1 × 1016 cm-2. The annealing of the implanted glass at moderate temperature below the glass transition temperature induced the nucleation of gold nanoparticles, confirmed by the characteristic absorption band in the visible range and by transmission electron microscopy. Using Miés and Doylés theories for the surface plasmon resonance, the average size of the gold nanoparticles was about 4.6 nm, similar to the values observed by transmission electron microscopy. It was also observed the crystallization of a thin layer of the glass at the implanted surface after annealing, detected by X-ray diffraction and scanning electron microscope. Visible and near-infrared emission of Sm3+ was enhanced after annealing of the glass implanted with gold. Judd-Ofelt parameters and radiative parameters were calculated for the glass doped with Sm3+ with and without gold nanoparticles.

  14. Thickness-dependent phase boundary in Sm-doped BiFeO3 piezoelectric thin films on Pt/Ti/SiO2/Si substrates.

    PubMed

    Sun, Wei; Li, Jing-Feng; Zhu, Fangyuan; Yu, Qi; Cheng, Li-Qian; Zhou, Zhen

    2015-08-14

    Sm-doped BiFeO3 thin films were fabricated on platinized silicon substrates via a sol-gel method. Sm contents and thicknesses were varied in a wide range to investigate their effects on the phase structure and piezoelectricity. X-ray diffraction and Raman spectroscopy experiments revealed a rhombohedral to orthorhombic phase transition and the co-existence of both phases in a certain compositional vicinity. It is found that the proportion of a rhombohedral phase increased with film thickness at the compositions corresponding to the phase transition boundary, indicating the influence of the film thickness on the phase structure. The phase transition phenomenon and film thickness effect on the boundary were also studied by piezoresponse force microscopy. Based on the structure analysis and piezoelectric characterization results, a phase diagram of thickness versus composition was proposed, in which the morphotropic phase boundary was located at 9% to 11% in thinner Sm-doped films and shifted towards the Sm-rich side with increasing thickness.

  15. Magnetism-induced massive Dirac spectra and topological defects in the surface state of Cr-doped Bi2Se3-bilayer topological insulators

    NASA Astrophysics Data System (ADS)

    Chen, C.-C.; Teague, M. L.; He, L.; Kou, X.; Lang, M.; Fan, W.; Woodward, N.; Wang, K.-L.; Yeh, N.-C.

    2015-11-01

    Proximity-induced magnetic effects on the surface Dirac spectra of topological insulators are investigated by scanning tunneling spectroscopic studies of bilayer structures consisting of undoped Bi2Se3 thin films on top of Cr-doped Bi2Se3 layers. For thickness of the top Bi2Se3 layer equal to or smaller than 3 quintuple layers, a spatially inhomogeneous surface spectral gap Δ opens up below a characteristic temperature {{T}{{c}}}2{{D}}, which is much higher than the bulk Curie temperature {{T}{{c}}}3{{D}} determined from the anomalous Hall resistance. The mean value and spatial homogeneity of the gap Δ generally increase with increasing c-axis magnetic field (H) and increasing Cr doping level (x), suggesting that the physical origin of this surface gap is associated with proximity-induced c-axis ferromagnetism. On the other hand, the temperature (T) dependence of Δ is non-monotonic, showing initial increase below {{T}{{c}}}2{{D}}, which is followed by a ‘dip’ and then rises again, reaching maximum at T ≪ {{T}{{c}}}3{{D}}. These phenomena may be attributed to proximity magnetism induced by two types of contributions with different temperature dependences: a three-dimensional contribution from the bulk magnetism that dominates at low T, and a two-dimensional contribution associated with the RKKY interactions mediated by surface Dirac fermions, which dominates at {{T}{{c}}}3{{D}} ≪ T < {{T}{{c}}}2{{D}}. In addition to the observed proximity magnetism, spatially localized sharp resonant spectra are found along the boundaries of gapped and gapless regions. These spectral resonances are long-lived at H = 0, with their occurrences being most prominent near {{T}{{c}}}2{{D}} and becoming suppressed under strong c-axis magnetic fields. We attribute these phenomena to magnetic impurity-induced topological defects in the spin texture of surface Dirac fermions, with the magnetic impurities being isolated Cr impurities distributed near the interface of the bilayer

  16. Thermoluminescence studies of Nd doped Bi4Ge3O12 crystals irradiated by UV and beta sources.

    PubMed

    Karabulut, Y; Canimoglu, A; Ekdal, E; Ayvacikli, M; Can, N; Karali, T

    2016-07-01

    Thermoluminescence (TL) glow curves of pure and rare earth doped bismuth germanate (BGO) were investigated under UV and beta radiation. The glow curves of pure BGO crystal present different patterns for both kinds of radiation. The TL glow curves of BGO crystals doped with Nd ions are similar to that of pure BGO under UV radiation. The kinetic parameters, kinetic order (b), activation energy (E) and frequency factor (s) of the TL glow curves of pure BGO crystal have been determined by peak shape method. Activation energies of 3 peaks obtained by PS were found to be 1.81, 1.15 and 1.78, respectively. PMID:27108070

  17. Thermoluminescence studies of Nd doped Bi4Ge3O12 crystals irradiated by UV and beta sources.

    PubMed

    Karabulut, Y; Canimoglu, A; Ekdal, E; Ayvacikli, M; Can, N; Karali, T

    2016-07-01

    Thermoluminescence (TL) glow curves of pure and rare earth doped bismuth germanate (BGO) were investigated under UV and beta radiation. The glow curves of pure BGO crystal present different patterns for both kinds of radiation. The TL glow curves of BGO crystals doped with Nd ions are similar to that of pure BGO under UV radiation. The kinetic parameters, kinetic order (b), activation energy (E) and frequency factor (s) of the TL glow curves of pure BGO crystal have been determined by peak shape method. Activation energies of 3 peaks obtained by PS were found to be 1.81, 1.15 and 1.78, respectively.

  18. Improved ferroelectric polarization of V-doped Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films prepared by a chemical solution deposition

    SciTech Connect

    Song, D. P.; Yang, J. Yuan, B.; Zuo, X. Z.; Tang, X. W.; Chen, L.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2015-06-28

    We prepared V-doped Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films on Pt/Ti/SiO{sub 2}/Si (100) substrates by using a chemical solution deposition route and investigated the doping effect on the microstructure, dielectric, leakage, and ferroelectric properties of Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films. The Bi{sub 5.97}Fe{sub 2}Ti{sub 2.91}V{sub 0.09}O{sub 18} thin film exhibits improved dielectric properties, leakage current, and ferroelectric properties. The incorporation of vanadium resulted in a substantially enhanced remnant polarization (2P{sub r}) over 30 μC/cm{sup 2} in Bi{sub 5.97}Fe{sub 2}Ti{sub 2.91}V{sub 0.09}O{sub 18} thin film compared with 10 μC/cm{sup 2} in Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin film. It is demonstrated that the improved properties may stem from the improvement of crystallinity of the films with the contribution of suppressed oxygen vacancies and decreased mobility of oxygen vacancies caused by the V-doping. The results will provide a guidance to optimize the ferroelectric properties in Bi{sub 6}Fe{sub 2}Ti{sub 3}O{sub 18} thin films by chemical solution deposition, which is important to further explore single-phase multiferroics in the n = 5 Aurivillius thin films.

  19. Facile synthesis of straight and branched CdTe nanowires using CdO as precursor.

    PubMed

    Liu, Sheng; Yang, Chunyan; Zhang, Wen-Hua; Li, Can

    2011-12-01

    High-quality colloidal CdTe nanowires (NWs) containing both straight and branched ones were controllably prepared via a solution-based approach, using a low melting Bi nanoparticles as catalysts, CdO and tributylphosphine telluride (TBP-Te) as precursors, and a tri-n-octylphosphine oxide/tri-n-octylphosphine (TOPO/TOP) mixture as solvent. The resulting straight CdTe NWs have typical diameters below 20 nm accompanying with lengths exceeding 10 microm. In the case of branched CdTe NWs, tripod, V-shaped and y-shaped morphologies are obtained by decreasing the apparent Cd/Te molar ratio. It is found that, as the surface capping ligands, di-n-octylphosphinic acid (DOPA) is superior to decylphosphonic acid (DPA) in the reproducible growth of high-quality CdTe NWs. Since highly toxic dimethylcadmium, a cadmium precursor widely used in literatures, is replaced by CdO and the amount of the TOPO/TOP solvent mixture is significantly reduced, a relative safe and economical synthetic approach of high-quality colloidal CdTe NWs with controllable morphology is thus presented.

  20. Printed Se-Doped MA n-Type Bi2Te3 Thick-Film Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Madan, Deepa; Chen, Alic; Wright, Paul K.; Evans, James W.

    2012-06-01

    In this work, we highlight new materials processing developments and fabrication techniques for dispenser-printed thick-film single-element thermoelectric generators (TEG). Printed deposition techniques allow for low-cost and scalable manufacturing of microscale energy devices. This work focuses on synthesis of unique composite thermoelectric systems optimized for low-temperature applications. We also demonstrate device fabrication techniques for high-density arrays of high-aspect-ratio planar single-element TEGs. Mechanical alloyed (MA) n-type Bi2Te3 powders were prepared by taking pure elemental Bi and Te in 36:64 molar ratio and using Se as an additive. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used to characterize the as-milled powders to confirm the Bi2Te3 phase formation and particle size below 50 μm. Thermoelectric properties of the composites were measured from room temperature to 100°C. We achieved a dimensionless figure of merit ( ZT) of 0.17 at 300 K for MA n-type Bi2Te3-epoxy composites with 2 wt.% Se additive. A 20 single-leg TEG prototype with 5 mm × 400 μm × 120 μm printed element dimensions was fabricated on a polyimide substrate with evaporated gold contacts. The prototype device produced a power output of 1.6 μW at 40 μA and 40 mV voltage for a temperature difference of 20°C.

  1. Epitaxial strain induced phase transitions in La-doped BiFeO3 thin films on Si substrates

    NASA Astrophysics Data System (ADS)

    Chen, Deyang; Nelson, Christopher T.; Zhu, Xiaohong; Serrao, Claudy R.; Gao, Ya; Yi, Di; Liu, Jian; Ramesh, Ramamoorthy; Zeng, Dechang; Schlom, Darrel G.; South China University Of Technology Collaboration; Cornell University Collaboration; Concept Team

    2014-03-01

    Epitaxial strain is a powerful pathway to trigger phase transitions with emergent phenomena in oxide thin films, e.g., strain induced ferroelectric to ferroelectric (PE-PE) phase transition from tetragonal-like to rhombohedral-like phase in Pb(ZrxTi1-x) O3 and BiFeO3 films. In this study, we report a strain driven antiferroelectric to ferroelectric (AFE-FE) phase transition from orthorhombic (O) to rhombohedral (R) phase in LaxBi1-xFeO3 (LBFO) thin film on Si substrates. The ground state of LaxBi1-xFeO3 bulk is antiferroelectric PbZrO3 type orthorhombic phase. We show that epitaxial strain from Si substrates can stabilize a rhombohedral structure of LBFO in 20 nm films and intermediate strains position LBFO into a nanoscale mixture of rhombohedral and orthorhombic phases in 30-100 nm films and then strain relaxation in 125nm films leads to the orthorhombic phase. Transmission electron microscopy (TEM) shows atomically sharp O/R morphotropic phase boundary (MPB) with O phase domains larger than 10 nm in width. In summary, our findings open a new path to drive AFE-FE phase transition in LBFO and provide a route to study O/R MPB.

  2. Novel Y doped Bi{sub 2}WO{sub 6} photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation

    SciTech Connect

    Cao, Ranran; Huang, Hongwei; Tian, Na; Zhang, Yihe; Guo, Yuxi; Zhang, Tierui

    2015-03-15

    Visible-light-driven (VLD) Yttrium (Y) ion doped Bi{sub 2}WO{sub 6} photocatalyst has been synthesized via a facile hydrothermal route. Incorporation of Y{sup 3} {sup +} into Bi{sub 2}WO{sub 6} lattice was successfully confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ICP analysis. The microstructure and optical property of the as-prepared samples have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption isotherm and UV–vis diffuse reflectance spectra (DRS). The photocatalytic experiments indicated that the Y-Bi{sub 2}WO{sub 6} showed a much higher photocatalytic activity than the pristine Bi{sub 2}WO{sub 6} for the degradation of Rhodamine B (RhB) and photocurrent (PC) generation. This enhancement should be ascribed to the slightly increased band gap and the generated defects by Y{sup 3} {sup +} doping, thus resulting in a much lower recombination rate of the photoinduced electrons and holes. Such a process was verified by the photoluminescence (PL) spectroscopy. In addition, the active species trapping experiments indicated that holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) play important roles in the photocatalytic reaction. - Highlights: • Novel Y-Bi{sub 2}WO{sub 6} photocatalyst has been synthesized by a facile hydrothermal route. • Y-Bi{sub 2}WO{sub 6} exhibits a much higher photocatalytic activity than pristine Bi{sub 2}WO{sub 6}. • Holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) are the two main active species. • Y{sup 3} {sup +} ion can result in a low recombination of photogenerated electron and hole.

  3. Luminescence efficiency growth in wide band gap semiconducting Bi2O3 doped Cd0.4Pb0.1B0.5 glasses and effect of γ-irradiation

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Ibrahim, S.; Hamdy, Y. M.

    2014-11-01

    Cadmium lead borate glasses together with other glasses containing different Bi2O3-doping concentrations (2.5, 5, 7.5, 10 mol%) were prepared by conventional melt annealing method. The density and molar volume values were calculated to obtain some insight on the packing density and arrangement in the network. Also their optical and structural properties have been characterized by means of X-ray diffraction, UV-visible spectroscopy, luminescence spectroscopy and FTIR spectroscopy. Optical measurements have been used to determine the optical band gap (Eg), Urbach energy (ΔE) and the refractive index (n). The results demonstrate the effective rule of Bi2O3 on the studied glasses. The undoped and Bi2O3 doped - glass show strong extended UV-near visible absorption bands which are attributed to the collective presence of both trace iron impurities from raw materials and also the sharing of bismuth Bi+3 ions. Furthermore, the luminescence intensity strongly increases with increasing Bi2O3 content which may be attributed to transfer of energy from transitions in its energy levels. It has been revealed that the decreasing values of optical band gap and band tail can be understood and related in terms of the structural changes that are taking place in the glass samples. The infrared absorption spectra of the prepared glasses show characteristic absorption bands related to the borate network (BO3, BO4 groups) together with vibrational modes due to Bi-O groups upon the introduction of Bi2O3. The prepared samples reveal a very limited response towards of gamma irradiation which reflects its shielding behavior towards the effect of such type of irradiation.

  4. High-Mobility Sm-Doped Bi2 Se3 Ferromagnetic Topological Insulators and Robust Exchange Coupling.

    PubMed

    Chen, Taishi; Liu, Wenqing; Zheng, Fubao; Gao, Ming; Pan, Xingchen; van der Laan, Gerrit; Wang, Xuefeng; Zhang, Qinfang; Song, Fengqi; Wang, Baigeng; Wang, Baolin; Xu, Yongbing; Wang, Guanghou; Zhang, Rong

    2015-09-01

    High-mobility (Smx Bi1-x )2 Se3 topological insulators (with x = 0.05) show a Curie temperature of about 52 K, and the carrier concentration and Fermi wave vector can be manipulated by intentional Te introduction with no significant influence on the Curie temperature. The origin of the ferromagnetism is attributed to the trivalent Sm dopant, as confirmed by X-ray magnetic circular dichroism and first-principles calculations. The carrier concentration is on the order of 10(19) cm(-3) and the mobility can reach about 7200 cm(2) V(-1) s(-1) with pronounced Shubnikov-de Haas oscillations.

  5. Synthesis, characterization and photoluminescence properties of Bi3+ co-doped CaSiO3:Eu3+ nanophosphor

    NASA Astrophysics Data System (ADS)

    Madesh Kumar, M.; Hari Krishna, R.; Nagabhushana, B. M.; Shivakumara, C.

    2015-03-01

    Ceramic luminescent powders with the composition Ca0.96-xEu0.04BixSiO3 (x = 0.01-0.05) were prepared by solution combustion method. The nanopowders are characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) techniques. PXRD patterns of calcined (950 °C for 3 h) Ca0.96-xEu0.04BixSiO3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 28 to 48 nm. SEM micrographs show the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. TEM micrograph shows the crystalline characteristics of the nanoparticles. Upon 280 nm excitation, the photoluminescence of the Ca0.96-xEu0.04BixSiO3 particles show red emission at 611 nm corresponding to 5D0→7F2 transition. It is observed that PL intensity increases with Bi3+ concentration. Our work demonstrates very interesting energy transfer from Bi3+ to Eu3+ in CaSiO3 host.

  6. The Shubnikov-de Haas effect and thermoelectric properties of Tl-doped Sb{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3}

    SciTech Connect

    Kulbachinskii, V. A. Kudryashov, A. A.; Kytin, V. G.

    2015-06-15

    The influence of doping with Tl on the Shubnikov-de Haas effect at T = 4.2 K in magnetic fields up to 38 T in p-Sb{sub 2−x}Tl{sub x}Te{sub 3} (x = 0, 0.005, 0.015, and 0.05) and n-Bi{sub 2−x}Tl{sub x}Se{sub 3} (x = 0, 0.01, 0.02, 0.04, and 0.06) single crystals is investigated. Extreme cross-sections of the Fermi surface in both materials decrease upon doping with Tl: the hole concentration decreases in Sb{sub 2−x}Tl{sub x}Te{sub 3} due to the donor effect of Tl and the electron concentration in n-Bi{sub 2−x}Tl{sub x}Se{sub 3} decreases due to the acceptor effect of Tl. The temperature dependences of the Seebeck coefficient, electrical conductivity, thermal conductivity, and dimensionless thermoelectric figure of merit in a temperature range of 77–300 K are measured. The thermal conductivity and electrical conductivity decrease upon doping with Tl both in p-Sb{sub 2−x}Tl{sub x}Te{sub 3} and in n-Bi{sub 2−x}Tl{sub x}Se{sub 3}. The Seebeck coefficient increases in all compositions upon an increase in doping over the entire measured temperature range. The thermoelectric figure of merit increases upon doping with Tl.

  7. Study on electrical conductivity and phase transition in singly doped BIPBVOX (Bi2V1-xPbxO5.5-x/2) solid electrolyte

    NASA Astrophysics Data System (ADS)

    Beg, Saba; Naqvi, Faria K.; Al-Areqi, Niyazi A. S.

    2014-12-01

    Samples of bismuth lead vanadium oxide (BIPBVOX) (Bi2V1-xPbxO5.5-x/2) singly substituted system in the composition range 0.05 ≤ x ≤ 0.20 were prepared by sol-gel synthesis route. Structural investigations were carried out by using a combination of differential thermal analysis (DTA) and powder X-ray diffraction (PXRD) technique. Energy dispersive X-ray spectroscopy analysis (EDXA) of doped samples was carried out to predict the sample purity and doping concentration. Transitions, α↔β, β↔γ and γ‧↔γ were detected by XRD, DTA and variation in the Arrhenius plots of conductivity. The ionic conductivity was measured by AC impedance spectroscopy. The solid solutions with composition x ≤ 0.07 undergo α↔β phase transition, at 329 °C and β↔γ phase transition at 419 °C. The highly conducting γ‧-phase was effectively stabilized at room temperature for compositions with x ≥ 0.17 whose thermal stability increases with Pb content. At 300 °C, the highest value of conductivity 6.234 × 10-5 S cm-1 was obtained for composition x = 0.15 and at 600 °C the highest value of conductivity 0.65 S cm-1 is observed for x = 0.17. AC impedance plots reveal that the conductivity is mainly due to the grain contribution to oxide ion conductivity.

  8. Review on first-principles study of defect properties of CdTe as a solar cell absorber

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is T{e}Cd2+, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve {10}17 {{{cm}}}-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of {10}17 {{{cm}}}-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te-Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  9. Review on first-principles study of defect properties of CdTe as a solar cell absorber

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is T{e}Cd2+, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve {10}17 {{{cm}}}-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of {10}17 {{{cm}}}-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te–Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  10. Rf sputtering of CdTE and CdS for thin film PV

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Tabory, C. N.; Shao, M.; Fischer, A.; Feng, Z.; Bohn, R. G.

    1994-06-01

    In late 1992 we demonstrated the first rf sputtered CdS/CdTe photovoltaic cell with efficiency exceeding 10%. In this cell both CdS and CdTe layers were deposited by rf sputtering. In this paper we report preliminary measurements of 1) optical emission spectroscopy of the rf plasma, 2) the width of the phonon Raman line as a function of deposition temperature for CdS, and 3) studies of oxygen doping during pulsed laser deposition of CdTe.

  11. Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics.

    PubMed

    Mendis, B G; Gachet, D; Major, J D; Durose, K

    2015-11-20

    A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps) within the grains and are rapidly quenched at the grain boundary. However, a ~47 meV shallow acceptor, believed to be due to oxygen, can act as a long lifetime hole trap, even at the grain boundaries where their concentration is higher. This provides direct evidence supporting recent observations of hopping conduction across grain boundaries in highly doped CdTe at low temperature. PMID:26636877

  12. Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Mendis, B. G.; Gachet, D.; Major, J. D.; Durose, K.

    2015-11-01

    A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps ) within the grains and are rapidly quenched at the grain boundary. However, a ˜47 meV shallow acceptor, believed to be due to oxygen, can act as a long lifetime hole trap, even at the grain boundaries where their concentration is higher. This provides direct evidence supporting recent observations of hopping conduction across grain boundaries in highly doped CdTe at low temperature.

  13. Nuclear quadrupole spin-lattice relaxation in Bi{sub 4}Ge{sub 3}O{sub 12} single crystals doped with atoms of d or f elements. Crystal field effects in compounds exhibiting anomalous magnetic properties

    SciTech Connect

    Orlov, V. G. Sergeev, G. S.; Asaji, Tetsuo; Kravchenko, E. A.; Kargin, Yu. F.

    2010-02-15

    The nuclear quadrupole spin-lattice relaxation was studied in the range 4.2-300 K for single crystals of Bi{sub 4}Ge{sub 3}O{sub 12} doped with minor amounts (the tenth fractions of mol%) of paramagnetic atoms of Cr, Nd, and Gd. Unusual spin dynamic features were recently found for these crystals at room temperature: a dramatic (up to 8-fold) increase in the effective nuclear quadrupole spin-spin relaxation time T{sub 2}* occurred upon doping the pure Bi{sub 4}Ge{sub 3}O{sub 12} sample. Unlike T{sub 2}*, the effective spin-lattice relaxation time T{sub 1}* at room temperature differs insignificantly for both doped and pure samples. But at lower temperatures, the samples exhibit considerably different behavior of the spin-lattice relaxation with temperature, which is caused by different contributions to the relaxation process of the dopant paramagnetic atoms. The distinctive maximum in the temperature dependence of the spin-lattice relaxation time for the Nd-doped crystal is shown to result from the crystal electric field effects.

  14. Structural, dielectric, ferroelectric, and electrocaloric properties of 2% Gd2O3 doping (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Turki, O.; Slimani, A.; Seveyrat, L.; Sebald, G.; Perrin, V.; Sassi, Z.; Khemakhem, H.; Lebrun, L.

    2016-08-01

    Structural, dielectric, and ferroelectric properties, and electrocaloric effects of pure and Gd doped ( Na0.5 Bi 0.5 ) 0.94 Ba 0.06 TiO 3 ceramics prepared by the conventional solid-solid method have been carried out. The X-ray diffraction analysis confirms a pure perovskite structure with the coexistence of tetragonal and rhombohedra structures in both powders. The thermal and frequency dependences of the dielectric constants of both ceramics revealed relaxor behavior. The two compounds exhibited two phase transitions: ferroelectric/antiferroelectric (FE/AFE) transition followed by an antiferroelectric/paraelectric (AFE/PE) transition at higher temperatures. Remarkably, we noticed that the small amount of Gd doping (2%) highly enhanced the dielectric properties of the parent compound by about 71%. The phase diagram was as well influenced by the Gd doping, where the FE/AFE transition temperature rose from 90 in the parent compound to 115 °C in the doped one whereas the AFE/PE transition temperature was decreased from 320 to 270 °C, respectively. The direct electrocaloric measurements performed on both compounds showed that the ferroelectric/antiferroelectric phase transition was accompanied by a significant electrocaloric effect. The Gd3+ doping improved the electrocaloric properties of the parent compound, where a remarkable temperature variation of 1.4 K was obtained in the doped ceramic. The results of the direct electrocaloric measurements will be compared and discussed with those derived from the indirect method.

  15. Strong Dependence of the Superconducting Gap on Oxygen Doping from Tunneling Measurements on Bi{sub 2} Sr{sub 2} CaCu{sub 2} O{sub 8{minus}{ital {delta} }}

    SciTech Connect

    Miyakawa, N.; Guptasarma, P.; Zasadzinski, J.F.; Hinks, D.G.; Gray, K.E.; Miyakawa, N.; Zasadzinski, J.F.

    1998-01-01

    Tunneling measurements are reported for break junctions on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8{minus}{delta}} single crystals with various oxygen concentrations. Superconducting energy gaps {Delta} are observed in the underdoped samples which are considerably larger ({approximately}30{percent}) than found in optimal doped crystals. The trend of decreasing {Delta} and 2{Delta}/kT{sub c} with increasing hole doping is continued into the overdoped region. Thus the superconducting gap and strong-coupling ratio change monotonically and dramatically over a narrow doping region where T{sub c} exhibits a maximum. {copyright} {ital 1997} {ital The American Physical Society}

  16. Influence of Tm+3 concentration on the non-linear optical effects of the BiB3O6 : Tm3+ glass nanoparticle-doped polymer

    NASA Astrophysics Data System (ADS)

    Majchrowski, A.; Ebothe, J.; Ozga, K.; Kityk, I. V.; Reshak, A. H.; Lukasiewicz, T.; Brik, M. G.

    2010-01-01

    It is shown that BiB3O6 : Tm3+ glass nanoparticles incorporated into polymethylmethacrylate (PMMA) and polycarbonate (PC) polymer matrices show good second-order susceptibilities under bicolour coherent laser treatment. It is found that only during incorporation into highly polarized PC matrices could one observe an enhancement of the second-order susceptibilities with increasing laser treated power densities. The main increase is observed for all samples at power densities equal to about 0.4 GW cm-2. After passing this value there is a saturation of the output susceptibilities and even an abrupt decrease. The most striking feature is the achievement of second-order susceptibilities equal to about 5 pm V-1 for samples containing 4% nanoparticle (NP) content in the PC matrix. A further increase in the NP concentration to 6% leads to a decrease in susceptibility to 15%. In the case of PMMA matrices these changes do not exceed the background. The same situation is present for the pure BIBO and low-doped Tm materials. The effect is maximal for a low concentration of Tm—about 0.75%. In the case of bulk glasses the intensity dependences of the second-harmonic generation unambiguously show that the achieved maximal values of second-order susceptibilities do not exceed 3 pm V-1 for 0.5% Tm concentration.

  17. Spin and charge excitations in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8-delta}.

    SciTech Connect

    Rubhausen, M.; Guptasarma, P.; Hinks, D. G.; Klein, M. V.; Materials Science Division; Univ. Hamburg; Univ. of Illinois

    1998-01-01

    We present Raman spectra of low and high-energy charge and spin excitations in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8-{delta}} single crystals with an optimized critical temperature of 95 K. The prominent feature of the high-energy background at around 250 meV is a rearrangement of spectral weight in B{sub 1g} and A{sub 1g}+B{sub 2g} symmetry below the critical temperature, similar to the observations in underdoped and optimally doped Y-123 compounds. In the low-energy region, which is influenced by the effects at higher energies, a gap feature in B{sub 1g} symmetry is observed yielding a value for the magnitude of the superconducting order parameter of A=34 meV. This gap feature is influenced by the orthorhombicity of the crystals and except for a small loss of spectral weight below 25 meV, no gap feature is visible in A{sub 1g} scattering geometry.

  18. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    PubMed Central

    Kushwaha, S. K.; Pletikosić, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Yao; Zhao, He; Burch, K. S.; Lin, Jingjing; Wang, Wudi; Ji, Huiwen; Fedorov, A. V.; Yazdani, Ali; Ong, N. P.; Valla, T.; Cava, R. J.

    2016-01-01

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states. PMID:27118032

  19. Electric-field-induced insulator to Coulomb glass transition via oxygen-vacancy migration in Ca-doped BiFe O3

    NASA Astrophysics Data System (ADS)

    Lim, Ji Soo; Lee, Jin Hong; Ikeda-Ohno, Atsushi; Ohkochi, Takuo; Kim, Ki-Seok; Seidel, Jan; Yang, Chan-Ho

    2016-07-01

    The multiferroic BiFe O3 (BFO) as a charge-transfer-type insulator is an interesting system in which to explore correlated electronic conduction. Here, we substitute divalent Ca ions into the parent BFO and apply an external electric field at elevated temperatures to spatially redistribute spontaneously created oxygen vacancies, thereby generating hole carriers in regions of less dense oxygen-vacancy concentrations. X-ray diffraction and photoemission spectroscopic measurement are employed to quantify a large variation of local oxygen-vacancy concentration, as much as ˜1021c m-3 , and explore the consequent evolution of electronic band structure. We find that a nonrigid polaronic band is created by hole doping as a result of a strong electron-lattice coupling. We also show strong evidence for the disorder-driven formation of a Coulomb-glass state through electronic transport measurements on a quantitative level. These spectroscopic and transport results can be combined and understood in the framework of intrinsic spatial inhomogeneity of the polaronic charge density. The finding not only offers a promising platform and methodology for examining the interplay of functional defects and correlated electronic behaviors, but also suggests a unique electronic conduction mechanism applicable to systems with coexistence of strong electron correlation, electron-lattice interaction, and randomness beyond the Coulomb-glass physics in semiconductors.

  20. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    DOE PAGESBeta

    S. K. Kushwaha; Pletikosic, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Y.; Zhao, H.; Burch, K. S.; Lin, Jingjing; Wang, Wudi; et al

    2016-04-27

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the Vertical Bridgeman method. We characterize Sn-BSTSmore » via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  1. Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Pires, G. F. M.; Terezo, A. J.; Graça, M. P. F.; Sombra, A. S. B.

    2011-08-01

    Polycrystalline samples of a layered magnetic ceramic oxide, Ba2Co2Fe12O22 (Co2Y), doped with Bi2O3 were prepared by the solid state reaction method. The dielectric impedance properties were studied over the range of frequency between 1 Hz-1MHz and in the temperature range of 313-493 K, using the modulus formalism. The impedance plot showed a first semicircle at high frequency which was assigned to the grain intrinsic effect and a second semicircle, at lower frequencies, which corresponds to grain boundary polarization (conduction phenomenon). A complex modulus spectrum was used to understand the mechanism of the electrical transport process, which indicates that a non-exponential type of conductivity relaxation characterizes this material. The values of the activation energy of the compound (calculated both from dc conductivity and the modulus spectrum) are very similar, suggesting that the relaxation process may be attributed to the same type of charge carriers. The dielectric measurements were studied by fitting the electrical modulus with the Havriliak-Negami function, including the conductivity parameters. The study demonstrates that the investigation of dielectric relaxation, conductivity, and loss of the ferrite materials, as a function of temperature, are essential for future microwave absorption applications of this material.

  2. Study of tellurium precipitates in CdTe crystals

    NASA Technical Reports Server (NTRS)

    Jayatirtha, H. N.; Henderson, D. O.; Burger, A.; Volz, M. P.

    1993-01-01

    The effect of tellurium precipitates was studied in medium resistivity (10 exp 3-10 exp 6 ohm cm) undoped and Cl-doped CdTe using differential scanning calorimetry (DSC) and mid-infrared spectroscopy and the results were correlated with near-infrared microscopy photographs. When present in a significant quantity (about 0.25 wt pct), we show that Te precipitates are detectable using DSC measurements. In the mid-infrared, the contribution of the absorption by free-carriers is negligible, and therefore, the effect of the Te precipitates in these crystals can be considered uncoupled from the effects of Cd vacancies.

  3. One-Dimensional Reaction-Diffusion Simulation of Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christain

    2014-06-13

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  4. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  5. Crystal structures of LaO{sub 1−x}F{sub x}BiS{sub 2} (x∼0.23, 0.46): Effect of F doping on distortion of Bi–S plane

    SciTech Connect

    Miura, Akira Nagao, Masanori; Takei, Takahiro; Watauchi, Satoshi; Tanaka, Isao; Kumada, Nobuhiro

    2014-04-01

    The crystal structures of superconducting LaO{sub 1−x}F{sub x}BiS{sub 2} (x∼0.23, 0.46) were determined by single-crystal X-ray diffraction analysis. Their space group was P4/nmm. Distortion of the Bi–S plane changed when the F content was increased from 0.23 to 0.46, and a nearly flat Bi–S plane was formed at x∼0.46. Computational calculations supported this effect of F doping on distortion of Bi–S plane. LaO{sub 1−x}F{sub x}BiS{sub 2} with higher F contents were computationally predicted to be thermodynamically more unstable under ambient pressure. We discussed the bonding, conductivities, and synthetic routes of LaO{sub 1−x}F{sub x}BiS{sub 2}. - Graphical abstract: Distortion of the Bi–S plane in LaO{sub 1−x}F{sub x}BiS{sub 2} changed when the F content was increased from 0.23 to 0.46, and a nearly flat Bi–S plane was formed at x∼0.46 with the appearance of superconductivity. - Highlights: • Crystal structure of LaO{sub 1−x}F{sub x}BiS{sub 2} was determined by single-crystal XRD. • Doping amount of F changes the distortion of the Bi–S plane. • Nearly flat Bi–S planes were found in superconductive LaO{sub 1−x}F{sub x}BiS{sub 2} (x∼0.46). • LaO{sub 1−x}F{sub x}BiS{sub 2} with higher F contents was thermodynamically more unstable. • Bonding, superconductivities, and synthetic routes of LaO{sub 1−x}F{sub x}BiS{sub 2} were discussed.

  6. Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol-gel route

    NASA Astrophysics Data System (ADS)

    Madolappa, Shivanand; Kundu, Swarup; Bhimireddi, Rajasekhar; Varma, K. B. R.

    2016-06-01

    Ceramics of Bi1-x Pr x FeO3 (x = 0-0.1) were fabricated using the nanocrystalline powders obtained via sol-gel route. X-ray powder diffraction studies confirmed that these belonged to rhombohedral perovskite structure associated with R3c space group. The dielectric properties of the ceramic samples as a function of frequency (100 Hz-10 MHz) and temperature (30 °C-250 °C) were studied. The dielectric constant increased while the loss decreased with the increase of Pr content. Dielectric dispersion in these samples was found to be poly dispersive Debye type relaxation as confirmed by invoking Cole-Cole relation. Impedance spectroscopy was employed to determine the electrical parameters associated with the grain and grain boundaries. Grain and grain boundary resistances were found to decrease with the increase of temperature for all the samples under study. The activation energies for the dielectric relaxation were evaluated by electric modulus spectra and these increase with the increase of Pr dopant level. The frequency dependent conductivity at various temperatures demonstrated the involvement of correlated barrier hopping conduction mechanism. The electrical conduction in these ceramics was ascribed to long and short range migration of oxygen ion vacancies as demonstrated by temperature dependent ac conductivity studies.

  7. Phase transitions, domain structure, and pseudosymmetry in La- and Ti-doped BiFeO3

    NASA Astrophysics Data System (ADS)

    Khesro, Amir; Boston, Rebecca; Sterianou, Iasmi; Sinclair, Derek C.; Reaney, Ian M.

    2016-02-01

    The phase transitions and domain structure of the promising PbO-free solid solution series, (0.95-x)BiFeO3-xLaFeO3-0.05La2/3TiO3, were investigated. X ray diffraction (XRD) revealed a transition from a ferroelectric R3c to a PbZrO3-like (Pbam) antiferroelectric (AFE) structure at x = 0.15 followed by a transition to a paraelectric (PE, Pnma) phase at x > 0.30. The ferroelastic/ferroelectric twin domain width decreased to 10-20 nm with increasing x as the AFE phase boundary was approached but coherent antiphase tilted domains were an order of magnitude greater. This domain structure suggested the local symmetry (20 nm) is lower than the average structure (R3c, a-a-a-) of the tilted regions. The PE phase (x = 0.35) exhibited a dominant a-a-c+ tilt system with Pnma symmetry but diffuse reflections at ˜1/4{ooe} positions suggest that short range antipolar order is residual in the PE phase. The complex domain structure and phase assemblage of this system challenge the conventional interpretation of phase transitions based on macroscopic symmetry. Instead, it supports the notion that frustration driven by chemical distributions at the nanometric level influences the local or pseudo-symmetry as well as the domain structure, with XRD giving only the average macroscopic structure.

  8. Synthesis and spectroscopic characterization of YPO{sub 4} activated with Tb{sup 3+} and effect of Bi{sup 3+} co-doping on the luminescence properties

    SciTech Connect

    Angiuli, Fabio; Cavalli, Enrico; Belletti, Alessandro

    2012-08-15

    Single crystals of YPO{sub 4}:Tb{sup 3+}(1%) have been grown from Pb{sub 2}P{sub 2}O{sub 7} flux and their emission dynamics have been characterized by steady state and time resolved optical spectroscopy. The investigation has then been extended to green emitting phosphors with composition Y{sub 0.95-x}Tb{sub 0.05}Bi{sub x}PO{sub 4} (x=0, 0.0025, 0.005, 0.01, 0.025), synthesized by the Pechini sol-gel method and by solid state reaction. The former procedure has yielded higher quality materials in terms of size and morphology of the particles and of emission performance. The effect of the Bi{sup 3+} co-doping on the emission properties has been related to the Bi{sup 3+}{yields}Tb{sup 3+} energy transfer process as well as to the influence of the bismuth ions on the optical properties of the host lattice. - Graphical abstract: The intensity of the 370 nm excited luminescence increases with the Bi{sup 3+} content. A possible mechanism accounting for this behavior is proposed and discussed. Highlights: Black-Right-Pointing-Pointer Green emitting YPO{sub 4}:Tb{sup 3+} phosphors were synthesized by different methods. Black-Right-Pointing-Pointer The emission dynamics have been investigated under different experimental conditions. Black-Right-Pointing-Pointer The co-doping with Bi{sup 3+} ions increases the emission performance of the phosphors.

  9. Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint

    SciTech Connect

    Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

    2012-08-01

    Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

  10. UV durable colour pigment doped SmA liquid crystal composites for outdoor trans-reflective bi-stable displays

    NASA Astrophysics Data System (ADS)

    Xu, H.; Davey, A. B.; Crossland, W. A.; Chu, D. P.

    2012-10-01

    High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (~101Hz) to a scattered state to exhibit colour while by a high frequency waveform (~103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least <7.2 years) in comparison with that of dye composition (~2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work.

  11. Effect of La and Sr co-doping on electric and magnetic properties of multiferroic La0.1Bi0.9-xSrxFeO(3-x/2) ceramics

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Wang, Shouyu; Liu, Weifang; Wang, Xu; Liu, Li; Li, Meng

    2015-09-01

    La0.1Bi0.9-xSrxFeO(3-x/2)(LBFSx0 ≤ x ≤ 0.8) ceramics were synthesized by solid-state reaction method, and their magnetic properties and conductive characteristics were investigated and discussed. It is found that La-doped BiFeO3 ceramic without Sr2+ doping is a rhombohedrally distorted perovskite structure, and with the increase of the Sr2+ concentration, the phase transits gradually from rhombohedral to pseudo cubic symmetry. Electrical and magnetic properties show strong dependence on Sr2+ dopant level. The measurement demonstrates that LBFSx with 30% Sr2+ dopant exhibits the lowest values of the leakage current, dielectric constant (ɛ) and dielectric loss (tan δ). And the highest value of saturation magnetization of about 4.5 emu/g is observed in 60% Sr-doped LBFSx. An abnormal enhancement of the conductivity was observed in LBFSx ceramics with x = 0.60 and 0.70, and their magnitude of conductivity is nearly six orders larger than that of pure LBFSx.

  12. Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf.

    PubMed

    Kim, Jin Hyun; Jo, Yimhyun; Kim, Ju Hun; Jang, Ji Wook; Kang, Hyun Jun; Lee, Young Hye; Kim, Dong Suk; Jun, Yongseok; Lee, Jae Sung

    2015-12-22

    A stand-alone, wireless solar water splitting device without external energy supply has been realized by combining in tandem a CH3NH3PbI3 perovskite single junction solar cell with a cobalt carbonate (Co-Ci)-catalyzed, extrinsic/intrinsic dual-doped BiVO4 (hydrogen-treated and 3 at% Mo-doped). The photoanode recorded one of the highest photoelectrochemical water oxidation activity (4.8 mA/cm(2) at 1.23 VRHE) under simulated 1 sun illumination. The oxygen evolution Co-Ci co-catalyst showed similar performance to best known cobalt phosphate (Co-Pi) (5.0 mA/cm(2) at 1.23 VRHE) on the same dual-doped BiVO4 photoanode, but with significantly better stability. A tandem artificial-leaf-type device produced stoichiometric hydrogen and oxygen with an average solar-to-hydrogen efficiency of 4.3% (wired), 3.0% (wireless) under simulated 1 sun illumination. Hence, our device based on a D4 tandem photoelectrochemical cell represents a meaningful advancement in performance and cost over the device based on a triple-junction solar cell-electrocatalyst combination.

  13. The effect of CuO and NiO doping on dielectric and ferroelectric properties of Na0.5Bi0.5TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Kakroo, Sunanda; Kumar, Arvind; Mishra, S. K.; Singh, Vijay; Singh, Pramod K.

    2016-03-01

    In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3 -xCuO-yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT-CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ɛr = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.

  14. Highly textured Sr, Nb co-doped BiFeO{sub 3} thin films grown on SrRuO{sub 3}/Si substrates by rf- sputtering

    SciTech Connect

    Ostos, C.; Raymond, O.; Siqueiros, J. M.; Suarez-Almodovar, N.; Bueno-Baques, D.; Mestres, L.

    2011-07-15

    In this study, (011)-highly oriented Sr, Nb co-doped BiFeO{sub 3} (BFO) thin films were successfully grown on SrRuO{sub 3}/Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of {approx_equal}5.3 nm and average grain sizes of {approx_equal}65-70 nm for samples with different thicknesses. Remanent polarization values (2P{sub r}) of 54 {mu}C cm{sup -2} at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe{sup 3+}/Fe{sup 2+} trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/SrRuO{sub 3}/Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

  15. Spectroscopic properties of Er 3+/Yb 3+ co-doped Bi 2O 3sbnd B 2O 3sbnd GeO 2 glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Xu, Tiefeng; Nie, Qiuhua; Dai, Shixun; Shen, Xiang; Zhang, Xianghua

    2007-05-01

    Er 3+/Yb 3+ co-doped 60Bi 2O 3sbnd (40 - x)B 2O 3sbnd xGeO 2 (BBG; x = 0, 5, 10, 15 mol%) glasses that are suitable for fiber lasers, amplifiers have been fabricated and characterized. The absorption spectra, emission spectra, and lifetime of the 4I 13/2 level and quantum efficiency of Er 3+: 4I 13/2 → 4I 15/2 transition were measured and calculated. With the substitution of GeO 2 for B 2O 3, both Δ λeff and σe decrease from 75 to 71 nm and 9.88 to 8.12 × 10 -21 cm 2, respectively. The measured lifetime of the 4I 13/2 level and quantum efficiency of Er 3+: 4I 13/2 → 4I 15/2 transition increase from 1.18 to 1.5 ms and 36.2% to 43.2%, respectively. The emission spectra of Er 3+: 4I 13/2 → 4I 15/2 transition was also analyzed using a peak-fit routine, and an equivalent four-level system was proposed to estimate the stark splitting for the 4I 15/2 and 4I 13/2 levels of Er 3+ in the BBG glasses. The results indicate that the 4I 13/2 → 4I 15/2 emission of Er 3+ can be exhibit a considerable broadening due to a significant enhance the peak A, and D emission.

  16. Spectroscopic properties of Er(3+)/Yb(3+) co-doped Bi(2)O(3)-B(2)O(3)-GeO(2) glasses.

    PubMed

    Zhang, Xudong; Xu, Tiefeng; Nie, Qiuhua; Dai, Shixun; Shen, Xiang; Zhang, Xianghua

    2007-05-01

    Er(3+)/Yb(3+) co-doped 60Bi(2)O(3)-(40 - x)B(2)O(3)-xGeO(2) (BBG; x=0, 5, 10, 15 mol%) glasses that are suitable for fiber lasers, amplifiers have been fabricated and characterized. The absorption spectra, emission spectra, and lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition were measured and calculated. With the substitution of GeO(2) for B(2)O(3), both Delta lambda(eff) and sigma(e) decrease from 75 to 71 nm and 9.88 to 8.12 x 10(-21) cm(2), respectively. The measured lifetime of the (4)I(13/2) level and quantum efficiency of Er(3+):(4)I(13/2) --> (4)I(15/2) transition increase from 1.18 to 1.5 ms and 36.2% to 43.2%, respectively. The emission spectra of Er(3+):(4)I(13/2) --> (4)I(15/2) transition was also analyzed using a peak-fit routine, and an equivalent four-level system was proposed to estimate the stark splitting for the (4)I(15/2) and (4)I(13/2) levels of Er(3+) in the BBG glasses. The results indicate that the (4)I(13/2) --> (4)I(15/2) emission of Er(3+) can be exhibit a considerable broadening due to a significant enhance the peak A, and D emission. PMID:16987701

  17. Effect of oxygen annealing on the multiferroic properties of Ca{sup 2+} doped BiFeO{sub 3} nanoceramics

    SciTech Connect

    Tirupathi, Patri; Mandal, Satish Kumar; Chandra, Amreesh

    2014-12-28

    The high leakage current in divalent ion doped BiFeO{sub 3} systems is limiting their large scale application. It is clearly shown that the methodology of oxygen annealing will prove to be an effective procedure for suppressing the detrimental consequences that originate from the oxygen vacancies. The samples annealed under oxygen also show different particle morphologies and packing density that can help in tuning the relevant physical properties, viz., magnetic, ferroelectric, and magnetoelectric. The difference in magnetic behaviour in samples annealed in air and oxygen can be explained in terms of the modification in the Fe-O-Fe bonds, domain wall pinning centres, and crystal anisotropy. Another important observation is the stabilization of a dielectric anomaly near the magnetic transition temperature. This observation can make this multiferroic system very interesting for application in sensors where the change in the magnetic parameters can be observed by monitoring the electrical parameters. Detailed analysis of the dielectric and impedance curves indicate towards the presence of non-Debye type processes in samples obtained by annealing in air or oxygen. From the calculated activation energy values, the vacancy related relaxation mechanism is predominant in air annealed samples, while the oxygen annealed samples show the presence of two type of relaxation processes, viz., electron hopping mechanism stabilizes at low temperature while, at higher temperatures, the process associated with the diffusion of doubly ionized oxygen ions predominates. The ac-conductivity data suggests that the correlated barrier tunnelling mechanism, where single electron or two electrons hopping through neighbouring lattice sites leads to ac-conduction.

  18. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  19. Abnormal variation of band gap in Zn doped Bi{sub 0.9}La{sub 0.1}FeO{sub 3} nanoparticles: Role of Fe-O-Fe bond angle and Fe-O bond anisotropy

    SciTech Connect

    Xu, Xunling; Liu, Weifang E-mail: shouyu.wang@yahoo.com; Wu, Ping; Zhang, Hong; Guo, Minchen; Han, Yuling; Zhang, Chuang; Gao, Ju; Rao, Guanghui; Wang, Shouyu E-mail: shouyu.wang@yahoo.com

    2015-07-27

    Bi{sub 0.9}La{sub 0.1}FeO{sub 3} (BLFO) and Bi{sub 0.9}La{sub 0.1}Fe{sub 0.99}Zn{sub 0.01}O{sub 3} (BLFZO) nanoparticles were prepared via a sol-gel method. The oxygen vacancies and holes increase with Zn doping analyzed through X-ray photoelectron spectroscopy, which could contribute to the increase of leakage current density. However, with the increase of the defects (oxygen vacancies and holes), the band gap of BLFZO also is increased. To explain the abnormal phenomenon, the bandwidth of occupied and unoccupied bands was analyzed based on the structural symmetry driven by the Fe-O-Fe bond angle and Fe-O bond anisotropy.

  20. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  1. Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ piezoelectric ceramics

    SciTech Connect

    Sapper, Eva; Dittmer, Robert; Rödel, Jürgen; Damjanovic, Dragan; Erdem, Emre; Keeble, David J.; Jo, Wook; Granzow, Torsten

    2014-09-14

    Aging of piezoelectric properties was investigated in lead-free (1–x)(Bi{sub 1/2}Na{sub 1/2})TiO₃-xBaTiO₃ doped with 1at.% Fe. The relaxor character of the un-poled material prevents macroscopic aging effects, while in the field-induced ferroelectric phase aging phenomena are similar to those found in lead zirconate titanate or barium titanate. Most prominent aging effects are the development of an internal bias field and the decrease of switchable polarization. These effects are temperature activated, and can be explained in the framework of defect complex reorientation. This picture is further supported by electron paramagnetic resonance spectra indicating the existence of (Fe{sub Ti}´-V{sub O}{sup ••}){sup •} defect complexes in the Fe-doped material.

  2. Effect of different surfactants on structural and optical properties of Ce3+ and Tb3+ co-doped BiPO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Dao, T. D.; Chen, K.; Sharma, Manoj; Takeda, T.; Brik, M. G.; Kityk, I. V.; Singh, Sarabjot; Nagao, T.

    2015-01-01

    In this paper we report on the Ce3+ and Tb3+ ions co-doped bismuth phosphate (BiPO4) nanostructures that were synthesized by a simple precipitation method using different surfactants such as glycerol/H2O, glycerol/ethylene glycol, oleic acid, and ethylene glycol. The structural (X-ray diffraction, scanning electron microscopy, tunneling electron microscopy), functional groups analysis (Fourier transform infrared and Raman spectroscopy), thermal (thermogravimetry and differential thermal analysis), and optical (photoluminescence, photoluminescence-excitation) properties were investigated. The structural and morphological analysis confirms the pure hexagonal crystal structure of the synthesized nanostructures. From the measured Fourier transform infrared (FTIR) and Raman spectra various functional groups such as υ3 stretching vibration of the PO4 group, and δ(O-P-O) and υ4 (PO4) vibrations including the υ2 and υ1 bending modes of the PO4 units are identified. Based on the thermal analysis, for all the studied samples an exothermic peak between 680 °C and 700 °C was observed due to phase transition from hexagonal to high temperature monoclinic. The Ce3+and Tb3+ codoped samples show spectrally broad 5d → 4f luminescence in the blue (centered at 459 nm) wavelength region under the direct optical excitation of Ce3+ at 417 nm. Similarly, Tb3+ has revealed four main emission bands (5D4 → 7F6, 5, 4 and 3) at 490 nm, 545 nm, 585 nm and 621 nm with 378 nm (7F6 → 5G6) as the excitation wavelength, including three more weak emission bands at 647 nm, 669 nm, and 681 nm which could be assigned to 5D4 → 7F2, 1, 0 emission transitions. Among them, 545 nm (5D4 → 7F5) has shown bright green emission. The Ce3+ and Tb3+ codoped sample synthesized with pure oleic acid have shown relatively high green emission intensity for Tb3+, and relatively weak blue emission intensity for Ce3+ under their respective optical excitation wavelengths.

  3. Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbon paste electrode for carbamates detection.

    PubMed

    Oliveira, Thiago M B F; Barroso, M Fátima; Morais, Simone; Araújo, Mariana; Freire, Cristina; de Lima-Neto, Pedro; Correia, Adriana N; Oliveira, Maria B P P; Delerue-Matos, Cristina

    2014-08-01

    A bi-enzymatic biosensor (LACC-TYR-AuNPs-CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC-TYR-AuNPs-CS/GPE exhibited an improved Michaelis-Menten kinetic constant (26.9±0.5M) when compared with LACC-AuNPs-CS/GPE (37.8±0.2M) and TYR-AuNPs-CS/GPE (52.3±0.4M). Using 4-aminophenol as substrate at pH5.5, the device presented wide linear ranges, low detection limits (1.68×10(-9)±1.18×10(-10)-2.15×10(-7)±3.41×10(-9)M), high accuracy, sensitivity (1.13×10(6)±8.11×10(4)-2.19×10(8)±2.51×10(7)%inhibitionM(-1)), repeatability (1.2-5.8% RSD), reproducibility (3.2-6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8±0.3% (lemon) to 97.8±0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.

  4. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    NASA Astrophysics Data System (ADS)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-06-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {{Te}}_{{Cd}}^{2 + } - {{V}}_{{Cd}}^{2 - } (D complex), {{In}}_{{Cd}}^{ + } - {{V}}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {{V}}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  5. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    NASA Astrophysics Data System (ADS)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-10-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {Te}_{{Cd}}^{2 + } - {V}_{{Cd}}^{2 - } (D complex), {In}_{{Cd}}^{ + } - {V}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {V}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  6. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    NASA Astrophysics Data System (ADS)

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium-telluride (CdTe) semiconductors is obtaining stable and high hole density. Group-I elements substituting Cd can form acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but this creates stability problems and hole density that has not exceeded 1015 cm-3 . If hole density can be increased beyond 1016 cm-3 , CdTe solar technology can exceed multicrystalline silicon performance and provide levelized costs of electricity below conventional energy sources. Group-V elements substituting Te offer a solution, but they are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain-boundary diffusion of phosphorus (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast grain-boundary diffusion, there is a critical fast bulk-diffusion component that enables deep P incorporation in CdTe. Detailed first-principle calculations indicate the slow bulk-diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk-diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, these results open up experimental possibilities for group-V doping in CdTe applications.

  7. Synthesis of Fe and N Co-doped Bi2Ti2O7 Nanofiber with Enhanced Photocatalytic Activity Under Visible Light Irradiation.

    PubMed

    Liu, Bitao; Mo, Qionghua; Zhu, Jiali; Hou, Zhupei; Peng, Lingling; Tu, Yijia; Wang, Qinyi

    2016-12-01

    A series of N-Fe-Bi2Ti2O7 nanofibers were successfully synthesized. The structure, morphology, visible light photocatalytic properties, and the degradation mechanism of N-Fe-Bi2Ti2O7 were investigated. A new phase of Bi4Ti3O7 and smaller band gap could be observed after doing Fe and N into Bi2Ti2O7. It can degrade 66 % MO and 87 % MB in 120 min under visible light irradiation, which is much more than that of pure Bi2Ti2O7. The results indicate that such unique structure could enhance the charge transfer between the nanostructure interfaces and therefore improve its photocatalytic activities. PMID:27613068

  8. Synthesis of Fe and N Co-doped Bi2Ti2O7 Nanofiber with Enhanced Photocatalytic Activity Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Bitao; Mo, Qionghua; Zhu, Jiali; Hou, Zhupei; Peng, Lingling; Tu, Yijia; Wang, Qinyi

    2016-09-01

    A series of N-Fe-Bi2Ti2O7 nanofibers were successfully synthesized. The structure, morphology, visible light photocatalytic properties, and the degradation mechanism of N-Fe-Bi2Ti2O7 were investigated. A new phase of Bi4Ti3O7 and smaller band gap could be observed after doing Fe and N into Bi2Ti2O7. It can degrade 66 % MO and 87 % MB in 120 min under visible light irradiation, which is much more than that of pure Bi2Ti2O7. The results indicate that such unique structure could enhance the charge transfer between the nanostructure interfaces and therefore improve its photocatalytic activities.

  9. Variable Emission Changes in Bi3+/Ln3+ (Ln = Eu, Sm, Dy) Co-doped Lutetium Vanadates (LuVO4)

    NASA Astrophysics Data System (ADS)

    Zheng, Yuhui; Hu, Jing; Deng, Surong; Gao, Jinwei; Wang, Qianming

    2016-06-01

    High-purity LuVO4: Ln3+/Bi3+ (Ln = Eu, Sm, Dy) phosphors with tetragonal zircon structures were successfully synthesized. The reactions have been carried out by multiple irradiations with very high efficiency. Transmission electron microscope images showed that the phosphors had rod-like structures with average lengths of about 200 nm. The host absorption edge of LuVO4: Ln3+/Bi3+ (Ln = Eu, Sm) shifted to the longer wavelength side. Furthermore, the red emission of Eu3+ ion and the orange emission of Sm3+ ion are remarkably enhanced by encapsulating Bi3+ in LuVO4 system, whereas in the case of LuVO4: Dy3+/Bi3+, the host absorption and the yellow emission from dysprosium have been suppressed in the presence of Bi3+. These novel findings will facilitate their use in the display field.

  10. Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Tan, Xiaoli

    2016-07-01

    Non-textured polycrystalline [Bi1/2(Na0.8K0.2)1/2](Ti1-xTax)O3 ceramics are fabricated and their microstructures and electrical properties are characterized. Transmission electron microscopy reveals the coexistence of the rhombohedral R3c and tetragonal P4bm phases in the form of nanometer-sized domains in [Bi1/2(Na0.8K0.2)1/2]TiO3 with low Ta concentration. When the composition is x = 0.015, the electrostrain is found to be highly asymmetric under bipolar fields of ±50 kV/cm. A very large value of 0.62% is observed in this ceramic, corresponding to a large-signal piezoelectric coefficient d33* of 1240 pm/V (1120 pm/V under unipolar loading). These values are greater than most previously reported lead-free polycrystalline ceramics and can even be compared with some lead-free piezoelectric single crystals. Additionally, this ceramic displays low cycling degradation; its electrostrain remains above 0.55% even after undergoing 10 000 cycles of ±50 kV/cm bipolar fields at 2 Hz. Therefore, Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 ceramics show great potential for large displacement devices.

  11. Magnetism of MnBi-Based Nanomaterials

    SciTech Connect

    Kharel, P; Shah, VR; Skomski, R; Shield, JE; Sellmyer, DJ

    2013-07-01

    Nanostructured MnBi ribbons doped with impurity elements including B, C, Fe, Hf, Sm and Tb were prepared using the arc melting and melt-spinning techniques. The melt-spun ribbons were annealed in vacuum furnace at 350 degrees C to obtain the intended hexagonal structure. The external impurity doping made a significant change in the magnetic properties of the nanostructured MnBi ribbons including a decrease in saturation magnetization (M-s) and anisotropy energy (K) and an increase in coercivity H-c. However, Hf and C co-doping showed the opposite effect with a small increase in both M-s and K. Interestingly, the anisotropy energy of the boron doped sample increased by about 15% irrespective of the small decrease in magnetization. A significant increase in H-c of MnBi ribbons was found due to Hf, Tb and Sm doping. H-c as high as 13 kOe was achieved in Hf-doped sample after the sample was aligned in a magnetic field. A thermal hysteresis was observed at the structural phase transition of MnBi, which shifts by about 5 K towards higher temperatures due to impurity doping. The observed magnetic properties of the impurity doped MnBi ribbons are explained as the consequences of the disorder and the competing ferromagnetic and antiferromagnetic interactions.

  12. Effect of C6+ Ion Irradiation on structural and electrical properties of Yb and Eu doped Bi1.5 Zn0.92 Nb1.5 O6.92 pyrochlores

    NASA Astrophysics Data System (ADS)

    Yumak, Mehmet; Mergen, Ayhan; Qureshi, Anjum; Singh, N. L.

    2015-03-01

    Pyrochlore general formula of A2B2X7 where A and B are cations and X is an anion Pyrochlore compounds exhibit semiconductor, metallic or ionic conduction properties, depending on the doping, compositions/ substituting variety of cations and oxygen partial pressure. Ion beam irradiation can induce the structural disordering by mixing the cation and anion sublattices, therefore we aim to inevestigate effects of irradiation in pyrochlore compounds. In this study, Eu and Yb-doped Bi1.5Zn0.92Nb1.5O6.92 (Eu-BZN, Yb-BZN) Doping effect and single phase formation of Eu-BZN, Yb-BZN was characterized by X-ray diffraction technique (XRD). Radiation-induced effect of 85 MeV C6+ ions on Eu-BZN, Yb-BZN was studied by XRD, scanning electron microscopy (SEM) and temperature dependent dielectric measurements at different fluences. XRD results revealed that the ion beam-induced structural amorphization processes in Eu-BZN and Yb-BZN structures. Our results suggested that the ion beam irradiation induced the significant change in the temprature depndent dielectric properties of Eu-BZN and Yb-BZN pyrochlores due to the increased oxygen vacancies as a result of cation and anion disordering. Department of Metallurgical and Materials Eng., Marmara University, Istanbul-81040, Turkey.

  13. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    SciTech Connect

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.

  14. Growth and fabrication method of CdTe and its performance as a radiation detector

    NASA Astrophysics Data System (ADS)

    Choi, Hyojeong; Jeong, Manhee; Kim, Han Soo; Kim, Young Soo; Ha, Jang Ho; Chai, Jong-Seo

    2015-01-01

    A CdTe crystal ingot doped with 2000 ppm of Cl was grown by using the low-pressure Bridgman (LPB) method at the Korea Atomic Energy Research Institute (KAERI). A Semiconductor detector as a radiation detection sensor with a size of 7 (W) × 6.5 (D) × 2 (H) mm3 was fabricated from the CdTe ingot. In addition, the properties of the CdTe sample were observed through four kinds of experiments to analyze its performance. The resistivity was obtained as 1.41 × 1010 Ωcm by using a Keithley 6517A high-precision electrometer. The mobility-lifetime products for electrons and holes were 3.137 × 10-4 cm2/V and 4.868 × 10-5 cm2/V, respectively. Finally, we achieved a 16.8% energy resolution at 59.5 keV for the 241Am gamma-ray source. The CdTe semiconductor detector grown at KAERI has a performance good enough to detect low-energy gamma-rays.

  15. Effect of (Li,Ce) doping in Aurivillius phase material Na0.25K0.25Bi2.5Nb2O9

    NASA Astrophysics Data System (ADS)

    Gai, Zhi-Gang; Wang, Jin-Feng; Wang, Chun-Ming

    2007-01-01

    The effect of (Li,Ce) substitution for A site on the properties of Na0.25K0.25Bi2.5Nb2O9-based ceramics was investigated. The piezoelectric activity of Na0.25K0.25Bi2.5Nb2O9-based ceramics is significantly improved by the modification of lithium and cerium. The Curie temperature (TC) gradually increases from 668to684°C with increasing the (Li,Ce) modification. The piezoelectric coefficient d33 of the [(Na0.5K0.5)Bi]0.44(LiCe)0.03[]0.03Bi2Nb2O9 ceramic was found to be 28pC/N, the highest value among the Na0.25K0.25Bi2.5Nb2O9-based ceramics and also almost 50% higher than the reported d33 values of other bismuth layer-structured ferroelectric systems (˜5-19pC/N). The planar coupling factors kp and kt were found to be 8.0% and 23.0%, together with the high TC (˜670°C) and stable piezoelectric properties, demonstrating that the (Li,Ce) modified Na0.25K0.25Bi2.5Nb2O9-based material a promising candidate for high temperature applications.

  16. Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Qing-Ning; Zhou, Chong-Rong; Xu, Ji-Wen; Yang, Ling; Zhang, Xin; Zeng, Wei-Dong; Yuan, Chang-Lai; Chen, Guo-Hua; Rao, Guang-Hui

    2016-10-01

    The large maximum polarization P max and low remnant polarization P r in relaxor ferroelectrics are key features for the energy storage density ( W) and energy-storage efficiency ( η) in materials selection. In this study, the ergodic relaxor (ER) state with high energy storage performance associated with low P r and large P max, induced by Sr0.85Bi0.1TiO3(SBT) addition in (1 - x)Bi0.5Na0.5TiO3- xSr0.85Bi0.1TiO3 (BNT-SBT x with x = 0.25-0.45, Bi0.5Na0.5TiO3 abbreviated as BNT) ceramics has been observed. In particular, significantly increased energy storage density ( W = 1.5 J/cm3) and energy-storage efficiency ( η = 73%) are obtained for BNT-SBT ergodic relaxor ceramics. These results suggest a new means of designing lead-free energy-storage materials.

  17. Properties of superconducting, polycrystalline dysprosium-doped Bi{sub 1.6}Pb{sub 0.5}Sr{sub 2-x}Dy{sub x}Ca{sub 1.1}Cu{sub 2.1}O{sub 8+{delta}} (0 {<=} x {<=} 0.5)

    SciTech Connect

    Sarun, P.M.; Vinu, S.; Shabna, R.; Biju, A.; Syamaprasad, U.

    2009-05-06

    The structural and superconducting properties of dysprosium (Dy) doped (Bi,Pb)-2212 superconductor have been studied. Dy concentration is varied from x = 0.0 to 0.5 in a general stoichiometry of Bi{sub 1.6}Pb{sub 0.5}Sr{sub 2-x}Dy{sub x}Ca{sub 1.1}Cu{sub 2.1}O{sub 8+{delta}}. It is found that the Dy atoms enter into the crystal structure by replacing Sr atoms and induce significant change in lattice parameter, microstructure, hole-concentration and normal state conductivity of the system. The critical temperature (T{sub C}) and critical current density (J{sub C}) at self-field of the Dy-doped samples enhance considerably at optimum doping levels. Maximum T{sub C} of 92.3 K (for x = 0.4) and J{sub C} of 1390 A/cm{sup 2} at 64 K (for x = 0.2) are observed for doped samples as against 79.4 K and 127 A/cm{sup 2}, respectively, for the pure sample. The results are discussed on the basis of the change in hole-concentration due to Dy-doping at Sr-site of (Bi,Pb)-2212 superconductor.

  18. X-ray absorption fine structure study of aging behavior of oxidized copper in CdTe films

    SciTech Connect

    Liu, Xiangxin; Compaan, A.D.; Terry, J.

    2005-10-19

    We have used the MR-CAT beamline of the Advanced Photon Source at Argonne National Laboratory to study the fine structure in the Cu K-edge X-ray absorption in 2 {micro}m thick polycrystalline films of CdTe on fused silica. 4 nm of evaporated Cu is diffused either with or without prior vapor CdCl{sub 2} treatments in dry air. The phase-uncorrected radial distribution function inferred from the absorption fine structure indicates predominantly Cu{sub 2}Te when Cu is diffused into the as-deposited CdTe film but indicates a Cu{sub 2}O environment when Cu is diffused after the vapor CdCl{sub 2} treatment. We believe most of the diffused Cu decorates grain boundaries as oxides, consistent with the low doping densities typically observed in CdTe solar cells. This Cu{sub 2}O likely plays a role in grain-boundary passivation. We also found that the chemical environment around Cu atoms in both CdTe and real cells can change with light soaking. This instability of Cu{sub 2}O in sputtered CdTe could contribute to cell degradation.

  19. In-situ synthesis of nanofibers with various ratios of BiOClx/BiOBry/BiOIz for effective trichloroethylene photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Park, Mira; Kim, Hak Yong; Ding, Bin; Park, Soo-Jin

    2016-10-01

    In this work, BiOClx/BiOBry/BiOIz (x + y + z = 1) composite nanofibers were prepared through electrospinning and the sol-gel methods. Photocatalytic degradation of trichloroethylene (TCE) by BiOClx/BiOBry/BiOIz/PAN nanofibers was systematically investigated via gas chromatography (GC). Optimum photocatalytic activity was achieved with BiOCl0.3/BiOBr0.3/BiOI0.4 fibers under solar light irradiation. X-ray photoelectron spectroscopy (XPS) peaks due to Csbnd O and Cdbnd O were observed at 286.0 and 288.3 eV, respectively, it indicated that the BiOClx/BiOBry/BiOIz mixture had been successfully doped on the polyacrylonitrile (PAN) fibers. Furthermore, X-ray diffraction (XRD) results also confirmed that we had synthesized the as-prepared composite nanofibers successfully. Photocatalytic activities of BiOCl0.3/BiOBr0.3/BiOI0.4 were up to 3 times higher than the pure BiOCl, BiOBr and BiOI samples, respectively.

  20. Intense upconversion luminescence and effect of local environment for Tm 3+/Yb 3+ co-doped novel TeO 2-BiCl 3 glass system

    NASA Astrophysics Data System (ADS)

    Wang, Guonian; Dai, Shixun; Zhang, Junjie; Wen, Lei; Yang, Jianhu; Jiang, Zhonghong

    2006-05-01

    We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm 3+/Yb 3+ codoped TeO 2-BiCl 3 glass system as a function of the BiCl 3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm 3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl 3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH - groups.

  1. Bond stretching phonon softening and angle-resolved photoemission kinks in optimally doped Bi2Sr1:6La0:4Cu2O6+sigma superconductors

    SciTech Connect

    Graf, Jeff; d'Astuto, M.; Jozwiak, C.; Garcia, D.R.; Saini, N.L.; Krisch, M.; Ikeuchi, K.; Baron, A.Q.R.; Eisaki, H.; Lanzara, Alessandra

    2008-05-08

    We report the first measurement of the Cu-O bond stretching phonon dispersion in optimally doped Bi2Sr1.6La0.4Cu2O6+delta using inelastic x-ray scattering. We found a softening of this phonon at q=(0.25,0,0) from 76 to 60 meV, similar to the one reported in other cuprates. A comparison with angle-resolved photoemission data on the same sample revealed an excellent agreement in terms of energy and momentum between the angle-resolved photoemission nodal kink and the soft part of the bond stretching phonon. Indeed, we find that the momentum space where a 63+-5 meV kink is observed can be connected with a vector q=(xi,0,0) with xi>= 0.22, corresponding exactly to the soft part of the bond stretching phonon.

  2. The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi{sub 0.9}Nd{sub 0.15}FeO{sub 3}

    SciTech Connect

    MacLaren, Ian Craven, Alan J.; Schaffer, Bernhard; Wang, LiQiu; Ramasse, Quentin M.; Kalantari, Kambiz; Reaney, Ian M.

    2014-06-01

    Stepped antiphase boundaries are frequently observed in Ti-doped Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3}, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO{sub 6} octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix.

  3. Anomalous enhancement of the thermoelectric power in gallium-doped p-(Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} single crystals

    SciTech Connect

    Kulbachinskii, V. A. Kytin, V. G.; Tarasov, P. M.

    2010-04-15

    The effect of gallium on the temperature dependences (5 K {<=} T {<=} 300 K) of Seebeck coefficient {alpha}, electrical conductivity {sigma}, thermal conductivity k, and thermoelectric efficiency Z of mixed p-(Bi{sub 0.5}Sb{sub 0.5}){sub 2}Te{sub 3} semiconductor single crystals is studied. The hole concentration decreases upon gallium doping; that is, gallium causes a donor effect. The Seebeck coefficient increases anomalously, i.e., much higher than it should be at the detected decrease in the hole concentration. This leads to an enhancement of the thermoelectric power. The observed changes in the Seebeck coefficient indicate a noticeable gallium-induced change in the density of states in the valence band.

  4. Ferroelectric domain structures of epitaxial CaBi2Nb2O9 thin films on single crystalline Nb doped (1 0 0) SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Ahn, Yoonho; Seo, Jeong Dae; Son, Jong Yeog

    2015-07-01

    Epitaxial CaBi2Nb2O9 (CBNO) thin films were deposited on Nb-doped SrTiO3 substrates. The CBNO thin films as a lead-free ferroelectric material exhibit a good ferroelectric property with the remanent polarization of 10.6 μC/cm2. In the fatigue resistance test, the CBNO thin films have no degradation in polarization up to 1×1012 switching cycles, which is applicable for non-volatile ferroelectric random access memories (FeRAMs). Furthermore, piezoresponse force microscopy study (PFM) reveals that the CBNO thin films have larger ferroelectric domain structures than those of PbTiO3 thin films. From the Landau, Lifshiftz, and Kittel's scaling law, it is inferred that the domain wall energy of CBNO thin films is probably very similar to that of the PbTiO3 thin films.

  5. Emission Analysis of RE{sup 3+} (= Nd{sup 3+} and Er{sup 3+}) Doped Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-LiF Glass Systems

    SciTech Connect

    Rao, K. Srinivasa; Buddhudu, S.

    2011-11-22

    This paper reports on the absorption and emission spectra o of RE{sup 3+} (= Nd{sup 3+} or Er{sup 3+}) doped Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-LiF (Bi-B-LiF) glass system. The absorption spectrum of Nd{sup 3+} doped Bi-B-LiF glass has exhibited eight absorption bands at 513 nm, 525 nm, 584 nm, 626 nm, 682 nm, 748 nm, 805 nm and 876 which correspond to the electronic transitions of ({sup 4}I{sub 9/2}{yields}{sup 4}G{sub 9/2}), ({sup 4}I{sub 9/2}{yields}{sup 4}G{sub 9/2}, {sup 4}G{sub 7/2}), ({sup 4}I{sub 9/2}{yields}{sup 4}G{sub 5/2}, {sup 2}G{sub 7/2}), ({sup 4}I{sub 9/2}{yields}{sup 2}H{sub 11/2}), ({sup 4}I{sub 9/2}{yields}{sup 4}F{sub 9/2}), ({sup 4}I{sub 9/2}{yields}{sup 4}F{sub 5/2}, {sup 4}S{sub 3/2}), ({sup 4}I{sub 9/2}{yields}{sup 4}F{sub 5/2}, {sup 2}H{sub 9/2}) and ({sup 4}I{sub 9/2}{yields}{sup 4}F{sub 5/2}) respectively. From Nd{sup 3+} : Bi-B-LiF glass, three NIR emission bands have been observed at 900 nm, 1075 nm and 1342 nm, which are assigned to the transitions of ({sup 4}F{sub 3/2}{yields}{sup 4}I{sub 9/2}), ({sup 4}F{sub 3/2}{yields}{sup 4}I{sub 11/2}) and ({sup 4}F{sub 3/2}{yields}{sup 4}I{sub 13/2}) respectively with an excitation at 514.5 nm (Ar{sup +} ion laser). The Er{sup 3+} : Bi-B-LiF glass has revealed six absorption bands at 489 nm, 522 nm, 653 nm, 800 nm, 973 nm and 1531 nm which are labeled to the transitions of ({sup 4}I{sub 15/2}{yields}{sup 4}F{sub 7/2}), ({sup 4}I{sub 15/2}{yields}{sup 2}H{sub 11/2}, 4G{sub 11/2}), ({sup 4}I{sub 15/2}{yields}{sup 4}F{sub 9/2}), ({sup 4}I{sub 15/2}{yields}{sup 4}I{sub 7/2}), ({sup 4}I{sub 15/2}{yields}{sup 4}I{sub 11/2}), and ({sup 4}I{sub 15/2}{yields}{sup 4}I{sub 13/2}) respectively. From the Er{sup 3+}: Bi-B-LiF glass, an NIR emission at 1540 nm ({sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}), has been observed with an excitation at 514.5 nm (Ar{sup +} ion laser).

  6. Effect of Niobium doping on structural, thermal, sintering and electrical properties of Bi{sub 4}V{sub 1.8}Cu{sub 0.2}O{sub 10.7}

    SciTech Connect

    Alga, M.; Ammar, A.; Tanouti, B.; Outzourhit, A.; Mauvy, F. . E-mail: mauvy@icmcb-bordeaux.cnrs.fr; Decourt, R.

    2005-09-15

    Doping Bi{sub 4}V{sub 1.8}Cu{sub 0.2}O{sub 10.7} with niobium has led to the formation of the Bi{sub 4}V{sub 1.8}Cu{sub 0.2-x}Nb{sub x}O{sub 10.7+3x/2} solid solution. X-ray diffraction and thermal analysis have shown that only the compound with x=0.05 presents a tetragonal symmetry with a {gamma}{sup '} polymorph while the other compositions are of {beta} polymorph. The influence of sintering temperature on the microstructure of the samples was investigated by the scanning electron microscopy (SEM). The ceramics sintered at temperatures higher than 820{sup o}C present micro-craks. The evolution of the electrical conductivity with temperature and the degree of substitution has been investigated by impedance spectroscopy. Among all compositions studied the sample with x=0.05 presents the highest value of the conductivity.

  7. Electric-field-temperature phase diagram of Mn-doped Bi{sub 0.5}(Na{sub 0.9}K{sub 0.1}){sub 0.5}TiO{sub 3} ceramics

    SciTech Connect

    Ehara, Yoshitaka Novak, Nikola; Yasui, Shintaro; Itoh, Mitsuru; Webber, Kyle G.

    2015-12-28

    An electric field–temperature (E-T) phase diagram for a lead-free 0.5 mol. % Mn-doped Bi(Na{sub 0.1}K{sub 0.9})TiO{sub 3} ceramics was investigated. The x-ray diffraction, dielectric and polarization measurements revealed relaxor behavior and were used to characterize the stability regions of the non-ergodic relaxor, ergodic relaxor and electric field induced ferroelectric states. As indicated by the polarization–current density profiles, transformation between two electric fields, induced ferroelectric states with opposite polarization direction arise via a two-step process through an intermediate relaxor state. Interplay between the ferroelectric state conversion and intermediate relaxor state is governed by the dynamics of polarization relaxation. The presented E-T phase diagram revealed the effects of the applied electric field and temperature on stability regions. This is of special interest since the Bi{sub 0.5}(Na{sub 0.1}K{sub 0.9}){sub 0.5}TiO{sub 3} ceramics were proposed as a potential piezoceramic material.

  8. Crystal Structure, Piezoelectric and Dielectric Properties of (Li, Ce)4+, Nb5+ and Mn2+ Co-doped CaBi4Ti4O15 High-Temperature Ceramics

    NASA Astrophysics Data System (ADS)

    Xin, Deqiong; Chen, Qiang; Wu, Jiagang; Bao, Shaoming; Zhang, Wen; Xiao, Dingquan; Zhu, Jianguo

    2016-07-01

    Bismuth-layered structured ceramics Ca0.85(Li,Ce)0.075Bi4Ti4- x Nb x O15-0.01MnCO3 were prepared by the conventional solid-state reaction method. The evolution of microstructure and corresponding electrical properties were studied. All the samples presented a single bismuth layered-structural phase with m = 4, indicating that (Li, Ce)4+, Nb5+ and Mn2+ adequately enter into the pseudo-perovskite structure and form solid solutions. It was found that Ca0.85(Li,Ce)0.075Bi4Ti3.98Nb0.02O15-0.01MnCO3 (CBTLCM-0.02Nb) ceramics possess the optimum electrical properties. The piezoelectric coefficient d 33, dielectric constant ɛ r, loss tan δ, planar electromechanical coupling factor k p and Curie-temperature T C of CBTLCM-0.02Nb ceramics were found to be ˜19.6 pC/N, 160, 0.16%, 8.1% and 767°C, respectively. Furthermore, the thermal depoling behavior demonstrates that the d 33 value of x = 0.02 content remains at 16.8 pC/N after annealing at 500°C. These results suggest that the (Li, Ce)4+-, Nb5+- and Mn2+-doped CBT-based ceramics are promising candidates for high-temperature piezoelectric applications.

  9. Effects of BiAlO{sub 3}-doping on dielectric and ferroelectric properties of 0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3} lead-free ceramics

    SciTech Connect

    Wang, Jian; Chen, Xiao-ming Zhao, Xu-mei; Liang, Xiao-xia; Zhou, Jian-ping; Liu, Peng

    2015-07-15

    Highlights: • BiAlO{sub 3}-doped BNT-based ceramics were synthesized via a conventional solid state reaction method. • T% values are 56%, 32%, 37%, and 37% for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively. • The mean grain sizes of the ceramics with x = 0, 0.01, 0.02 and 0.06 are about 1.1, 0.9, 0.8 and 0.7 μm, respectively. • Dielectric anomalies in the ϵ{sub r}–T curves are close related to the BiAlO{sub 3} amounts. • The ceramic with x = 0.01 shows the P{sub m} of 32.5 μC/cm{sup 2}, P{sub r} of 24.1 μC/cm{sup 2}, E{sub c} of 20.0 kV/cm and d{sub 33} of 166 pC/N. - Abstract: (1 − x)(0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3})–xBiAlO{sub 3} (BNBT-xBA, x = 0, 0.01, 0.02, 0.06) lead-free ceramics were synthesized via a conventional solid state reaction method. Crystallite structure, microstructure, dielectric and ferroelectric properties of the BNBT–xBA ceramics were studied in detail. X-ray diffraction results show that all ceramics exhibit typical diffraction peaks of ABO{sub 3} perovskite structure. Scanning electron microscope images show that all samples have fine microstructures. Both Curie temperature and maximum dielectric constant vary with the change in the BiAlO{sub 3} amounts. The values of hysteresis loop squareness were calculated to be 1.26, 0.81, 0.51 and 0.36 for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively, indicating a decreased switching behavior of polarization. The changes in dielectric and ferroelectric properties of the ceramics are also discussed.

  10. Bi-Assisted CdTe/CdS Hierarchical Nanostructure Growth for Photoconductive Applications

    NASA Astrophysics Data System (ADS)

    Heo, Kwang; Lee, Hyungwoo; Jian, Jikang; Lee, Dong-Jin; Park, Yongju; Lee, Changhee; Lee, Byung Yang; Hong, Seunghun

    2015-08-01

    We developed a method to control the structure of CdTe nanowires by adopting Bi-mixed CdTe powder source to a catalyst-assisted chemical vapor deposition, which allowed us to fabricate CdTe/CdS hierarchical nanostructures. We demonstrated that diverse nanostructures can be grown depending on the combination of the Bi powder and film catalysts. As a proof of concepts, we grew CdTe/CdS branched nanowires for the fabrication of photodetectors. The hierarchical nanostructure-based photodetectors showed an improved photoresponsivity compared to the single CdTe nanowire (NW)-based photodetector. Our strategy can be a simple but powerful method for the development of advanced optoelectronic devices and other practical applications.

  11. Electrical characteristics of r.f.-sputtered CdTe thin-films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Das, M. B.; Krishnaswamy, S. V.; Petkie, Ronald; Swab, P.; Vedam, K.

    1984-04-01

    A method of preparing self-doped p- and n-type and In-doped n-type CdTe thin-films for photovoltaic applications has been developed using r.f. sputtering. Ohmic contacts to n-type films with contact resistivity less than 10 -2 Ω — cm 2 have been obtained. Schottky barrier diode test devices, formed by evaporation of various metals including Au on n-CdTe films, have been examined for electrical and photovoltaic evaluation of the sputtered films. Although S.B. diodes based on In doped films, prepared under Cd overpressure, show promising electrical and photovoltaic performance ( Voc ˜ 315 mV, Isc ˜ 4.6mA/cm 2), much improvement remains to be made by further control of dopant concentration and structural details of films.

  12. The Effect of Ca–Zr mole ratio on preparation, structural and magnetic properties of Ca–Zr doped Bi-YIG

    SciTech Connect

    Hasanpour, A.; Niyaifar, M.; Faridniya, N.; Amighian, J.

    2013-08-01

    Graphical abstract: - Highlights: • Ca–Zr substituted Bi-YIG has been prepared via mechanochemical processing and heat treatment. • Structural and magnetic properties were investigated. • Magnetic measurements showed the Ferrimagnetic behavior for pure garnet structure samples. • The spherical morphology of the nanoparticles was found from the SEM micrograph. - Abstract: Ca–Zr substituted (Bi-YIG) nanopowders with a nominal composition of BiY{sub 2−x}Ca{sub x}Zr{sub y}Fe{sub 5−y}O{sub 12} (x = y and x varied from 0.00 to 1.25 by the step of 0.25) were prepared by mechanochemical processing (MCP) and subsequent heat treatments. The effect of dopant mol ratios, on garnet phase formation were investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The lattice constant of the samples increased by increasing Zr{sup 4+} content (for x ≤ 1). Mean crystallite size of the single-phase powders, which was evaluated by Scherrer's formula, was about 35 nm. The experimental results show that the Ca–Zr substitution Bi-YIG lowers the calcining and sintering temperatures for x < 1. The results show that the single-phase nanopowders can be obtained at temperatures below 850 °C. The measurements of vibrating sample magnetometer (VSM) show that the saturation magnetization of the samples increases as x increase from 0.00 to 0.25 and then decreases by increasing x to the values greater than 0.25.

  13. Electrical characterization of CdTe grain-boundary properties from as processed CdTe/CdS solar cells

    SciTech Connect

    Woods, L.M.; Robinson, G.Y.; Levi, D.H.; Ahrenkiel, R.K.; Kaydanov, V.

    1998-09-01

    An ability to liftoff or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. The authors use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. The light and dark barrier potentials change after the NP etch, and the origin of this change is postulated. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more accurate two-dimensional models for polycrystalline CdTe solar cells.

  14. Incorporation and Activation of Arsenic Dopant in Single-Crystal CdTe Grown on Si by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Farrell, S.; Kodama, R.; Blissett, C.; Wang, X.; Colegrove, E.; Metzger, W. K.; Gessert, T. A.; Sivananthan, S.

    2014-08-01

    We report the use of molecular beam epitaxy to achieve p-type doping of CdTe grown on Si(211) substrates, by use of an arsenic cracker and post-growth annealing. A high hole density in CdTe is crucial for high efficiency II-VI-based solar cells. We measured the density of As in single-crystal CdTe by secondary ion mass spectroscopy; this showed that high As incorporation is achieved at low growth temperatures. Progressively higher incorporation was observed during low-temperature growth, presumably because of degradation of crystal quality with incorporation of As at such defect sites as dislocations and defect complexes. After As activation annealing under Hg overpressure, hole concentrations were obtained from Hall measurements. The highest doping level was ˜2.3 × 1016 cm-3, and near-1016 cm-3 doping was readily reproduced. The activation efficiency was ˜50%, but further optimization of the growth and annealing conditions is likely to improve this value.

  15. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    SciTech Connect

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  16. Photovoltaic properties of sintered CdS/CdTe solar cells doped with Cu

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Ahn, B. T.; Im, H. B.; Kim, C. S.

    1992-11-01

    The effect of Cu doping before sintering on the photovoltaic properties of sintered CdS/CdTe solar cells were investigated by putting various amounts of CuCl2 either into the CdTe layer or into the back contact carbon layer. It was found that, as the amount of CuCl2 in the CdTe layers increased up to 25 ppm, the cell parameters of the sintered CdS/CdTe solar cells remained at about the same values, and then decreased sharply with further increase of CuCl2. The decreases in cell parameters are caused mainly by the increase in the resistivity of CdS and CdTe layer and the decrease in the optical transmission of CdS due to Cu doping from the CdTe.

  17. Sign reversal of dielectric anisotropy of ferroelectric liquid crystals doped with cadmium telluride quantum dots

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Silotia, P.; Biradar, A. M.

    2011-08-01

    A small amount of cadmium telluride quantum dots (CdTe QDs) has been doped into various ferroelectric liquid crystals (FLCs) to observe the modifications in the alignment and dielectric anisotropy (Δɛ) of the composites. The CdTe QDs have induced a uniform homeotropic (HMT) alignment in most of the FLC mixtures. We observed an unexpected switching (from HMT to homogeneous configuration) of CdTe QDs doped FLC CS1026 (having positive Δɛ) by the application of high dc bias. This reverse switching has been attributed to the interaction between FLC molecules and CdTe QDs which caused the sign reversal of Δɛ of FLC CS1026.

  18. Room temperature ferromagnetism of Cr-doped In2O3 bi-layer consisted of a triangular crystal-amorphous interface

    NASA Astrophysics Data System (ADS)

    Jhong, Dai-Jhen; Chen, Bo-Yu; Hsu, Chun-Yu; Liang, Yaun-Chao; Chou, Hsiung

    In2O3 film is a very conductive and can be modified to exhibit room temperature ferromagnetism upon doping of Cr. In this study, we developed a method, based on the RF power, to control the Cr-doped In2O3 (CIO) thin-films to form a crystalline phase, at a high power region, or an amorphous phase, at a low power region. When the RF power is set at a medium power, the CIO film self-assemble into a two layers system consisted of crystalline and amorphous layers with interface manifests zig-zag feature. The two layer system has a saturation magnetization Ms, of ~0.27 to ~1.78 emu/c.c. with increase of Cr-doping content. In contrast, the Ms of the amorphous films are ~0.45 emu/c.c independent of Cr content. Electron energy loss spectroscopy (EELS) measurements suggested that Cr existed in mixed oxidation states in all films. The Cr with lower oxidation state prefers crystalline structure, while the higher oxidation state Cr prefers an amorphous structure. Due to this charge imbalance, a transport of charge across the interface originates the ferromagnetic interaction, and hence, we observe enhanced MS in crystal-amorphous interface system. Corresponding Author.

  19. Modeling the defect distribution and degradation of CdTe ultrathin films

    NASA Astrophysics Data System (ADS)

    Gorji, Nima E.

    2014-12-01

    The defect distribution across an ultrathin film CdTe layer of a CdS/CdTe solar cell is modelled by solving the balance equation in steady state. The degradation of the device parameters due to the induced defects during ion implantation is considered where the degradation rate is accelerated if the defect distribution is considerable. The defect concentration is maximum at the surface of the CdTe layer where implantation is applied and it is minimum at the junction with the CdS layer. It shows that ultrathin devices degrade faster if the defect concentration is high at the junction rather than the back region (CdTe/Metal). Since the front and back contacts of the device are close in ultrathin films and the electric field is strong to drive the defects into the junction, the p-doping process might be precisely controlled during ion implantation. The modeling results presented here are in agreement with the few available experimental reports in literature about the degradation and defect configuration of the ultrathin CdTe films.

  20. Thermoelectric and mechanical properties of multi-wall carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material

    SciTech Connect

    Ren, Fei; Wang, Hsin; Menchhofer, Paul A; Kiggans, Jim

    2013-01-01

    Since many thermoelectrics are brittle in nature with low mechanical strength, improving their mechanical properties is important in fabrication of devices such as thermoelectric power generators and coolers. In this work, multiwall carbon nanotubes (CNTs) were incorporated into polycrystalline Bi0.4Sb1.6Te3 through powder processing, which increased the flexural strength from 32 MPa to 90 MPa. Electrical and thermal conductivities were both reduced in the CNT containing materials, leading to unchanged figure of merit. Dynamic Young s modulus and shear modulus of the composites were lower than the base material, which is likely related to the grain boundary scattering due to the CNTs.

  1. Structural and dielectric properties of erbium doped BiFeO{sub 3}−PbTiO{sub 3} solid solutions

    SciTech Connect

    Vandana, Singh, Anupinder Singh, Lakhwant Kaur, Anumeet; Dahyia, Sajjan; Chatterjee, Ratnamala

    2014-04-24

    Single phase Er substituted at A-site BiFeO{sub 3}−PbTiO{sub 3} solid solutions were synthesized using solid state reaction route. The calcinations at different temperature reveals that the single and pure tetragonal phase formation has been accomplished at 1000°C. The SEM micrographs did not show any distinguishable change in grain size. The dielectric studies established that the dielectric constant decreases and ferroelectric T{sub c} increases with increase in Er.

  2. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  3. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response.

    PubMed

    Scarisoreanu, N D; Craciun, F; Birjega, R; Ion, V; Teodorescu, V S; Ghica, C; Negrea, R; Dinescu, M

    2016-01-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε' ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target. PMID:27157090

  4. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response.

    PubMed

    Scarisoreanu, N D; Craciun, F; Birjega, R; Ion, V; Teodorescu, V S; Ghica, C; Negrea, R; Dinescu, M

    2016-05-09

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε' ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

  5. Structure and magnetic/electrochemical properties of Cu-doped BiFeO3 nanoparticles prepared by a simple solution method

    NASA Astrophysics Data System (ADS)

    Khajonrit, Jessada; Phumying, Santi; Maensiri, Santi

    2016-06-01

    BiFe1- x Cu x O3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method analysis using the Barret-Joyner-Halenda (BJH) model, and X-ray absorption spectroscopy (XAS). Magnetization properties were obtained using a vibrating sample magnetometer (VSM) at room temperature. Magnetization was clearly enhanced by increasing Cu content and decreasing particle size. Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetization measurements showed that blocking temperature increased with increasing Cu content. Electrochemical properties were investigated by cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method. The performance of the fabricated supercapacitor was improved for the BiFe0.95Cu0.05O3 electrode. The highest specific capacitance was 568.13 F g-1 at 1 A g-1 and the capacity retention was 77.13% after 500 cycles.

  6. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    NASA Astrophysics Data System (ADS)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target.

  7. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    PubMed Central

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-01-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target. PMID:27157090

  8. Electrocaloric effect and luminescence properties of lanthanide doped (Na{sub 1/2}Bi{sub 1/2})TiO{sub 3} lead free materials

    SciTech Connect

    Zannen, M.; Lahmar, A. E-mail: zdravko.kutnjak@ijs.si; Asbani, B.; El Marssi, M.; Khemakhem, H.; Kutnjak, Z. E-mail: zdravko.kutnjak@ijs.si; Es Souni, M.

    2015-07-20

    Polycrystalline lead-free Sodium Bismuth Titanate (NBT) ferroelectric ceramics doped with rare earth (RE) element are prepared using solid state reaction method. Optical, ferroelectric, and electrocaloric properties were investigated. The introduction of RE{sup 3+} ions in the NBT host lattice shows different light emissions over the wavelength range from visible to near infrared region. The ferroelectric P-E hysteresis loops exhibit an antiferroelectric-like character near room temperature indicating possible existence of a morphotropic phase boundary. The enhanced electrocaloric response was observed in a broad temperature range due to nearly merged phase transitions. Coexistence of optical and electrocaloric properties is very promising for photonics or optoelectronic device applications.

  9. Emitter/absorber interface of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be

  10. Optical properties of down-shifting barium borate glass for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Loos, Sebastian; Steudel, Franziska; Ahrens, Bernd; Schweizer, Stefan

    2015-03-01

    CdTe thin film solar cells have a poor response in the ultraviolet and blue spectral range, mainly due to absorption and thermalization losses in the CdS buffer layer. To overcome this efficiency drop in the short wavelength range trivalent rare-earth doped barium borate glass is investigated for its potential as frequency down-shifting cover glass on top of the cell. The glass is doped with either Tb3+ or Eu3+ up to a level of 2.5 at.% leading to strong absorption in the ultraviolet/blue spectral range. Tb3+ shows intense emission bands in the green spectral range while Eu3+ emits in the orange/red spectral range. Based on rare-earth absorption and luminescence quantum efficiency the possible gain in short-circuit current density is calculated.

  11. Large difference between the magnetic properties of Ba and Ti co-doped BiFeO3 bulk materials and their corresponding nanoparticles prepared by ultrasonication

    NASA Astrophysics Data System (ADS)

    Ahmmad, Bashir; Kanomata, Kensaku; Koike, Kunihiro; Kubota, Shigeru; Kato, Hiroaki; Hirose, Fumihiko; Billah, Areef; Jalil, M. A.; Basith, M. A.

    2016-07-01

    The ceramic pellets of the nominal compositions Bi0.7Ba0.3Fe1‑x Ti x O3 (x  =  0.00–0.20) were prepared initially by standard solid state reaction technique. The pellets were then ground into micrometer-sized powders and mixed with isopropanol in an ultrasonic bath to prepare nanoparticles. The x-ray diffraction patterns demonstrate the presence of a significant number of impurity phases in bulk powder materials. Interestingly, these secondary phases were completely removed due to the sonication of these bulk powder materials for 60 minutes. The field and temperature dependent magnetization measurements exhibited significant difference between the magnetic properties of the bulk materials and their corresponding nanoparticles. We anticipate that the large difference in the magnetic behavior may be associated with the presence and absence of secondary impurity phases in the bulk materials and their corresponding nanoparticles, respectively. The leakage current density of the bulk materials was also found to suppress in the ultrasonically prepared nanoparticles compared to that of bulk counterparts.

  12. Selective area epitaxy of CdTe

    NASA Astrophysics Data System (ADS)

    Luo, Y. Y.; Cavus, A.; Tamargo, M. C.

    1997-06-01

    We have performed selective area epitaxy (SAE) of CdTe layers grown by molecular beam epitaxy using a shadow mask technique. This technique was chosen over other SAE techniques due to its simplicity and its compatibility with multiple SAE patterning steps. Features as small as 50 microns × 50 microns were obtained with sharp, abrupt side walls and flat mesa tops. Separations between mesas as small as 20 microns were also obtained. Shadowing effects due to the finite thickness of the mask were reduced by placing the CdTe source in a near normal incidence position. Intimate contact between the mask and the substrate was essential in order to achieve good pattern definition.

  13. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  14. Role of Gd3+ ion on downshifting and upconversion emission properties of Pr3+, Yb3+ co-doped YNbO4 phosphor and sensitization effect of Bi3+ ion

    NASA Astrophysics Data System (ADS)

    Dwivedi, A.; Mishra, Kavita; Rai, S. B.

    2016-07-01

    Dual-mode luminescence (downshifting-DS and upconversion-UC) properties of Pr3+/Yb3+ co-doped Y1-xGdxNbO4 (x = 0.0, 0.5, and 1.0) phosphors synthesized by solid state reaction technique have been explored with and without Gd3+ ion. The structural characterizations (XRD, SEM, and FTIR) confirm the pure phase of YNbO4 phosphor. Further, with the Gd3+ ion co-doping, the YNbO4 phosphors having a random shape and the large particle size are found to be transformed into nearly spherical shape particles with the reduced particle size. The optical band gaps (Eg) of Y1-xGdxNbO4 (x = 0.00, 0.25, 0.50, and 1.00) calculated from UV-Vis-NIR measurements are ˜3.69, 4.00, 4.38, and 4.44 eV, respectively. Moreover, YNbO4 phosphor is a promising blue emitting material, whereas Y1-x-y-zPryYbzGdxNbO4 phosphor gives intense green, blue, and red emissions via dual-mode optical processes. The broad blue emission arises due to (NbO4)3- group of the host with λex = 264 nm, whereas Pr3+ doped YNbO4 phosphor gives dominant red and blue emissions along with comparatively weak green emission on excitation with λex = 300 nm and 491 nm. The concentration dependent variation in emission intensity at 491 nm (3P0→3H4 transition) and 612 nm (1D2→3H4 transition); at 612 nm (1D2→3H4 transition) and 658 nm (3P0→3F2 transition) of Pr3+ ion in YNbO4 phosphor with λex = 300 nm and 491 nm excitations, respectively, has been thoroughly explored and explained by the cross-relaxation process through different channels. The sensitization effect of Bi3+ ion co-doping on DS properties of the phosphor has also been studied. The observed DS results have been optimized by varying the concentration of Pr3+ and Bi3+ ions, and the results are explained by the well-known simple band structure model. The study of Gd3+ co-doping reveals noticeable differences in DS characteristics of Y1-xPrxNbO4 phosphors: the overall decrement and increment (except for 612 nm emission) in intensity of DS emission on

  15. Preparation and properties of evaporated CdTe films: Final subcontract report, 16 February 1985-31 March 1987

    SciTech Connect

    Bube, R H; Fahrenbruch, A L; Chien, K F

    1987-07-01

    Previous work on evaporated CdTe films for photovoltaics showed no clear path to successful p-type doping of CdTe during deposition. Post-deposition annealing of the films in various ambients thus was examined as a means of doping. Anneals were done in Te, Cd, P, and As vapors and in vacuum, air and Ar, all of which showed large effects on series resistance and diode parameters. With As, series resistance values of In/p-CdTe/graphite structures decreased markedly. This decrease was due to a decrease in grain boundary and/or back contact barrier height, and thus was due to large increases in mobility; the carrier density was not altered substantially. Although the series-resistance decreases were substantial, the diode characteristics became worse. The decreases were not observed when CdS/CdTe cells were fabricated on Te vapor-annealed films. Preparation of ZnO films by reactive evaporation yielded promising results. Deposition of p-ZnTe films by hot-wall vapor evaporation, using conventional techniques, yielded acceptable films without intentional doping.

  16. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  17. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films

    SciTech Connect

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.; Sathe, Vasant; Ganesan, V.

    2014-12-07

    In this paper, we report on physical properties of pure and Cu doped cadmium telluride (CdTe) films deposited onto corning 7059 microscopic glass substrates by electron beam evaporation technique. X-ray diffraction study showed that all the deposited films belong to amorphous nature. The average transmittance of the films is varied between 77% and 90%. The optical energy band gap of pure CdTe film is 1.57 eV and it decreased to 1.47 eV upon 4 wt. % of Cu addition, which may be due to the extension of localized states in the band structure. The refractive index of the films was calculated using Swanepoel method. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, and oscillator energy (E{sub o}) of CdTe and CdTe:Cu films were calculated and discussed in detail with the light of possible mechanisms underlying the phenomena. The variation in intensity of photoluminescence band edge emission peak observed at 820 nm with Cu dopant is due to the change in surface state density. The observed trigonal lattice of Te peaks in the micro-Raman spectra confirms the p-type conductive nature of films, which was further corroborated by the Hall effect measurement. The lowest resistivity of 6.61 × 10{sup 4} Ω cm was obtained for the CdTe:Cu (3 wt. %) film.

  18. Super-resolution x-ray imaging by CdTe discrete detector arrays

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Ishida, Y.; Morii, H.; Tomita, Y.; Ohashi, G.; Temmyo, J.; Hatanaka, Y.

    2005-08-01

    512-pixel CdTe super-liner imaging scanner was developed. This device was consist with 512 chips of M-π-n CdTe diode detector fabricated by excimer laser doping process, 8 chips of photon-counting mode 64ch ASIC with FPGA circuit, USB2.0 interface with 1-CPU. It has 5 discriminated levels and over 2Mcps count rate for X-ray penetration imaging. This imaging scanner has 512 discrete CdTe chips for detector arrays with the length of 2.0mm, width of 0.8mm and thickness of 0.5mm. These chips were mounted in four plover array rows for high-resolution imaging with 0.5mm-pitch, therefore the pixel pitch was over the pixel width. When images were taken with scanning system with this arrays, we could obtain over-resolution than pixel width. In this paper, this "over-resolution" imaging will be called "super resolution imaging". In high-resolution imaging device, the pixel devices on one substrate were formed by integrated process, or many discrete detector chips were installed on circuit board, usually. In the latter case, it is easer to make each detector chips than former case, and it are no need to consider charge sharing phenomena compare with one-chip pixel devices. However, a decrease in pixel pitch makes the mount to the detector chip to the ASIC board difficult because the handling will also be difficult The super-resolution technique in this scanner by pixel-shift method for X-ray imaging is shown in this paper

  19. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  20. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  1. Dramatic influence of Dy{sup 3+} doping on strain and domain structure in lead-free piezoelectric 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}−0.065BaTiO{sub 3} ceramics

    SciTech Connect

    Li, C. Q.; Zhang, J. Z.; Hu, Z. G. Chu, J. H.; Yao, Q. R.; Wang, F. F.; Liu, A. Y.; Shi, W. Z.

    2015-12-15

    An electric-field induced giant strain response and doping level dependent domain structural variations have been studied in the dysprosium (Dy{sup 3+})-modified 0.935(Na{sub 1/2}Bi{sub 1/2})TiO{sub 3}-0.065BaTiO{sub 3}(xDy : NBBT) ceramics with the doping levels of 0%, 0.5%, 1%, and 2%. X-ray diffraction and Raman spectroscopy analyses not only demonstrates the change in ionic configurations induced by Dy{sup 3+} doping, but also shows the local crystal symmetry for x ≥ 0.5% doping levels to deviate from the idealized cubic structure. Piezoresponse force microscopy measurement exhibits the presence of an intermediate phase with orthorhombic symmetry at the critical Dy{sup 3+} doping level of 2%. Moreover, at this doping level, a giant recoverable nonlinear strain of ∼0.44% can be observed with high normalized strain (S{sub max}/E{sub max}) of 728 pm/V. At the same applied field, the strain exhibits a 175% increase than that of NBBT ceramic. Such a large strain stems from the varying coherence lengths of polar nanoregions (PNRs) and an unusual reversible 90° domain switching caused by the symmetry conforming property of point defects, where the restoring force is provided by unswitchable defects. The mechanism reveals a new possibility to achieve large electric-field strain effect for a wide range of ferroelectric systems, which can lead to applications in novel “on-off” actuators.

  2. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE PAGESBeta

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  3. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  4. A low-cost non-toxic post-growth activation step for CdTe solar cells.

    PubMed

    Major, J D; Treharne, R E; Phillips, L J; Durose, K

    2014-07-17

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  5. A low-cost non-toxic post-growth activation step for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  6. Stacking faults and lamellar twins with intrinsic point defects in poly-crystalline CdTe analyzed by density functional theory

    NASA Astrophysics Data System (ADS)

    Buurma, Christopher; Chan, Maria; Pauluaskas, Tadas; Klie, Robert; Sivananthan, Sivalingam; DOE Bridge Project Collaboration

    2014-03-01

    Polycrystalline CdTe is a prominent photovoltaic material with proven industry success. To develop the next generation of thin film CdTe solar cells, higher open-circuit voltages and longer minority carrier lifetimes must be achieved. Playing a major role in doping, defect migration, recombination, and current transport are grain boundaries and other extended defects within grains of poly-crystalline CdTe. Commonly observed with STEM in CdTe are twins and stacking faults that extend throughout the entire grain. These twins can appear as lamellar repeating twins, or as single column stacking faults occurring in repetition near that of a Wurtzite structure. In this talk, we will use first principles density functional theory to investigate the thermodynamics and electronic structures such structures observed in STEM. The interaction energetics between adjacent twins and sets of twins are investigated. We will also investigate the likelihood of formation of neutral and charged native point defects in and near these extended defect structures. Binding energies of multiple point defects near such structures are also revealed. Implications towards PV efficiencies are discussed.

  7. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  8. Process Development for High Voc CdTe Solar Cells

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  9. Emerging materials for solar cell applications: electrodeposited CdTe. First quarter report, February 15-May 15, 1980

    SciTech Connect

    Rod, R L; Basol, B; Stafsudd, O

    1980-06-30

    The present program is a continuation of earlier efforts to develop electrochemically deposited films of compound semiconductors and solar cells made from them. Primary objectives include the development and characterization of controllably doped n and p type CdTe films with densities of 5.8 gm/cm/sup 3/, appropriate grain sizes, good film morphology and freedom from pinholes, and carrier concentrations from 10/sup 16/ to 10/sup 18//cm/sup 3/. The end result of the effort is to demonstrate by the seventh month, or September 15, 1980, solar cells over 1 cm/sup 2/ in area showing total area conversion efficiencies exceeding 4%. By the end of the first quarter, milestones were met calling for us to supply characterized n type CdTe films that were reproducible and free from pinholes. Also, prototype electrodeposited CdTe solar cells were fabricated and evaluated. Characterizations of p-type CdTe and ZnTe films were complicated by interferences existing between them and adjacent substrates. A number of devices, including the glass/ITO/n-CdTe:In/Au Schottky structure and an ITO/n-CdTe:In/p-Cu/sub 2-x/Te heterojunction, have been fabricated. The highest internal efficiency of the Schottky devices, which have yet to have fingered grids and anti-reflection coatings applied, is 4%. The heterojunction is a larger area device 2 cm/sup 2/ in area. It shows promise of meeting the 4% total area efficiency as does the Schottky when grids and A/R coatings are applied.

  10. Carrier Density and Compensation in Semiconductors with Multi Dopants and Multi Transition Energy Levels: The Case of Cu Impurity in CdTe: Preprint

    SciTech Connect

    Wei, S. H.; Ma, J.; Gessert, T. A.; Chin, K. K.

    2011-07-01

    Doping is one of the most important issues in semiconductor physics. The charge carrier generated by doping can profoundly change the properties of semiconductors and their performance in optoelectronic device applications, such as solar cells. Using detailed balance theory and first-principles calculated defect formation energies and transition energy levels, we derive general formulae to calculate carrier density for semiconductors with multi dopants and multi transition energy levels. As an example, we studied CdTe doped with Cu, in which VCd, CuCd, and Cui are the dominant defects/impurities. We show that in this system, when Cu concentration increases, the doping properties of the system can change from a poor p-type, to a poorer p-type, to a better p-type, and then to a poor p-type again, in good agreement with experimental observation of CdTe-based solar cells.

  11. Photoluminescence of CdTe Crystals Grown by Physical-Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Boyd, P. R.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.

    2003-01-01

    High-quality CdTe crystals with resistivities higher than 10(exp 8) omega cm were grown by the physical-vapor transport (PVT) technique. Indium, aluminum, and the transition-metal scandium were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. The emission peaks at 1.584 eV and 1.581 eV were found only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/In complex. The intensity of the broadband centered at 1.43 eV decreases strongly with introduction of Sc.

  12. Photoluminescence of CdTe Crystals Grown by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Boyd, P. R.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.

    2002-01-01

    High quality CdTe crystals with resistivities higher than 10(exp 8) omega cm were grown by the physical vapor transport technique. Indium, Aluminum, and the transition metal Scandium were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. The emission peaks at 1.584 eV and 1.581 eV were found only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/indium complex. The intensity of the broadband centered at 1.43 eV decreases strongly with introduction of Sc.

  13. Surface defect states in MBE-grown CdTe layers

    SciTech Connect

    Olender, Karolina; Wosinski, Tadeusz; Fronc, Krzysztof; Tkaczyk, Zbigniew; Chusnutdinow, Sergij; Karczewski, Grzegorz

    2014-02-21

    Semiconductor surface plays an important role in the technology of semiconductor devices. In the present work we report results of our deep-level transient spectroscopy (DLTS) investigations of surface defect states in nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. We observed a deep-level trap associated with surface states, with the activation energy for hole emission of 0.33 eV. DLTS peak position in the spectra for this trap, and its ionization energy, strongly depend on the electric field. Our measurements allow to determine a mechanism responsible for the enhancement of hole emission rate from the traps as the phonon-assisted tunnel effect. Density of surface defect states significantly decreased as a result of passivation in ammonium sulfide. Capacitance-voltage measurements confirmed the results obtained by the DLTS technique.

  14. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  15. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  16. Recrystallisation of electrophoretically deposited CdTe films

    NASA Astrophysics Data System (ADS)

    Pande, P. C.; Bocking, S.; Duke, S.; Miles, R. W.; Carter, M. J.; Latimer, I. D.; Hill, R.

    1996-02-01

    Films of CdTe have been produced by a novel low cost process based on electrophoretic deposition using polar organic solvents. The main advantage of this method is the high rate of deposition, greater than 20 μm/min. Details of the deposition process are given and the effects of post-deposition annealing of the samples have also been investigated using XRD, SEM and EDAX. Laser annealing resulted in melting of CdTe producing more compact and robust films.

  17. Strategies for recycling CdTe photovoltaic modules

    SciTech Connect

    Eberspacher, C.; Gay, C.F.; Moskowitz, P.D.

    1994-12-31

    Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

  18. CdTe Photovoltaics for Sustainable Electricity Generation

    NASA Astrophysics Data System (ADS)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  19. High-quality CdTe films from nanoparticle precursors

    SciTech Connect

    Schulz, D.L.; Pehnt, M.; Urgiles, E.

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  20. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 1, October 1, 1980-January 31, 1981

    SciTech Connect

    Bube, R. H.

    1981-01-01

    This program is concerned with the investigation of the materials properties of CdTe thin films deposited by hot-wall vacuum evaporation and of CdTe single crystalline material, particularly those relevant to solar cell applications in which CdTe is the absorbing member. Progress is reported on: (a) an evaluation of CdTe homojunctions formed by HWVE of CdTe by Walter Huber at the laboratory of Dr. Adolfo Lopez-Otero at the Institut fuer Physik of the University of Linz, using single crystal p-type CdTe from Stanford as a substrate; (b) the design and construction of a HWVE apparatus at Stanford; and (c) properties of grain boundaries in large grain polycrystalline CdTe.

  1. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  2. Bismuth doping strategies in GeTe nanowires to promote high-temperature phase transition from rhombohedral to face-centered cubic structure

    SciTech Connect

    Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng; Kong, Tao

    2014-11-17

    The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.

  3. Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-μm-Thick CdTe Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    2002-05-01

    N2-doped ZnTe was introduced onto 1-μm-thick CdTe absorbers in order to reduce the carrier recombination at the back contact of CdS/CdTe/C/Ag configuration solar cells. ZnTe films were grown by molecular beam epitaxy (MBE) on GaAs and Corning glass substrates to investigate the characteristics of the films. Epitaxial growth of ZnTe was realized on GaAs substrates and a hole concentration of 8 × 1018 cm-3 with a resistivity of 0.045 Ω \\cdotcm was achieved as a result of nitrogen doping. In contrast, polycrystalline ZnTe films were grown on Corning glass and CdTe thin films. Dark and photoconductivity of ZnTe films increased to 1.43 × 10-5 S/cm and 1.41 × 10-4 S/cm, respectively, while the Zn to Te ratio was decreased to 0.25 during MBE growth. These ZnTe films with different thicknesses were inserted into close-spaced sublimation (CSS)-grown 1-μm-thick CdTe solar cells. A conversion efficiency of 8.31% (Voc: 0.74 V, Jsc: 22.98 mA/cm2, FF: 0.49, area: 0.5 cm2) was achieved for a 0.2-μm-thick ZnTe layer with a cell configuration of CdS/CdTe/ZnTe/Cu-doped-C/Ag. Furthermore, to overcome the problem of possible recombination loss in the interface layer of CdTe and ZnTe, the intermediate ternary CdZnTe is investigated. The compositional factor in Cd1-xZnxTe:N alloy is varied and the dependence of the conductivity is evaluated. For instance, Cd0.5Zn0.5Te:N, with dark and photoconductivity of 2.13 × 10-6 and 2.9 × 10-5 S/cm, respectively, is inserted at the back contact of a 1-μm-thick CdTe solar cell. A conversion efficiency of 7.46% (Voc: 0.68 V, Jsc: 22.60 mA/cm2, FF: 0.49, area: 0.086 cm2) was achieved as the primary result for a 0.2-μm-thick Cd0.5Zn0.5Te:N layer with the cell configuration of CdS/CdTe/Cd0.5Zn0.5Te:N/Au.

  4. Development of ZnTe:Cu Contacts for CdTe Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-320

    SciTech Connect

    Dhere, R.

    2012-04-01

    The main focus of the work at NREL was on the development of Cu-doped ZnTe contacts to CdTe solar cells in the substrate configuration. The work performed under the CRADA utilized the substrate device structure used at NREL previously. All fabrication was performed at NREL. We worked on the development of Cu-doped ZnTe as well as variety of other contacts such as Sb-doped ZnTe, CuxTe, and MoSe2. We were able to optimize the contacts to improve device parameters. The improvement was obtained primarily through increasing the open-circuit voltage, to values as high as 760 mV, leading to device efficiencies of 7%.

  5. Reduced blinking behavior of single 2-mercapto ethanol capped CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit; Tamai, Naoto

    2013-11-01

    Water soluble small size CdTe QDs were synthesized by using 2-mercapto ethanol (2ME) as stabilizer. The optimum size of QDs was obtained after certain time of reflux. Synthesized 2ME capped CdTe QDs show large Stokes shifted photoluminescence. At the single particle detection level, 2ME capped CdTe QDs showed reduced blinking behavior compared to that of TGA capped CdTe QDs. These results indicate that the thiol moiety of 2ME, which is a strong electron donor, saturated the surface traps with electrons, preventing the traps from accepting the Auger ionized electrons from the core of CdTe QD.

  6. Advances in CdTe R&D at NREL

    SciTech Connect

    Wu, X.; Zhou, J.; Keane, J. C.; Dhere, R. G.; Albin, D. S.; Gessert, T. A.; DeHart, C.; Duda, A.; Ward, J. J.; Yan, Y.; Teeter, G.; Levi, D. H.; Asher, S.; Perkins, C.; Moutinho, H. R.; To, B.

    2005-11-01

    This paper summarizes the following R&D accomplishments at National Renewable Energy Laboratory (NREL): (1) Developed several novel materials and world-record high-efficiency CdTe solar cell, (2) Developed "one heat-up step" manufacturing processes, and (3) Demonstrated 13.9% transparent CdTe cell and 15.3% CdTe/CIS polycrystalline tandem solar cell. Cadmium telluride has been well recognized as a promising photovoltaic material for thin-film solar cells because of its near-optimum bandgap of ~1.5 eV and its high absorption coefficient. Impressive results have been achieved in the past few years for polycrystalline CdTe thin-film solar cells at NREL. In this paper, we summarize some recent R&D activities at NREL.

  7. Resetting the Defect Chemistry in CdTe

    SciTech Connect

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  8. The influence of ions, photons, and electrons on the doping and growth of [ital p]-CdTe films

    SciTech Connect

    Fahrenbruch, A.L.; Kim, D.; Lopez-Otero, A.; Bube, R.H. )

    1992-12-01

    This paper reviews our recent research on ion- and photon-assisted doping and growth of homoepitaxial CdTe thin films. Our earlier work demonstrated doping to 2[times]10[sup 17] cm[sup [minus]3] with 60 eV P ions during growth by vacuum deposition, but gave low values of minority-carrier diffusion length [ital L][sub [ital d

  9. Synthesis, Structural and Electrical properties of Bi4Ti3O12 & Bi3.5La0.5Ti3O12 Ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Roy, M.; Bala, Indu; Barbar, S. K.; Jangid, S.; Dave, P.

    2011-07-01

    Polycrystalline ceramic samples of Bi4Ti3O12 and the La-doped Bi3.5La0.5Ti3O12 have been synthesized by standard high temperature solid state reaction method using high purity oxides and carbonates. The effect of lanthanum doping on the structure of Bi4Ti3O12 powders was investigated by X-ray diffraction. A better agreement between the observed and calculated X-Ray diffraction pattern was obtained by performing the Rietveld refinement with a structural model using the non centrosymmetric space group Fmmm. Rietveld analysis revealed that with the partial substitution of La on the Bi site increases the a and b lattice parameters and decreases the c parameter. The activation energies calculated from dc conductivities are 1.033 eV and 2.244 eV which shows that La doping increases the resistivity of the material useful for dielectric devices.

  10. Lead-free In{sub 2}O{sub 3}-doped (Bi{sub 0.5}Na{sub 0.5}){sub 0.93}Ba{sub 0.07}TiO{sub 3} ceramics synthesized by direct reaction sintering

    SciTech Connect

    Zhou Taosheng; Huang Rongxia; Shang Xunzhong; Peng Fei; Guo Jianyong; Chai Liying; Gu Haoshuang; He Yunbin

    2007-04-30

    Lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.93}Ba{sub 0.07}TiO{sub 3}-x wt %In{sub 2}O{sub 3} ceramics synthesized by direct reaction sintering have been studied. X-ray diffraction reveals that all (Bi{sub 0.5}Na{sub 0.5}){sub 0.93}Ba{sub 0.07}TiO{sub 3}-x wt %In{sub 2}O{sub 3} ceramics are of a perovskite structure with coexistence of rhombohedral and tetragonal phases. It is found that the direct reaction sintering promotes growing of ceramic grains while doping of In{sub 2}O{sub 3} contributes to inhibit and homogenize the grain growth, as shown by scanning electron microscopy. The ceramics show excellent piezoelectric and dielectric properties with thickness electromechanical coupling factor k{sub t}=0.503, piezoelectric constant d{sub 33}=205 pC/N, dielectric constant {epsilon}{sub 33}{sup T}/{epsilon}{sub 0}=1046, and loss tangent tan {delta}=0.036.

  11. Atomic Structure of Twin Boundaries in CdTe

    SciTech Connect

    Yan, Y.; Jones, K. M.; Al-Jassim, M. M.

    2003-05-01

    Using the combination of high-resolution transmission electron microscopy, first-principles density-functional total energy calculations, and image simulations, we determined the atomic structure of lamellar twin and double-positioning twin boundaries in CdTe. We find that the structure of lamellar twin boundaries has no dangling bonds or wrong bonds; thus, it results in negligible effects on the electronic properties. The structure of double-positioning twin boundaries, however, contain both Cd and Te dangling bonds, and therefore produce energy states in the bandgap that are detrimental to the electronic properties of CdTe.

  12. Optimization of Bi2O3, TiO2, and Sb2O3 doped ZnO-based low-voltage varistor ceramic to maximize nonlinear electrical properties.

    PubMed

    Dorraj, Masoumeh; Zakaria, Azmi; Abdollahi, Yadollah; Hashim, Mansor; Moosavi, Seyedehmaryam

    2014-01-01

    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment.

  13. Optimization of Bi2O3, TiO2, and Sb2O3 Doped ZnO-Based Low-Voltage Varistor Ceramic to Maximize Nonlinear Electrical Properties

    PubMed Central

    Dorraj, Masoumeh; Abdollahi, Yadollah; Hashim, Mansor; Moosavi, Seyedehmaryam

    2014-01-01

    In ZnO-based low voltage varistor, the two essential features of microstructure determining its nonlinear response are the formation Bi-enriched active grain boundaries as well as a controlled ZnO grain size by secondary spinel-type phases. Besides, the microstructure and phase composition are strongly affected by the dopant concentration during sintering process. In this study, the optimal dopant levels of Bi2O3, TiO2, and Sb2O3 to achieve maximized nonlinear electrical property (alpha) were quantified by the response surface methodology (RSM). RSM was also used to understand the significance and interaction of the factors affecting the response. Variables were determined as the molar ratio of Bi2O3, TiO2, and Sb2O3. The alpha was chosen as response in the study. The 5-level-3-factor central composite design, with 20 runs, was used to conduct the experiments by ball milling method. A quadratic model was established as a functional relationship between three independent variables and alpha. According to the results, the optimum values of Bi2O3, TiO2, and Sb2O3 were obtained 0.52, 0.50, and 0.30, respectively. Under optimal conditions the predicted alpha (9.47) was calculated using optimal coded values from the model and the theoretical value is in good agreement with the value (9.43) obtained by confirmation experiment. PMID:25243225

  14. Applications of CdTe to nuclear medicine. Final report

    SciTech Connect

    Entine, G.

    1985-05-07

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals. (ACR)

  15. Ion-beam-induced damage formation in CdTe

    SciTech Connect

    Rischau, C. W.; Schnohr, C. S.; Wendler, E.; Wesch, W.

    2011-06-01

    Damage formation in <111>- and <112>-oriented CdTe single crystals irradiated at room temperature and 15 K with 270 keV Ar or 730 keV Sb ions was investigated in situ using Rutherford backscattering spectroscopy (RBS) in channeling configuration. Defect profiles were calculated from the RBS spectra using the computer code DICADA and additional energy-dependent RBS measurements were performed to identify the type of defects. At both temperatures no formation of a buried amorphous layer was detected even after prolonged irradiation with several 10{sup 16} ions/cm{sup 2}. The fact that CdTe is not rendered amorphous even at 15 K suggests that the high resistance to amorphization is caused by the high ionicity of CdTe rather than thermal effects. The calculated defect profiles show the formation of a broad defect distribution that extends much deeper into the crystal than the projected range of the implanted ions at both temperatures. The post-range defects in CdTe thus do not seem to be of thermal origin either, but are instead believed to result from migration driven by the electronic energy loss.

  16. Radiative and interfacial recombination in CdTe heterostructures

    SciTech Connect

    Swartz, C. H. Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H.; Zaunbrecher, K. N.

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  17. Simulation of charge transport in pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  18. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    NASA Astrophysics Data System (ADS)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  19. Characterization of M-π-n CdTe pixel detectors coupled to HEXITEC readout chip

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Kalliopuska, J.; Pohjonen, H.; Andersson, H.; Nenonen, S.; Seller, P.; Wilson, M. D.

    2012-01-01

    Segmentation of the anode-side of an M-π-n CdTe diode, where the pn-junction is diffused into the detector bulk, produces large improvements in the spatial and energy resolution of CdTe pixel detectors. It has been shown that this fabrication technique produces very high inter-pixel resistance and low leakage currents are obtained by physical isolation of the pixels of M-π-n CdTe detectors. In this paper the results from M-π-n CdTe detectors stud bonded to a spectroscopic readout ASIC are reported. The CdTe pixel detectors have 250 μm pitch and an area of 5 × 5 mm2 with thicknesses of 1 and 2 mm. The polarization and energy resolution dependence of the M-π-n CdTe detectors as a function of detector thickness are discussed.

  20. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    PubMed Central

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established. PMID:22754325

  1. Study of the initial stages of growth of CdTe on (001)GaAs

    NASA Astrophysics Data System (ADS)

    Mar, H. A.; Salansky, N.; Chee, K. T.

    1984-05-01

    The initial stages of growth of CdTe on (001) GaAs have been studied using Auger electron spectroscopy and reflection high-energy electron techniques. At the growth temperature of 225 °C tellurium atoms are observed to be adsorbed to a thickness of one to two monolayers on a thermally cleaned GaAs substrate. However, cadmium atoms are adsorbed only when tellurium atoms are present. An analysis of the Auger electron spectra and the reflection high-energy electron diffraction patterns taken at intervals during the initial growth of CdTe films from a CdTe compound source indicates that growth takes place first by the deposition of one to two monolayers of tellurium. This is followed by the nucleation and growth of CdTe crystallites which increase in size and coalesce to form a single crystal of CdTe with a (111) CdTe ∥ (001) GaAs orientation.

  2. Choice of Substrate Material for Epitaxial CdTe Solar Cells

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-06-14

    Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.

  3. Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+δ

    SciTech Connect

    Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; Amorese, A.; Brookes, N. B.; Dellea, G.; Lee, W. -S.; Minola, M.; Schmitt, T.; Yoshida, Y.; Zhou, K. -J.; Eisaki, H.; Devereaux, T. P.; Shen, Z. -X.; Braicovich, L.; Ghiringhelli, G.

    2015-08-24

    In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also compare the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.

  4. Suppressed blinking behavior of thioglycolic acid capped CdTe quantum dot by amine functionalization

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit; Tamai, Naoto

    2011-12-01

    Prepared water soluble thioglycolic acid capped CdTe quantum dots (QDs) were further surface functionalized by ethylene diamine (EDA). Amine functionalized CdTe QDs demonstrate enhanced luminescence intensity at ensemble measurements and suppressed luminescence intermittency behavior at the single molecule level. A clear decrease in the power law exponent for "on" time behavior is observed in amine modified CdTe QDs. Our results show that surface of CdTe QDs modified by EDA can lead to an important physical mechanism to enhance fluorescence intensity, reduce blinking, and increase photostability.

  5. Review of Photovoltaic Energy Production Using CdTe Thin-Film Modules: Extended Abstract Preprint

    SciTech Connect

    Gessert, T. A.

    2008-09-01

    CdTe has near-optimum bandgap, excellent deposition traits, and leads other technologies in commercial PV module production volume. Better understanding materials properties will accelerate deployment.

  6. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  7. Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, X. A.; Yang, J. Y.; Xie, Z.; Li, K.; Zhu, W.; Duan, X. K.; Xiao, C. J.; Zhang, Q. Q.

    2007-10-01

    Bi2Te3 plate-like crystals with homogeneous hexagonal morphology were rapidly synthesized using a microwave assisted wet chemical method in 30 min. These Bi2Te3 nanoplates possessed a fixed edge with a length of ~0.5-2 µm, and the thickness was less than ~100 nm. The n-type Bi2Te3 nanocomposites were prepared by consolidating mixtures of these nanoplates and mechanically alloyed powders using plasma activated sintering, and the effect of nanoplate addition on the thermoelectric properties of the nanocomposites was investigated. When the content of the doped nanoplates was 15 wt%, the lattice thermal conductivity of the Bi2Te3 nanocomposites decreased by 18% compared with that of the undoped compounds. A preliminary investigation showed that nanopowder addition was an effective way to decrease the thermal conductivity and increase the thermoelectric efficiency.

  8. Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light

    PubMed Central

    Jo, Won Jun; Kang, Hyun Joon; Kong, Ki-Jeong; Lee, Yun Seog; Park, Hunmin; Lee, Younghye; Buonassisi, Tonio; Gleason, Karen K.; Lee, Jae Sung

    2015-01-01

    Through phase transition-induced band edge engineering by dual doping with In and Mo, a new greenish BiVO4 (Bi1-XInXV1-XMoXO4) is developed that has a larger band gap energy than the usual yellow scheelite monoclinic BiVO4 as well as a higher (more negative) conduction band than H+/H2 potential [0 VRHE (reversible hydrogen electrode) at pH 7]. Hence, it can extract H2 from pure water by visible light-driven overall water splitting without using any sacrificial reagents. The density functional theory calculation indicates that In3+/Mo6+ dual doping triggers partial phase transformation from pure monoclinic BiVO4 to a mixture of monoclinic BiVO4 and tetragonal BiVO4, which sequentially leads to unit cell volume growth, compressive lattice strain increase, conduction band edge uplift, and band gap widening. PMID:26508636

  9. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  10. Photorefractivity in a Titanium Doped ZnCdTe Crystal

    NASA Technical Reports Server (NTRS)

    Davis, M.; Collins, L.; Dyer, K.; Tong, J.; Ueda, A.; Chen, H.; Chen, K.-T.; Burger, A.; Pan, Z.; Morgan, S. H.

    1997-01-01

    Single crystals of Zn(.04)Cd(.96)Te was grown by horizontal physical vapor transport (PVT) method and doped by annealing with TiTe2 powder at 600 C for six days. Photorefractive two-beam coupling, along with photoluminescence and absorption spectroscopy, were used to characterize the ZnCdTe:Ti crystal. At 1.32 micrometers, the photorefractive gain has been measured as a function of the grating period. A gain of about 0.16/cm was obtained at an intensity of about 0.1 W/sq cm. The results of this titanium doped ZnCdTe crystal are compared to that of vanadium-doped CdTe crystals reported previously.

  11. Pulsed laser induced ohmic back contact in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Simonds, Brian J.; Palekis, Vasilios; Van Devener, Brian; Ferekides, Christos; Scarpulla, Michael A.

    2014-04-01

    Creating an ohmic back contact has long been a problem for making efficient CdTe solar cells. Current devices utilize some combination of preferential chemical etching, buffer layer, and Cu doping with additional cost, time, and complexity added for each step. In this Letter, these processes are eschewed and replaced with a nanosecond pulsed ultraviolet laser treatment. It is shown that this treatment can eliminate the rollover effect seen in photovoltaic current-voltage (J-V) curves that is indicative of a non-ohmic back contact. Transfer length measurements show that a single UV laser pulse can reduce the specific contact resistivity by a factor of 24 versus untreated samples. X-Ray photoemission spectroscopy shows evidence of increased conductivity and of elemental Te created at the surface by laser pulses. Finally, finite element modeling is used to model the laser-sample interaction, which predicts both the temperature and the amounts of Cd and Te lost during a laser pulse.

  12. Photoluminescence of Cu-related states in CdTe and CdS

    NASA Astrophysics Data System (ADS)

    Price, K. J.

    2000-10-01

    We present results of Cu-related photoluminescence (PL) in CdTe and CdS single crystals, and CdS/CdTe polycrystalline devices, doped by diffusion of thermally evaporated Cu. In crystalline CdTe:Cu our results are consistent with some Cu atoms occupying substitutional positions on the Cd sublattice and with others forming pairs involving an interstitial Cu and a Cd vacancy. In addition, we find that Cu-related states in CdTe:Cu samples exhibit a reversible "aging" behavior. In crystalline CdS:Cu, the main effect of Cu diffusion is a quenching of the PL intensity. We also show evidence of an exciton bound to a Cu-related site that is stable under short-term light illumination. In addition, a donor-acceptor pair transition may be observed in CdS:Cu using excitation energies below the transition emission energy. We find that PL from polycrystalline CdS/CdTe solar cells with Cu back contacts is qualitatively similar to that in crystalline CdTe:Cu and CdS:Cu. We relate the results to stability behavior of CdS/CdTe solar cells with Cu contacts. This work is supported by NREL.

  13. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    NASA Astrophysics Data System (ADS)

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.

  14. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    DOE PAGESBeta

    Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–ΔEa/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ΔEa, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities andmore » Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.« less

  15. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    SciTech Connect

    Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–ΔEa/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ΔEa, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities and Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.

  16. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.

    PubMed

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K Y; Klie, Robert F; Kim, Moon J

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1-10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.

  17. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  18. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    DOE PAGESBeta

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less

  19. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    PubMed

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems.

  20. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    PubMed

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems. PMID:25766013

  1. DX centers in CdTe: a density functional study

    SciTech Connect

    Du, Mao-Hua

    2008-01-01

    DX centers induced by both group-III and group-VII donors in CdTe are studied using density functional calculations. The results show that, for group-VII donors, the DX centers with a cation-cation bond ({alpha}- and {beta}-CCB-DX centers) are more stable than the previously proposed broken-bond DX (BB-DX) center and the {beta}-CCB-DX center is the most stable. The stability trend found for the CCB-DX centers for different donors in CdTe is consistent with that for GaAs and GaSb, which suggests a general rule that the CCB-DX centers are favored for small donor atoms on anion site especially for semiconductors with large anion size.

  2. Dependence of CdTe response of bias history

    SciTech Connect

    Sites, J.R.; Sasala, R.A.; Eisgruber, I.L.

    1995-11-01

    Several time-dependent effect have been observed in CdTe cells and modules in recent years. Some appear to be related to degradation at the back contact, some to changes in temperature at the thin-film junction, and some to the bias history of the cell or module. Back-contact difficulties only occur in some cases, and the other two effects are reversible. Nevertheless, confusion in data interpretation can arise when these effects are not characterized. This confusion can be particularly acute when more than one time-dependent effect occurs during the same measurement cycle. The purpose of this presentation is to help categorize time-dependent effects in CdTe and other thin-film cells to elucidate those related to bias history, and to note differences between cell and module analysis.

  3. CdTe nanoparticles synthesized by laser ablation

    SciTech Connect

    Semaltianos, N. G.; Logothetidis, S.; Perrie, W.; Romani, S.; Potter, R. J.; Dearden, G.; Watkins, K. G.; Sharp, M.

    2009-07-20

    Nanoparticle generation by laser ablation of a solid target in a liquid environment is an easy, fast, and 'green' method for a large scale production of nanomaterials with tailored properties. In this letter we report the synthesis of CdTe nanoparticles by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy=6 {mu}J (fluence=1.7 J/cm{sup 2})] ablation of the target material. Nanoparticles with diameters from {approx}2 up to {approx}25 nm were observed to be formed in the colloidal solution. Their size distribution follows the log-normal function with a statistical median diameter of {approx_equal}7.1 nm. Their crystal structure is the same as that of the bulk material (cubic zincblende) and they are slightly Cd-rich (Cd:Te percentage ratio {approx}1:0.9). Photoluminescence emission from the produced nanoparticles was detected in the deep red ({approx}652 nm)

  4. Strategic BI for All

    ERIC Educational Resources Information Center

    Raths, David

    2008-01-01

    Implementing a complex business intelligence (BI) system at a small school or one with limited resources can seem daunting. For small to midsize schools and community colleges, a strategic BI initiative may still be an elusive goal. This article discusses how schools with limited resources are making the dream a reality.

  5. Optical modeling of graphene contacted CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  6. Combined effects of Bi deficiency and Mn substitution on the structural transformation and functionality of BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Wang, Yao; Deng, Yuan

    2014-11-01

    Mn-doped BiFeO3 films with Mn contents of 5 and 10 mol. % were prepared via a chemical route. A carefully controlled amount of Bi deficiency was introduced to further tune the lattice structure and the functionality of multiferroic BiFeO3. The crystal structure of Bi1-δFe1-xMnxO3 films was investigated by X-ray diffraction and Raman spectra; a rhombohedral-to-orthorhombic phase transition was revealed. The observed double hysteresis loops and two capacitance maxima from polarization vs electric field and capacitance-voltage measurements indicate an antiferroelectric-like behavior. Additionally, the coexistence of ferroelectric (FE) and antiferroelectric (AFE) phases in Bi1-δFe1-xMnxO3 films was revealed from the domain structures obtained by piezoelectric force microscopy. The effects of Mn substitution in conjunction with Bi deficiency on the FE-AFE phase transition and electrical behavior of BiFeO3 films are discussed in detail. Meanwhile, magnetic and photoluminescence measurements on the films illustrate that Mn substitution gives rise to the net magnetic moment and the defects induced by both Bi deficiency and Mn substitution influence the electronic structure of BiFeO3 films. This study thus shows a simple and effective way to control the functionalities of BiFeO3 films.

  7. Results of a Si/Cdte Compton Telescope

    SciTech Connect

    Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Mitani, Takefumi; Takahashi, Tadayuki; Tajima, Hiroyasu; Fukazawa, Yasushi; Nomachi, Masaharu; /Sagamihara, Inst. Space Astron. Sci. /Tokyo U. /SLAC /Hiroshima U. /Osaka U.

    2005-09-23

    We have been developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. We use a Si strip and CdTe pixel detector for the Compton telescope to cover an energy range from 60 keV. For energies above several hundred keV, the higher efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based Compton Telescope, we have developed a Compton telescope consisting of a stack of CdTe pixel detectors as a small scale prototype. With this prototype, we succeeded in reconstructing images and spectra by solving the Compton equation from 122 keV to 662 keV. The energy resolution (FWHM) of reconstructed spectra is 7.3 keV at 511 keV and 3.1 keV at 122 keV, respectively. The angular resolution obtained at 511 keV is measured to be 12.2{sup o}(FWHM).

  8. Approaches to improve the Voc of CDTE devices: Device modeling and thinner devices, alternative back contacts

    NASA Astrophysics Data System (ADS)

    Walkons, Curtis J.

    An existing commercial process to develop thin film CdTe superstrate cells with a lifetime tau=1-3 ns results in Voc= 810-850 mV which is 350 mV lower than expected for CdTe with a bandgap EG = 1.5 eV. Voc is limited by 1.) SRH recombination in the space charge region; and 2.) the Cu2Te back contact to CdTe, which, assuming a 0.3 eV CdTe/Cu2Te barrier, exhibits a work function of phi Cu2Te= 5.5 eV compared to the CdTe valence band of Ev,CdTe=5.8 eV. Proposed solutions to develop CdTe devices with increased Voc are: 1.) reduce SRH recombination by thinning the CdTe layer to ≤ 1 mum; and 2.) develop an ohmic contact back contact using a material with phi BC≥5.8 eV. This is consistent with simulations using 1DSCAPS modeling of CdTe/CdS superstrate cells under AM 1.5 conditions. Two types of CdTe devices are presented. The first type of CdTe device utilizes a window/CdTe stack device with an initial 3-9 mum CdTe layer which is then chemically thinned resulting in regions of the CdTe film with thickness less than 1 mum. The CdTe surface was contacted with a liquid junction quinhydrone-Pt (QH-Pt) probe which enables rapid repeatable Voc measurements on CdTe before and after thinning. In four separate experiments, the window/CdTe stack devices with thinned CdTe exhibited a Voc increase of 30-170 mV, which if implemented using a solid state contact could cut the Voc deficit in half. The second type of CdTe device utilizes C61 PCBM as a back contact to the CdTe, selected since PCBM has a valence band maximum energy (VBM) of 5.8 eV. The PCBM films were grown by two different chemistries and the characterization of the film properties and device results are discussed. The device results show that PCBM exhibits a blocking contact with a 0.6 eV Schottky barrier and possible work function of phiPCBM = 5.2 eV.

  9. Unusual Strong-Coupling Effects in the Tunneling Spectroscopy of Optimally Doped and Overdoped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{ital {delta} }}

    SciTech Connect

    DeWilde, Y.; Miyakawa, N.; Guptasarma, P.; Iavarone, M.; Ozyuzer, L.; Zasadzinski, J.F.; Romano, P.; Hinks, D.G.; Crabtree, G.W.; Gray, K.E.; Miyakawa, N.; Ozyuzer, L.; Zasadzinski, J.F.; Kendziora, C.

    1998-01-01

    Tunneling spectroscopy measurements are reported on single crystals of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} using vacuum tunneling and point-contact methods. A reproducible dip feature in the tunneling conductance is found near {vert_bar}eV{vert_bar}=2{Delta}, observed for {ital both} voltage polarities in the best resolved spectra. With overdoping the position of the dip continues to scale with {Delta}, and its magnitude decreases as {Delta} decreases. These results indicate that the dip feature arises from a strong-coupling effect whereby the quasiparticle lifetime is decreased at a characteristic energy of {approximately}2{Delta}, consistent with an electron-electron pairing interaction. {copyright} {ital 1997} {ital The American Physical Society}

  10. A new bismuth-doped fibre laser, emitting in the range 1625 – 1775 nm

    SciTech Connect

    Dianov, E M; Firstov, S V; Alyshev, S V; Riumkin, K E; Shubin, A V; Medvedkov, O I; Mel'kumov, M A; Khopin, V F; Gur'yanov, A N

    2014-06-30

    CW lasing of a Bi-doped germanosilicate fibre in a wavelength range that covers the spectral region between the emission bands of Er and Tm fibre lasers has been demonstrated for the first time. (letters)

  11. Bismuth-doped ordered mesoporous TiO2: visible-light catalyst for simultaneous degradation of phenol and chromium.

    PubMed

    Sajjad, Shamaila; Leghari, Sajjad A K; Chen, Feng; Zhang, Jinlong

    2010-12-10

    A controllable and reproducible synthesis of highly ordered two-dimensional hexagonal mesoporous, crystalline bismuth-doped TiO(2) nanocomposites with variable Bi ratios is reported here. Analyses by transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy reveal that the well-ordered mesostructure is doped with Bi, which exists as Bi(3+) and Bi((3+x+)). The Bi-doped mesoporous TiO(2) (ms-TiO(2)) samples exhibit improved photocatalytic activities for simultaneous phenol oxidation and chromium reduction in aqueous suspension under visible and UV light over the pure ms-TiO(2), P-25, and conventional Bi-doped titania. The high catalytic activity is due to both the unique structural characteristics and the Bi doping. This new material extends the spectral response from UV to the visible region, and reduces electron-hole recombination, which renders the 2.0% Bi-doped ms-TiO(2) photocatalyst highly responsive to visible light. PMID:20957621

  12. Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices

    SciTech Connect

    Peleshchak, R. M.; Guba, S. K.; Kuzyk, O. V.; Kurilo, I. V.; Dankiv, O. O.

    2013-03-15

    The distribution of hydrostatic strains in Bi{sup 3+}-doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi {yields} As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.

  13. Unification of the negative electrocaloric effect in Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-BaTiO{sub 3} solid solutions by Ba{sub 1/2}Sr{sub 1/2}TiO{sub 3} doping

    SciTech Connect

    Uddin, Sarir; Zheng, Guang-Ping; Iqbal, Yaseen; Ubic, Rick; Yang, Junhe

    2013-12-07

    The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xBa{sub 1/2}Sr{sub 1/2}TiO{sub 3} (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (T{sub d}) and the maximum dielectric constant temperature (T{sub m}) was found to decrease with increasing BST content. Doping with BST stabilized the ferroelectric phase along with unifying the EC temperature changes (ΔT) to only negative values. The origin of the uniform negative ECE of BNT-BT-BST is discussed.

  14. Effect of the Yb3+ Concentration in Up-Conversion and Electrical Properties of Ho3+/Yb3+ Co-doped (0.94Na0.5Bi0.5TiO3-0.06BaTiO3) Ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Li, Yanxia; Li, Jun; Chai, Xiaona; Zhao, Haifeng; Wang, Xusheng; Yao, Xi

    2016-07-01

    Ho3+/Yb3+ co-doped 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (NBT-BT:Ho3+/Yb3+) ceramics were synthesized by solid-state reaction and characterized by x-ray diffraction (XRD), luminescent, dielectric, ferroelectric and piezoelectric measurements. The XRD diffraction data showed that all the ceramics were single phase with a perovskite structure. Bright green up-conversion (UC) emission bands (545 nm) and weak red UC emission bands (660 nm) corresponded to the transitions from (5F4, 5S2) → 5I8 and 4I5 → 5I8, respectively. Furthermore, optimized UC emission intensity was observed in the NBT-BT:0.005Ho3+/0.03Yb3+ samples. The thermal behavior of UC emission in the ceramics was also investigated and the maximum sensitivity based on fluorescence intensity ratio (FIR) technology was approximately 0.0042 K-1 at 100 K. Moreover, relatively good dielectric properties ( ɛ = 4475) and ferroelectric properties ( P r = 32 μ/cm2 and E c = 37 kV) were obtained in NBT-BT:0.005Ho3+/0.005Yb3+. As a multi-functional material, NBT-BT:Ho3+/Yb3+ ceramics may be useful in electro-optical devices.

  15. A strategy to stabilise the local structure of Ti{sup 4+} and Zn{sup 2+} species against aging in TiO{sub 2}/aluminium-doped ZnO bi-layers for applications in hybrid solar cells

    SciTech Connect

    Pellegrino, Giovanna; La Magna, Antonino; Bongiorno, Corrado; Smecca, Emanuele; Alberti, Alessandra; Condorelli, Guglielmo G.; Mocuta, Cristian

    2014-08-07

    We explore a strategy to counteract aging issues in TiO{sub 2}/aluminium-doped ZnO bi-layers used in hybrid solar cells photo-anodes, mainly related to Zn diffusion in the TiO{sub 2} matrix. Different Ti{sup 4+} and Zn{sup 2+} local structures within the anatase grains and along the film thickness were found as a function of post-deposition annealing treatments in the range between 200 °C and 500 °C by synchrotron radiation extended x-ray absorption fine structure analyses. In particular, in the 500 °C-treated sample, diffusion of zinc species along the TiO{sub 2} grain-boundaries has been observed with aging (3 years). In contrast, a mild thermal budget at 200 °C favours a proper atomic arrangement of the zinc-containing anatase lattice which reduces Zn diffusion, thus guaranteeing a good stability with aging.

  16. Electric field and temperature-induced phase transition in Mn-doped Na1/2Bi1/2TiO3-5.0 at.%BaTiO3 single crystals investigated by micro-Raman scattering

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhang, Haiwu; Deng, Hao; Huang, Ting; Li, Xiaobing; Zhao, Xiangyong; Hu, Zhigao; Wang, Dong; Luo, Haosu

    2014-04-01

    A micro-Raman scattering technique was used to investigate the electric-field and temperature dependent phase stability of Mn-doped Na1/2Bi1/2TiO3-5.0at. %BaTiO3 single crystal. The Ti-O mode was found to exhibit a slight shift at a low electric field (E = 10 kV/cm) and splitting at higher electric field (E ≥ 30 kV/cm), ascribed to field-induced local distortion and phase transition, respectively. The temperature-dependent Raman scattering was also measured over a wide range of 150-800 K to study the phase stability of poled samples. A new Raman mode at about 200 cm-1 and an anomaly in intensity of the Ti-O modes were detected at 390 K, indicating a ferroelectric to antiferroelectric phase transition. The frequency shift of TiO6 octahedral modes implied a transition to a paraelectric state at 550 K. Furthermore, the Ti-O and TiO6 octahedral modes were found to be sustained in the high-temperature paraelectric state.

  17. Effect of Lanthanum Doping on Ferroelectric and Strain Properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3-0.04SrTiO3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Tran, Vu Diem Ngoc; Ullah, Aman; Dinh, Thi Hinh; Lee, Jae-Shin

    2016-05-01

    Lead-free 0.96[Bi1/2(Na0.84K0.16)1/2](1- x)La x TiO3-0.04SrTiO3 (BNKTLa x-ST, with x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05) ceramics have been synthesized using a conventional solid-state reaction method and their phase transition, dielectric, ferroelectric, and strain properties investigated. X-ray diffraction patterns revealed formation of pure perovskite phase. A phase transition from coexistence of rhombohedral and tetragonal to a pseudocubic phase was observed at x = 0.02. Polarization and bipolar strain hysteresis loops indicated that the ferroelectric order (FE) of BNKT-ST is significantly disrupted by lanthanum doping. The destabilization of the FE order results in degradation of the remanent polarization, coercive field, depolarization temperature ( T d), electromechanical coupling factor ( k p), and static d 33, accompanied by large electric-field-induced strain of 0.34% at 60 kV/cm with normalized strain of d 33 * = S max/ E max = 600 pm/V at a critical composition of around x = 0.02.

  18. Exploratory Bi-Factor Analysis

    ERIC Educational Resources Information Center

    Jennrich, Robert I.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger. The bi-factor model has a general factor and a number of group factors. The purpose of this article is to introduce an exploratory form of bi-factor analysis. An advantage of using exploratory bi-factor analysis is that one need not provide a specific…

  19. Ethanol gas sensing by Zn-doped CdS/CdTe nanoparticles

    NASA Astrophysics Data System (ADS)

    Prabhu, M.; Manikandan, V. S.; Soundararajan, N.; Ramachandran, K.

    2016-05-01

    Zn-doped CdS/CdTe nanoparticles (NPs) were synthesized and studied here for gas sensing. The crystallographic properties of the samples were studied by X-ray diffraction (XRD), which shows cubic structure for CdS and CdTe NPs. The three longitudinal optical phonon modes at 298, 595 and 895 cm-1 were obtained from Raman spectrum and this also reveals the cubic structure of CdS NPs. The band gap for Zn-doped CdS/CdTe NPs increased slightly when compared with pure sample. The ethanol gas sensing in CdS/CdTe NPs shows an enhancement on Zn substitution.

  20. Anomalous enhancement of Neel temperature and magnetic coupling for Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δ

    NASA Astrophysics Data System (ADS)

    Dwivedi, Gopeshmwar-Dhar; Yang, Kung-Shang; Chen, Bo-Yu; Chou, Hsiung

    Temperature dependent neutron diffraction patterns of the Ca-doped BiFeO3 and Pb-doped BiFeO3 show that their Neel temperatures (TN) increase to 710 K and 680 K, while pure BiFeO3 has a TN ~643 K. X-ray absorption spectra clearly shows that there is no evidence of mixed valence states despite divalent cation doping in trivalent Bi-sites. X-ray photoemission spectroscopy study revealed that divalent doping has introduced oxygen vacancies in the system. Oxygen deficiency plays a significant role in contracting Fe-O bond length in Fe-O6 octahedra and hence increasing the Fe-O-Fe bond angle in Bi0.9Ca0.1FeO3-δ and Bi0.9Pb0.1FeO3-δ. The decreased Fe-O bond length and increased Fe-O-Fe bond angle favors the Goodenough-Kanamori-Anderson (GKA) coupling. The GKA coupling increases the magnetic interaction between the spins and hence increases the TN. Additionally, doping of divalent cations (Ca2+ and Pb2+) results in the destruction of cycloidal spin structure and formation of a simple antiferromagnetic (AFM) structure. This structure can easily be canted near the heterogeneous interface with a ferromagnetic layer to induce the Dzyaloshinskii-Moriya (DM) interaction and enhance the magneto-electric (M-E) coupling. Corresponding Author.