Sample records for biased substrate electrode

  1. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  2. Image sensor with motion artifact supression and anti-blooming

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)

    2006-01-01

    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.

  3. High speed CMOS imager with motion artifact supression and anti-blooming

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Wrigley, Chris (Inventor); Yang, Guang (Inventor); Yadid-Pecht, Orly (Inventor)

    2001-01-01

    An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.

  4. Method and apparatus for sputtering utilizing an apertured electrode and a pulsed substrate bias

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Shaltens, R. K. (Inventor)

    1973-01-01

    The method and equipment used for sputtering by use of an apertured electrode and a pulsed substrate bias are discussed. The technique combines the advantages of ion plating with the versatility of a radio frequency sputtered source. Electroplating is accomplished by passing a pulsed high voltage direct current to the article being plated during radio frequency sputtering.

  5. High-voltage compatible, full-depleted CCD

    DOEpatents

    Holland, Stephen Edward

    2007-09-18

    A charge coupled device for detecting electromagnetic and particle radiation is described. The device includes a high-resistivity semiconductor substrate, buried channel regions, gate electrode circuitry, and amplifier circuitry. For good spatial resolution and high performance, especially when operated at high voltages with full or nearly full depletion of the substrate, the device can also include a guard ring positioned near channel regions, a biased channel stop, and a biased polysilicon electrode over the channel stop.

  6. Retarding field analyzer for ion energy distribution measurements at a radio-frequency biased electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahan, D.; Hopkins, M. B.; Dolinaj, B.

    2008-03-15

    A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupledmore » plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.« less

  7. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  8. A Substrate Bias Effect on Recovery of the Threshold Voltage Shift of Amorphous Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Chang-Wook; Han, Min-Koo; Choi, Nack-Bong; Kim, Chang-Dong; Kim, Ki-Yong; Chung, In-Jae

    2007-07-01

    Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) were fabricated on a flexible stainless-steel (SS) substrate. The stability of the a-Si:H TFT is a key issue for active matrix organic light-emitting diodes (AMOLEDs). The drain current decreases because of the threshold voltage shift (Δ VTH) during OLED driving. A negative voltage at a floated gate can be induced by a negative substrate bias through a capacitor between the substrate and the gate electrode without additional circuits. The negative voltage biased at the SS substrate can recover Δ VTH and reduced drain current of the driving TFT. The VTH of the TFT increased by 2.3 V under a gate bias of +15 V and a drain bias of +15 V at 65 °C applied for 3,500 s. The VTH decreased by -2.3 V and the drain current recovered 97% of its initial value under a substrate bias of -23 V at 65 °C applied for 3,500 s.

  9. An all-diamond X-ray position and flux monitor using nitrogen-incorporated ultra-nanocrystalline diamond contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi

    Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less

  10. Structural tuning of nanogaps using electromigration induced by field emission current with bipolar biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp

    We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thusmore » activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.« less

  11. Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation.

    PubMed

    Jia, Qingxin; Iwashina, Katsuya; Kudo, Akihiko

    2012-07-17

    An efficient BiVO(4) thin film electrode for overall water splitting was prepared by dipping an F-doped SnO(2) (FTO) substrate electrode in an aqueous nitric acid solution of Bi(NO(3))(3) and NH(4)VO(3), and subsequently calcining it. X-ray diffraction of the BiVO(4) thin film revealed that a photocatalytically active phase of scheelite-monoclinic BiVO(4) was obtained. Scanning electron microscopy images showed that the surface of an FTO substrate was uniformly coated with the BiVO(4) film with 300-400 nm of the thickness. The BiVO(4) thin film electrode gave an excellent anodic photocurrent with 73% of an IPCE at 420 nm at 1.0 V vs. Ag/AgCl. Modification with CoO on the BiVO(4) electrode improved the photoelectrochemical property. A photoelectrochemical cell consisting of the BiVO(4) thin film electrode with and without CoO, and a Pt counter electrode was constructed for water splitting under visible light irradiation and simulated sunlight irradiation. Photocurrent due to water splitting to form H(2) and O(2) was confirmed with applying an external bias smaller than 1.23 V that is a theoretical voltage for electrolysis of water. Water splitting without applying external bias under visible light irradiation was demonstrated using a SrTiO(3)Rh photocathode and the BiVO(4) photoanode.

  12. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As amore » result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.« less

  13. The analysis of ion-selective field-effect transistor operation in chemical sensors

    NASA Astrophysics Data System (ADS)

    Hotra, Zenon; Holyaka, Roman; Hladun, Michael; Humenuk, Iryna

    2003-09-01

    In this paper we present the research results of influence of substrate potential in ion-selective field-effect transistors (ISFET) on output signal of chemical sensors, e.g. PH-meters. It is shown that the instability of substrate-source p-n junction bias in well-known chemical sensors, which use grounded reference electrode - ISFET gate, affect on sensor characteristics in negative way. The analytical description and research results of 'substrate effect' on ISFET characteristics are considered.

  14. Controlled growth of aligned carbon nanotube using pulsed glow barrier discharge

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Kimura, Yoshihito; Okazaki, Ken

    2002-10-01

    We first achieved a catalytic growth of aligned carbon nanotube (CNT) using atmospheric pressure pulsed glow barrier discharge combined with DC bias (1000 V). Aligned CNT can grow with the directional electric field, and this is a big challenge in barrier discharges since dielectric barrier does not allow DC bias and forces to use AC voltage to maintain stable plasma conditions. To overcome this, we developed a power source generating Gaussian-shape pulses at 20 kpps with 4% duty, and DC bias was applied to the GND electrode where Ni-, Fe-coated substrate existed. With positive pulse, i.e. substrate was the cathode, random growth of CNT was observed at about 10^9 cm-2. Growth rate significantly reduced when applied negative pulse; Negative glow formation near substrate is essential for sufficient supply of radical species to the catalyst. If -DC was biased, aligned CNT with 20 nm was synthesized because negative bias enhanced negative glow formation. Interestingly, 2 to 3 CNTs stuck each other with +DC bias, resulting in 50-70 nm and non-aligned CNT. Atmospheric pressure glow barrier discharges can be highly controlled and be a potential alternative to vacuum plasmas for CVD, micro-scale, nano-scale fabrication.

  15. Morphological Behavior of Printed Silver Electrodes with Protective Self-Assembled Monolayers for Electrochemical Migration.

    PubMed

    Sekine, Tomohito; Sato, Jun; Takeda, Yasunori; Kumaki, Daisuke; Tokito, Shizuo

    2018-05-09

    We evaluated the electrochemical behaviors and reliability of printed silver (Ag) electrodes prepared from nanoparticle inks with the use of protective self-assembled monolayers (SAMs) under electronic bias conditions. The printed Ag electrodes were fabricated by inkjet printing on a hydrophobic substrate. The SAMs, which acted as barriers to moisture, were prepared by immersing the substrate in a pentafluorobenzenethiol solution at ambient temperature (25 °C). We investigated the electrochemical migration phenomenon using the water drop method, and the results showed that the formation of dendrites connecting the cathode and the anode, which can affect the electrochemical reliability of an electric device, was suppressed in the presence of the SAMs. The time before short circuit occurred was found to depend on the spacing between the electrodes, i.e., 130 s, when the distance between the electrodes was 200 μm in the presence of an SAM. We demonstrated that Ag electrodes treated using the procedure described in this work suppress the occurrence of electrical short circuits caused by Ag dendrite formation and thus their electrochemical properties are substantially improved.

  16. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth.

    PubMed

    McShane, Colleen M; Choi, Kyoung-Shin

    2009-02-25

    Cu(2)O electrodes composed of dendritic crystals were produced electrochemically using a slightly acidic medium (pH 4.9) containing acetate buffer. The buffer played a key role for stabilizing dendritic branching growth as a pH drop during the synthesis prevents formation of morphologically unstable branches and promotes faceted growth. Dendritic branching growth enabled facile coverage of the substrate with Cu(2)O while avoiding growth of a thicker Cu(2)O layer and increasing surface areas. The resulting electrodes showed n-type behavior by generating anodic photocurrent without applying an external bias (zero-bias photocurrent under short-circuit condition) in an Ar-purged 0.02 M K(2)SO(4) solution. The zero-bias photocurrent of crystalline dendritic electrodes was significantly higher than that of the electrodes containing micrometer-size faceted crystals deposited without buffer. In order to enhance photocurrent further a strategy of improving charge-transport properties by increasing dendritic crystal domain size was investigated. Systematic changes in nucleation density and size of the dendritic Cu(2)O crystals were achieved by altering the deposition potential, Cu(2+) concentration, and acetate concentration. Increasing dendritic crystal size consistently resulted in the improvement of photocurrent regardless of the method used to regulate crystal size. The electrode composed of dendritic crystals with the lateral dimension of ca. 12000 microm(2) showed more than 20 times higher zero-bias photocurrent than that composed of dendritic crystals with the lateral dimension of ca. 100 microm(2). The n-type nature of the Cu(2)O electrodes prepared by this study were confirmed by linear sweep voltammetry with chopped light and capacitance measurements (i.e., Mott-Schottky plots). The flatband potential in a 0.2 M K(2)SO(4) solution (pH 6) was estimated to be -0.78 vs Ag/AgCl reference electrode. The IPCE measured without applying an external bias was approximately 1% for the visible region. With appropriate doping studies and surface treatment to improve charge transport and interfacial kinetics more efficient n-type Cu(2)O electrodes will be prepared for use in various photoelectrochemical and photovoltaic devices.

  17. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. A. (Inventor)

    1982-01-01

    A pryoelectric detector array and the method for making it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strip. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of the layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  18. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. (Inventor)

    1982-01-01

    A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  19. Droplet Translation Actuated by Photoelectrowetting.

    PubMed

    Palma, Cesar; Deegan, Robert D

    2018-03-13

    In traditional electrowetting-on-dielectric (EWOD) devices, droplets are moved about a substrate using electric fields produced by an array of discrete electrodes. In this study, we show that a drop can be driven across a substrate with a localized light beam by exploiting the photoelectrowetting (PEW) effect, a light-activated variant of EWOD. Droplet transport actuated by PEW eliminates the need for electrode arrays and the complexities entailed in their fabrication and control, and offers a new approach for designing lab-on-a-chip applications. We report measurements of the maximum droplet speed as a function of frequency and magnitude of the applied bias, intensity of illumination, volume of the droplet, and viscosity and also introduce a model that reproduces these data.

  20. Field effect sensors for PCR applications

    NASA Astrophysics Data System (ADS)

    Taing, Meng-Houit; Sweatman, Denis R.

    2004-03-01

    The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors that share a common pseudo-reference electrode is used to cancel out this effect. This paper will look at a differential system for multi-arrayed biosensors fabricated on silicon.

  1. Insulated electrocardiographic electrodes. [without paste electrolyte

    NASA Technical Reports Server (NTRS)

    David, R. M.; Portnoy, W. A. (Inventor)

    1975-01-01

    An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less

  3. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    PubMed

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  4. Fabrication and Characterization of a Micromachined Swirl-Shaped Ionic Polymer Metal Composite Actuator with Electrodes Exhibiting Asymmetric Resistance

    PubMed Central

    Feng, Guo-Hua; Liu, Kim-Min

    2014-01-01

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation. PMID:24824370

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economou, Demetre J.

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less

  6. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, Guillermo M.; Baca, Albert G.; Zutavern, Fred J.

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  7. Nanoplasmonic-gold-cylinder-array-enhanced terahertz source

    NASA Astrophysics Data System (ADS)

    Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu

    2016-12-01

    Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).

  8. Ferroelectric films of deuterated glycine phosphite: Structure and dielectric properties

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Lemanov, V. V.

    2013-05-01

    Polycrystalline textured films of deuterated glycine phosphite consisting of single-crystal blocks with lateral dimensions ˜(50-100) μm and a thickness d ˜ (1-5) μm have been grown by evaporation on NdGaO3(100) and α-Al2O3 substrates with preliminarily deposited interdigitated electrodes, as well as on Al substrates. The c* ( Z) crystallographic axis in the blocks is normal to the film plane, and the a ( X) axis and the polar axis b ( Y) are oriented in the film plane. The temperature dependences of the capacitance of the structures measured with the interdigitated electrode system reveal a strong dielectric anomaly at the film transition to the ferroelectric state. The phase transition temperature T c depends on the degree of deuteration D of the glycine phosphite. The maximum value T c = 275 K obtained in the structures studied corresponds to a degree of deuteration of the glycine phosphite D ˜ 50%. The frequency behavior of the dielectric hysteresis loops in glycine phosphite films differs radically from that of the previously studied films of deuterated betaine phosphite, which evidences that polarization switching in these structures proceeds by different mechanisms. It has been that application of a dc bias to the electrodes changes the shape of the dielectric hysteresis loops and shifts them along the electric field axis. The shift of the loops depends on the sign, magnitude, and time of application of the bias. Possible mechanisms underlying the induced unipolarity are discussed.

  9. Rigid particulate matter sensor

    DOEpatents

    Hall, Matthew [Austin, TX

    2011-02-22

    A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.

  10. GaAs photoconductive semiconductor switch

    DOEpatents

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  11. Electro-optic device with gap-coupled electrode

    DOEpatents

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  12. Air-bridge and Vertical CNT Switches for High Performance Switching Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Wong, Eric W.; Epp, Larry; Bronikowski, Michael J.; Hunt, BBrian D.

    2006-01-01

    Carbon nanotubes are attractive for switching applications since electrostatically-actuated CNT switches have low actuation voltages and power requirements, while allowing GHz switching speeds that stem from the inherently high elastic modulus and low mass of the CNT.Our first NEM structure, the air-bridge switch, consists of suspended single-walled nanotubes (SWNTs) that lie above a sputtered Nb base electrode, where contact to the CNTs is made using evaporated Au/Ti. Electrical measurements of these air-bridge devices show well-defined ON and OFF states as a dc bias of a few volts is applied between the CNT and the Nb-base electrode. The CNT air-bridge switches were measured to have switching times down to a few nanoseconds. Our second NEM structure, the vertical CNT switch, consists of nanotubes grown perpendicular to the substrate. Vertical multi-walled nanotubes (MWNTs) are grown directly on a heavily doped Si substrate, from 200 - 300 nm wide, approximately 1 micrometer deep nano-pockets, with Nb metal electrodes to result in the formation of a vertical single-pole-double-throw switch architecture.

  13. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less

  14. High-conductance low-voltage organic thin film transistor with locally rearranged poly(3-hexylthiophene) domain by current annealing on plastic substrate

    NASA Astrophysics Data System (ADS)

    Pei, Zingway; Tsai, Hsing-Wang; Lai, Hsin-Cheng

    2016-02-01

    The organic material based thin film transistors (TFTs) are attractive for flexible optoelectronics applications due to the ability of lager area fabrication by solution and low temperature process on plastic substrate. Recently, the research of organic TFT focus on low operation voltage and high output current to achieve a low power organic logic circuit for optoelectronic device,such as e-paper or OLED displayer. To obtain low voltage and high output current, high gate capacitance and high channel mobility are key factors. The well-arranged polymer chain by a high temperature postannealing, leading enhancement conductivity of polymer film was a general method. However, the thermal annealing applying heat for all device on the substrate and may not applicable to plastic substrate. Therefore, in this work, the low operation voltage and high output current of polymer TFTs was demonstrated by locally electrical bias annealing. The poly(styrene-comethyl methacrylate) (PS-r-PMMA) with ultra-thin thickness is used as gate dielectric that the thickness is controlled by thermal treatment after spin coated on organic electrode. In electrical bias-annealing process, the PS-r- PMMA is acted a heating layer. After electrical bias-annealing, the polymer TFTs obtain high channel mobility at low voltage that lead high output current by a locally annealing of P3HT film. In the future, the locally electrical biasannealing method could be applied on plastic substrate for flexible optoelectronic application.

  15. c-Axis oriented epitaxial Ba 0.25Sr 0.75TiO 3 films display Curie-Weiss behavior

    NASA Astrophysics Data System (ADS)

    Boikov, Yu. A.; Claeson, T.

    2002-02-01

    Thin films of ferroelectrics have inferior dielectric properties, including microwave losses, compared to bulk material and generally do not display a proper Curie-Weiss behavior. This study shows that the film properties can be improved considerably, with a Curie-Weiss behavior, by choosing lattice matched electrodes and proper stoichiometry. A 700 nm thick Ba 0.25Sr 0.75TiO 3 layer was inserted, by laser ablation, between two epitaxial metallic oxide (200 nm) SrRuO 3 electrodes. Because of compressive stress in the plane of the substrate, the c-axis of the unit cell in the Ba 0.25Sr 0.75TiO 3 layer was normal to the substrate plane. Grains were of the order of 100-200 nm (with small misorientation angles in a× b plane) as determined by X-rays and AFM. The positions of pronounced maxima in the temperature dependence of the permittivity depended on external bias voltage applied between the SrRuO 3 electrodes to the dielectric film. The measured ε( T) curves agreed well with existing theoretical models at temperatures below and above the ferroelectric phase transition point. At T≈200 K, ε/ ε0 for the Ba 0.25Sr 0.75TiO 3 layer was suppressed up to 85% (from 4400 down to 560) when ±2.5 V bias voltage was applied to the metallic oxide electrodes. Well saturated polarization-vs.-voltage hysteresis loops were measured for the Ba 0.25Sr 0.75TiO 3 layer in the temperature interval 4.2-200 K. Because of depolarization effects, the polarization of the Ba 0.25Sr 0.75TiO 3 layer was suppressed at positive voltage applied between the electrodes, as compared with a negative one.

  16. Differentially-driven MEMS spatial light modulator

    DOEpatents

    Stappaerts, Eddy A.

    2004-09-14

    A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.

  17. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field.

    PubMed

    Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh

    2018-04-20

    Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.

  18. Roll-to-roll light directed electrophoretic deposition system and method

    DOEpatents

    Pascall, Andrew J.; Kuntz, Joshua

    2017-06-06

    A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

  19. Transparent electrodes for high E-field production using a buried indium tin oxide layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunton, Will; Polovy, Gene; Semczuk, Mariusz

    2016-03-15

    We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an indium tin oxide coated dielectric substrate inside a stack of dielectric substrates, which prevents ion avalanche resulting from Townsend discharge. With this design, we observe no arcing for fields of up to 120 kV/cm. Using these plates, we directly verify the production ofmore » electric fields up to 18 kV/cm inside a quartz vacuum cell by a spectroscopic measurement of the dc Stark shift of the 5{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transition for a cloud of laser cooled rubidium atoms. We also report on the shielding of the electric field and on the residual electric fields that persist within the vacuum cell once the electrodes are discharged. In addition, we discuss observed atom loss that results from the motion of free charges within the vacuum. The observed asymmetry of these phenomena on the bias of the electrodes suggests that field emission of electrons within the vacuum is primarily responsible for these effects and may indicate a way of mitigating them.« less

  20. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    NASA Astrophysics Data System (ADS)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  1. Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu3Ti4O12 and Pt

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Ning, Ting-Yin; Wang, Can; Zhou, Yue-Liang; Zhang, Dong-Xiang; Wang, Pei; Ming, Hai; Yang, Guo-Zhen

    2011-08-01

    CaCu3Ti4O12 (CCTO) thin films were fabricated on ITO-covered MgO (100) substrates. The rectification characteristics were observed in the CCTO capacitance structure with Pt top electrodes at temperatures ranging from 150 K to 330 K, which are attributed to the formation of a Schottky junction between n-type semiconducting CCTO and Pt due to the difference of their work functions. At low forward-bias voltage, the current-voltage characteristics of the Schottky junction follow . A strong decrease in ideality factor with the increasing temperature is obtained by linear fitting at the low bias voltage.

  2. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  3. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift correspondingmore » to band bending by the field effect, resulting in p-type doping.« less

  4. High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates.

    PubMed

    Cetnar, John S; Vangala, Shivashankar; Zhang, Weidong; Pfeiffer, Carl; Brown, Elliott R; Guo, Junpeng

    2017-03-01

    A terahertz (THz) wire-grid polarizer with metallic bridges on a quartz substrate was simulated, fabricated, and tested. The device functions as a wide-band polarizer to incident THz radiation. In addition, the metallic bridges permit the device to function as a transparent electrode when a DC bias is applied to it. Three design variations of the polarizer with bridges and a polarizer without bridges were studied. Results show the devices with bridges have average s-polarization transmittance of less than -3  dB and average extinction ratios of approximately 40 dB across a frequency range of 220-990 GHz and thus are comparable to a polarizer without bridges.

  5. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, S.

    1999-03-30

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.

  6. Three-dimensional architecture for solid state radiation detectors

    DOEpatents

    Parker, Sherwood

    1999-01-01

    A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.

  7. Conduction in In 2O 3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces

    DOE PAGES

    Veal, B. W.; Eastman, J. A.

    2017-03-01

    Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less

  8. Rectified photocurrent in a planar ITO/graphene/ITO photodetector on SiC by local irradiation of ultraviolet light

    NASA Astrophysics Data System (ADS)

    Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong

    2017-10-01

    A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal-graphene-metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W-1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W-1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I-V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.

  9. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  10. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  11. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  12. Influence of electric field on the behavior of Si nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Muramoto, Junichi; Sakamoto, Ippei; Nakata, Yoshiki; Okada, Tatsuo; Maeda, Mitsuo

    1999-08-01

    The influence of an electric field on particle behavior was investigated to control the transport of Si nanoparticles in a laser ablation plume by an ultraviolet Rayleigh scattering (UV-RS) technique. The majority of the nanoparticles, which could be observed by the UV-RS technique, were transported to the negatively biased electrode, indicating that they were positively charged. The deposition efficiency of nanoparticles onto a substrate was also improved by applying an electric field.

  13. Engineering and characterizing inverse tunneling magnetoresistance magnetic tunnel junctions with novel ferromagnetic electrodes

    NASA Astrophysics Data System (ADS)

    Xiang, Hua

    Magnetic tunnel junctions (MTJs) have attracted great interest for applications in read heads and nonvolatile magnetic random access memories. MTJs exhibit tunneling magnetoresistance (TMR), which is proportional to the spin polarization (SP) of ferromagnetic (FM) electrodes. This thesis describes the fabrication and characterization of inverse TMR MTJs with novel FM electrodes and tunnel barriers, including Fe3O4 and Fe4N electrodes and Ta2O5 tunnel barriers. Fe3O4 has been predicted to have perfect negative SP at the Fermi level, making it a promising FM electrode for inverse TMR MTJs. Two approaches were developed to grow epitaxial Fe3O 4 films on Si substrates, reactive sputtering and selective oxidation, and the physical properties were characterized. Epitaxial Fe3O 4 films with smooth surfaces were achieved using a TiN buffer and low temperature selective oxidation. Fe4N has also been predicted to have nearly perfect negative SP. Epitaxial Fe4N films were fabricated on Si substrates by reactive sputtering, and the magnetic properties and thermal stability were characterized. Fe4N is metastable with respect to decomposition into Fe and N 2. During room temperature air oxidation, an epitaxial Fe3O 4 layer formed on Fe4N surface, by incorporation of oxygen, decomposition of Fe4N, and release of N. We fabricated Fe4N/AlOx/Fe MTJs and found normal TMR for the as-prepared junction but inverse TMR with abnormal bias dependence after annealing. The TMR inversion is caused by an Fe3O4 layer at the Fe4N/AlO, interface. The abnormal bias dependence is caused by an imperfect Fe3O4/AlOx interface. Fe3O4 (or Fe4N)/Ta2O5/Fe MTJs show relatively low junction resistance and noisy TMR signals, due to the difficulty of preparing high quality Ta2O5 barriers. The effect of composition of bcc Co100-xFex electrodes on the TMR for AlOx-based MTJs has been studied. The TMR increases with x until it reaches a maximum of 66.7% at 28 at.% Fe, and then decreases. The reason for this TMR variation is the s-like electron dominant tunneling and the variation of the s-like electron density of state with different compositions.

  14. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, Bora; Bolstad, James J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

  15. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance.

    PubMed

    Engelkes, Vincent B; Beebe, Jeremy M; Frisbie, C Daniel

    2004-11-03

    Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).

  16. Graphene electrodes for stimulation of neuronal cells

    NASA Astrophysics Data System (ADS)

    Koerbitzer, Berit; Krauss, Peter; Nick, Christoph; Yadav, Sandeep; Schneider, Joerg J.; Thielemann, Christiane

    2016-06-01

    Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO2 substrate is a very promising material combination for stimulation electrodes.

  17. Composite substrate for bipolar electrodes

    DOEpatents

    Tekkanat, B.; Bolstad, J.J.

    1992-12-22

    Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

  18. Bias polarization study of steam electrolysis by composite oxygen electrode Ba0.5Sr0.5Co0.8Fe0.2O3-δ/BaCe0.4Zr0.4Y0.2O3-δ

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Shaula, Aliaksandr; Pukazhselvan, D.; Ramasamy, Devaraj; Deng, Jiguang; da Silva, E. L.; Duarte, Ricardo; Saraiva, Jorge A.

    2017-12-01

    The polarization behavior of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaCe0.4Zr0.4Y0.2O3-δ (BSCF-BCZY) electrode under steam electrolysis conditions was studied in detail. The composite oxygen electrode supported by BCZY electrolyzer has been assessed as a function of temperature (T), water vapor partial pressures (pH2O), and bias polarization voltage for electrodes of comparable microstructure. The Electrochemical impedance spectra show two depressed arcs in general without bias polarization. And the electrode resistance became smaller with the increase of the bias polarization under the same water vapor partial pressures. The total resistance of the electrode was shown to be significantly affected by temperature, with the same level of pH2O and bias polarization voltage. This result highlights BSCF-BCZY as an effective oxygen electrode under moderate polarization and pH2O conditions.

  19. Resistance switching mode transformation in SrRuO3/Cr-doped SrZrO3/Pt frameworks via a thermally activated Ti out-diffusion process

    PubMed Central

    Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik

    2014-01-01

    This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325

  20. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  1. Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates

    NASA Astrophysics Data System (ADS)

    Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian

    2018-04-01

    In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.

  2. High-resolution parallel-detection sensor array using piezo-phototronics effect

    DOEpatents

    Wang, Zhong L.; Pan, Caofeng

    2015-07-28

    A pressure sensor element includes a substrate, a first type of semiconductor material layer and an array of elongated light-emitting piezoelectric nanostructures extending upwardly from the first type of semiconductor material layer. A p-n junction is formed between each nanostructure and the first type semiconductor layer. An insulative resilient medium layer is infused around each of the elongated light-emitting piezoelectric nanostructures. A transparent planar electrode, disposed on the resilient medium layer, is electrically coupled to the top of each nanostructure. A voltage source is coupled to the first type of semiconductor material layer and the transparent planar electrode and applies a biasing voltage across each of the nanostructures. Each nanostructure emits light in an intensity that is proportional to an amount of compressive strain applied thereto.

  3. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  4. Ultra-thin plasma panel radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Peter S.

    An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less

  5. Method for electrostatic deposition of graphene on a substrate

    NASA Technical Reports Server (NTRS)

    Sumanasekera, Gamini (Inventor); Sidorov, Anton N. (Inventor); Ouseph, P. John (Inventor); Yazdanpanah, Mehdi M. (Inventor); Cohn, Robert W. (Inventor); Jalilian, Romaneh (Inventor)

    2010-01-01

    A method for electrostatic deposition of graphene on a substrate comprises the steps of securing a graphite sample to a first electrode; electrically connecting the first electrode to a positive terminal of a power source; electrically connecting a second electrode to a ground terminal of the power source; placing the substrate over the second electrode; and using the power source to apply a voltage, such that graphene is removed from the graphite sample and deposited on the substrate.

  6. The role of surface charging during the coadsorption of mercaptohexanol to DNA layers on gold: direct observation of desorption and layer reorientation.

    PubMed

    Arinaga, K; Rant, U; Tornow, M; Fujita, S; Abstreiter, G; Yokoyama, N

    2006-06-20

    We study the coadsorption of mercaptohexanol onto preimmobilized oligonucleotide layers on gold. Monitoring the position of the DNA relative to the surface by optical means directly shows the mercaptohexanol-induced desorption of DNA and the reorientation of surface-tethered strands in situ and in real time. By simultaneously recording the electrochemical electrode potential, we are able to demonstrate that changes in the layer conformation are predominantly of electrostatic origin and can be reversed by applying external bias to the substrate.

  7. Deterministic switching of a magnetoelastic single-domain nano-ellipse using bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Cheng-Yen; Sepulveda, Abdon; Keller, Scott

    2016-03-21

    In this paper, a fully coupled analytical model between elastodynamics with micromagnetics is used to study the switching energies using voltage induced mechanical bending of a magnetoelastic bit. The bit consists of a single domain magnetoelastic nano-ellipse deposited on a thin film piezoelectric thin film (500 nm) attached to a thick substrate (0.5 mm) with patterned electrodes underneath the nano-dot. A voltage applied to the electrodes produces out of plane deformation with bending moments induced in the magnetoelastic bit modifying the magnetic anisotropy. To minimize the energy, two design stages are used. In the first stage, the geometry and bias field (H{submore » b}) of the bit are optimized to minimize the strain energy required to rotate between two stable states. In the second stage, the bit's geometry is fixed, and the electrode position and control mechanism is optimized. The electrical energy input is about 200 (aJ) which is approximately two orders of magnitude lower than spin transfer torque approaches.« less

  8. Magnetohydrodynamic (MHD) driven droplet mixer

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.

    2004-05-11

    A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.

  9. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  10. Enhanced electrodes for solid state gas sensors

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    2001-01-01

    A solid state gas sensor generates an electrical potential between an equilibrium electrode and a second electrode indicative of a gas to be sensed. A solid electrolyte substrate has the second electrode mounted on a first portion of the electrolyte substrate and a composite equilibrium electrode including conterminous transition metal oxide and Pt components mounted on a second portion of the electrolyte substrate. The composite equilibrium electrode and the second electrode are electrically connected to generate an electrical potential indicative of the gas that is being sensed. In a particular embodiment of the present invention, the second electrode is a reference electrode that is exposed to a reference oxygen gas mixture so that the electrical potential is indicative of the oxygen in a gas stream.

  11. Thickness and temperature dependent electrical characteristics of crystalline BaxSr1-xTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Panda, B.; Roy, A.; Dhar, A.; Ray, S. K.

    2007-03-01

    Polycrystalline Ba1-xSrxTiO3 (BST) thin films with three different compositions have been deposited by radio-frequency magnetron sputtering technique on platinum coated silicon substrates. Samples with buffer and barrier layers for different film thicknesses and processing temperatures have been studied. Crystallite size of BST films has been found to increase with increasing substrate temperature. Thickness dependent dielectric constant has been studied and discussed in the light of an interfacial dead layer and the finite screening length of the electrode. Ferroelectric properties of the films have also been studied for various deposition conditions. The electrical resistivity of the films measured at different temperatures shows a positive temperature coefficient of resistance under a constant bias voltage.

  12. A set-up for a biased electrode experiment in ADITYA Tokamak

    NASA Astrophysics Data System (ADS)

    Dhyani, Pravesh; Ghosh, Joydeep; Sathyanarayana, K.; Praveenlal, V. E.; Gautam, Pramila; Shah, Minsha; Tanna, R. L.; Kumar, Pintu; Chavda, C.; Patel, N. C.; Panchal, V.; Gupta, C. N.; Jadeja, K. A.; Bhatt, S. B.; Kumar, S.; Raju, D.; Atrey, P. K.; Joisa, S.; Chattopadhyay, P. K.; Saxena, Y. C.

    2014-10-01

    An experimental set-up to investigate the effect of a biased electrode introduced in the edge region on ADITYA tokamak discharges is presented. A specially designed double-bellow mechanical assembly is fabricated for controlling the electrode location as well as its exposed length inside the plasma. The cylindrical molybdenum electrode is powered by a capacitor-bank based pulsed power supply (PPS) using a semiconductor controlled rectifier (SCR) as a switch with forced commutation. A Langmuir probe array for radial profile measurements of plasma potential and density is fabricated and installed. Standard results of improvement of global confinement have been obtained using a biased electrode. In addition to that, in this paper we show for the first time that the same biasing system can be used to avoid disruptions through stabilisation of magnetohydrodynamic (MHD) modes. Real time disruption control experiments have also been carried out by triggering the bias-voltage on the electrode automatically when the Mirnov probe signal exceeds a preset threshold value using a uniquely designed electronic comparator circuit. Most of the results related to the improved confinement and disruption mitigation are obtained in case of the electrode tip being kept at ~3 cm inside the last closed flux surface (LCFS) with an exposed length of ~20 mm in typical discharges of ADITYA tokamak.

  13. Bias-polarity-dependent UV/visible transferable electroluminescence from ZnO nanorod array LED with graphene oxide electrode supporting layer

    NASA Astrophysics Data System (ADS)

    Liu, Weizhen; Wang, Wei; Xu, Haiyang; Li, Xinghua; Yang, Liu; Ma, Jiangang; Liu, Yichun

    2015-09-01

    A simple top electrode preparation process, employing continuous graphene oxide films as electrode supporting layers, was adopted to fabricate a ZnO nanorod array/p-GaN heterojunction LED. The achieved LED demonstrated different electroluminescence behaviors under forward and reverse biases: a yellow-red emission band was observed under forward bias, whereas a blue-UV emission peak was obtained under reverse bias. Electroluminescence spectra under different currents and temperatures, as well as heterojunction energy-band alignments, reveal that the yellow-red emission under forward bias originates from recombinations related to heterointerface defects, whereas the blue-UV electroluminescence under reverse bias is ascribed to transitions from near-band-edge and Mg-acceptor levels in p-GaN.

  14. Controlling the electric charge of gold nanoplatelets on an insulator by field emission nc-AFM

    NASA Astrophysics Data System (ADS)

    Baris, Bulent; Alchaar, Mohanad; Prasad, Janak; Gauthier, Sébastien; Dujardin, Erik; Martrou, David

    2018-03-01

    Charging of 2D Au nanoplatelets deposited on an insulating SiO2 substrate to or from the tip of a non-contact atomic force microscope (nc-AFM) is demonstrated. Charge transfer is controlled by monitoring the resonance frequency shift Δf(V) during the bias voltage ramp V applied to the tip-back electrode junction. The onset of charge transfer is revealed by a transition from a capacitive parabolic behavior to a constant Δf(V) region for both polarities. An analytical model, based on charging by electron field emission, shows that the field-emitted current saturates shortly after the onset of the charging, due to the limiting effect of the charge-induced rise of the Au platelet potential. The value of this current plateau depends only on the rate of the bias voltage ramp and on the value of the platelet/SiO2/back electrode capacitance. This analysis is confirmed by numerical simulations based on a virtual nc-AFM model that faithfully matches the experimental data. Our charging protocol could be used to tune the potential of the platelets at the single charge level.

  15. Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profijt, H. B.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2013-01-15

    Two substrate-biasing techniques, i.e., substrate-tuned biasing and RF biasing, have been implemented in a remote plasma configuration, enabling control of the ion energy during plasma-assisted atomic layer deposition (ALD). With both techniques, substrate bias voltages up to -200 V have been reached, which allowed for ion energies up to 272 eV. Besides the bias voltage, the ion energy and the ion flux, also the electron temperature, the electron density, and the optical emission of the plasma have been measured. The effects of substrate biasing during plasma-assisted ALD have been investigated for Al{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, and TiO{sub 2}more » thin films. The growth per cycle, the mass density, and the crystallinity have been investigated, and it was found that these process and material properties can be tailored using substrate biasing. Additionally, the residual stress in substrates coated with Al{sub 2}O{sub 3} films varied with the substrate bias voltage. The results reported in this article demonstrate that substrate biasing is a promising technique to tailor the material properties of thin films synthesized by plasma-assisted ALD.« less

  16. Recyclable organic solar cells on substrates comprising cellulose nanocrystals (CNC)

    DOEpatents

    Kippelen, Bernard; Fuentes-Hernandez, Canek; Zhou, Yinhua; Moon, Robert; Youngblood, Jeffrey P

    2015-12-01

    Recyclable organic solar cells are disclosed herein. Systems and methods are further disclosed for producing, improving performance, and for recycling the solar cells. In certain example embodiments, the recyclable organic solar cells disclosed herein include: a first electrode; a second electrode; a photoactive layer disposed between the first electrode and the second electrode; an interlayer comprising a Lewis basic oligomer or polymer disposed between the photoactive layer and at least a portion of the first electrode or the second electrode; and a substrate disposed adjacent to the first electrode or the second electrode. The interlayer reduces the work function associated with the first or second electrode. In certain example embodiments, the substrate comprises cellulose nanocrystals that can be recycled. In certain example embodiments, one or more of the first electrode, the photoactive layer, and the second electrode may be applied by a film transfer lamination method.

  17. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates

    PubMed Central

    Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki

    2017-01-01

    We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests. PMID:28436426

  18. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    PubMed

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  19. A novel micromixer based on the alternating current-flow field effect transistor.

    PubMed

    Wu, Yupan; Ren, Yukun; Tao, Ye; Hou, Likai; Hu, Qingming; Jiang, Hongyuan

    2016-12-20

    Induced-charge electroosmosis (ICEO) phenomena have been attracting considerable attention as a means for pumping and mixing in microfluidic systems with the advantage of simple structures and low-energy consumption. We propose the first effort to exploit a fixed-potential ICEO flow around a floating electrode for microfluidic mixing. In analogy with the field effect transistor (FET) in microelectronics, the floating electrode act as a "gate" electrode for generating asymmetric ICEO flow and thus the device is called an AC-flow FET (AC-FFET). We take advantage of a tandem electrode configuration containing two biased center metal strips arranged in sequence at the bottom of the channel to generate asymmetric vortexes. The current device is manufactured on low-cost glass substrates via an easy and reliable process. Mixing experiments were conducted in the proposed device and the comparison between simulation and experimental results was also carried out, which indicates that the micromixer permits an efficient mixing effect. The mixing performance can be further enhanced by the application of a suitable phase difference between the driving electrode and the gate electrode or a square wave signal. Finally, we performed a critical analysis of the proposed micromixer in comparison with different mixer designs using a comparative mixing index (CMI). The novel methods put forward here offer a simple solution to mixing issues in microfluidic systems.

  20. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  1. Method of processing a substrate

    DOEpatents

    Babayan, Steven E [Huntington Beach, CA; Hicks, Robert F [Los Angeles, CA

    2008-02-12

    The invention is embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and a substrate or work piece is placed in the gas flow downstream of the electrodes, such that said substrate or work piece is substantially uniformly contacted across a large surface area with the reactive gases emanating therefrom. The invention is also embodied in a plasma flow device or reactor having a housing that contains conductive electrodes with openings to allow gas to flow through or around them, where one or more of the electrodes are powered by an RF source and one or more are grounded, and one of the grounded electrodes contains a means of mixing in other chemical precursors to combine with the plasma stream, and a substrate or work piece placed in the gas flow downstream of the electrodes, such that said substrate or work piece is contacted by the reactive gases emanating therefrom. In one embodiment, the plasma flow device removes organic materials from a substrate or work piece, and is a stripping or cleaning device. In another embodiment, the plasma flow device kills biological microorganisms on a substrate or work piece, and is a sterilization device. In another embodiment, the plasma flow device activates the surface of a substrate or work piece, and is a surface activation device. In another embodiment, the plasma flow device etches materials from a substrate or work piece, and is a plasma etcher. In another embodiment, the plasma flow device deposits thin films onto a substrate or work piece, and is a plasma-enhanced chemical vapor deposition device or reactor.

  2. Highly effective carbon sphere counter electrodes based on different substrates for dye-sensitized solar cell.

    PubMed

    Han, Qianji; Wang, Hongrui; Liu, Yali; Yan, Yajing; Wu, Mingxing

    2017-11-15

    A monodisperse carbon sphere with high uniformity, high catalytic activity and conductivity are successfully synthesized. Versatile counter electrodes using this carbon sphere catalyst on different substrates of fluorine-doped tin oxide (FTO) glass, indium-doped tin oxide polyethylenena phthalate (ITO-PEN), and Ti foil are fabricated for dye-sensitized solar cell (DSC). The impacts of substrates on the catalytic activities of the carbon sphere counter electrodes have been also evaluated by electrochemical analysis technologies, such as cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. With cobalt electrolyte, the DSC using carbon sphere counter electrodes based on FTO glass, ITO-PEN, and Ti substrates yield high power conversion efficiency values of 8.57%, 6.66%, and 9.10%, respectively. The catalytic activities of the prepared carbon sphere counter electrodes on different substrates are determined by the apparent activation energy for the cobalt redox couple regeneration on these electrodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multi-layer electrode for high contrast electrochromic devices

    DOEpatents

    Schwendeman, Irina G [Wexford, PA; Finley, James J [Pittsburgh, PA; Polcyn, Adam D [Pittsburgh, PA; Boykin, Cheri M [Wexford, PA

    2011-11-01

    An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.

  4. Interface Modification of Bernal- and Rhombohedral-Stacked Trilayer-Graphene/Metal Electrode on Resistive Switching of Silver Electrochemical Metallization Cells.

    PubMed

    Wang, Jer-Chyi; Chan, Ya-Ting; Chen, Wei-Fan; Wu, Ming-Chung; Lai, Chao-Sung

    2017-10-25

    Bernal- and rhombohedral-stacked trilayer graphene (B- and r-TLG) on nickel (Ni) and iridium (Ir) films acting as bottom electrodes (BEs) of silver electrochemical metallization cells (Ag-EMCs) have been investigated in this study. Prior to the fabrication of the EMC devices, Raman mapping and atomic force microscopy are applied to identify the B- and r-TLG sheets, with the latter revealing a significant D peak and a rough surface for the Ir film. The Ag-EMCs with the stacked BE of r-TLG on the Ir film show a conductive mechanism of Schottky emission at the positive top electrode bias for both high- and low-resistance states that can be examined by the resistance change with the device area and are modulated by pulse bias operation. Thus, an effective electron barrier height of 0.262 eV at the r-TLG and Ir interface is obtained because of the conspicuous energy gap of r-TLG on the Ir film and the van der Waals (vdW) gap between the r-TLG and Ir contact metal. With the use of Ni instead of Ir contact metal, the Ag-EMCs with TLG BE demonstrate +0.3 V/-0.75 V operation voltages, more than 10 4 s data retention at 115 °C and 250 times endurance testing, making the TLG sheets suitable for low-power nonvolatile memory applications on flexible substrates.

  5. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  6. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, M.C.; Shoemarker, E.L.; Fraioli, A.V.

    1995-07-04

    An electrocatalytic device for sensing gases is described. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte. 41 figs.

  7. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  8. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  9. Lightweight Electrode For Nickel/Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1994-01-01

    Improved substrate for nickel electrode increases specific energy of nickel/hydrogen cell. Consists of 50 percent by weight nickel fiber, 35 percent nickel powder, and 15 percent cobalt powder. Porosity and thickness of nickel electrodes affect specific energy, initial performance, and cycle life of cell. Substrate easily manufactured with much larger porosities than those of heavy-sintered state-of-art nickel substrate.

  10. Transversely-illuminated high current photoconductive switches with geometry-constrained conductivity path

    DOEpatents

    Nelson, Scott D.

    2016-05-10

    A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.

  11. How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction.

    PubMed

    Bachmeier, Andreas; Wang, Vincent C C; Woolerton, Thomas W; Bell, Sophie; Fontecilla-Camps, Juan C; Can, Mehmet; Ragsdale, Stephen W; Chaudhary, Yatendra S; Armstrong, Fraser A

    2013-10-09

    The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H(+)/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H(+) reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.

  12. Reversal of the asymmetry in a cylindrical coaxial capacitively coupled Ar/Cl 2 plasma

    DOE PAGES

    Upadhyay, Janardan; Im, Do; Popović, Svetozar; ...

    2015-10-08

    The reduction of the asymmetry in the plasma sheath voltages of a cylindrical coaxial capacitively coupled plasma is crucial for efficient surface modification of the inner surfaces of concave three-dimensional structures, including superconducting radio frequency cavities. One critical asymmetry effect is the negative dc self-bias, formed across the inner electrode plasma sheath due to its lower surface area compared to the outer electrode. The effect on the self-bias potential with the surface enhancement by geometric modification on the inner electrode structure is studied. The shapes of the inner electrodes are chosen as cylindrical tube, large and small pitch bellows, andmore » disc-loaded corrugated structure (DLCS). The dc self-bias measurements for all these shapes were taken at different process parameters in Ar/Cl 2 discharge. Lastly, the reversal of the negative dc self-bias potential to become positive for a DLCS inner electrode was observed and the best etch rate is achieved due to the reduction in plasma asymmetry.« less

  13. HOPG/ZnO/HOPG pressure sensor

    NASA Astrophysics Data System (ADS)

    Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad

    2017-12-01

    Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.

  14. Dilute phosphide nitride materials as photocathodes for electrochemical solar energy conversion

    NASA Astrophysics Data System (ADS)

    Parameshwaran, Vijay; Xu, Xiaoqing; Kang, Yangsen; Harris, James; Wong, H.-S. Philip; Clemens, Bruce

    2013-03-01

    Dilute nitride materials have been used in a variety of III-V photonic devices, but have not been significantly explored in photoelectrochemical applications. This work focuses on using dilute phosphide nitride materials of the form (Al,In)P1-xNx as photocathodes for the generation of hydrogen fuel from solar energy. Heteroepitaxial MOCVD growth of AlPN thin films on GaP yields high quality material with a direct bandgap energy of 2.218 eV. Aligned epitaxial growth of InP and GaP nanowires on InP and Si substrates, respectively, provides a template for designing nanostructured photocathodes over a large area. Electrochemical testing of a AlPN/GaP heterostructure electrode yields up to a sixfold increase in photocurrent enhancement under blue light illumination as compared to a GaP electrode. Additionally, the AlPN/GaP electrodes exhibit no degradation in performance after galvanostatic biasing over time. These results show that (Al,In)P1-xNx is a promising materials system for use in nanoscale photocathode structures.

  15. Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode

    NASA Astrophysics Data System (ADS)

    Sattari-Esfahlan, S. M.; Fouladi-Oskuei, J.; Shojaei, S.

    2017-04-01

    Here, we study the negative differential resistance (NDR) of Dirac electrons in biased planar graphene superlattice (PGSL) and investigate the transport characteristics by adopted transfer matrix method within Landauer-Buttiker formalism. Our model device is based on one-dimensional Kronig-Penney type electrostatic potential in monolayer graphene deposited on a substrate, where the bias voltage is applied by two electrodes in the left and right. At Low bias voltages, we found that NDR appears due to breaking of minibands to Wannier-Stark ladders (WSLs). At the critical bias voltage, delocalization appeared by WS states leads to tunneling peak current in current-voltage (I-V) characteristics. With increasing bias voltage, crossing of rungs from various WSL results in multi-peak NDR. The results demonstrate that the structure parameters like barrier/well thickness and barrier height have remarkable effect on I-V characteristics of PGSL. In addition, Dirac gap enhances peak to valley (PVR) value due to suppressing Klein tunneling. Our results show that the tunable PVR in PGSL resonant tunneling diode can be achievable by structure parameters engineering. NDR at ultra-low bias voltages, such as 100 mV, with giant PVR of 20 is obtained. In our device, the multiple same NDR peaks with ultra-low bias voltage provide promising prospect for multi-valued memories and the low power nanoelectronic tunneling devices.

  16. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    NASA Astrophysics Data System (ADS)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  17. Device for thermal transfer and power generation

    DOEpatents

    Weaver, Stanton Earl [Northville, NY; Arik, Mehmet [Niskayuna, NY

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  18. Wearable polyimide-PDMS electrodes for intrabody communication

    NASA Astrophysics Data System (ADS)

    Moon, Jin-Hee; Baek, Dong Hyun; Choi, Yoon Young; Lee, Kwang Ho; Kim, Hee Chan; Lee, Sang-Hoon

    2010-02-01

    In this paper, we introduce a novel wearable electrode for an intra-body area network (I-BAN) by employing the advantages of polyimide (PI) which is a well-known substrate material for flexible electrodes and polydimethylsiloxane (PDMS) which is a biocompatible and representative soft-lithography adaptable material. Electrodes were patterned onto thin and flexible PI substrates and encapsulated in PDMS to enhance skin compatibility. For this purpose, we developed an electrode fabrication process on thin PI substrates and a PDMS encapsulation technique by bonding two PDMS layers on the front and back surfaces of the PI electrode. The mechanical property and communication performance of electrodes were characterized through spectrum analysis to optimize the role as an I-BAN electrode. Skin-compatibility and cyto-toxicity tests using human mesenchymal stem cells (hMSCs) were carried out to demonstrate the non-toxicity of the electrode after continuous wearing. Sinusoidal signals of 45 MHz were successfully transmitted with high fidelity between electrodes separated by 30 cm.

  19. Process for producing nickel electrode having lightweight substrate

    NASA Technical Reports Server (NTRS)

    Lim, Hong S. (Inventor)

    1996-01-01

    A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.

  20. Theory and Simulation of Electron Sheaths and Anode Spots in Low Pressure Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Scheiner, Brett Stanford

    Electrodes in low pressure laboratory plasmas have a multitude of possible sheath structures when biased at a large positive potential. When the size of the electrode is small enough the electrode bias can be above the plasma potential. When this occurs an electron-rich sheath called an electron sheath is present at the electrode. Electron sheaths are most commonly found near Langmuir probes and other electrodes collecting the electron saturation current. Such electrodes have applications in the control of plasma parameters, dust confinement and circulation, control of scrape off layer plasmas, RF plasmas, and in plasma contactors and tethered space probes. The electron sheaths in these various systems most directly influence the plasma by determining how electron current is lost from the system. An understanding of how the electron sheath interfaces with the bulk plasma is necessary for understanding the behavior induced by positively biased electrodes in these plasmas. This thesis provides a dedicated theory of electron sheaths. Motivated by electron velocity distribution functions (EVDFs) observed in particle-in-cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the presheath model, an electron pressure gradient accelerates electrons to near the electron thermal speed by the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. Using PIC simulations, the form of a sheath near a small electrode with bias near the plasma potential is also studied. When the electrode is biased near the plasma potential, the EVDFs exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, instead the plasma remains quasineutral up to the electrode. Once the bias exceeds the plasma potential an electron sheath is present. In this case, 2D EVDFs indicate that the flow moment has comparable contributions from the flow shift and loss-cone truncation. The case of an electrode at large positive bias relative to the plasma potential is also studied. Here, the rate of electron impact ionization of neutrals increases near the electrode. If this ionization rate is great enough a double layer forms. This double layer can move outward separating a high potential plasma at the electrode surface from the bulk plasma. This phenomenon is known as an anode spot. Informed by observations from the first PIC simulations of an anode spot, a model has been developed describing the onset in which ionization leads to the buildup of positive space charge and the formation of a potential well that traps electrons near the electrode surface. A model for steady-state properties based on current loss, power, and particle balance of the anode spot plasma is also presented.

  1. Response of the plasma to the size of an anode electrode biased near the plasma potential

    DOE PAGES

    Barnat, E. V.; Laity, G. R.; Baalrud, S. D.

    2014-10-01

    As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of themore » anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. Thus, the discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode.« less

  2. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  3. Semiconductor radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can bemore » placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.« less

  4. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-09-08

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

  5. Characterization on performance of micromixer using DC-biased AC electroosmosis

    NASA Astrophysics Data System (ADS)

    Park, Bi-O.; Song, Simon

    2010-11-01

    An active micromixer using DC-biased AC-Electroosmosis (ACEO) is investigated to figure out the effects of design parameters on the mixing performance. The mixer consists of a straight microchannel, with a cross section of 60 x 100 μm, and gold electrode pairs fabricated in the microchannel. The design parameters include the number of electrode pairs, flow rate, DC-biased voltage, AC voltage and AC frequency. First, we found that a mixing index became 80% 100 μm downstream of a single electrode pair with a length of 2 mm when applying a 25Vpp, 2.0 VDC, 100 kHz sine signal to the electrodes. With decreasing AC frequency, the mixing index is affected little. But the mixing index significantly increases with increasing either DC-biased voltage or AC voltage. Also, we were able to increase the mixing index up to 90% by introducing alternating vortices with multiple electrode pairs. Finally, we discovered that the mixing index decreases as the flow rate increases in the microchannel, and there is an optimal number of electrode pairs with respect to a flow rate. Detailed quantitative measurement results will be presented at the meeting.

  6. Caking and characterizing graphene oxide thin films via electrodeposition technique for possible application in photoelectrochemical spliting of water

    NASA Astrophysics Data System (ADS)

    Singh, Nirupama; Kumar, Pushpendra; Upadhyay, Sumant; Choudhary, Surbhi; Satsangi, Vibha R.; Dass, Sahab; Shrivastav, Rohit

    2013-06-01

    In the present study Readymade Graphene oxide (GO) has been coated using electrochemical deposition technique [1] on to the conducting glass (ITO) substrate. Raman spectra generated D and G Peaks obtained at 1346 and 1575 cm-1 confirmed the presence of GO [2]. The UV-Visible absorption measurements provided absorption peak at 262 nm and the Tauc plots yielded band-gap energy of sample around 3.9 eV. The PEC measurements involved determination of current-voltage (I-V) characteristics, both under darkness as well as under illumination. The photocurrent of 1.21 mA/cm-2 at 0.5 V applied voltage (vs. saturated calomel electrode), was recorded under the illumination of 150 Wcm-2 (Xenon arc lamp; Oriel, USA). The photocurrent values were utilized further to calculate applied bias photon-to-current efficiency (% ABPE), which was estimated to 0.98 % at 0.5 V bias.

  7. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.

    PubMed

    Islam, Nazmul; Reyna, Jairo

    2012-04-01

    This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Trace Impurity Analysis in Ta Films Using Glow Discharge Mass Spectrometry: Concentration Change of Impurities by Applying Negative Substrate Bias Voltage

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Won; Mimura, Kouji; Isshiki, Minoru

    2004-12-01

    Glow discharge mass spectrometry (GDMS) was used to analyze a Ta target and Ta films for trace impurities. The Ta films were deposited on Si (100) substrate at substrate bias voltages of 0 V and -125 V using a non-mass separated ion beam deposition system. Although both Ta films were contaminated by impurities during the deposition, the Ta film deposited at a substrate bias voltage of -125 V showed lower impurity content than the Ta film deposited without the substrate bias voltage, which means that applying a negative bias voltage to the substrate decreased the total concentration of impurities. Furthermore, the concentration change of individual impurities in the Ta film is related to their ionization ratio in the argon discharge plasma. Considering the effect of the ionization potential of an individual impurity on the ionization ratio, purification by applying a negative bias voltage to the substrate results from Penning ionization and an ionization mechanism proposed in this study, as well as from the difference between the kinetic energies of Ta neutral atoms and Ta+ ions accelerated toward the substrate with/without a negative substrate bias voltage.

  9. Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Yasui, I.

    2006-05-01

    Vanadium oxide VOx films were deposited by reactive RF magnetron sputtering by applying a substrate bias, in which the Ar ions in plasma impacted the growing film surface. The vanadium valence of the VOx film decreased when the substrate negative bias voltage was increased. The VO2 film was successfully deposited at a substrate temperature of 400 °C and with a bias voltage of -50 to -80 V. The transition temperatures of the VO2 films with a substrate bias of -50 and -80 V were about 56 °C and 44 °C, respectively.

  10. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  11. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  12. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  13. Spatially resolved, substrate-induced rectification in C 60 bilayers on copper

    DOE PAGES

    Smerdon, J. A.; Darancet, P.; Guest, J. R.

    2017-02-22

    Here, we demonstrate rectification ratios ( RR) of ≳1000 at biases of 1.3 V in bilayers of C 60 deposited on copper. Using scanning tunneling spectroscopy and first-principles calculations, we show that the strong coupling between C 60 and the Cu(111) surface leads to the metallization of the bottom C 60 layer, while the molecular orbitals of the top C60 are essentially unaffected. Due to this substrate-induced symmetry breaking and to a tunneling transport mechanism, the system behaves as a hole-blocking layer, with a spatial dependence of the onset voltage on intra-layer coordination. Together with previous observations of strong electron-blockingmore » character of pentacene/C 60 bilayers on Cu(111), this work further demonstrates the potential of strongly hybridized, C 60-coated electrodes to harness the electrical functionality of molecular components.« less

  14. Polymer Nanofiber Based Reversible Nano-Switch/Sensor Diode (Nanosssd) Device

    NASA Technical Reports Server (NTRS)

    Theofylaktos, Onoufrios (Inventor); Meador, Michael A. (Inventor); Miranda, Felix A. (Inventor); Pinto, Nicholas (Inventor); Mueller, Carl H. (Inventor); Santos-Perez, Javier (Inventor)

    2017-01-01

    A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one polymer nanofiber deposited on the electrode. The at least one polymer nanofiber provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.

  15. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    DOEpatents

    Tomczuk, Z.; Olszanski, W.; Battles, J.E.

    1975-12-09

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such a solid lithium--aluminum filled within a substrate of metal foam are provided. 1 figure, 1 table.

  16. Graphite based Schottky diodes formed semiconducting substrates

    NASA Astrophysics Data System (ADS)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  17. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage.

    PubMed

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-08-10

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively.

  18. Optical and Electrical Performance of MOS-Structure Silicon Solar Cells with Antireflective Transparent ITO and Plasmonic Indium Nanoparticles under Applied Bias Voltage

    PubMed Central

    Ho, Wen-Jeng; Sue, Ruei-Siang; Lin, Jian-Cheng; Syu, Hong-Jang; Lin, Ching-Fuh

    2016-01-01

    This paper reports impressive improvements in the optical and electrical performance of metal-oxide-semiconductor (MOS)-structure silicon solar cells through the incorporation of plasmonic indium nanoparticles (In-NPs) and an indium-tin-oxide (ITO) electrode with periodic holes (perforations) under applied bias voltage. Samples were prepared using a plain ITO electrode or perforated ITO electrode with and without In-NPs. The samples were characterized according to optical reflectance, dark current voltage, induced capacitance voltage, external quantum efficiency, and photovoltaic current voltage. Our results indicate that induced capacitance voltage and photovoltaic current voltage both depend on bias voltage, regardless of the type of ITO electrode. Under a bias voltage of 4.0 V, MOS cells with perforated ITO and plain ITO, respectively, presented conversion efficiencies of 17.53% and 15.80%. Under a bias voltage of 4.0 V, the inclusion of In-NPs increased the efficiency of cells with perforated ITO and plain ITO to 17.80% and 16.87%, respectively. PMID:28773801

  19. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    PubMed

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  20. Control of nanoparticle size and amount by using the mesh grid and applying DC-bias to the substrate in silane ICP-CVD process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Wan; Hwang, Nong-Moon; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin

    2017-11-01

    The effect of applying a bias to the substrate on the size and amount of charged crystalline silicon nanoparticles deposited on the substrate was investigated in the inductively coupled plasma chemical vapor deposition process. By inserting the grounded grid with meshes above the substrate, the region just above the substrate was separated from the plasma. Thereby, crystalline Si nanoparticles formed by the gas-phase reaction in the plasma could be deposited directly on the substrate, successfully avoiding the formation of a film. Moreover, the size and the amount of deposited nanoparticles could be changed by applying direct current bias to the substrate. When the grid of 1 × 1-mm-sized mesh was used, the nanoparticle flux was increased as the negative substrate bias increased from 0 to - 50 V. On the other hand, when a positive bias was applied to the substrate, Si nanoparticles were not deposited at all. Regardless of substrate bias voltages, the most frequently observed nanoparticles synthesized with the grid of 1 × 1-mm-sized mesh had the size range of 10-12 nm in common. When the square mesh grid of 2-mm size was used, as the substrate bias was increased from - 50 to 50 V, the size of the nanoparticles observed most frequently increased from the range of 8-10 to 40-45 nm but the amount that was deposited on the substrate decreased.

  1. Low temperature rf sputtering deposition of (Ba, Sr) TiO3 thin film with crystallization enhancement by rf power supplied to the substrate

    NASA Astrophysics Data System (ADS)

    Yoshimaru, Masaki; Takehiro, Shinobu; Abe, Kazuhide; Onoda, Hiroshi

    2005-05-01

    The (Ba, Sr) TiO3 thin film deposited by radio frequency (rf) sputtering requires a high deposition temperature near 500 °C to realize a high relative dielectric constant over of 300. For example, the film deposited at 330 °C contains an amorphous phase and shows a low relative dielectric constant of less than 100. We found that rf power supplied not only to the (Ba, Sr) TiO3 sputtering target, but also to the substrate during the initial step of film deposition, enhanced the crystallization of the (Ba, Sr) TiO3 film drastically and realized a high dielectric constant of the film even at low deposition temperatures near 300 °C. The 50-nm-thick film with only a 10 nm initial layer deposited with the substrate rf biasing is crystallized completely and shows a high relative dielectric constant of 380 at the deposition temperature of 330 °C. The (Ba, Sr) TiO3 film deposited at higher temperatures (upwards of 400 °C) shows <110> preferred orientation, while the film deposited at 330 °C with the 10 nm initial layer shows a <111> preferred orientation on a <001>-oriented ruthenium electrode. The unit cell of (Ba, Sr) TiO3 (111) plane is similar to that of ruthenium (001) plane. We conclude that the rf power supplied to the substrate causes ion bombardments on the (Ba, Sr) TiO3 film surface, which assists the quasiepitaxial growth of (Ba, Sr) TiO3 film on the ruthenium electrode at low temperatures of less than 400 °C.

  2. Precise impurity analysis of Cu films by GDMS: relation between negative substrate bias voltage and impurity ionization potentials

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Mimura, K.; Isshiki, M.

    2005-02-01

    Cu films were deposited on Si(100) substrates by applying a negative substrate bias voltage using the non-mass-separated ion beam deposition method. Glow-discharge mass spectrometry was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. It was found that the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage, although both the Cu films were contaminated during the deposition. The purification effect might result from the following reasons: (i) the Penning ionization and an ionization mechanism proposed in the present study, (ii) a difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.

  3. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  4. Graphene Based Reversible Nano-Switch/Sensor Schottky Diode (NANOSSSD) Device

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A. (Inventor); Theofylaktos, Onoufrios (Inventor); Pinto, Nicholas J. (Inventor); Mueller, Carl H. (Inventor); Santos, Javier (Inventor); Meador, Michael A. (Inventor)

    2015-01-01

    A nanostructure device is provided and performs dual functions as a nano-switching/sensing device. The nanostructure device includes a doped semiconducting substrate, an insulating layer disposed on the doped semiconducting substrate, an electrode formed on the insulating layer, and at least one layer of graphene formed on the electrode. The at least one layer of graphene provides an electrical connection between the electrode and the substrate and is the electroactive element in the device.

  5. Silicon Carbide High Temperature Anemometer and Method for Assembling the Same

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2003-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bond pads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  6. Apparatus and process for deposition of hard carbon films

    DOEpatents

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-01

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  7. Apparatus and process for deposition of hard carbon films

    DOEpatents

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  8. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  9. Effect of electrode biasing on m/n  =  2/1 tearing modes in J-TEXT experiments

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Hu, Qiming; Chen, Zhipeng; Yu, Q.; Zhu, Lizhi; Cheng, Zhifeng; Zhuang, Ge; Chen, Zhongyong

    2017-01-01

    The effects of electrode biasing (EB) on the m/n  =  2/1 tearing mode have been experimentally studied in J-TEXT tokamak discharges, where m and n are the poloidal and toroidal mode numbers. It is found that for a negative bias voltage, the mode amplitude is reduced, and the mode frequency is increased accompanied by the increased toroidal plasma rotation speed in the counter-I p direction. For a positive bias voltage, the mode frequency is decreased together with the change of the rotation velocity towards the co-I p direction, and the mode amplitude is increased. Statistic results show that the variations in the toroidal rotation speed, the 2/1 mode frequency and its amplitude linearly depend on the bias voltage. The threshold voltages for complete suppression and locking of the mode are found. The experimental results suggest that applied electrode biasing is a possible method for the avoidance of mode locking and disruption.

  10. Particle-in-cell study of the ion-to-electron sheath transition

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; ...

    2016-08-09

    The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within T e/2 e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electronmore » sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. In conclusion, the flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.« less

  11. Control of Compact-Toroid Characteristics by External Copper Shell

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  12. Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies

    PubMed Central

    2018-01-01

    Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiOx and HfOx and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiNx and HfNx films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiOx were slightly improved whereas those of SiNx were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed. PMID:29554799

  13. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  14. Red Light Emitting Schottky Diodes on p-TYPE GaN/AlN/Si(111) Substrate

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Hassan, Z.; Abu Hassan, H.

    High quality GaN layers doped with Mg were grown on Si(111) substrates using high temperature AlN as buffer layer by radio-frequency molecular beam epitaxy. From the Hall measurements, fairly uniform high hole concentration as high as (4-5) × 1020 cm-3 throughout the GaN was achieved. The fabrication of the device is very simple. Nickel ohmic contacts and Schottky contacts using indium were fabricated on Mg-doped p-GaN films. The light emission has been obtained from these thin film electroluminescent devices. Thin film electroluminescent devices were operated under direct current bias. Schottky and ohmic contacts used as cathode and anode were employed in these investigations. Alternatively, two Schottky contacts could be probed as cathode and anode. Thin film electroluminescent devices were able to emit light. However, electrical and optical differences could be observed from the two different probing methods. The red light color could be observed when the potential between the electrodes was increased gradually under forward bias of 8 V at room temperature. Electrical properties of these thin film electroluminescent devices were characterized by current-voltage (I-V) system, the heights of barriers determined from the I-V measurements were found to be related to the electroluminescence.

  15. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    NASA Astrophysics Data System (ADS)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  16. Graphene and PbS quantum dot hybrid vertical phototransistor

    NASA Astrophysics Data System (ADS)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  17. InGaN working electrodes with assisted bias generated from GaAs solar cells for efficient water splitting.

    PubMed

    Liu, Shu-Yen; Sheu, J K; Lin, Yu-Chuan; Chen, Yu-Tong; Tu, S J; Lee, M L; Lai, W C

    2013-11-04

    Hydrogen generation through water splitting by n-InGaN working electrodes with bias generated from GaAs solar cell was studied. Instead of using an external bias provided by power supply, a GaAs-based solar cell was used as the driving force to increase the rate of hydrogen production. The water-splitting system was tuned using different approaches to set the operating points to the maximum power point of the GaAs solar cell. The approaches included changing the electrolytes, varying the light intensity, and introducing the immersed ITO ohmic contacts on the working electrodes. As a result, the hybrid system comprising both InGaN-based working electrodes and GaAs solar cells operating under concentrated illumination could possibly facilitate efficient water splitting.

  18. Integration of a Graphite/PMMA CompositeElectrode into a Poly(methyl methacrylate) (PMMA) Substrate for Electrochemical Detection in Microchips

    PubMed Central

    Regel, Anne; Lunte, Susan

    2013-01-01

    Traditional fabrication methods for polymer microchips, the bonding of two substrates together to form the microchip, can make the integration of carbon electrodes difficult. We have developed a simple and inexpensive method to integrate graphite/PMMA composite electrodes (GPCEs) into a PMMA substrate. These substrates can be bonded to other PMMA layers using a solvent-assisted thermal bonding method. The optimal composition of the GPCEs for electrochemical detection was determined using cyclic voltammetry with dopamine as a test analyte. Using the optimized GPCEs in an all-PMMA flow cell with flow injection analysis, it was possible to detect 50 nM dopamine under the best conditions. These electrodes were also evaluated for the detection of dopamine and catechol following separation by microchip electrophoresis (ME). PMID:23670816

  19. Method and apparatus for electron-only radiation detectors from semiconductor materials

    DOEpatents

    Lund, James C.

    2000-01-01

    A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  20. Optimization of Semitransparent Anode Electrode for Flexible Green and Red Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-03-01

    In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.

  1. Improved plaque materials for aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1971-01-01

    Improved cadmium electrode substrates with precisely controlled microstructures for possible use in aerospace nickel-cadmium cells were prepared. The preparative technique was a powder metallurgical process in which a fugitive pore-former and a nickel powder were blended, then isostatically compacted, and subsequently sintered. Cadmium electrodes prepared from such substrates were cycle tested using an accelerated tortuous test regime. It was discovered that plaques of 60% or 80% porosity prepared with a 25 micron pore-former were better than state-of-the-art electrodes in terms of efficienty and/or mechanical strength. The 60% structures were particularly outstanding in this respect in that they had efficiencies only 5-10 percentage points lower than state-of-the-art electrodes and vastly superior mechanical properties. This added strength was observed to eliminate cracking and physical degradation of the electrodes during processing and cycling. The cadmium electrodes prepared from the 80% porous substrates proved to be the best electrodes made during the course of the work from the point of view of highest efficiency. Three-point bend tests were used to measure mechanical properties of the plaques produced and also as a general characterization tool. In addition, the BET surface areas of selected specimens was determined. The SEM was used for judging microscopic uniformity and quantitatively determining the induced pore size and various other fine structures in the substrates. The technique of X-ray radiography was used to follow the bulk uniformity of the substrates at various stages of their processing.

  2. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  3. Programmable electroacoustic filter apparatus and method for its manufacture

    DOEpatents

    Nordquist, Christopher; Olsson, Roy H.; Scott, Sean Michael; Wojciechowski, Kenneth; Branch, Darren W.

    2016-03-01

    An acoustically coupled frequency selective radio frequency (RF) device is provided. The device includes a piezoelectric substrate overlain by a plurality of electrodes. The device further includes a pair of RF input terminals at least one of which is electrically connected to at least one of the electrodes, and a pair of output RF terminals, at least one of which is electrically connected to at least one other of the electrodes. At least one of the electrodes is electromechanically reconfigurable between a state in which it is closer to a face of the piezoelectric substrate and at least one state in which it is farther from the face of the piezoelectric substrate.

  4. Electrostatic spring softening in redundant degree of freedom resonators

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken J. (Inventor); Shcheglov, Kirill V. (Inventor); Humphreys, Todd E. (Inventor); Challoner, A. Dorian (Inventor)

    2004-01-01

    The present invention discloses an isolated electrostatic biased resonator gyroscope. The gyroscope includes an isolated resonator having a first and a second differential vibration mode, a baseplate supporting the isolated resonator, a plurality of excitation affixed to the baseplate for exciting the first differential vibration mode, a plurality of sensing electrodes affixed to the baseplate for sensing movement of the gyroscope through the second differential vibration mode and a plurality of bias electrodes affixed to the baseplate for trimming isolation of the resonator and substantially minimizing frequency split between the first and second differential vibration modes. Typically, the isolated resonator comprises a proof mass and a counterbalancing plate with the bias electrodes disposed on the baseplate below.

  5. System of fabricating a flexible electrode array

    DOEpatents

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie; Humayun, Mark S.; Weiland, James D.

    2010-10-12

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  6. System of fabricating a flexible electrode array

    DOEpatents

    Krulevitch, Peter [Pleasanton, CA; Polla, Dennis L [Roseville, MN; Maghribi, Mariam N [Davis, CA; Hamilton, Julie [Tracy, CA; Humayun, Mark S [La Canada, CA; Weiland, James D [Valencia, CA

    2012-01-28

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  7. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    DOEpatents

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  8. Role of geometric parameters in electrical measurements of insulating thin films deposited on a conductive substrate

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Gerhardt, R. A.

    2012-03-01

    The effects of film thickness, electrode size and substrate thickness on the impedance parameters of alternating frequency dielectric measurements of insulating thin films deposited on conductive substrates were studied through parametric finite-element simulations. The quasi-static forms of Maxwell's electromagnetic equations in a time harmonic mode were solved using COMSOL Multiphysics® for several types of 2D models (linear and axisymmetric). The full 2D model deals with a configuration in which the impedance is measured between two surface electrodes on top of a film deposited on a conductive substrate. For the simplified 2D models, the conductive substrate is ignored and the two electrodes are placed on the top and bottom of the film. By comparing the full model and the simplified models, approximations and generalizations are deduced. For highly insulating films, such as the case of insulating SiO2 films on a conducting Si substrate, even the simplified models predict accurate capacitance values at all frequencies. However, the edge effects on the capacitance are found to be significant when the film thickness increases and/or the top electrode contact size decreases. The thickness of the substrate affects predominantly the resistive components of the dielectric response while having no significant effect on the capacitive components. Changing the electrode contact size or the film thickness determines the specific values of the measured resistance or capacitance while the material time constant remains the same, and thus this affects the frequency dependence that is able to be detected. This work highlights the importance of keeping in mind the film thickness and electrode contact size for the correct interpretation of the measured dielectric properties of micro/nanoscale structures that are often investigated using nanoscale capacitance measurements.

  9. Transparent flexible nanogenerator as self-powered sensor for transportation monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhong Lin; Hu, Youfan; Lin, Long

    2016-06-14

    A traffic sensor includes a flexible substrate having a top surface. A piezoelectric structure extends from the first electrode layer. The piezoelectric structure has a top end. An insulating layer is infused into the piezoelectric structure. A first electrode layer is disposed on top of the insulating layer. A second electrode layer is disposed below the flexible substrate. A packaging layer is disposed around the substrate, the first electrode layer, the piezoelectric structure, the insulating layer and the second electrode layer. In a method of sensing a traffic parameter, a piezoelectric nanostructure-based traffic sensor is applied to a roadway. Anmore » electrical event generated by the piezoelectric nanostructure-based traffic sensor in response to a vehicle interacting with the piezoelectric nanostructure-based traffic sensor is detected. The electrical event is correlated with the traffic parameter.« less

  10. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination

    Treesearch

    Yinhua Zhou; Talha M. Khan; Jen-Chieh Liu; Canek Fuentes-Hernandez; Jae Won Shim; Ehsan Najafabadi; Jeffrey P. Youngblood; Robert J. Moon; Bernard Kippelen

    2014-01-01

    We report on efficient solar cells on recyclable cellulose nanocrystal (CNC) substrates with a new device structure wherein polyethylenimine-modified Ag is used as the bottom electron-collecting electrode and high-conductivity poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS, PH1000) is used as the semitransparent top holecollecting electrode. The...

  11. Area-variable capacitive microaccelerometer with force-balancing electrodes

    NASA Astrophysics Data System (ADS)

    Ha, Byeoungju; Lee, Byeungleul; Sung, Sangkyung; Choi, Sangon; Shinn, Meenam; Oh, Yong-Soo; Song, Ci M.

    1997-11-01

    A surface micromachined accelerometer which senses an inertial motion with an area variation and a force balancing electrodes is developed. The grid-type planar mass of a 7 micrometers thick polysilicon is supported by four thin beams and suspended above a silicon substrate with a 1.5 micrometers air gap. The motion sensing electrodes are formed on the substrate. The sensor is designed as an interdigital rib structure that has a differential capacitor arrangement. The moveable electrodes are mounted on the mass and the pairs of the stationary electrodes are patterned on the substrate. In the accelerometer that has comb-type movable electrodes, the mechanical stress and the electrical pulling effects between a moveable electrodes and the fixed electrodes occur. However this grid-type structure can have a large area variation in a small area relatively without stress and pulling, high sensitivity can be achieved. In order to improve the dynamic rang and a linearity, a pair of comb shape force-balancing electrodes are implemented on both sides of the mass. The force-balancing electrodes are made of the same layer as the mass and anchored on a silicon substrate. When acceleration is applied in the lateral direction, the difference of capacitance results from the area variation between the two capacitors and is measured using a charge amplifier. As AC coupled complimentary pick- off signals are applied in paris of stationary electrodes, the undesirable effects due to temperature and electrical noise are reduced effectively. The accelerometer has a sensitivity of 28mV/g and a bandwidth of DC-120Hz. A resolution of 3mg and a non-linearity of 1.3 percent is achieved for a measurement range of +/- 9 g.

  12. Charge injection from gate electrode by simultaneous stress of optical and electrical biases in HfInZnO amorphous oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Sun, Min-Chul; Kim, Garam; Kim, Hyun Woo; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2010-11-01

    A comprehensive study is done regarding stabilities under simultaneous stress of light and dc-bias in amorphous hafnium-indium-zinc-oxide thin film transistors. The positive threshold voltage (Vth) shift is observed after negative gate bias and light stress, and it is completely different from widely accepted phenomenon which explains that negative-bias stress results in Vth shift in the left direction by bias-induced hole-trapping. Gate current measurement is performed to explain the unusual positive Vth shift under simultaneous application of light and negative gate bias. As a result, it is clearly found that the positive Vth shift is derived from electron injection from gate electrode to gate insulator.

  13. In vitro cyto-biocompatibility study of thin-film transistors substrates using an organotypic culture method.

    PubMed

    Leclerc, Eric; Duval, Jean-Luc; Egles, Christophe; Ihida, Satoshi; Toshiyoshi, Hiroshi; Tixier-Mita, Agnès

    2017-01-01

    Thin-Film-Transistors Liquid-Crystal Display has become a standard in the field of displays. However, the structure of these devices presents interest not only in that field, but also for biomedical applications. One of the key components, called here TFT substrate, is a glass substrate with a dense and large array of thousands of transparent micro-electrodes that can be considered as a large scale multi-electrode array(s). Multi-electrode array(s) are widely used for in vitro electrical investigations on neurons and brain, allowing excitation, registration, and recording of their activity. However, the range of application of conventional multi-electrode array(s) is usually limited to some tens of cells in a homogeneous cell culture, because of a small area, small number and a low density of the micro-electrodes. TFT substrates do not have these limitations and the authors are currently studying the possibility to use TFT substrates as new tools for in vitro electrical investigation on tissues and organoids. In this respect, experiments to determine the cyto-biocompatibility of TFT substrates with tissues were conducted and are presented in this study. The investigation was performed using an organotypic culture method with explants of brain and liver tissues of chick embryos. The results in term of morphology, cell migration, cell density and adhesion were compared with the results from Thermanox ® , a conventional plastic for cell culture, and with polydimethylsiloxane, a hydrophobic silicone. The results with TFT substrates showed similar results as for the Thermanox ® , despite the TFT hydrophobicity. TFT substrates have a weak cell adhesion and promote cell migration similarly to Thermanox ® . It could be concluded that the TFT substrates are cyto-biocompatible with the two studied organs.

  14. Preliminary investigation of single chamber single electrode microbial fuel cell using sewage sludge as a substrate

    NASA Astrophysics Data System (ADS)

    Sai Chaithanya, M.; Thakur, Somil; Sonu, Kumar; Das, Bhaskar

    2017-11-01

    A microbial fuel cell (MFC) consists of a cathode and anode; micro-organisms transfer electrons acquired from the degradation of organic matter in the substrate to anode; and thereby to cathode; by using an external circuit to generate electricity. In the present study, a single chamber single electrode microbial fuel cell has been fabricated to generate electricity from the sludge of the sewage treatment plant at two different ambient temperature range of 25 ± 4°C and 32 ± 4°C under aerobic condition. No work has been done yet by using the single electrode in any MFC system; it is hypothesized that single electrode submerged partially in substrate and rest to atmosphere can function as both cathode and anode. The maximum voltage obtained was about 2890 mV after 80 (hrs) at temperature range of 25 ± 4°C, with surface power density of 1108.29 mW/m2. When the ambient temperature was 32 ± 4°C, maximum voltage obtained was 1652 mV after 40 (hrs.) surface power density reduced to 865.57 mW/m2. When amount of substrate was decreased for certain area of electrode at 25 ± 4°C range, electricity generation decreased and it also shortened the time to reach peak voltage. On the other hand, when the ambient temperature was increased to 32 ± 4°C, the maximum potential energy generated was less than that of previous experiment at 25 ± 4°C for the same substrate Also the time to reach peak voltage decreased to 40 hrs. When comparing with other single chamber single electrode MFC, the present model is generating more electricity that any MFC using sewage sludge as substrate except platinum electrode, which is much costlier that electrode used in the present study.

  15. Electroluminescent device having improved light output

    DOEpatents

    Tyan,; Yuan-Sheng, [Webster, NY; Preuss, Donald R [Rochester, NY; Farruggia, Giuseppe [Webster, NY; Kesel, Raymond A [Avon, NY; Cushman, Thomas R [Rochester, NY

    2011-03-22

    An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.

  16. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  17. Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan

    2014-07-01

    We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.

  18. Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies.

    PubMed

    Faraz, Tahsin; Knoops, Harm C M; Verheijen, Marcel A; van Helvoirt, Cristian A A; Karwal, Saurabh; Sharma, Akhil; Beladiya, Vivek; Szeghalmi, Adriana; Hausmann, Dennis M; Henri, Jon; Creatore, Mariadriana; Kessels, Wilhelmus M M

    2018-04-18

    Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiO x and HfO x and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiN x and HfN x films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiO x were slightly improved whereas those of SiN x were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed.

  19. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  20. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  1. The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming

    2017-03-01

    This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.

  2. Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.

  3. Relationship between Mass Loading and Frequency Temperature Characteristics of AT-Cut Quartz Resonators

    NASA Astrophysics Data System (ADS)

    Gong, Xun; Sekimoto, Hitoshi; Goka, Shigeyoshi; Watanabe, Yasuaki

    2003-07-01

    Past experiments indicated that the mass loading (R) results in a shift of the apparent orientation angle of the quartz plate and this shift is proportional to the thickness of the metal film and the difference between the thermal expansion coefficients (α) of the electrode and the substrate. In this study, first we make a new model that includes the anisotropy of quartz based on the model of EerNisse [Proc. 29th Annu. Freq. Control Symp., 1975, p. 1] to obtain the thermally induced strain bias. Then, we deduce a simple relationship for the thickness shear vibrations from Lee and Tang’s [IEEE Trans. Ultrason. Ferroelect. & Freq. Control 34 (1987) 659] theory of small-magnitude vibration superposing on the bias strain field. A new method which can enable a strict analysis of the phenomenon is thus developed. The simulation of several kinds of metal films is performed. The results agree well with the above-mentioned experimental results.

  4. MEMS fabrication and frequency sweep for suspending beam and plate electrode in electrostatic capacitor

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Song, Weixing

    2018-01-01

    We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.

  5. First principles molecular dynamics of metal/water interfaces under bias potential

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  6. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  7. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  8. Low friction and galling resistant coatings and processes for coating

    DOEpatents

    Johnson, Roger N.

    1987-01-01

    The present invention describes coating processes and the resultant coated articles for use in high temperature sodium environments, such as those found in liquid metal fast breeder reactors and their associated systems. The substrate to which the coating is applied may be either an iron base or nickel base alloy. The coating itself is applied to the substrate by electro-spark deposition techniques which result in metallurgical bonding between the coating and the substrate. One coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and an aluminum electrode. Another coating according to the present invention involves electro-spark depositing material from a cemented chromium carbide electrode and a nickel-base hardfacing alloy electrode.

  9. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    PubMed

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  10. Nonlinear dielectric properties of planar structures based on ferroelectric betaine phosphite films

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Yurko, E. I.

    2014-02-01

    Ferroelectric films of partly deuterated betaine phosphite are grown on NdGaO3(001) substrates with an interdigitated system of electrodes on their surfaces by evaporation at room temperature. These films have a high capacitance in the ferroelectric phase transition range. The dielectric nonlinearity of the grown structures is studied in small-signal and strong-signal response modes and in the intermediate region between these two modes by measuring the capacitance in a dc bias field, dielectric hysteresis loops, and the Fourier spectra of an output signal in the Sawyer-Tower circuit. In the phase transition range, the capacitance control ratio at a bias voltage U bias = 40 V is K ≅ 7. The dielectric nonlinearity of the structures in the paraelectric phase is described by the Landau theory of second-order phase transitions. The additional contribution to the nonlinearity in the ferroelectric phase is related to the motion of domain walls and manifests itself when the input signal amplitude is higher than U st ˜ 0.7-1.0 V. The relaxation times of domain walls are determined from an analysis of the frequency dependences of the dielectric hysteresis.

  11. Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor.

    PubMed

    Xiao, Xiang; Zhang, Letao; Shao, Yang; Zhou, Xiaoliang; He, Hongyu; Zhang, Shengdong

    2017-12-13

    A room-temperature flexible amorphous indium-gallium-zinc oxide thin film transistor (a-IGZO TFT) technology is developed on plastic substrates, in which both the gate dielectric and passivation layers of the TFTs are formed by an anodic oxidation (anodization) technique. While the gate dielectric Al 2 O 3 is grown with a conventional anodization on an Al:Nd gate electrode, the channel passivation layer Al 2 O 3 is formed using a localized anodization technique. The anodized Al 2 O 3 passivation layer shows a superior passivation effect to that of PECVD SiO 2 . The room-temperature-processed flexible a-IGZO TFT exhibits a field-effect mobility of 7.5 cm 2 /V·s, a subthreshold swing of 0.44 V/dec, an on-off ratio of 3.1 × 10 8 , and an acceptable gate-bias stability with threshold voltage shifts of 2.65 and -1.09 V under positive gate-bias stress and negative gate-bias stress, respectively. Bending and fatigue tests confirm that the flexible a-IGZO TFT also has a good mechanical reliability, with electrical performances remaining consistent up to a strain of 0.76% as well as after 1200 cycles of fatigue testing.

  12. Analysis of dead zone sources in a closed-loop fiber optic gyroscope.

    PubMed

    Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To

    2016-01-01

    Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.

  13. Composite electrode/electrolyte structure

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2004-01-27

    Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

  14. Nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    NASA Technical Reports Server (NTRS)

    Wang, Zhong L. (Inventor); Zhou, Jun (Inventor); Wang, Xudong (Inventor); He, Jr-Hau (Inventor); Song, Jinhui (Inventor)

    2011-01-01

    A semiconducting device includes a substrate, a piezoelectric wire, a structure, a first electrode and a second electrode. The piezoelectric wire has a first end and an opposite second end and is disposed on the substrate. The structure causes the piezoelectric wire to bend in a predetermined manner between the first end and the second end so that the piezoelectric wire enters a first semiconducting state. The first electrode is coupled to the first end and the second electrode is coupled to the second end so that when the piezoelectric wire is in the first semiconducting state, an electrical characteristic will be exhibited between the first electrode and the second electrode.

  15. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  16. High voltage photoconductive switch package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, George J.

    2016-11-22

    A photoconductive switch having a wide bandgap material substrate between opposing electrodes, and a doped dielectric filler that is in contact with both the electrodes and the substrate at the triple point. The dielectric filler material is doped with a conductive material to make it partially or completely conducting, to minimize the field enhancement near the triple point both when the substrate is not conducting in the "off" state and when the substrate is rendered conducting by radiation in the "on" state.

  17. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.

    PubMed

    Biswas, Satarupa; Sikdar, Debdeep; Das, Debanjan; Mahadevappa, Manjunatha; Das, Soumen

    2017-08-25

    Understanding of the neural response to electrical stimulation requires simultaneous recording from the various neurons of retina. Electrodes form the physical interface with the neural or retinal tissue. Successful retinal stimulation and recording demands conformal integration of these electrodes with the soft tissue to ensure establishment of proper electrical connection with the excitable tissue. Mechanical impedance of polydimethylsiloxane (PDMS) being compliant with that of retinal tissue, offers excellent potential as a substrate for metal electrodes. In this paper, Cr/Au micro electrodes with 200 μm diameter were fabricated on rigid and flexible PDMS substrates under crack free condition. Spontaneous buckling of thin films over PDMS substrates improved electrode performance circumventing the fabrication issues faced over a buckled surface. Individual electrodes from the multielectrode arrays (MEAs) were examined with electrochemical impedance spectroscopy and cyclic voltammetry. Controlled fabrication process as described here generates buckles in the metal films leading to increased electrode surface area that increases the charge storage capacity and decreases the interface impedance of the metal electrodes. At 1 kHz, impedance was reduced from 490 ± 27 kΩ to 246 ± 19 kΩ and charge storage capacity was increased from 0.40 ± 0.87 mC/cm 2 to 2.1 ± 0.87 mC/cm 2 . Neural spikes recorded with PDMS based electrodes from isolated retina also contained less noise as indicated by signal to noise ratio analysis. The present study established that the use of PDMS as a substrate for MEAs can enhance the performance of any thin film metal electrodes without incorporation of any coating layers or nanomaterials.

  18. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  19. Increased Alignment in Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  20. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  1. Digitally controlled distributed phase shifter

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  2. Gate-dependent asymmetric transport characteristics in pentacene barristors with graphene electrodes.

    PubMed

    Hwang, Wang-Taek; Min, Misook; Jeong, Hyunhak; Kim, Dongku; Jang, Jingon; Yoo, Daekyung; Jang, Yeonsik; Kim, Jun-Woo; Yoon, Jiyoung; Chung, Seungjun; Yi, Gyu-Chul; Lee, Hyoyoung; Wang, Gunuk; Lee, Takhee

    2016-11-25

    We investigated the electrical characteristics and the charge transport mechanism of pentacene vertical hetero-structures with graphene electrodes. The devices are composed of vertical stacks of silicon, silicon dioxide, graphene, pentacene, and gold. These vertical heterojunctions exhibited distinct transport characteristics depending on the applied bias direction, which originates from different electrode contacts (graphene and gold contacts) to the pentacene layer. These asymmetric contacts cause a current rectification and current modulation induced by the gate field-dependent bias direction. We observed a change in the charge injection barrier during variable-temperature current-voltage characterization, and we also observed that two distinct charge transport channels (thermionic emission and Poole-Frenkel effect) worked in the junctions, which was dependent on the bias magnitude.

  3. Influence of Substrate Biasing on (Ba,Sr)TiO3 Films Prepared by Electron Cyclotron Resonance Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji

    2004-03-01

    (Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.

  4. Alternate electrode materials for the SP100 reactor

    NASA Astrophysics Data System (ADS)

    Randich, E.

    1992-05-01

    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB2 (C) CVD coating on SiMo substrates; (2) development of a ZrB2 (C) CVD coating on SiGe substrates; (3) development of CVI W for porous graphite electrodes; and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB2 coatings on SiGe and graphite substrates, and later into developing ZrB2 coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB2 during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.

  5. Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Namsun; Lee, Jongho; Research Institute for Solar and Sustainable Energies

    2014-12-15

    This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanicalmore » characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.« less

  6. Circular chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K [Albuquerque, NM

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  7. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, Terje A.

    1985-01-01

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte wherein an assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  8. Method of synthesizing polymers from a solid electrolyte

    DOEpatents

    Skotheim, T.A.

    1984-10-19

    A method of synthesizing electrically conductive polymers from a solvent-free solid polymer electrolyte is disclosed. An assembly of a substrate having an electrode thereon, a thin coating of solid electrolyte including a solution of PEO complexed with an alkali salt, and a thin transparent noble metal electrode are disposed in an evacuated chamber into which a selected monomer vapor is introduced while an electric potential is applied across the solid electrolyte to hold the thin transparent electrode at a positive potential relative to the electrode on the substrate, whereby a highly conductive polymer film is grown on the transparent electrode between it and the solid electrolyte.

  9. Graphene-Based Electrode for a Supercapacitor

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor); Meyyappan, Meyya (Inventor)

    2015-01-01

    A supercapacitor electrode mechanism comprising an electrically conductive, porous substrate, having one or more metallic oxides deposited on a first surface and a chemically reduced graphene oxide deposited on a second surface, to thereby provide an electrical double layer associated with the substrate. The substrate may be carbon paper or a similar substance. The layers of the supercapacitor are optionally rolled into an approximately cylindrical structure.

  10. Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF{sub 4}/O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Sang-Heon, E-mail: ssongs@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu

    2014-03-15

    In plasma etching for microelectronics fabrication, the quality of the process is in large part determined by the ability to control the ion energy distribution (IED) onto the wafer. To achieve this control, dual frequency capacitively coupled plasmas (DF-CCPs) have been developed with the goal of separately controlling the magnitude of the fluxes of ions and radicals with the high frequency (HF) and the shape of the IED with the low frequency (LF). In steady state operation, plasma properties are determined by a real time balance between electron sources and losses. As such, for a given geometry, pressure, and frequencymore » of operation, the latitude for controlling the IED may be limited. Pulsed power is one technique being investigated to provide additional degrees of freedom to control the IED. In one configuration of a DF-CCP, the HF power is applied to the upper electrode and LF power is applied to the lower electrode which is serially connected to a blocking capacitor (BC) which generates a self dc-bias. In the steady state, the value of the dc-bias is, in fact, constant. During pulsed operation, however, there may be time modulation of the dc-bias which provides an additional means to control the IED. In this paper, IEDs to the wafer in pulsed DF-CCPs sustained in Ar/CF{sub 4}/O{sub 2} are discussed with results from a two-dimensional plasma hydrodynamics model. The IED can be manipulated depending on whether the LF or HF power is pulsed. The dynamic range of the control can be tuned by the dc-bias generated on the substrate, whose time variation depends on the size of the BC during pulsed operation. It was found that high energy ions can be preferentially produced when pulsing the HF power and low energy ions are preferentially produced when pulsing the LF power. A smaller BC value which allows the bias to follow the change in charged particle fluxes produces a larger dynamic range with which to control IEDs.« less

  11. Optoelectric biosensor using indium-tin-oxide electrodes.

    PubMed

    Choi, Chang Kyoung; Kihm, Kenneth D; English, Anthony E

    2007-06-01

    The use of an optically thin indium-tin-oxide (ITO) electrode is presented for an optoelectric biosensor simultaneously recording optical images and microimpedance to examine time-dependent cellular growth. The transmittance of a 100 nm thick ITO electrode layer is approximately the same as the transmittance of a clean glass substrate, whereas the industry-standard Au(47.5 nm)/Ti(2.5 nm) electrode layer drops the transmittance to less than 10% of that of the glass substrate. The simultaneous optoelectric measurements permit determining the correlation of the cell-covered area increase with the microimpedance increase, and the example results obtained for live porcine pulmonary artery endothelial cells delineate the quantitative and comprehensive nature of cellular attachment and spreading to the substrate, which has not been clearly perceived before.

  12. Development of theoretical approach for describing electronic properties of hetero-interface systems under applied bias voltage.

    PubMed

    Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki

    2017-02-28

    We have developed a theoretical approach for describing the electronic properties of hetero-interface systems under an applied electrode bias. The finite-temperature density functional theory is employed for controlling the chemical potential in their interfacial region, and thereby the electronic charge of the system is obtained. The electric field generated by the electronic charging is described as a saw-tooth-like electrostatic potential. Because of the continuum approximation of dielectrics sandwiched between electrodes, we treat dielectrics with thicknesses in a wide range from a few nanometers to more than several meters. Furthermore, the approach is implemented in our original computational program named grid-based coupled electron and electromagnetic field dynamics (GCEED), facilitating its application to nanostructures. Thus, the approach is capable of comprehensively revealing electronic structure changes in hetero-interface systems with an applied bias that are practically useful for experimental studies. We calculate the electronic structure of a SiO 2 -graphene-boron nitride (BN) system in which an electrode bias is applied between the graphene layer and an electrode attached on the SiO 2 film. The electronic energy barrier between graphene and BN is varied with an applied bias, and the energy variation depends on the thickness of the BN film. This is because the density of states of graphene is so low that the graphene layer cannot fully screen the electric field generated by the electrodes. We have demonstrated that the electronic properties of hetero-interface systems are well controlled by the combination of the electronic charging and the generated electric field.

  13. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  14. Electric shielding films for biased TEM samples and their application to in situ electron holography.

    PubMed

    Nomura, Yuki; Yamamoto, Kazuo; Hirayama, Tsukasa; Saitoh, Koh

    2018-06-01

    We developed a novel sample preparation method for transmission electron microscopy (TEM) to suppress superfluous electric fields leaked from biased TEM samples. In this method, a thin TEM sample is first coated with an insulating amorphous aluminum oxide (AlOx) film with a thickness of about 20 nm. Then, the sample is coated with a conductive amorphous carbon film with a thickness of about 10 nm, and the film is grounded. This technique was applied to a model sample of a metal electrode/Li-ion-conductive-solid-electrolyte/metal electrode for biasing electron holography. We found that AlOx film with a thickness of 10 nm has a large withstand voltage of about 8 V and that double layers of AlOx and carbon act as a 'nano-shield' to suppress 99% of the electric fields outside of the sample. We also found an asymmetry potential distribution between high and low potential electrodes in biased solid-electrolyte, indicating different accumulation behaviors of lithium-ions (Li+) and lithium-ion vacancies (VLi-) in the biased solid-electrolyte.

  15. Paper-based potentiometric pH sensor using carbon electrode drawn by pencil

    NASA Astrophysics Data System (ADS)

    Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu

    2018-04-01

    A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.

  16. Preparation of Cobalt-Based Electrodes by Physical Vapor Deposition on Various Nonconductive Substrates for Electrocatalytic Water Oxidation.

    PubMed

    Wu, Yizhen; Wang, Le; Chen, Mingxing; Jin, Zhaoxia; Zhang, Wei; Cao, Rui

    2017-12-08

    Artificial photosynthesis requires efficient anodic electrode materials for water oxidation. Cobalt metal thin films are prepared through facile physical vapor deposition (PVD) on various nonconductive substrates, including regular and quartz glass, mica sheet, polyimide, and polyethylene terephthalate (PET). Subsequent surface electrochemical modification by cyclic voltammetry (CV) renders these films active for electrocatalytic water oxidation, reaching a current density of 10 mA cm -2 at a low overpotential of 330 mV in 1.0 m KOH solution. These electrodes are robust with unchanged activity throughout prolonged chronopotentiometry measurements. This work is thus significant to show that the combination of PVD and CV is very valuable and convenient to fabricate active electrodes on various nonconductive substrates, particularly with flexible polyimide and PET substrates. This efficient, safe and convenient method can potentially be expanded to many other electrochemical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  18. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  19. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Colston, Jr, Billy W.

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  20. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array.

    PubMed

    Choong, Chwee-Lin; Shim, Mun-Bo; Lee, Byoung-Sun; Jeon, Sanghun; Ko, Dong-Su; Kang, Tae-Hyung; Bae, Jihyun; Lee, Sung Hoon; Byun, Kyung-Eun; Im, Jungkyun; Jeong, Yong Jin; Park, Chan Eon; Park, Jong-Jin; Chung, U-In

    2014-06-04

    A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of the molecule-electrode interface on the low-bias conductance of Cu-H2-Cu single-molecule junctions.

    PubMed

    Jiang, Zhuoling; Wang, Hao; Shen, Ziyong; Sanvito, Stefano; Hou, Shimin

    2016-07-28

    The atomic structure and electronic transport properties of a single hydrogen molecule connected to both symmetric and asymmetric Cu electrodes are investigated by using the non-equilibrium Green's function formalism combined with the density functional theory. Our calculations show that in symmetric Cu-H2-Cu junctions, the low-bias conductance drops rapidly upon stretching, while asymmetric ones present a low-bias conductance spanning the 0.2-0.3 G0 interval for a wide range of electrode separations. This is in good agreement with experiments on Cu atomic contacts in a hydrogen environment. Furthermore, the distribution of the calculated vibrational energies of the two hydrogen atoms in the asymmetric Cu-H2-Cu junction is also consistent with experiments. These findings provide clear evidence for the formation of asymmetric Cu-H2-Cu molecular junctions in breaking Cu atomic contacts in the presence of hydrogen and are also helpful for the design of molecular devices with Cu electrodes.

  2. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat [NE Albuquerque, NM

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  3. Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.

    PubMed

    Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng

    2017-07-14

    Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.

  4. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    PubMed

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  5. Nanoeletromechanical switch and logic circuits formed therefrom

    DOEpatents

    Nordquist, Christopher D [Albuquerque, NM; Czaplewski, David A [Albuquerque, NM

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  6. Simultaneous Nanoscale Surface Charge and Topographical Mapping.

    PubMed

    Perry, David; Al Botros, Rehab; Momotenko, Dmitry; Kinnear, Sophie L; Unwin, Patrick R

    2015-07-28

    Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.

  7. Enhanced Corrosion Resistance and Interfacial Conductivity of TiC x/a-C Nanolayered Coatings via Synergy of Substrate Bias Voltage for Bipolar Plates Applications in PEMFCs.

    PubMed

    Yi, Peiyun; Zhang, Weixin; Bi, Feifei; Peng, Linfa; Lai, Xinmin

    2018-06-06

    Proton-exchange membrane fuel cells are one kind of renewable and clean energy conversion device, whose metallic bipolar plates are one of the key components. However, high interfacial contact resistance and poor corrosion resistance are still great challenges for the commercialization of metallic bipolar plates. In this study, we demonstrated a novel strategy for depositing TiC x /amorphous carbon (a-C) nanolayered coatings by synergy of 60 and 300 V bias voltage to enhance corrosion resistance and interfacial conductivity. The synergistic effects of bias voltage on the composition, microstructure, surface roughness, electrochemical corrosion behaviors, and interfacial conductivity of TiC x /a-C coatings were explored. The results revealed that the columnar structures in the inner layer were suppressed and the surface became rougher with the 300 V a-C layer outside. The composition analysis indicated that the sp 2 content increased with an increase of 300 V sputtering time. Due to the synergy strategy of bias voltage, lower corrosion current densities were achieved both in potentiostatic polarization (1.6 V vs standard hydrogen electrode) and potentiodynamic polarization. With the increase of 300 V sputtering time, the interfacial conductivity was improved. The enhanced corrosion resistance and interfacial conductivity of the TiC x /a-C coatings would provide new opportunities for commercial bipolar plates.

  8. Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Sillassen, M.; Eklund, P.; Sridharan, M.; Pryds, N.; Bonanos, N.; Bøttiger, J.

    2009-05-01

    Thermally stable, stoichiometric, cubic yttria-stabilized zirconia (YSZ) thin-film electrolytes have been synthesized by reactive pulsed dc magnetron sputtering from a Zr-Y (80/20 at. %) alloy target. Films deposited at floating potential had a ⟨111⟩ texture. Single-line profile analysis of the 111 x-ray diffraction peak yielded a grain size of ˜20 nm and a microstrain of ˜2% regardless of deposition temperature. Films deposited at 400 °C and selected bias voltages in the range from -70 to -200 V showed a reduced grain size for higher bias voltages, yielding a grain size of ˜6 nm and a microstrain of ˜2.5% at bias voltages of -175 and -200 V with additional incorporation of argon. The films were thermally stable; very limited grain coarsening was observed up to an annealing temperature of 800 °C. Temperature-dependent impedance spectroscopy analysis of the YSZ films with Ag electrodes showed that the in-plane ionic conductivity was within one order of magnitude higher in films deposited with substrate bias corresponding to a decrease in grain size compared to films deposited at floating potential. This suggests that there is a significant contribution to the ionic conductivity from grain boundaries. The activation energy for oxygen ion migration was determined to be between 1.14 and 1.30 eV.

  9. Membrane electrode assembly for a fuel cell

    NASA Technical Reports Server (NTRS)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  10. Negative differential resistance in oxidized zigzag graphene nanoribbons.

    PubMed

    Wang, Min; Li, Chang Ming

    2011-01-28

    A theoretical study of zigzag graphene nanoribbons (ZGNRs) with an epoxy-pair chain (ZGO) is performed. The electronic transport properties are mainly evaluated by non-equilibrium Green's functions using the TRANSIESTA package. The results indicate that the graphene oxide can have a negative differential resistance (NDR) phenomenon, supported by bias-dependent transmission curves of different spin orientations. Applying non-zero bias voltages makes the density of states (DOS) of the right electrodes shift down. Due to an energy gap between the LUMO and LUMO+1 in ZGOs, with a certain bias, the conduction band of the right electrode cannot match the LUMO of the scattering region, then NDR occurs. With a larger bias, NDR ends when the second conduction band of the right electrode's DOS covers the LUMO of the scattering region. Since most of proposed ZGO systems possess such a gap between the LUMO and LUMO+1, NDR can be widely observed and this discovery may provide great potential applications in NDR-based nanoelectronics by using modified graphene materials.

  11. Photoconductive switch package

    DOEpatents

    Ca[rasp, George J

    2013-10-22

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  12. Resistive switching memory devices composed of binary transition metal oxides using sol-gel chemistry.

    PubMed

    Lee, Chanwoo; Kim, Inpyo; Choi, Wonsup; Shin, Hyunjung; Cho, Jinhan

    2009-04-21

    We describe a novel and versatile approach for preparing resistive switching memory devices based on binary transition metal oxides (TMOs). Titanium isopropoxide (TIPP) was spin-coated onto platinum (Pt)-coated silicon substrates using a sol-gel process. The sol-gel-derived layer was converted into a TiO2 film by thermal annealing. A top electrode (Ag electrode) was then coated onto the TiO2 films to complete device fabrication. When an external bias was applied to the devices, a switching phenomenon independent of the voltage polarity (i.e., unipolar switching) was observed at low operating voltages (about 0.6 VRESET and 1.4 VSET). In addition, it was confirmed that the electrical properties (i.e., retention time, cycling test and switching speed) of the sol-gel-derived devices were comparable to those of vacuum deposited devices. This approach can be extended to a variety of binary TMOs such as niobium oxides. The reported approach offers new opportunities for preparing the binary TMO-based resistive switching memory devices allowing a facile solution processing.

  13. Nanoscale Multigate TiN Metal Nanocrystal Memory Using High-k Blocking Dielectric and High-Work-Function Gate Electrode Integrated on Silcon-on-Insulator Substrate

    NASA Astrophysics Data System (ADS)

    Lu, Chi-Pei; Luo, Cheng-Kei; Tsui, Bing-Yue; Lin, Cha-Hsin; Tzeng, Pei-Jer; Wang, Ching-Chiun; Tsai, Ming-Jinn

    2009-04-01

    In this study, a charge-trapping-layer-engineered nanoscale n-channel trigate TiN nanocrystal nonvolatile memory was successfully fabricated on silicon-on-insulator (SOI) wafer. An Al2O3 high-k blocking dielectric layer and a P+ polycrystalline silicon gate electrode were used to obtain low operation voltage and suppress the back-side injection effect, respectively. TiN nanocrystals were formed by annealing TiN/Al2O3 nanolaminates deposited by an atomic layer deposition system. The memory characteristics of various samples with different TiN wetting layer thicknesses, post-deposition annealing times, and blocking oxide thicknesses were also investigated. The sample with a thicker wetting layer exhibited a much larger memory window than other samples owing to its larger nanocrystal size. Good retention with a mere 12% charge loss for up to 10 years and high endurance were also obtained. Furthermore, gate disturbance and read disturbance were measured with very small charge migrations after a 103 s stressing bias.

  14. Method Of Making An Ultracapacitor Electrode

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; DeJager, Katherine Dana; LeBlanc, Jr., Oliver Harris

    2003-05-06

    A paste of organic solvent with dissolved organic salt and active carbon is formed and a uniform film of the paste is applied onto a substrate by casting the paste into a clearance between a knife blade and the substrate. The paste is evaporated to form a paste electrode for an ultracapacitor.

  15. Method of making an ultracapacitor electrode

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; DeJager, Katherine Dana; LeBlanc, Jr., Oliver Harris

    2001-10-16

    A paste of organic solvent with dissolved organic salt and active carbon is formed and a uniform film of the paste is applied onto a substrate by casting the paste into a clearance between a knife blade and the substrate. The paste is evaporated to form a paste electrode for an ultracapacitor.

  16. The effect of Be and Cr electrode deposition rate on the performance of MIS solar cells

    NASA Astrophysics Data System (ADS)

    Moharram, A. H.; Panayotatos, P.; Yeh, J. L.; Lalevic, B.

    1985-07-01

    An experimental study has been performed on MIS solar cells with Be, Cr and layered Cr-Be electrodes on single crystal Si, Wacker and Monsanto poly-Si substrates. Electrical characterization in the dark and under illumination was correlated to X-ray and Auger spectroscopy results. It was found that the electrode deposition rate directly affects the oxygen content of the electrodes for all metal-substrate configurations. This oxygen is believed to originate from the deposition ambient as well as from the SiO2 layer. In the case of cells with Cr and layered Cr-Be electrodes oxygen acts to reduce the electrode work function (thus increasing the open-circuit voltage) in direct proportion to the relative content of oxygen to chromium.

  17. Ribbed electrode substrates

    DOEpatents

    Breault, Richard D.; Goller, Glen J.

    1983-01-01

    A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.

  18. Fabrication of fuel cell electrodes and other catalytic structures

    DOEpatents

    Smith, J.L.

    1987-02-11

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  19. Fabrication of catalytic electrodes for molten carbonate fuel cells

    DOEpatents

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  20. Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lv, Yanhong; Ji, Li; Liu, Xiaohong; Li, Hongxuan; Zhou, Huidi; Chen, Jianmin

    2012-02-01

    The CrAlN films were deposited on silicon and stainless steel substrates by unbalanced magnetron sputtering system. The influence of substrate bias on deposition rate, composition, structure, morphology and properties of the CrAlN films was investigated. The results showed that, with the increase of the substrate bias voltage, the deposition rate decreased accompanied by a change of the preferred orientation of the CrAlN film from (2 2 0) to (2 0 0). The grain size and the average surface roughness of the CrAlN films declined as the bias voltage increases above -100 V. The morphology of the films changed from obviously columnar to dense glass-like structure with the increase of the bias voltage from -50 to -250 V. Meanwhile, the films deposited at moderate bias voltage had better mechanical and tribological properties, while the films deposited at higher bias voltage showed better corrosion resistance. It was found that the corrosion resistance improvement was not only attributed to the low pinhole density of the film, but also to chemical composition of films.

  1. Influence of finite geometrical asymmetry of the electrodes in capacitively coupled radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Bora, B.; Soto, L.

    2014-08-01

    Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.

  2. Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates

    DTIC Science & Technology

    2008-06-01

    might use the Watson - Crick base-pairing of DNA as a means for ultrahigh-precision engineering is well- known.5,6 The idea is to use the highly specific...Selective DNA -Mediated Assembly of Gold Nanoparticles on Electroded Substrates K. E. Sapsford,†,‡,∇ D. Park,§ E. R. Goldman,‡ E. E. Foos,| S. A...electrodes via DNA hybridization. Protocols are demonstrated for maximizing selectivity and coverage using 15mers as the active binding agents. Detailed

  3. Method of forming macro-structured high surface area transparent conductive oxide electrodes

    DOEpatents

    Forman, Arnold J.; Chen, Zhebo; Jaramillo, Thomas F.

    2016-01-05

    A method of forming a high surface area transparent conducting electrode is provided that includes depositing a transparent conducting thin film on a conductive substrate, where the transparent conducting thin film includes transparent conductive particles and a solution-based transparent conducting adhesive layer which serves to coat and bind together the transparent conducting particles, and heat treating the transparent conducting adhesion layer on the conductive substrate, where an increased surface area transparent conducting electrode is formed.

  4. Bias-dependent local structure of water molecules at an electrochemical interface

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre R.; Fernandez-Serra, Marivi

    2015-03-01

    Following the need for new - and renewable - sources of energy worldwide, fuel cells using electrocatalysts can be thought of as a viable option. Understanding the local structure of water molecules at the interfaces of the metallic electrodes is a key problem. Notably the system is under an external potential bias, which makes the task of simulating this setup difficult. A first principle description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemical processes. There, the metal is usually charged. To correctly compute the effect of an external bias potential applied to electrodes, we combine density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), with and without van der Waals interactions. In this work, we apply this methodology to study the electronic properties and forces of one water molecule and water monolayer at the interface of gold electrodes. We find that the water molecule has a different torque direction depending on the sign of the bias applied. We also show that it changes the position of the most stable configuration indicating that the external bias plays an important role in the structural properties of the interface. We acknowledge financial support from FAPESP.

  5. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.

    2017-01-01

    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.

  6. Transparent conductive graphene textile fibers

    PubMed Central

    Neves, A. I. S.; Bointon, T. H.; Melo, L. V.; Russo, S.; de Schrijver, I.; Craciun, M. F.; Alves, H.

    2015-01-01

    Transparent and flexible electrodes are widely used on a variety of substrates such as plastics and glass. Yet, to date, transparent electrodes on a textile substrate have not been explored. The exceptional electrical, mechanical and optical properties of monolayer graphene make it highly attractive as a transparent electrode for applications in wearable electronics. Here, we report the transfer of monolayer graphene, grown by chemical vapor deposition on copper foil, to fibers commonly used by the textile industry. The graphene-coated fibers have a sheet resistance as low as ~1 kΩ per square, an equivalent value to the one obtained by the same transfer process onto a Si substrate, with a reduction of only 2.3 per cent in optical transparency while keeping high stability under mechanical stress. With this approach, we successfully achieved the first example of a textile electrode, flexible and truly embedded in a yarn. PMID:25952133

  7. Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template.

    PubMed

    Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2012-06-26

    To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.

  8. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes

    NASA Astrophysics Data System (ADS)

    Chianese, F.; Candini, A.; Affronte, M.; Mishra, N.; Coletti, C.; Cassinese, A.

    2018-05-01

    In this work, we test graphene electrodes in nanometric channel n-type Organic Field Effect Transistors (OFETs) based on thermally evaporated thin films of the perylene-3,4,9,10-tetracarboxylic acid diimide derivative. By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied bias, in contrast with the supralinear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrode devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ˜140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current in short channel OFETs.

  9. Taxel-addressable matrix of vertical nanowire piezotronic transistors

    DOEpatents

    Wang, Zhong Lin; Wu, Wenzhuo; Wen, Xiaonan

    2015-05-05

    A tactile sensing matrix includes a substrate, a first plurality of elongated electrode structures, a plurality of vertically aligned piezoelectric members, an insulating layer infused into the piezoelectric members and a second plurality of elongated electrode structures. The first plurality of elongated electrode structures is disposed on the substrate along a first orientation. The vertically aligned piezoelectric members is disposed on the first plurality of elongated electrode structures and form a matrix having columns of piezoelectric members disposed along the first orientation and rows of piezoelectric members disposed along a second orientation that is transverse to the first orientation. The second plurality of elongated electrode structures is disposed on the insulating layer along the second orientation. The elongated electrode structures form a Schottky contact with the piezoelectric members. When pressure is applied to the piezoelectric members, current flow therethrough is modulated.

  10. Nanostructured gold and platinum electrodes on silicon structures for biosensing

    NASA Astrophysics Data System (ADS)

    Ogurtsov, V. I.; Sheehan, M. M.

    2005-01-01

    Gold and platinum metal electrodes on Si/SiO2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements.

  11. Application of N-doped graphene modified carbon ionic liquid electrode for direct electrochemistry of hemoglobin.

    PubMed

    Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian

    2014-06-01

    Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Photoconductive switch package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caporaso, George J.

    2015-10-27

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the centralmore » portion to actuate the switch.« less

  13. Development of n+-in-p planar pixel sensors for extremely high radiation environments, designed to retain high efficiency after irradiation

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Yajima, K.; Yamauchi, Y.; Hirose, M.; Homma, Y.; Jinnouchi, O.; Kimura, K.; Motohashi, K.; Sato, S.; Sawai, H.; Todome, K.; Yamaguchi, D.; Hara, K.; Sato, Kz.; Sato, Kj.; Hagihara, M.; Iwabuchi, S.

    2016-09-01

    We have developed n+-in-p pixel sensors to obtain highly radiation tolerant sensors for extremely high radiation environments such as those found at the high-luminosity LHC. We have designed novel pixel structures to eliminate the sources of efficiency loss under the bias rails after irradiation by removing the bias rail out of the boundary region and routing the bias resistors inside the area of the pixel electrodes. After irradiation by protons with the fluence of approximately 3 ×1015neq /cm2, the pixel structure with the polysilicon bias resistor and the bias rails removed far away from the boundary shows an efficiency loss of < 0.5 % per pixel at the boundary region, which is as efficient as the pixel structure without a biasing structure. The pixel structure with the bias rails at the boundary and the widened p-stop's underneath the bias rail also exhibits an improved loss of approximately 1% per pixel at the boundary region. We have elucidated the physical mechanisms behind the efficiency loss under the bias rail with TCAD simulations. The efficiency loss is due to the interplay of the bias rail acting as a charge collecting electrode with the region of low electric field in the silicon near the surface at the boundary. The region acts as a "shield" for the electrode. After irradiation, the strong applied electric field nearly eliminates the region. The TCAD simulations have shown that wide p-stop and large Si-SiO2 interface charge (inversion layer, specifically) act to shield the weighting potential. The pixel sensor of the old design irradiated by γ-rays at 2.4 MGy is confirmed to exhibit only a slight efficiency loss at the boundary.

  14. Ultra-low voltage electrowetting using graphite surfaces.

    PubMed

    Lomax, Deborah J; Kant, Pallav; Williams, Aled T; Patten, Hollie V; Zou, Yuqin; Juel, Anne; Dryfe, Robert A W

    2016-10-26

    The control of wetting behaviour underpins a variety of important applications from lubrication to microdroplet manipulation. Electrowetting is a powerful method to achieve external wetting control, by exploiting the potential-dependence of the liquid contact angle with respect to a solid substrate. Addition of a dielectric film to the surface of the substrate, which insulates the electrode from the liquid thereby suppressing electrolysis, has led to technological advances such as variable focal-length liquid lenses, electronic paper and the actuation of droplets in lab-on-a-chip devices. The presence of the dielectric, however, necessitates the use of large bias voltages (frequently in the 10-100 V range). Here we describe a simple, dielectric-free approach to electrowetting using the basal plane of graphite as the conducting substrate: unprecedented changes in contact angle for ultra-low voltages are seen below the electrolysis threshold (50° with 1 V for a droplet in air, and 100° with 1.5 V for a droplet immersed in hexadecane), which are shown to be reproducible, stable over 100 s of cycles and free of hysteresis. Our results dispel conventional wisdom that reversible, hysteresis-free electrowetting can only be achieved on solid substrates with the use of a dielectric. This work paves the way for the development of a new generation of efficient electrowetting devices using advanced materials such as graphene and monolayer MoS 2 .

  15. The influence of Atomic Oxygen on the Figure of Merit of Indium Tin Oxide thin Films grown by reactive Dual Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Geerts, Wilhelmus; Simpson, Nelson; Woodall, Allen; Compton, Maclyn

    2014-03-01

    Indium Tin Oxide (ITO) is a transparent conducting oxide that is used in flat panel displays and optoelectronics. Highly conductive and transparent ITO films are normally produced by heating the substrate to 300 Celsius during deposition excluding plastics to be used as a substrate material. We investigated whether high quality ITO films can be sputtered at room temperature using atomic instead of molecular oxygen. The films were deposited by dual ion beam sputtering (DIBS). During deposition the substrate was exposed to a molecular or an atomic oxygen flux. Microscope glass slides and silicon wafers were used as substrates. A 29 nm thick SIO2 buffer layer was used. Optical properties were measured with a M2000 Woollam variable angle spectroscopic ellipsometer. Electrical properties were measured by linear four point probe using a Jandel 4pp setup employing silicon carbide electrodes, high input resistance, and Keithley low bias current buffer amplifiers. The figure of merit (FOM), i.e. the ratio of the conductivity and the average optical absorption coefficient (400-800 nm), was calculated from the optical and electric properties and appeared to be 1.2 to 5 times higher for the samples sputtered with atomic oxygen. The largest value obtained for the FOM was 0.08 reciprocal Ohms. The authors would like to thank the Research Corporation for Financial Support.

  16. Electrically biased GaAs/AlGaAs heterostructures for enhanced detection of bacteria

    NASA Astrophysics Data System (ADS)

    Aziziyan, Mohammad R.; Hassen, Walid M.; Dubowski, Jan J.

    2016-03-01

    We have examined the influence of electrical bias on immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures, functionalized with an alkanethiol based architecture. A mixture of biotinylated polyethylene glycol (PEG) thiol and hexadecanethiol was applied to attach neutravidin and antibodies targeting specific immobilization of Legionella pneumophila. An electrochemical setup was designed to bias biofunctionalized samples with the potential measured versus silver/silver chloride reference electrode in a three electrode configuration system. The immobilization efficiency has been examined with fluorescence microscopy after tagging captured bacteria with fluorescein labeled antibodies. We demonstrate more than 2 times enhanced capture of Legionella pneumophila, suggesting the potential of electrically biased biochips to deliver enhanced sensitivity in detecting these bacteria.

  17. Dynamics of flows, fluctuations, and global instability under electrode biasing in a linear plasma device

    NASA Astrophysics Data System (ADS)

    Desjardins, T. R.; Gilmore, M.

    2016-05-01

    Grid biasing is utilized in a large-scale helicon plasma to modify an existing instability. It is shown both experimentally and with a linear stability analysis to be a hybrid drift-Kelvin-Helmholtz mode. At low magnetic field strengths, coherent fluctuations are present, while at high magnetic field strengths, the plasma is broad-band turbulent. Grid biasing is used to drive the once-coherent fluctuations to a broad-band turbulent state, as well as to suppress them. There is a corresponding change in the flow shear. When a high positive bias (10Te) is applied to the grid electrode, a large-scale ( n ˜/n ≈50 % ) is excited. This mode has been identified as the potential relaxation instability.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K

    A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conductingmore » substrate.« less

  19. Effects of the molecule-electrode interface on the low-bias conductance of Cu–H{sub 2}–Cu single-molecule junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhuoling; Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871; Wang, Hao

    The atomic structure and electronic transport properties of a single hydrogen molecule connected to both symmetric and asymmetric Cu electrodes are investigated by using the non-equilibrium Green’s function formalism combined with the density functional theory. Our calculations show that in symmetric Cu–H{sub 2}–Cu junctions, the low-bias conductance drops rapidly upon stretching, while asymmetric ones present a low-bias conductance spanning the 0.2–0.3 G{sub 0} interval for a wide range of electrode separations. This is in good agreement with experiments on Cu atomic contacts in a hydrogen environment. Furthermore, the distribution of the calculated vibrational energies of the two hydrogen atoms inmore » the asymmetric Cu–H{sub 2}–Cu junction is also consistent with experiments. These findings provide clear evidence for the formation of asymmetric Cu–H{sub 2}–Cu molecular junctions in breaking Cu atomic contacts in the presence of hydrogen and are also helpful for the design of molecular devices with Cu electrodes.« less

  20. Torso geometry reconstruction and body surface electrode localization using three-dimensional photography.

    PubMed

    Perez-Alday, Erick A; Thomas, Jason A; Kabir, Muammar; Sedaghat, Golriz; Rogovoy, Nichole; van Dam, Eelco; van Dam, Peter; Woodward, William; Fuss, Cristina; Ferencik, Maros; Tereshchenko, Larisa G

    We conducted a prospective clinical study (n=14; 29% female) to assess the accuracy of a three-dimensional (3D) photography-based method of torso geometry reconstruction and body surface electrodes localization. The position of 74 body surface electrocardiographic (ECG) electrodes (diameter 5mm) was defined by two methods: 3D photography, and CT (marker diameter 2mm) or MRI (marker size 10×20mm) imaging. Bland-Altman analysis showed good agreement in X (bias -2.5 [95% limits of agreement (LoA) -19.5 to 14.3] mm), Y (bias -0.1 [95% LoA -14.1 to 13.9] mm), and Z coordinates (bias -0.8 [95% LoA -15.6 to 14.2] mm), as defined by the CT/MRI imaging, and 3D photography. The average Hausdorff distance between the two torso geometry reconstructions was 11.17±3.05mm. Thus, accurate torso geometry reconstruction using 3D photography is feasible. Body surface ECG electrodes coordinates as defined by the CT/MRI imaging, and 3D photography, are in good agreement. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga2O3/EGaIn top electrodes.

    PubMed

    Wimbush, Kim S; Fratila, Raluca M; Wang, Dandan; Qi, Dongchen; Liang, Cao; Yuan, Li; Yakovlev, Nikolai; Loh, Kian Ping; Reinhoudt, David N; Velders, Aldrik H; Nijhuis, Christian A

    2014-10-07

    This study describes that the current rectification ratio, R ≡ |J|(-2.0 V)/|J|(+2.0 V) for supramolecular tunneling junctions with a top-electrode of eutectic gallium indium (EGaIn) that contains a conductive thin (0.7 nm) supporting outer oxide layer (Ga2O3), increases by up to four orders of magnitude under an applied bias of >+1.0 V up to +2.5 V; these junctions did not change their electrical characteristics when biased in the voltage range of ±1.0 V. The increase in R is caused by the presence of water and ions in the supramolecular assemblies which react with the Ga2O3/EGaIn layer and increase the thickness of the Ga2O3 layer. This increase in the oxide thickness from 0.7 nm to ∼2.0 nm changed the nature of the monolayer-top-electrode contact from an ohmic to a non-ohmic contact. These results unambiguously expose the experimental conditions that allow for a safe bias window of ±1.0 V (the range of biases studies of charge transport using this technique are normally conducted) to investigate molecular effects in molecular electronic junctions with Ga2O3/EGaIn top-electrodes where electrochemical reactions are not significant. Our findings also show that the interpretation of data in studies involving applied biases of >1.0 V may be complicated by electrochemical side reactions which can be recognized by changes of the electrical characteristics as a function voltage cycling or in current retention experiments.

  2. Comparative study of ITO and TiN fabricated by low-temperature RF biased sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Daniel K., E-mail: daniel.simon@namlab.com; Schenk, Tony; Dirnstorfer, Ingo

    2016-03-15

    Radio frequency (RF) biasing induced by a second plasma source at the substrate is applied to low-temperature sputtering processes for indium tin oxide (ITO) and titanium nitride (TiN) thin films. Investigations on crystal structure and surface morphology show that RF-biased substrate plasma processes result in a changed growth regime with different grain sizes and orientations than those produced by processes without a substrate bias. The influence of the RF bias is shown comparatively for reactive RF-sputtered ITO and reactive direct-current-sputtered TiN. The ITO layers exhibit an improved electrical resistivity of 0.5 mΩ cm and an optical absorption coefficient of 0.5 × 10{sup 4 }cm{supmore » −1} without substrate heating. Room-temperature sputtered TiN layers are deposited that possess a resistivity (0.1 mΩ cm) of 3 orders of magnitude lower than, and a density (5.4 g/cm{sup 3}) up to 45% greater than, those obtained from layers grown using the standard process without a substrate plasma.« less

  3. Low-bias negative differential conductance controlled by electrode separation

    NASA Astrophysics Data System (ADS)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  4. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    PubMed

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  5. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  6. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    Treesearch

    Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu

    2016-01-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....

  7. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  8. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  9. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  10. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    PubMed Central

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  11. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions.

    PubMed

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  12. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  13. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    PubMed

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  14. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes

    PubMed Central

    Halpern, Jeffrey M.; Martin, Heidi B.

    2014-01-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes. PMID:25404788

  15. Paraelectric gas flow accelerator

    NASA Technical Reports Server (NTRS)

    Sherman, Daniel M. (Inventor); Wilkinson, Stephen P. (Inventor); Roth, J. Reece (Inventor)

    2001-01-01

    A substrate is configured with first and second sets of electrodes, where the second set of electrodes is positioned asymmetrically between the first set of electrodes. When a RF voltage is applied to the electrodes sufficient to generate a discharge plasma (e.g., a one-atmosphere uniform glow discharge plasma) in the gas adjacent to the substrate, the asymmetry in the electrode configuration results in force being applied to the active species in the plasma and in turn to the neutral background gas. Depending on the relative orientation of the electrodes to the gas, the present invention can be used to accelerate or decelerate the gas. The present invention has many potential applications, including increasing or decreasing aerodynamic drag or turbulence, and controlling the flow of active and/or neutral species for such uses as flow separation, altering heat flow, plasma cleaning, sterilization, deposition, etching, or alteration in wettability, printability, and/or adhesion.

  16. Manipulation and Investigation of Uniformly-Spaced Nanowire Array on a Substrate via Dielectrophoresis and Electrostatic Interaction.

    PubMed

    Choi, U Hyeok; Park, Ji Hun; Kim, Jaekyun

    2018-06-21

    Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

  17. Graphene films printable on flexible substrates for sensor applications

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Faris, Tsegie; Stoeva, Zlatka; Harris, Paul G.; Chen, J.; Sharma, Ashwani K.; Ray, Asim K.

    2017-03-01

    Fifteen-layered graphene films have been successfully deposited onto flexible substrates using a commercial ink consisting of graphene particles dispersed in an acrylic polymer binder. A value of 74.9× {10}5 {{{cm}}}-2 was obtained for the density of defects, primarily located at the flake edges, from the ratio of the D and G Raman peaks located at 1345 {{{cm}}}-1 and 1575 {{{cm}}}-1 respectively. 0.5 {μ }{{m}} thick drop-cast films on interdigitated silver electrodes exhibited Ohmic conduction with a small activation energy of 12 meV over the temperature range from 260 to 330 {{K}}. The photo-thermoelectric effect is believed to be responsible for photoconduction through graphene films under illumination intensity of 10 mW m-2 at 270 {{nm}}, corresponding to the UV absorption peak. The photo-transient decay at the bias of 1 {{V}} involves two relaxation processes when the illumination is switched off and values of 8.9× {10}3 and 4.3× {10}4 {{s}} are found for the relaxation time constant using the Kohlrauch stretched exponential function analysis.

  18. The effect of micro-ECoG substrate footprint on the meningeal tissue response

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia A.; Nonte, Michael W.; Vokoun, Corinne; Richner, Thomas J.; Brodnick, Sarah K.; Atry, Farid; Frye, Seth; Bostrom, Paige; Pashaie, Ramin; Thongpang, Sanitta; Eliceiri, Kevin W.; Williams, Justin C.

    2014-08-01

    Objective. There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. Approach. The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. Main results. It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. Significance. These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.

  19. Micro environmental sensing device

    DOEpatents

    Polosky, Marc A.; Lukens, Laurance L.

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  20. Sandwich-type electrode

    DOEpatents

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  1. Organic thin film transistor with a simplified planar structure

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Jungsheng; Zhong, Jian; Jiang, Yadong

    2009-05-01

    Organic thin film transistor (OTFT) with a simplified planar structure is described. The gate electrode and the source/drain electrodes of OTFT are processed in one planar structure. And these three electrodes are deposited on the glass substrate by DC sputtering technology using Cr/Ni target. Then the electrode layouts of different width length ratio are made by photolithography technology at the same time. Only one step of deposition and one step of photolithography is needed while conventional process takes at least two steps of deposition and two steps of photolithography. Metal is first prepared on the other side of glass substrate and electrode is formed by photolithography. Then source/drain electrode is prepared by deposition and photolithography on the side with the insulation layer. Compared to conventional process of OTFTs, the process in this work is simplified. After three electrodes prepared, the insulation layer is made by spin coating method. The organic material of polyimide is used as the insulation layer. A small molecular material of pentacene is evaporated on the insulation layer using vacuum deposition as the active layer. The process of OTFTs needs only three steps totally. A semi-auto probe stage is used to connect the three electrodes and the probe of the test instrument. A charge carrier mobility of 0.3 cm2 /V s, is obtained from OTFTs on glass substrates with and on/off current ratio of 105. The OTFTs with the planar structure using simplified process can simplify the device process and reduce the fabrication cost.

  2. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  3. Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures.

    PubMed

    Villano, Marianna; Paiano, Paola; Palma, Enza; Miccheli, Alfredo; Majone, Mauro

    2017-08-10

    Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol -1 glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  5. Method for the electro-addressable functionalization of electrode arrays

    DOEpatents

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  6. Tungsten as a Chemically-Stable Electrode Material on Ga-Containing Piezoelectric Substrates Langasite and Catangasite for High-Temperature SAW Devices

    PubMed Central

    Rane, Gayatri K.; Seifert, Marietta; Menzel, Siegfried; Gemming, Thomas; Eckert, Jürgen

    2016-01-01

    Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated. PMID:28787898

  7. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  8. In situ SERS spectroelectrochemical analysis of antioxidants deposited on copper substrates: What is the effect of applied potential on sorption behavior?

    NASA Astrophysics Data System (ADS)

    Dendisova-Vyskovska, Marcela; Broncova, Gabriela; Clupek, Martin; Prokopec, Vadym; Matejka, Pavel

    2012-12-01

    The detection of p-coumaric acid and ferulic acid using a combined in situ electrochemical and surface-enhanced Raman scattering spectroscopic technique in specially made electrode cell is described. New in situ spectroelectrochemical cell was designed as the three-electrode arrangement connected via positioning device to fiber-optic probe of Raman spectrometer Dimension P2 (excitation wavelength 785 nm). In situ SERS spectra of p-coumaric acid and ferulic acid were recorded at varying applied negative potentials to copper substrates. The spectral intensities and shapes of bands as well as spatial orientation of molecules on the surface depend significantly on varying values of the applied electrode potential. The change of electrode potential influences analyte adsorption/desorption behavior on the surface of copper substrates, affecting the reversibility of the whole process and overall spectral enhancement level. Principal component analysis is used to distinguish several stages of spectral variations on potential changes.

  9. Conformally encapsulated multi-electrode arrays with seamless insulation

    DOEpatents

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  10. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, John R.

    1996-01-01

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking.

  11. Method for sputtering with low frequency alternating current

    DOEpatents

    Timberlake, J.R.

    1996-04-30

    Low frequency alternating current sputtering is provided by connecting a low frequency alternating current source to a high voltage transformer having outer taps and a center tap for stepping up the voltage of the alternating current. The center tap of the transformer is connected to a vacuum vessel containing argon or helium gas. Target electrodes, in close proximity to each other, and containing material with which the substrates will be coated, are connected to the outer taps of the transformer. With an applied potential, the gas will ionize and sputtering from the target electrodes onto the substrate will then result. The target electrodes can be copper or boron, and the substrate can be stainless steel, aluminum, or titanium. Copper coatings produced are used in place of nickel and/or copper striking. 6 figs.

  12. Electrosynthesis of nanofibers and nano-composite films

    DOEpatents

    Lin, Yuehe; Liang, Liang; Liu, Jun

    2006-10-17

    A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.

  13. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  14. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  15. Electrochemically Driven Deactivation and Recovery in PrBaCo2 O5+δ Oxygen Electrodes for Reversible Solid Oxide Fuel Cells.

    PubMed

    Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe

    2016-09-08

    The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  17. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  18. Current-biased potentiometric NOx sensor for vehicle emissions

    DOEpatents

    Martin, Louis Peter [Castro Valley, CA; Pham, Ai Quoc [San Jose, CA

    2006-12-26

    A nitrogen oxide sensor system for measuring the amount of nitrogen oxide in a gas. A first electrode is exposed to the gas. An electrolyte is positioned in contact with the first electrode. A second electrode is positioned in contact with the electrolyte. A means for applying a fixed current between the first electrode and the second electrode and monitoring the voltage required to maintain the fixed current provides a measurement of the amount of nitrogen oxide in the gas.

  19. RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Barve, S. A.; Thulasi Raman, K. H.; Chand, N.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Lodha, G. S.; Rao, G. M.; Patil, D. S.

    2013-11-01

    Yttrium oxide (Y2O3) thin films have been deposited by radio frequency plasma assisted metal organic chemical vapor deposition (MOCVD) process using (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor in a plasma of argon and oxygen gases at a substrate temperature of 350 °C. The films have been deposited under influence of varying RF self-bias (-50 V to -175 V) on silicon, quartz, stainless steel and tantalum substrates. The deposited coatings are characterized by glancing angle X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and scanning electron microscopy (SEM). GIXRD and FTIR results indicate deposition of Y2O3 (BCC structure) in all cases. However, XPS results indicate nonstoichiometric cubic phase deposition on the surface of deposited films. The degree of nonstoichiometry varies with bias during deposition. Ellipsometry results indicate that the refractive index for the deposited films is varying from 1.70 to 1.83 that is typical for Y2O3. All films are transparent in the investigated wavelength range 300-1200 nm. SEM results indicate that the microstructure of the films is changing with applied bias. Results indicate that it is possible to deposit single phase cubic Y2O3 thin films at low substrate temperature by RF plasma MOCVD process. RF self-bias that decides about the energy of impinging ions on the substrates plays an important role in controlling the texture of deposited Y2O3 films on the substrates. Results indicate that to control the structure of films and its texture, it is important to control the bias on the substrate during deposition. The films deposited at high bias level show degradation in the crystallinity and reduction of thickness.

  20. Photoelectrochemical molecular comb

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Brown, Gilbert M.

    2006-08-15

    A method and apparatus for separating molecules. The apparatus includes a substrate having a surface. A film in contact with the surface defines a substrate/film interface. An electrode electrically connected to the film applies a voltage potential between the electrode and the substrate to form a depletion region in the substrate at the substrate/film interface. A photon energy source having an energy level greater than the potential is directed at the depletion region to form electron-hole pairs in the depletion region. At least one of the electron-hole pairs is separated by the potential into an independent electron and an independent hole having opposite charges and move in opposing directions. One of the electron and hole reach the substrate/film interface to create a photopotential in the film causing charged molecules in the film to move in response to the localized photovoltage.

  1. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  2. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  3. A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes.

    PubMed

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-03-17

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  4. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    PubMed Central

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing

    2014-01-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742

  5. Amorphous silicon balanced photodiode for microfluidic applications

    NASA Astrophysics Data System (ADS)

    Caputo, Domenico; de Cesare, Giampiero; Nascetti, Augusto; Scipinotti, Riccardo

    2013-05-01

    In this paper, we present the first integration of an amorphous silicon balanced photosensor with a microfluidic network to perform on-chip detection for biomedical applications, where rejection of large background light intensity is needed. This solution allows to achieve high resolution readout without the need of high dynamic range electronics. The balanced photodiode is constituted by two series-connected a-Si:H/a-SiC:H n-i-p stacked junctions, deposited on a glass substrate. The structure is a three terminal device where two electrodes bias the two diodes in reverse conditions while the third electrode (i.e. the connection point of the two diodes) provides the output signal given by the differential current. The microfluidic network is composed of two channels made in PolyDimetilSiloxane (PDMS) positioned over the glass substrate on the photodiode-side aligning each channel with a diode. This configuration guarantees an optimal optical coupling between luminescence events occurring in the channels and the photosensors. The experiments have been carried out measuring the differential current in identical and different conditions for the two channels. We have found that: the measurement dynamic range can be increased by at least an order of magnitude with respect to conventional photodiodes; the balanced photodiode is able to detect the presence or absence of water in the channel; the presence of fluorescent molecules in the channel can be successful detected by our device without any need of optical filter for the excitation light. These preliminary results demonstrate the successful integration of a microfluidic network with a-Si:H photosensor for on-chip detection in biomedical applications.

  6. Electrochemical Reduction Properties of Extended Space Charge InGaP and GaP Epitaxial Layers

    DOE PAGES

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-06-17

    Two lattice-matched epitaxial III-V phosphide films of thicknesses between 400 and 500 nm are grown by metal-organic chemical vapor deposition: InGaP on GaAs and GaP on Si. These structures are designed as photocathodes for solar-driven chemical reduction processes such as the hydrogen evolution reaction (HER) and CO 2 reduction into higher-order hydrocarbons. By using p + substrates and undoped epitaxial layers, an extended space-charge active region is achieved in the electrode with a design analogous to a p-i-n solar cell. When in contact with the methyl viologen MV + / + + redox couple, the InGaP/GaAs and GaP/Si cathodes generatemore » a photovoltage of 388 mV and 274 mV, respectively, under 1 sun illumination. Incident photon-to-current efficiency (IPCE) measurements confirm that the undoped active layers are exclusively performing light absorption and minority carrier diffusion-based charge transfer of high-energy photons. This shows that performance can be significantly boosted with lower-doped substrates. The InGaP/GaAs and GaP/Si electrodes are shown to drive the HER at saturation photocurrent densities of 9.05 mA/cm 2 and 2.34 mA/cm 2, respectively, under 1 sun illumination without a co-catalyst and under a large reduction bias. As a result, thicker films did not show a corresponding increased performance, and can be explained through understanding of crystalline defects and the electrostatics of the junctions.« less

  7. Electrostatically screened, voltage-controlled electrostatic chuck

    DOEpatents

    Klebanoff, Leonard Elliott

    2001-01-01

    Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

  8. Gas phase electrodeposition: a programmable multimaterial deposition method for combinatorial nanostructured device discovery.

    PubMed

    Lin, En-Chiang; Cole, Jesse J; Jacobs, Heiko O

    2010-11-10

    This article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10 × nanolenses to further control the flux to form <100 nm resolution deposits. The unique feature of the process is that material type, amount, and sequence can be altered from one domain to the next leading to different types of nanostructures including multimaterial bridges, interconnects, or nanowire arrays with 20 nm positional accuracy. These features enable combinatorial nanostructured materials and device discovery. As a first demonstration, we produce and identify in a combinatorial way 3D nanostructured electrode designs that improve light scattering, absorption, and minority carrier extraction of bulk heterojunction photovoltaic cells. Photovoltaic cells from domains with long and dense nanowire arrays improve the relative power conversion efficiency by 47% when compared to flat domains on the same substrate.

  9. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  10. A Diamond Electron Tunneling Micro-Electromechanical Sensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    2000-01-01

    A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.

  11. Ag electrode modified with polyhexamethylene biguanide stabilized silver nanoparticles: a new type of SERS substrates for detection of enzymatically generated thiocholine

    NASA Astrophysics Data System (ADS)

    Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.

    2015-11-01

    The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.

  12. SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  13. Enhanced coherent terahertz beam with a photoconductive antenna containing a chaotic shape electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Dong Ho; Kim, Christopher; Graber, Benjamin

    2014-03-01

    Photoconductive antenna is one of the most popular methods to produce a broadband terahertz beam. Our recent experiments indicate that a photoconductive antenna containing a pair of parallel micro-strip-line electrodes produces both incoherent and coherent terahertz beam. When we drive the antenna with a low bias voltage and a weak femto-second laser power, it produces mostly coherent terahertz beam. However, as the bias voltage and/or the femto-second laser power increase, the incoherent terahertz beam strength increases exponentially with the bias voltage.[1] When the bias voltage and/or the femto-second laser power exceeds critical values, heat associated with the incoherent beam eventually leads to a catastrophic antenna failure, resulting in a permanent damage on the antenna.[2] In order to improve our photoconductive antenna we have implemented a chaotic geometry in the photoconductive antenna's electrodes. Our experimental results show that the new antenna produces substantially more coherent terahertz beam and much less incoherent terahertz beam. We will present the details of our experimental results and discuss the merits of new antenna design. We will also examine some theory to understand our experimental results. Supported by DTRA.

  14. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict themore » variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.« less

  15. In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface

    DOE PAGES

    Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...

    2017-05-12

    Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less

  16. Gate-bias and temperature dependence of charge transport in dinaphtho[2,3-b:2‧,3‧-d]thiophene thin-film transistors with MoO3/Au electrodes

    NASA Astrophysics Data System (ADS)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2018-04-01

    We investigated the gate-bias and temperature dependence of the voltage-current (V-I) characteristics of dinaphtho[2,3-b:2‧,3‧-d]thiophene with MoO3/Au electrodes. The insertion of the MoO3 layer significantly improved the device performance. The temperature dependent V-I characteristics were evaluated and could be well fitted by the Schottky thermionic emission model with barrier height under forward- and reverse-biased regimes in the ranges of 33-57 and 49-73 meV, respectively. However, at a gate voltage of 0 V, at which a small activation energy was obtained, we needed to consider another conduction mechanism at the grain boundary. From the obtained results, we concluded that two possible conduction mechanisms governed the charge injection at the metal electrode-organic semiconductor interface: the Schottky thermionic emission model and the conduction model in the organic thin-film layer and grain boundary.

  17. Electronic transport through Al/InN nanowire/Al junctions

    DOE PAGES

    Lu, Tzu -Ming; Wang, George T.; Pan, Wei; ...

    2016-02-10

    We report non-linear electronic transport measurement of Al/Si-doped n-type InN nanowire/Al junctions performed at T = 0.3 K, below the superconducting transition temperature of the Al electrodes. The proximity effect is observed in these devices through a strong dip in resistance at zero bias. In addition to the resistance dip at zero bias, several resistance peaks can be identified at bias voltages above the superconducting gap of the electrodes, while no resistance dip is observed at the superconducting gap. The resistance peaks disappear as the Al electrodes turn normal beyond the critical magnetic field except one which remains visible atmore » fields several times higher than critical magnetic field. An unexpected non-monotonic magnetic field dependence of the peak position is observed. As a result, we discuss the physical origin of these observations and propose that the resistance peaks could be the McMillan-Rowell oscillations arising from different closed paths localized near different regions of the junctions.« less

  18. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  19. Nanowire-based thermoelectric ratchet in the hopping regime

    NASA Astrophysics Data System (ADS)

    Bosisio, Riccardo; Fleury, Geneviève; Pichard, Jean-Louis; Gorini, Cosimo

    2016-04-01

    We study a thermoelectric ratchet consisting of an array of disordered nanowires arranged in parallel on top of an insulating substrate and contacted asymmetrically to two electrodes. Transport is investigated in the Mott hopping regime, when localized electrons can propagate through the nanowires via thermally assisted hops. When the electronic temperature in the nanowires is different from the phononic one in the substrate, we show that a finite electrical current is generated even in the absence of driving forces between the electrodes. We discuss the device performance both as an energy harvester, when an excess heat from the substrate is converted into useful power, and as a refrigerator, when an external power is supplied to cool down the substrate.

  20. Pt-coated cylindrical micropatterned honeycomb Petri dishes as an efficient TCO-free counter electrode in liquid junction photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Dao, Van-Duong; Bui, Van-Tien; Choi, Ho-Suk

    2018-02-01

    The Pt layer deposited on a cylindrical micro cavity patterned Petri dish, which is produced using a one-step solvent-immersion phase separation, is fabricated for the first time as an FTO-free counter electrode (CE) for dye-sensitized solar cells (DSCs). Due to the high specific active surface area of the Pt-deposited honeycomb substrate CE, the efficiency of the DSC using the developed CE substrate is enhanced by 14.5% compared with the device using a Pt-sputtered flat substrate. This design strategy has potential in fabricating highly efficient and low-cost CE materials with FTO-free substrates for DSCs.

  1. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  2. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.

    PubMed

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-04-13

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  3. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S [Knoxville, TN; Meunier, Vincent [Knoxville, TN

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  4. Conductive layer for biaxially oriented semiconductor film growth

    DOEpatents

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  5. OLED panel with fuses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levermore, Levermore; Pang, Huiqing; Rajan, Kamala

    2014-09-16

    Embodiments may provide a first device that may comprise a substrate, a plurality of conductive bus lines disposed over the substrate, and a plurality of OLED circuit elements disposed on the substrate, where each of the OLED circuit elements comprises one and only one pixel electrically connected in series with a fuse. Each pixel may further comprise a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The fuse of each of the plurality of OLED circuit elements may electrically connect each of the OLED circuit elements to at leastmore » one of the plurality of bus lines. Each of the plurality of bus lines may be electrically connected to a plurality of OLED circuit elements that are commonly addressable and at least two of the bus lines may be separately addressable.« less

  6. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.

    PubMed

    Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y

    2016-06-16

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.

  7. Ultraviolet photodetector with high internal gain enhanced by TiO₂/SrTiO₃ heterojunction.

    PubMed

    Zhang, Min; Zhang, Haifeng; Lv, Kaibo; Chen, Weiyou; Zhou, Jingran; Shen, Liang; Ruan, Shengping

    2012-03-12

    In this letter, TiO₂ nanocrystalline film was prepared on SrTiO₃ (001) substrate to form an n-n heterojunction active layer. Interdigitated Au electrodes were deposited on the top of TiO₂ film to fabricate modified HMSM (heterojunction metal-semiconductor-metal) ultraviolet photodetector. At 10 V bias, the dark current of the detector was only 0.2 nA and the responsivity was 46.1 A/W at 260 nm. The rise and fall times of the device were 3.5 ms and 1.4 s, respectively. The TiO₂/SrTiO₃ heterojunction contributed a lot to the high responsivity and reduced the fall time, which improved the device performance effectively. These results demonstrate the excellent application of TiO₂/SrTiO₃ heterojunction in fabricating high performance UV photodetectors.

  8. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.

    PubMed

    Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-06-15

    In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Method for linearizing deflection of a MEMS device using binary electrodes and voltage modulation

    DOEpatents

    Horenstein, Mark N [West Roxbury, MA

    2008-06-10

    A micromechanical device comprising one or more electronically movable structure sets comprising for each set a first electrode supported on a substrate and a second electrode supported substantially parallel from said first electrode. Said second electrode is movable with respect to said first electrode whereby an electric potential applied between said first and second electrodes causing said second electrode to move relative to said first electrode a distance X, (X), where X is a nonlinear function of said potential, (V). Means are provided for linearizing the relationship between V and X.

  10. Substrate bias effects on composition and coercivity of CoCrTa/Cr thin films on canasite and glass

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lambeth, D. N.; Sui, X.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    CoCrTa/Cr thin films were prepared by rf diode sputtering onto canasite and glass substrates at various bias voltages from two targets of different compositions (Co82.8Cr14.6Ta2.6 and Co86Cr12Ta2). While Auger depth profile analysis indicates that there is some broadening at the CoCrTa-Cr interface, x-ray fluorescence spectroscopy reveals that changes in alloy composition due to the resputtering processes are even more prominent. For both targets, as the substrate bias increases the Co content in the films declines, and the magnetization decreases. The maximum film coercivity appears to correlate to the final film composition. By investigating the results from both targets, it is concluded that the coercivity reaches a maximum when the film composition is in the neighborhood of Co84Cr13Ta3. Thus, to optimize the coercivity different bias voltages are required for each target. Excessive substrate bias, however, leads to films with low magnetization and coercivity.

  11. Setup for potential bias experiments on the Saha Institute of Nuclear Physics tokamak

    NASA Astrophysics Data System (ADS)

    Ghosh, J.; Pal, R.; Chattopadhyay, P. K.

    1999-12-01

    An experimental setup for studying the influence of the radial electric field on very low qa plasma on the Saha Institute of Nuclear Physics tokamak is presented. A high current, high voltage pulsed power supply, using a semiconductor controlled rectifier (SCR) as a dc switch is developed and used to bias a tungsten electrode inserted inside the plasma. The electrode's exposed length and its position inside the plasma are controlled by a double bellows assembly to optimize the electrode-exposed length. We show that using the force commutation method to turn the SCR off to get the power pulse desired has good potential for carrying out similar kinds of studies, especially in a low budget small tokamak.

  12. Self-Assembled Carbon-Polyoxometalate Composites for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Genovese, Matthew

    The development of high performance yet cost effective energy storage devices is critical for enabling the growth of important emerging sectors from the internet of things to grid integration of renewable energy. Material costs are by far the largest contributor to the overall cost of energy storage devices and thus research into cost effective energy storage materials will play an important role in developing technology to meet real world storage demands. In this thesis, low cost high performance composite electrode materials for supercapacitors (SCs) have been developed through the surface modification of electrochemically double layer capacitive (EDLC) carbon substrates with pseudocapacitive Polyoxometalates (POMs). Significant fundamental contributions have been made to the understanding of all components of the composite electrode including the POM active layer, cation linker, and carbon substrate. The interaction of different POM chemistries in solution has been studied to elucidate the novel ways in which these molecules combine and the mechanism underlying this combination. A more thorough understanding regarding the cation linker's role in electrode fabrication has been developed through examining the linker properties which most strongly affect electrode performance. The development of porosity in biomass derived carbon materials has also been examined leading to important insights regarding the effect of substrate porosity on POM modification and electrochemical properties. These fundamental contributions enabled the design and performance optimization of POM-carbon composite SC electrodes. Understanding how POMs combine in solution, allowed for the development of mixed POM molecular coatings with tunable electrochemical properties. These molecular coatings were used to modify low cost biomass derived carbon substrates that had been structurally optimized to accommodate POM molecules. The resulting electrode composites utilizing low cost materials fabricated through simple scalable techniques demonstrated (i) high capacitance (361 F g-1), (ii) close to ideal pseudocapacitive behavior, (iii) stable cycling, and (iv) good rate performance.

  13. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li

    2010-05-01

    CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  14. Inclusion of Body Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 degrees Celsius durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  15. Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2017-01-01

    The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.

  16. Unraveling the solvent induced welding of silver nanowires for high performance flexible transparent electrodes.

    PubMed

    Zhang, Kui; Li, Jia; Fang, Yunsheng; Luo, Beibei; Zhang, Yanli; Li, Yanqiu; Zhou, Jun; Hu, Bin

    2018-04-25

    A solution processed metal nanowire network is a promising flexible transparent electrode to replace brittle metal oxides for printable optoelectronics applications, but suffers from the issue of pseudo contact between nanowires. Herein, using volatile solvent mists as a powerful "zipper", we demonstrate a simple and rapid method to effectively weld silver nanowires, which dramatically improves the conductivity and robustness of the silver nanowire network based flexible transparent electrodes. We reveal that for a stacked network structure, the unique wedge-shaped nanogaps between the long nanowires and substrate provide a strong capillary force during solvent evaporation, which is much larger than that between zero-dimensional nanoparticles and gives a decisive contribution for nanowire junction welding, and this nanowire-substrate interplay force is positively related to the wettability of the substrate. At the same time, the dissolution-reprecipitation of the capping agent on the silver nanowire surface as the natural adhesive can fix the network on the substrate tightly, which enhances the robustness of the network. Our approach solves two key issues in solution-processed transparent electrodes in one simple step, and is compatible with various mild solution-processed optoelectronic devices, especially those containing heat-sensitive or chemical-sensitive materials. Moreover, a new type of invisible infrared encryption display is demonstrated based on this approach.

  17. Relation between the conditions of preparation and the polarization characteristics of spongy Raney nickel electrodes used as anodes for fuel cells

    NASA Astrophysics Data System (ADS)

    Tomida, Tahei; Okamura, Kazuhiro; Ashida, Toshifumi; Nakabayashi, Ichiro

    1992-04-01

    Spongy Raney nickel electrodes were prepared from substrates of spongy nickel plate coated with aluminum. Influences of the temperature for alloying and the weight ratio of aluminum to nickel (Al/Ni) in the substrate on polarization characteristics were studied in connection with the alloy compositions formed, and the surface microstructure of the catalysts. For this, the ratio Al/Ni in the substrate was varied ranging from 0.1 to 2.5. Electrode performance was improved, with increases in both the temperature for alloying and the Al/Ni ratio of the substrates. However, the higher the temperature used for alloying, the lower were the effects of the Al/Ni ratio. The activated Raney nickel was prepared from an alloy whose components were NiAl3 and/or Ni2Al3. It was also shown that a good polarization performance resulted from the increase in activated nickel grains, which were observed by scanning electron microscopy, and an increase in the Brunauer, Emmett, and Teller (BET) surface area of the electrode-catalyst. The broad peaks observed in X-ray diffraction of Raney nickel catalysts implied crystal distortions, which should be closely related to an increase in the BET surface area.

  18. Surface-Embedded Stretchable Electrodes by Direct Printing and their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures.

    PubMed

    Song, Jun Hyuk; Kim, Young-Tae; Cho, Sunghwan; Song, Woo-Jin; Moon, Sungmin; Park, Chan-Gyung; Park, Soojin; Myoung, Jae Min; Jeong, Unyong

    2017-11-01

    Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Heteroepitaxial growth of Pt and Au thin films on MgO single crystals by bias-assisted sputtering

    DOE PAGES

    Tolstova, Yulia; Omelchenko, Stefan T.; Shing, Amanda M.; ...

    2016-03-17

    The crystallographic orientation of a metal affects its surface energy and structure, and has profound implications for surface chemical reactions and interface engineering, which are important in areas ranging from optoelectronic device fabrication to catalysis. However, it can be very difficult and expensive to manufacture, orient, and cut single crystal metals along different crystallographic orientations, especially in the case of precious metals. One approach is to grow thin metal films epitaxially on dielectric substrates. In this work, we report on growth of Pt and Au films on MgO single crystal substrates of (100) and (110) surface orientation for use asmore » epitaxial templates for thin film photovoltaic devices. We develop bias-assisted sputtering for deposition of oriented Pt and Au films with sub-nanometer roughness. We show that biasing the substrate decreases the substrate temperature necessary to achieve epitaxial orientation, with temperature reduction from 600 to 350 °C for Au, and from 750 to 550 °C for Pt, without use of transition metal seed layers. Additionally, this temperature can be further reduced by reducing the growth rate. Biased deposition with varying substrate bias power and working pressure also enables control of the film morphology and surface roughness.« less

  20. Ultracapacitor current collector

    DOEpatents

    Jerabek, Elihu Calfin; Mikkor, Mati

    2001-10-16

    An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.

  1. High voltage photo switch package module

    DOEpatents

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

    2014-02-18

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

  2. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  3. Structures and fabrication techniques for solid state electrochemical devices

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  4. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    NASA Astrophysics Data System (ADS)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  5. Method for producing a tube

    DOEpatents

    Peterson, Kenneth A [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Pfeifer, Kent B [Los Lunas, NM; Turner, Timothy S [Rio Rancho, NM

    2007-01-02

    A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.

  6. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates.

    PubMed

    Dargahi, Mahdi; Hosseinidoust, Zeinab; Tufenkji, Nathalie; Omanovic, Sasha

    2014-05-01

    Electrochemical removal of biofilms deserves attention because of its ease of use and environmentally friendly nature. We investigated the influence of electrode potential and treatment time on the removal of a 10-day old Pseudomonas aeruginosa biofilm formed on stainless steel 316 L substrates. At electrode potentials more positive than -1.5 V vs. Ag/AgCl, lower removal rates were observed and only partial removal of the biofilm was achieved during a 1-min time interval. Electrostatic repulsion between the film and electrode surface is believed to drive biofilm detachment under these conditions. However, when the biofilm-coated substrates were treated at potentials negative of -1.5 V vs. Ag/AgCl, complete removal of a biofilm was achieved within seconds. Under these conditions, vigorous evolution of hydrogen gas is believed to be responsible for the film removal, mechanically detaching the bacteria and extracellular polymeric matrix from the substrate. Stainless steel substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal. High removal efficiencies were maintained throughout this process suggesting the potential of the proposed technology for application on conductive surfaces in various industrial settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Flexible top-emitting OLEDs for lighting: bending limits

    NASA Astrophysics Data System (ADS)

    Schwamb, Philipp; Reusch, Thilo C.; Brabec, Christoph J.

    2013-09-01

    Flexible OLED light sources have great appeal due to new design options, being unbreakable and their low weight. Top-emitting OLED device architectures offer the broadest choice of substrate materials including metals which are robust, impermeable to humidity, and good thermal conductors making them promising candidates for flexible OLED device substrates. In this study, we investigate the bending limits of flexible top-emitting OLED lighting devices with transparent metal electrode and thin film encapsulation on a variety of both metal and plastic foils. The samples were subjected to concave and convex bending and inspected by different testing methods for the onset of breakdown for example visible defects and encapsulation failures. The critical failure modes were identified as rupture of the transparent thin metal top electrode and encapsulation for convex bending and buckling of the transparent metal top electrode for concave bending. We investigated influences from substrate material and thickness and top coating thickness. The substrate thickness is found to dominate bending limits as expected by neutral layer modeling. Coating shows strong improvements for all substrates. Bending radii <15mm are achieved for both convex and concave testing without damage to devices including their encapsulation.

  8. Measurements of stretch lengths of gold mono-atomic wires covered with 1,6-hexanedithiol in 0.1 M NaClO4 with an electrochemical scanning tunneling microscope.

    PubMed

    Sun, Jian; Akiba, Uichi; Fujihira, Masamichi

    2008-09-01

    Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.

  9. Extremely Robust and Patternable Electrodes for Copy-Paper-Based Electronics.

    PubMed

    Ahn, Jaeho; Seo, Ji-Won; Lee, Tae-Ik; Kwon, Donguk; Park, Inkyu; Kim, Taek-Soo; Lee, Jung-Yong

    2016-07-27

    We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.

  10. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  11. An electrochemically-driven dual-mode display device with both reflective and emissive modes using poly(p-phenylenevinylene) derivatives

    NASA Astrophysics Data System (ADS)

    Tsuneyasu, Shota; Jin, Lu; Nakamura, Kazuki; Kobayashi, Norihisa

    2016-04-01

    We demonstrate a novel electrochemical dual-mode displaying (DMD) device, which enables control of both coloration and light emission using an electrochemical reaction. The coloration control of the DMD device was based on an electrochromic (EC) reaction, whereas the light emission of the device was caused by an electrochemiluminescence (ECL) mechanism. This novel DMD device consisted of a pair of facing conductive polymer-modified electrodes: comb-shaped interdigitated Au electrodes modified with poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) layers and poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrene sulfonate) (PEDOT/PSS) film-modified indium tin oxide (ITO) electrodes. When a bias voltage was applied between the PEDOT/PSS film-modified ITO electrode and the comb-shaped electrodes, a color change of the device was observed by the EC reaction of the MEH-PPV and PEDOT/PSS. On the other hand, an emission was obtained when the bias voltage was applied between two comb-shaped interdigitated electrodes. The orange emission was ascribed to the ECL reaction of the MEH-PPV layer, which resulted from the formation of a p-i-n junction in this layer.

  12. On the properties of organic heterostructures prepared with nano-patterned metallic electrode

    NASA Astrophysics Data System (ADS)

    Breazu, C.; Socol, M.; Preda, N.; Matei, E.; Rasoga, O.; Girtan, M.; Mallet, R.; Stanculescu, F.; Stanculescu, A.

    2018-06-01

    This paper presents a comparative study between the properties of the heterostructures realized with single/multi layer organic (zinc phthalocyanine or/and fullerene) prepared on Si substrate between flat or patterned aluminum (Al) layer metallic electrode and multi layer ZnO/Au/ZnO transparent conductor electrode (TCE). The UV-Nanoimprint Lithography was used for the realization of a 2D array of nanostructures (holes/pillars) characterized by a periodicity of 1.1 μm and cylindrical shape: diameter = 400 nm and depth/height = 300 nm. The effect of the electrode patterning on the properties of the organic heterostructures was analyzed. For the samples with patterned Al electrode was remarked a slight red shift of the peaks in the reflection spectra determined by an increased interaction between the organic molecules in the delimited region of the patterned holes. The shape of the emission spectra at excitation with UV light showed a narrow intense peak around 500 nm associated with the intense resonance phenomena between the energy of the incident light and the surface plasmons in the patterned Al layer. The TCE followed the morphology of the organic film on which it was deposited. The significant differences between the morphology of the top layer in the heterostructures realized on flat and patterned Al are correlated with the total thickness of the successively deposited layers and with the particularities of the molecular arrangement, leading to the preservation or deleting of patterning. An injection contact behavior was evidence for most heterostructures built on flat and patterned Al. The slight increase in current at an applied bias <1 V in the heterostructure Si/Al/ZnPc/TCE is attributed to the larger interfacial area between the patterned Al electrode and ZnPc layer compared to the interface area between flat Al and ZnPc. A buffer layer of 1,4,5,8-naphthalen-tetracarboxylic dianhydride (NTCDA), sandwiched between the flat metallic electrode and organic film in the heterostructure Si/Al/C60/ZnPc/TCE has determined an increase in the current at low applied voltages.

  13. Gas cushion control of OVJP print head position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R

    An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate somore » as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.« less

  14. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 2D Metal-Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors.

    PubMed

    Liu, Ximeng; Guan, Cao; Hu, Yating; Zhang, Lei; Elshahawy, Abdelnaby M; Wang, John

    2017-10-27

    Direct assembling of active materials on carbon cloth (CC) is a promising way to achieve flexible electrodes for energy storage. However, the overall surface area and electrical conductivity of such electrodes are usually limited. Herein, 2D metal-organic framework derived nanocarbon nanowall (MOFC) arrays are successfully developed on carbon cloth by a facile solution + carbonization process. Upon growth of the MOFC arrays, the sites for growth of the active materials are greatly increased, and the equivalent series resistance is decreased, which contribute to the enhancement of the bare CC substrate. After decorating ultrathin flakes of MnO 2 and Bi 2 O 3 on the flexible CC/MOFC substrate, the hierarchical electrode materials show an abrupt improvement of areal capacitances by around 50% and 100%, respectively, compared to those of the active materials on pristine carbon cloth. A flexible supercapacitor can be further assembled using two hierarchical electrodes, which demonstrates an energy density of 124.8 µWh cm -2 at the power density of 2.55 mW cm -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, Raghu N.; Ginley, David S.

    1995-01-01

    A process for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications.

  17. Preparation of lead-zirconium-titanium film and powder by electrodeposition

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1995-10-31

    A process is disclosed for the preparation of lead-zirconium-titanium (PZT) film and powder compositions. The process comprises the steps of providing an electrodeposition bath, providing soluble salts of lead, zirconium and titanium metals to this bath, electrically energizing the bath to thereby direct ions of each respective metal to a substrate electrode and cause formation of metallic particles as a recoverable film of PZT powder on the electrode, and also recovering the resultant film as a powder. Recovery of the PZT powder can be accomplished by continually energizing the bath to thereby cause powder initially deposited on the substrate-electrode to drop therefrom into the bath from which it is subsequently removed. A second recovery alternative comprises energizing the bath for a period of time sufficient to cause PZT powder deposition on the substrate-electrode only, from which it is subsequently recovered. PZT film and powder so produced can be employed directly in electronic applications, or the film and powder can be subsequently oxidized as by an annealing process to thereby produce lead-zirconium-titanium oxide for use in electronic applications. 4 figs.

  18. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  19. Performance of Multi Walled Carbon Nanotubes Grown on Conductive Substrates as Supercapacitors Electrodes using Organic and Ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Winchester, Andrew; Ghosh, Sujoy; Turner, Ben; Zhang, X. F.; Talapatra, Saikat

    2012-02-01

    In this work we will present the use of Multi Walled Carbon Nanotubes (MWNT) directly grown on inconel substrates via chemical vapor deposition, as electrode materials for electrochemical double layer capacitors (EDLC). The performance of the MWNT EDLC electrodes were investigated using two electrolytes, an organic electrolyte, tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4 in PC), and a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements to obtain values for the capacitance and internal resistance of these devices will be presented and compared.

  20. Electrical response of culture media during bacterial growth on a paper-based device

    NASA Astrophysics Data System (ADS)

    Srimongkon, Tithimanan; Buerkle, Marius; Nakamura, Akira; Enomae, Toshiharu; Ushijima, Hirobumi; Fukuda, Nobuko

    2017-05-01

    In this work, we evaluated the feasibility of a paper-based bacterial detection system. The paper served as a substrate for the measurement electrodes and the culture medium. Using a printing technique, we patterned gold electrodes onto the paper substrate and applied Luria broth (LB) agar gel as a culture medium on top of the electrodes. As the first step towards the development of a bacterial detection system, we determined changes in the surface potential during bacterial growth and monitored these changes over 24 h. This allowed us to correlate changes in the surface potential with the different growth phases of the bacteria.

  1. Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement

    DOEpatents

    Rodgers, M. Steven; Miller, Samuel L.

    2003-01-01

    A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.

  2. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.

    PubMed

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-06-30

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future "internet of things" viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm(2), a current rectification ratio up to 4 × 10(3) between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  3. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    PubMed Central

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-01-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits. PMID:27357006

  4. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose

    NASA Astrophysics Data System (ADS)

    Sani, Negar; Wang, Xin; Granberg, Hjalmar; Andersson Ersman, Peter; Crispin, Xavier; Dyreklev, Peter; Engquist, Isak; Gustafsson, Göran; Berggren, Magnus

    2016-06-01

    Low cost and flexible devices such as wearable electronics, e-labels and distributed sensors will make the future “internet of things” viable. To power and communicate with such systems, high frequency rectifiers are crucial components. We present a simple method to manufacture flexible diodes, operating at GHz frequencies, based on self-adhesive composite films of silicon micro-particles (Si-μPs) and glycerol dispersed in nanofibrillated cellulose (NFC). NFC, Si-μPs and glycerol are mixed in a water suspension, forming a self-supporting nanocellulose-silicon composite film after drying. This film is cut and laminated between a flexible pre-patterned Al bottom electrode and a conductive Ni-coated carbon tape top contact. A Schottky junction is established between the Al electrode and the Si-μPs. The resulting flexible diodes show current levels on the order of mA for an area of 2 mm2, a current rectification ratio up to 4 × 103 between 1 and 2 V bias and a cut-off frequency of 1.8 GHz. Energy harvesting experiments have been demonstrated using resistors as the load at 900 MHz and 1.8 GHz. The diode stack can be delaminated away from the Al electrode and then later on be transferred and reconfigured to another substrate. This provides us with reconfigurable GHz-operating diode circuits.

  5. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOEpatents

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  6. Process for forming a metal compound coating on a substrate

    DOEpatents

    Sharp, D.J.; Vernon, M.E.; Wright, S.A.

    1988-06-29

    A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.

  7. Polymer and small molecule based hybrid light source

    DOEpatents

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  8. Method and apparatus for sputtering with a plasma lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre

    A plasma lens for enhancing the quality and rate of sputter deposition onto a substrate is described herein. The plasma lens serves to focus positively charged ions onto the substrate while deflecting negatively charged ions, while at the same time due to the line of sight positioning of the lens, allowing for free passage of neutrals from the target to the substrate. The lens itself is formed of a wound coil of multiple turns, inside of which are deposed spaced lens electrodes which are electrically paired to impress an E field overtop the B field generated by the coil, themore » potential applied to the electrodes increasing from end to end towards the center of the lens, where the applied voltage is set to a high potential at the center electrodes as to produce a potential minimum on the axis of the lens.« less

  9. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  10. The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Minglang; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin

    2017-08-01

    The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.

  11. Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells

    NASA Technical Reports Server (NTRS)

    Jalan, V.; Morriseau, B.; Swette, L.

    1982-01-01

    Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.

  12. Organic light emitting diode with light extracting electrode

    DOEpatents

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  13. Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    A method for fabricating an edge geometry superconducting tunnel junction device is discussed. The device is comprised of two niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier sandwiched between the two electrodes. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  14. Signal transfer within a cultured asymmetric cortical neuron circuit

    NASA Astrophysics Data System (ADS)

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Objective. Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. Approach. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. Main results. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. Significance. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  15. Signal transfer within a cultured asymmetric cortical neuron circuit.

    PubMed

    Isomura, Takuya; Shimba, Kenta; Takayama, Yuzo; Takeuchi, Akimasa; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-12-01

    Simplified neuronal circuits are required for investigating information representation in nervous systems and for validating theoretical neural network models. Here, we developed patterned neuronal circuits using micro fabricated devices, comprising a micro-well array bonded to a microelectrode-array substrate. The micro-well array consisted of micrometre-scale wells connected by tunnels, all contained within a silicone slab called a micro-chamber. The design of the micro-chamber confined somata to the wells and allowed axons to grow through the tunnels bidirectionally but with a designed, unidirectional bias. We guided axons into the point of the arrow structure where one of the two tunnel entrances is located, making that the preferred direction. When rat cortical neurons were cultured in the wells, their axons grew through the tunnels and connected to neurons in adjoining wells. Unidirectional burst transfers and other asymmetric signal-propagation phenomena were observed via the substrate-embedded electrodes. Seventy-nine percent of burst transfers were in the forward direction. We also observed rapid propagation of activity from sites of local electrical stimulation, and significant effects of inhibitory synapse blockade on bursting activity. These results suggest that this simple, substrate-controlled neuronal circuit can be applied to develop in vitro models of the function of cortical microcircuits or deep neural networks, better to elucidate the laws governing the dynamics of neuronal networks.

  16. Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.

    2012-09-15

    The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate biasmore » reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.« less

  17. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.

    PubMed

    Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter

    2017-12-06

    A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiO x counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO 2 and mp-Al 2 O 3 ), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO 2 /mp-Al 2 O 3 /np-Au:NiO x as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

  18. Initiation of arcing on tungsten surface exposed to steady state He plasmas

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Noiri, Yasuyuki; Ohno, Noriyasu

    2015-09-01

    Arcing was initiated in steady state helium plasmas by negatively biasing a tungsten electrode to around -500 V. On the tungsten electrode, nanostructures were grown by the plasma irradiation. In this study, we characterized the property of the initiated arcing by measuring the temporal evolutions of the electrode potential and the arc current. The ignition frequency and duration of arcing were presented from the potential measurements; the arc duration was in the range of <10 ms and the distribution altered when changing the biasing voltage. The behavior of arc spots was observed with a fast framing camera. It was shown that the spots split frequently, and sometimes, they run on the surface independently. From the fluctuation of the arc current, the fractal feature of arcing was revealed.

  19. Radio frequency plasma method for uniform surface processing of RF cavities and other three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, Svetozar; Upadhyay, Janardan; Vuskovic, Leposava

    2017-12-26

    A method for efficient plasma etching of surfaces inside three-dimensional structures can include positioning an inner electrode within the chamber cavity; evacuating the chamber cavity; adding a first inert gas to the chamber cavity; regulating the pressure in the chamber; generating a plasma sheath along the inner wall of the chamber cavity; adjusting a positive D.C. bias on the inner electrode to establish an effective plasma sheath voltage; adding a first electronegative gas to the chamber cavity; optionally readjusting the positive D.C. bias on the inner electrode reestablish the effective plasma sheath voltage at the chamber cavity; etching the innermore » wall of the chamber cavity; and polishing the inner wall to a desired surface roughness.« less

  20. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOEpatents

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  1. Mode control using two electrodes on HBT-EP

    NASA Astrophysics Data System (ADS)

    Stewart, I. G.; Brooks, J. W.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.

    2017-10-01

    Understanding the effects of plasma rotation on magnetohydrodynamic (MHD) modes and tokamak plasma stability is important for performance enhancement of current magnetic confinement experiments and to future fusion devices such as ITER. In order to control plasma rotation, two molybdenum electrodes have been installed on HBT-EP toroidally separated by 144 degrees. This allows independent biasing of the two probes both spatially and temporally. When the bias probes are inserted into the edge of the plasma and a voltage is applied, the probes drive radial currents and produce plasma flow from the torque induced by the currents. If the bias probe voltage is sufficiently positive, the MHD mode rotation transitions into a state with a rapid mode rotation frequency (in excess of 25 kHz) in the direction opposite to mode rotation without bias. The transition into this reversed rotation state occurs when the torque exceeds a threshold, which can depend upon the phase of an applied n = 1 error field. We present recent studies of the two-electrode system on mode rotation, mode stability, and the toroidal symmetry of the radial current through the scrape-off-layer (SOL) during MHD activity and applied magnetic perturbations. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  2. Gate control of spin-polarized conductance in alloyed transitional metal nanocontacts

    NASA Astrophysics Data System (ADS)

    Sivkov, Ilia N.; Brovko, Oleg O.; Rungger, Ivan; Stepanyuk, Valeri S.

    2017-03-01

    To date, endeavors in nanoscale spintronics are dominated by the use of single-electron or single-spin transistors having at their heart a semiconductor, metallic, or molecular quantum dot whose localized states are non-spin-degenerate and can be controlled by an external bias applied via a gate electrode. Adjusting the bias of the gate one can realign those states with respect to the chemical potentials of the leads and thus tailor the spin-polarized transmission properties of the device. Here we show that similar functionality can be achieved in a purely metallic junction comprised of a metallic magnetic chain attached to metallic paramagnetic leads and biased by a gate electrode. Our ab initio calculations of electron transport through mixed Pt-Fe (Fe-Pd and Fe-Rh) atomic chains suspended between Pt (Pd and Rh) electrodes show that spin-polarized confined states of the chain can be shifted by the gate bias causing a change in the relative contributions of majority and minority channels to the nanocontact's conductance. As a result, we observe strong dependence of conductance spin polarization on the applied gate potential. In some cases the spin polarization of conductance can even be reversed in sign upon gate potential application, which is a remarkable and promising trait for spintronic applications.

  3. Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Ahlberg, Patrik; Hinnemo, Malkolm; Zhang, Shi-Li; Olsson, Jörgen

    2018-03-01

    By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

  4. 570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition

    DOE PAGES

    Zhou, Xinghao; Liu, Rui; Sun, Ke; ...

    2016-01-08

    Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thin ~50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of -205 ± 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O 2(g) conversion efficiencies of 1.42 ± 0.20%, and operated continuously for over 100 days (~2500 h) in 1.0 M KOH(aq) under simulated solar illumination. The ALD CoO x thin film: (i) formed a heterojunction with the n-Si(100) that provided a photovoltage of 575 mV under 1 Sun of simulated solar illumination; (ii) stabilized Si photoanodes thatmore » are otherwise unstable when operated in aqueous alkaline electrolytes; and, (iii) catalyzed the oxidation of water, thereby reducing the kinetic overpotential required for the reaction and increasing the overall efficiency relative to electrodes that do not have an inherently electrocatalytic coating. The process provides a simple, effective method for enabling the use of planar n-Si(100) substrates as efficient and durable photoanodes in fully integrated, photovoltaic-biased solar fuels generators.« less

  5. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al{sub 2}O{sub 3} on Li ion battery electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia

    2016-01-15

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the poresmore » of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li{sub 0.20}Mn{sub 0.54}Ni{sub 0.13}Co{sub 0.13}O{sub 2} electrodes on flexible metal foil were coated with Al{sub 2}O{sub 3} using 2–5 Al{sub 2}O{sub 3} ALD cycles. The Al{sub 2}O{sub 3} ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al{sub 2}O{sub 3} S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for the commercialization of S-ALD for coating Li ion battery electrodes.« less

  6. Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Atul; Academy of Scientific and Innovative Research; Chockalingam, S.

    2016-02-15

    Highlights: • Flowered-like bunched MWCNTs have been synthesized by MW PECVD technique. • Effect of substrate bias on the properties of MWCNT has been studied. • Minimum E{sub T} = 1.9 V/μm with β = 4770 has been obtained in the film deposited at −350 V. - Abstract: This paper reports the effect of substrate bias on the multiwalled carbon nanotube (MWCNT) deposited on nickel foil by microwave plasma enhanced chemical vapor deposition technique. The MWCNTs have been characterized by the scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, field emission and current–voltage characteristic of themore » heterojunction diode. The SEM images exhibit unique hierarchical flowered-like bunched and conformally coated MWCNTs. Substrate bias induced ion bombardment helps in the enhancement of hydrocarbon dissociation and is responsible for flowered-like MWCNTs growth. The HRTEM micrographs show the base growth mechanism for MWCNTs. The value of turn on field for emission decreases from 5.5 to 1.9 V/μm and field enhancement factor increases from 927 to 4770, respectively, with the increase of substrate bias. The diode ideality factor of CNT/ n-Si heterojunction is evaluated as 2.4 and the on/off current ratio is found to be 7 at ±2 V, respectively.« less

  7. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    NASA Astrophysics Data System (ADS)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  8. Development of gas-phase metallized plaques for electrodes of storage batteries, in particular for nickel oxide electrodes

    NASA Astrophysics Data System (ADS)

    Linkohr, R.; Schladitz, H.

    1982-08-01

    Nickel oxide-electrode plaques for alkaline batteries have been developed by carbon vapor deposition plating fiber plaque substrates with nickel from nickelcarbonyo. Carbon felt proved to be a suitable substrate and large (22 x sq 15 sq cm) and thick 3 - 5 mm) plaques could be made from this material. Three metallization devices were constructed, one of which allowed continuous processing with carbonyl gas flowing through the felt; this improved evenness of nickel distribution. The physical properties of the plaques - structure, electric resistance, heat conduction, gas permeation - approximated by simple models and the corresponding calculations were compared with measurements. Nickel oxide electrodes were made from the plaques and were cycled in half-cell arrangements. The project goals concerning nickel sayings, capacity per unit area and current capability were reached.

  9. Thermo-compressive transfer printing for facile alignment and robust device integration of nanowires.

    PubMed

    Lee, Won Seok; Won, Sejeong; Park, Jeunghee; Lee, Jihye; Park, Inkyu

    2012-06-07

    Controlled alignment and mechanically robust bonding between nanowires (NWs) and electrodes are essential requirements for reliable operation of functional NW-based electronic devices. In this work, we developed a novel process for the alignment and bonding between NWs and metal electrodes by using thermo-compressive transfer printing. In this process, bottom-up synthesized NWs were aligned in parallel by shear loading onto the intermediate substrate and then finally transferred onto the target substrate with low melting temperature metal electrodes. In particular, multi-layer (e.g. Cr/Au/In/Au and Cr/Cu/In/Au) metal electrodes are softened at low temperatures (below 100 °C) and facilitate submergence of aligned NWs into the surface of electrodes at a moderate pressure (∼5 bar). By using this thermo-compressive transfer printing process, robust electrical and mechanical contact between NWs and metal electrodes can be realized. This method is believed to be very useful for the large-area fabrication of NW-based electrical devices with improved mechanical robustness, electrical contact resistance, and reliability.

  10. Three-dimensional charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  11. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  12. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces.

    PubMed

    Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P; Maitland, Duncan J; Rennaker, Robert L; Voit, Walter E

    2012-12-01

    Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic-abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol-ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.

  13. Vertical electric field stimulation of neural cells on porous amorphous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2014-03-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to stimulate neuronal cell proliferation in presence of external electric field. The electric field was applied perpendicular to carbon electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm2) and low impedance (3.3 k Ω at 1 kHz). When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to stimulate neurite outgrowth and viability of nerve cells.

  14. Non-gassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.

  15. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    PubMed

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  16. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung

    2018-01-01

    Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.

  17. Manipulating spins of magnetic molecules: Hysteretic behavior with respect to bias voltage

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Misiorny, Maciej; Weymann, Ireneusz

    2018-02-01

    Formation of a magnetic hysteresis loop with respect to a bias voltage is investigated theoretically in a spin-valve device based on a single magnetic molecule. We consider a device consisting of two ferromagnetic electrodes bridged by a carbon nanotube, acting as a quantum dot, to which a spin-anisotropic molecule is exchange-coupled. Such a coupling allows for transfer of angular momentum between the molecule and a spin current flowing through the dot, and thus, for switching orientation of the molecular spin. We demonstrate that this current-induced switching process exhibits a hysteretic behavior with respect to a bias voltage applied to the device. The analysis is carried out with the use of the real-time diagrammatic technique in the lowest-order expansion of the tunnel coupling of the dot to electrodes. The influence of both the intrinsic properties of the spin-valve device (the spin polarization of electrodes and the coupling strength of the molecule to the dot) and those of the molecule itself (magnetic anisotropy and spin relaxation) on the size of the magnetic hysteresis loop is discussed.

  18. Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cui, Huijuan; Zheng, Jianfeng; Zhu, Yanyan; Wang, Zhijian; Jia, Suping; Zhu, Zhenping

    2015-10-01

    Substrates are normally required in the chemical synthesis of graphene to enhance its formation. However, removing substrates in the post purification stage is difficult, during which harsh reagents are used and the substrates are usually consumed undesirably. In this paper, we report that universal sodium carbonate (Na2CO3) particles can effectively promote the construction of well-structured graphene frameworks based on a quick thermal decomposition of fumaric acids. Notably, the Na2CO3 particles are easily separated from graphene through a simple and green method, namely, washing with water at room temperature. Together with the reused characteristic of the recovered Na2CO3 particles, this approach is undoubtedly beneficial to the low-cost and clean synthesis of graphene. Benefiting from the framework structure, the as-synthesized graphene exhibits excellent performance in the supercapacitor. The specific capacitance of the GFs-modified electrode was calculated to be 242 F g-1 at 0.5 A g-1, which was almost twice that of the RGO-modified electrode (134 F g-1). More importantly, the GFs-modified electrode maintained 92.6% retention of its initial specific capacitance (from current density of 0.5 to 16 A g-1), which was much higher than that of 2D graphene-modified electrode.

  19. Luminol-based electrochemiluminescent biosensors for highly sensitive medical diagnosis and rapid antioxidant detection

    NASA Astrophysics Data System (ADS)

    Tamiya, Eiichi; Inoue, Yuki; Saito, Masato

    2018-03-01

    We present a review of luminol-based electrochemiluminescence (ECL) biosensors that perform enzymatic reactions and bioanalysis using antioxidant molecules by controlling the spatiotemporal production of a luminescent substrate, catalase activity, and glycated albumin (GA). The ECL intensity depends on the antioxidant capacity because radicals are neutralized by the antioxidants, which suppresses the luminescence. The antioxidant capacities of 22 types beverages were evaluated by comparison with a standard curve of Trolox. The time necessary for the ECL measurement of the antioxidant capacity is only 2 min with screen-printed electrodes and a portable ECL measurement system. Our system was also used to monitor reactive oxygen species released from neutrophils, which play an important role in the immune system, defending against viral and bacterial infections. The quenching of ECL imaging by catalase reaction localized in the multichamber electrode using the electrogenerated substrate was examined as a potential candidate for a sensitive reporting system. The substrate was successfully generated at applied potentials between -1 and -0.4 V in multichamber electrodes and the substrate confinement within the chamber was observed within 60 s of generation. The microchamber electrode system demonstrated a detection limit of 90 fM catalase. We also demonstrated a detection limit of 0.1 µM GA in human serum albumin, which is an improvement of about 70 times over colorimetric methods.

  20. Organic light emitting diode with surface modification layer

    DOEpatents

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  1. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording

    PubMed Central

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-01-01

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode–skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring. PMID:29652835

  2. Single-crystalline nanogap electrodes: enhancing the nanowire-breakdown process with a gaseous environment.

    PubMed

    Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa

    2012-10-24

    A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.

  3. Hybrid solar cell based on a-Si/polymer flat heterojunction on flexible substrates

    NASA Astrophysics Data System (ADS)

    Olivares Vargas, A. J.; Mansurova, S.; Cosme, I.; Kosarev, A.; Ospina Ocampo, C. A.; Martinez Mateo, H. E.

    2017-08-01

    In this work, we present the results of investigation of thin film hybrid organic-inorganic photovoltaic structures based on flat heterojunction hydrogenated silicon (a-Si:H) and poly(3,4 ethylene dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) fabricated on polyethylene naphthalate (PEN). Different thicknesses of transparent AL doped Zn:O (AZO) electrodes have been tested on PEN substrate and studied by atomic force microscopy (AFM). The AZO films on PEN substrate were statistically processed to obtain surface morphological characteristics, such as root mean square roughness RQ, skewness SK and kurtosis KU. Performance characteristics of fabricated photovoltaic structures have been measured and analyzed for different thicknesses of the transparent electrodes under standard illumination (AM 1.5 I0= 100mW/cm2). Structures on flexible substrates show reproducible performance characteristic as their glass substrate counterpart with values of JSC= 6 mA/cm2, VOC= 0.535 V, FF= 43 % and PCE= 1.41%.

  4. Electrodes and electrochemical storage cells utilizing tin-modified active materials

    DOEpatents

    Anani, Anaba; Johnson, John; Lim, Hong S.; Reilly, James; Schwarz, Ricardo; Srinivasan, Supramaniam

    1995-01-01

    An electrode has a substrate and a finely divided active material on the substrate. The active material is ANi.sub.x-y-z Co.sub.y Sn.sub.z, wherein A is a mischmetal or La.sub.1-w M.sub.w, M is Ce, Nd, or Zr, w is from about 0.05 to about 1.0, x is from about 4.5 to about 5.5, y is from 0 to about 3.0, and z is from about 0.05 to about 0.5. An electrochemical storage cell utilizes such an electrode as the anode. The storage cell further has a cathode, a separator between the cathode and the anode, and an electrolyte.

  5. Light emitting ceramic device

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  6. Plasmon-induced artificial photosynthesis

    PubMed Central

    Ueno, Kosei; Oshikiri, Tomoya; Shi, Xu; Zhong, Yuqing; Misawa, Hiroaki

    2015-01-01

    We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst. PMID:26052419

  7. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.

    PubMed

    Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J

    2012-01-11

    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society

  8. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang

    1993-01-01

    The processing and screen printing of the superconducting BSCCO and 123 YBCO materials on substrates is described. The resulting superconducting properties and the use of these materials as possible electrode materials for ferroelectrics at 77 K are evaluated. Also, work performed in the development of solid-state electromechanical actuators is reported. Specific details include the fabrication and processing of high strain PBZT and PLZT electrostrictive materials, the development of PSZT and PMN-based ceramics, and the testing and evaluation of these electrostrictive materials. Finally, the results of studies on a new processing technology for preparing piezoelectric and electrostrictive ceramic materials are summarized. The process involves a high temperature chemical reduction which leads to an internal pre-stressing of the oxide wafer. These reduced and internally biased oxide wafers (RAINBOW) can produce bending-mode actuator devices which possess a factor of ten more displacement and load bearing capacity than present-day benders.

  9. Computational nano-material design of exotic luminescent materials based upon europium doped gallium nitrides

    NASA Astrophysics Data System (ADS)

    Masago, Akira; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2015-03-01

    Eu-doped GaN has attracted much attention, because the red light luminescence ability provides us with expectations to realize monolithic full-color LEDs, which work on seamless conditions such as substrates, electrodes, and operating bias voltages. Toward implementation of multifunctional activity into the luminescent materials using the spinodal nano-structures, we investigate atomic configurations and magnetic structures of the GaN crystal codoped with Eu, Mg, Si, O, and/or the vacancies using the density functional method (DFT) calculations. Our calculations show that the impurity clusterized distributions are energetically favorable more than the homogeneous distribution. Moreover, analyses of the formation energy and binding energy suggest that the clusterized distributions are spontaneously formed by the nano-spinodal decomposition. Though the host matrix has no magnetic moments, the cluster has finite magnetic moments, where Zener's p-f exchange interaction works between the Eu f-state and the nearby N p-states.

  10. Simulation of STM technique for electron transport through boron-nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Ganji, M. D.; Mohammadi-nejad, A.

    2008-06-01

    We report first-principles calculations on the electrical transport properties of boron-nitrid nanotubes (BNNTs). We consider a single walled (5,0) boron-nitrid nanotube sandwiched between an Au(1 0 0) substrate and a monatomic Au scanning tunneling microscope (STM) tip. Lateral motion of the tip over the nanotube wall cause it to change from one conformation class to the others and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BNNT/Au nanowires are shown to be a convenient switch. Experiments with a conventional STM are proposed to test these predictions. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe systems at zero bias are analyzed, and it suggests that the variation of the coupling between the wire and the electrodes leads to switching behaviour.

  11. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.

    PubMed

    Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun

    2016-10-12

    We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.

  12. Origin of the transition voltage in gold-vacuum-gold atomic junctions.

    PubMed

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2013-01-18

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.

  13. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  14. Optically initiated silicon carbide high voltage switch

    DOEpatents

    Caporaso, George J [Livermore, CA; Sampayan, Stephen E [Manteca, CA; Sullivan, James S [Livermore, CA; Sanders,; David, M [Livermore, CA

    2011-02-22

    An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

  15. A study of electrostatic spring softening for dual-axis micromirror

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; E H Tay, Francis; Zhou, Guangya; Siong Chau, Fook

    2006-08-01

    Electrostatic spring softening is an important characteristic of electrostatically actuated dual-axis micromirror, since it lowers the resonant frequencies. This paper presents an approach based on approximating the electrostatic forces by the first-order Taylor's series expansion to investigate this characteristic. The dual-axis micromirror studied in this paper has three motion modes, two torsional (about x- and y-axis, respectively) and one translational (about z-axis). The stiffnesses of all these modes are softened by a DC bias voltage applied to the mirror plate. The resonant frequencies are lowered with the increment of the bias voltage. The relationship of the bias voltage and the resonant frequencies of all the motion modes is derived. The analytical results show that the resonant frequency curves are affected by the capacitor geometries, i.e. the gap between the mirror plate and the electrodes and the electrodes size. The lowering curves drop slowly when the bias voltage is small. While for large bias voltage, the lowering curves drop rapidly. The experiment results are consistent with those obtained by the analytical approach.

  16. Methods of making membrane electrode assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yu Seung; Lee, Kwan -Soo; Rockward, Tommy Q. T.

    Method of making a membrane electrode assembly comprising: providing a membrane comprising a perfluorinated sulfonic acid; providing a first transfer substrate; applying to a surface of the first transfer substrate a first ink, said first ink comprising an ionomer and a catalyst; applying to the first ink a suitable non-aqueous swelling agent; forming an assembly comprising: the membrane; and the first transfer substrate, wherein the surface of the first transfer substrate comprising the first ink and the non-aqueous swelling agent is disposed upon one surface of the membrane; and heating the assembly at a temperature of 150.degree. C. or lessmore » and at a pressure of from about 250 kPa to about 3000 kPa or less for a time suitable to allow substantially complete transfer of the first ink and the second ink to the membrane; and cooling the assembly to room temperature and removing the first transfer substrate and the second transfer substrate.« less

  17. Transportation and Accumulation of Redox Active Species at the Buried Interfaces of Plasticized Membrane Electrodes.

    PubMed

    Sohail, Manzar; De Marco, Roland; Jarolímová, Zdeňka; Pawlak, Marcin; Bakker, Eric; He, Ning; Latonen, Rose-Marie; Lindfors, Tom; Bobacka, Johan

    2015-09-29

    The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath the membrane.

  18. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    NASA Astrophysics Data System (ADS)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  19. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  20. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  1. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Patry, JoAnne L. (Inventor); Smits, Jan M. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor); Wincheski, Russell A. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  2. High-Quality AZO/Au/AZO Sandwich Film with Ultralow Optical Loss and Resistivity for Transparent Flexible Electrodes.

    PubMed

    Zhou, Hua; Xie, Jing; Mai, Manfang; Wang, Jing; Shen, Xiangqian; Wang, Shuying; Zhang, Lihua; Kisslinger, Kim; Wang, Hui-Qiong; Zhang, Jinxing; Li, Yu; Deng, Junhong; Ke, Shanming; Zeng, Xierong

    2018-05-09

    Transparent flexible electrodes are in ever-growing demand for modern stretchable optoelectronic devices, such as display technologies, solar cells, and smart windows. Such sandwich-film-electrodes deposited on polymer substrates are unattainable because of the low quality of the films, inducing a relatively large optical loss and resistivity as well as a difficulty in elucidating the interference behavior of light. In this article, we report a high-quality AZO/Au/AZO sandwich film with excellent optoelectronic performance, e.g., an average transmittance of about 81.7% (including the substrate contribution) over the visible range, a sheet resistance of 5 Ω/sq, and a figure-of-merit (FoM) factor of ∼55.1. These values are well ahead of those previously reported for sandwich-film-electrodes. Additionally, the interference behaviors of light modulated by the coat and metal layers have been explored with the employment of transmittance spectra and numerical simulations. In particular, a heater device based on an AZO/Au/AZO sandwich film exhibits high performance such as short response time (∼5 s) and uniform temperature field. This work provides a deep insight into the improvement of the film quality of the sandwich electrodes and the design of high-performance transparent flexible devices by the application of a flexible substrate with an atomically smooth surface.

  3. Development of PDMS-based flexible dry type SEMG electrodes by micromachining technologies

    NASA Astrophysics Data System (ADS)

    Jung, Jung Mo; Cha, Doo Yeol; Kim, Deok Su; Yang, Hee Jun; Choi, Kyo Sang; Choi, Jong Myoung; Chang, Sung Pil

    2014-09-01

    The authors developed PDMS (polydimethylsiloxane)-based dry type surface electromyography (SEMG) electrodes for myoelectric prosthetic hands. The SEMG electrodes were strongly recommended to be fabricated on a flexible substrate to be compatible with the surface of skin. In this study, the authors designed a bar-shaped dry-type flexible SEMG electrodes comprised of two input electrodes and a reference electrode on a flexible PDMS substrate to measure EMG signals. The space distance between each electrode with a size of 10 mm × 2 mm was chosen to 18 mm to get optimal result according to the simulation result with taking into consideration the conduction velocity and the median frequency of EMG signals. Raw EMG signals were measured from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles, to drive the application of the myoelectric hand prosthesis. Measured raw EMG signals were transformed to root mean square (RMS) EMG signals using Acqknowledge4.2. The experimental peak voltage values of RMS EMG signals from Brachioradialis, Biceps brachii, deltoideus, and pectoralis major muscles were 2.96 V, 4.45 V, 1.74 V, and 2.62 V, respectively. Values from the dry type flexible SEMG electrodes showed higher peak values than a commercially available wet type Ag-AgCl electrode. The study shows that the PDMS-based flexible electrode devised for measuring myoelectric signals from the surface of skin is more useful for prosthetic hands because of its greater sensitivity and flexibility.

  4. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  5. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2015-02-01

    The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.

  6. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-08-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  7. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  8. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors.

    PubMed

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  9. Electrohydrodynamic spinning of random-textured silver webs for electrodes embedded in flexible organic solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Dai Geon; Chin, Byung Doo; Bail, Robert

    2017-03-01

    A convenient process for fabricating a transparent conducting electrode on a flexible substrate is essential for numerous low-cost optoelectronic devices, including organic solar cells (OSCs), touch sensors, and free-form lighting applications. Solution-processed metal-nanowire arrays are attractive due to their low sheet resistance and optical clarity. However, the limited conductance at wire junctions and the rough surface topology still need improvement. Here, we present a facile process of electrohydrodynamic spinning using a silver (Ag) - polymer composite paste with high viscosity. Unlike the metal-nanofiber web formed by conventional electrospinning, a relatively thick, but still invisible-to-naked eye, Ag-web random pattern was formed on a glass substrate. The process parameters such as the nozzle diameter, voltage, flow rate, standoff height, and nozzle-scanning speed, were systematically engineered. The formed random texture Ag webs were embedded in a flexible substrate by in-situ photo-polymerization, release from the glass substrate, and post-annealing. OSCs with a donor-acceptor polymeric heterojunction photoactive layer were prepared on the Ag-web-embedded flexible films with various Ag-web densities. The short-circuit current and the power conversion efficiency of an OSC with a Ag-web-embedded electrode were not as high as those of the control sample with an indium-tin-oxide electrode. However, the Ag-web textures embedded in the OSC served well as electrodes when bent (6-mm radius), showing a power conversion efficiency of 2.06% (2.72% for the flat OSC), and the electrical stability of the Ag-web-textured patterns was maintained for up to 1,000 cycles of bending.

  10. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  11. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-09-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.

  12. Measuring surfactant concentration in plating solutions

    DOEpatents

    Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.

    1989-01-01

    An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.

  13. Enhancement of a-IGZO TFT Device Performance Using a Clean Interface Process via Etch-Stopper Nano-layers

    NASA Astrophysics Data System (ADS)

    Chung, Jae-Moon; Zhang, Xiaokun; Shang, Fei; Kim, Ji-Hoon; Wang, Xiao-Lin; Liu, Shuai; Yang, Baoguo; Xiang, Yong

    2018-05-01

    To overcome the technological and economic obstacles of amorphous indium-gallium-zinc-oxide (a-IGZO)-based display backplane for industrial production, a clean etch-stopper (CL-ES) process is developed to fabricate a-IGZO-based thin film transistor (TFT) with improved uniformity and reproducibility on 8.5th generation glass substrates (2200 mm × 2500 mm). Compared with a-IGZO-based TFT with back-channel-etched (BCE) structure, a newly formed ES nano-layer ( 100 nm) and a simultaneous etching of a-IGZO nano-layer (30 nm) and source-drain electrode layer are firstly introduced to a-IGZO-based TFT device with CL-ES structure to improve the uniformity and stability of device for large-area display. The saturation electron mobility of 8.05 cm2/V s and the V th uniformity of 0.72 V are realized on the a-IGZO-based TFT device with CL-ES structure. In the negative bias temperature illumination stress and positive bias thermal stress reliability testing under a ± 30 V bias for 3600 s, the measured V th shift of CL-ES-structured device significantly decreased to - 0.51 and + 1.94 V, which are much lower than that of BCE-structured device (- 3.88 V, + 5.58 V). The electrical performance of the a-IGZO-based TFT device with CL-ES structure implies that the economic transfer from a silicon-based TFT process to the metal oxide semiconductor-based process for LCD fabrication is highly feasible.

  14. The development of insulated electrocardiogram electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1971-01-01

    An integrated system was developed, consisting of an insulated electrode and an impedance transformer, which can be used for the acquisition of electrocardiographic data. The electrode consists of a thin layer of dielectric material deposited onto a silicon substrate. The impedance transformer is an operational amplifier used in the unity gain configuration. Both electrode and impedance transformer are contained in a plastic housing identical to that used with the NASA Apollo-type electrode. The lower cut off frequency of the electrode system is between 0.01 and 1.0 Hz, depending on the dielectric used and its thickness. Clinical quality electrocardiograms were obtained with these electrodes.

  15. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    NASA Astrophysics Data System (ADS)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  16. A three-dimensional metal grid mesh as a practical alternative to ITO

    NASA Astrophysics Data System (ADS)

    Jang, Sungwoo; Jung, Woo-Bin; Kim, Choelgyu; Won, Phillip; Lee, Sang-Gil; Cho, Kyeong Min; Jin, Ming Liang; An, Cheng Jin; Jeon, Hwan-Jin; Ko, Seung Hwan; Kim, Taek-Soo; Jung, Hee-Tae

    2016-07-01

    The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics.The development of a practical alternative to indium tin oxide (ITO) is one of the most important issues in flexible optoelectronics. In spite of recent progress in this field, existing approaches to prepare transparent electrodes do not satisfy all of their essential requirements. Here, we present a new substrate-embedded tall (~350 nm) and thin (~30 nm) three-dimensional (3D) metal grid mesh structure with a large area, which is prepared via secondary sputtering. This structure satisfies most of the essential requirements of transparent electrodes for practical applications in future opto-electronics: excellent optoelectronic performance (a sheet resistance of 9.8 Ω □-1 with a transmittance of 85.2%), high stretchability (no significant change in resistance for applied strains <15%), a sub-micrometer mesh period, a flat surface (a root mean square roughness of approximately 5 nm), no haze (approximately 0.5%), and strong adhesion to polymer substrates (it survives attempted detachment with 3M Scotch tape). Such outstanding properties are attributed to the unique substrate-embedded 3D structure of the electrode, which can be obtained with a high aspect ratio and in high resolution over large areas with a simple process. As a demonstration of its suitability for practical applications, our transparent electrode was successfully tested in a flexible touch screen panel. We believe that our approach opens up new practical applications in wearable electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03060b

  17. Capacitive microelectromechanical switches with dynamic soft-landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ankit; Alam, Muhammad Ashraful; Nair, Pradeep R.

    2015-10-13

    A microelectromechanical system (MEMS)-based electrical switch. The electrical switch includes a moveable electrode, a dielectric layer positioned adjacent the moveable electrode on a first side of the dielectric layer and spaced apart from the moveable electrode when the moveable electrode is in an inactivated position and in contact with the moveable electrode when the moveable electrode is in an activated position, and a substrate attached to the dielectric layer on a second side opposite to the first side, the moveable electrode is configured to brake prior to coming in contact with the dielectric layer when the moveable electrode is switchedmore » between the inactivated state and the activated state.« less

  18. Capacitive microelectromechanical switches with dynamic soft-landing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ankit; Alam, Muhammad Ashraful; Nair, Pradeep

    2017-01-03

    A microelectromechanical system (MEMS)-based electrical switch. The electrical switch includes a moveable electrode, a dielectric layer positioned adjacent the moveable electrode on a first side of the dielectric layer and spaced apart from the moveable electrode when the moveable electrode is in an inactivated position and in contact with the moveable electrode when the moveable electrode is in an activated position, and a substrate attached to the dielectric layer on a second side opposite to the first side, the moveable electrode is configured to brake prior to coming in contact with the dielectric layer when the moveable electrode is switchedmore » between the inactivated state and the activated state.« less

  19. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  20. Shielded beam delivery apparatus and method

    DOEpatents

    Hershcovitch, Ady; Montano, Rory Dominick

    2006-07-11

    An apparatus includes a plasma generator aligned with a beam generator for producing a plasma to shield an energized beam. An electrode is coaxially aligned with the plasma generator and followed in turn by a vortex generator coaxially aligned with the electrode. A target is spaced from the vortex generator inside a fluid environment. The electrode is electrically biased relative to the electrically grounded target for driving the plasma toward the target inside a vortex shield.

  1. Filtered cathodic arc deposition with ion-species-selective bias.

    PubMed

    Anders, André; Pasaja, Nitisak; Sansongsiri, Sakon

    2007-06-01

    A dual-cathode arc plasma source was combined with a computer-controlled bias amplifier to synchronize substrate bias with the pulsed production of plasma. In this way, bias can be applied in a material-selective way. The principle has been applied to the synthesis of metal-doped diamondlike carbon films, where the bias was applied and adjusted when the carbon plasma was condensing and the substrate was at ground when the metal was incorporated. In doing so, excessive sputtering by energetic metal ions can be avoided while the sp(3)sp(2) ratio can be adjusted. It is shown that the resistivity of the film can be tuned by this species-selective bias; Raman spectroscopy was used to confirm expected changes of the amorphous ta-C:Mo films. The species-selective bias principle could be extended to multiple material plasma sources and complex materials.

  2. A novel source-drain follower for monolithic active pixel sensors

    NASA Astrophysics Data System (ADS)

    Gao, C.; Aglieri, G.; Hillemanns, H.; Huang, G.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mugnier, H.; Musa, L.; Lee, S.; Reidt, F.; Riedler, P.; Rousset, J.; Sielewicz, K. M.; Snoeys, W.; Sun, X.; Van Hoorne, J. W.; Yang, P.

    2016-09-01

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/Ceff or decrease the effective sensing node capacitance Ceff because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source-drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to Ceff. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to Ceff, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a 55Fe source. Increasing reverse substrate bias from -1 V to -6 V reduces Ceff by 38% and the equivalent noise charge (ENC) by 22% for the standard SF. The SDF provides a further 9% improvement for Ceff and 25% for ENC. The SDF circuit with additional shielding provides 18% improvement for Ceff, and combined with -6 V reverse bias yields almost a factor 2.

  3. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    PubMed

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  4. Production of zinc pellets

    DOEpatents

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  5. Production of zinc pellets

    DOEpatents

    Cooper, John F.

    1996-01-01

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.

  6. Chemical multisensors with selective encapsulation of ion-selective membranes

    NASA Astrophysics Data System (ADS)

    Schwager, Felix J.; Bousse, Luc J.; Bowman, Lyn; Meindl, J. D.

    Chemical sensors fabricated with simultaneous wafer scale encapsulation of ion selective electrode mambranes are described. The sensors are miniature ion selective electrodes in chambers located on a silicon substrate. These chambers are made by anodically bonding to the silicon a no. 7740 pyrex glass wafer in which cavities were drilled. Pores with dimensions selectable from 50 microns upwards are opened in the roofs of the chambers by drilling with a CO2 laser. Each sensor die contains four cavities which are filled under reduced pressure with liquid membrane material which is subsequently polymerized. The transducers on the cavity floor are Ag/AgCl electrodes. Interconnects between the sensor chambers on each die and bonding pads are made in the silicon substrate.

  7. Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  8. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements.

    PubMed

    Guinovart, Tomàs; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2014-04-22

    A new solid-state reference electrode using a polymeric membrane of polyvinyl butyral (PVB), Ag/AgCl and NaCl to be used in decentralized chemical measurements is presented. The electrode is made by drop-casting the membrane cocktail onto a glassy carbon (GC) substrate. A stable potential (less than 1 mV dec(-1)) over a wide range of concentrations for the several chemical species tested is obtained. No significant influence to changes in redox potential, light and pH are observed. The response of this novel electrode shows good correlation when compared with a conventional double-junction reference electrode. Also good long-term stability (90±33 μV/h) and a lifetime of approximately 4 months are obtained. Aspects related to the working mechanisms are discussed. Atomic Force Microscopy (AFM) studies reveal the presence of nanopores and channels on the surface, and electrochemical impedance spectroscopy (EIS) of optimized electrodes show low bulk resistances, usually in the kΩ range, suggesting that a nanoporous polymeric structure is formed in the interface with the solution. Future applications of this electrode as a disposable device for decentralized measurements are discussed. Examples of the utilization on wearable substrates (tattoos, fabrics, etc) are provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    PubMed

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  10. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.

    PubMed

    Arreaga-Salas, David E; Avendaño-Bolívar, Adrian; Simon, Dustin; Reit, Radu; Garcia-Sandoval, Aldo; Rennaker, Robert L; Voit, Walter

    2015-12-09

    Softening neural interfaces are implanted stiff to enable precise insertion, and they soften in physiological conditions to minimize modulus mismatch with tissue. In this work, a high-charge-injection-capacity iridium electrode fabrication process is detailed. For the first time, this process enables integration of iridium electrodes onto softening substrates using photolithography to define all features in the device. Importantly, no electroplated layers are utilized, leading to a highly scalable method for consistent device fabrication. The iridium electrode is metallically bonded to the gold conductor layer, which is covalently bonded to the softening substrate via sulfur-based click chemistry. The resulting shape-memory polymer neural interfaces can deliver more than 2 billion symmetric biphasic pulses (100 μs/phase), with a charge of 200 μC/cm(2) and geometric surface area (GSA) of 300 μm(2). A transfer-by-polymerization method is used in combination with standard semiconductor processing techniques to fabricate functional neural probes onto a thiol-ene-based, thin film substrate. Electrical stability is tested under simulated physiological conditions in an accelerated electrical aging paradigm with periodic measurement of electrochemical impedance spectra (EIS) and charge storage capacity (CSC) at various intervals. Electrochemical characterization and both optical and scanning electron microscopy suggest significant breakdown of the 600 nm-thick parylene-C insulation, although no delamination of the conductors or of the final electrode interface was observed. Minor cracking at the edges of the thin film iridium electrodes was occasionally observed. The resulting devices will provide electrical recording and stimulation of the nervous system to better understand neural wiring and timing, to target treatments for debilitating diseases, and to give neuroscientists spatially selective and specific tools to interact with the body. This approach has uses for cochlear implants, nerve cuff electrodes, penetrating cortical probes, spinal stimulators, blanket electrodes for the gut, stomach, and visceral organs and a host of other custom nerve-interfacing devices.

  11. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes

    NASA Astrophysics Data System (ADS)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok

    2017-11-01

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.

  12. Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.

    PubMed

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok

    2017-09-11

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.

  13. Preparation of thin film silver fluoride electrodes from constituent elements

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.

  14. Method of making diode structures

    DOEpatents

    Compaan, Alvin D.; Gupta, Akhlesh

    2006-11-28

    A method of making a diode structure includes the step of depositing a transparent electrode layer of any one or more of the group ZnO, ZnS and CdO onto a substrate layer, and depositing an active semiconductor junction having an n-type layer and a p-type layer onto the transparent electrode layer under process conditions that avoid substantial degradation of the electrode layer. A back electrode coating layer is applied to form a diode structure.

  15. Selective electrical interfaces with the nervous system.

    PubMed

    Rutten, Wim L C

    2002-01-01

    To achieve selective electrical interfacing to the neural system it is necessary to approach neuronal elements on a scale of micrometers. This necessitates microtechnology fabrication and introduces the interdisciplinary field of neurotechnology, lying at the juncture of neuroscience with microtechnology. The neuroelectronic interface occurs where the membrane of a cell soma or axon meets a metal microelectrode surface. The seal between these may be narrow or may be leaky. In the latter case the surrounding volume conductor becomes part of the interface. Electrode design for successful interfacing, either for stimulation or recording, requires good understanding of membrane phenomena, natural and evoked action potential generation, volume conduction, and electrode behavior. Penetrating multimicroelectrodes have been produced as one-, two-, and three-dimensional arrays, mainly in silicon, glass, and metal microtechnology. Cuff electrodes circumvent a nerve; their selectivity aims at fascicles more than at nerve fibers. Other types of electrodes are regenerating sieves and cone-ingrowth electrodes. The latter may play a role in brain-computer interfaces. Planar substrate-embedded electrode arrays with cultured neural cells on top are used to study the activity and plasticity of developing neural networks. They also serve as substrates for future so-called cultured probes.

  16. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  17. Nanohardness and Residual Stress in TiN Coatings.

    PubMed

    Hernández, Luis Carlos; Ponce, Luis; Fundora, Abel; López, Enrique; Pérez, Eduardo

    2011-05-17

    TiN films were prepared by the Cathodic arc evaporation deposition method under different negative substrate bias. AFM image analyses show that the growth mode of biased coatings changes from 3D island to lateral when the negative bias potential is increased. Nanohardness of the thin films was measured by nanoindentation, and residual stress was determined using Grazing incidence X ray diffraction. The maximum value of residual stress is reached at -100 V substrate bias coinciding with the biggest values of adhesion and nanohardness. Nanoindentation measurement proves that the force-depth curve shifts due to residual stress. The experimental results demonstrate that nanohardness is seriously affected by the residual stress.

  18. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    NASA Astrophysics Data System (ADS)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  19. Demonstration of the Potential of Magnetic Tunnel Junctions for a Universal RAM Technology

    NASA Astrophysics Data System (ADS)

    Gallagher, William J.

    2000-03-01

    Over the past four years, tunnel junctions with magnetic electrodes have emerged as promising devices for future magnetoresistive sensing and for information storage. This talk will review advances in these devices, focusing particularly on the use of magnetic tunnel junctions for magnetic random access memory (MRAM). Exchange-biased versions of magnetic tunnel junctions (MTJs) in particular will be shown to have useful properties for forming magnetic memory storage elements in a novel cross-point architecture. Exchange-biased MTJ elements have been made with areas as small as 0.1 square microns and have shown magnetoresistance values exceeding 40 The potential of exchange-biased MTJs for MRAM has been most seriously explored in a demonstration experiment involving the integration of 0.25 micron CMOS technology with a special magnetic tunnel junction "back end." The magnetic back end is based upon multi-layer magnetic tunnel junction growth technology which was developed using research-scale equipment and one-inch size substrates. For the demonstration, the CMOS wafers processed through two metal layers were cut into one-inch squares for depositions of bottom-pinned exchange-biased magnetic tunnel junctions. The samples were then processed through four additional lithographic levels to complete the circuits. The demonstration focused attention on a number of processing and device issues that were addressed successfully enough that key performance aspects of MTJ MRAM were demonstrated in 1 K bit arrays, including reads and writes in less than 10 ns and nonvolatility. While other key issues remain to be addressed, these results suggest that MTJ MRAM might simultaneously provide much of the functionality now provided separately by SRAM, DRAM, and NVRAM.

  20. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05063d

  1. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat [Albuquerque, NM; Wessendorf, Kurt O [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  2. Virtual electrodes for high-density electrode arrays

    DOEpatents

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  3. In situ STM imaging of the structures of pentacene molecules adsorbed on Au(111).

    PubMed

    Pong, Ifan; Yau, Shuehlin; Huang, Peng-Yi; Chen, Ming-Chou; Hu, Tarng-Shiang; Yang, Yawchia; Lee, Yuh-Lang

    2009-09-01

    In situ scanning tunneling microscope (STM) was used to examine the spatial structures of pentacene molecules adsorbed onto a Au(111) single-crystal electrode from a benzene dosing solution containing 16-400 microM pentacene. Molecular-resolution STM imaging conducted in 0.1 M HClO(4) revealed highly ordered pentacene structures of ( radical31 x radical31)R8.9 degrees , (3 x 10), ( radical31 x 10), and ( radical7 x 2 radical7)R19.1 degrees adsorbed on the reconstructed Au(111) electrode dosed with different pentacene solutions. These pentacene structures and the reconstructed Au(111) substrate were stable between 0.2 and 0.8 V [vs reversible hydrogen electrode, RHE]. Increasing the potential to E > 0.8 V lifted the reconstructed Au(111) surface and disrupted the ordered pentacene adlattices simultaneously. Ordered pentacene structures could be restored by applying potentials negative enough to reinforce the reconstructed Au(111). At potentials negative of 0.2 V, the adsorption of protons became increasingly important to displace adsorbed pentacene admolecules. Although the reconstructed Au(111) structure was not essential to produce ordered pentacene adlayers, it seemed to help the adsorption of pentacene molecules in a long-range ordered pattern. At room temperature (25 degrees C), approximately 100 pentacene molecules seen in STM images could rotate and align themselves to a neighboring domain in 10 s, suggesting that pentacene admolecules could be mobile on Au(111) under the STM imaging conditions of -150 mV in bias voltage and 1 nA in feedback current.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Tong, R. H.

    The measurement of internal magnetic fluctuation is important for the study of transport in tokamak plasmas. The runaway electron transport induced by the sawtooth crash can be used to obtain the internal magnetic fluctuation. Inversed sawtooth-like activities on hard x-ray (HXR) fluxes following sawtooth activities were observed after the application of electrode biasing on J-TEXT tokamak. The runaway diffusion coefficient D{sub r} is deduced to be about 30 m{sup 2}/s according to the time delay of HXR flux peaks to the sawtooth crashes. The averaged value of normalized magnetic fluctuation in the discharges with electrode biasing was increased to themore » order of 1 × 10{sup −4}.« less

  5. Liquid lens enabling real-time focus and tilt compensation for optical image stabilization in camera modules

    NASA Astrophysics Data System (ADS)

    Simon, Eric; Craen, Pierre; Gaton, Hilario; Jacques-Sermet, Olivier; Laune, Frédéric; Legrand, Julien; Maillard, Mathieu; Tallaron, Nicolas; Verplanck, Nicolas; Berge, Bruno

    2010-05-01

    A new generation of liquid lenses based on electrowetting has been developed, using a multi-electrode design, enabling to induce optical tilt and focus corrections in the same component. The basic principle is to rely on a conical shape for supporting the liquid interface, the conical shape insuring a restoring force for the liquid liquid interface to come at the center position. The multi-electrode design enables to induce an average tilt of the liquid liquid interface when a bias voltage is applied to the different electrodes. This tilt is reversible, vanishing when voltage bias is cancelled. Possible application of this new lens component is the realization of miniature camera featuring auto-focus and optical image stabilization (OIS) without any mobile mechanical part. Experimental measurements of actual performances of liquid lens component will be presented : focus and tilt amplitude, residual optical wave front error and response time.

  6. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A.

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have beenmore » varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.« less

  7. Characterization of simple wireless neurostimulators and sensors.

    PubMed

    Gulick, Daniel W; Towe, Bruce C

    2014-01-01

    A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.

  8. Long-term characterization of neural electrodes based on parylene-caulked polydimethylsiloxane substrate.

    PubMed

    Jeong, Jinmo; Chou, Namsun; Kim, Sohee

    2016-06-01

    This study investigates the mechanical and long-term electrical properties of parylene-caulked polydimethylsiloxane (PDMS) as a substrate for implantable electrodes. The parylene-caulked PDMS is a structure where particles of parylene fill the porous surface of PDMS. This material is expected to have low water absorption and desirable mechanical properties such as flexibility and elasticity that are beneficial in many biomedical applications. To evaluate the mechanical property and electrical stability of parylene-caulked PDMS for potential in-vivo uses, tensile tests were conducted firstly, which results showed that the mechanical strength of parylene-caulked PDMS was comparable to that of native PDMS. Next, surface electrodes based on parylene-caulked PDMS were fabricated and their impedance was measured in phosphate-buffered saline (PBS) solution at 36.5 °C over seven months. The electrodes based on parylene-caulked PDMS exhibited the improved stability in impedance over time than native PDMS. Thus, with improved electrical stability in wet environment and preserved mechanical properties of PDMS, the electrodes based on parylene-caulked PDMS are expected to be suitable for long-term in-vivo applications.

  9. Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer

    DOE PAGES

    Tsao, Yuchi; Chen, Zheng; Rondeau-Gagne, Simon; ...

    2017-09-20

    Porous carbons have previously been widely used as host materials for sulfur (S) electrodes because of their high conductivity and high surface area. However, they generally lack strong chemical affinity to stabilize polysulfide species. Therefore, conducting polymers have been employed to stabilize S electrodes. Integrating conducting polymers with high-surface-area carbons can create a new materials platform and synergize their functions. However, the previously used conducting polymers were often insoluble, and coating them uniformly from solution onto a nonpolar carbon substrate is a challenge. Here, we report that solution-processable isoindigo-based polymers incorporating polar substituents provide critical features: the conjugated backbone providesmore » good conductivity; functional pyridine groups provide high affinity to polysulfide species; and they possess high solubility in organic solvents. Here, these lead to effective coating on various carbonaceous substrates to provide highly stable sulfur electrodes. Importantly, the electrodes exhibit good capacity retention (80% over 300 cycles) at sulfur mass loading of 3.2 mg/cm 2, which significantly surpasses the performance of others reported in polymer-enabled sulfur cathodes.« less

  10. The electrochemical performance of graphene modified electrodes: an analytical perspective.

    PubMed

    Brownson, Dale A C; Foster, Christopher W; Banks, Craig E

    2012-04-21

    We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.

  11. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2014-05-01

    A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate. Electronic supplementary information (ESI) available: FE-SEM images of Ar plasma-treated PET surfaces, curve deconvolution of XPS Ag 3d5/2 spectra, refractive indices and extinction coefficients of the Ag and AgOx (O/Ag = 10 at%), changes in the specular reflections of the IAOI-NPA and IAI-NPA electrodes for different O/Ag atomic ratios and thicknesses of the AgOx layer, and comparisons between the Jsc values determined from simulated AM 1.5G illumination and IPCE spectra. See DOI: 10.1039/c3nr06755f

  12. Active voltage contrast imaging of cross-sectional surface of multilayer ceramic capacitor using helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Sakai, C.; Ishida, N.; Masuda, H.; Nagano, S.; Kitahara, M.; Ogata, Y.; Fujita, D.

    2016-08-01

    We studied active voltage contrast (AVC) imaging using helium ion microscopy (HIM). We observed secondary electron (SE) images of the cross-sectional surface of multilayer ceramic capacitors (MLCCs) with and without a voltage applied to the internal electrodes. When no voltage was applied, we obtained an image reflecting the material contrast between the Ni internal electrode region and the BaTiO3 dielectric region of the cross-sectional surface of the MLCC. When a voltage was applied, the electrical potential difference between the grounded and the positively biased internal electrodes affected the contrast (voltage contrast). Moreover, attenuation of the SE intensity from the grounded to the positively biased internal electrodes was observed in the dielectric region. Kelvin probe force microscopy (KPFM) measurements of the contact potential difference (CPD) were performed on the same sample. By using the AVC image from the HIM observation and the CPD image from the KPFM measurement, we could quantitatively evaluate the electrical potential. We think that the results of this study will lead to an expansion in the number of applications of HIM.

  13. Toward single electron resolution phonon mediated ionization detectors

    NASA Astrophysics Data System (ADS)

    Mirabolfathi, Nader; Harris, H. Rusty; Mahapatra, Rupak; Sundqvist, Kyle; Jastram, Andrew; Serfass, Bruno; Faiez, Dana; Sadoulet, Bernard

    2017-05-01

    Experiments seeking to detect rare event interactions such as dark matter or coherent elastic neutrino nucleus scattering are striving for large mass detectors with very low detection threshold. Using Neganov-Luke phonon amplification effect, the Cryogenic Dark Matter Search (CDMS) experiment is reaching unprecedented RMS resolutions of ∼14 eVee. CDMSlite is currently the most sensitive experiment to WIMPs of mass ∼5 GeV/c2 but is limited in achieving higher phonon gains due to an early onset of leakage current into Ge crystals. The contact interface geometry is particularly weak for blocking hole injection from the metal, and thus a new design is demonstrated that allows high voltage bias via vacuum separated electrode. With an increased bias voltage and a×2 Luke phonon gain, world best RMS resolution of sigma ∼7 eVee for 0.25 kg (d=75 mm, h=1 cm) Ge detectors was achieved. Since the leakage current is a function of the field and the phonon gain is a function of the applied voltage, appropriately robust interface blocking material combined with thicker substrate (25 mm) will reach a resolution of ∼2.8 eVee. In order to achieve better resolution of ∼ eV, we are investigating a layer of insulator between the phonon readout surface and the semiconductor crystals.

  14. Stable Molecular Diodes Based on π-π Interactions of the Molecular Frontier Orbitals with Graphene Electrodes.

    PubMed

    Song, Peng; Guerin, Sarah; Tan, Sherman Jun Rong; Annadata, Harshini Venkata; Yu, Xiaojiang; Scully, Micheál; Han, Ying Mei; Roemer, Max; Loh, Kian Ping; Thompson, Damien; Nijhuis, Christian A

    2018-03-01

    In molecular electronics, it is important to control the strength of the molecule-electrode interaction to balance the trade-off between electronic coupling strength and broadening of the molecular frontier orbitals: too strong coupling results in severe broadening of the molecular orbitals while the molecular orbitals cannot follow the changes in the Fermi levels under applied bias when the coupling is too weak. Here, a platform based on graphene bottom electrodes to which molecules can bind via π-π interactions is reported. These interactions are strong enough to induce electronic function (rectification) while minimizing broadening of the molecular frontier orbitals. Molecular tunnel junctions are fabricated based on self-assembled monolayers (SAMs) of Fc(CH 2 ) 11 X (Fc = ferrocenyl, X = NH 2 , Br, or H) on graphene bottom electrodes contacted to eutectic alloy of gallium and indium top electrodes. The Fc units interact more strongly with graphene than the X units resulting in SAMs with the Fc at the bottom of the SAM. The molecular diodes perform well with rectification ratios of 30-40, and they are stable against bias stressing under ambient conditions. Thus, tunnel junctions based on graphene with π-π molecule-electrode coupling are promising platforms to fabricate stable and well-performing molecular diodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.

    PubMed

    Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui

    2013-09-01

    A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.

  16. An electrostatic elliptical mirror for neutral polar molecules.

    PubMed

    González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard

    2011-11-14

    Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

  17. Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition.

    PubMed

    Santhanagopalan, Sunand; Balram, Anirudh; Meng, Dennis Desheng

    2013-03-26

    It is commonly perceived that reduction-oxidation (redox) capacitors have to sacrifice power density to achieve higher energy density than carbon-based electric double layer capacitors. In this work, we report the synergetic advantages of combining the high crystallinity of hydrothermally synthesized α-MnO2 nanorods with alignment for high performance redox capacitors. Such an approach is enabled by high voltage electrophoretic deposition (HVEPD) technology which can obtain vertically aligned nanoforests with great process versatility. The scalable nanomanufacturing process is demonstrated by roll-printing an aligned forest of α-MnO2 nanorods on a large flexible substrate (1 inch by 1 foot). The electrodes show very high power density (340 kW/kg at an energy density of 4.7 Wh/kg) and excellent cyclability (over 92% capacitance retention over 2000 cycles). Pretreatment of the substrate and use of a conductive holding layer have also been shown to significantly reduce the contact resistance between the aligned nanoforests and the substrates. High areal specific capacitances of around 8500 μF/cm(2) have been obtained for each electrode with a two-electrode device configuration. Over 93% capacitance retention was observed when the cycling current densities were increased from 0.25 to 10 mA/cm(2), indicating high rate capabilities of the fabricated electrodes and resulting in the very high attainable power density. The high performance of the electrodes is attributed to the crystallographic structure, 1D morphology, aligned orientation, and low contact resistance.

  18. An Effective Design of Electrically Conducting Thin-Film Composite (TFC) Membranes for Bio and Organic Fouling Control in Forward Osmosis (FO).

    PubMed

    Liu, Qing; Qiu, Guanglei; Zhou, Zhengzhong; Li, Jingguo; Amy, Gary Lee; Xie, Jianping; Lee, Jim Yang

    2016-10-04

    The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost. This study presents a facile method for the embedment of a continuous electrode in thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, a conducting porous carbon paper is used as the understructure for the formation of a membrane substrate by the classical phase inversion process. The carbon paper and the membrane substrate polymer form an interpenetrating structure with good stability and low electrical resistance (only about 1Ω/□). The membrane-electrode assembly was deployed as the cathode of an electrochemical cell, and showed good resistance to organic and microbial fouling with the imposition of a 2.0 V DC voltage. The carbon paper-based FO TFC membranes also possess good mechanical stability for practical use.

  19. Collection of holes in thick TlBr detectors at low temperature

    NASA Astrophysics Data System (ADS)

    Dönmez, Burçin; He, Zhong; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.

    2012-10-01

    A 3.5×3.5×4.6 mm3 thick TlBr detector with pixellated Au/Cr anodes made by Radiation Monitoring Devices Inc. was studied. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0 mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board. Several experiments were carried out at -20 °C, with the detector under bias for over a month. An energy resolution of 1.7% FWHM at 662 keV was measured without any correction at -2400 V bias. Holes generated at all depths can be collected by the cathode at -2400 V bias which made depth correction using the cathode-to-anode ratio technique difficult since both charge carriers contribute to the signal. An energy resolution of 5.1% FWHM at 662 keV was obtained from the best pixel electrode without depth correction at +1000 V bias. In this positive bias case, the pixel electrode was actually collecting holes. A hole mobility-lifetime of 0.95×10-4 cm2/V has been estimated from measurement data.

  20. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity

    NASA Astrophysics Data System (ADS)

    Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang

    2017-11-01

    We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.

  1. ORGANOPHOSPHORUS HYDROLASE-BASED AMPEROMETRIC SENSOR: MODULATION OF SENSITIVITY AND SUBSTRATE SELECTIVITY

    EPA Science Inventory

    The detection of organophosphate (OP) insecticides with nitrophenyl substituents is reported using an enzyme electrode composed of Organophosphorus Hydrolase (OPH) and albumin co-immobilized to a nylon net and attached to a carbon paste electrode. The mechanism for this biosen...

  2. Fluoride Thin Films: from Exchange Bias to Multferroicity

    NASA Astrophysics Data System (ADS)

    Johnson, Trent A.

    This dissertation concerns research into the growth and characterization fluoride thin films by molecular beam epitaxy. After a discussion of relevant background material and experimental procedures in the first two chapters, we study exchange bias in magnetic multilayers incorporating the uniaxial antiferromagnet FeF2, grown to varying thicknesses, sandwiched between ferromagnetic Co layers with fixed thicknesses of 5 and 20 nm. Several bilayers with only the 20 nm thick Co layer were grown for comparative study. The samples were grown on Al2O3 (112¯0) substrates at room temperature. In-situ RHEED and x-ray diffraction indicated the films were polycrystalline. The films were determined to have low surface and interlayer roughness, as determined by AFM and x-ray reflectivity. After field-cooling to below the Neel temperature of FeF2 in a magnetic field of 1 kOe, magnetic hysteresis loops were measured as a function of temperature. We found that both layers had a negative exchange bias, with the exchange bias of the thinner layer larger than that of the thicker layer. In addition, the coercivity below the blocking temperature TB of the thinner layer was significantly larger than that of the thick layer, even though the coercivity of the two layers was the same for T > TB. The exchange bias effect, manifested by a shift in these hysteresis loops, showed a strong dependence on the thickness of the antiferromagnet. Anisotropic magnetoresistance measurements provided additional insight into the magnetization reversal mechanism within the ferromagnets. The thickness dependent exchange anisotropy of trilayer and bilayer samples is explained by adapting a random field model to the antiferromagnet/ferromagnet interface. Finally, We investigate the temperature dependent growth, as well as the magnetic and ferroelectric properties of thin films of the multiferroic compounds BaMF4, where M = Fe, Co, Ni. The films were grown to thicknesses of 50 or 100 nm on single crystal Al2O3 (0001) substrates. X-ray diffraction showed that this family of films grew epitaxially in the (010) orientation, but were twinned in the plane, with three domain orientations rotated by 120 degrees relative to one another. Measurements of the remanent hysteresis via interdigitated electrodes showed that the compounds M = Co, and Ni were ferroelectric, but no switching behavior was observed in the Fe system at electric fields up to 400 kV/cm. Measurements of the field-cooled and zero-field-cooled magnetic moment confirmed low temperature antiferromagnetic behavior, and found new weak ferromagnetic phases induced by strain.

  3. Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode.

    PubMed

    Wang, Fan; Zuo, Zicheng; Shang, Hong; Zhao, Yingjie; Li, Yuliang

    2018-03-08

    A moderate method is first developed here for superfast (in seconds) growth of an ultrafine graphdiyne (GDY) nanochain on arbitrary substrates in the atmosphere. This is an environmentally friendly and metal-catalyst-free method, efficiently eliminating extraneous contaminations for the carbon materials. The seamless GDY coating on any substrates demonstrates that an all-carbon GDY possesses outstanding controllability and processability, perfectly compensating for the drawbacks of prevailing all-carbon materials. After the decoration of 3D GDY nanostructures, the substrates become superhydrophobic with contact angles high up to of 148° and can be used as outstanding frameworks for storing organic pollution. Because of the reasonable porous and 3D continuous features, the as-prepared samples can be applied as high-performance binder-free supercapacitor electrodes with high area capacitance of up to 53.66 mF cm -2 , prominent power performance, and robust long-term retention (99% after 1300 cycles).

  4. A field induced guide-antiguide modulator of GaAs-AlGaAs

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Chung, Y.; Young, D. B.; Dagli, N.; Coldren, L. A.

    1991-01-01

    A guide-antiguide modulator of GaAs-AlGaAs using the electric-field-induced waveguide concept was demonstrated. The device was formed with a central waveguide electrode sandwiched between two antiguide electrodes on the surface of a p-i-n multiple quantum well (MQW). Switching between lateral guiding and antiguiding was accomplished by reverse biasing either the central electrode or the adjacent electrodes to increase the index beneath these respective regions. The on-off ratio was measured to be 20:1 with a propagation loss of the on-state of about 5 dB/mm.

  5. Segmentally structured disk triboelectric nanogenerator

    DOEpatents

    Wang, Zhong Lin; Zhu, Guang; Lin, Long; Wang, Sihong; Chen, Jun

    2016-11-01

    A generator includes a disc shaped first unit, a disc shaped second unit and an axle. The first unit includes a substrate layer, a double complementary electrode layer and an electrification material layer. The electrode layer includes a first electrode member and a second electrode member. The first electrode member includes evenly spaced apart first electrode legs extending inwardly. The second electrode member is complementary in shape to the first electrode member. The legs of the first electrode member and the second electrode member are interleaved with each other and define a continuous gap therebetween. The electrification material includes a first material that is in a first position on the triboelectric series. The second unit defines elongated openings and corresponding elongated leg portions, and includes a second material that is at a second position on a triboelectric series, different than the first position.

  6. Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential.

    PubMed

    Bouzid, Assil; Pasquarello, Alfredo

    2018-04-19

    Based on constant Fermi-level molecular dynamics and a proper alignment scheme, we perform simulations of the Pt(111)/water interface under variable bias potential referenced to the standard hydrogen electrode (SHE). Our scheme yields a potential of zero charge μ pzc of ∼0.22 eV relative to the SHE and a double layer capacitance C dl of ≃19 μF cm -2 , in excellent agreement with experimental measurements. In addition, we study the structural reorganization of the electrical double layer for bias potentials ranging from -0.92 eV to +0.44 eV and find that O down configurations, which are dominant at potentials above the pzc, reorient to favor H down configurations as the measured potential becomes negative. Our modeling scheme allows one to not only access atomic-scale processes at metal/water interfaces, but also to quantitatively estimate macroscopic electrochemical quantities.

  7. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting

    PubMed Central

    Barroso, Monica; Mesa, Camilo A.; Pendlebury, Stephanie R.; Cowan, Alexander J.; Hisatomi, Takashi; Sivula, Kevin; Grätzel, Michael; Klug, David R.; Durrant, James R.

    2012-01-01

    This paper addresses the origin of the decrease in the external electrical bias required for water photoelectrolysis with hematite photoanodes, observed following surface treatments of such electrodes. We consider two alternative surface modifications: a cobalt oxo/hydroxo-based (CoOx) overlayer, reported previously to function as an efficient water oxidation electrocatalyst, and a Ga2O3 overlayer, reported to passivate hematite surface states. Transient absorption studies of these composite electrodes under applied bias showed that the cathodic shift of the photocurrent onset observed after each of the surface modifications is accompanied by a similar cathodic shift of the appearance of long-lived hematite photoholes, due to a retardation of electron/hole recombination. The origin of the slower electron/hole recombination is assigned primarily to enhanced electron depletion in the Fe2O3 for a given applied bias. PMID:22802673

  8. Precise Placement of Metallic Nanowires on a Substrate by Localized Electric Fields and Inter-Nanowire Electrostatic Interaction

    PubMed Central

    2017-01-01

    Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%). Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit. PMID:29048363

  9. The influence of boron doping level on quality and stability of diamond film on Ti substrate

    NASA Astrophysics Data System (ADS)

    Wei, J. J.; Li, Ch. M.; Gao, X. H.; Hei, L. F.; Lvun, F. X.

    2012-07-01

    In this study, we investigate the influence of boron doping level on film quality and stability of boron doped diamond (BDD) film deposited on titanium substrate (Ti/BDD) using microwave plasma chemical vapor deposition system. The results demonstrate that high boron concentration will improve the film conductivity, whereas the diamond film quality and adhesion are deteriorated obviously. The increase of total internal stress in the film and the variation of components within the interlayer will weaken the coating adhesion. According to the analysis of electrode inactivation mechanism, high boron doping level will be harmful to the electrode stability in the view of diamond quality and adhesion deterioration. In this study, 5000 ppm B/C ratio in the reaction gas is optimized for Ti/BDD electrode preparation.

  10. Light emitting ceramic device and method for fabricating the same

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  11. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  12. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  13. Methods and devices for measuring orbital angular momentum states of electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMorran, Benjamin J.; Harvey, Tyler R.

    A device for measuring electron orbital angular momentum states in an electron microscope includes the following components aligned sequentially in the following order along an electron beam axis: a phase unwrapper (U) that is a first electrostatic refractive optical element comprising an electrode and a conductive plate, where the electrode is aligned perpendicular to the conductive plate; a first electron lens system (L1); a phase corrector (C) that is a second electrostatic refractive optical element comprising an array of electrodes with alternating electrostatic bias; and a second electron lens system (L2). The phase unwrapper may be a needle electrode ormore » knife edge electrode.« less

  14. Influence of the RF electrode cleanliness on plasma characteristics and dust-particle generation in methane dusty plasmas

    NASA Astrophysics Data System (ADS)

    Géraud-Grenier, I.; Desdions, W.; Faubert, F.; Mikikian, M.; Massereau-Guilbaud, V.

    2018-01-01

    The methane decomposition in a planar RF discharge (13.56 MHz) leads both to a dust-particle generation in the plasma bulk and to a coating growth on the electrodes. Growing dust-particles fall onto the grounded electrode when they are too heavy. Thus, at the end of the experiment, the grounded electrode is covered by a coating and by fallen dust-particles. During the dust-particle growth, the negative DC self-bias voltage (VDC) increases because fewer electrons reach the RF electrode, leading to a more resistive plasma and to changes in the plasma chemical composition. In this paper, the cleanliness influence of the RF electrode on the dust-particle growth, on the plasma characteristics and composition is investigated. A cleanliness electrode is an electrode without coating and dust-particles on its surface at the beginning of the experiment.

  15. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  16. New Concentric Electrode Metal-Semiconductor-Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Towe, Elias

    1996-01-01

    A new metal-semiconductor-metal (MSM) photodetector geometry is proposed. The new device has concentric metal electrodes which exhibit a high degree of symmetry and a design flexibility absent in the conventional MSM device. The concentric electrodes are biased to alternating potentials as in the conventional interdigitated device. Because of the high symmetry configuration, however, the new device also has a lower effective capacitance. This device and the conventional MSM structure are analyzed within a common theoretical framework which allows for the comparison of the important performance characteristics.

  17. Control of secondary electrons from ion beam impact using a positive potential electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  18. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells.

    PubMed

    Hassen, Diab; El-Safty, Sherif A; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed A; Sakai, Masaru

    2016-04-14

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  19. Fabrication of a sensing module using micromachined biosensors.

    PubMed

    Suzuki, H; Arakawa, H; Karube, I

    2001-12-01

    Micromachining is a powerful tool in constructing micro biosensors and micro systems which incorporate them. A sensing module for blood components was fabricated using the technology. The analytes include glucose, urea, uric acid, creatine, and creatinine. Transducers used to construct the corresponding sensors were a Severinghaus-type carbon dioxide electrode for the urea sensor and a Clark-type oxygen electrode for the other analytes. In these electrodes, detecting electrode patterns were formed on a glass substrate by photolithography and the micro container for the internal electrolyte solution was formed on a silicon substrate by anisotropic etching. A through-hole was formed in the sensitive area, where a silicone gas-permeable membrane was formed and an enzyme was immobilized. The sensors were characterized in terms of pH and temperature dependence and calibration curves along with detection limits. Furthermore, the sensors were incorporated in an acrylate flow cell. Simultaneous operation of these sensors was successfully conducted and distinct and stable responses were observed for respective sensors.

  20. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands. PMID:25276099

  1. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  2. Electro-hydrodynamic printing of drugs onto edible substrates

    NASA Astrophysics Data System (ADS)

    Shen, Yueyang; Elele, Ezinwa; Palle, Prashanth; Khusid, Boris; Basaran, Osman; McGough, Patrick T.; Collins, Robert T.

    2009-11-01

    While most existing drugs are manufactured as tablets using powder processing techniques, there is growing interest in printing drops containing pharmaceutical actives on edible substrates. We have developed a drop-on-demand (DOD) printing method appropriate for either replacing existing manufacturing platforms or enabling personalized medicine that overcomes the various critical challenges facing current DOD technologies. To eliminate adverse effects of electro-chemical reactions at the fluid-electrode interface, the fluid is infused into an electrically insulating nozzle to form a pendant drop that serves as a floating electrode capacitively coupled to external electrodes. A liquid bridge is formed and broken as the voltage applied at the electrode is varied in time. This gentle method for drop deposition has been demonstrated to operate with fluids spanning over three orders of magnitude in viscosity and conductivity. The proposed method has the potential for the evolving field of pharmaceutical and biomedical applications requiring the deposition of fluids at the exact locations with high volume accuracy.

  3. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging.

    PubMed

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-07-29

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.

  4. Direct Synthesis of Carbon Nanotube Field Emitters on Metal Substrate for Open-Type X-ray Source in Medical Imaging

    PubMed Central

    Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2017-01-01

    We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237

  5. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    PubMed Central

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  6. Development of electrodes for the NASA iron/chromium

    NASA Technical Reports Server (NTRS)

    Swette, L.; Jalan, V.

    1984-01-01

    This program was directed primarily to the development of the negative (Cr3+/Cr2+) electrode for the NASA chromous/ferric Redox battery. The investigation of the effects of substrate processing and gold/lead catalyzation parameters on electrochemical performance were continued. In addition, the effects of reactant cross-mixing, acidity level, and temperature were examined for both Redox couples. Finally, the performance of optimized electrodes was tested in system hardware (1/3 square foot single cell). The major findings are discussed: (1) The recommended processing temperature for the carbon felt, as a substrate for the negative electrode, is 1650 to 1750 C, (2) The recommended gold catalyzation procedure is essentially the published NASA procedure (NASA TM-82724, Nov. 1981) based on deposition from aqueous methanol solution, with the imposition of a few controls such as temperature (25 C) and precatalyzation pH of the felt (7), (3) Experimental observations of the gold catalyzation process and subsequent electron microscopy indicate that the gold is deposited from the colloidal state, induced by contact of the solution with the carbon felt, (4) Electrodeposited lead appears to be present as a thin uniform layer over the entire surface of the carbon fibers, rather than an discrete particles, and (5) Cross-mixing of reactants (Fe-2+ in negative electrode solution or Cr-3+ in the positive electrode solution) did not appear to produce significant interference at either electrode.

  7. Preparation of flexible organic solar cells with highly conductive and transparent metal-oxide multilayer electrodes based on silver oxide.

    PubMed

    Yun, Jungheum; Wang, Wei; Bae, Tae Sung; Park, Yeon Hyun; Kang, Yong-Cheol; Kim, Dong-Ho; Lee, Sunghun; Lee, Gun-Hwan; Song, Myungkwan; Kang, Jae-Wook

    2013-10-23

    We report that significantly more transparent yet comparably conductive AgOx films, when compared to Ag films, are synthesized by the inclusion of a remarkably small amount of oxygen (i.e., 2 or 3 atom %) in thin Ag films. An 8 nm thick AgOx (O/Ag=2.4 atom %) film embedded between 30 nm thick ITO films (ITO/AgOx/ITO) achieves a transmittance improvement of 30% when compared to a conventional ITO/Ag/ITO electrode with the same configuration by retaining the sheet resistance in the range of 10-20 Ω sq(-1). The high transmittance provides an excellent opportunity to improve the power-conversion efficiency of organic solar cells (OSCs) by successfully matching the transmittance spectral range of the electrode to the optimal absorption region of low band gap photoactive polymers, which is highly limited in OSCs utilizing conventional ITO/Ag/ITO electrodes. An improvement of the power-conversion efficiency from 4.72 to 5.88% is achieved from highly flexible organic solar cells (OSCs) fabricated on poly(ethylene terephthalate) polymer substrates by replacing the conventional ITO/Ag/ITO electrode with the ITO/AgOx/ITO electrode. This novel transparent electrode can facilitate a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area flexible OSCs on heat-sensitive polymer substrates with excellent power-conversion efficiencies.

  8. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  9. Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts

    PubMed Central

    Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas

    2013-01-01

    Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816

  10. Open-Source Low-Cost Wireless Potentiometric Instrument for pH Determination Experiments

    ERIC Educational Resources Information Center

    Jin, Hao; Qin, Yiheng; Pan, Si; Alam, Arif U.; Dong, Shurong; Ghosh, Raja; Deen, M. Jamal

    2018-01-01

    pH determination is an essential experiment in many chemistry laboratories. It requires a potentiometric instrument with extremely low input bias current to accurately measure the voltage between a pH sensing electrode and a reference electrode. In this technology report, we propose an open-source potentiometric instrument for pH determination…

  11. Dual Band Deep Ultraviolet AlGaN Photodetectors

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.

    2007-01-01

    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.

  12. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  13. Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

    2006-04-11

    Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cela, Carlos Jose; Lazzi, Gianluca

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power sourcemore » via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.« less

  15. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    NASA Astrophysics Data System (ADS)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  16. Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, S.; Zhitomirsky, I.

    2013-12-01

    In this work we demonstrate the feasibility of deposition of polypyrrole (PPy) films by electropolymerization on stainless steel substrates and fabrication of PPy powders by chemical polymerization using sulfanilic acid azochromotrop (SPADNS) as a new anionic dopant. The problem of low adhesion of PPy films to stainless steel substrates is addressed by the use of SPADNS, which exhibits chelating properties, promoting film formation. The use of fine particles, prepared by the chemical polymerization method, allows impregnation of Ni foams and fabrication of porous electrodes with high materials loading for electrochemical supercapacitors (ES). PPy films and Ni foam based PPy electrodes show capacitive behaviour in Na2SO4 electrolyte. The electron microscopy studies, impedance spectroscopy data and analysis of the SPADNS structure provide an insight into the factors, controlling capacitive behaviour. The Ni foam based electrodes offer advantages of improved capacitive behaviour at high materials loadings and good cycling stability. The area normalized and volume normalized specific capacitances are as high as 5.43 F cm-2 and 93.6 F cm-3, respectively, for materials loading of 35.4 mg cm-2. The capacitance retention of Ni foam based electrodes is 91.5% after 1000 cycles. The Ni foam based PPy electrodes are promising for application in ES.

  17. High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process.

    PubMed

    Khan, Arshad; Lee, Sangeon; Jang, Taehee; Xiong, Ze; Zhang, Cuiping; Tang, Jinyao; Guo, L Jay; Li, Wen-Di

    2016-06-01

    A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells.

    PubMed

    Kusnezoff, Mihails; Trofimenko, Nikolai; Müller, Martin; Michaelis, Alexander

    2016-11-08

    The solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC) is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC. To improve the performance of this cell type in SOFC/SOEC mode, alternative fuel electrodes, on the basis of Ni/CGO as well as electrolytes with reduced thickness, have been applied. Furthermore, different interlayers on the air side have been tested to avoid the electrode delamination and to reduce the cell degradation in electrolysis mode. Finally, the influence of the contacting layer on cell performance, especially for cells with an ultrathin electrolyte and thin electrode layers, has been investigated. It has been found that Ni/CGO outperform traditional Ni/8YSZ electrodes and the introduction of a ScSZ interlayer substantially reduces the degradation rate of ESC in electrolysis mode. Furthermore, it was demonstrated that, for thin electrodes, the application of contacting layers with good conductivity and adhesion to current collectors improves performance significantly.

  19. High surface area electrodes by template-free self-assembled hierarchical porous gold architecture.

    PubMed

    Morag, Ahiud; Golub, Tatiana; Becker, James; Jelinek, Raz

    2016-06-15

    The electrode active surface area is a crucial determinant in many electrochemical applications and devices. Porous metal substrates have been employed in electrode design, however construction of such materials generally involves multistep processes, generating in many instances electrodes exhibiting incomplete access to internal pore surfaces. Here we describe fabrication of electrodes comprising hierarchical, nano-to-microscale porous gold matrix, synthesized through spontaneous crystallization of gold thiocyanate in water. Cyclic voltammetry analysis revealed that the specific surface area of the conductive nanoporous Au microwires was very high and depended only upon the amount of gold used, not electrode areas or geometries. Application of the electrode in a pseudo-capacitor device is presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Han, Yu; Liu, Shuang-yu; Cui, Lei; Xu, Li; Xie, Jian; Xia, Xue-Ke; Hao, Wen-Kui; Wang, Bo; Li, Hui; Gao, Jie

    2018-01-01

    A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and 50 nm, respectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during repeated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh.g-1 after 100 cycles at 50 mA.g-1, demonstrating the good cycling stability as a result of the unique microstructure of this electrode material.

Top