A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation.
Zhang, Rui; Zhu, Shiping; Zhou, Qin
2016-10-21
Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models.
A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation
Zhang, Rui; Zhu, Shiping; Zhou, Qin
2016-01-01
Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660
The double-gradient model of flapping instability with oblique wave vector
NASA Astrophysics Data System (ADS)
Korovinskiy, Daniil; Kiehas, Stefan
2017-04-01
The double-gradient model of magnetotail flapping oscillations/instability is generalized for the case of oblique propagation in the equatorial plane. The transversal direction Y (in GSM reference system) of the wave vector is found to be preferable, showing the highest growth rates of kink and sausage double-gradient unstable modes. Growth rates decrease with the wave vector rotating toward the X direction. It is found that neither waves nor instability with a wave vector pointing toward the Earth/magnetotail can develop.
A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields
NASA Astrophysics Data System (ADS)
Domokos, Gábor; Holmes, Philip; Lángi, Zsolt
2016-12-01
Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.
NASA Astrophysics Data System (ADS)
Chanteur, Gérard M.; Le Contel, Olivier; Retino, Alessandro; Sahraoui, Fouad; Mirioni, Laurent
2017-04-01
Reciprocal Vectors of the tetrahedron have been used since the beginning of the CLUSTER mission for estimating gradients of physical fiels, either scalar (density) or vector (magnetic field). An introduction to the method was given in chapter 14 of the ISSI book SR001 published in 1998 ''Analysis Methods for Multi-Spacecraft Data'', and an updated review of the method has been presented in the second ISSI book SR008 ''Multi-Spacecraft Analysis Methods Revisited'' in 2008. This method encompasses the curlometer tool based on Ampère's theorem, moreover it allows a detailed analysis of errors affecting the estimated gradients and it handles symmetrically the four spacecraft. The quality of the estimated gradient depends upon the proximity of the real tetrahedron to the regular tetrahedron : geometrical errors due to uncertainties in spacecraft positions grow rapidly when the tetrahedron is flat or elongated. A new approach has been designed to remedy this caveat to some extent. By contrast to the original method Generalized Reciprocal Vectors (GRV's)result from the search of an optimal weighting of the data provided by the four spacecraft. We will present applications to MMS cases during crossings of current sheets.
A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow
NASA Astrophysics Data System (ADS)
Yu, Lei; Xia, Mingliang; Xuan, Li
2013-10-01
The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Poole, E. L.
1986-01-01
In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.
Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification
Dai, Baisheng; Wu, Xiangqian; Bu, Wei
2016-01-01
Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches. PMID:27564376
NASA Astrophysics Data System (ADS)
Wu, Peilin; Zhang, Qunying; Fei, Chunjiao; Fang, Guangyou
2017-04-01
Aeromagnetic gradients are typically measured by optically pumped magnetometers mounted on an aircraft. Any aircraft, particularly helicopters, produces significant levels of magnetic interference. Therefore, aeromagnetic compensation is essential, and least square (LS) is the conventional method used for reducing interference levels. However, the LSs approach to solving the aeromagnetic interference model has a few difficulties, one of which is in handling multicollinearity. Therefore, we propose an aeromagnetic gradient compensation method, specifically targeted for helicopter use but applicable on any airborne platform, which is based on the ɛ-support vector regression algorithm. The structural risk minimization criterion intrinsic to the method avoids multicollinearity altogether. Local aeromagnetic anomalies can be retained, and platform-generated fields are suppressed simultaneously by constructing an appropriate loss function and kernel function. The method was tested using an unmanned helicopter and obtained improvement ratios of 12.7 and 3.5 in the vertical and horizontal gradient data, respectively. Both of these values are probably better than those that would have been obtained from the conventional method applied to the same data, had it been possible to do so in a suitable comparative context. The validity of the proposed method is demonstrated by the experimental result.
Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes
Erkol, Bulent; Moss, Randy H.; Stanley, R. Joe; Stoecker, William V.; Hvatum, Erik
2011-01-01
Background Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. Methods In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. Results Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. Conclusions The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images. PMID:15691255
NASA Astrophysics Data System (ADS)
Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin
2015-06-01
We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found
NASA Astrophysics Data System (ADS)
Chang, Ming-Ching; Tao, Xiaodong
2010-03-01
Segmentation and representation of human brain cortex from Magnetic Resonance (MR) images is an important step for visualization and analysis in many neuro imaging applications. In this paper, we propose an automatic and fast algorithm to segment the brain cortex and to represent it as a geometric surface on which analysis can be carried out. The algorithm works on T1 weighted MR brain images with extracranial tissue removed. A fuzzy clustering algorithm with a parametric bias field model is applied to assign membership values of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to each voxel. The cortical boundaries, namely the WM-GM and GM-CSF boundary surfaces, are extracted as iso-surfaces of functions derived from these membership functions. The central surface (CS), which traces the peak values (or ridges) of the GM membership function, is then extracted using gradient vector diffusion. Our main contribution is to provide a generic, accurate, fast, yet fully-automatic approach to (i) produce a soft segmentation of the MR brain image with intensity field correction, (ii) extract both the boundary and the center of the cortex in a surface form, where the topology and geometry can be explicitly examined, and (iii) use the extracted surfaces to model the curvy, folding cortical volume, which allows an intuitive measurement of the thickness. As a demonstration, we compute cortical thickness from the surfaces and compare the results with what has been reported in the literature. The entire process from raw MR image to cortical surface reconstruction takes on average between five to ten minutes.
NASA Astrophysics Data System (ADS)
Saha, Priya; Bhowmik, Mrinal K.; Bhattacharjee, Debotosh; De, Barin K.; Nasipuri, Mita
2013-03-01
Pose and illumination invariant face recognition problem is now-a-days an emergent problem in the field of information security. In this paper, gradient based fusion method of gradient visual and corresponding infrared face images have been proposed to overcome the problem of illumination varying conditions. This technique mainly extracts illumination insensitive features under different conditions for effective face recognition purpose. The gradient image is computed from a visible light image. Information fusion is performed in the gradient map domain. The image fusion of infrared image and corresponding visual gradient image is done in wavelet domain by taking the maximum information of approximation and detailed coefficients. These fused images have been taken for dimension reduction using Independent Component Analysis (ICA). The reduced face images are taken for training and testing purposes from different classes of different datasets of IRIS face database. SVM multiclass strategy `one-vs.-all' have been taken in the experiment. For training support vector machine, Sequential Minimal Optimization (SMO) algorithm has been used. Linear kernel and Polynomial kernel with degree 3 are used in SVM kernel functions. The experiment results show that the proposed approach generates good classification accuracies for the face images under different lighting conditions.
Ehrentraut, Claudia; Ekholm, Markus; Tanushi, Hideyuki; Tiedemann, Jörg; Dalianis, Hercules
2016-08-04
Hospital-acquired infections pose a significant risk to patient health, while their surveillance is an additional workload for hospital staff. Our overall aim is to build a surveillance system that reliably detects all patient records that potentially include hospital-acquired infections. This is to reduce the burden of having the hospital staff manually check patient records. This study focuses on the application of text classification using support vector machines and gradient tree boosting to the problem. Support vector machines and gradient tree boosting have never been applied to the problem of detecting hospital-acquired infections in Swedish patient records, and according to our experiments, they lead to encouraging results. The best result is yielded by gradient tree boosting, at 93.7 percent recall, 79.7 percent precision and 85.7 percent F1 score when using stemming. We can show that simple preprocessing techniques and parameter tuning can lead to high recall (which we aim for in screening patient records) with appropriate precision for this task.
Dembélé, S; Lehmann, O; Medjaher, K; Marturi, N; Piat, N
2016-10-01
Autofocus is an important issue in electron microscopy, particularly at high magnification. It consists in searching for sharp image of a specimen, that is corresponding to the peak of focus. The paper presents a machine learning solution to this issue. From seven focus measures, support vector machines fitting is used to compute the peak with an initial guess obtained from a gradient ascent search, that is search in the direction of higher gradient of focus. The solution is implemented on a Carl Zeiss Auriga FE-SEM with a three benchmark specimen and magnification ranging from x300 to x160 000. Based on regularized nonlinear least squares optimization, the solution overtakes the literature nonregularized search and Fibonacci search methods: accuracy improvement ranges from 1.25 to 8 times, fidelity improvement ranges from 1.6 to 28 times, and speed improvement ranges from 1.5 to 4 times. Moreover, the solution is practical by requiring only an off-line easy automatic train with cross-validation of the support vector machines. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Johnston, Emily; Weinstein, Phillip; Slaney, David; Flies, Andrew S; Fricker, Stephen; Williams, Craig
2014-06-01
Understanding the factors influencing mosquito distribution is important for effective surveillance and control of nuisance and disease vector mosquitoes. The goal of this study was to determine how trap height and distance to the city center influenced the abundance and species of mosquitoes collected in Adelaide, South Australia. Mosquito communities were sampled at two heights (<2 m and ~10 m) along an urban-rural gradient. A total of 5,133 mosquitoes was identified over 176 trap nights. Aedes notoscriptus, Ae. vigilax, and Culex molestus were all more abundant in lower traps while Cx. quinquefasciatus (an ornithophilic species) was found to be more abundant in high traps. Distance to city center correlated strongly with the abundance of Ae. vigilax, Ae. camptorhynchus, Cx. globocoxitus, and Cx. molestus, all of which were most common at the sites farthest from the city and closest to the saltmarsh. Overall, the important disease vectors in South Australia (Ae. vigilax, Ae. camptorhynchus, Ae. notoscriptus, and Cx. annulirostris) were more abundant in low traps farthest from the city and closest to the saltmarsh. The current mosquito surveillance practice of setting traps within two meters of the ground is effective for sampling populations of the important disease vector species in South Australia.
Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.
Gur, Berke
2014-06-01
In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms.
Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.
2015-05-15
Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.
Yuasa, Tetsuya; Maksimenko, Anton; Hashimoto, Eiko; Sugiyama, Hiroshi; Hyodo, Kazuyuki; Akatsuka, Takao; Ando, Masami
2006-06-15
The unique tomographic imaging method based on refractive effects that was recently developed by Maksimenko et al. [Appl. Phys. Lett. 86, 124105 (2005)] exhibits an excellent imaging property in the hard-x-ray region for phase objects such as soft materials and biological samples. However, there seems to have been little consideration of the physical aspects of the underlying imaging principles. Also, as the method is similar to diffraction-enhanced-imaging (DEI)-based computed tomography (CT), the difference between these two methodologies has not been made clear. We theoretically consider the imaging principles starting from the measurement process to the reconstruction procedures from the viewpoint of geometrical optics and then clarify their difference in relationship to the physical quantities to be depicted. The major feature of this novel method is the in-plane two-dimensional vector-field reconstruction of the refractive-index gradient in an object, while DEI CT obtains the out-of-plane scalar-field gradient component. In other words, the novel method and DEI CT present the transverse and the longitudinal components, respectively, of the three-dimensional vector fields of the gradient refractive index. Therefore they can be considered complementary to each other.
NASA Astrophysics Data System (ADS)
Oruç, Bülent
2010-01-01
The magnetic gradient tensor (MGT) provides gradient components of potential fields with mathematical properties which allow processing techniques e.g. analytic signal techniques. With MGT emerging as a new tool for geophysical exploration, the mathematical modelling of gradient tensor fields is necessary for interpretation of magnetic field measurements. The point-dipole and line of dipoles are used to approximate various magnetic objects. I investigate the maxima of the magnitude of magnetic vector components (MMVC) and analytic signals of magnetic gradient tensor (ASMGT) resulting from point-dipole and line of dipoles sources in determining horizontal locations. I also present a method in which depths of these sources are estimated from the ratio of the maximum of MMVC to the maximum of ASMGT. Theoretical examples have been carried out to test the feasibility of the method in obtaining source locations and depths. The method has been applied to the MMVC and ASMGT computed from the total field data over a basic/ultrabasic body at the emerald deposit of Socotó, Bahia, Brazil and buried water supply pipe near Jadaguda Township, India. In both field examples, the method produces good correlations with previous interpretations.
NASA Astrophysics Data System (ADS)
Vukoslavčević, Petar V.; Wallace, James M.
2013-11-01
Multi-sensor, hot-wire probes of various configurations have been used for 25 years to simultaneously measure the velocity vector and the velocity gradient tensor in turbulent flows. This is the same period in which direct numerical simulations (DNS) were carried out to investigate these flows. Using the first DNS of a turbulent boundary layer, Moin and Spalart ["Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence," NASA Technical Memorandum 100022 (1987)] examined, virtually, the performance of a two-sensor X-array probe with the sensors idealized as points in the numerical grid. Subsequently, several investigators have used DNS for similar studies. In this paper we use a highly resolved minimal channel flow DNS, following Jiménez and Moin ["The minimal flow unit in near-wall turbulence," J. Fluid Mech. 225, 213 (1991)], to study the performance of an 11-sensor probe. Our previous studies of this type have indicated that, on balance, a probe of the design described here may provide the most accurate measurements of many of the statistics formed from the velocity vector and the velocity gradient tensor (rms and skewness values of the velocity and vorticity components as well as the Reynolds shear stress and the dissipation and production rates). The results of the present study show that, indeed, the sensor and array configurations of a probe of this design are considerably better than previous designs that have been used, and they are likely to give reasonably satisfactory results for such measurements with a real probe in a real bounded flow.
On gradient field theories: gradient magnetostatics and gradient elasticity
NASA Astrophysics Data System (ADS)
Lazar, Markus
2014-09-01
In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.
Snyder, James W.; Hohenstein, Edward G.; Luehr, Nathan; Martínez, Todd J.
2015-10-21
We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10{sup 2}) atoms.
ERIC Educational Resources Information Center
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
On Potential Vorticity Flux Vectors.
NASA Astrophysics Data System (ADS)
Bannon, Peter R.; Schmidli, Jürg; Schär, Christoph
2003-12-01
Dynamical, rather than kinematical, considerations indicate that a generalized potential vorticity in terms of the gradient of an arbitrary scalar function requires that the potential vorticity flux vector contain a contribution due to gravity and the pressure gradient force. It is shown that such a potential vorticity flux vector has a simpler definition in terms of the gradient of the kinetic energy rather than that of a Bernoulli function. This result is valid for multicomponent fluids. Flux vectors for a salty ocean and a moist atmosphere with hydrometeors are presented.
Primer vector theory and applications
NASA Technical Reports Server (NTRS)
Jezewski, D. J.
1975-01-01
A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.
NASA Astrophysics Data System (ADS)
Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.
2008-04-01
Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).
Full Gradient Solution to Adaptive Hybrid Control
NASA Technical Reports Server (NTRS)
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2016-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered-reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Full Gradient Solution to Adaptive Hybrid Control
NASA Technical Reports Server (NTRS)
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2017-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Divergence-based vector quantization.
Villmann, Thomas; Haase, Sven
2011-05-01
Supervised and unsupervised vector quantization methods for classification and clustering traditionally use dissimilarities, frequently taken as Euclidean distances. In this article, we investigate the applicability of divergences instead, focusing on online learning. We deduce the mathematical fundamentals for its utilization in gradient-based online vector quantization algorithms. It bears on the generalized derivatives of the divergences known as Fréchet derivatives in functional analysis, which reduces in finite-dimensional problems to partial derivatives in a natural way. We demonstrate the application of this methodology for widely applied supervised and unsupervised online vector quantization schemes, including self-organizing maps, neural gas, and learning vector quantization. Additionally, principles for hyperparameter optimization and relevance learning for parameterized divergences in the case of supervised vector quantization are given to achieve improved classification accuracy.
Dengue Vectors and their Spatial Distribution
Higa, Yukiko
2011-01-01
The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133
Guilfoyle, R.A.; Smith, L.M.
1994-12-27
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.
Guilfoyle, Richard A.; Smith, Lloyd M.
1994-01-01
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.
ERIC Educational Resources Information Center
Levine, Robert
2004-01-01
The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…
NASA Technical Reports Server (NTRS)
Gray, Robert M.
1989-01-01
During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.
Dovey, D.
1995-03-22
Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.
Conjugate gradient algorithms using multiple recursions
Barth, T.; Manteuffel, T.
1996-12-31
Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.
1981-10-19
Finally, an assessment of the current technologies in gradient index has been made. This includes a series of recommendations w’iich will be...17 III. Ray Tracing in Anamorphic Gradient Index Media ......... 20 IV. Fabrication of Six Gradient Index Samples ............. 27 V. Technology ...for a basic understanding of what can and cannot be done with gradient index lenses, aside from any lack of technology for making a paricular gradient
Registration of Visible and Infrared Images Based on Gradient Information
NASA Astrophysics Data System (ADS)
Geng, Yingnan; Wang, Yanan
2017-06-01
Multi-modality image registration is very challenging due to disparate imaging theory of sensors. Extraction of similar features and evaluation of algorithms have been two key difficulties. In this paper, gradient of RGB vector space, as a similar image feature, is shown the viability of using for the registration of infrared and visible still stereo pairs. Based on adaptive support-window algorithm, a novel method, which formulates the registration problem as correspondences between gradients of RGB vector space and obtains the best matching by minimizing gradient difference in sliding correspondence support-windows, is proposed. Evaluation experiments demonstrate high rates of successful registration by yielding qualitative and quantitative results.
Multistage vector (MSV) therapeutics.
Wolfram, Joy; Shen, Haifa; Ferrari, Mauro
2015-12-10
One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Multistage vector (MSV) therapeutics
Wolfram, Joy; Shen, Haifa; Ferrari, Mauro
2015-01-01
One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836
Gradient systems on coupled cell networks
NASA Astrophysics Data System (ADS)
Manoel, Miriam; Roberts, Mark
2015-10-01
For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs. These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of {{\\mathbf{S}}1} -invariant admissible functions on a ring of cells.
A generalized nonlocal vector calculus
NASA Astrophysics Data System (ADS)
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Fu, Yangyang; Chen, Huanyang
2016-12-01
Metamaterials possess exotic properties that do not exist in nature. Gradient metamaterials, which are characterized by a continuous spatial variation of their properties, provide a promising approach to the development of both bulk and planar optics. In particular, planar gradient metamaterials can be classified into three categories: gradient metasurfaces, gradient index metamaterials and gradient metallic gratings. In this Review, we summarize the progress made in the theoretical modelling of these materials, in their experimental implementation and in the design of functional devices. We discuss the use of planar gradient metamaterials for wave bending and focusing in free space, for supporting surface plasmon polaritons and for the realization of trapped rainbows. We also focus on the implementation of these materials in waveguide systems, which can enable electromagnetic cloaking, Fano resonances, asymmetric transmission and guided mode conversion. Finally, we discuss promising trends, such as the use of dielectric rather than metallic unit elements and the use of planar gradient metamaterials in 3D systems.
Harmonic vector fields on pseudo-Riemannian manifolds
NASA Astrophysics Data System (ADS)
Friswell, R. M.; Wood, C. M.
2017-02-01
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. The congruence structure of conformal gradient fields on pseudo-Riemannian hyperquadrics and Killing fields on pseudo-Riemannian quadrics is elucidated, and harmonic vector fields of these two types are classified up to congruence. A para-Kähler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.
On the Burgers vector of a wave dislocation
NASA Astrophysics Data System (ADS)
Dennis, Mark R.
2009-09-01
Following Nye and Berry's analogy with crystal dislocations, an approach to the Burgers vector of a wave dislocation (phase singularity, optical vortex) is proposed. It is defined to be a regularized phase gradient evaluated at the phase singularity, and is computed explicitly. The screw component of this vector is naturally related to the helicoidal twisting of wavefronts along a vortex line, and is related to the helicity of the phase gradient. The edge component is related to the nearby current flow (defined by the phase gradient) perpendicular to the vortex, and the distribution of this component is found numerically for random two-dimensional monochromatic waves.
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Histogram of Oriented Gradient Based Gist Feature for Building Recognition
Cheng, Kaili; Yu, Zhezhou
2016-01-01
We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image. Our method, in contrast, uses the normalized histogram of oriented gradient as orientation gist feature vectors of the same image. These HOG-based orientation gist vectors, combined with intensity and color gist feature vectors, are the proposed HOG-gist vectors. In general, the HOG-gist contains four multiorientation histograms (four orientation gist feature vectors), and its texture description ability is stronger than that of the traditional gist using Gabor filters with four angles. Experimental results using Sheffield Buildings Database verify the feasibility and effectiveness of the proposed HOG-gist. PMID:27872639
Histogram of Oriented Gradient Based Gist Feature for Building Recognition.
Li, Bin; Cheng, Kaili; Yu, Zhezhou
2016-01-01
We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image. Our method, in contrast, uses the normalized histogram of oriented gradient as orientation gist feature vectors of the same image. These HOG-based orientation gist vectors, combined with intensity and color gist feature vectors, are the proposed HOG-gist vectors. In general, the HOG-gist contains four multiorientation histograms (four orientation gist feature vectors), and its texture description ability is stronger than that of the traditional gist using Gabor filters with four angles. Experimental results using Sheffield Buildings Database verify the feasibility and effectiveness of the proposed HOG-gist.
NASA Technical Reports Server (NTRS)
Cannell, David
2005-01-01
We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.
Principal patterns of fractional-order differential gradients for face recognition
NASA Astrophysics Data System (ADS)
Yu, Lei; Cao, Qi; Zhao, Anping
2015-01-01
We investigate the ability of fractional-order differentiation (FD) for facial texture representation and present a local descriptor, called the principal patterns of fractional-order differential gradients (PPFDGs), for face recognition. In PPFDG, multiple FD gradient patterns of a face image are obtained utilizing multiorientation FD masks. As a result, each pixel of the face image can be represented as a high-dimensional gradient vector. Then, by employing principal component analysis to the gradient vectors over the centered neighborhood of each pixel, we capture the principal gradient patterns and meanwhile compute the corresponding orientation patterns from which oriented gradient magnitudes are computed. Histogram features are finally extracted from these oriented gradient magnitude patterns as the face representation using local binary patterns. Experimental results on face recognition technology, A.M. Martinez and R. Benavente, Extended Yale B, and labeled faces in the wild face datasets validate the effectiveness of the proposed method.
Caporaso, G J
2004-11-29
A concept being developed for high current electron beams may have application to HEDP and is described here. It involves the use of planar Blumlein stacks placed inside an induction cell. The output end of the Blumlein stack is applied across a high gradient insulator (HGI). These insulators have been used successfully in the presence of kilo Ampere-level electron beam currents for tens of nanoseconds at gradients of 20 MV/meter.
NASA Astrophysics Data System (ADS)
Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki
2015-04-01
Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.
NASA Technical Reports Server (NTRS)
Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)
2002-01-01
A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.
Influence of molecular diffusion on alignment of vector fields: Eulerian analysis
NASA Astrophysics Data System (ADS)
Gonzalez, M.
2017-04-01
The effect of diffusive processes on the structure of passive vector and scalar gradient fields is investigated by analyzing the corresponding terms in the orientation and norm equations. Numerical simulation is used to solve the transport equations for both vectors in a two-dimensional, parameterized model flow. The study highlights the role of molecular diffusion in the vector orientation process and shows its subsequent action on the geometric features of vector fields.
Understanding Singular Vectors
ERIC Educational Resources Information Center
James, David; Botteron, Cynthia
2013-01-01
matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…
Understanding Singular Vectors
ERIC Educational Resources Information Center
James, David; Botteron, Cynthia
2013-01-01
matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…
High Gradient Accelerator Research
Temkin, Richard
2016-07-12
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
Higher-order force gradient symplectic algorithms
NASA Astrophysics Data System (ADS)
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
Browning, Diana L.; Collins, Casey P.; Hocum, Jonah D.; Leap, David J.; Rae, Dustin T.; Trobridge, Grant D.
2016-01-01
Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34+ cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244
Restart 68000 vector remapping
Gustin, J.
1984-05-03
The circuit described allows power-on-reset (POR) vector fetch from ROM for a 68000 microprocessor. It offers programmability of exception vectors, including the restart vector. This method eliminates the need for high-resolution, address-decoder peripheral circuitry.
ERIC Educational Resources Information Center
Aminu, Abdulhadi
2010-01-01
By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…
ERIC Educational Resources Information Center
Aminu, Abdulhadi
2010-01-01
By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…
Insulated Foamy Viral Vectors.
Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D
2016-03-01
Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy.
Multiclass Reduced-Set Support Vector Machines
NASA Technical Reports Server (NTRS)
Tang, Benyang; Mazzoni, Dominic
2006-01-01
There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.
Fant, K.S.; Caryotakis, G.; Koontz, R.F.; Vlieks, A.E. ); Miram, G. , Atherton, CA )
1990-08-01
Experiments have been conducted to determine peak operating gradients attainable in thermionic electron guns. These tests are part of a study of high-current-density, long-life cathodes suitable for use in high power klystrons. We also investigated the use of chromium oxide coating as a means of inhibiting electronic breakdown across the focus electrode anode gap. Field gradients in excess of 280 kV/cm have been achieved for a gun operating at 240 kV with a beam current of 228 A, at pulse widths of the order of 1 {mu}s. 3 refs., 5 figs.
HIGH GRADIENT INDUCTION ACCELERATOR
Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J
2007-06-21
A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.
Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.
2007-01-01
The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.
Covariantized vector Galileons
NASA Astrophysics Data System (ADS)
Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo
2016-03-01
Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.
Gradient Refractive Index Lenses.
ERIC Educational Resources Information Center
Morton, N.
1984-01-01
Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)
2017-09-27
To view a video of the Gradient Sun go to: www.flickr.com/photos/gsfc/8103212817 Looking at a particularly beautiful image of the sun helps show how the lines between science and art can sometimes blur. But there is more to the connection between the two disciplines: science and art techniques are often quite similar, indeed one may inform the other or be improved based on lessons from the other arena. One such case is a technique known as a "gradient filter" – recognizable to many people as an option available on a photo-editing program. Gradients are, in fact, a mathematical description that highlights the places of greatest physical change in space. A gradient filter, in turn, enhances places of contrast, making them all the more obviously different, a useful tool when adjusting photos. Scientists, too, use gradient filters to enhance contrast, using them to accentuate fine structures that might otherwise be lost in the background noise. On the sun, for example, scientists wish to study a phenomenon known as coronal loops, which are giant arcs of solar material constrained to travel along that particular path by the magnetic fields in the sun's atmosphere. Observations of the loops, which can be more or less tangled and complex during different phases of the sun's 11-year activity cycle, can help researchers understand what's happening with the sun's complex magnetic fields, fields that can also power great eruptions on the sun such as solar flares or coronal mass ejections. The still here shows an unfiltered image from the sun next to one that has been processed using a gradient filter. Note how the coronal loops are sharp and defined, making them all the more easy to study. On the other hand, gradients also make great art. NASA/Goddard Space Flight Center To download this video go to: svs.gsfc.nasa.gov/goto?11112 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics
Disease Vector Ecology Profile: Haiti
1994-09-01
The elderly and children are most susceptible to infection. VECTOR TRANSMISSION: Primary Vectors: Culex nigripalpus , Aedes taeniorhynchus VECTOR...BIONOMICS: Culex nigripalpus breeds in a broad variety of aquatic habitats including lakes, temporary pools, epiphytic plants, brackish water, and...disease. VECTOR TRANSMISSION: Primary Vectors: Culex quinquefasciatus and Cx. nigripalpus ; both species are primary vectors in the U.S., and both
Keasler, J A
2012-03-27
Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.
Molecular neurosurgery: vectors and vector delivery strategies.
White, Edward
2012-12-01
Molecular neurosurgery involves the use of vector-mediated gene therapy and gene knockdown to manipulate in vivo gene expression for the treatment of neurological diseases. These techniques have the potential to revolutionise the practice of neurosurgery. However, significant challenges remain to be overcome before these techniques enter routine clinical practice. These challenges have been the subject of intensive research in recent years and include the development of strategies to facilitate effective vector delivery to the brain and the development of both viral and non-viral vectors that are capable of efficient cell transduction without excessive toxicity. This review provides an update on the practice of molecular neurosurgery with particular focus on the practical neurosurgical aspects of vector delivery to the brain. In addition, an introduction to the key vectors employed in clinical trials and a brief overview of previous gene therapy clinical trials is provided. Finally, key areas for future research aimed at increasing the likelihood of the successful translation of gene therapy into clinical trials are highlighted.
Holistic quaternion vector convolution filter for RGB-depth video contour detection
NASA Astrophysics Data System (ADS)
Ti, Chunli; Xu, Guodong; Guan, Yudong; Teng, Yidan; Zhang, Ye
2017-05-01
A quaternion vector gradient filter is proposed for RGB-depth (RGB-D) video contour detection. First, a holistic quaternion vector system is introduced to synthetically express the color and depth information, by adding the depth to its scalar part. Then, a convolution differential operator for quaternion vector is proposed to highlight edges with both depth and chromatic variations but restrain the gradient of intensity term. In addition, the quaternion vector gradients are adaptively weighted utilizing depth confidence measure and the quadtree decomposition of the coding tree units in the video streaming. Results on the 3-D high-efficiency video coding test sequences and quantitative simulated experiments on Berkeley segmentation datasets both indicate the availability of the proposed gradient-based method on detecting the semantic contour of the RGB-D videos.
Face recognition using local gradient binary count pattern
NASA Astrophysics Data System (ADS)
Zhao, Xiaochao; Lin, Yaping; Ou, Bo; Yang, Junfeng; Wu, Zhelun
2015-11-01
A local feature descriptor, the local gradient binary count pattern (LGBCP), is proposed for face recognition. Unlike some current methods that extract features directly from a face image in the spatial domain, LGBCP encodes the local gradient information of the face's texture in an effective way and provides a more discriminative code than other methods. We compute the gradient information of a face image through convolutions with compass masks. The gradient information is encoded using the local binary count operator. We divide a face into several subregions and extract the distribution of the LGBCP codes from each subregion. Then all the histograms are concatenated into a vector, which is used for face description. For recognition, the chi-square statistic is used to measure the similarity of different feature vectors. Besides directly calculating the similarity of two feature vectors, we provide a weighted matching scheme in which different weights are assigned to different subregions. The nearest-neighborhood classifier is exploited for classification. Experiments are conducted on the FERET, CAS-PEAL, and AR face databases. LGBCP achieves 96.15% on the Fb set of FERET. For CAS-PEAL, LGBCP gets 96.97%, 98.91%, and 90.89% on the aging, distance, and expression sets, respectively.
Bigravity from gradient expansion
Yamashita, Yasuho; Tanaka, Takahiro
2016-05-04
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
Chakravarthy, Srinath S.; Curtin, W. A.
2011-01-01
A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403
Gradient magnetometer system balloons
NASA Astrophysics Data System (ADS)
Korepanov, Valery; Tsvetkov, Yury
2005-08-01
Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.
Lightness, illumination, and gradients.
Todorović, Dejan
2006-01-01
The illumination interpretation approach claims that lightness illusions can be explained as misapplications of lightness constancy mechanisms, processes which usually enable veridical extraction of surface reflectance from luminance distributions by discounting illumination. In particular, luminance gradients are thought to provide cues about the interactions of light and surfaces. Several examples of strong lightness illusions are discussed for which explanations based on illumination interpretation can be proposed. In criticisms of this approach, a variety of demonstrations of similarly structured control displays are presented, which involve equivalent lightness effects that cannot readily be accounted for by illumination interpretation mechanisms. Furthermore, a number of known and novel displays are presented that demonstrate effects of gradients on the qualitative appearance of uniform regions. Finally, some simple simulations of neural effects of luminance distributions are discussed.
1982-11-25
over six to nine readings at two to three input polarizations each. The first set of index values is calculated assuming ei = 450 These values are...TECHNICAL REPORT RG-CR-84-2 Sli GRADIENT INDEX LENS RESEARCH Prepared by: Duncan T. Moore The Institute of Optics University of Rochester Rochester...CLASSIFICATION OF THIS PAGE (Miten Data Fntered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NU14MU R GOVT ACCESSION No. 3
Multiscale gradient computation for flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Moraes, Rafael J. de; Rodrigues, José R. P.; Hajibeygi, Hadi; Jansen, Jan Dirk
2017-05-01
An efficient multiscale (MS) gradient computation method for subsurface flow management and optimization is introduced. The general, algebraic framework allows for the calculation of gradients using both the Direct and Adjoint derivative methods. The framework also allows for the utilization of any MS formulation that can be algebraically expressed in terms of a restriction and a prolongation operator. This is achieved via an implicit differentiation formulation. The approach favors algorithms for multiplying the sensitivity matrix and its transpose with arbitrary vectors. This provides a flexible way of computing gradients in a form suitable for any given gradient-based optimization algorithm. No assumption w.r.t. the nature of the problem or specific optimization parameters is made. Therefore, the framework can be applied to any gradient-based study. In the implementation, extra partial derivative information required by the gradient computation is computed via automatic differentiation. A detailed utilization of the framework using the MS Finite Volume (MSFV) simulation technique is presented. Numerical experiments are performed to demonstrate the accuracy of the method compared to a fine-scale simulator. In addition, an asymptotic analysis is presented to provide an estimate of its computational complexity. The investigations show that the presented method casts an accurate and efficient MS gradient computation strategy that can be successfully utilized in next-generation reservoir management studies.
Gradient-based controllers for timed continuous Petri nets
NASA Astrophysics Data System (ADS)
Lefebvre, Dimitri; Leclercq, Edouard; Druaux, Fabrice; Thomas, Philippe
2015-07-01
This paper is about control design for timed continuous Petri nets that are described as piecewise affine systems. In this context, the marking vector is considered as the state space vector, weighted marking of place subsets are defined as the model outputs and the model inputs correspond to multiplicative control actions that slow down the firing rate of some controllable transitions. Structural and functional sensitivity of the outputs with respect to the inputs are discussed in terms of Petri nets. Then, gradient-based controllers (GBC) are developed in order to adapt the control actions of the controllable transitions according to desired trajectories of the outputs.
Efficient way to convert propagating waves into guided waves via gradient wire structures.
Chu, Hong Chen; Luo, Jie; Lai, Yun
2016-08-01
We propose a method for the design of gradient wire structures that are capable of converting propagating waves into guided waves along the wire. The conversion process is achieved by imposing an additional wave vector to the scattered waves via the gradient wire structure, such that the wave vector of scattered waves is beyond the wave number in the background medium. Thus, the scattered waves turn into evanescent waves. We demonstrate that two types of gradient wire structures, with either a gradient permittivity and a fixed radius, or a gradient radius and a fixed permittivity, can both be designed to realize such a wave conversion effect. The principle demonstrated in our work has potential applications in various areas including nanophotonics, silicone photonics, and plasmonics.
Viral Vector Production: Adenovirus.
Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S
2016-01-01
Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.
Vector generator scan converter
Moore, James M.; Leighton, James F.
1990-01-01
High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.
Vector generator scan converter
Moore, J.M.; Leighton, J.F.
1988-02-05
High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The
ERIC Educational Resources Information Center
Balabanian, Norman
This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…
Spatially-distributed pulsed gradient spin echo NMR using single-wire proximity
NASA Astrophysics Data System (ADS)
Callaghan, Paul T.; Stepisnik, Janez
1995-12-01
NMR microimaging may be used to observe the effect of molecular diffusion in the vicinity of a thin wire subjected to current pulses. By this means the pulsed gradient spin echo technique can utilize very large pulsed magnetic field gradients, on the order of 100 T m-1. The quadratic dependence of gradient amplitude on distance from the wire leads to large dynamic range while the distribution of local gradient vectors makes it possible to image anisotropic diffusion. We demonstrate these properties in measurements on polymer solutions and liquid crystals.
Zimmerman, A.H.
1988-03-31
This invention relates generally to rechargeable batteries, and, in particular, relates to batteries that use nickel electrodes. It provides an improved nickel electrode with a selected gradient of additive materials. The concentration of additives in the impregnating solution are controlled during impregnation such that an additive gradient is generated. In the situation where the highest ionic conductivity is needed at the current collector boundary with the active material, the electrochemical impregnating solution is initially high in additive, and at the end of impregnation has been adjusted to significantly lower additive concentration. For chemical impregnation, the electrodes are similarly dipped in solutions that are initially high in additive. This invention is suitable for conventional additives such as cobalt, cadmium, barium, manganese, and zinc. It is therefore one objective of the invention to provide an improved nickel electrode of a battery cell with an additive in the active material to increase the life of the battery cell. Another objective is to provide for an improved nickel electrode having a greater concentration of additive near the current collector of nickel.
Vranjes, J.; Kono, M.
2015-01-15
Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.
Possee, Robert D; King, Linda A
2016-01-01
The production of a recombinant baculovirus expression vector normally involves mixing infectious virus DNA with a plasmid-based transfer vector and then co-transfecting insect cells to initiate virus infection. The aim of this chapter is to provide an update on the range of baculovirus transfer vectors currently available. Some of the original transfer vectors developed are now difficult to obtain but generally have been replaced by superior reagents. We focus on those that are available commercially and should be easy to locate. These vectors permit the insertion of single or multiple genes for expression, or the production of proteins with specific peptide tags that aid subsequent protein purification. Others have signal peptide coding regions permitting protein secretion or plasma membrane localization. A table listing the transfer vectors also includes information on the parental virus that should be used with each one. Methods are described for the direct insertion of a recombinant gene into the virus genome without the requirement for a transfer vector. The information provided should enable new users of the system to choose those reagents most suitable for their purposes.
Autonomous parvovirus vectors.
Maxwell, Ian H; Terrell, Kristina L; Maxwell, Françoise
2002-10-01
Parvoviruses are small, icosahedral viruses (approximately 25 nm) containing a single-strand DNA genome (approximately 5 kb) with hairpin termini. Autonomous parvoviruses (APVs) are found in many species; they do not require a helper virus for replication but they do require proliferating cells (S-phase functions) and, in some cases, tissue-specific factors. APVs can protect animals from spontaneous or experimental tumors, leading to consideration of these viruses, and vectors derived from them, as anticancer agents. Vector development has focused on three rodent APVs that can infect human cells, namely, LuIII, MVM, and H1. LuIII-based vectors with complete replacement of the viral coding sequences can direct transient or persistent expression of transgenes in cell culture. MVM-based and H1-based vectors with substitution of transgenes for the viral capsid sequences retain viral nonstructural (NS) coding sequences and express the NS1 protein. The latter serves to amplify the vector genome in target cells, potentially contributing to antitumor activity. APV vectors have packaging capacity for foreign DNA of approximately 4.8 kb, a limit that probably cannot be exceeded by more than a few percent. LuIII vectors can be pseudotyped with capsid proteins from related APVs, a promising strategy for controlling tissue tropism and circumventing immune responses to repeated administration. Initial success has been achieved in targeting such a pseudotyped vector by genetic modification of the capsid. Subject to advances in production and purification methods, APV vectors have potential as gene transfer agents for experimental and therapeutic use, particularly for cancer therapy. Copyright 2002 Elsevier Science (USA)
NASA Astrophysics Data System (ADS)
Lukács, B.; Perjés, Z.; Sebestyén, Á.
1981-06-01
Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin coefficient formalism. The properties of the eigenrays (principal null curves of the Killing bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and charged source.
Newman, Gregory A.; Commer, Michael
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.
Generalized conjugate gradient squared
Fokkema, D.R.; Sleijpen, G.L.G.
1994-12-31
In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.
Tectorial Membrane Stiffness Gradients
Richter, Claus-Peter; Emadi, Gulam; Getnick, Geoffrey; Quesnel, Alicia; Dallos, Peter
2007-01-01
The mammalian inner ear processes sound with high sensitivity and fine resolution over a wide frequency range. The underlying mechanism for this remarkable ability is the “cochlear amplifier”, which operates by modifying cochlear micromechanics. However, it is largely unknown how the cochlea implements this modification. Although gradual improvements in experimental techniques have yielded ever-better descriptions of gross basilar membrane vibration, the internal workings of the organ of Corti and of the tectorial membrane have resisted exploration. Although measurements of cochlear function in mice with a gene mutation for α-tectorin indicate the tectorial membrane's key role in the mechanoelectrical transformation by the inner ear, direct experimental data on the tectorial membrane's physical properties are limited, and only a few direct measurements on tectorial micromechanics are available. Using the hemicochlea, we are able to show that a tectorial membrane stiffness gradient exists along the cochlea, similar to that of the basilar membrane. In artificial perilymph (but with low calcium), the transversal and radial driving point stiffnesses change at a rate of –4.0 dB/mm and −4.9 dB/mm, respectively, along the length of the cochlear spiral. In artificial endolymph, the stiffness gradient for the transversal component was –3.4 dB/mm. Combined with the changes in tectorial membrane dimensions from base to apex, the radial stiffness changes would be able to provide a second frequency-place map in the cochlea. Young's modulus, which was obtained from measurements performed in the transversal direction, decreased by −2.6 dB/mm from base to apex. PMID:17496047
The Vector Decomposition Problem
NASA Astrophysics Data System (ADS)
Yoshida, Maki; Mitsunari, Shigeo; Fujiwara, Toru
This paper introduces a new computational problem on a two-dimensional vector space, called the vector decomposition problem (VDP), which is mainly defined for designing cryptosystems using pairings on elliptic curves. We first show a relation between the VDP and the computational Diffie-Hellman problem (CDH). Specifically, we present a sufficient condition for the VDP on a two-dimensional vector space to be at least as hard as the CDH on a one-dimensional subspace. We also present a sufficient condition for the VDP with a fixed basis to have a trapdoor. We then give an example of vector spaces which satisfy both sufficient conditions and on which the CDH is assumed to be hard in previous work. In this sense, the intractability of the VDP is a reasonable assumption as that of the CDH.
NASA Astrophysics Data System (ADS)
Douglas, Joanne T.
The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.
Lewis, C.M. )
1991-09-15
A vector field {ital A}{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker metric, constructed to generate first-order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux {ital T}{sub 0{ital i}} is tracked to the epoch where radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation give rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}{ital c}. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.
A fast, preconditioned conjugate gradient Toeplitz solver
NASA Technical Reports Server (NTRS)
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Saccharomyces cerevisiae Shuttle vectors.
Gnügge, Robert; Rudolf, Fabian
2017-01-10
Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.
Carrigan, Charles R [Tracy, CA
2011-08-02
A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.
NASA Technical Reports Server (NTRS)
Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.
1994-01-01
In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.
Nanoparticle manipulation by thermal gradient
2012-01-01
A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube. When the temperature gradient was large enough, the fullerene sank into the valley and became trapped. The escaping velocities of the fullerene were evaluated based on the relationship between thermal gradient and thermophoretic force. We then introduced a new way to manipulate the position of nanoparticles by translating the position of thermostats with desirable thermal gradients. Compared to nanomanipulation using a scanning tunneling microscope or an atomic force microscope, our method for nanomanipulation has a great advantage by not requiring a direct contact between the probe and the object. PMID:22364240
Somkantha, Krit; Theera-Umpon, Nipon; Auephanwiriyakul, Sansanee
2011-03-01
Finding the correct boundary in noisy images is still a difficult task. This paper introduces a new edge following technique for boundary detection in noisy images. Utilization of the proposed technique is exhibited via its application to various types of medical images. Our proposed technique can detect the boundaries of objects in noisy images using the information from the intensity gradient via the vector image model and the texture gradient via the edge map. The performance and robustness of the technique have been tested to segment objects in synthetic noisy images and medical images including prostates in ultrasound images, left ventricles in cardiac magnetic resonance (MR) images, aortas in cardiovascular MR images, and knee joints in computerized tomography images. We compare the proposed segmentation technique with the active contour models (ACM), geodesic active contour models, active contours without edges, gradient vector flow snake models, and ACMs based on vector field convolution, by using the skilled doctors' opinions as the ground truths. The results show that our technique performs very well and yields better performance than the classical contour models. The proposed method is robust and applicable on various kinds of noisy images without prior knowledge of noise properties.
Step-gradient capillary electrochromatography.
Euerby, M R; Gilligan, D; Johnson, C M; Bartle, K D
1997-10-01
The analytical benefits of using a step-gradient in capillary electrochromatography (CEC) are demonstrated. The application of step-gradient CEC to the analysis of six diuretics of widely differing lipophilicities was evaluated and shown to result in a marked reduction in the analysis time and an improvement in the peak shape for later-eluting lipophilic components. When the step-gradient approach was performed in an automated mode, the retention time RSD for repeated injections was below 1%.
Syngeneic AAV pseudo-vectors potentiates full vector transduction
USDA-ARS?s Scientific Manuscript database
An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...
Gradient optimization and nonlinear control
NASA Technical Reports Server (NTRS)
Hasdorff, L.
1976-01-01
The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.
Gradient forests: calculating importance gradients on physical predictors.
Ellis, Nick; Smith, Stephen J; Pitcher, C Roland
2012-01-01
In ecological analyses of species and community distributions there is interest in the nature of their responses to environmental gradients and in identifying the most important environmental variables, which may be used for predicting patterns of biodiversity. Methods such as random forests already exist to assess predictor importance for individual species and to indicate where along gradients abundance changes. However, there is a need to extend these methods to whole assemblages, to establish where along the range of these gradients the important compositional changes occur, and to identify any important thresholds or change points. We develop such a method, called "gradient forest," which is an extension of the random forest approach. By synthesizing the cross-validated R2 and accuracy importance measures from univariate random forest analyses across multiple species, sampling devices, and surveys, gradient forest obtains a monotonic function of each predictor that represents the compositional turnover along the gradient of the predictor. When applied to a synthetic data set, the method correctly identified the important predictors and delineated where the compositional change points occurred along these gradients. Application of gradient forest to a real data set from part of the Great Barrier Reef identified mud fraction of the sediment as the most important predictor, with highest compositional turnover occurring at mud fraction values around 25%, and provided similar information for other predictors. Such refined information allows for more accurate capturing of biodiversity patterns for the purposes of bioregionalization, delineation of protected areas, or designing of biodiversity surveys.
Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.
2008-05-15
The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.
Gradient navigation model for pedestrian dynamics
NASA Astrophysics Data System (ADS)
Dietrich, Felix; Köster, Gerta
2014-06-01
We present a microscopic ordinary differential equation (ODE)-based model for pedestrian dynamics: the gradient navigation model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs fundamentally from force-based models needing only three equations to derive the ODE system, as opposed to four in, e.g., the social force model. Also, as a result, pedestrians are no longer subject to inertia. Several other advantages ensue: Model-induced oscillations are avoided completely since no actual forces are present. The derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high-order numerical integrators. At the same time, the existence and uniqueness of the solution to the ODE system follow almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians. Several empirically observed system phenomena emerge without the need to recalibrate the parameter set for each scenario: obstacle avoidance, lane formation, stop-and-go waves, and congestion at bottlenecks. The density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe a dependence of the crowd velocity on the local density that compares well with benchmark fundamental diagrams.
NASA Astrophysics Data System (ADS)
Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.
1989-10-01
The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.
Stable solutions of inflation driven by vector fields
NASA Astrophysics Data System (ADS)
Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li
2017-03-01
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.
Vector and Axial Vector Pion Form Factors
NASA Astrophysics Data System (ADS)
Vitz, Michael; PEN Collaboration
2015-04-01
Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.
Bunyavirus-vector interactions.
Beaty, B J; Bishop, D H
1988-06-01
Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in
NASA Astrophysics Data System (ADS)
Barbarien, Joeri; Munteanu, Adrian; Verdicchio, Fabio; Andreopoulos, Yiannis; Cornelis, Jan P.; Schelkens, Peter
2004-11-01
Modern video coding applications require transmission of video data over variable-bandwidth channels to a variety of terminals with different screen resolutions and available computational power. Scalable video coding is needed to optimally support these applications. Recently proposed wavelet-based video codecs employing spatial domain motion compensated temporal filtering (SDMCTF) provide quality, resolution and frame-rate scalability while delivering compression performance comparable to that of the state-of-the-art non-scalable H.264-codec. These codecs require scalable coding of the motion vectors in order to support a large range of bit-rates with optimal compression efficiency. Scalable motion vector coding algorithms based on the integer wavelet transform followed by embedded coding of the wavelet coefficients were recently proposed. In this paper, a new and fundamentally different scalable motion vector codec (MVC) using median-based motion vector prediction is proposed. Extensive experimental results demonstrate that the proposed MVC systematically outperforms the wavelet-based state-of-the-art solutions. To be able to take advantage of the proposed scalable MVC, a rate allocation mechanism capable of optimally dividing the available rate among texture and motion information is required. Two rate allocation strategies are proposed and compared. The proposed MVC and rate allocation schemes are incorporated into an SDMCTF-based video codec and the benefits of scalable motion vector coding are experimentally demonstrated.
Multilayer High-Gradient Insulators
Harris, J R
2006-08-16
Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.
Empirical equation estimates geothermal gradients
Kutasov, I.M. )
1995-01-02
An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
NASA Astrophysics Data System (ADS)
Yan, Zhenya
2011-11-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.
NASA Astrophysics Data System (ADS)
Rejon-Barrera, Fernando; Robbins, Daniel
2016-01-01
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
Bunyavirus-Vector Interactions
Horne, Kate McElroy; Vanlandingham, Dana L.
2014-01-01
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172
Gradient zone boundary control in salt gradient solar ponds
Hull, John R.
1984-01-01
A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.
Geometric analysis and estimation of the growth rate gradient on gastropod shells.
Noshita, Koji; Shimizu, Keisuke; Sasaki, Takenori
2016-01-21
The morphology of gastropod shells provides a record of the growth rate at the aperture of the shell, and molecular biological studies have shown that the growth rate gradient along the aperture of a gastropod shell can be closely related to gene expression at the aperture. Here, we develop a novel method for deriving microscopic growth rates from the macroscopic shapes of gastropod shells. The growth vector map of a shell provides information on the growth rate gradient as a vector field along the aperture, over the growth history. However, it is difficult to estimate the growth vector map directly from the macroscopic shape of a specimen, because the degree of freedom of the growth vector map is very high. In order to overcome this difficulty, we develop a method of estimating the growth vector map based on a growing tube model, where the latter includes fewer parameters to be estimated. In addition, we calculate an aperture map specifying the magnitude of the growth vector at each location, which can be compared with the expression levels of several genes or proteins that are important in morphogenesis. Finally, we show a concrete example of how macroscopic shell shapes evolve in a morphospace when microscopic growth rate gradient changes.
Integrating the Gradient of the Thin Wire Kernel
NASA Technical Reports Server (NTRS)
Champagne, Nathan J.; Wilton, Donald R.
2008-01-01
A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form
Spin-dependent manipulating of vector beams by tailoring polarization
Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun
2016-01-01
We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization. PMID:27677400
Spin-dependent manipulating of vector beams by tailoring polarization.
Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun
2016-09-28
We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization.
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
ERIC Educational Resources Information Center
Dean, Richard A.
1971-01-01
The author shows that the set of all sequences in which each term is the sum of the two previous terms forms a vector space of dimension two. He uses this result to obtain the formula for the Fibonacci sequence and applies the same technique to other linear recursive relations. (MM)
Killing vectors and anisotropy
Krisch, J. P.; Glass, E. N.
2009-08-15
We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.
Production of lentiviral vectors
Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara
2016-01-01
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581
Citrin, D S
2012-06-15
A linearly polarized Bessel beam, whose spatial frequencies correspond to the Brewster angle, impinging at normal incidence on a higher refractive-index interface is shown to lead to a reflected field that can be used to produce an azimuthally polarized optical vector beam.
Vande Woude, G.F.; McClements, W.L.; Oskarsson, M.K.; Blair, D.G.
1981-07-01
The patent application describes the production of vectors composed of portions of retrovirus, particularly of Moloney sarcoma virus DNA including the 'LTR' sequence which can activate genes and additional viral sequences which can 'rescue' these genes into a replicating virus particle.
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
Tolmachov, Oleg
2009-01-01
Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs. DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.
Singular Vectors' Subtle Secrets
ERIC Educational Resources Information Center
James, David; Lachance, Michael; Remski, Joan
2011-01-01
Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.
Wilson, Anthony James; Morgan, Eric René; Booth, Mark; Norman, Rachel; Perkins, Sarah Elizabeth; Hauffe, Heidi Christine; Mideo, Nicole; Antonovics, Janis; McCallum, Hamish; Fenton, Andy
2017-05-05
Many important and rapidly emerging pathogens of humans, livestock and wildlife are 'vector-borne'. However, the term 'vector' has been applied to diverse agents in a broad range of epidemiological systems. In this perspective, we briefly review some common definitions, identify the strengths and weaknesses of each and consider the functional differences between vectors and other hosts from a range of ecological, evolutionary and public health perspectives. We then consider how the use of designations can afford insights into our understanding of epidemiological and evolutionary processes that are not otherwise apparent. We conclude that from a medical and veterinary perspective, a combination of the 'haematophagous arthropod' and 'mobility' definitions is most useful because it offers important insights into contact structure and control and emphasizes the opportunities for pathogen shifts among taxonomically similar species with similar feeding modes and internal environments. From a population dynamics and evolutionary perspective, we suggest that a combination of the 'micropredator' and 'sequential' definition is most appropriate because it captures the key aspects of transmission biology and fitness consequences for the pathogen and vector itself. However, we explicitly recognize that the value of a definition always depends on the research question under study.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.
Gubler, D J
2009-08-01
Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years.
Singular Vectors' Subtle Secrets
ERIC Educational Resources Information Center
James, David; Lachance, Michael; Remski, Joan
2011-01-01
Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.
NASA Technical Reports Server (NTRS)
Hafez, M.
1989-01-01
Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.
High field gradient particle accelerator
Nation, John A.; Greenwald, Shlomo
1989-01-01
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.
High field gradient particle accelerator
Nation, J.A.; Greenwald, S.
1989-05-30
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.
Stochastic estimates of gradient from laser measurements for an autonomous Martian Roving Vehicle
NASA Technical Reports Server (NTRS)
Shen, C. N.; Burger, P.
1973-01-01
The general problem presented in this paper is one of estimating the state vector x from the state equation h = Ax, where h, A, and x are all stochastic. Specifically, the problem is for an autonomous Martian Roving Vehicle to utilize laser measurements in estimating the gradient of the terrain. Error exists due to two factors - surface roughness and instrumental measurements. The errors in slope depend on the standard deviations of these noise factors. Numerically, the error in gradient is expressed as a function of instrumental inaccuracies. Certain guidelines for the accuracy of permissable gradient must be set. It is found that present technology can meet these guidelines.-
Stochastic estimates of gradient from laser measurements for an autonomous Martian roving vehicle
NASA Technical Reports Server (NTRS)
Burger, P. A.
1973-01-01
The general problem of estimating the state vector x from the state equation h = Ax where h, A, and x are all stochastic, is presented. Specifically, the problem is for an autonomous Martian roving vehicle to utilize laser measurements in estimating the gradient of the terrain. Error exists due to two factors - surface roughness and instrumental measurements. The errors in slope depend on the standard deviations of these noise factors. Numerically, the error in gradient is expressed as a function of instrumental inaccuracies. Certain guidelines for the accuracy of permissable gradient must be set. It is found that present technology can meet these guidelines.
Gravity Gradients Frame Oceanus Procellarum
2014-10-01
Topography of Earth moon generated from data NASA LRO, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA GRAIL mission.
Parameter-exploring policy gradients.
Sehnke, Frank; Osendorfer, Christian; Rückstiess, Thomas; Graves, Alex; Peters, Jan; Schmidhuber, Jürgen
2010-05-01
We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method outperforms well-known algorithms from the fields of standard policy gradients, finite difference methods and population based heuristics. We also show that the improvement is largest when the parameter samples are drawn symmetrically. Lastly we analyse the importance of the individual components of our method by incrementally incorporating them into the other algorithms, and measuring the gain in performance after each step.
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-09-07
An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.
Graded/Gradient Porous Biomaterials
Miao, Xigeng; Sun, Dan
2009-01-01
Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
NASA Astrophysics Data System (ADS)
Davydov, E. A.
2012-06-01
Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.
2015-09-28
300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The invention is an... invention , is a small volume of fluid surrounding a point where averaged properties (e.g., velocity, temperature, etc.) can be analyzed with continuum
NASA Technical Reports Server (NTRS)
Chipman, Russell A.
1996-01-01
This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.
Some experiences with Krylov vectors and Lanczos vectors
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng; Kim, Hyoung M.
1993-01-01
This paper illustrates the use of Krylov vectors and Lanczos vectors for reduced-order modeling in structural dynamics and for control of flexible structures. Krylov vectors and Lanczos vectors are defined and illustrated, and several applications that have been under study at The University of Texas at Austin are reviewed: model reduction for undamped structural dynamics systems, component mode synthesis using Krylov vectors, model reduction of damped structural dynamics systems, and one-sided and two-sided unsymmetric block-Lanczos model-reduction algorithms.
Isomap based supporting vector machine
NASA Astrophysics Data System (ADS)
Liang, W. N.
2015-12-01
This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.
Garcia-Ripoll; Perez-Garcia; Ostrovskaya; Kivshar
2000-07-03
We find a new type of optical vector soliton that originates from trapping of a dipole mode by the soliton-induced waveguides. These solitons, which appear as a consequence of the vector nature of the two-component system, are more stable than the previously found optical vortex solitons and represent a new type of extremely robust nonlinear vector structure.
Morgan, Eric René; Booth, Mark; Norman, Rachel; Mideo, Nicole; McCallum, Hamish; Fenton, Andy
2017-01-01
Many important and rapidly emerging pathogens of humans, livestock and wildlife are ‘vector-borne’. However, the term ‘vector’ has been applied to diverse agents in a broad range of epidemiological systems. In this perspective, we briefly review some common definitions, identify the strengths and weaknesses of each and consider the functional differences between vectors and other hosts from a range of ecological, evolutionary and public health perspectives. We then consider how the use of designations can afford insights into our understanding of epidemiological and evolutionary processes that are not otherwise apparent. We conclude that from a medical and veterinary perspective, a combination of the ‘haematophagous arthropod’ and ‘mobility’ definitions is most useful because it offers important insights into contact structure and control and emphasizes the opportunities for pathogen shifts among taxonomically similar species with similar feeding modes and internal environments. From a population dynamics and evolutionary perspective, we suggest that a combination of the ‘micropredator’ and ‘sequential’ definition is most appropriate because it captures the key aspects of transmission biology and fitness consequences for the pathogen and vector itself. However, we explicitly recognize that the value of a definition always depends on the research question under study. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289253
Vector Helmholtz-Gauss and vector Laplace-Gauss beams.
Bandres, Miguel A; Gutiérrez-Vega, Julio C
2005-08-15
We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG beams are TE and TM Gaussian vector beams, nondiffracting vector Bessel beams, polarized Bessel-Gauss beams, modes in cylindrical waveguides and cavities, and scalar Helmholtz-Gauss beams. The general expression of the vHzG beams can be used straightforwardly to obtain vector Mathieu-Gauss and vector parabolic-Gauss beams, which to our knowledge have not yet been reported.
An M-step preconditioned conjugate gradient method for parallel computation
NASA Technical Reports Server (NTRS)
Adams, L.
1983-01-01
This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.
Estimation of coastal density gradients
NASA Astrophysics Data System (ADS)
Howarth, M. J.; Palmer, M. R.; Polton, J. A.; O'Neill, C. K.
2012-04-01
Density gradients in coastal regions with significant freshwater input are large and variable and are a major control of nearshore circulation. However their measurement is difficult, especially where the gradients are largest close to the coast, with significant uncertainties because of a variety of factors - spatial and time scales are small, tidal currents are strong and water depths shallow. Whilst temperature measurements are relatively straightforward, measurements of salinity (the dominant control of spatial variability) can be less reliable in turbid coastal waters. Liverpool Bay has strong tidal mixing and receives fresh water principally from the Dee, Mersey, Ribble and Conwy estuaries, each with different catchment influences. Horizontal and vertical density gradients are variable both in space and time. The water column stratifies intermittently. A Coastal Observatory has been operational since 2002 with regular (quasi monthly) CTD surveys on a 9 km grid, an situ station, an instrumented ferry travelling between Birkenhead and Dublin and a shore-based HF radar system measuring surface currents and waves. These measurements are complementary, each having different space-time characteristics. For coastal gradients the ferry is particularly useful since measurements are made right from the mouth of Mersey. From measurements at the in situ site alone density gradients can only be estimated from the tidal excursion. A suite of coupled physical, wave and ecological models are run in association with these measurements. The models, here on a 1.8 km grid, enable detailed estimation of nearshore density gradients, provided appropriate river run-off data are available. Examples are presented of the density gradients estimated from the different measurements and models, together with accuracies and uncertainties, showing that systematic time series measurements within a few kilometres of the coast are a high priority. (Here gliders are an exciting prospect for
Construction, production, and purification of recombinant adenovirus vectors.
Miravet, Susana; Ontiveros, Maria; Piedra, Jose; Penalva, Cristina; Monfar, Mercè; Chillón, Miguel
2014-01-01
Recombinant adenoviruses provide a versatile system for gene expression studies and therapeutic applications. In this chapter, a standard procedure for their generation and small-scale production is described. Homologous recombination in E. coli between shuttle plasmids and full-length adenovirus backbones (E1-deleted) is used for the generation of recombinant adenoviral vectors genomes. The adenovirus genomes are then analyzed to confirm their identity and integrity, and further linearized and transfected to generate a recombinant adenoviral vector in permissive human cells. These vectors are then purified by two sequential CsCl gradient centrifugations and subjected to a chromatography step in order to eliminate the CsCl and exchange buffers. Finally, the viral stock is characterized through the quantification of its viral particle content and its infectivity.
Vector Disparity Sensor with Vergence Control for Active Vision Systems
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P.; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system. PMID:22438737
Vector disparity sensor with vergence control for active vision systems.
Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo
2012-01-01
This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.
Vector representation of tourmaline compositions
NASA Technical Reports Server (NTRS)
Burt, Donald M.
1989-01-01
The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
Dynamic thermal gradient gas chromatography.
Contreras, Jesse A; Wang, Anzi; Rockwood, Alan L; Tolley, H Dennis; Lee, Milton L
2013-08-09
The use of negative axial thermal gradients in gas chromatography (TGGC) has intrigued chromatographers since the early 1950s because of the dramatic narrowing of analyte bands and concomitant raised expectations for improving resolving power. However, technical difficulties experienced in construction of TGGC instrumentation and control of the temperature along the column have made its implementation and, hence, detailed study difficult. In this work, we describe a TGGC system capable of rapidly producing and varying thermal gradient profiles by simultaneous use of resistive heating and convective cooling. Heating and cooling rates as high as 1200 and 2500°C/min, respectively, allowed the creation of dynamic temperature gradients. The separation characteristics of TGGC with dynamically changing temperature gradients are demonstrated. A gradient velocity of 2.22cm/s provided repetitive separations every 45s, and injection band widths of 45s duration were transformed into approximately 1-s peak widths. Peak tailing for basic compounds was nearly eliminated. Dynamic TGGC allows unique control over separations, oftentimes improving resolution and detection signal-to-noise. Thermally controlled elution in TGGC holds great promise for performing smart separations in which the separation time window is most efficiently utilized, and optimized separations can be quickly achieved. Rapid adjustment of relative compound elution can be used to greatly reduce GC method development time. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wehrse, R.; Baschek, B.; von Waldenfels, W.
2003-04-01
For a given velocity and temperature field in a differentially moving 3D medium, the vector of the radiative flux is derived in the diffusion approximation. Due to the dependence of the velocity gradient on the direction, the associated effective opacity in general is a tensor. In the limit of small velocity gradients analytical expression are obtained which allow us to discuss the cases when the direction of the flux vector deviates from that of the temperature gradient. Furthermore the radiative flux is calculated for infinitely sharp, Poisson distributed spectral lines resulting in simple expressions that provide basic insight into the effect of the motions. In particular, it is shown how incomplete line lists affect the radiative flux as a function of the velocity gradient. Finally, the connection between our formalism and the concept of the expansion opacity introduced by Karp et al. (\\cite{karp}) is discussed.
A stable, rapidly converging conjugate gradient method for energy minimization
Watowich, S.J.; Meyer, E.S.; Hagstrom, R.; Josephs, R.
1989-01-01
We apply Shanno's conjugate gradient algorithm to the problem of minimizing the potential energy function associated with molecular mechanical calculations. Shanno's algorithm is stable with respect to roundoff errors and inexact line searches and converges rapidly to a minimum. Equally important, this algorithm can improve the rate of convergence to a minimum by a factor of 5 relative to Fletcher-Reeves or Polak-Ribiere minimizers when used within the molecular mechanics package AMBER. Comparable improvements are found for a limited number of simulations when the Polak-Ribiere direction vector is incorporated into the Shanno algorithm. 24 refs., 4 figs., 3 tabs.
Vector ecology of equine piroplasmosis.
Scoles, Glen A; Ueti, Massaro W
2015-01-07
Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.
Aerodynamics of thrust vectoring
NASA Technical Reports Server (NTRS)
Tseng, J. B.; Lan, C. Edward
1989-01-01
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.
NASA Technical Reports Server (NTRS)
King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.
1972-01-01
The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.
Vector potential photoelectron microscopy.
Browning, R
2011-10-01
A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.
Multilayer High-Gradient Insulators
Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M
2006-11-15
High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.
Templating Surfaces with Gradient Assemblies
Genzer,J.
2005-01-01
One of the most versatile and widely used methods of forming surfaces with position-dependent wettability is that conceived by Chaudhury and Whitesides more than a decade ago. In this paper we review several projects that utilize this gradient-forming methodology for: controlled of deposition of self-assembled monolayers on surfaces, generating arrays of nanoparticles with number density gradients, probing the mushroom-to-brush transition in surface-anchored polymers, and controlling the speed of moving liquid droplets on surfaces.
Conjugate gradient method - Electromagnetism applications
NASA Astrophysics Data System (ADS)
Mosig, Juan R.
1987-10-01
This paper presents a brief but rigorous description of the conjugate gradient technique as applied to the solution of algebraic linear systems with complex coefficients. The relationships between conjugate gradient techniques and other commonly used methods are established. A normalized algorithm is introduced which optimally exploits the computer capabilities. Its performance is compared with that of Gaussian elimination by numerical tests on Hilbert matrices of more than a thousand unknowns. As a practical application, the problem of electrostatic screening by a finite ground plane has been solved with this technique.
Variable metric conjugate gradient methods
Barth, T.; Manteuffel, T.
1994-07-01
1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.
Gradient Tempering Of Bearing Races
NASA Technical Reports Server (NTRS)
Parr, Richardson A.
1991-01-01
Gradient-tempering process increases fracture toughness and resistance to stress-corrosion cracking of ball-bearing races made of hard, strong steels and subject to high installation stresses and operation in corrosive media. Also used in other applications in which local toughening of high-strength/low-toughness materials required.
Geothermal gradients in Mississippi embayment
Staub, W.P.; Treat, N.L.
1983-09-01
A statistical analysis of bottom-hole temperatures from oil and gas wells in the northern Mississippi embayment suggests that the geothermal gradient below a depth of 1 km is low (22.2/sup 0/C/km) and for the New Madrid seismic zone, it is even lower (15.7/sup 0/C/km). These data support the tentative conclusion of Swanberg et al that ground-water convection is the source of near-surface heat in shallow water wells of the region. Research by Mitchell et al had suggested a high geothermal gradient in the crust and upper mantel beneath the New Madrid seismic zone as a plausible explanation for the lower than average compressional wave velocities observed there. Warmer than normal wells in the northern Mississippi embayment are scattered at random and may be attributed to random error in the data. Deep wells in the southern Mississippi embayment are substantially hotter than wells at a comparable depth farther north. The regional geothermal gradient below a depth of 1 km from northern Louisiana to central Mississippi is 26.9/sup 0/C/km. From central Mississippi to central Alabama, the geothermal gradient (23.1/sup 0/C/km) is comparable to that of the northern Mississippi embayment.
Reinforcement Learning Through Gradient Descent
1999-05-14
Reinforcement learning is often done using parameterized function approximators to store value functions. Algorithms are typically developed for...practice of existing types of algorithms, the gradient descent approach makes it possible to create entirely new classes of reinforcement learning algorithms
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-01-01
An important proportion of patients with aortic stenosis (AS) have a ‘low-gradient’ AS, i.e. a small aortic valve area (AVA <1.0 cm2) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA—low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. PMID:27190103
Extended vector-tensor theories
NASA Astrophysics Data System (ADS)
Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke
2017-01-01
Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Corrosion in a temperature gradient
Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.
2003-01-01
High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.
An adaptive vector quantization scheme
NASA Technical Reports Server (NTRS)
Cheung, K.-M.
1990-01-01
Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.
Safety considerations in vector development.
Kappes, J C; Wu, X
2001-11-01
The inadvertent production of replication competent retrovirus (RCR) constitutes the principal safety concern for the use of lentiviral vectors in human clinical protocols. Because of limitations in animal models to evaluate lentiviral vectors for their potential to recombine and induce disease, the vector design itself should ensure against the emergence of RCR in vivo. Issues related to RCR generation and one approach to dealing with this problem are discussed in this chapter. To assess the risk of generating RCR, a highly sensitive biological assay was developed to specifically detect vector recombination in transduced cells. Analysis of lentiviral vector stocks has shown that recombination occurs during reverse transcription in primary target cells. Rejoining of viral protein-coding sequences of the packaging construct and cis-acting sequences of the vector was demonstrated to generate env-minus recombinants (LTR-gag-pol-LTR). Mobilization of recombinant lentiviral genomes was also demonstrated but was dependent on pseudotyping of the vector core with an exogenous envelope protein. 5' sequence analysis has demonstrated that recombinants consist of U3, R, U5, and the psi packaging signal joined with an open gag coding region. Analysis of the 3' end has mapped the point of vector recombination to the poly(A) tract of the packaging construct's mRNA. The state-of-the-art third generation packaging construct and SIN vector also have been shown to generate env-minus proviral recombinants capable of mobilizing retroviral DNA when pseudotyped with an exogenous envelope protein. A new class of HIV-based vector (trans-vector) was recently developed that splits the gag-pol component of the packaging construct into two parts: one that expresses Gag/Gag-Pro and another that expresses Pol (RT and IN) fused with Vpr. Unlike other lentiviral vectors, the trans-vector has not been shown to form recombinants capable of DNA mobilization. These results indicate the trans-vector
Iterative methods for the WLS state estimation on RISC, vector, and parallel computers
Nieplocha, J.; Carroll, C.C.
1993-10-01
We investigate the suitability and effectiveness of iterative methods for solving the weighted-least-square (WLS) state estimation problem on RISC, vector, and parallel processors. Several of the most popular iterative methods are tested and evaluated. The best performing preconditioned conjugate gradient (PCG) is very well suited for vector and parallel processing as is demonstrated for the WLS state estimation of the IEEE standard test systems. A new sparse matrix format for the gain matrix improves vector performance of the PCG algorithm and makes it competitive to the direct solver. Internal parallelism in RISC processors, used in current multiprocessor systems, can be taken advantage of in an implementation of this algorithm.
Multimodal image registration based on binary gradient angle descriptor.
Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian
2017-08-31
Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Cumings, N. P.; West, E. A.
1981-01-01
The NASA/Marshall Space Flight Center's solar vector magnetograph system allows measurements of all components of the Sun's photospheric magnetic field over a 5 x 5 or 2.5 x 2.5 arc min square field of view with an optimum time resolution of approximately 100 sec and an optimum signal-to-noise of approximately 1000. The basic system components are described, including the optics, detector, digital system, and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration.
Nelson, Ann E.
2008-05-01
We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 {mu}m, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio
2016-09-01
Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.
Solar imaging vector magnetograph
NASA Technical Reports Server (NTRS)
Canfield, Richard C.
1993-01-01
This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the
Full-angle negative reflection realized by a gradient acoustic metasurface
NASA Astrophysics Data System (ADS)
Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan
2016-11-01
We theoretically demonstrate that full-angle negative reflection can be realized by the gradient acoustic metasurface with a specific surface phase gradient value. A straightforward physical picture is presented here to understand such anomalous phenomena by considering the influence of the non-local effect that originates from the supercell periodicity on the gradient metasurface. Basing on the generalized law of reflection which is modified by a reciprocal lattice vector term, the negative reflection that beyond the critical angle is possible. In this paper, we utilize the coiling-up space structures of deep subwavelength geometrical scale to construct the desired gradient acoustic metasurface and observe the apparent full-angle negative reflection phenomenon. The present work enriches the content of the generalized law of reflection and provide new design methodology for functional acoustic wave modulation devices, such like directional ground acoustic cloaking and acoustic isolation devices.
Towed and Shipboard Vector Magnetometers in Marine Geophysics
NASA Astrophysics Data System (ADS)
Barckhausen, U.; Engels, M.
2011-12-01
The use of vector magnetometer components in geomagnetics has many advantages compared to the use of total field magnetometers. However, in marine geophysics the robust and easy-to-use Proton Precession magnetometers are still the standard instruments. Most of the few vector magnetometers in use work on multi instrument deep submersible platforms. Here we present some new instrumental and methodological aspects of surface towed fluxgate vector magnetometers which we use in a combination with Overhauser sensors. Processed fluxgate total field data are practically identical to the Overhauser reference and even provide a reliable gradient when combined with one Overhauser.The vertical component derived from the vector data constrains 2-D modelling much better than the total field alone. Although towed vector magnetometers typically provide no independent estimate of yaw, we illustrate that a numerical yaw (bandpass filtered magnetic heading) can provide reasonable estimates of the horizontal field components. These component data open additional analysis tools: the strike direction of magnetic lineations can be estimated from single profiles by either magnetic boundary strike ellipses in the space domain or by coherences between vertical and horizontal components in the wavenumber domain. Auto power spectra of the total field provide an approximate depth to the anomaly source or, if in obvious contradiction to the bathymetric depth, allow the detection of distortions, for example, by external temporal geomagnetic variations. A more common application is the use of vector magnetometers as shipboard instruments where the sensor's orientation can easily be resolved with data from the ship's positioning systems. We present some comparisons of shipboard and towed vector data. The quality of the magnetic data recorded onboard the ship can be surprisingly good after a thorough compensation for the ship's magnetic field.
Poynting vector and wave vector directions of equatorial chorus
NASA Astrophysics Data System (ADS)
Taubenschuss, Ulrich; Santolík, Ondřej; Breuillard, Hugo; Li, Wen; Le Contel, Olivier
2016-12-01
We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B0). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B0. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to ±6∘ around the B0 minimum or approximately ±5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B0 direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within ˜20∘ latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density.
Carbon and Oxygen Galactic Gradients
NASA Astrophysics Data System (ADS)
Carigi, L.; Peimbert, M.; Esteban, C.; García-Rojas, J.
2006-06-01
A chemical evolution model of the Galaxy has been computed to reproduce the O/H gradients from Galactic HII regions. This model solves the C enrichment problem because it fits the C/H and C/O gradients and the C and O histories of the solar vicinity. The model is based on C yields dependent on metallicity (Z) owing to stellar winds. The C yields of massive stars (MS) increase with Z and those of low and intermediate mass stars (LIMS) decrease with Z. An important result is that the fraction of carbon in the interstellar medium (ISM) due to MS and LIMS is strongly dependent on Z of the ISM, therefore, that fraction depends on time and on the Galactocentric distance. At present and in the solar vicinity about half of the C in the interstellar medium has been produced by MS and half by LIMS.
High gradient directional solidification furnace
NASA Technical Reports Server (NTRS)
Aldrich, B. R.; Whitt, W. D. (Inventor)
1985-01-01
A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.
Bacterial accumulation in viscosity gradients
NASA Astrophysics Data System (ADS)
Waisbord, Nicolas; Guasto, Jeffrey
2016-11-01
Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.
THE GRADIENT OF VASCULAR PERMEABILITY
Smith, Frederick; Rous, Peyton
1931-01-01
A mounting gradient of permeability exists along the capillaries of frog muscle. In chicken muscle on the other hand none has been demonstrated; but the close-knit vascularization is arranged in duplicate in such manner that the blood runs in opposite directions through the capillaries of nearly adjacent fibres. In a flight muscle of the pigeon there exists in addition to this artifice what appears to be a special collecting system of venous capillaries. In the mammalian diaphragm indications of such a system are also to be found, and a gradient of capillary permeability like that in the other skeletal muscles is probably present. These vascular conditions are briefly considered in terms of function. PMID:19869836
Stellar Population Gradients in WLM
NASA Astrophysics Data System (ADS)
Noriega-Mendoza, H.; Holtzman, J.
2001-12-01
WLM is one of the most isolated galaxies in the Local Group. From archival HST frames, we look for population gradients using star count ratios from distinct regions of the Color-Magnitude diagram. We find clear evidence for a central concentration of the younger stars. This scenario supports the two-component disk/halo-like structure suggested for dwarf irregular galaxies (Martinez-Delgado, Gallart & Aparicio, 1999).
Biomimetic Gradient Index (GRIN) Lenses
2006-01-01
optics include single lenses inspired by cephalopod (octopus) eyes and a three-lens, wide field of view, optical system for a surveillance sensor...camera. Details are easily resolv- able with the polymer lens. This lens system was installed on an Evolution unmanned aerial vehicle (UAV) with a...lens system was installed in an NRL Evolution UAV and used to record video images at a height of up to 1000 ft. The index gradients in the polymer
Programming the gradient projection algorithm
NASA Technical Reports Server (NTRS)
Hargrove, A.
1983-01-01
The gradient projection method of numerical optimization which is applied to problems having linear constraints but nonlinear objective functions is described and analyzed. The algorithm is found to be efficient and thorough for small systems, but requires the addition of auxiliary methods and programming for large scale systems with severe nonlinearities. In order to verify the theoretical results a digital computer is used to simulate the algorithm.
Future of gradient index optics
NASA Astrophysics Data System (ADS)
Hashizume, Hideki; Hamanaka, Kenjiro; Graham, Alan C., III; Zhu, X. Frank
2001-11-01
First developed over 30 years ago, gradient index lenses play an important role not only in telecommunications technology, but also in applications such as information interface and biomedical technology. Traditional manufacturing consists of doping a certain ion, A+ into the mother glass, drawing the glass into rods and then immersing the rods into s molten salt bath containing another certain ion B+. During a thermal ion exchange process, the original ion migrates out of the mother glass, and is replaced by the alternate ion, creating a refractive index variation. Current research is being conducted to improve the thermal ion exchange technology, and open new applications. This research includes extending working distances to greater than 100mm, decreasing the lens diameter, increasing the effective radius, and combining the technology with other technologies such as photolithographically etched masks to produce arrays of gradient index lenses. As a result of this ongoing research, the gradient index lens is expected to continue to be the enabling optical technology in the first decade of the new millennium and beyond.
GPU Accelerated Vector Median Filter
NASA Technical Reports Server (NTRS)
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
Sparse Elimination on Vector Multiprocessors.
2014-09-26
vector registers . Several reports have been prepared recently under this effort, and a paper entitled "Task Granularity Studies in a Many-Processor Cray X...measures this effect. To reduce this ratio, it has been shown * possible to assembly-code the X-MP so that accesses are pre-fetched into vector registers
Vectors on the Basketball Court
ERIC Educational Resources Information Center
Bergman, Daniel
2010-01-01
An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…
Vectors on the Basketball Court
ERIC Educational Resources Information Center
Bergman, Daniel
2010-01-01
An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…
A metric for the evaluation of dense vector field visualizations.
Matvienko, Victor; Krüger, Jens
2013-07-01
In this work, we present an intuitive image-quality metric that is derived from the motivation of DVF visualization. It utilizes the features of the resulting image and effectively measures the similarity between the output of the visualization method and the input flow data. We use the angle between the gradient direction and the original vector field as a measure of such similarity and the gradient magnitude as an importance measure. Our metric enables the automatic evaluation of images for a given vector field and allows the comparison of different methods, parameters sets, and quality improvement strategies for a specific vector field. By integrating the metric into the image-computation process, our approach can be used to generate improved images by choosing the best parameter set. To verify the effectiveness of our method, we conducted an extensive user study that demonstrated the metric’s applicability to various situations. For instance, our approach elucidated the robustness of a DVF visualization in the presence of data-altering filters, such as resampling.
On the heat flux vector for flowing granular materials--part II: derivation and special cases
Massoudi, Mehrdad
2006-09-10
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non-linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient.
Investigation, design, and integration of insert gradient coils in magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Feldman, Rebecca E.
three imaging axes. Both resistive and inductive merits were investigated. Of these, inductive values proved to be the limiting factor when designing coils sized to perform in a full body MRI system. Optimal merit and gradient strength were obtained from a butterfly design, and planar coils provided localized strength over a larger region. A butterfly coil was constructed with hollow copper wiring and powered to produce diffusion weighting during MRI. Diffusion contrast b=1300 s/mm2 was obtained using the insert with significant time and signal to noise ratio improvements. Keywords: butterfly coil, magnetic resonance imaging, electric field, gradient coil, inductive merit, nerve stimulation threshold, optimization, peripheral nerve stimulation, planar gradient, resistive merit, scalar potential, simulation, stimulation, vector potential, optimization.
Electromagnetic fields in the human body due to switched transverse gradient coils in MRI.
While, Peter T; Forbes, Larry K
2004-07-07
Magnetic resonance imaging scans impose large gradient magnetic fields on the patient. Modern imaging techniques require this magnetic field to be switched rapidly for good resolution. However, it is believed that this can also lead to the unwanted side effect of peripheral nerve stimulation, which proves to be a limiting factor to the advancement of MRI technology. This paper establishes an analytical model for the fields produced within an MRI scanner by transverse gradient coils of known current density. Expressions are obtained for the magnetic induction vector and the electric field vector, as well as for the surface charge and current densities that are induced on the patient's body. The expressions obtained are general enough to allow the study of any combination of gradient coils whose behaviour can be approximated by Fourier series. For a realistic example coil current density and switching function, it is found that spikes of surface charge density are induced on the patient's body as the gradient field is switched, as well as loops of surface current density that mimic the coil current density. For a 10 mT m(-1) gradient field with a rise time of 100 micros, the magnitude of the radial electric field at the body is found to be 10.3 V m(-1). It is also found that there is a finite limit to radial electric field strength as rise time approaches zero.
NASA Astrophysics Data System (ADS)
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
An education gradient in health, a health gradient in education, or a confounded gradient in both?
Lynch, Jamie L; von Hippel, Paul T
2016-04-01
There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health.
Derivative Free Gradient Projection Algorithms for Rotation
ERIC Educational Resources Information Center
Jennrich, Robert I.
2004-01-01
A simple modification substantially simplifies the use of the gradient projection (GP) rotation algorithms of Jennrich (2001, 2002). These algorithms require subroutines to compute the value and gradient of any specific rotation criterion of interest. The gradient can be difficult to derive and program. It is shown that using numerical gradients…
Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation.
Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu
2015-11-30
To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model.
Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation
Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu
2015-01-01
To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401
The ecological foundations of transmission potential and vector-borne disease in urban landscapes.
LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z
2015-07-01
Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain
Chikungunya Virus–Vector Interactions
Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.
2014-01-01
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891
Vector fields in multidimensional cosmology
NASA Astrophysics Data System (ADS)
Meierovich, Boris E.
2011-09-01
Vector fields in the expanding Universe are considered within the multidimensional theory of general relativity. Vector fields in general relativity form a three-parametric variety. Our consideration includes the fields with a nonzero covariant divergence. Depending on the relations between the particular parameters and the symmetry of a problem, the vector fields can be longitudinal and/or transverse, ultrarelativistic (i.e. massless) or nonrelativistic (massive), and so on. The longitudinal and transverse vector fields are considered separately in detail in the background of the de Sitter cosmological metric. In most cases the field equations reduce to Bessel equations, and their temporal evolution is analyzed analytically. The energy-momentum tensor of the most simple zero-mass longitudinal vector fields enters the Einstein equations as an additive to the cosmological constant. In this case the de Sitter metric is the exact solution of the Einstein equations. Hence, the most simple zero-mass longitudinal vector field pretends to be an adequate tool for macroscopic description of dark energy as a source of the expansion of the Universe at a constant rate. The zero-mass vector field does not vanish in the process of expansion. On the contrary, massive fields vanish with time. Though their amplitude is falling down, the massive fields make the expansion accelerated.
Oxygen Gradients in the Microcirculation
Pittman, Roland N.
2010-01-01
Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453
Autonomous pump against concentration gradient
Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong
2016-01-01
Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204
Temperature Gradient in Hall Thrusters
D. Staack; Y. Raitses; N.J. Fisch
2003-11-24
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.
Generalized Gradient Approximation Made Simple
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-10-01
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
Stringy bounces and gradient instabilities
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2017-04-01
Bouncing solutions are obtained from a generally covariant action characterized by a potential which is a nonlocal functional of the dilaton field at two separated space-time points. Gradient instabilities are shown to arise in this context but they are argued to be nongeneric. After performing a gauge-invariant and a frame-invariant derivation of the evolution equations of the fluctuations, a heuristic criterion for the avoidance of pathological instabilities is proposed and corroborated by a number of explicit examples that turn out to be compatible with a quasiflat spectrum of curvature inhomogeneities for large wavelengths.
Vector statistics of LANDSAT imagery
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.; Underwood, D.
1977-01-01
A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.
Insecticide resistance and vector control.
Brogdon, W. G.; McAllister, J. C.
1998-01-01
Insecticide resistance has been a problem in all insect groups that serve as vectors of emerging diseases. Although mechanisms by which insecticides become less effective are similar across all vector taxa, each resistance problem is potentially unique and may involve a complex pattern of resistance foci. The main defense against resistance is close surveillance of the susceptibility of vector populations. We describe the mechanisms of insecticide resistance, as well as specific instances of resistance emergence worldwide, and discuss prospects for resistance management and priorities for detection and surveillance. PMID:9866736
Relativistic Gamow vectors: State vectors for unstable particles
NASA Astrophysics Data System (ADS)
Kaldas, Hany Kamel Halim
The relativistic Gamow vectors are derived from the analytic continuation of the angular momentum velocity kets to the resonance pole of the S- matrix. This construction is justifiable within a Rigged Hilbert Space of Hardy class functions. The kets obtained | p j3[
Vector independent transmission of the vector-borne bluetongue virus.
van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M
2016-01-01
Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.
Are Bred Vectors The Same As Lyapunov Vectors?
NASA Astrophysics Data System (ADS)
Kalnay, E.; Corazza, M.; Cai, M.
Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the
Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models
Banerjee, Sudipto; Gelfand, Alan E.
2009-01-01
Large-scale inference for random spatial surfaces over a region using spatial process models has been well studied. Under such models, local analysis of the surface (e.g., gradients at given points) has received recent attention. A more ambitious objective is to move from points to curves, to attempt to assign a meaningful gradient to a curve. For a point, if the gradient in a particular direction is large (positive or negative), then the surface is rapidly increasing or decreasing in that direction. For a curve, if the gradients in the direction orthogonal to the curve tend to be large, then the curve tracks a path through the region where the surface is rapidly changing. In the literature, learning about where the surface exhibits rapid change is called wombling, and a curve such as we have described is called a wombling boundary. Existing wombling methods have focused mostly on identifying points and then connecting these points using an ad hoc algorithm to create curvilinear wombling boundaries. Such methods are not easily incorporated into a statistical modeling setting. The contribution of this article is to formalize the notion of a curvilinear wombling boundary in a vector analytic framework using parametric curves and to develop a comprehensive statistical framework for curvilinear boundary analysis based on spatial process models for point-referenced data. For a given curve that may represent a natural feature (e.g., a mountain, a river, or a political boundary), we address the issue of testing or assessing whether it is a wombling boundary. Our approach is applicable to both spatial response surfaces and, often more appropriately, spatial residual surfaces. We illustrate our methodology with a simulation study, a weather dataset for the state of Colorado, and a species presence/absence dataset from Connecticut. PMID:20221318
Neural cell image segmentation method based on support vector machine
NASA Astrophysics Data System (ADS)
Niu, Shiwei; Ren, Kan
2015-10-01
In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.
An efficient parallel algorithm for matrix-vector multiplication
Hendrickson, B.; Leland, R.; Plimpton, S.
1993-03-01
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.
Radially polarized cylindrical vector beams from a monolithic microchip laser
NASA Astrophysics Data System (ADS)
Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew
2015-11-01
Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.
Mechanisms of FGF gradient formation during embryogenesis.
Balasubramanian, Revathi; Zhang, Xin
2016-05-01
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
Motion vector quantization for video coding.
Lee, Y Y; Woods, J W
1995-01-01
A new algorithm is developed for the vector quantization of motion vectors. This algorithm, called motion vector quantization (MVQ), simultaneously estimates and vector quantizes the motion vectors by reinterpreting the block matching algorithm as a type of vector quantization. An iterative design algorithm, based on this concept, is developed. In addition to reducing rate for fixed length encoding, the algorithm also reduces the computation considerably. We include coding simulation results on the Flower Garden sequence.
Three axis vector atomic magnetometer utilizing polarimetric technique.
Pradhan, Swarupananda
2016-09-01
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.
Three axis vector atomic magnetometer utilizing polarimetric technique
Pradhan, Swarupananda E-mail: pradhans75@gmail.com
2016-09-15
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.
Three axis vector atomic magnetometer utilizing polarimetric technique
NASA Astrophysics Data System (ADS)
Pradhan, Swarupananda
2016-09-01
The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.
Bicrystals with strain gradient effects
Shu, J.Y.
1997-01-09
Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.
Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J; Garwood, Michael
2015-12-01
Image blurring due to off-resonance and fast T 2(*) signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2(*) signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners.
NIF optics phase gradient specfication
Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.
1997-05-02
A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of {approximately}80 {angstrom}/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS&T personnel.
Interhemispheric thermal gradient and tropical Pacific climate
NASA Astrophysics Data System (ADS)
Chiang, John C. H.; Fang, Yue; Chang, P.
2008-07-01
We explore the impact of interhemispheric thermal gradients forcing on the tropical Pacific ocean-atmosphere climate in an intermediate coupled model. The equatorial zonal sea surface temperature (SST) gradient strengthens with an increased northward interhemispheric thermal gradient, the increase arising from earlier onset and later retreat of the seasonal cold tongue, and intensification during the peak cold season. When the mean interhemispheric thermal gradient is reversed, the central equatorial Pacific SST annual cycle abruptly reverses in phase, with its cold season in Mar-May rather than Sep-Nov. While startling, this response is consistent with a prevailing hypothesis that ties the cold tongue SST annual cycle phase to the hemispheric mean asymmetry of the Intertropical Convergence Zone. El Niño-Southern Oscillation activity is also sensitive to the interhemispheric thermal gradient, with peak activity occurring when the mean gradient is small, reducing rapidly as the mean gradient increases in either direction.
Extraordinary strain hardening by gradient structure.
Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T
2014-05-20
Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.
Biomolecular gradients in cell culture systems
Keenan, Thomas M.
2013-01-01
Biomolecule gradients have been shown to play roles in a wide range of biological processes including development, inflammation, wound healing, and cancer metastasis. Elucidation of these phenomena requires the ability to expose cells to biomolecule gradients that are quantifiable, controllable, and mimic those that are present in vivo. Here we review the major biological phenomena in which biomolecule gradients are employed, traditional in vitro gradient-generating methods developed over the past 50 years, and new microfluidic devices for generating gradients. Microfluidic gradient generators offer greater levels of precision, quantitation, and spatiotemporal gradient control than traditional methods, and may greatly enhance our understanding of many biological phenomena. For each method, we outline the salient features, capabilities, and applications. PMID:18094760
Integrated Thrust Vectored Engine Control
2001-06-01
erformances operationnelles des aeronefs militaires, des vehicules terrestres et des vehicules maritimes] To order the complete compilation report...throttling "* Autonomous Engine Configuration Side forces demand to define nozzle vectoring "* Simple Interface FADEC -> FCS " Minimum Interaction FCS
Disease Vector Ecology Profile: Colombia
1998-12-01
Studies of Mosquitoes of the Genus Haemagogus in Colombia (Diptera, Culicidae). Am. J. Hyg., 43: 13-28. Lane, J. 1953. Neotropical Culicidae...malariae and P. ovale). Female mosquitoes of the genus Anopheles are the exclusive vectors of human malaria. During feeding, the mosquito ingests...birds are implicated reservoirs. The biting midge, Culicoides paraensis, is a proven vector. Culex quinquefasciatus is also capable of transmission
Disease Vector Ecology Profile: Bolivia
1998-12-01
Arnell, J.H. 1973. Mosquito Studies (Diptera, Culicidae). XXXII. A Revision of the Genus Haemagogus. Contrib. Am. Ent. Inst., 10(2): 1-174...parasites (P. vivax , P. falciparum, P. malariae and P. ovale). Female mosquitoes of the genus Anopheles are the exclusive vectors of human malaria...and possibly wild birds are implicated reservoirs. The biting midge, Culicoides paraensis, is a proven vector. Culex quinquefasciatus is also
Lin, Psang Dain
2013-06-20
To evaluate the merit function of an optical system, it is necessary to determine the first- and second-order derivative matrices of the boundary variable vector with respect to the system variable vector. Accordingly, the present study proposes a computationally efficient method for determining both matrices for optical systems containing only flat boundary surfaces. The validity of the proposed method is demonstrated by means of two illustrative prism design problems. In general, the results show that the proposed method can provide efficient search directions in many gradient-based optical design optimization methods.
Hagedorn, Claudia; Baiker, Armin; Postberg, Jan; Ehrhardt, Anja; Lipps, Hans J
2012-06-01
Nonviral episomal vectors represent attractive alternatives to currently used virus-based expression systems. In the late 1990s, it was shown that a plasmid containing an expression cassette linked to a scaffold/matrix attached region (S/MAR) replicates as a low copy number episome in all cell lines tested, as well as primary cells, and can be used for the genetic modification of higher animals. Once established in the cell, the S/MAR vector replicates early during S-phase and, in the absence of selection, is stably retained in the cells for an unlimited period of time. This vector can therefore be regarded as a minimal model system for studying the epigenetic regulation of replication and functional nuclear architecture. In theory, this construct represents an almost "ideal" expression system for gene therapy. In practice, S/MAR-based vectors stably modify mammalian cells with efficiencies far below those of virus-based constructs. Consequently, they have not yet found application in gene therapy trials. Furthermore, S/MAR vector systems are not trivial to handle and several critical technical issues have to be considered when modifying these vectors for various applications.
Axisymmetric Coanda-assisted vectoring
NASA Astrophysics Data System (ADS)
Allen, Dustin; Smith, Barton L.
2009-01-01
An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.
Vector control after malaria eradication
Micks, D. W.
1963-01-01
In considerable areas now in or near the consolidation phase of malaria eradication, other vector-borne diseases present serious public health problems, even though not susceptible to control on the same world-wide scale as malaria. Several of these areas are already making plans for converting their malaria eradication services to vector control services. While it is possible to use essentially the same personnel and equipment, the methods must be adapted to the biology and habits of the vector. For a smooth and rapid transition, considerable advance planning is therefore needed—preferably well ahead of the consolidation phase. The author gives several examples of the need for flexibility in effecting the changeover and of the problems likely to arise after the completion of malaria eradication programmes. He recommends that epidemiological studies should be extended to vector-borne diseases other than malaria while eradication programmes are still in progress and that vector control programmes should be integrated into the basic health services of the country as soon as possible. He also underlines the importance of water management and other aspects of environmental sanitation in vector control programmes. PMID:20604169
Sustained expression from DNA vectors.
Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P
2015-01-01
DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.
NASA Astrophysics Data System (ADS)
Herron, C. A.; Geisbuesch, J.; Landecker, T. L.; Kothes, R.; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Petroff, E.
2017-02-01
We have investigated the magneto-ionic turbulence in the interstellar medium through spatial gradients of the complex radio polarization vector in the Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square degrees, over the range 53^\\circ ≤slant {\\ell }≤slant 192^\\circ , -3^\\circ ≤slant b≤slant 5^\\circ , with an extension to b=17\\buildrel{\\circ}\\over{.} 5 in the range 101^\\circ ≤slant {\\ell }≤slant 116^\\circ , and arcminute resolution at 1420 MHz. Previous studies found a correlation between the skewness and kurtosis of the polarization gradient and the Mach number of the turbulence, or assumed this correlation to deduce the Mach number of an observed turbulent region. We present polarization gradient images of the entire CGPS data set, and analyze the dependence of these images on angular resolution. The polarization gradients are filamentary, and the length of these filaments is largest toward the Galactic anti-center, with the smallest toward the inner Galaxy. This may imply that small-scale turbulence is stronger in the inner Galaxy, or that we observe more distant features at low Galactic longitudes. For every resolution studied, the skewness of the polarization gradient is influenced by the edges of bright polarization gradient regions, which are not related to the turbulence revealed by the polarization gradients. We also find that the skewness of the polarization gradient is sensitive to the size of the box used to calculate the skewness, but insensitive to Galactic longitude, implying that the skewness only probes the number and magnitude of the inhomogeneities within the box. We conclude that the skewness and kurtosis of the polarization gradient are not ideal statistics for probing natural magneto-ionic turbulence.
Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
Strength gradient enhances fatigue resistance of steels
Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian
2016-01-01
Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708
Gradient scaling for nonuniform meshes
Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.
1985-01-01
This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.
Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald
2012-01-01
Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially
Gottdenker, Nicole L; Chaves, Luis Fernando; Calzada, José E; Saldaña, Azael; Carroll, C Ronald
2012-01-01
Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as r(max), the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of r(max) were positively associated with higher vector infection rate at a site. In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts that are
NASA Astrophysics Data System (ADS)
Makarevich, Roman A.
2016-04-01
A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.
NASA Astrophysics Data System (ADS)
Lamarche, L. J.; Makarevich, R. A.
2016-12-01
It is commonly accepted that large density structures in the polar F region ionosphere have more plasma structuring on their trailing edge than leading edge. This has been experimentally demonstrated and is traditionally interpreted in the context of linear gradient-drift instability (GDI) theory. The asymmetry around large scale density structures (polar patches) observed in one case event is investigated by examining the relationship between HF radar backscatter power observed with the Super Dual Auroral Radar Network (SuperDARN) radar at Rankin Inlet (RKN) and local plasma parameters measured by the Resolute Bay Incoherent Scatter Radar (RISR-N). The GDI growth rates are modeled based on a general theory with arbitrary density gradient and electric field vectors using RISR-N measurements. The model predictions are compared to irregularity characteristics measured by RKN, with a particular focus on the previously unexplored directional dependencies of the irregularity strengths/echo power on the density gradient and electric field. Relationships between irregularity strength, electron density, and gradient scale are also examined. It is demonstrated that echo occurrence peaks when density gradients are parallel to the drift velocity and RKN echo power is generally higher when electric field and/or gradient components increase. The presented experimental data indicate that both of these directional factors contribute to plasma irregularity growth through the GDI mechanism and must be considered in GDI modeling efforts.
NASA Astrophysics Data System (ADS)
Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus
2017-06-01
We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.
NASA Astrophysics Data System (ADS)
Fan, Zhong-Ying
2016-09-01
In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.
Learning with LOGO: Logo and Vectors.
ERIC Educational Resources Information Center
Lough, Tom; Tipps, Steve
1986-01-01
This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)
The biological control of disease vectors.
Okamoto, Kenichi W; Amarasekare, Priyanga
2012-09-21
Vector-borne diseases are common in nature and can have a large impact on humans, livestock and crops. Biological control of vectors using natural enemies or competitors can reduce vector density and hence disease transmission. However, the indirect interactions inherent in host-vector disease systems make it difficult to use traditional pest control theory to guide biological control of disease vectors. This necessitates a conceptual framework that explicitly considers a range of indirect interactions between the host-vector disease system and the vector's biological control agent. Here we conduct a comparative analysis of the efficacy of different types of biological control agents in controlling vector-borne diseases. We report three key findings. First, highly efficient predators and parasitoids of the vector prove to be effective biological control agents, but highly virulent pathogens of the vector also require a high transmission rate to be effective. Second, biocontrol agents can successfully reduce long-term host disease incidence even though they may fail to reduce long-term vector densities. Third, inundating a host-vector disease system with a natural enemy of the vector has little or no effect on reducing disease incidence, but inundating the system with a competitor of the vector has a large effect on reducing disease incidence. The comparative framework yields predictions that are useful in developing biological control strategies for vector-borne diseases. We discuss how these predictions can inform ongoing biological control efforts for host-vector disease systems. Copyright © 2012. Published by Elsevier Ltd.
Egizi, Andrea; Fefferman, Nina H; Fonseca, Dina M
2015-04-05
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.
Rapid, Simple, and Versatile Manufacturing of Recombinant Adeno-Associated Viral Vectors at Scale
Lock, Martin; Alvira, Mauricio; Vandenberghe, Luk H.; Samanta, Arabinda; Toelen, Jaan; Debyser, Zeger
2010-01-01
Abstract Adeno-associated viral (AAV) manufacturing at scale continues to hinder the application of AAV technology to gene therapy studies. Although scalable systems based on AAV–adenovirus, AAV–herpesvirus, and AAV–baculovirus hybrids hold promise for clinical applications, they require time-consuming generation of reagents and are not highly suited to intermediate-scale preclinical studies in large animals, in which several combinations of serotype and genome may need to be tested. We observed that during production of many AAV serotypes, large amounts of vector are found in the culture supernatant, a relatively pure source of vector in comparison with cell-derived material. Here we describe a high-yielding, recombinant AAV production process based on polyethylenimine (PEI)-mediated transfection of HEK293 cells and iodixanol gradient centrifugation of concentrated culture supernatant. The entire process can be completed in 1 week and the steps involved are universal for a number of different AAV serotypes. Process conditions have been optimized such that final purified yields are routinely greater than 1 × 1014 genome copies per run, with capsid protein purity exceeding 90%. Initial experiments with vectors produced by the new process demonstrate equivalent or better transduction both in vitro and in vivo when compared with small-scale, CsCl gradient-purified vectors. In addition, the iodixanol gradient purification process described effectively separates infectious particles from empty capsids, a desirable property for reducing toxicity and unwanted immune responses during preclinical studies. PMID:20497038
Mask optimization approaches in optical lithography based on a vector imaging model.
Ma, Xu; Li, Yanqiu; Dong, Lisong
2012-07-01
Recently, a set of gradient-based optical proximity correction (OPC) and phase-shifting mask (PSM) optimization methods has been developed to solve for the inverse lithography problem under scalar imaging models, which are only accurate for numerical apertures (NAs) of less than approximately 0.4. However, as lithography technology enters the 45 nm realm, immersion lithography systems with hyper-NA (NA>1) are now extensively used in the semiconductor industry. For the hyper-NA lithography systems, the vector nature of the electromagnetic field must be taken into account, leading to the vector imaging models. Thus, the OPC and PSM optimization approaches developed under the scalar imaging models are inadequate to enhance the resolution in immersion lithography systems. This paper focuses on developing pixelated gradient-based OPC and PSM optimization algorithms under a vector imaging model. We first formulate the mask optimization framework, in which the imaging process of the optical lithography system is represented by an integrative and analytic vector imaging model. A gradient-based algorithm is then used to optimize the mask iteratively. Subsequently, a generalized wavelet penalty is proposed to keep a balance between the mask complexity and convergence errors. Finally, a set of methods is exploited to speed up the proposed algorithms.
Analytic approach to the design of transverse gradient coils with co-axial return paths.
Bowtell, R; Peters, A
1999-03-01
Transverse gradient coils with co-axial return paths offer reduced acoustic noise compared with standard cylindrical gradient coils, due to local force balancing, and can also easily be made to have a length to diameter ratio that is less than one. Analytic expressions for the magnetic field and vector potential generated by this type of coil are described here, along with a formula for calculating the coil inductance. It is shown that these expressions allow the implementation of powerful analytic methods of coil design, as well as the incorporation of active magnetic screening. It is also demonstrated how the mathematics specifies the best parameters to use when designing coils with small numbers of elements. A head gradient coil for use at 3.0 T has been designed using the analytic approach described here. The process of coil design and construction is outlined and the performance of the coil in comparison with a similar standard cylindrical coil is described.
A complete implementation of the conjugate gradient algorithm on a reconfigurable supercomputer
Dubois, David H; Dubois, Andrew J; Connor, Carolyn M; Boorman, Thomas M; Poole, Stephen W
2008-01-01
The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double precision, non-preconditioned, conjugate gradient solver for fmite-element or finite-difference methods. OUf work utilizes the SRC Computers, Inc. MAPStation hardware platform along with the 'Carte' software programming environment to ease the programming workload when working with the hybrid (CPUIFPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7 non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining high performance. Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of this algorithm on that architecture.
Vector quantization and learning vector quantization for radar target classification
NASA Astrophysics Data System (ADS)
Stewart, Clayton V.; Lu, Yi-Chuan; Larson, Victor J.
1993-10-01
Radar target classification performance is greatly dependent on how the classifier represents the strongly angle dependent radar target signatures. This paper compares the performance of classifiers that represent radar target signatures using vector quantization (VQ) and learning vector quantization (LVQ). The classifier performance is evaluated with a set of high resolution millimeter-wave radar data from four ground vehicles (Camaro, van, pickup, and bulldozer). LVQ explicitly includes classification performance in its data representation criterion, whereas VQ only makes use of a distortion measure such as mean square distance. The classifier that uses LVQ to represent the radar data has a much higher probability of correct classification than VQ.
Half conformally flat gradient Ricci almost solitons
Brozos-Vázquez, M.; Valle-Regueiro, X.
2016-01-01
The local structure of half conformally flat gradient Ricci almost solitons is investigated, showing that they are locally conformally flat in a neighbourhood of any point where the gradient of the potential function is non-null. In opposition, if the gradient of the potential function is null, then the soliton is a steady traceless κ-Einstein soliton and is realized on the cotangent bundle of an affine surface. PMID:27279774
Testing the limits of gradient sensing
Lakhani, Vinal
2017-01-01
The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738
Morpheus unbound: reimagining the morphogen gradient.
Lander, Arthur D
2007-01-26
The theory that the spatial organization of cell fate is orchestrated by gradients of diffusing molecules was a major contribution to 20th century developmental biology. Although the existence of morphogens is no longer in doubt, studies on the formation and function of their gradients have yielded far more puzzles than answers. On close inspection, every morphogen gradient seems to use a rich array of regulatory mechanisms, suggesting that the tasks carried out by such systems are far more extensive than previously thought.
Vector control in developed countries
Peters, Richard F.
1963-01-01
The recent rapid growth of California's population, leading to competition for space between residential, industrial and agricultural interests, the development of its water resources and increasing water pollution provide the basic ingredients of its present vector problems. Within the past half-century, the original mosquito habitats provided by nature have gradually given place to even more numerous and productive habitats of man-made character. At the same time, emphasis in mosquito control has shifted from physical to chemical, with the more recent extension to biological approaches as well. The growing domestic fly problem, continuing despite the virtual disappearance of the horse, is attributable to an increasing amount of organic by-products, stemming from growing communities, expanding industries and changing agriculture. The programme for the control of disease vectors and pest insects and animals directs its major effort to the following broad areas: (1) water management (including land preparation), (2) solid organic wastes management (emphasizing utilization), (3) community management (including design, layout, and storage practices of buildings and grounds), and (4) recreational area management (related to wildlife management). It is apparent that vector control can often employ economics as an ally in securing its objectives. Effective organization of the environment to produce maximum economic benefits to industry, agriculture, and the community results generally in conditions unfavourable to the survival of vector and noxious animal species. Hence, vector prevention or suppression is preferable to control as a programme objective. PMID:20604166
Vectors for cancer gene therapy.
Zhang, J; Russell, S J
1996-09-01
Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.
Episomal vectors for gene therapy.
Ehrhardt, Anja; Haase, Rudolf; Schepers, Aloys; Deutsch, Manuel J; Lipps, Hans Joachim; Baiker, Armin
2008-06-01
The increasing knowledge of the molecular and genetic background of many different human diseases has led to the vision that genetic engineering might be used one day for their phenotypic correction. The main goal of gene therapy is to treat loss-of-function genetic disorders by delivering correcting therapeutic DNA sequences into the nucleus of a cell, allowing its long-term expression at physiologically relevant levels. Manifold different vector systems for the therapeutic gene delivery have been described over the recent years. They all have their individual advantages but also their individual limitations and must be judged on a careful risk/benefit analysis. Integrating vector systems can deliver genetic material to a target cell with high efficiency enabling long-term expression of an encoded transgene. The main disadvantage of integrating vector systems, however, is their potential risk of causing insertional mutagenesis. Episomal vector systems have the potential to avoid these undesired side effects, since they behave as separate extrachromosomal elements in the nucleus of a target cell. Within this article we present a comprehensive survey of currently available episomal vector systems for the genetic modification of mammalian cells. We will discuss their advantages and disadvantages and their applications in the context of basic research, biotechnology and gene therapy.
Vector Encoding in Biochemical Networks
NASA Astrophysics Data System (ADS)
Potter, Garrett; Sun, Bo
Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.
Generalized Selection Weighted Vector Filters
NASA Astrophysics Data System (ADS)
Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.
2004-12-01
This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy.
Gradient copolymers - a new class of materials
Greszta, D.; Matyjaszewski, K.
1996-10-01
In this work preparation of a new class of copolymers, namely gradient copolymers via controlled Atom Transfer Radical Polymerization (ATRP) is described. Due to the compositional gradient along the chain, gradient copolymers are expected to exhibit unique physical characteristics as compared to block and random copolymers with similar composition and molecular weight. These include unusual phase separation behavior, and mechanical and thermal properties. Using ATRP one can prepare gradient copolymers via two routes. The first one is the one-pot copolymerization of monomers with different reactitvity ratios r{sub 1}{much_gt}r{sub 2}. The second one is a copolymerization while continuously changing the comonomers feed composition.
Production and titering of recombinant adeno-associated viral vectors.
McClure, Christina; Cole, Katy L H; Wulff, Peer; Klugmann, Matthias; Murray, Andrew J
2011-11-27
In recent years recombinant adeno-associated viral vectors (AAV) have become increasingly valuable for in vivo studies in animals, and are also currently being tested in human clinical trials. Wild-type AAV is a non-pathogenic member of the parvoviridae family and inherently replication-deficient. The broad transduction profile, low immune response as well as the strong and persistent transgene expression achieved with these vectors has made them a popular and versatile tool for in vitro and in vivo gene delivery. rAAVs can be easily and cheaply produced in the laboratory and, based on their favourable safety profile, are generally given a low safety classification. Here, we describe a method for the production and titering of chimeric rAAVs containing the capsid proteins of both AAV1 and AAV2. The use of these so-called chimeric vectors combines the benefits of both parental serotypes such as high titres stocks (AAV1) and purification by affinity chromatography (AAV2). These AAV serotypes are the best studied of all AAV serotypes, and individually have a broad infectivity pattern. The chimeric vectors described here should have the infectious properties of AAV1 and AAV2 and can thus be expected to infect a large range of tissues, including neurons, skeletal muscle, pancreas, kidney among others. The method described here uses heparin column purification, a method believed to give a higher viral titer and cleaner viral preparation than other purification methods, such as centrifugation through a caesium chloride gradient. Additionally, we describe how these vectors can be quickly and easily titered to give accurate reading of the number of infectious particles produced.
Gauge Theories of Vector Particles
DOE R&D Accomplishments Database
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Extrapolation methods for vector sequences
NASA Technical Reports Server (NTRS)
Smith, David A.; Ford, William F.; Sidi, Avram
1987-01-01
This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.
NASA Astrophysics Data System (ADS)
Hosaka, A.; Toki, H.; Weise, W.
1990-01-01
We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.
Vector insects and their control.
Lehane, M J
1996-01-01
This paper emphasizes the huge influence that vector-transmitted disease has on humans using plague, epidemic typhus and nagana as examples. The continuing need for vector control in campaigns against insect-transmitted disease is shown by reference to current control programmes mounted against Chagas' disease, onchocerciasis, lymphatic filariasis and nagana. These successful campaigns have not been reliant on new breakthroughs but on the forging of available tools into effective strategies widely and efficiently used by the control authorities, and the long-lasting political commitment to the success of the schemes in question. A brief mention is made of current fashions in vector control research and that great care needs to be taken by policy-makers to achieve a balance between long-term research aiming at the production of fundamentally new control technologies and operational research aiming to forge the often highly effective tools we already have into sound control strategies.
Targeting retroviral and lentiviral vectors.
Sandrin, V; Russell, S J; Cosset, F L
2003-01-01
Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.
Bred vectors, singular vectors, and Lyapunov vectors in simple and complex models
NASA Astrophysics Data System (ADS)
Norwood, Adrienne
We compute and compare three types of vectors frequently used to explore the instability properties of dynamical models, Lyapunov vectors (LVs), singular vectors (SVs), and bred vectors (BVs). The first model is the Lorenz (1963) three-variable model. We find BVs align with the locally fastest growing LV, which is often the second fastest growing global LV. The growth rates of the three types of vectors reveal all predict regime changes and durations of new regimes, as shown for BVs by Evans et al. (2004). The second model is the toy 'atmosphere-ocean model' developed by Pena and Kalnay (2004) coupling three Lorenz (1963) models with different time scales to test the effects of fast and slow modes of growth on the dynamical vectors. A fast 'extratropical atmosphere' is weakly coupled to a fast 'tropical atmosphere' which is strongly coupled to a slow 'ocean' system, the latter coupling imitating the tropical El Nino--Southern Oscillation. BVs separate the fast and slow modes of growth through appropriate selection of the breeding parameters. LVs successfully separate the fast 'extratropics' but cannot completely decouple the 'tropics' from the 'ocean,' leading to 'coupled' LVs that are affected by both systems but mainly dominated by one. SVs identify the fast modes but cannot capture the slow modes until the fast 'extratropics' are replaced with faster 'convection.' The dissimilar behavior of the three types of vectors degrades the similarities of the subspaces they inhabit (Norwood et al. 2013). The third model is a quasi-geostrophic channel model (Rotunno and Bao 1996) that is a simplification of extratropical synoptic-scale motions with baroclinic instabilities only. We were unable to successfully compute LVs for it. However, randomly initialized BVs quickly converge to a single vector that is the leading LV. The last model is the SPEEDY model created by Molteni (2003). It is a simplified general atmospheric circulation model with several types of instabilities
Thrust-vectored differential turns
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Lefton, L.
1980-01-01
Barrier surface construction in the joint space of the differential turning game for thrust-vectored vs. conventional aircraft is discussed. Differential-turn studies are based on modifications of existing computer programs including an energy-turn program, and one which generates hodograph data. Optimal turning flight in energy approximation is discussed for the conventional aircraft configurations. It is concluded that any advantages realized from thrust-vectoring are minor, unless hover is possible, where advantages would be major at low energies, and affect tactics at high energies as well.
Anisotropic inflation from vector impurity
Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp
2008-08-15
We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.
Requirements for airborne vector gravimetry
NASA Technical Reports Server (NTRS)
Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.
1992-01-01
The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.
Requirements for airborne vector gravimetry
NASA Technical Reports Server (NTRS)
Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.
1992-01-01
The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.
Differential and gradient microphone arrays
NASA Astrophysics Data System (ADS)
Elko, Gary W.; West, James E.; Thompson, Steve
2003-10-01
Differential microphone arrays have been in existence for more than 7 decades and are the basis of most commercial directional microphones in use today. These microphones obtain directionality by combining the acoustic pressure and the pressure-difference to form what is termed a first-order differential microphone. Differential microphones are inherently superdirectional since they can obtain broadband directional gains of up to 6.0 dB in an array that is physically much smaller than the acoustic wavelength. Differential arrays constructed by subtracting omnidirectional microphones are inherently more flexible in that the directional response can be easily and continuously varied from omnidirectional to hypercardioid. The simultaneous measurement of the acoustic pressure and particle velocity allows one to estimate the complex acoustic intensity along the axis of a microphone pair. A measure of the complex acoustic intensity vector can be obtained using a minimum of four pressure-sensing microphones. Higher-order differential microphones are also possible by using more microphone elements, but the problems of microphone calibration and signal-to-noise combine to practically realize microphones of differential order greater than third order. We will present some of the history of differential microphone array design and discuss some applications related to hands-free communication, hearing aids, and spatial audio recording.
Song, Y F; Zhang, H; Zhao, L M; Shen, D Y; Tang, D Y
2016-01-25
We report on the experimental observation of vector and bound vector solitons in a fiber laser passively mode locked by graphene. Localized interactions between vector solitons, vector soliton with bound vector solitons, and vector soliton with a bunch of vector solitons are experimentally investigated. We show that depending on the soliton interactions, various stable and dynamic multiple vector soliton states could be formed.
Canonical trivialization of gravitational gradients
NASA Astrophysics Data System (ADS)
Niedermaier, Max
2017-06-01
A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.
Intra prediction with spatial gradient
NASA Astrophysics Data System (ADS)
Matsuo, Shohei; Takamura, Seishi; Kamikura, Kazuto; Yashima, Yoshiyuki
2009-01-01
Spatial intra prediction has been added recently to the latest video coding standard H.264/AVC. In the intra prediction of H.264/AVC, there are 9, 9 and 4 prediction modes for 4×4, 8×8 and 16×16 blocks, respectively. Prediction signals are generated by using one or several reference pixels. The value of a reference pixel is copied as the prediction value. In some prediction modes, we calculate a weighted mean by averaging several pixels. The same prediction value is copied to several of the pixels lying in the prediction direction. However, if original image has patterns like gradations, the residual energy could increase which would result in low coding efficiency. In this paper, we propose a new intra prediction that generates prediction signals with a spatial gradient to deal with this problem. Simulation results show that it improves the picture quality and reduce the bit-rate by about 0.14 dB and 1.0 % on average for CIF sequences, respectively. It is also confirmed that our method is effective at high bit-rates.
Density Gradient Dependent Helicon Modes
NASA Astrophysics Data System (ADS)
Panevsky, Martin; Bengtson, Roger
2002-11-01
Radially localized helicon modes have been proposed to provide a fuller description of helicon discharges over a wide span of operating conditions and gas types [1]. These plasma modes could be of vital importance to the VASIMR engine. They depend on a radial density gradient and appear to operate over a range of frequencies inaccessible to traditional helicon discharges. Our work focuses on confirming experimentally the existence and properties of these helicon modes in Argon, Helium, and Hydrogen. We investigate the density profile, power deposition, wavefields, and dispersion relation of the new helicon modes which differ substantially from the properties of the traditional helicon plasma. We are using a set of dual half-turn helical antennas driven at 13.56 MHz. Our diagnostics includes a system for monitoring the plasma impedance, a set of Langmuir probes, a set of magnetic probes, as well as sensors for monitoring the pressure and DC magnetic field. *Work supported in part by Advanced Space Propulsion Lab, Johnson Space Center, NASA [1] B. N. Breizman and A. V. Arefiev, Phys. Rev. 84, 3863 (2000)
An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package
NASA Astrophysics Data System (ADS)
Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.
1989-05-01
The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.
Discretizing delta functions via finite differences and gradient normalization
NASA Astrophysics Data System (ADS)
Towers, John D.
2009-06-01
In [J.D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915-931] the author presented two closely related finite difference methods (referred to here as FDM1 and FDM2) for discretizing a delta function supported on a manifold of codimension one defined by the zero level set of a smooth mapping u :Rn ↦ R . These methods were shown to be consistent (meaning that they converge to the true solution as the mesh size h → 0) in the codimension one setting. In this paper, we concentrate on n ⩽ 3 , but generalize our methods to codimensions other than one - now the level set function is generally a vector valued mapping u → :Rn ↦Rm, 1 ⩽ m ⩽ n ⩽ 3 . Seemingly reasonable algorithms based on simple products of approximate delta functions are not generally consistent when applied to these problems. Motivated by this, we instead use the wedge product formalism to generalize our FDM algorithms, and this approach results in accurate, often consistent approximations. With the goal of ensuring consistency in general, we propose a new gradient normalization process that is applied before our FDM algorithms. These combined algorithms seem to be consistent in all reasonable situations, with numerical experiments indicating O (h2) convergence for our new gradient-normalized FDM2 algorithm. In the full codimension setting (m = n) , our gradient normalization processing also improves accuracy when using more standard approximate delta functions. This combination also yields approximations that appear to be consistent.
The Evolution of Strain Gradient and Anisotropy in Gradient-Structured Metal
NASA Astrophysics Data System (ADS)
Bian, Xiangde; Yuan, Fuping; Wu, Xiaolei; Zhu, Yuntian
2017-09-01
Gradient-structured metals have been reported to possess superior mechanical properties, which were attributed to their mechanical heterogeneity. Here we report in-situ observation of the evolution of strain gradient and anisotropy during tensile testing of a gradient-structured metal. Strain gradients and anisotropy in the lateral directions were observed to increase with increasing applied tensile strain. In addition, the equivalent Poisson's ratio showed gradient, which evolved with applied strain. The gradient structure produced higher deformation anisotropy than coarse-grained homogeneous structure, and the anisotropy increased with increasing tensile strain. The strain gradient and anisotropy resulted in strong back-stress hardening, large strain gradients, and a high density of geometrically necessary dislocations, which helped with increasing the ductility.
The Evolution of Strain Gradient and Anisotropy in Gradient-Structured Metal
NASA Astrophysics Data System (ADS)
Bian, Xiangde; Yuan, Fuping; Wu, Xiaolei; Zhu, Yuntian
2017-07-01
Gradient-structured metals have been reported to possess superior mechanical properties, which were attributed to their mechanical heterogeneity. Here we report in-situ observation of the evolution of strain gradient and anisotropy during tensile testing of a gradient-structured metal. Strain gradients and anisotropy in the lateral directions were observed to increase with increasing applied tensile strain. In addition, the equivalent Poisson's ratio showed gradient, which evolved with applied strain. The gradient structure produced higher deformation anisotropy than coarse-grained homogeneous structure, and the anisotropy increased with increasing tensile strain. The strain gradient and anisotropy resulted in strong back-stress hardening, large strain gradients, and a high density of geometrically necessary dislocations, which helped with increasing the ductility.
Microinstabilities in weak density gradient tokamak systems
Tang, W.M.; Rewoldt, G.; Chen, L.
1986-04-01
A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.
Statistics of concentration gradients in porous media
NASA Astrophysics Data System (ADS)
Le Borgne, Tanguy; Huck, Peter; Dentz, Marco; Villermaux, Emmanuel
2017-04-01
In subsurface environments, concentration gradients develop at interfaces between surface water and groundwater bodies, such as hyporheic zones, saline wedges or recharge areas, as well as around contaminant plumes and fluids injected in subsurface operations. These areas generally represent hotspots of biogeochemical reactions, such as redox, dissolution and precipitation reactions, as concentration gradients create opportunities for reactive agents to mix and generate chemical disequilibrium. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients can be broadly distributed since they are enhanced by velocity gradients induced by medium heterogeneity. We thus present a stochastic theory linking the Probability Density Function (PDF) of concentration gradients to flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from small to large permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradient distributions and the kinetics of associated biogeochemical reactions in a stochastic framework. References: Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. 812, pp. 578-610. doi: 10.1017/jfm.2016.799
The gradient deformation criterion for brittle fracture
NASA Astrophysics Data System (ADS)
Kuliev, V. D.; Morozov, E. M.
2016-10-01
A new fracture criterion based on the assumption that brittle fracture occurs when the strain gradient reaches its limiting value is formulated. The presence of a strain gradient at the boundary of a body's temperature drop is shown analytically. The results of an experiment with specimens under an abrupt change in temperature are presented.
Moving thermal gradients in gas chromatography.
Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L
2014-12-29
This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.
Geothermal gradient map of the United States
Kron, A.; Heiken, G.
1980-01-01
A geothermal gradient map is needed in order to determine the hot dry rock (HDR) geothermal resource of the United States. Based on published and unpublished data (including new measurements) the HDR program will produce updated gradient maps annually, to be used as a tool for resource evaluation and exploration. The 1980 version of this map is presented.
An Inexpensive Digital Gradient Controller for HPLC.
ERIC Educational Resources Information Center
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
An Inexpensive Digital Gradient Controller for HPLC.
ERIC Educational Resources Information Center
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
Calculation of exit gradients at drainage ditches
USDA-ARS?s Scientific Manuscript database
Seepage gradients play an important role in the detachment of soil particles from the side walls of stream channels and drainage ditches. Most seepage studies have focused on water losses. Relatively few have addressed the determination of these gradients as causes of soil loss and incipient gully d...
Blind separation of convolutive sEMG mixtures based on independent vector analysis
NASA Astrophysics Data System (ADS)
Wang, Xiaomei; Guo, Yina; Tian, Wenyan
2015-12-01
An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed method is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.
Auxiliary function approach to independent component analysis and independent vector analysis
NASA Astrophysics Data System (ADS)
Ono, N.
2015-05-01
In this paper, we review an auxiliary function approach to independent component analysis (ICA) and independent vector analysis (IVA). The derived algorithm consists of two alternative updates: 1) weighted covariance matrix update and 2) demixing matrix update, which include no tuning parameters such as a step size in the gradient descent method. The monotonic decrease of the objective function is guaranteed by the principle of the auxiliary function method. The experimental evaluation shows that the derived update rules yield faster convergence and better results than natural gradient updates. An efficient implementation on a mobile phone is also presented.
Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge
2012-01-01
Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...
NASA Astrophysics Data System (ADS)
Kuznetsov, G. N.; Stepanov, A. N.
2017-05-01
We study the applicability of the reciprocity principles in an underwater waveguide for the vector-scalar fields of multipole sources. We show analytically and numerically that multipole sources are divided into two groups according to this principle: in the first group, the sound pressure field and the horizontal projections of the vibration velocity vectors satisfy the reciprocity principle, while the vertical projections of these vectors do not. In the second group, the pressure and the horizontal projections of the vibration velocity vector do not satisfy the reciprocity principle, while their vertical projections do. We establish that the phase gradients and angles of arrival of signals in the vertical plane do not satisfy the reciprocity principle for the vector-scalar fields of volumetric sources with arbitrary directivity in the vertical plane.
Dual fuel gradients in uranium silicide plates
Pace, B.W.
1997-08-01
Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.
A new family of conjugate gradient methods
NASA Astrophysics Data System (ADS)
Shi, Zhen-Jun; Guo, Jinhua
2009-02-01
In this paper we develop a new class of conjugate gradient methods for unconstrained optimization problems. A new nonmonotone line search technique is proposed to guarantee the global convergence of these conjugate gradient methods under some mild conditions. In particular, Polak-Ribiére-Polyak and Liu-Storey conjugate gradient methods are special cases of the new class of conjugate gradient methods. By estimating the local Lipschitz constant of the derivative of objective functions, we can find an adequate step size and substantially decrease the function evaluations at each iteration. Numerical results show that these new conjugate gradient methods are effective in minimizing large-scale non-convex non-quadratic functions.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Paleomagnetic vectors and tilted dikes
NASA Astrophysics Data System (ADS)
Borradaile, G. J.
2001-04-01
Where tectonic deformation reorients rocks without penetrative strain, their paleomagnetic vectors may be restored to their original attitudes by untilting. For strata, paleomagnetic inclination is readily restored but the tilt axis must be precisely known if paleodeclination is required. For dikes, without the knowledge of the rotation(s), neither declination nor inclination of the paleomagnetic vector can be uniquely defined. Furthermore, back-rotating dike orientations to an upright attitude assumes primary verticality whereas primary dike dips are bimodal across the spreading axes (e.g. Troodos ophiolite, Cyprus). In the Cyprus ophiolite, the dikes of the Limassol Forest Transform Zone are tilted due to uplift of the mantle-sequence rocks and deflected against the Arakapas Fault. Their paleomagnetic vectors may be restored rotating about the two axes defined by the strike and the vertical, or about a net axis that is possibly the actual tectonic rotation axis. This net axis is determined from the tectonic regional dispersion of the dike orientations. In this test case, the results of the restorations differ slightly but underline the difficulty in selecting the best restoration procedure and the greater difficulty of restoring the paleomagnetic data from dikes vis à vis strata. For dikes, it is recommended that the paleomagnetic vectors are restored using average dike orientations to minimize the inaccuracies due to the large primary variation in dike orientation.
NASA Technical Reports Server (NTRS)
Powers, W. D.
1975-01-01
The feasibility of utilizing hydrogen as an energy vector is considered, with special attention given to means of hydrogen production. The state-of-the-art in thermochemical processes is reviewed, and criteria for the technical and economic feasibility of large-scale thermochemical water splitting processes are presented. The production of hydrogen from coal and from photolysis of water is discussed.
Portfolio Analysis for Vector Calculus
ERIC Educational Resources Information Center
Kaplan, Samuel R.
2015-01-01
Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…
Vector ecology of equine piroplasmosis
USDA-ARS?s Scientific Manuscript database
Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...
Phlebotomine Vectors of Human Disease.
1983-12-30
different. We refrain from naming this specimen until more material becomes available. 12. Lutzomyia olmeca bicolor Fairchild and Theodor 1971...Castillo (1958) and Arzube (1960). Lutzomyia olmeca bicolor is the suspected vector of Leishmania mexicana aristedesi among rodents and marsupials in
Biosafety Features of Lentiviral Vectors
Schambach, Axel; Zychlinski, Daniela; Ehrnstroem, Birgitta
2013-01-01
Abstract Over the past decades, lentiviral vectors have evolved as a benchmark tool for stable gene transfer into cells with a high replicative potential. Their relatively flexible genome and ability to transduce many forms of nondividing cells, combined with the potential for cell-specific pseudotyping, provides a rich resource for numerous applications in experimental platforms and therapeutic settings. Here, we give an overview of important biosafety features of lentiviral vectors, with detailed discussion of (i) the principles of the lentiviral split-genome design used for the construction of packaging cells; (ii) the relevance of modifications introduced into the lentiviral long terminal repeat (deletion of enhancer/promoter sequences and introduction of insulators); (iii) the basic features of mRNA processing, including the Rev/Rev-responsive element (RRE) interaction and the modifications of the 3′ untranslated region of lentiviral vectors with various post-transcriptional regulatory elements affecting transcriptional termination, polyadenylation, and differentiation-specific degradation of mRNA; and (iv) the characteristic integration pattern with the associated risk of transcriptional interference with cellular genes. We conclude with considerations regarding the importance of cell targeting via envelope modifications. Along this course, we address canonical biosafety issues encountered with any type of viral vector: the risks of shedding, mobilization, germline transmission, immunogenicity, and insertional mutagenesis. PMID:23311447
Biosafety features of lentiviral vectors.
Schambach, Axel; Zychlinski, Daniela; Ehrnstroem, Birgitta; Baum, Christopher
2013-02-01
Over the past decades, lentiviral vectors have evolved as a benchmark tool for stable gene transfer into cells with a high replicative potential. Their relatively flexible genome and ability to transduce many forms of nondividing cells, combined with the potential for cell-specific pseudotyping, provides a rich resource for numerous applications in experimental platforms and therapeutic settings. Here, we give an overview of important biosafety features of lentiviral vectors, with detailed discussion of (i) the principles of the lentiviral split-genome design used for the construction of packaging cells; (ii) the relevance of modifications introduced into the lentiviral long terminal repeat (deletion of enhancer/promoter sequences and introduction of insulators); (iii) the basic features of mRNA processing, including the Rev/Rev-responsive element (RRE) interaction and the modifications of the 3' untranslated region of lentiviral vectors with various post-transcriptional regulatory elements affecting transcriptional termination, polyadenylation, and differentiation-specific degradation of mRNA; and (iv) the characteristic integration pattern with the associated risk of transcriptional interference with cellular genes. We conclude with considerations regarding the importance of cell targeting via envelope modifications. Along this course, we address canonical biosafety issues encountered with any type of viral vector: the risks of shedding, mobilization, germline transmission, immunogenicity, and insertional mutagenesis.
Portfolio Analysis for Vector Calculus
ERIC Educational Resources Information Center
Kaplan, Samuel R.
2015-01-01
Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…
Online Sequential Projection Vector Machine with Adaptive Data Mean Update
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958
Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel
2012-01-01
Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?
Online Sequential Projection Vector Machine with Adaptive Data Mean Update.
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.
Tracking Vector Magnetograms with the Helioseismic and Magnetic Imager
NASA Astrophysics Data System (ADS)
Schuck, Peter W.
2012-05-01
We present analysis of SDO/HMI magnetograms using the Differential Affine Velocity Estimator for Vector Magnetograms with Doppler Velocities (DAVE4VMwDV) which is an extension of the local Cartesian DAVE4VM velocity estimation algorithm. The new DAVE4VMWDV inversion algorithm has several advantages specifically tailored for utilizing the SDO/HMI vector magnetograms. First, the inversion incorporates the spherical geometry of the Sun and provides direct estimates of spherical components of the plasma velocity and uncertainties. Second, the inversions may be performed in the image plane with the Jacobian computed from the gradient of the Stonyhurst coordinates at each pixel --- the data does not have to be distorted into a Mercator or other projection for analysis. Third, the profiles of plasma velocity within the local aperture are expressed as discrete Legendre polynomials of arbitrary order permitting larger apertures while preserving accuracy whereas DAVE4VM was limited to an affine (linear) velocity profile within the aperture. Fourth, the contribution of individual pixels may be weighted statistically and/or individual pixels may be eliminated from the analysis because of poor inversions and/or disambiguations. Fifth, the line-of-sight Doppler velocity may be used as a weighted constraint to improve the estimate regardless of the location of the pixel on the Sun. These advantages are unique to DAVE4VMWDV and have not been implemented in any other velocity inversion algorithms. We discuss the application of DAVE4VMWDV to simulation data and SDO/HMI vector magnetograms.
Stratospheric Balloon Gradient Geomagnetic Measurements
NASA Astrophysics Data System (ADS)
Filippov, Sergey; Tsvetkov, Yury
The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth's crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). One of the examples of such sounding system have been designed, developed and maintained at IZMIRAN during already about 20 years. This system consists of three instrumental con-tainers uniformly placed along a vertical 6 km line. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one's name is -stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Data trans-mission is carried out by Globalstar satellite link. The obtained data are used in solving the problems of deep sounding of the Earth's crust magnetic structure -an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each instrumental container may be reaching 50 kg. More than ten testing flights (1986-2009) at stratospheric altitudes (20-30 km) have proven the reliability of this system.
Multiresolution adaptive and progressive gradient-based color-image segmentation
NASA Astrophysics Data System (ADS)
Vantaram, Sreenath Rao; Saber, Eli; Dianat, Sohail A.; Shaw, Mark; Bhaskar, Ranjit
2010-01-01
We propose a novel unsupervised multiresolution adaptive and progressive gradient-based color-image segmentation algorithm (MAPGSEG) that takes advantage of gradient information in an adaptive and progressive framework. The proposed methodology is initiated with a dyadic wavelet decomposition scheme of an arbitrary input image accompanied by a vector gradient calculation of its color-converted counterpart in the 1976 Commission Internationale de l'Eclairage (CIE) L*a*b* color space. The resultant gradient map is used to automatically and adaptively generate thresholds to segregate regions of varying gradient densities at different resolution levels of the input image pyramid. At each level, the classification obtained by a progressively thresholded growth procedure is integrated with an entropy-based texture model by using a unique region-merging procedure to obtain an interim segmentation. A confidence map and nonlinear spatial filtering techniques are combined, and regions of high confidence are passed from one resolution level to another until the final segmentation at the highest (original) resolution is achieved. A performance evaluation of our results on several hundred images with a recently proposed metric called the normalized probabilistic Rand index demonstrates that the proposed work computationally outperforms published segmentation techniques with superior quality.
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442
NASA Astrophysics Data System (ADS)
Hicks, F. B.; van Vechten, Thomas C.; Franck, Carl
1996-03-01
As noted by Kayser, Moldover, and Schmidt, the varying thicknesses of gravity thinned wetting layers reported in the literature may be due to the presence of perturbing forces, such as accidental temperature gradients. In order to study the effect of such forces, we observed the long time evolution of gravity-induced concentration gradients in the presence of small perturbing horizontal temperature gradients (<= 50 mK/cm) in a system of aniline and cyclohexane near its consolute critical point. These measurements are unique since previous studies of gravity-induced concentration gradients in binary liquid mixtures have focused only on fast developing gradients created by sedimentation or on the measurement of the equilibrium barodiffusion gradient. Our results reveal large variations in the steady state concentration gradients which arise, even in the absence of applied temperature gradients. Furthermore, in the presence of nonzero temperature gradients, we observe the formation of concentration gradients which are significantly larger than the equilibrium barodiffusion gradient. No theory currently exists which explains these surprising results. Supported by the NSF under DMR-9320910 and by the central facilities of the Materials Science Center at Cornell University.
Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten
2015-08-01
Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking.
Massoudi, Mehrdad
2006-09-10
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier’s law of heat conduction and for complex materials such as nonlinear fluids, porous media, or granular materials, the coeffcient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier’s law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or suffcient.
Satellite gravity gradient grids for geophysics.
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-02-11
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.
Satellite gravity gradient grids for geophysics
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-02-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.
Extraordinary strain hardening by gradient structure
Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.
2014-01-01
Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688
Flow field thermal gradient gas chromatography.
Boeker, Peter; Leppert, Jan
2015-09-01
Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.
Satellite gravity gradient grids for geophysics
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-01-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314
Gradient-based optimum aerodynamic design using adjoint methods
NASA Astrophysics Data System (ADS)
Xie, Lei
2002-09-01
Continuous adjoint methods and optimal control theory are applied to a pressure-matching inverse design problem of quasi 1-D nozzle flows. Pontryagin's Minimum Principle is used to derive the adjoint system and the reduced gradient of the cost functional. The properties of adjoint variables at the sonic throat and the shock location are studied, revealing a log-arithmic singularity at the sonic throat and continuity at the shock location. A numerical method, based on the Steger-Warming flux-vector-splitting scheme, is proposed to solve the adjoint equations. This scheme can finely resolve the singularity at the sonic throat. A non-uniform grid, with points clustered near the throat region, can resolve it even better. The analytical solutions to the adjoint equations are also constructed via Green's function approach for the purpose of comparing the numerical results. The pressure-matching inverse design is then conducted for a nozzle parameterized by a single geometric parameter. In the second part, the adjoint methods are applied to the problem of minimizing drag coefficient, at fixed lift coefficient, for 2-D transonic airfoil flows. Reduced gradients of several functionals are derived through application of a Lagrange Multiplier Theorem. The adjoint system is carefully studied including the adjoint characteristic boundary conditions at the far-field boundary. A super-reduced design formulation is also explored by treating the angle of attack as an additional state; super-reduced gradients can be constructed either by solving adjoint equations with non-local boundary conditions or by a direct Lagrange multiplier method. In this way, the constrained optimization reduces to an unconstrained design problem. Numerical methods based on Jameson's finite volume scheme are employed to solve the adjoint equations. The same grid system generated from an efficient hyperbolic grid generator are adopted in both the Euler flow solver and the adjoint solver. Several
Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R
2009-03-01
The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.
Speciation gradients and the distribution of biodiversity.
Schluter, Dolph; Pennell, Matthew W
2017-05-31
Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.
Sound beam manipulation based on temperature gradients
Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen
2015-10-28
Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.
On third order integrable vector Hamiltonian equations
NASA Astrophysics Data System (ADS)
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Using Dip Vectors to Analyze Structural Data.
ERIC Educational Resources Information Center
Whisonant, Robert Clyde; Watts, Chester Frederick
1989-01-01
A method of plotting planes on stereonets is described including great circles, poles, and dip vectors. Teaching applications of dip vectors in engineering geology and structural geology are discussed. (CW)
Symbolic Vector Analysis in Plasma Physics
Qin, H.; Rewoldt, G.; Tang, W.M.
1997-10-01
Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.
Symbolic Vector Analysis in Plasma Physics
Qin, H.; Tang, W.M.; Rewoldt, G.
1997-10-09
Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.
Context vector approach to image retrieval
NASA Astrophysics Data System (ADS)
Ren, Clara Z.; Means, Robert W.
1998-04-01
HNC developed a unique context vector approach to image retrieval in Image Contrast Addressable Retrieval System. The basis for this approach is the context vector approach to image representation. A context vector is a high dimensional vector of real numbers, derived from a set of features that are useful in discriminating between images in a particular domain. The image features are trained based upon the constrained 2D self-organizing learning law. The image context vector encodes both intra-image features and inter-image relationship. The similarity in the directions of the context vectors of a pair of images indicates their similarity of content. The context vector approach to image representation simplifies the image and retrieval indexing problem because simple Euclidean distance measurements between sets of context vectors are used as a measure of similarity.
NASA Astrophysics Data System (ADS)
Schmelzbach, Cedric; Sollberger, David; Van Renterghem, Cédéric; Häusler, Mauro; Robertsson, Johan; Greenhalgh, Stewart
2016-04-01
Traditionally, land-seismic data acquisition is conducted using vertical-component sensors. A more complete representation of the seismic wavefield can be obtained by employing multicomponent sensors recording the full vector wavefield. If groups of multicomponent sensors are deployed, then spatial seismic wavefield gradients and rotational rates can be estimated by differencing the outputs of closely spaced sensors. Such data capture all six degrees of freedom of a rigid body (three components of translation and three components of rotation), and hence allow an even more complete representation of the seismic wavefield compared to single station triaxial data. Seismic gradient and rotation data open up new possibilities to process land-seismic data. Potential benefits and applications of wavefield gradient data include local slowness estimation, improved arrival identification, wavefield separation and noise suppression. Using synthetic and field data, we explored the reliability and sensitivity of various multicomponent sensor layouts to estimate seismic wavefield gradients and rotational rates. Due to the wavelength and incidence-angle dependence of sensor-group reception patterns as a function of the number of sensors, station spacing and layout, one has to counterbalance the impacts of truncation errors, random noise attenuation, and sensitivity to perturbations such as amplitude variations and positioning errors when searching for optimum receiver configurations. Field experiments with special rotational rate sensors were used to verify array-based rotational-rate estimates. Seismic wavefield gradient estimates and inferred wavefield attributes such as instantaneous slowness enable improved arrival identification, e.g. wave type and path. Under favorable conditions, seismic-wavefield gradient attributes can be extracted from conventional vertical-component data and used to, for example, enhance the identification of shear waves. A further promising
NASA Astrophysics Data System (ADS)
Benioff, Paul
2015-05-01
The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.
Deriving Potential Coronal Magnetic Fields from Vector Magnetograms
NASA Astrophysics Data System (ADS)
Welsch, Brian T.; Fisher, George H.
2016-08-01
The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.
Vector computer memory bank contention
NASA Technical Reports Server (NTRS)
Bailey, D. H.
1985-01-01
A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.
Vector computer memory bank contention
NASA Technical Reports Server (NTRS)
Bailey, David H.
1987-01-01
A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.
Medium Modification of Vector Mesons
Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour
2011-03-01
The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.
Lentiviral vectors in cancer immunotherapy.
Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A
2015-01-01
Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.
Clinical applications of power vectors.
Miller, Joseph M
2009-06-01
The study of infant vision is closely coupled to the study of the refraction, change in refraction over time, and the effect of spectacle correction on visual development. Frequently, reports are limited to descriptions of spherical equivalent or cylinder power without regard to axis, as data are frequently collected in the clinical format of sphere, cylinder, and axis (S, C, A). Conversion from clinical notation to a power vector representation of refraction allows unambiguous description of how refractions change over time and differ between repeated measurements. This article presents a series of examples of Microsoft Excel spreadsheet formulas that make the conversion from clinical notation to power vector format, and provides examples of useful applications of these methods.
Fast combinatorial vector field topology.
Reininghaus, Jan; Löwen, Christian; Hotz, Ingrid
2011-10-01
This paper introduces a novel approximation algorithm for the fundamental graph problem of combinatorial vector field topology (CVT). CVT is a combinatorial approach based on a sound theoretical basis given by Forman's work on a discrete Morse theory for dynamical systems. A computational framework for this mathematical model of vector field topology has been developed recently. The applicability of this framework is however severely limited by the quadratic complexity of its main computational kernel. In this work, we present an approximation algorithm for CVT with a significantly lower complexity. This new algorithm reduces the runtime by several orders of magnitude and maintains the main advantages of CVT over the continuous approach. Due to the simplicity of our algorithm it can be easily parallelized to improve the runtime further. © 2011 IEEE
Vector computer memory bank contention
NASA Technical Reports Server (NTRS)
Bailey, David H.
1987-01-01
A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.
Quantum electrodynamics for vector mesons.
Djukanovic, Dalibor; Schindler, Matthias R; Gegelia, Jambul; Scherer, Stefan
2005-07-01
Quantum electrodynamics for rho mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the rho+ is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M(rho0)-M(rho+/-) approximately 1 MeV at tree order.
Disease Vector Ecology Profile: Ecuador
1998-12-01
Boshell-Manrique. 1946. Studies of Mosquitoes of the Genus Haemagogus in Colombia (Diptera, Culicidae). Am. J. Hyg., 43: 13-28. 75 Lane, J...Leishmaniasis is a protozoan disease transmitted in the New World by sand flies in the genus Lutzomyia. Most cases occur in the tropical and subtropical...parasites (P. vivax , P. falciparum, P. malariae and P. ovale). Female mosquitoes of the genus Anopheles are the exclusive vectors of human malaria
GAPS IN SUPPORT VECTOR OPTIMIZATION
STEINWART, INGO; HUSH, DON; SCOVEL, CLINT; LIST, NICOLAS
2007-01-29
We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.
A ocean bottom vector magnetometer
NASA Astrophysics Data System (ADS)
Wang, Xiaomei; Teng, Yuntian; Wang, Chen; Ma, Jiemei
2017-04-01
The new development instrument with a compact spherical coil system and Overhauser magnetometer for measuring the total strength of the magnetic field and the vectors of strength, Delta inclination - Delta declination, meanwhile we also use a triaxial fluxgate instrument of the traditional instrument for geomagnetic vector filed measurement. The advantages of this method are be calibrated by each other and get good performances with automatic operation, good stability and high resolution. Firstly, a brief description of the instrument measurement principles and the key technologies are given. The instrument used a spherical coil system with 34 coils to product the homogeneous volume inside the coils which is large enough to accommodate the sensor of Overhauser total field sensor; the rest of the footlocker-sized ocean-bottom vector magnetometer consists of equipment to run the sensors and records its data (batteries and a data logger), weight to sink it to the sea floor, a remote-controlled acoustic release and flotation to bring the instrument back to the surface. Finally, the accuracy of the instrument was tested in the Geomagnetic station, and the measurement accuracies of total strength and components were better than 0.2nT and 1nT respectively. The figure 1 shows the development instrument structure. it includes six thick glass spheres which protect the sensor, data logger and batteries from the pressures of the deep sea, meanwhile they also provide recycling positive buoyancy; To cushion the glass, the spheres then go inside yellow plastic "hardhats". The triaxial fluxgate is inside No.1 glass spheres, data logger and batteries are inside No.2 glass spheres, the new vector sensor is inside No.3 glass spheres, acoustic communication unit is inside No.4 glass spheres, No.5 and No.6 glass spheres are empty which only provide recycling positive buoyancy. The figure 2 shows the development instrument Physical photo.
NASA Technical Reports Server (NTRS)
Murray, Jonathan
1992-01-01
Control gains computed via matrix Riccati equation. Software-based system controlling aim of gimbaled rocket motor on spacecraft adaptive and optimal in sense it adjusts control gains in response to feedback, according to optimizing algorithm based on cost function. Underlying control concept also applicable, with modifications, to thrust-vector control on vertical-takeoff-and-landing airplanes, control of orientations of scientific instruments, and robotic control systems.
Ultrasonic Dynamic Vector Stress Sensor
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Froggatt, Mark
1992-01-01
Stress inferred from measurements in specimens rather than in bonded gauges. Ultrasonic dynamic vector stress sensor (UDVSS) measures changes in dynamic directional stress occurring in material or structure at location touched by device when material or structure put under cyclic load. Includes phase-locked loop, synchronous amplifier, and contact probe. Useful among manufacturers of aerospace and automotive structures for stress testing and evaluation of designs.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Transmission parameters of vector-borne infections.
Desenclos, J-C
2011-11-01
Vector-borne infections are those for which the agent (virus, bacteria, or parasite) is transmitted from an infected host (animal or human) to another by a hematophagous arthropod (mosquito, tick, lice, and flea). Two parameters quantify the dynamics of a vector-borne infection: (1) the basic reproductive number (R(0)) that is the mean number of secondary infections transmitted from an infectious host by the bite of the vector and (2) the generation interval that explores the speed of occurrence of secondary cases transmitted by the vector from an infectious case. In a population in which some individuals are immune, the parameter of interest is the net reproduction number (R) function of R(0) and the proportion of those immune. For vector-borne infectious agents, R(0) is determined by the number of vectors in contact with a given individual (m), the number of a given vector bites/day on individuals (a), the daily survival rate of the vector (p), the duration of the pathogenic agent's development cycle in the vector (n), the proportion of infected vectors that are really infectious (vector competence) (b), the probability of agent transmission from a viremic individual to the vector for one bite (c) and the host's infectiousness clearance rate (r) with R(0)=(m. a(2). p(n)/-lnp). b. c/r. These parameters are related to geographic and climatic conditions and cannot, therefore, be extrapolated from one situation to another.
MISR Level 3 Cloud Motion Vector
Atmospheric Science Data Center
2013-07-10
MISR Level 3 Cloud Motion Vector Level 3 Wednesday, November 7, 2012 ... A new version, F02_0002, of the MISR L3 CMV (Cloud Motion Vector) data product is now available. This new release provides finer ... coverage. These enhancements are the result of reorganizing motion vector information present in the recent Level 2 Cloud product as ...
Propagation properties of Airy-Gaussian vortex beams through the gradient-index medium.
Zhao, Ruihuang; Deng, Fu; Yu, Weihao; Huang, Jiayao; Deng, Dongmei
2016-06-01
Propagation of Airy-Gaussian vortex (AiGV) beams through the gradient-index medium is investigated analytically and numerically with the transfer matrix method. Deriving the analytic expression of the AiGV beams based on the Huygens diffraction integral formula, we obtain the propagate path, intensity and phase distributions, and the Poynting vector of the first- and second-order AiGV beams, which propagate through the paraxial ABCD system. The ballistic trajectory is no longer conventional parabolic but trigonometric shapes in the gradient-index medium. Especially, the AiGV beams represent the singular behavior at the propagation path and the light intensity distribution. The phase distribution and the Poynting vector exhibit in reverse when the AiGV beams through the singularity. As the order increases, the main lobe of the AiGV beams is gradually overlapped by the vortex core. Further, the sidelobe weakens when the AiGV beams propagate nearly to the singularity. Additionally, the figure of the Poynting vector of the AiGV beams proves the direction of energy flow corresponding to the intensity distribution. The vortex of the second-order AiGV beams is larger, and the propagation velocity is faster than that of the first order.
Niu, Lili; Qian, Ming; Wan, Kun; Yu, Wentao; Jin, Qiaofeng; Ling, Tao; Gao, Shen; Zheng, Hairong
2010-04-07
This paper presents a new algorithm for ultrasonic particle image velocimetry (Echo PIV) for improving the flow velocity measurement accuracy and efficiency in regions with high velocity gradients. The conventional Echo PIV algorithm has been modified by incorporating a multiple iterative algorithm, sub-pixel method, filter and interpolation method, and spurious vector elimination algorithm. The new algorithms' performance is assessed by analyzing simulated images with known displacements, and ultrasonic B-mode images of in vitro laminar pipe flow, rotational flow and in vivo rat carotid arterial flow. Results of the simulated images show that the new algorithm produces much smaller bias from the known displacements. For laminar flow, the new algorithm results in 1.1% deviation from the analytically derived value, and 8.8% for the conventional algorithm. The vector quality evaluation for the rotational flow imaging shows that the new algorithm produces better velocity vectors. For in vivo rat carotid arterial flow imaging, the results from the new algorithm deviate 6.6% from the Doppler-measured peak velocities averagely compared to 15% of that from the conventional algorithm. The new Echo PIV algorithm is able to effectively improve the measurement accuracy in imaging flow fields with high velocity gradients.
Stability of gradient semigroups under perturbations
NASA Astrophysics Data System (ADS)
Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.
2011-07-01
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).
Coreless Concept for High Gradient Induction Cell
Krasnykh, Anatoly; /SLAC
2008-01-07
An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.
SW New Mexico BHT geothermal gradient calculations
Shari Kelley
2015-07-24
This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.
The gradient filter test to assess amblyopia.
Keech, R V; Kutschke, P J
1990-07-15
A new technique, the gradient filter test, was developed for evaluating changes in the visual acuity of preverbal children undergoing treatment for amblyopia. The gradient filter test consists of a series of calibrated photographic fog filter and prism lenses. The combined prism-filter lenses are placed in front of the normal fixing eye. The greatest density (fogging value) filter that causes a switch in fixation from the amblyopic to the normal eye is noted. In both normal eyes of 20 nonamblyopic patients and the fellow (non-amblyopic) eyes of 20 amblyopic patients, visual acuity decreased as the density of the prism-filter lens increased. The gradient filter test accurately detected an improvement in visual acuity when compared with optotype measurements in eight patients undergoing occlusion therapy. The gradient filter test is a useful clinical tool that can assess changes in visual acuity in preverbal children who are being treated for amblyopia.
Continuous spray forming of functionally gradient materials
McKechnie, T.N.; Richardson, E.H.
1995-12-01
Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.
Improving GOCE cross-track gravity gradients
NASA Astrophysics Data System (ADS)
Siemes, Christian
2017-07-01
The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.
Velocity gradients and microturbulence in Cepheids
NASA Technical Reports Server (NTRS)
Karp, A. H.
1972-01-01
Variations of the microturbulent velocity with phase and height in the atmosphere were reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.
Establishing positional information through gradient dynamics
Nahmad, Marcos
2010-01-01
A long standing question in developmental biology is how morphogen gradients establish positional information during development. Although the existence of gradients and their role in developmental patterning is no longer in doubt, the ability of cells to respond to different morphogen concentrations has been controversial. In the Drosophila wing disc, Hedgehog (Hh) forms a concentration gradient along the anterior-posterior axis and establishes at least three different gene expression patterns. In a recent study, we challenged the prevailing idea that Hh establishes positional information in a dose-dependent manner and proposed a model in which dynamics of the gradient, resulting from the Hh gene network architecture, determines pattern formation in the wing disc. In this Extra View, we discuss further the methodology used in this study, highlight differences between this and other models of developmental patterning, and also present some questions that remain to be answered in this system. PMID:20699656
Pollution Gradients on a Fine Spatial Scale
NASA Astrophysics Data System (ADS)
Wardlaw, K. D.; Ramos, M. A.; Nation, H. E.; Mah, D. A.; Nickolaisen, S. L.
2002-12-01
Gas phase tropospheric oxidants in photochemical smog are measured with a mobile unit to determine if localized concentration gradients exist. Species sampled include ozone, hydrocarbons, and nitrogen oxides. The study was conducted in the area immediately surrounding the California State University Los Angeles campus, with sampling sites between 200 to 1000 meters apart. Pollutant concentrations are correlated with variables such as local topography, land use, meteorological conditions, and traffic patterns. Meteorological sampling at each measurement site consists of temperature, humidity, dew point, barometric pressure, wind speed and direction. Preliminary sampling suggest no strong correlations between concentration gradients and meteorological factors, rather they are weak determinants. Stronger correlation is shown with land use; sites in close proximity to busy freeways tend towards lower ozone concentration. The largest gradients are seen when pollutant concentrations are moderate to high. The possible causes for these trends and gradients will be discussed.
Intratumoral oxygen gradients mediate sarcoma cell invasion
Lewis, Daniel M.; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T. S. Karin; Simon, M. Celeste; Gerecht, Sharon
2016-01-01
Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm3) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1–6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245
Bragg interferometer for gravity gradient measurements
NASA Astrophysics Data System (ADS)
D'Amico, G.; Borselli, F.; Cacciapuoti, L.; Prevedelli, M.; Rosi, G.; Sorrentino, F.; Tino, G. M.
2016-06-01
We report on the characterization of a dual cloud atom interferometer for gravity gradient measurements using third-order Bragg diffraction as atom optical elements. We study the dependence of the contrast and the gradiometer phase angle against the relevant experimental parameters and characterize the instrument sensitivity. We achieve a sensitivity to gravity gradient measurements of 2.6 ×10-8s-2 (26 E) after 2000 s of integration time.
Ultimate gradient in solid-state accelerators
Whittum, D.H.
1998-08-01
The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.
Fast Deconvolution with Color Constraints on Gradients
2013-01-01
deconvolution approach for color images that combines a sparse regularization cost on the magnitudes of gradients with constraints on their direction in color...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS computer vision, deblurring, spatio-spectral image model Ayan...approach for color images that combines a sparse regularization cost on the magnitudes of gradients with constraints on their direction in color space. We
Design of Gradient Index Optical Thin Films
NASA Astrophysics Data System (ADS)
Druessel, Jeffrey J.
Gradient index thin films provide greater flexibility for the design of optical coatings than the more conventional "layer" films. In addition, gradient index films have higher damage thresholds and better adhesion properties. In this dissertation I present an enhancement to the existing inverse Fourier transform gradient index design method, and develop a new optimal design method for gradient index films using a generalized Fourier series approach. The inverse Fourier transform method is modified to include use of the phase of the index profile as a variable in rugate filter design. Use of an optimal phase function in Fourier-based filter designs reduces the product of index contrast and thickness for desired reflectance spectra. The shape of the reflectance spectrum is recovered with greater fidelity by suppression of Gibbs oscillations and shifting of side-lobes into desired wavelength regions. A new method of gradient index thin film design using generalized Fourier series extends the domain of problems for which gradient index solutions can be found. The method is analogous to existing techniques for layer based coating design, but adds the flexibility of gradient index films. A subset of the coefficients of a generalized Fourier series representation of the gradient index of refraction profile are used as variables in a nonlinear constrained optimization formulation. The optimal values of the design coefficients are determined using a sequential quadratic programming algorithm. This method is particularly well suited for the design of coatings for laser applications, where only a few widely separated wavelength requirements exist. The generalized Fourier series method is extended to determine the minimum film thickness needed, as well as the index of refraction profile for the optimal film.
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
Interplay between transport barriers and density gradient
NASA Astrophysics Data System (ADS)
Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.
2006-09-01
The present paper addresses two critical issues of zonal flows: the evidence of control parameters of their driving term, namely the Reynolds stress, and how they back-react on turbulence and transport. Kinetic nonlinear simulations are performed with the GYSELA code [V. Grandgirard et al., J. Comput. Phys. (to be published)], which models the slab branch of the ion temperature gradient driven instability in the four-dimensional drift-kinetic regime. First, the numerical results show that the gradient of the guiding center density, related to the general potential vorticity, is stabilizing both linearly, by increasing the instability threshold, and nonlinearly, by activating zonal flows. Accordingly, the Reynolds stress is found to scale like LΩ-2 in the quasilinear regime, LΩ being the gradient length of the guiding center density. Second, the local temperature gradient appears to increase linearly with the curvature of the zonal flows, regardless of its sign. Such behavior agrees qualitatively with a perturbative theory. Indeed, while linear eigenmodes are localized at the maximum of the temperature gradient in the absence of zonal flows, they tend to be expelled if both exhibit a maximum at the same location. In this case, the reduction mechanism of the turbulent transport results from the ability of large zonal flow curvatures to render strong temperature gradients stable with respect to perturbations.
Production and Characterization of Vectors Based on the Cardiotropic AAV Serotype 9.
Kohlbrenner, Erik; Weber, Thomas
2017-01-01
Vectors based on adeno-associated virus serotype 9 (AAV9) efficiently transduce cardiomyocytes in both rodents and large animal models upon either systemic or regional vector delivery. In this chapter, we describe the most widely used production and purification method of AAV9. This production approach does not depend on the use of a helpervirus but instead on transient transfection of HEK293T cells with a plasmid containing the recombinant AAV genome and a second plasmid encoding the AAV9 capsid proteins, the AAV Rep proteins and the adenoviral helper functions. The recombinant AAV is then purified by iodixanol density gradient centrifugation. This chapter also describes in detail the characterization and quality control methods required for assuring high quality vector preparations, which is of particular importance for experiments in large animal models.
NASA Astrophysics Data System (ADS)
Nocera, A.; Alvarez, G.
2016-11-01
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
None, None
2016-11-21
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
Automated Classification of Epiphyses in the Distal Radius and Ulna using a Support Vector Machine.
Wang, Ya-hui; Liu, Tai-ang; Wei, Hua; Wan, Lei; Ying, Chong-liang; Zhu, Guang-you
2016-03-01
The aim of this study was to automatically classify epiphyses in the distal radius and ulna using a support vector machine (SVM) and to examine the accuracy of the epiphyseal growth grades generated by the support vector machine. X-ray images of distal radii and ulnae were collected from 140 Chinese teenagers aged between 11.0 and 19.0 years. Epiphyseal growth of the two elements was classified into five grades. Features of each element were extracted using a histogram of oriented gradient (HOG), and models were established using support vector classification (SVC). The prediction results and the validity of the models were evaluated with a cross-validation test and independent test for accuracy (PA ). Our findings suggest that this new technique for epiphyseal classification was successful and that an automated technique using an SVM is reliable and feasible, with a relative high accuracy for the models.
None, None
2016-11-21
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
Nocera, A; Alvarez, G
2016-11-01
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
Extension of the double-wave-vector diffusion-weighting experiment to multiple concatenations.
Finsterbusch, Jürgen
2009-06-01
Experiments involving two diffusion-weightings in a single acquisition, so-called double- or two-wave-vector experiments, have recently been applied to measure the microscopic anisotropy in macroscopically isotropic samples or to estimate pore or compartment sizes. These informations are derived from the signal modulation observed when varying the wave vectors' orientations. However, the modulation amplitude can be small and, for short mixing times between the two diffusion-weightings, decays with increased gradient pulse lengths which hampers its detectability on whole-body MR systems. Here, an approach is investigated that involves multiple concatenations of the two diffusion-weightings in a single experiment. The theoretical framework for double-wave-vector experiments of fully restricted diffusion is adapted and the corresponding tensor approach recently presented for short mixing times extended and compared to numerical simulations. It is shown that for short mixing times (i) the extended tensor approach well describes the signal behavior observed for multiple concatenations and (ii) the relative amplitude of the signal modulation increases with the number of concatenations. Thus, the presented extension of the double-wave-vector experiment may help to improve the detectability of the signal modulations observed for short mixing times, in particular on whole-body MR systems with their limited gradient amplitudes.
A tilted grating interferometer for full vector field differential x-ray phase contrast tomography.
Rutishauser, Simon; Donath, Tilman; David, Christian; Pfeiffer, Franz; Marone, Federica; Modregger, Peter; Stampanoni, Marco
2011-12-05
We report on a setup for differential x-ray phase-contrast imaging and tomography, that measures the full 2D phase-gradient information. The setup uses a simple one-dimensional x-ray grating interferometer, in which the grating structures of the interferometer are oriented at a tilt angle with respect to the sample rotation axis. In such a configuration, the differential phase images from opposing tomography projections can be combined to yield both components of the gradient vector. We show how the refractive index distribution as well as its x, y, and z gradient components can be reconstructed directly from the recorded projection data. The method can equally well be applied at conventional x-ray tube sources, to analyzer based x-ray imaging or neutron imaging. It is demonstrated with measurements of an x-ray phantom and a rat brain using synchrotron radiation.
Vectors derived from simian immunodeficiency virus (SIV).
Nègre, Didier; Cosset, François-Loïc
2002-11-01
In contrast to other retroviruses, lentiviruses have the unique property of infecting non-proliferating cells. Thus vectors derived from lentiviruses are promising tools for in vivo gene delivery applications. Vectors derived from human primate and non-primate lentiviruses have recently been described and, unlike retroviral vectors derived from murine leukemia viruses, lead to stable integration of the transgene into quiescent cells in various organs. Despite all the safety safeguards that have been progressively introduced in lentiviral vectors, the clinical acceptance of vectors derived from pathogenic lentiviruses is subject to debate. It is therefore essential to design vectors derived from a wide range of lentivirus types and to comparatively examine their properties in terms of transduction efficiency and bio-safety. Here, we review the properties of lentiviral vectors derived from simian immunodeficiency virus (SIV).
Vaccine Design: Replication-Defective Adenovirus Vectors.
Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J
2016-01-01
Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies.
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
Mapping Brazilian savanna vegetation gradients with Landsat time series
NASA Astrophysics Data System (ADS)
Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick
2016-10-01
Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important
Maximizing sparse matrix vector product performance in MIMD computers
McLay, R.T.; Kohli, H.S.; Swift, S.L.; Carey, G.F.
1994-12-31
A considerable component of the computational effort involved in conjugate gradient solution of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP), and hence it is the focus of most efforts at improving performance. Such efforts are hindered on MIMD machines due to constraints on memory, cache and speed of memory-cpu data transfer. This paper describes a strategy for maximizing the performance of the local computations associated with the MVP. The method focuses on single stride memory access, and the efficient use of cache by pre-loading it with data that is re-used while bypassing it for other data. The algorithm is designed to behave optimally for varying grid sizes and number of unknowns per gridpoint. Results from an assembly language implementation of the strategy on the iPSC/860 show a significant improvement over the performance using FORTRAN.
Application of Support Vector Machine to Forex Monitoring
NASA Astrophysics Data System (ADS)
Kamruzzaman, Joarder; Sarker, Ruhul A.
Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.
Finger vein image quality evaluation using support vector machines
NASA Astrophysics Data System (ADS)
Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang
2013-02-01
In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.
Vector meson electroproduction in QCD
NASA Astrophysics Data System (ADS)
Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan
2012-08-01
Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.
Properties of Vector Preisach Models
NASA Technical Reports Server (NTRS)
Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della
2004-01-01
This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.
Vector quantization for volume rendering
NASA Technical Reports Server (NTRS)
Ning, Paul; Hesselink, Lambertus
1992-01-01
Volume rendering techniques typically process volumetric data in raw, uncompressed form. As algorithmic and architectural advances improve rendering speeds, however, larger data sets will be evaluated requiring consideration of data storage and transmission issues. In this paper, we analyze the data compression requirements for volume rendering applications and present a solution based on vector quantization. The proposed system compresses volumetric data and then renders images directly from the new data format. Tests on a fluid flow data set demonstrate that good image quality may be achieved at a compression ratio of 17:1 with only a 5 percent cost in additional rendering time.
Jet vectoring through nozzle asymmetry
NASA Astrophysics Data System (ADS)
Roh, Chris; Rosakis, Alexandros; Gharib, Morteza
2015-11-01
Previously, we explored the functionality of a tri-leaflet anal valve of a dragonfly larva. We saw that the dragonfly larva is capable of controlling the three leaflets independently to asymmetrically open the nozzle. Such control resulted in vectoring of the jet in various directions. To further understand the effect of asymmetric nozzle orifice, we tested jet flow through circular asymmetric nozzles. We report the relationship between nozzle asymmetry and redirecting of the jet at various Reynolds numbers. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
Nonviral Vectors for Gene Delivery
NASA Astrophysics Data System (ADS)
Baoum, Abdulgader Ahmed
2011-12-01
The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was
Conformal vectors and stellar models
NASA Astrophysics Data System (ADS)
Manjonjo, A. M.; Maharaj, S. D.; Moopanar, S.
2017-02-01
The relationship between conformal symmetries and relativistic spheres in astrophysics is studied. We use the nonvanishing components of the Weyl tensor to classify the conformal symmetries in static spherical spacetimes. It is possible to find an explicit connection between the two gravitational potentials for both conformally flat and nonconformally flat cases. We show that the conformal Killing vector admits time dependence in terms of quadratic, trigonometric and hyperbolic functions. The Einstein and Einstein-Maxwell field equations can be written in terms of a single potential, any choice of which leads to an exact solution. Previous results of conformally invariant static spheres are contained in our treatment.
Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces
NASA Astrophysics Data System (ADS)
Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue
2014-06-01
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
Generation of electromagnetic waves in the very low frequency band by velocity gradient
Ganguli, G. Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.
2014-01-15
It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k{sup ¯}=kc/ω{sub pe} (normalized by the electron skin depth) and the obliqueness, k{sub ⊥}/k{sub ||}, where k{sub ⊥,||} are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k{sup ¯}≫1 and k{sub ⊥}≫k{sub ||} and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.
Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces
Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue
2014-06-02
Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1996-01-01
A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).
Age and metallicity gradients in fossil ellipticals
NASA Astrophysics Data System (ADS)
Eigenthaler, P.; Zeilinger, W. W.
2013-05-01
Context. Fossil galaxy groups are speculated to be old and highly evolved systems of galaxies that formed early in the universe and had enough time to deplete their L∗ galaxies through successive mergers of member galaxies, building up one massive central elliptical, but retaining the group X-ray halo. Aims: Considering that fossils are the remnants of mergers in ordinary groups, the merger history of the progenitor group is expected to be imprinted in the fossil central galaxy (FCG). We present for the first time radial gradients of single-stellar population (SSP) ages and metallicites in a sample of FCGs to constrain their formation scenario. We also measure line-strength gradients for the strongest absorption features in these galaxies. Methods: We took deep spectra with the long-slit spectrograph ISIS at the William Herschel Telescope (WHT) for six FCGs. The obtained spectra are fit with Pegase HR SSP models within the full-spectrum fitting package ULySS yielding SSP ages and metallicities of the stellar populations. We measure radial gradients of SSP ages and metallicities along the major axes. Lick indices are measured for the strongest absorption features to determine line-strength gradients and compare with the full-spectrum fitting results. Results: Our sample comprises some of the most massive galaxies in the universe exhibiting an average central velocity dispersion of σ0 = 271 ± 28 km s-1. Metallicity gradients are throughout negative with comparatively flat slopes of ∇[Fe/H] = -0.19 ± 0.08 while age gradients are found to be insignificant (∇age = 0.00 ± 0.05). All FCGs lie on the fundamental plane, suggesting that they are virialised systems. We find that gradient strengths and central metallicities are similar to those found in cluster ellipticals of similar mass. Conclusions: The comparatively flat metallicity gradients with respect to those predicted by monolithic collapse (∇Z = -0.5) suggest that fossils are indeed the result of
Drobnjak, Ivana; Alexander, Daniel C
2011-10-01
Here we investigate whether varying the diffusion-gradient orientation during a general waveform single pulsed-field gradient sequence improves sensitivity to the size of coherently oriented pores over having a fixed orientation. The experiment optimises the shape and the orientation of the gradient waveform in each of a set of measurements to minimise the expected variance of estimates of the parameters of a simple model. A key application motivating the work is measuring the size of axons in white matter. Thus, we use a two compartment white matter model with impermeable, single-radius cylinders, and search for waveforms that maximise the sensitivity to axon radius, intra-cellular volume fraction and diffusion constants. Output of the optimisation suggests the only benefit of allowing the gradient orientation to vary in the plane perpendicular to the cylinders is that we can gain perpendicular gradient strength by maximising two orthogonal gradients simultaneously. This suggests that varying orientation in itself does not increase the sensitivity to model parameters. On the other hand, the variation in a plane containing the parallel direction increases the sensitivity significantly because parallel sensitivity improves the diffusion constant estimates. However, we also find that similar improvement in the estimates can be achieved without optimising the orientation, but by having one measurement in the parallel and the rest in the perpendicular direction. The optimisation searches a very large space where it cannot hope to find the global minimum so we cannot make a categorical conclusion. However, given the consistency of the results in multiple reruns and variations of the experiments reported here, we can suggest that for probing coherently oriented systems, pulse sequences with variable orientation, such as double-wave vector sequences, do not offer more advantage than fixed orientation sequences with optimised shape. The advantage of varying orientation is
Control of vortex breakdown by temperature gradients
NASA Astrophysics Data System (ADS)
Herrada, Miguel Angel; Shtern, Vladimir
2003-11-01
An axial gradient of temperature can either suppress or enhance vortex breakdown (VB). The underlying mechanism of such VB control is centrifugal or/and gravitational convection. An additional thermal-convection flow directed oppositely to the base flow suppresses VB while a co-flow enhances VB. Our numerical simulations of a compressible flow in a sealed cylinder induced by a rotating bottom disk clearly reveal these effects. We vary the temperature gradient (ɛ), Mach (Ma), Froude (Fr), and Reynolds (Re) numbers, and the aspect ratio (h). As ɛ increases (ɛ>0 corresponding to a temperature gradient parallel to the downward near-axis flow), the VB "bubble," which occurs at ɛ=0, diminishes and then totally disappears. The opposite temperature gradient (ɛ<0) enlarges the VB bubble and makes the flow unsteady. These effects of centrifugal convection become more prominent with increasing Ma and Re. Density variations induced by the temperature gradients are more important for VB control than those induced by the increase in Ma. A new efficient time-evolution code for axisymmetric flows of an ideal gas has facilitated these simulations.
Polarisation effects in gradient nano-optics
Erokhin, N S; Shvartsburg, A B; Zueva, Yu M
2013-09-30
The spectra of reflection of s- and p-polarised waves from gradient nanocoatings at arbitrary angles of incidence are found within the framework of two exactly solvable models of such coatings. To use the detected spectra in the visible and IR ranges, for different frequencies and coating thicknesses we present the wave reflection coefficients as functions of dimensionless frequencies related to the refractive index gradient of the coating material. It is shown that reflection from the gradient coatings in question is an order of magnitude weaker than reflection from uniform coatings, other parameters of radiation and the reflection system being equal. We report a new exactly solvable model illustrating the specific effect of gradient film optics – the possibility of non-reflective propagation of an s-wave through such a film (an analogue of the Brewster effect). The prospects are shown for the use of gradient nanostructures with different refractive index profiles to fabricate broadband non-reflective coatings. (nanogradient dielectric coatings and metamaterials)
MEMS cantilever based magnetic field gradient sensor
NASA Astrophysics Data System (ADS)
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2017-05-01
This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.
Importance of Ionospheric Gradients for error Correction
NASA Astrophysics Data System (ADS)
Ravula, Ramprasad
Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.
Income inequality and socioeconomic gradients in mortality.
Wilkinson, Richard G; Pickett, Kate E
2008-04-01
We investigated whether the processes underlying the association between income inequality and population health are related to those responsible for the socioeconomic gradient in health and whether health disparities are smaller when income differences are narrower. We used multilevel models in a regression analysis of 10 age- and cause-specific US county mortality rates on county median household incomes and on state income inequality. We assessed whether mortality rates more closely related to county income were also more closely related to state income inequality. We also compared mortality gradients in more- and less-equal states. Mortality rates more strongly associated with county income were more strongly associated with state income inequality: across all mortality rates, r= -0.81; P=.004. The effect of state income inequality on the socioeconomic gradient in health varied by cause of death, but greater equality usually benefited both wealthier and poorer counties. Although mortality rates with steep socioeconomic gradients were more sensitive to income distribution than were rates with flatter gradients, narrower income differences benefit people in both wealthy and poor areas and may, paradoxically, do little to reduce health disparities.
Population Gradients in Stellar Halos from GHOSTS
NASA Astrophysics Data System (ADS)
Bailin, Jeremy; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Ghosts Survey
2015-01-01
We report on recent results from the Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters (GHOSTS) survey, an HST ACS+WFC3 imaging survey to study stellar populations in and around 16 nearby spiral galaxies. By using HST resolution to resolve the stellar halos into individual red giant branch (RGB) stars, we are able to detect distinct stellar populations at several points throughout the halo of the half dozen massive highly-inclined galaxies in the sample. In approximately half of these galaxies, we detect a gradient in the color of the RGB; which we interpret as a metallicity gradient. Stellar halo formation models predict a wide variety of metallicity gradients: those in which the halos are dominated by stars formed in situ predict stronger gradients than we observe, while accretion-dominated halo models predict weaker or nonexistent gradients. Our measurements therefore provide a useful discriminator between stellar halo models, and at first look appear most consistent with the accretion-based model of Cooper et al. (2010).
Vector-Tensor and Vector-Vector Decay AmplitudeAnalysis of B0 to phi K*0
Aubert, B.
2006-10-31
We perform an amplitude analysis of the decays B{sup 0} {yields} {phi}K*{sub 2}(1430){sup 0}, {phi}K*(892){sup 0}, and {phi}(K{pi}){sub S-wave}{sup 0} with a sample of about 384 million B{bar B} pairs recorded with the BABAR detector. The fractions of longitudinal polarization f{sub L} of the vector-tensor and vector-vector decay modes are measured to be 0.853{sub -0.069}{sup +0.061} {+-} 0.036 and 0.506 {+-} 0.040 {+-} 0.015, respectively. Overall, twelve parameters are measured for the vector-vector decay and seven parameters for the vector-tensor decay, including the branching fractions and parameters sensitive to CP-violation.
Vector-tensor and vector-vector decay amplitude analysis of B0-->phiK*0.
Aubert, B; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Pegna, D Lopes; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Sanchez, P del Amo; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Lee, C L; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y; Gritsan, A V; Guo, Z J; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Diberder, F Le; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Clarke, C K; Lodovico, F Di; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; Nardo, G De; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Buono, L Del; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Marco, E Di; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Ricciardi, S; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2007-02-02
We perform an amplitude analysis of the decays B(0)-->phiK*(2)(1430)(0), phiK*(892)(0), and phi(Kpi)(0)(S-wave) with a sample of about 384x10(6) BB[over ] pairs recorded with the BABAR detector. The fractions of longitudinal polarization f(L) of the vector-tensor and vector-vector decay modes are measured to be 0.853(-0.069+0.061)+/-0.036 and 0.506+/-0.040+/-0.015, respectively. Overall, twelve parameters are measured for the vector-vector decay and seven parameters for the vector-tensor decay, including the branching fractions and parameters sensitive to CP violation.
Li, F; Gong, H; Li, Y; Zhang, Z; Hou, Y
1997-01-01
A vector was constructed by inserting a pair of complementary oligo nucleotides encoding 6 histidine residues into the polylinker's upstream of the prokaryotic high expression vector pBV220. The resultant vector is named pBV222. Proteins expressed by this vector will have a 6-histidine tail as an affinity handle fused to their N-terminus and can be quickly purified by one-step immobilized metal affinity chromatography (IMAC). This plasmid was verified by restriction mapping and DNA sequencing. When GM-CSF and IL-2 cDNA were closed into pBV222, expressed proteins in the inclusion body showed the predicted molecular weight and biological activity. The expressed bacteria were dissolved in 6 mol/L guanidine.HCl and the supernatant was loaded directly to IMAC. IL-2 and GM-CSF fusion proteins were eluted by the pH gradient, and over 90% purity was achieved.
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
MacLeod, Matthew K.; Shiozaki, Toru
2015-02-07
Analytical nuclear gradients for fully internally contracted complete active space second-order perturbation theory (CASPT2) are reported. This implementation has been realized by an automated code generator that can handle spin-free formulas for the CASPT2 energy and its derivatives with respect to variations of molecular orbitals and reference coefficients. The underlying complete active space self-consistent field and the so-called Z-vector equations are solved using density fitting. The implementation has been applied to the vertical and adiabatic ionization potentials of the porphin molecule to illustrate its capability.
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Viral Vectors: The Road to Reducing Genotoxicity.
David, Rhiannon M; Doherty, Ann T
2017-02-01
Viral vector use in gene therapy has highlighted several safety concerns, including genotoxic events. Generally, vector-mediated genotoxicity results from upregulation of cellular proto-oncogenes via promoter insertion, promoter activation, or gene transcript truncation, with enhancer-mediated activation of nearby genes the primary mechanism reported in gene therapy trials. Vector-mediated genotoxicity can be influenced by virus type, integration target site, and target cell type; different vectors have distinct integration profiles which are cell-specific. Non-viral factors, including patient age, disease, and dose can also influence genotoxic potential, thus the choice of test models and clinical trial populations is important to ensure they are indicative of efficacy and safety. Efforts have been made to develop viral vectors with less risk of insertional mutagenesis, including self-inactivating (SIN) vectors, enhancer-blocking insulators, and microRNA targeting of vectors, although insertional mutagenesis is not completely abrogated. Here we provide an overview of the current understanding of viral vector-mediated genotoxicity risk from factors contributing to viral vector-mediated genotoxicity to efforts made to reduce genotoxicity, and testing strategies required to adequately assess the risk of insertional mutagenesis. It is clear that there is not a 'one size fits all' approach to vector modification for reducing genotoxicity, and addressing these challenges will be a key step in the development of therapies such as CRISPR-Cas9 and delivery of future gene-editing technologies.
Viral vectors for vascular gene therapy
Fischer, Lukas; Preis, Meir; Weisz, Anat; Koren, Belly; Lewis, Basil S; Flugelman, Moshe Y
2002-01-01
Vascular gene therapy is the focus of multiple experimental and clinical research efforts. While several genes with therapeutic potential have been identified, the best method of gene delivery is unknown. Viral vectors have the capacity to transfer genes at high efficiency rates. Several viral-based vectors have been used in experimental vascular gene therapy for in vivo and ex vivo gene transfer. Adenoviral-based vectors are being used for the induction of angiogenesis in phase 1 and 2 clinical trials. In the present review, the characteristics of the ‘ideal’ viral vector are discussed and the major types of viral vectors used in vascular gene transfer are reviewed. Basic knowledge of the use of viral vectors for direct in vivo gene transfer (adenoviral-based vectors, etc) and for ex vivo gene transfer (retroviral-based vectors) is provided. New developments in the field of viral vectorology, such as pseudotyping of retroviral vectors and targeting of other viral vectors to a specific cell type, will enhance the more rapid transition of vascular gene therapy from the experimental arena to the clinical setting. PMID:19649233
Therapeutic and prophylactic applications of alphavirus vectors.
Atkins, Gregory J; Fleeton, Marina N; Sheahan, Brian J
2008-11-11
Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.
Density-gradient--vorticity relation in perfect-fluid Robertson-Walker perturbations
Ellis, G.F.R. Applied Mathematics Department, University of Cape Town, Cape Town ); Bruni, M. ); Hwang, J. )
1990-08-15
In a previous paper, a second-order propagation equation was derived for covariant and gauge-invariant {ital vector} {ital fields} characterizing density inhomogeneities in an almost-Friedmann-Lemaitre-Robertson-Walker (-FLRW) perfect-fluid universe. However, an error there led to omission of a term representing an effect of vorticity on {ital spatial} {ital density} {ital gradients} at linear level. Here we determine this interaction (leading to an extra term in the second-order propagation equation for the spatial density gradient), and examine its geometrical and physical meaning. We define a new local decomposition of the observed density gradient and we show that the scalar variable defined in the decomposition naturally describes density clumping, and satisfies the standard Bardeen second-order equation. The physical meaning of the other variables defined in the decomposition is discussed, and their propagation equations are presented. Finally, the vorticity-induced time growth of the density gradient is derived in the long-wavelength limit.
Solving large test-day models by iteration on data and preconditioned conjugate gradient.
Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A
1999-12-01
A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.
Variable Lieb-Oxford bound satisfaction in a generalized gradient exchange-correlation functional.
Vela, A; Medel, V; Trickey, S B
2009-06-28
We propose a different way to satisfy both gradient expansion limiting behavior and the Lieb-Oxford bound in a generalized gradient approximation exchange functional by extension of the Perdew-Burke-Ernzerhof (PBE) form. Motivation includes early and recent exploration of modified values for the gradient expansion coefficient in the PBE exchange-correlation functional (cf. the PBEsol functional) and earlier experience with a numerical cutoff for large-s (s proportional to absolute value(vector differential n)/n(4/3)) in a version of the deMon molecular code. For either the original PBE or the PBEsol choice of the gradient coefficient, we find improved performance from using an s-dependent (spatially varying) satisfaction of the Lieb-Oxford bound which quenches to uniform electron gas behavior at large s. The mean absolute deviations (MADs) in atomization energies for a widely used test set of 20 small molecules are reduced by about 22% relative to PBE and PBEsol. For these small molecules, the bond length MADs are essentially unchanged.
A Multi-Gradient Generator in a Single Microfluidic Device for Optical Microscopy and Interferometry
NASA Astrophysics Data System (ADS)
Bedrossian, Manuel; Nadeau, Jay; Lindensmith, Chris
2016-11-01
The goal of this work was to create a single microfluidic device capable of establishing multiple types of gradients in a quantifiable manner. Many microbial species are known to exhibit directed motility in the presence of stimuli. This phenomenon, known as taxis, can be used as a bio-signature and a means of identifying microorganisms. Directed microbial motility has been seen as a response to the presence of certain chemicals, light, heat, magnetic fields, and other stimuli. Microbial movement along the gradient vector, that cannot be explained by passive hydrodynamics or Brownian motion, can shed light on whether the sample contains living microbes or not. The ability to create multiple types of gradients in a single microfluidic device allows for high throughput testing of heterogeneous samples to detect taxis. There has been increased interest in the search for life within our solar system where liquid water is known to exist. Induced directional motility can serve as a viable method for detecting living organisms that actively respond to their environment. The device developed here includes a chemical, photonic, thermal, and magnetic gradient generator, while maintaining high optical quality in order to be used for microscopy as well as quantitative phase imaging This work was funded by the Gordon and Betty Moore Foundation, who the authors wish to thank for their generosity.
Volumetric Acoustic Vector Intensity Probe
NASA Technical Reports Server (NTRS)
Klos, Jacob
2006-01-01
A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.
[Individual protection against insect vectors].
Carnevale, P; Mouchet, J
1997-01-01
Many diseases for which no vaccine is available are transmitted by insect and arthropod vectors, the main exceptions being yellow fever and Japanese encephalitis B. Treatment is less and less effective due to the development of chemoresistance to therapeutic and prophylactic drugs as is well-illustrated by malaria. One of the best methods of preventing these diseases is personal protection against insect bites. Personal protection measures can be divided into three categories which can be used separately or in combination : application of repellents to the skin, wearing clothes impregnated with insecticides, and use of bed nets and other barriers impregnated with insecticides. The choice of method depends on the type of insect vector involved. For insects that are active during the day or at dusk, application of repellents to the skin gives good short-term protection and wearing impregnated clothes is useful. Bed nets that have been properly impregnated with pyrethroids are highly effective for night-time protection. Since personal protection methods are not 100% effective, they must be used in association with chemoprophylaxis according to medical guidelines. Medical advice should be sought if fever should occur especially after returning from a trip in the tropics.
Genetics of Mosquito Vector Competence
Beerntsen, Brenda T.; James, Anthony A.; Christensen, Bruce M.
2000-01-01
Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality. PMID:10704476
Vector-Resonance-Multimode Instability
NASA Astrophysics Data System (ADS)
Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.
2017-01-01
The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.
Egizi, Andrea; Fefferman, Nina H.; Fonseca, Dina M.
2015-01-01
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths.
Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh
2015-01-01
Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...
Gradients in Planarian Regeneration and Homeostasis
Adell, Teresa; Cebrià, Francesc; Saló, Emili
2010-01-01
Planarian regeneration was one of the first models in which the gradient concept was developed. Morphological studies based on the analysis of the regeneration rates of planarian fragments from different body regions, the generation of heteromorphoses, and experiments of tissue transplantation led T.H. Morgan (1901) and C.M Child (1911) to postulate different kinds of gradients responsible for the regenerative process in these highly plastic animals. However, after a century of research, the role of morphogens in planarian regeneration has yet to be demonstrated. This may change soon, as the sequencing of the planarian genome and the possibility of performing gene functional analysis by RNA interference (RNAi) have led to the isolation of elements of the bone morphogenetic protein (BMP), Wnt, and fibroblast growth factor (FGF) pathways that control patterning and axial polarity during planarian regeneration and homeostasis. Here, we discuss whether the actions of these molecules could be based on morphogenetic gradients. PMID:20182600
Dynamics of gradient formation by intracellular shuttling
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
2015-08-01
A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.
Image restoration by matching gradient distributions.
Cho, Taeg Sang; Zitnick, C Lawrence; Joshi, Neel; Kang, Sing Bing; Szeliski, Richard; Freeman, William T
2012-04-01
The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large-scale user study supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.
Texturing of REBCO using temperature gradient.
Salama, K.; Athur, S. P.; Balachandran, U.; Energy Technology; Univ. of Houston
2001-01-01
Isothermal melt texturing is currently a well-established technique for manufacturing superconducting materials with high trapped magnetic field and levitation forces. For conductor applications, however, a temperature gradient needs to be employed in order to align the oriented domains with the a-b planes where the current will be flowing over long lengths. Melt-textured Y-123 bars of length 100 mm with Jc values of 70,000 A/cm2 at 77 K in self-field have been routinely manufactured by directional solidification. The presence of temperature gradient also lends itself to faster texturing rates. Recently, Ag-clad Yb-123 tapes made by the powder-in-tube process were successfully melt textured in the presence of a temperature gradient and controlled oxygen partial pressure. These tapes exhibit the potential to be an alternative to BSCCO tapes, for relatively high temperature and magnetic field applications.
Temperature gradient formation while axial gas compression
NASA Astrophysics Data System (ADS)
Geyko, V. I.; Fisch, N. J.
2015-11-01
A spinning gas in equilibrium has a rotation-dependent heat capacity. However, as equilibrium is approached, such as after sudden heating, significant variations in temperature appear. Surprisingly, when fast axial compression or instantaneous gas heating occurs, the temperature does not grow homogeneously in radial direction, but instead has a gradient towards to the maximum of potential energy of external or self potential. The gradient monotonically grows with compression rate and the amplitude of the potential. The gradient builds up due to change of equilibrium density distribution, yet, not due to acoustic waves created by the compression. This result was checked in numerical simulations for particles in an external constant gravitational potential and also for rotating gas in the cylinder with perfect slip boundary conditions on the walls. This work was supported by the U.S. Defense Threat Reduction Agency, and by the NNSA SSAA Program through DOE Research Grant No. DE-FG52-08NA28553.
Relativistic klystrons for high-gradient accelerators
Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen
1990-09-05
Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.
Using Spatial Gradients to Model Localization Phenomena
D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson
1999-07-01
We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.
Preparation of gradient polyacrylate brushes in microchannels.
Lee, Seongyeol; Youm, Sang Gil; Song, Yeari; Yi, Whikum; Sohn, Daewon
2012-05-01
Gradient poly(2-hydroxyethyl methacrylate) brushes were synthesized by surface-initiated atom transfer radical polymerization (ATRP) confined within a microfluidic system on a silicon wafer. For ATRP, surface initiator, 11-((2-bromo, 2-methyl) propionyloxy) undecyltrichlorosilane (BUC), was synthesized, and allowed to self-assemble in a monolayer on the Si wafer, as analyzed by XPS to confirm the presence of an ester group of BUC. A solution containing 2-hydroxyethylmethacrylate, Cu catalyst, and bipyridin was allowed to flow in a microchannel and polymerize, resulting in the brushes with a gradient of thickness on the Si wafer. Using ellipsometry and ATR-IR, we verified the gradients of well established brushes on the Si wafer. AFM and contact angle data showed that wettability of the brushes did not exhibit a linear relationship with hydrophilicity.
Transverse gradient in Apple-type undulators
Calvi, M.; Camenzuli, C.; Prat, E.; Schmidt, Th.
2017-01-01
Apple-type undulators are globally recognized as the most flexible devices for the production of variable polarized light in the soft X-ray regime, both at synchrotron and free-electron laser facilities. Recently, the implementation of transverse gradient undulators has been proposed to enhance the performance of new generation light sources. In this paper it is demonstrated that Apple undulators do not only generate linear and elliptical polarized light but also variable transverse gradient under certain conditions. A general theoretical framework is introduced to evaluate the K-value and its transverse gradient for an Apple undulator, and formulas for all regular operational modes and different Apple types (including the most recent Delta type and Apple X) are calculated and critically discussed. PMID:28452751
Dynamics of gradient formation by intracellular shuttling
Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.
2015-08-21
A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.
Motion Driven by Strain Gradient Fields
Wang, Chao; Chen, Shaohua
2015-01-01
A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603
Gradients of signalling in the developing limb.
Towers, Matthew; Wolpert, Lewis; Tickle, Cheryll
2012-04-01
The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Three Algorithms of Magnetization Vector Inversion for Magnetic Data
NASA Astrophysics Data System (ADS)
Liu, S.; Hu, X.; Xi, Y.; Zhao, Y.
2014-12-01
In the magnetic exploration, it is meaningful to recover the distributions of total magnetization vector (TMV) since the distortions of remanence and self-demagnetization produce the similar responses that alter their magnitude and direction. We evaluate three approaches of magnetization vector inversion (MVI): (1) simultaneously inverting the TMV's three orthogonal components (MMM); (2) the magnitude, inclination and declination (MID); (3) orderly inverting the magnetization intensity, inclination and declination based on the transformed magnitude magnetic anomaly (M-ID). The primary implementation of MVI is to establish the symmetric positive definite matrix equations on the corrections of the model parameters and observed data sets. Then the optimal solutions are iteratively computed by use of the preconditioned conjugate gradient algorithm. We use the synthetic and real data sets to test these methods and the tests reveal that the isochronous MMM inversion aggravates the geophysical non-uniqueness problem and MID performs low stability of convergence due to the strong dependence on the starting models. While the sequential M-ID shows superior stability and precision of inverting the magnetization intensity and direction by making successive use of the amplitude and phase information of the magnetic anomaly. Finally, the achieved TMV distributions help us to investigate the influence of remanent magnetization and to recover the physical property distributions for high susceptibility when the self-demagnetization effect is not negligible.
Analysis of the vector magnetic fields of complex sunspots
NASA Technical Reports Server (NTRS)
Patty, S. R.
1981-01-01
An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.
Efficient gradient calibration based on diffusion MRI
Teh, Irvin; Maguire, Mahon L.
2016-01-01
Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277
Stereo transparency and the disparity gradient limit
NASA Technical Reports Server (NTRS)
McKee, Suzanne P.; Verghese, Preeti
2002-01-01
Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.
Stereo transparency and the disparity gradient limit
NASA Technical Reports Server (NTRS)
McKee, Suzanne P.; Verghese, Preeti
2002-01-01
Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
The effect of density gradients on hydrometers
NASA Astrophysics Data System (ADS)
Heinonen, Martti; Sillanpää, Sampo
2003-05-01
Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.
17 GHz High Gradient Accelerator Research
Temkin, Richard J.; Shapiro, Michael A.
2013-07-10
This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.
Critical gradient response of the Weiland model
NASA Astrophysics Data System (ADS)
Asp, E.; Weiland, J.; Garbet, X.; Parail, V.; Strand, P.; JET EFDA contributors, the
2007-08-01
The success the Weiland model has had in reproducing modulation experiments prompted this in-depth investigation into its behaviour as a critical gradient model (CGM). The critical gradient properties of the Weiland model is examined analytically and numerically and compared with the empirical CGM commonly used in experiment. A simplified Weiland CGM is derived in which the height-above-threshold dependence is not necessarily linear. Simultaneously, the validity of the empirical CGM was examined. It is shown that an effective threshold, which is higher than the instability threshold, can be obtained if pinches influence the diffusivity.
Relativistic klystron research for high gradient accelerators
Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.
1988-06-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.
CARS thermometry in high temperature gradients
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Dunn-Rankin, D.
1993-01-01
CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.
Alumina Concentration Gradients in Aluminium Reduction Cells
NASA Astrophysics Data System (ADS)
Lavoie, Pascal; Taylor, Mark P.
The length of aluminium electrolysis cells have constantly increased over the last decades. The drive to increase productivity resulted in the need to feed and dissolve more alumina in less electrolyte. There is mounting evidence that these two trends are pushing the electrolysis cells above their capability to maintain alumina concentration, through time and space, at levels preventing both conventional and non-propagating anode effects. Alumina concentration gradient measurements were performed within large industrial cells and showed that large gradients occurred between locations in cells.
Imbibition Driven by a Temperature Gradient
NASA Astrophysics Data System (ADS)
Medina, A.; Pineda, A.; Treviño, C.
2003-05-01
In this work, we have theoretically studied the imbibition process in a cylindrical capillary under a constant, longitudinal temperature gradient, G. A closed-form analytical solution has been obtained and the Washburn law (valid for the isothermal case) has been found to hold for G=0. The space and time evolution of the interface is strongly dependent on surface tension and the viscosity with temperature. By using reported data for an organic oil (squalene), we showed how imbibition can be accelerated when the temperature gradient is negative.
A new nonlinear conjugate gradient method
NASA Astrophysics Data System (ADS)
Abdelrahman, Awad; Mamat, Mustafa; Mohd, Ismail bin; Rivaie, Mohd; Omer, Osman
2015-02-01
Conjugate gradient (CG) methods are essential for solving large-scale unconstrained optimization problems. Many of studies and modifications have been practiced to improve this method. In this paper, a new class of conjugate gradient coefficients (βk) with a new parameter m = ‖g/k‖ ‖dk-1‖ that possess global convergence properties is presented. The global convergence and sufficient decent property result is established using inexact line searches to determine the step size of CG, denoted as ∝k. Numerical result shows that the new formula is superior and more efficient when compared to other CG coefficients.
High pressure liquid chromatographic gradient mixer
Daughton, Christian G.; Sakaji, Richard H.
1985-01-01
A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".
Enhancement of chest radiographs with gradient operators.
Daponte, J S; Fox, M D
1988-01-01
Reference is made to the Sobel and Roberts gradient operators used to enhance image edges. Overall, the Sobel operator was found to be superior to the Roberts operator in edge enhancement. A theoretical explanation for the superior performance of the Sobel operator was developed based on the concept of analyzing the x and y Sobel masks as linear filters. By applying pill-box, Gaussian, or median filtering prior to applying a gradient operator, noise was reduced. The pill-box and Gaussian filters were more computationally efficient than the median filter with approximately equal effectiveness in noise reduction.
High-pressure liquid chromatographic gradient mixer
Daughton, C.G.; Sakaji, R.H.
1982-09-08
A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.
New protocol for lentiviral vector mass production.
Segura, María Mercedes; Garnier, Alain; Durocher, Yves; Ansorge, Sven; Kamen, Amine
2010-01-01
Multiplasmid transient transfection is the most widely used technique for the generation of lentiviral vectors. However, traditional transient transfection protocols using 293 T adherent cells and calcium phosphate/DNA co-precipitation followed by ultracentrifugation are tedious, time-consuming, and difficult to scale up. This chapter describes a streamlined protocol for the fast mass production of lentiviral vectors and their purification by affinity chromatography. Lentiviral particles are generated by transient transfection of suspension growing HEK 293 cells in serum-free medium using polyethylenimine (PEI) as transfection reagent. Lentiviral vector production is carried out in Erlenmeyer flasks agitated on orbital shakers requiring minimum supplementary laboratory equipment. Alternatively, the method can be easily scaled up to generate larger volumes of vector stocks in bioreactors. Heparin affinity chromatography allows for selective concentration and purification of lentiviral particles in a singlestep directly from vector supernatants. The method is suitable for the production and purification of different vector pseudotypes.
Vector assembly of colloids on monolayer substrates
Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve
2017-01-01
The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize ‘vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers. PMID:28594002
Vector assembly of colloids on monolayer substrates
NASA Astrophysics Data System (ADS)
Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve
2017-06-01
The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.
Disease Ecology, Biodiversity, and the Latitudinal Gradient in Income
Bonds, Matthew H.; Dobson, Andrew P.; Keenan, Donald C.
2012-01-01
While most of the world is thought to be on long-term economic growth paths, more than one-sixth of the world is roughly as poor today as their ancestors were hundreds of years ago. The majority of the extremely poor live in the tropics. The latitudinal gradient in income is highly suggestive of underlying biophysical drivers, of which disease conditions are an especially salient example. However, conclusions have been confounded by the simultaneous causality between income and disease, in addition to potentially spurious relationships. We use a simultaneous equations model to estimate the relative effects of vector-borne and parasitic diseases (VBPDs) and income on each other, controlling for other factors. Our statistical model indicates that VBPDs have systematically affected economic development, evident in contemporary levels of per capita income. The burden of VBDPs is, in turn, determined by underlying ecological conditions. In particular, the model predicts it to rise as biodiversity falls. Through these positive effects on human health, the model thus identifies measurable economic benefits of biodiversity. PMID:23300379
Filtered gradient reconstruction algorithm for compressive spectral imaging
NASA Astrophysics Data System (ADS)
Mejia, Yuri; Arguello, Henry
2017-04-01
Compressive sensing matrices are traditionally based on random Gaussian and Bernoulli entries. Nevertheless, they are subject to physical constraints, and their structure unusually follows a dense matrix distribution, such as the case of the matrix related to compressive spectral imaging (CSI). The CSI matrix represents the integration of coded and shifted versions of the spectral bands. A spectral image can be recovered from CSI measurements by using iterative algorithms for linear inverse problems that minimize an objective function including a quadratic error term combined with a sparsity regularization term. However, current algorithms are slow because they do not exploit the structure and sparse characteristics of the CSI matrices. A gradient-based CSI reconstruction algorithm, which introduces a filtering step in each iteration of a conventional CSI reconstruction algorithm that yields improved image quality, is proposed. Motivated by the structure of the CSI matrix, Φ, this algorithm modifies the iterative solution such that it is forced to converge to a filtered version of the residual ΦTy, where y is the compressive measurement vector. We show that the filtered-based algorithm converges to better quality performance results than the unfiltered version. Simulation results highlight the relative performance gain over the existing iterative algorithms.
Lean histogram of oriented gradients features for effective eye detection
NASA Astrophysics Data System (ADS)
Sharma, Riti; Savakis, Andreas
2015-11-01
Reliable object detection is very important in computer vision and robotics applications. The histogram of oriented gradients (HOG) is established as one of the most popular hand-crafted features, which along with support vector machine (SVM) classification provides excellent performance for object recognition. We investigate dimensionality deduction on HOG features in combination with SVM classifiers to obtain efficient feature representation and improved classification performance. In addition to lean HOG features, we explore descriptors resulting from dimensionality reduction on histograms of binary descriptors. We consider three-dimensionality reduction techniques: standard principal component analysis, random projections, a computationally efficient linear mapping that is data independent, and locality preserving projections (LPP), which learns the manifold structure of the data. Our methods focus on the application of eye detection and were tested on an eye database created using the BioID and FERET face databases. Our results indicate that manifold learning is beneficial to classification utilizing HOG features. To demonstrate the broader usefulness of lean HOG features for object class recognition, we evaluated our system's classification performance on the CalTech-101 dataset with favorable outcomes.
Fairbank, Michael; Alonso, Eduardo; Prokhorov, Danil
2012-10-01
We derive an algorithm to exactly calculate the mixed second-order derivatives of a neural network's output with respect to its input vector and weight vector. This is necessary for the adaptive dynamic programming (ADP) algorithms globalized dual heuristic programming (GDHP) and value-gradient learning. The algorithm calculates the inner product of this second-order matrix with a given fixed vector in a time that is linear in the number of weights in the neural network. We use a "forward accumulation" of the derivative calculations which produces a much more elegant and easy-to-implement solution than has previously been published for this task. In doing so, the algorithm makes GDHP simple to implement and efficient, bridging the gap between the widely used DHP and GDHP ADP methods.
Yang, Xiaoyu; Agarwala, Shilpi; Ravindran, Sundari; Vellekamp, Gary
2008-02-01
Recombinant adenoviruses (rAd), widely used as vectors for gene therapy, are generally purified by column chromatography and frequently contain empty capsids and other aberrant forms of virus particles. To determine particle heterogeneity we utilized analytical ultracentrifugation (AUC) in CsCl density gradients. Preparations of three different rAd vectors were assessed. AUC was able to resolve multiple density forms including two empty capsid types in various virus preparations. One unusual density form (form V), was noninfectious and lacked protein VI. AUC was able to quantify empty capsids and monitor their removal during process development. Their relative concentrations were reduced by either addition of an immobilized zinc affinity chromatography (IZAC) step or by extension of the infection time. The Adenovirus Reference Material (ARM), a wild-type Ad5, had 2.2% empty capsids and no other detectable minor particle forms. Finally, AUC was utilized to monitor the thermal instability of the three rAd vectors via the transformations of different density forms. The vector and empty capsids containing protein IX were more stable than those without IX. Together, these results exemplify AUC in CsCl density gradients as a valuable technique for evaluating product particle heterogeneity and stability.
[Research progress on malaria vector control].
Zhu, Guo-Ding; Cao, Jun; Zhou, Hua-Yun; Gao, Qi
2013-06-01
Vector control plays a crucial role in the stages of malaria control and elimination. Currently, it mainly relies on the chemical control methods for adult mosquitoes in malaria endemic areas, however, it is undergoing the serious threat by insecticide resistance. In recent years, the transgenic technologies of malaria vectors have made a great progress in the laboratory. This paper reviews the challenges of the traditional methods and the rapid developed genetic modified technology in the application of vector control.
Observation of dipole-mode vector solitons
Krolikowski; Ostrovskaya; Weilnau; Geisser; McCarthy; Kivshar; Denz; Luther-Davies
2000-08-14
We report on the first experimental observation of a novel type of optical vector soliton, a dipole-mode soliton, recently predicted theoretically. We show that these vector solitons can be generated in a photorefractive medium employing two different processes: a phase imprinting, and a symmetry-breaking instability of a vortex-mode vector soliton. The experimental results display remarkable agreement with the theory, and confirm the robust nature of these radially asymmetric two-component solitary waves.
Pre-vector variational inequality
Lin, Lai-Jiu
1994-12-31
Let X be a Hausdorff topological vector space, (Y, D) be an ordered Hausdorff topological vector space ordered by convex cone D. Let L(X, Y) be the space of all bounded linear operator, E {improper_subset} X be a nonempty set, T : E {yields} L(X, Y), {eta} : E {times} E {yields} E be functions. For x, y {element_of} Y, we denote x {not_lt} y if y - x intD, where intD is the interior of D. We consider the following two problems: Find x {element_of} E such that < T(x), {eta}(y, x) > {not_lt} 0 for all y {element_of} E and find x {element_of} E, < T(x), {eta}(y, x) > {not_gt} 0 for all y {element_of} E and < T(x), {eta}(y, x) >{element_of} C{sub p}{sup w+} = {l_brace} {element_of} L(X, Y) {vert_bar}< l, {eta}(x, 0) >{not_lt} 0 for all x {element_of} E{r_brace} where < T(x), y > denotes linear operator T(x) at y, that is T(x), (y). We called Pre-VVIP the Pre-vector variational inequality problem and Pre-VCP complementary problem. If X = R{sup n}, Y = R, D = R{sub +} {eta}(y, x) = y - x, then our problem is the well-known variational inequality first studies by Hartman and Stampacchia. If Y = R, D = R{sub +}, {eta}(y, x) = y - x, our problem is the variational problem in infinite dimensional space. In this research, we impose different condition on T(x), {eta}, X, and < T(x), {eta}(y, x) > and investigate the existences theorem of these problems. As an application of one of our results, we establish the existence theorem of weak minimum of the problem. (P) V - min f(x) subject to x {element_of} E where f : X {yields} Y si a Frechet differentiable invex function.
Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien
2011-01-01
Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique
Analysis of dissection algorithms for vector computers
NASA Technical Reports Server (NTRS)
George, A.; Poole, W. G., Jr.; Voigt, R. G.
1978-01-01
Recently two dissection algorithms (one-way and incomplete nested dissection) have been developed for solving the sparse positive definite linear systems arising from n by n grid problems. Concurrently, vector computers (such as the CDC STAR-100 and TI ASC) have been developed for large scientific applications. An analysis of the use of dissection algorithms on vector computers dictates that vectors of maximum length be utilized thereby implying little or no dissection; on the other hand, minimizing operation counts suggest that considerable dissection be performed. In this paper we discuss the resolution of this conflict by minimizing the total time required by vectorized versions of the two algorithms.
Building mosaics of therapeutic plasmid gene vectors.
Tolmachov, Oleg E
2011-12-01
Plasmids are circular or linear DNA molecules propagated extra-chromosomally in bacteria. Evolution shaped plasmids are inherently mosaic structures with individual functional units represented by distinct segments in the plasmid genome. The patchwork of plasmid genetic modules is a convenient template and a model for the generation of artificial plasmids used as vehicles for gene delivery into human cells. Plasmid gene vectors are an important tool in gene therapy and in basic biomedical research, where these vectors offer efficient transgene expression in many settings in vitro and in vivo. Plasmid vectors can be attached to nuclear directing ligands or transferred by electroporation as naked DNA to deliver the payload genes to the nuclei of the target cells. Transgene expression silencing by plasmid sequences of bacterial origin and immune stimulation by bacterial unmethylated CpG motifs can be avoided by the generation of plasmid-based minimized DNA vectors, such as minicircles. Systems of efficient site-specific integration into human chromosomes and stable episomal maintenance in human cells are being developed for further reduction of the chances for transgene silencing. The successful generation of plasmid vectors is governed by a number of vector design rules, some of which are common to all gene vectors, while others are specific to plasmid vectors. This review is focused both on the guiding principles and on the technical know-how of plasmid gene vector design.
Analysis of dissection algorithms for vector computers
NASA Technical Reports Server (NTRS)
George, A.; Poole, W. G., Jr.; Voigt, R. G.
1978-01-01
Recently two dissection algorithms (one-way and incomplete nested dissection) have been developed for solving the sparse positive definite linear systems arising from n by n grid problems. Concurrently, vector computers (such as the CDC STAR-100 and TI ASC) have been developed for large scientific applications. An analysis of the use of dissection algorithms on vector computers dictates that vectors of maximum length be utilized thereby implying little or no dissection; on the other hand, minimizing operation counts suggest that considerable dissection be performed. In this paper we discuss the resolution of this conflict by minimizing the total time required by vectorized versions of the two algorithms.
Surface-engineering of lentiviral vectors.
Verhoeyen, Els; Cosset, François-Loïc
2004-02-01
Vectors derived from retroviridae offer particularly flexible properties in gene transfer applications given the numerous possible associations of various viral surface glycoproteins (determining cell tropism) with different types of retroviral cores (determining genome replication and integration). Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses such as murine leukemia viruses (MLVs) that cannot transduce non-proliferating target cells. Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system and their host range. There are however important gene transfer restrictions to some non-proliferative tissues or cell types and recent studies have shown that progenitor hematopoietic stem cells in G(0), non-activated primary blood lymphocytes or monocytes were not transducible by lentiviral vectors. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer applications in vivo. Several innovative approaches have been explored to overcome such problems that have given rise to novel concepts in the field and have provided promising results in preliminary evaluations in vivo. Here we review the different approaches explored to upgrade lentiviral vectors, aiming at developing vectors suitable for in vivo gene delivery.
Production of high-capacity adenovirus vectors.
Kreppel, Florian
2014-01-01
High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.
Clifford tori and unbiased vectors
NASA Astrophysics Data System (ADS)
Andersson, Ole; Bengtsson, Ingemar
2017-02-01
The existence problem for mutually unbiased bases is an unsolved problem in quantum information theory. A related question is whether every pair of bases admits vectors that are unbiased to both. Mathematically this translates to the question whether two Lagrangian Clifford tori intersect, and a body of results exists concerning it. These results are however rather weak from the point of view of the first problem. We make a detailed study of how the intersections behave in the simplest nontrivial case, that of complex projective 2-space (the qutrit), for which the set of pairs of Clifford tori can be usefully parametrized by the unistochastic subset of Birkhoff's polytope. Pairs that do not intersect transversally are located. Some calculations in higher dimensions are included to see which results are special to the qutrit.
Slow deterministic vector rogue waves
NASA Astrophysics Data System (ADS)
Sergeyev, S. V.; Kolpakov, S. A.; Mou, Ch.; Jacobsen, G.; Popov, S.; Kalashnikov, V.
2016-03-01
For an erbium-doped fiber laser mode-locked by carbon nanotubes, we demonstrate experimentally and theoretically a new type of the vector rogue waves emerging as a result of the chaotic evolution of the trajectories between two orthogonal states of polarization on the Poincare sphere. In terms of fluctuation induced phenomena, by tuning polarization controller for the pump wave and in-cavity polarization controller, we are able to control the Kramers time, i.e. the residence time of the trajectory in vicinity of each orthogonal state of polarization, and so can cause the rare events satisfying rogue wave criteria and having the form of transitions from the state with the long residence time to the state with a short residence time.
Vector wind profile gust model
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1981-01-01
To enable development of a vector wind gust model suitable for orbital flight test operations and trade studies, hypotheses concerning the distributions of gust component variables were verified. Methods for verification of hypotheses that observed gust variables, including gust component magnitude, gust length, u range, and L range, are gamma distributed and presented. Observed gust modulus has been drawn from a bivariate gamma distribution that can be approximated with a Weibull distribution. Zonal and meridional gust components are bivariate gamma distributed. An analytical method for testing for bivariate gamma distributed variables is presented. Two distributions for gust modulus are described and the results of extensive hypothesis testing of one of the distributions are presented. The validity of the gamma distribution for representation of gust component variables is established.
High power thrust vector actuation
NASA Astrophysics Data System (ADS)
Kittock, M. J.
1993-06-01
Modern missile programs are frequently favoring electro-mechanical (EM) thrust vector actuation (TVA) over hydraulic for a variety of reasons. However, actuation system performance requirements are not relaxed for EM systems. Thus the development of EM systems with greater power output is required. The configuration of EM actuator studied consists of a DC brushless motor driving a spur gear train, which drives a ballscrew that converts rotary motion to rectilinear motion. This design produces an actuator with high levels of performance in a compact mechanical package. Design for manufacturability and assembly (DFMA) was part of the design process, resulting in an actuator that can be assembled easily and will operate reliably. This paper will discuss the mechanical details of the resultant actuator and report test results on a prototype derivative.
Vector wind profile gust model
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1979-01-01
Work towards establishing a vector wind profile gust model for the Space Transportation System flight operations and trade studies is reported. To date, all the statistical and computational techniques required were established and partially implemented. An analysis of wind profile gust at Cape Kennedy within the theoretical framework is presented. The variability of theoretical and observed gust magnitude with filter type, altitude, and season is described. Various examples are presented which illustrate agreement between theoretical and observed gust percentiles. The preliminary analysis of the gust data indicates a strong variability with altitude, season, and wavelength regime. An extension of the analyses to include conditional distributions of gust magnitude given gust length, distributions of gust modulus, and phase differences between gust components has begun.
Introduction to Vector Field Visualization
NASA Technical Reports Server (NTRS)
Kao, David; Shen, Han-Wei
2010-01-01
Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.
Examining the Education Gradient in Chronic Illness
ERIC Educational Resources Information Center
Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal
2015-01-01
We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…
Escalation of polymerization in a thermal gradient.
Mast, Christof B; Schink, Severin; Gerland, Ulrich; Braun, Dieter
2013-05-14
For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.
Plant reproduction: GABA gradient, guidance and growth.
Ma, Hong
2003-10-28
How a pollen tube manages to navigate through the female tissues during plant reproduction has been a mystery. A new analysis of an Arabidopsis mutant has provided the strongest evidence yet that a GABA gradient may be a critical signal for correct targeting of the pollen tube.
HOT PRESSING WITH A TEMPERATURE GRADIENT
Hausner, H.H.
1958-05-20
A method is described for producing powder metal compacts with a high length to width ratio, which are of substantially uniform density. The process consists in arranging a heating coil around the die and providing a temperature gradient along the length of the die with the highest temperature at the point of the compact farthest away from the ram or plunger.
Density Gradient Columns for Chemical Displays.
ERIC Educational Resources Information Center
Guenther, William B.
1986-01-01
Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)
Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; Sánchez-Menguiano, L.
2017-07-01
We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r<0.5re) and a flattennig in the outer regions. For lower masses (>109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.
Marine submicron aerosol gradients, sources and sinks
NASA Astrophysics Data System (ADS)
Ceburnis, Darius; Rinaldi, Matteo; Ovadnevaite, Jurgita; Martucci, Giovanni; Giulianelli, Lara; O'Dowd, Colin D.
2016-10-01
Aerosol principal sources and sinks over eastern North Atlantic waters were studied through the deployment of an aerosol chemistry gradient sampling system. The chemical gradients of primary and secondary aerosol components - specifically, sea salt (SS), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), nitrate, ammonium, oxalate, amines, methanesulfonic acid (MSA) and water-soluble organic nitrogen (WSON) - were examined in great detail. Sea salt fluxes were estimated by the boundary layer box model and ranged from 0.3 to 3.5 ng m-2 s-1 over the wind speed range of 5-12 m s-1 and compared well with the derived fluxes from existing sea salt source parameterisations. The observed seasonal pattern of sea salt gradients was mainly driven by wind stress in addition to the yet unquantified effect of marine OM modifying fractional contributions of SS and OM in sea spray. WIOM gradients were a complex combination of rising and waning biological activity, especially in the flux footprint area, and wind-driven primary sea spray production supporting the coupling of recently developed sea spray and marine OM parameterisations.
Examining the Education Gradient in Chronic Illness
ERIC Educational Resources Information Center
Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal
2015-01-01
We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…