Science.gov

Sample records for biconcircular gradient vector

  1. A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation.

    PubMed

    Zhang, Rui; Zhu, Shiping; Zhou, Qin

    2016-10-21

    Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models.

  2. A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation

    PubMed Central

    Zhang, Rui; Zhu, Shiping; Zhou, Qin

    2016-01-01

    Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660

  3. A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields

    NASA Astrophysics Data System (ADS)

    Domokos, Gábor; Holmes, Philip; Lángi, Zsolt

    2016-12-01

    Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.

  4. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  5. Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poole, E. L.

    1986-01-01

    In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.

  6. Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification

    PubMed Central

    Dai, Baisheng; Wu, Xiangqian; Bu, Wei

    2016-01-01

    Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches. PMID:27564376

  7. Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin

    2015-06-01

    We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found

  8. Gradient-based fusion of infrared and visual face images using support vector machine for human face identification

    NASA Astrophysics Data System (ADS)

    Saha, Priya; Bhowmik, Mrinal K.; Bhattacharjee, Debotosh; De, Barin K.; Nasipuri, Mita

    2013-03-01

    Pose and illumination invariant face recognition problem is now-a-days an emergent problem in the field of information security. In this paper, gradient based fusion method of gradient visual and corresponding infrared face images have been proposed to overcome the problem of illumination varying conditions. This technique mainly extracts illumination insensitive features under different conditions for effective face recognition purpose. The gradient image is computed from a visible light image. Information fusion is performed in the gradient map domain. The image fusion of infrared image and corresponding visual gradient image is done in wavelet domain by taking the maximum information of approximation and detailed coefficients. These fused images have been taken for dimension reduction using Independent Component Analysis (ICA). The reduced face images are taken for training and testing purposes from different classes of different datasets of IRIS face database. SVM multiclass strategy `one-vs.-all' have been taken in the experiment. For training support vector machine, Sequential Minimal Optimization (SMO) algorithm has been used. Linear kernel and Polynomial kernel with degree 3 are used in SVM kernel functions. The experiment results show that the proposed approach generates good classification accuracies for the face images under different lighting conditions.

  9. Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting.

    PubMed

    Ehrentraut, Claudia; Ekholm, Markus; Tanushi, Hideyuki; Tiedemann, Jörg; Dalianis, Hercules

    2016-08-04

    Hospital-acquired infections pose a significant risk to patient health, while their surveillance is an additional workload for hospital staff. Our overall aim is to build a surveillance system that reliably detects all patient records that potentially include hospital-acquired infections. This is to reduce the burden of having the hospital staff manually check patient records. This study focuses on the application of text classification using support vector machines and gradient tree boosting to the problem. Support vector machines and gradient tree boosting have never been applied to the problem of detecting hospital-acquired infections in Swedish patient records, and according to our experiments, they lead to encouraging results. The best result is yielded by gradient tree boosting, at 93.7 percent recall, 79.7 percent precision and 85.7 percent F1 score when using stemming. We can show that simple preprocessing techniques and parameter tuning can lead to high recall (which we aim for in screening patient records) with appropriate precision for this task.

  10. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance.

    PubMed

    Johnston, Emily; Weinstein, Phillip; Slaney, David; Flies, Andrew S; Fricker, Stephen; Williams, Craig

    2014-06-01

    Understanding the factors influencing mosquito distribution is important for effective surveillance and control of nuisance and disease vector mosquitoes. The goal of this study was to determine how trap height and distance to the city center influenced the abundance and species of mosquitoes collected in Adelaide, South Australia. Mosquito communities were sampled at two heights (<2 m and ~10 m) along an urban-rural gradient. A total of 5,133 mosquitoes was identified over 176 trap nights. Aedes notoscriptus, Ae. vigilax, and Culex molestus were all more abundant in lower traps while Cx. quinquefasciatus (an ornithophilic species) was found to be more abundant in high traps. Distance to city center correlated strongly with the abundance of Ae. vigilax, Ae. camptorhynchus, Cx. globocoxitus, and Cx. molestus, all of which were most common at the sites farthest from the city and closest to the saltmarsh. Overall, the important disease vectors in South Australia (Ae. vigilax, Ae. camptorhynchus, Ae. notoscriptus, and Cx. annulirostris) were more abundant in low traps farthest from the city and closest to the saltmarsh. The current mosquito surveillance practice of setting traps within two meters of the ground is effective for sampling populations of the important disease vector species in South Australia.

  11. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms.

  12. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    SciTech Connect

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  13. Using direct numerical simulation to analyze and improve hot-wire probe sensor and array configurations for simultaneous measurement of the velocity vector and the velocity gradient tensor

    NASA Astrophysics Data System (ADS)

    Vukoslavčević, Petar V.; Wallace, James M.

    2013-11-01

    Multi-sensor, hot-wire probes of various configurations have been used for 25 years to simultaneously measure the velocity vector and the velocity gradient tensor in turbulent flows. This is the same period in which direct numerical simulations (DNS) were carried out to investigate these flows. Using the first DNS of a turbulent boundary layer, Moin and Spalart ["Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence," NASA Technical Memorandum 100022 (1987)] examined, virtually, the performance of a two-sensor X-array probe with the sensors idealized as points in the numerical grid. Subsequently, several investigators have used DNS for similar studies. In this paper we use a highly resolved minimal channel flow DNS, following Jiménez and Moin ["The minimal flow unit in near-wall turbulence," J. Fluid Mech. 225, 213 (1991)], to study the performance of an 11-sensor probe. Our previous studies of this type have indicated that, on balance, a probe of the design described here may provide the most accurate measurements of many of the statistics formed from the velocity vector and the velocity gradient tensor (rms and skewness values of the velocity and vorticity components as well as the Reynolds shear stress and the dissipation and production rates). The results of the present study show that, indeed, the sensor and array configurations of a probe of this design are considerably better than previous designs that have been used, and they are likely to give reasonably satisfactory results for such measurements with a real probe in a real bounded flow.

  14. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  15. Manipulating the Gradient

    ERIC Educational Resources Information Center

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  16. Primer vector theory and applications

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1975-01-01

    A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.

  17. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  18. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  19. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  20. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  1. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  2. Vector carpets

    SciTech Connect

    Dovey, D.

    1995-03-22

    Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.

  3. Conjugate gradient algorithms using multiple recursions

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  4. Gradient Index Lens Research

    DTIC Science & Technology

    1981-10-19

    Finally, an assessment of the current technologies in gradient index has been made. This includes a series of recommendations w’iich will be...17 III. Ray Tracing in Anamorphic Gradient Index Media ......... 20 IV. Fabrication of Six Gradient Index Samples ............. 27 V. Technology ...for a basic understanding of what can and cannot be done with gradient index lenses, aside from any lack of technology for making a paricular gradient

  5. Gradient systems on coupled cell networks

    NASA Astrophysics Data System (ADS)

    Manoel, Miriam; Roberts, Mark

    2015-10-01

    For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs. These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of {{\\mathbf{S}}1} -invariant admissible functions on a ring of cells.

  6. Multistage vector (MSV) therapeutics.

    PubMed

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers.

  7. Multistage vector (MSV) therapeutics

    PubMed Central

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-01-01

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  8. Planar gradient metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2016-12-01

    Metamaterials possess exotic properties that do not exist in nature. Gradient metamaterials, which are characterized by a continuous spatial variation of their properties, provide a promising approach to the development of both bulk and planar optics. In particular, planar gradient metamaterials can be classified into three categories: gradient metasurfaces, gradient index metamaterials and gradient metallic gratings. In this Review, we summarize the progress made in the theoretical modelling of these materials, in their experimental implementation and in the design of functional devices. We discuss the use of planar gradient metamaterials for wave bending and focusing in free space, for supporting surface plasmon polaritons and for the realization of trapped rainbows. We also focus on the implementation of these materials in waveguide systems, which can enable electromagnetic cloaking, Fano resonances, asymmetric transmission and guided mode conversion. Finally, we discuss promising trends, such as the use of dielectric rather than metallic unit elements and the use of planar gradient metamaterials in 3D systems.

  9. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  10. Harmonic vector fields on pseudo-Riemannian manifolds

    NASA Astrophysics Data System (ADS)

    Friswell, R. M.; Wood, C. M.

    2017-02-01

    The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. The congruence structure of conformal gradient fields on pseudo-Riemannian hyperquadrics and Killing fields on pseudo-Riemannian quadrics is elucidated, and harmonic vector fields of these two types are classified up to congruence. A para-Kähler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.

  11. On the Burgers vector of a wave dislocation

    NASA Astrophysics Data System (ADS)

    Dennis, Mark R.

    2009-09-01

    Following Nye and Berry's analogy with crystal dislocations, an approach to the Burgers vector of a wave dislocation (phase singularity, optical vortex) is proposed. It is defined to be a regularized phase gradient evaluated at the phase singularity, and is computed explicitly. The screw component of this vector is naturally related to the helicoidal twisting of wavefronts along a vortex line, and is related to the helicity of the phase gradient. The edge component is related to the nearby current flow (defined by the phase gradient) perpendicular to the vortex, and the distribution of this component is found numerically for random two-dimensional monochromatic waves.

  12. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  13. Histogram of Oriented Gradient Based Gist Feature for Building Recognition.

    PubMed

    Li, Bin; Cheng, Kaili; Yu, Zhezhou

    2016-01-01

    We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image. Our method, in contrast, uses the normalized histogram of oriented gradient as orientation gist feature vectors of the same image. These HOG-based orientation gist vectors, combined with intensity and color gist feature vectors, are the proposed HOG-gist vectors. In general, the HOG-gist contains four multiorientation histograms (four orientation gist feature vectors), and its texture description ability is stronger than that of the traditional gist using Gabor filters with four angles. Experimental results using Sheffield Buildings Database verify the feasibility and effectiveness of the proposed HOG-gist.

  14. Histogram of Oriented Gradient Based Gist Feature for Building Recognition

    PubMed Central

    Cheng, Kaili; Yu, Zhezhou

    2016-01-01

    We proposed a new method of gist feature extraction for building recognition and named the feature extracted by this method as the histogram of oriented gradient based gist (HOG-gist). The proposed method individually computes the normalized histograms of multiorientation gradients for the same image with four different scales. The traditional approach uses the Gabor filters with four angles and four different scales to extract orientation gist feature vectors from an image. Our method, in contrast, uses the normalized histogram of oriented gradient as orientation gist feature vectors of the same image. These HOG-based orientation gist vectors, combined with intensity and color gist feature vectors, are the proposed HOG-gist vectors. In general, the HOG-gist contains four multiorientation histograms (four orientation gist feature vectors), and its texture description ability is stronger than that of the traditional gist using Gabor filters with four angles. Experimental results using Sheffield Buildings Database verify the feasibility and effectiveness of the proposed HOG-gist. PMID:27872639

  15. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  16. High Gradient Induction Cell

    SciTech Connect

    Caporaso, G J

    2004-11-29

    A concept being developed for high current electron beams may have application to HEDP and is described here. It involves the use of planar Blumlein stacks placed inside an induction cell. The output end of the Blumlein stack is applied across a high gradient insulator (HGI). These insulators have been used successfully in the presence of kilo Ampere-level electron beam currents for tens of nanoseconds at gradients of 20 MV/meter.

  17. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. Light axial vector mesons

    NASA Astrophysics Data System (ADS)

    Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki

    2015-04-01

    Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.

  19. Higher-order force gradient symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  20. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  1. Influence of molecular diffusion on alignment of vector fields: Eulerian analysis

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.

    2017-04-01

    The effect of diffusive processes on the structure of passive vector and scalar gradient fields is investigated by analyzing the corresponding terms in the orientation and norm equations. Numerical simulation is used to solve the transport equations for both vectors in a two-dimensional, parameterized model flow. The study highlights the role of molecular diffusion in the vector orientation process and shows its subsequent action on the geometric features of vector fields.

  2. Influence of molecular diffusion on alignment of vector fields: Eulerian analysis

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.

    2016-11-01

    The effect of diffusive processes on the structure of passive vector and scalar gradient fields is investigated by analyzing the corresponding terms in the orientation and norm equations. Numerical simulation is used to solve the transport equations for both vectors in a two-dimensional, parameterized model flow. The study highlights the role of molecular diffusion in the vector orientation process and shows its subsequent action on the geometric features of vector fields.

  3. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  4. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  5. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy.

  6. Multiclass Reduced-Set Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Tang, Benyang; Mazzoni, Dominic

    2006-01-01

    There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.

  7. Estimating locations and total magnetization vectors of compact magnetic sources from scalar, vector, or tensor magnetic measurements through combined Helbig and Euler analysis

    USGS Publications Warehouse

    Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.

    2007-01-01

    The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.

  8. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  9. Bigravity from gradient expansion

    SciTech Connect

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  10. Gradient magnetometer system balloons

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Tsvetkov, Yury

    2005-08-01

    Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.

  11. Stress-gradient plasticity

    PubMed Central

    Chakravarthy, Srinath S.; Curtin, W. A.

    2011-01-01

    A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403

  12. Gradient Index Lens Research.

    DTIC Science & Technology

    1982-11-25

    over six to nine readings at two to three input polarizations each. The first set of index values is calculated assuming ei = 450 These values are...TECHNICAL REPORT RG-CR-84-2 Sli GRADIENT INDEX LENS RESEARCH Prepared by: Duncan T. Moore The Institute of Optics University of Rochester Rochester...CLASSIFICATION OF THIS PAGE (Miten Data Fntered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NU14MU R GOVT ACCESSION No. 3

  13. Molecular neurosurgery: vectors and vector delivery strategies.

    PubMed

    White, Edward

    2012-12-01

    Molecular neurosurgery involves the use of vector-mediated gene therapy and gene knockdown to manipulate in vivo gene expression for the treatment of neurological diseases. These techniques have the potential to revolutionise the practice of neurosurgery. However, significant challenges remain to be overcome before these techniques enter routine clinical practice. These challenges have been the subject of intensive research in recent years and include the development of strategies to facilitate effective vector delivery to the brain and the development of both viral and non-viral vectors that are capable of efficient cell transduction without excessive toxicity. This review provides an update on the practice of molecular neurosurgery with particular focus on the practical neurosurgical aspects of vector delivery to the brain. In addition, an introduction to the key vectors employed in clinical trials and a brief overview of previous gene therapy clinical trials is provided. Finally, key areas for future research aimed at increasing the likelihood of the successful translation of gene therapy into clinical trials are highlighted.

  14. Vehicle Based Vector Sensor

    DTIC Science & Technology

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  15. Gradient-based controllers for timed continuous Petri nets

    NASA Astrophysics Data System (ADS)

    Lefebvre, Dimitri; Leclercq, Edouard; Druaux, Fabrice; Thomas, Philippe

    2015-07-01

    This paper is about control design for timed continuous Petri nets that are described as piecewise affine systems. In this context, the marking vector is considered as the state space vector, weighted marking of place subsets are defined as the model outputs and the model inputs correspond to multiplicative control actions that slow down the firing rate of some controllable transitions. Structural and functional sensitivity of the outputs with respect to the inputs are discussed in terms of Petri nets. Then, gradient-based controllers (GBC) are developed in order to adapt the control actions of the controllable transitions according to desired trajectories of the outputs.

  16. Efficient way to convert propagating waves into guided waves via gradient wire structures.

    PubMed

    Chu, Hong Chen; Luo, Jie; Lai, Yun

    2016-08-01

    We propose a method for the design of gradient wire structures that are capable of converting propagating waves into guided waves along the wire. The conversion process is achieved by imposing an additional wave vector to the scattered waves via the gradient wire structure, such that the wave vector of scattered waves is beyond the wave number in the background medium. Thus, the scattered waves turn into evanescent waves. We demonstrate that two types of gradient wire structures, with either a gradient permittivity and a fixed radius, or a gradient radius and a fixed permittivity, can both be designed to realize such a wave conversion effect. The principle demonstrated in our work has potential applications in various areas including nanophotonics, silicone photonics, and plasmonics.

  17. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The

  18. Nickel gradient electrode

    SciTech Connect

    Zimmerman, A.H.

    1988-03-31

    This invention relates generally to rechargeable batteries, and, in particular, relates to batteries that use nickel electrodes. It provides an improved nickel electrode with a selected gradient of additive materials. The concentration of additives in the impregnating solution are controlled during impregnation such that an additive gradient is generated. In the situation where the highest ionic conductivity is needed at the current collector boundary with the active material, the electrochemical impregnating solution is initially high in additive, and at the end of impregnation has been adjusted to significantly lower additive concentration. For chemical impregnation, the electrodes are similarly dipped in solutions that are initially high in additive. This invention is suitable for conventional additives such as cobalt, cadmium, barium, manganese, and zinc. It is therefore one objective of the invention to provide an improved nickel electrode of a battery cell with an additive in the active material to increase the life of the battery cell. Another objective is to provide for an improved nickel electrode having a greater concentration of additive near the current collector of nickel.

  19. Energy in density gradient

    SciTech Connect

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  20. Spatially-distributed pulsed gradient spin echo NMR using single-wire proximity

    NASA Astrophysics Data System (ADS)

    Callaghan, Paul T.; Stepisnik, Janez

    1995-12-01

    NMR microimaging may be used to observe the effect of molecular diffusion in the vicinity of a thin wire subjected to current pulses. By this means the pulsed gradient spin echo technique can utilize very large pulsed magnetic field gradients, on the order of 100 T m-1. The quadratic dependence of gradient amplitude on distance from the wire leads to large dynamic range while the distribution of local gradient vectors makes it possible to image anisotropic diffusion. We demonstrate these properties in measurements on polymer solutions and liquid crystals.

  1. Viral Vector Production: Adenovirus.

    PubMed

    Kim, Julius W; Morshed, Ramin A; Kane, J Robert; Auffinger, Brenda; Qiao, Jian; Lesniak, Maciej S

    2016-01-01

    Adenoviral vectors have proven to be valuable resources in the development of novel therapies aimed at targeting pathological conditions of the central nervous system, including Alzheimer's disease and neoplastic brain lesions. Not only can some genetically engineered adenoviral vectors achieve remarkably efficient and specific gene delivery to target cells, but they also may act as anticancer agents by selectively replicating within cancer cells.Due to the great interest in using adenoviral vectors for various purposes, the need for a comprehensive protocol for viral vector production is especially apparent. Here, we describe the process of generating an adenoviral vector in its entirety, including the more complex process of adenoviral fiber modification to restrict viral tropism in order to achieve more efficient and specific gene delivery.

  2. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  3. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  4. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  5. Non Linear Conjugate Gradient

    SciTech Connect

    Newman, Gregory A.; Commer, Michael

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.

  6. Generalized conjugate gradient squared

    SciTech Connect

    Fokkema, D.R.; Sleijpen, G.L.G.

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  7. Baculovirus Transfer Vectors.

    PubMed

    Possee, Robert D; King, Linda A

    2016-01-01

    The production of a recombinant baculovirus expression vector normally involves mixing infectious virus DNA with a plasmid-based transfer vector and then co-transfecting insect cells to initiate virus infection. The aim of this chapter is to provide an update on the range of baculovirus transfer vectors currently available. Some of the original transfer vectors developed are now difficult to obtain but generally have been replaced by superior reagents. We focus on those that are available commercially and should be easy to locate. These vectors permit the insertion of single or multiple genes for expression, or the production of proteins with specific peptide tags that aid subsequent protein purification. Others have signal peptide coding regions permitting protein secretion or plasma membrane localization. A table listing the transfer vectors also includes information on the parental virus that should be used with each one. Methods are described for the direct insertion of a recombinant gene into the virus genome without the requirement for a transfer vector. The information provided should enable new users of the system to choose those reagents most suitable for their purposes.

  8. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  9. Nanoparticle manipulation by thermal gradient

    PubMed Central

    2012-01-01

    A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube. When the temperature gradient was large enough, the fullerene sank into the valley and became trapped. The escaping velocities of the fullerene were evaluated based on the relationship between thermal gradient and thermophoretic force. We then introduced a new way to manipulate the position of nanoparticles by translating the position of thermostats with desirable thermal gradients. Compared to nanomanipulation using a scanning tunneling microscope or an atomic force microscope, our method for nanomanipulation has a great advantage by not requiring a direct contact between the probe and the object. PMID:22364240

  10. Null Killing vectors

    NASA Astrophysics Data System (ADS)

    Lukács, B.; Perjés, Z.; Sebestyén, Á.

    1981-06-01

    Space-times admitting a null Killing vector are studied, using the Newman-Penrose spin coefficient formalism. The properties of the eigenrays (principal null curves of the Killing bivector) are shown to be related to the twist of the null Killing vector. Among the electrovacs, the ones containing a null Maxwell field turn out to belong to the twist-free class. An electrovac solution is obtained for which the null Killing vector is twisting and has geodesic and shear-free eigenrays. This solution is parameterless and appears to be the field of a zero-mass, spinning, and charged source.

  11. Step-gradient capillary electrochromatography.

    PubMed

    Euerby, M R; Gilligan, D; Johnson, C M; Bartle, K D

    1997-10-01

    The analytical benefits of using a step-gradient in capillary electrochromatography (CEC) are demonstrated. The application of step-gradient CEC to the analysis of six diuretics of widely differing lipophilicities was evaluated and shown to result in a marked reduction in the analysis time and an improvement in the peak shape for later-eluting lipophilic components. When the step-gradient approach was performed in an automated mode, the retention time RSD for repeated injections was below 1%.

  12. Gradient forests: calculating importance gradients on physical predictors.

    PubMed

    Ellis, Nick; Smith, Stephen J; Pitcher, C Roland

    2012-01-01

    In ecological analyses of species and community distributions there is interest in the nature of their responses to environmental gradients and in identifying the most important environmental variables, which may be used for predicting patterns of biodiversity. Methods such as random forests already exist to assess predictor importance for individual species and to indicate where along gradients abundance changes. However, there is a need to extend these methods to whole assemblages, to establish where along the range of these gradients the important compositional changes occur, and to identify any important thresholds or change points. We develop such a method, called "gradient forest," which is an extension of the random forest approach. By synthesizing the cross-validated R2 and accuracy importance measures from univariate random forest analyses across multiple species, sampling devices, and surveys, gradient forest obtains a monotonic function of each predictor that represents the compositional turnover along the gradient of the predictor. When applied to a synthetic data set, the method correctly identified the important predictors and delineated where the compositional change points occurred along these gradients. Application of gradient forest to a real data set from part of the Great Barrier Reef identified mud fraction of the sediment as the most important predictor, with highest compositional turnover occurring at mud fraction values around 25%, and provided similar information for other predictors. Such refined information allows for more accurate capturing of biodiversity patterns for the purposes of bioregionalization, delineation of protected areas, or designing of biodiversity surveys.

  13. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  14. Vector inflation and vortices

    SciTech Connect

    Lewis, C.M. )

    1991-09-15

    A vector field {ital A}{sub {mu}} is coupled to the Einstein equations with a linearly perturbed Friedmann-Robertson-Walker metric, constructed to generate first-order vector perturbations. A working classical chaotic vector inflation is demonstrated and then quantum fluctuations of the field are used to constrain the cosmological perturbations. In particular, the vector momentum flux {ital T}{sub 0{ital i}} is tracked to the epoch where radiation-dominated matter exists. Matching conditions using observational constraints of the cosmic microwave background radiation give rise to a peculiar cosmological velocity of the order of 10{sup {minus}100}{ital c}. Amplification of this number, e.g., by breaking the conformal invariance of the field, could be used to generate cosmic magnetic fields using a dynamo mechanism.

  15. The Vector Decomposition Problem

    NASA Astrophysics Data System (ADS)

    Yoshida, Maki; Mitsunari, Shigeo; Fujiwara, Toru

    This paper introduces a new computational problem on a two-dimensional vector space, called the vector decomposition problem (VDP), which is mainly defined for designing cryptosystems using pairings on elliptic curves. We first show a relation between the VDP and the computational Diffie-Hellman problem (CDH). Specifically, we present a sufficient condition for the VDP on a two-dimensional vector space to be at least as hard as the CDH on a one-dimensional subspace. We also present a sufficient condition for the VDP with a fixed basis to have a trapdoor. We then give an example of vector spaces which satisfy both sufficient conditions and on which the CDH is assumed to be hard in previous work. In this sense, the intractability of the VDP is a reasonable assumption as that of the CDH.

  16. Gradient navigation model for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Dietrich, Felix; Köster, Gerta

    2014-06-01

    We present a microscopic ordinary differential equation (ODE)-based model for pedestrian dynamics: the gradient navigation model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs fundamentally from force-based models needing only three equations to derive the ODE system, as opposed to four in, e.g., the social force model. Also, as a result, pedestrians are no longer subject to inertia. Several other advantages ensue: Model-induced oscillations are avoided completely since no actual forces are present. The derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high-order numerical integrators. At the same time, the existence and uniqueness of the solution to the ODE system follow almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians. Several empirically observed system phenomena emerge without the need to recalibrate the parameter set for each scenario: obstacle avoidance, lane formation, stop-and-go waves, and congestion at bottlenecks. The density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe a dependence of the crowd velocity on the local density that compares well with benchmark fundamental diagrams.

  17. Saccharomyces cerevisiae Shuttle vectors.

    PubMed

    Gnügge, Robert; Rudolf, Fabian

    2017-01-10

    Yeast shuttle vectors are indispensable tools in yeast research. They enable cloning of defined DNA sequences in Escherichia coli and their direct transfer into Saccharomyces cerevisiae cells. There are three types of commonly used yeast shuttle vectors: centromeric plasmids, episomal plasmids and integrating plasmids. In this review, we discuss the different plasmid systems and their characteristic features. We focus on their segregational stability and copy number and indicate how to modify these properties. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  19. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  20. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  1. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  2. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  3. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  4. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    SciTech Connect

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-05-15

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.

  5. Stable solutions of inflation driven by vector fields

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  6. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  7. Vector and Axial Vector Pion Form Factors

    NASA Astrophysics Data System (ADS)

    Vitz, Michael; PEN Collaboration

    2015-04-01

    Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.

  8. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  9. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  10. Geometric analysis and estimation of the growth rate gradient on gastropod shells.

    PubMed

    Noshita, Koji; Shimizu, Keisuke; Sasaki, Takenori

    2016-01-21

    The morphology of gastropod shells provides a record of the growth rate at the aperture of the shell, and molecular biological studies have shown that the growth rate gradient along the aperture of a gastropod shell can be closely related to gene expression at the aperture. Here, we develop a novel method for deriving microscopic growth rates from the macroscopic shapes of gastropod shells. The growth vector map of a shell provides information on the growth rate gradient as a vector field along the aperture, over the growth history. However, it is difficult to estimate the growth vector map directly from the macroscopic shape of a specimen, because the degree of freedom of the growth vector map is very high. In order to overcome this difficulty, we develop a method of estimating the growth vector map based on a growing tube model, where the latter includes fewer parameters to be estimated. In addition, we calculate an aperture map specifying the magnitude of the growth vector at each location, which can be compared with the expression levels of several genes or proteins that are important in morphogenesis. Finally, we show a concrete example of how macroscopic shell shapes evolve in a morphospace when microscopic growth rate gradient changes.

  11. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  12. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  13. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  14. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  15. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  16. Spin-dependent manipulating of vector beams by tailoring polarization.

    PubMed

    Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-09-28

    We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization.

  17. Spin-dependent manipulating of vector beams by tailoring polarization

    PubMed Central

    Zhou, Junxiao; Zhang, Wenshuai; Liu, Yachao; Ke, Yougang; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    We examine the spin-dependent manipulating of vector beams by tailoring the inhomogeneous polarization. The spin-dependent manipulating is attributed to the spin-dependent phase gradient in vector beams, which can be regarded as the intrinsic feature of inhomogeneous polarization. The desired polarization can be obtained by establishing the relationship between the local orientation of polarization and the local orientation of the optical axis of waveplate. We demonstrate that the spin-dependent manipulating with arbitrary intensity patterns can be achieved by tailoring the inhomogeneous polarization. PMID:27677400

  18. Parameter-exploring policy gradients.

    PubMed

    Sehnke, Frank; Osendorfer, Christian; Rückstiess, Thomas; Graves, Alex; Peters, Jan; Schmidhuber, Jürgen

    2010-05-01

    We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method outperforms well-known algorithms from the fields of standard policy gradients, finite difference methods and population based heuristics. We also show that the improvement is largest when the parameter samples are drawn symmetrically. Lastly we analyse the importance of the individual components of our method by incrementally incorporating them into the other algorithms, and measuring the gain in performance after each step.

  19. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.

  20. Designing plasmid vectors.

    PubMed

    Tolmachov, Oleg

    2009-01-01

    Nonviral gene therapy vectors are commonly based on recombinant bacterial plasmids or their derivatives. The plasmids are propagated in bacteria, so, in addition to their therapeutic cargo, they necessarily contain a bacterial replication origin and a selection marker, usually a gene conferring antibiotic resistance. Structural and maintenance plasmid stability in bacteria is required for the plasmid DNA production and can be achieved by carefully choosing a combination of the therapeutic DNA sequences, replication origin, selection marker, and bacterial strain. The use of appropriate promoters, other regulatory elements, and mammalian maintenance devices ensures that the therapeutic gene or genes are adequately expressed in target human cells. Optimal immune response to the plasmid vectors can be modulated via inclusion or exclusion of DNA sequences containing immunostimulatory CpG sequence motifs. DNA fragments facilitating construction of plasmid vectors should also be considered for inclusion in the design of plasmid vectors. Techniques relying on site-specific or homologous recombination are preferred for construction of large plasmids (>15 kb), while digestion of DNA by restriction enzymes with subsequent ligation of the resulting DNA fragments continues to be the mainstream approach for generation of small- and medium-size plasmids. Rapid selection of a desired recombinant plasmid against a background of other plasmids continues to be a challenge. In this chapter, the emphasis is placed on efficient and flexible versions of DNA cloning protocols using selection of recombinant plasmids by restriction endonucleases directly in the ligation mixture.

  1. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  2. Vectors Point Toward Pisa

    ERIC Educational Resources Information Center

    Dean, Richard A.

    1971-01-01

    The author shows that the set of all sequences in which each term is the sum of the two previous terms forms a vector space of dimension two. He uses this result to obtain the formula for the Fibonacci sequence and applies the same technique to other linear recursive relations. (MM)

  3. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  4. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  5. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  6. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  7. Estimation of coastal density gradients

    NASA Astrophysics Data System (ADS)

    Howarth, M. J.; Palmer, M. R.; Polton, J. A.; O'Neill, C. K.

    2012-04-01

    Density gradients in coastal regions with significant freshwater input are large and variable and are a major control of nearshore circulation. However their measurement is difficult, especially where the gradients are largest close to the coast, with significant uncertainties because of a variety of factors - spatial and time scales are small, tidal currents are strong and water depths shallow. Whilst temperature measurements are relatively straightforward, measurements of salinity (the dominant control of spatial variability) can be less reliable in turbid coastal waters. Liverpool Bay has strong tidal mixing and receives fresh water principally from the Dee, Mersey, Ribble and Conwy estuaries, each with different catchment influences. Horizontal and vertical density gradients are variable both in space and time. The water column stratifies intermittently. A Coastal Observatory has been operational since 2002 with regular (quasi monthly) CTD surveys on a 9 km grid, an situ station, an instrumented ferry travelling between Birkenhead and Dublin and a shore-based HF radar system measuring surface currents and waves. These measurements are complementary, each having different space-time characteristics. For coastal gradients the ferry is particularly useful since measurements are made right from the mouth of Mersey. From measurements at the in situ site alone density gradients can only be estimated from the tidal excursion. A suite of coupled physical, wave and ecological models are run in association with these measurements. The models, here on a 1.8 km grid, enable detailed estimation of nearshore density gradients, provided appropriate river run-off data are available. Examples are presented of the density gradients estimated from the different measurements and models, together with accuracies and uncertainties, showing that systematic time series measurements within a few kilometres of the coast are a high priority. (Here gliders are an exciting prospect for

  8. An M-step preconditioned conjugate gradient method for parallel computation

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    This paper describes a preconditioned conjugate gradient method that can be effectively implemented on both vector machines and parallel arrays to solve sparse symmetric and positive definite systems of linear equations. The implementation on the CYBER 203/205 and on the Finite Element Machine is discussed and results obtained using the method on these machines are given.

  9. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  10. Vector fields in cosmology

    NASA Astrophysics Data System (ADS)

    Davydov, E. A.

    2012-06-01

    Vector fields can arise in the cosmological context in different ways, and we discuss both abelian and nonabelian sector. In the abelian sector vector fields of the geometrical origin (from dimensional reduction and Einstein-Eddington modification of gravity) can provide a very non-trivial dynamics, which can be expressed in terms of the effective dilaton-scalar gravity with the specific potential. In the non-abelian sector we investigate the Yang-Mills SU(2) theory which admits isotropic and homogeneous configuration. Provided the non-linear dependence of the lagrangian on the invariant FμνF~μν, one can obtain the inflationary regime with the exponential growth of the scale factor. The effective amplitudes of the `electric' and `magnetic' components behave like slowly varying scalars at this regime, what allows the consideration of some realistic models with non-linear terms in the Yang-Mills lagrangian.

  11. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  12. Some experiences with Krylov vectors and Lanczos vectors

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Su, Tzu-Jeng; Kim, Hyoung M.

    1993-01-01

    This paper illustrates the use of Krylov vectors and Lanczos vectors for reduced-order modeling in structural dynamics and for control of flexible structures. Krylov vectors and Lanczos vectors are defined and illustrated, and several applications that have been under study at The University of Texas at Austin are reviewed: model reduction for undamped structural dynamics systems, component mode synthesis using Krylov vectors, model reduction of damped structural dynamics systems, and one-sided and two-sided unsymmetric block-Lanczos model-reduction algorithms.

  13. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  14. A stable, rapidly converging conjugate gradient method for energy minimization

    SciTech Connect

    Watowich, S.J.; Meyer, E.S.; Hagstrom, R.; Josephs, R.

    1989-01-01

    We apply Shanno's conjugate gradient algorithm to the problem of minimizing the potential energy function associated with molecular mechanical calculations. Shanno's algorithm is stable with respect to roundoff errors and inexact line searches and converges rapidly to a minimum. Equally important, this algorithm can improve the rate of convergence to a minimum by a factor of 5 relative to Fletcher-Reeves or Polak-Ribiere minimizers when used within the molecular mechanics package AMBER. Comparable improvements are found for a limited number of simulations when the Polak-Ribiere direction vector is incorporated into the Shanno algorithm. 24 refs., 4 figs., 3 tabs.

  15. What is a vector?

    PubMed Central

    Morgan, Eric René; Booth, Mark; Norman, Rachel; Mideo, Nicole; McCallum, Hamish; Fenton, Andy

    2017-01-01

    Many important and rapidly emerging pathogens of humans, livestock and wildlife are ‘vector-borne’. However, the term ‘vector’ has been applied to diverse agents in a broad range of epidemiological systems. In this perspective, we briefly review some common definitions, identify the strengths and weaknesses of each and consider the functional differences between vectors and other hosts from a range of ecological, evolutionary and public health perspectives. We then consider how the use of designations can afford insights into our understanding of epidemiological and evolutionary processes that are not otherwise apparent. We conclude that from a medical and veterinary perspective, a combination of the ‘haematophagous arthropod’ and ‘mobility’ definitions is most useful because it offers important insights into contact structure and control and emphasizes the opportunities for pathogen shifts among taxonomically similar species with similar feeding modes and internal environments. From a population dynamics and evolutionary perspective, we suggest that a combination of the ‘micropredator’ and ‘sequential’ definition is most appropriate because it captures the key aspects of transmission biology and fitness consequences for the pathogen and vector itself. However, we explicitly recognize that the value of a definition always depends on the research question under study. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289253

  16. Vector Helmholtz-Gauss and vector Laplace-Gauss beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-08-15

    We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG beams are TE and TM Gaussian vector beams, nondiffracting vector Bessel beams, polarized Bessel-Gauss beams, modes in cylindrical waveguides and cavities, and scalar Helmholtz-Gauss beams. The general expression of the vHzG beams can be used straightforwardly to obtain vector Mathieu-Gauss and vector parabolic-Gauss beams, which to our knowledge have not yet been reported.

  17. Conjugate gradient method - Electromagnetism applications

    NASA Astrophysics Data System (ADS)

    Mosig, Juan R.

    1987-10-01

    This paper presents a brief but rigorous description of the conjugate gradient technique as applied to the solution of algebraic linear systems with complex coefficients. The relationships between conjugate gradient techniques and other commonly used methods are established. A normalized algorithm is introduced which optimally exploits the computer capabilities. Its performance is compared with that of Gaussian elimination by numerical tests on Hilbert matrices of more than a thousand unknowns. As a practical application, the problem of electrostatic screening by a finite ground plane has been solved with this technique.

  18. Templating Surfaces with Gradient Assemblies

    SciTech Connect

    Genzer,J.

    2005-01-01

    One of the most versatile and widely used methods of forming surfaces with position-dependent wettability is that conceived by Chaudhury and Whitesides more than a decade ago. In this paper we review several projects that utilize this gradient-forming methodology for: controlled of deposition of self-assembled monolayers on surfaces, generating arrays of nanoparticles with number density gradients, probing the mushroom-to-brush transition in surface-anchored polymers, and controlling the speed of moving liquid droplets on surfaces.

  19. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  20. Vector disparity sensor with vergence control for active vision systems.

    PubMed

    Barranco, Francisco; Diaz, Javier; Gibaldi, Agostino; Sabatini, Silvio P; Ros, Eduardo

    2012-01-01

    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.

  1. The diffusion of radiation in moving media. IV. Flux vector, effective opacity, and expansion opacity

    NASA Astrophysics Data System (ADS)

    Wehrse, R.; Baschek, B.; von Waldenfels, W.

    2003-04-01

    For a given velocity and temperature field in a differentially moving 3D medium, the vector of the radiative flux is derived in the diffusion approximation. Due to the dependence of the velocity gradient on the direction, the associated effective opacity in general is a tensor. In the limit of small velocity gradients analytical expression are obtained which allow us to discuss the cases when the direction of the flux vector deviates from that of the temperature gradient. Furthermore the radiative flux is calculated for infinitely sharp, Poisson distributed spectral lines resulting in simple expressions that provide basic insight into the effect of the motions. In particular, it is shown how incomplete line lists affect the radiative flux as a function of the velocity gradient. Finally, the connection between our formalism and the concept of the expansion opacity introduced by Karp et al. (\\cite{karp}) is discussed.

  2. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  3. Vector ecology of equine piroplasmosis.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2015-01-07

    Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.

  4. Reinforcement Learning Through Gradient Descent

    DTIC Science & Technology

    1999-05-14

    Reinforcement learning is often done using parameterized function approximators to store value functions. Algorithms are typically developed for...practice of existing types of algorithms, the gradient descent approach makes it possible to create entirely new classes of reinforcement learning algorithms

  5. Geothermal gradients in Mississippi embayment

    SciTech Connect

    Staub, W.P.; Treat, N.L.

    1983-09-01

    A statistical analysis of bottom-hole temperatures from oil and gas wells in the northern Mississippi embayment suggests that the geothermal gradient below a depth of 1 km is low (22.2/sup 0/C/km) and for the New Madrid seismic zone, it is even lower (15.7/sup 0/C/km). These data support the tentative conclusion of Swanberg et al that ground-water convection is the source of near-surface heat in shallow water wells of the region. Research by Mitchell et al had suggested a high geothermal gradient in the crust and upper mantel beneath the New Madrid seismic zone as a plausible explanation for the lower than average compressional wave velocities observed there. Warmer than normal wells in the northern Mississippi embayment are scattered at random and may be attributed to random error in the data. Deep wells in the southern Mississippi embayment are substantially hotter than wells at a comparable depth farther north. The regional geothermal gradient below a depth of 1 km from northern Louisiana to central Mississippi is 26.9/sup 0/C/km. From central Mississippi to central Alabama, the geothermal gradient (23.1/sup 0/C/km) is comparable to that of the northern Mississippi embayment.

  6. Variable metric conjugate gradient methods

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  7. Vector potential photoelectron microscopy.

    PubMed

    Browning, R

    2011-10-01

    A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

  8. Pre Earthquake Phenomena in Phase Velocities and Gradients of ULF Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Raspopov, O.; Kopytenko, Y.; Ismaguilov, V.; Hattori, K.; Hayakawa, M.

    2003-12-01

    Tree high-sensitive three-component torsion magnetometers MVC-2DS were operating in Japan before and during a seismic active period started 26.06.2000. A seismic active region was situated to the southeast from Izu peninsula. The strongest seismic shock with magnitude MS=6.4 had taken place 01.07.2000 under a sea bottom at a distance ~85 km from the magnetic stations. The magnetometers were installed at the Izu peninsula in tops of a triangle at a distance 4-6 km from each other. This configuration of the magnetic stations allows determining of gradient and phase velocity vectors along the earth's surface using a phase-gradient method. The vectors of the gradient are usually directed to a source of the ULF EM waves, the vectors of the phase velocity - from the source. A time evolution of the phase velocity and gradient values of the pulsations with periods T=2-512 s (data were preliminary filtered by narrow pass-band filters) was investigated before and during the seismic active period (from 1.02 to 25.07.2000). An increasing of the phase velocity and gradient values was observed ~1.5 months before first seismic foreshock. The greatest values in Z component were reached close to the moment of the EQ. The increasing of the phase velocity values was observed only in direction from the future seismic activity region. There was no change of the phase velocities in the opposite direction. A sharp increasing of the gradients was distinctly seen ~2-3 days before the seismic shocks with Ms>6. The effect was most clearly observed in the short-period pulsations in the total horizontal component. A new direction of the gradient vectors in the total horizontal component aroused 2-3 weeks before the seismic activity beginning - just the direction to the future seismic activity region. The phase velocity vectors shown a new direction (just the direction from the future seismic activity region) in the total horizontal component the same 2-3 weeks before the seismic activity start

  9. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  10. Extended vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke

    2017-01-01

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.

  11. Full-angle negative reflection realized by a gradient acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-11-01

    We theoretically demonstrate that full-angle negative reflection can be realized by the gradient acoustic metasurface with a specific surface phase gradient value. A straightforward physical picture is presented here to understand such anomalous phenomena by considering the influence of the non-local effect that originates from the supercell periodicity on the gradient metasurface. Basing on the generalized law of reflection which is modified by a reciprocal lattice vector term, the negative reflection that beyond the critical angle is possible. In this paper, we utilize the coiling-up space structures of deep subwavelength geometrical scale to construct the desired gradient acoustic metasurface and observe the apparent full-angle negative reflection phenomenon. The present work enriches the content of the generalized law of reflection and provide new design methodology for functional acoustic wave modulation devices, such like directional ground acoustic cloaking and acoustic isolation devices.

  12. Bacterial accumulation in viscosity gradients

    NASA Astrophysics Data System (ADS)

    Waisbord, Nicolas; Guasto, Jeffrey

    2016-11-01

    Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.

  13. Carbon and Oxygen Galactic Gradients

    NASA Astrophysics Data System (ADS)

    Carigi, L.; Peimbert, M.; Esteban, C.; García-Rojas, J.

    2006-06-01

    A chemical evolution model of the Galaxy has been computed to reproduce the O/H gradients from Galactic HII regions. This model solves the C enrichment problem because it fits the C/H and C/O gradients and the C and O histories of the solar vicinity. The model is based on C yields dependent on metallicity (Z) owing to stellar winds. The C yields of massive stars (MS) increase with Z and those of low and intermediate mass stars (LIMS) decrease with Z. An important result is that the fraction of carbon in the interstellar medium (ISM) due to MS and LIMS is strongly dependent on Z of the ISM, therefore, that fraction depends on time and on the Galactocentric distance. At present and in the solar vicinity about half of the C in the interstellar medium has been produced by MS and half by LIMS.

  14. THE GRADIENT OF VASCULAR PERMEABILITY

    PubMed Central

    Smith, Frederick; Rous, Peyton

    1931-01-01

    A mounting gradient of permeability exists along the capillaries of frog muscle. In chicken muscle on the other hand none has been demonstrated; but the close-knit vascularization is arranged in duplicate in such manner that the blood runs in opposite directions through the capillaries of nearly adjacent fibres. In a flight muscle of the pigeon there exists in addition to this artifice what appears to be a special collecting system of venous capillaries. In the mammalian diaphragm indications of such a system are also to be found, and a gradient of capillary permeability like that in the other skeletal muscles is probably present. These vascular conditions are briefly considered in terms of function. PMID:19869836

  15. Programming the gradient projection algorithm

    NASA Technical Reports Server (NTRS)

    Hargrove, A.

    1983-01-01

    The gradient projection method of numerical optimization which is applied to problems having linear constraints but nonlinear objective functions is described and analyzed. The algorithm is found to be efficient and thorough for small systems, but requires the addition of auxiliary methods and programming for large scale systems with severe nonlinearities. In order to verify the theoretical results a digital computer is used to simulate the algorithm.

  16. Biomimetic Gradient Index (GRIN) Lenses

    DTIC Science & Technology

    2006-01-01

    optics include single lenses inspired by cephalopod (octopus) eyes and a three-lens, wide field of view, optical system for a surveillance sensor...camera. Details are easily resolv- able with the polymer lens. This lens system was installed on an Evolution unmanned aerial vehicle (UAV) with a...lens system was installed in an NRL Evolution UAV and used to record video images at a height of up to 1000 ft. The index gradients in the polymer

  17. Stellar Population Gradients in WLM

    NASA Astrophysics Data System (ADS)

    Noriega-Mendoza, H.; Holtzman, J.

    2001-12-01

    WLM is one of the most isolated galaxies in the Local Group. From archival HST frames, we look for population gradients using star count ratios from distinct regions of the Color-Magnitude diagram. We find clear evidence for a central concentration of the younger stars. This scenario supports the two-component disk/halo-like structure suggested for dwarf irregular galaxies (Martinez-Delgado, Gallart & Aparicio, 1999).

  18. Future of gradient index optics

    NASA Astrophysics Data System (ADS)

    Hashizume, Hideki; Hamanaka, Kenjiro; Graham, Alan C., III; Zhu, X. Frank

    2001-11-01

    First developed over 30 years ago, gradient index lenses play an important role not only in telecommunications technology, but also in applications such as information interface and biomedical technology. Traditional manufacturing consists of doping a certain ion, A+ into the mother glass, drawing the glass into rods and then immersing the rods into s molten salt bath containing another certain ion B+. During a thermal ion exchange process, the original ion migrates out of the mother glass, and is replaced by the alternate ion, creating a refractive index variation. Current research is being conducted to improve the thermal ion exchange technology, and open new applications. This research includes extending working distances to greater than 100mm, decreasing the lens diameter, increasing the effective radius, and combining the technology with other technologies such as photolithographically etched masks to produce arrays of gradient index lenses. As a result of this ongoing research, the gradient index lens is expected to continue to be the enabling optical technology in the first decade of the new millennium and beyond.

  19. Iterative methods for the WLS state estimation on RISC, vector, and parallel computers

    SciTech Connect

    Nieplocha, J.; Carroll, C.C.

    1993-10-01

    We investigate the suitability and effectiveness of iterative methods for solving the weighted-least-square (WLS) state estimation problem on RISC, vector, and parallel processors. Several of the most popular iterative methods are tested and evaluated. The best performing preconditioned conjugate gradient (PCG) is very well suited for vector and parallel processing as is demonstrated for the WLS state estimation of the IEEE standard test systems. A new sparse matrix format for the gain matrix improves vector performance of the PCG algorithm and makes it competitive to the direct solver. Internal parallelism in RISC processors, used in current multiprocessor systems, can be taken advantage of in an implementation of this algorithm.

  20. Safety considerations in vector development.

    PubMed

    Kappes, J C; Wu, X

    2001-11-01

    The inadvertent production of replication competent retrovirus (RCR) constitutes the principal safety concern for the use of lentiviral vectors in human clinical protocols. Because of limitations in animal models to evaluate lentiviral vectors for their potential to recombine and induce disease, the vector design itself should ensure against the emergence of RCR in vivo. Issues related to RCR generation and one approach to dealing with this problem are discussed in this chapter. To assess the risk of generating RCR, a highly sensitive biological assay was developed to specifically detect vector recombination in transduced cells. Analysis of lentiviral vector stocks has shown that recombination occurs during reverse transcription in primary target cells. Rejoining of viral protein-coding sequences of the packaging construct and cis-acting sequences of the vector was demonstrated to generate env-minus recombinants (LTR-gag-pol-LTR). Mobilization of recombinant lentiviral genomes was also demonstrated but was dependent on pseudotyping of the vector core with an exogenous envelope protein. 5' sequence analysis has demonstrated that recombinants consist of U3, R, U5, and the psi packaging signal joined with an open gag coding region. Analysis of the 3' end has mapped the point of vector recombination to the poly(A) tract of the packaging construct's mRNA. The state-of-the-art third generation packaging construct and SIN vector also have been shown to generate env-minus proviral recombinants capable of mobilizing retroviral DNA when pseudotyped with an exogenous envelope protein. A new class of HIV-based vector (trans-vector) was recently developed that splits the gag-pol component of the packaging construct into two parts: one that expresses Gag/Gag-Pro and another that expresses Pol (RT and IN) fused with Vpr. Unlike other lentiviral vectors, the trans-vector has not been shown to form recombinants capable of DNA mobilization. These results indicate the trans-vector

  1. Entangled vector vortex beams

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio

    2016-09-01

    Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.

  2. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  3. Chameleon vector bosons

    SciTech Connect

    Nelson, Ann E.

    2008-05-01

    We show that for a force mediated by a vector particle coupled to a conserved U(1) charge, the apparent range and strength can depend on the size and density of the source, and the proximity to other sources. This chameleon effect is due to screening from a light charged scalar. Such screening can weaken astrophysical constraints on new gauge bosons. As an example we consider the constraints on chameleonic gauged B-L. We show that although Casimir measurements greatly constrain any B-L force much stronger than gravity with range longer than 0.1 {mu}m, there remains an experimental window for a long-range chameleonic B-L force. Such a force could be much stronger than gravity, and long or infinite range in vacuum, but have an effective range near the surface of the earth which is less than a micron.

  4. Poynting vector and wave vector directions of equatorial chorus

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolík, Ondřej; Breuillard, Hugo; Li, Wen; Le Contel, Olivier

    2016-12-01

    We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B0). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B0. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to ±6∘ around the B0 minimum or approximately ±5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B0 direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within ˜20∘ latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density.

  5. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    PubMed

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health.

  6. Electromagnetic fields in the human body due to switched transverse gradient coils in MRI.

    PubMed

    While, Peter T; Forbes, Larry K

    2004-07-07

    Magnetic resonance imaging scans impose large gradient magnetic fields on the patient. Modern imaging techniques require this magnetic field to be switched rapidly for good resolution. However, it is believed that this can also lead to the unwanted side effect of peripheral nerve stimulation, which proves to be a limiting factor to the advancement of MRI technology. This paper establishes an analytical model for the fields produced within an MRI scanner by transverse gradient coils of known current density. Expressions are obtained for the magnetic induction vector and the electric field vector, as well as for the surface charge and current densities that are induced on the patient's body. The expressions obtained are general enough to allow the study of any combination of gradient coils whose behaviour can be approximated by Fourier series. For a realistic example coil current density and switching function, it is found that spikes of surface charge density are induced on the patient's body as the gradient field is switched, as well as loops of surface current density that mimic the coil current density. For a 10 mT m(-1) gradient field with a rise time of 100 micros, the magnitude of the radial electric field at the body is found to be 10.3 V m(-1). It is also found that there is a finite limit to radial electric field strength as rise time approaches zero.

  7. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  8. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  9. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  10. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Salinity gradients. 230.25 Section 230... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  11. A metric for the evaluation of dense vector field visualizations.

    PubMed

    Matvienko, Victor; Krüger, Jens

    2013-07-01

    In this work, we present an intuitive image-quality metric that is derived from the motivation of DVF visualization. It utilizes the features of the resulting image and effectively measures the similarity between the output of the visualization method and the input flow data. We use the angle between the gradient direction and the original vector field as a measure of such similarity and the gradient magnitude as an importance measure. Our metric enables the automatic evaluation of images for a given vector field and allows the comparison of different methods, parameters sets, and quality improvement strategies for a specific vector field. By integrating the metric into the image-computation process, our approach can be used to generate improved images by choosing the best parameter set. To verify the effectiveness of our method, we conducted an extensive user study that demonstrated the metric’s applicability to various situations. For instance, our approach elucidated the robustness of a DVF visualization in the presence of data-altering filters, such as resampling.

  12. Sparse Elimination on Vector Multiprocessors.

    DTIC Science & Technology

    2014-09-26

    vector registers . Several reports have been prepared recently under this effort, and a paper entitled "Task Granularity Studies in a Many-Processor Cray X...measures this effect. To reduce this ratio, it has been shown * possible to assembly-code the X-MP so that accesses are pre-fetched into vector registers

  13. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  14. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  15. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation.

    PubMed

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-11-30

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model.

  16. Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation

    PubMed Central

    Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu

    2015-01-01

    To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401

  17. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  18. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  19. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  20. On the heat flux vector for flowing granular materials--part II: derivation and special cases

    SciTech Connect

    Massoudi, Mehrdad

    2006-09-10

    Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non-linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient.

  1. Mechanisms of FGF gradient formation during embryogenesis.

    PubMed

    Balasubramanian, Revathi; Zhang, Xin

    2016-05-01

    Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.

  2. Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models

    PubMed Central

    Banerjee, Sudipto; Gelfand, Alan E.

    2009-01-01

    Large-scale inference for random spatial surfaces over a region using spatial process models has been well studied. Under such models, local analysis of the surface (e.g., gradients at given points) has received recent attention. A more ambitious objective is to move from points to curves, to attempt to assign a meaningful gradient to a curve. For a point, if the gradient in a particular direction is large (positive or negative), then the surface is rapidly increasing or decreasing in that direction. For a curve, if the gradients in the direction orthogonal to the curve tend to be large, then the curve tracks a path through the region where the surface is rapidly changing. In the literature, learning about where the surface exhibits rapid change is called wombling, and a curve such as we have described is called a wombling boundary. Existing wombling methods have focused mostly on identifying points and then connecting these points using an ad hoc algorithm to create curvilinear wombling boundaries. Such methods are not easily incorporated into a statistical modeling setting. The contribution of this article is to formalize the notion of a curvilinear wombling boundary in a vector analytic framework using parametric curves and to develop a comprehensive statistical framework for curvilinear boundary analysis based on spatial process models for point-referenced data. For a given curve that may represent a natural feature (e.g., a mountain, a river, or a political boundary), we address the issue of testing or assessing whether it is a wombling boundary. Our approach is applicable to both spatial response surfaces and, often more appropriately, spatial residual surfaces. We illustrate our methodology with a simulation study, a weather dataset for the state of Colorado, and a species presence/absence dataset from Connecticut. PMID:20221318

  3. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  4. NIF optics phase gradient specfication

    SciTech Connect

    Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.

    1997-05-02

    A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of {approximately}80 {angstrom}/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS&T personnel.

  5. Gradient-Modulated PETRA MRI.

    PubMed

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J; Garwood, Michael

    2015-12-01

    Image blurring due to off-resonance and fast T 2(*) signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2(*) signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners.

  6. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  7. Interhemispheric thermal gradient and tropical Pacific climate

    NASA Astrophysics Data System (ADS)

    Chiang, John C. H.; Fang, Yue; Chang, P.

    2008-07-01

    We explore the impact of interhemispheric thermal gradients forcing on the tropical Pacific ocean-atmosphere climate in an intermediate coupled model. The equatorial zonal sea surface temperature (SST) gradient strengthens with an increased northward interhemispheric thermal gradient, the increase arising from earlier onset and later retreat of the seasonal cold tongue, and intensification during the peak cold season. When the mean interhemispheric thermal gradient is reversed, the central equatorial Pacific SST annual cycle abruptly reverses in phase, with its cold season in Mar-May rather than Sep-Nov. While startling, this response is consistent with a prevailing hypothesis that ties the cold tongue SST annual cycle phase to the hemispheric mean asymmetry of the Intertropical Convergence Zone. El Niño-Southern Oscillation activity is also sensitive to the interhemispheric thermal gradient, with peak activity occurring when the mean gradient is small, reducing rapidly as the mean gradient increases in either direction.

  8. Biomolecular gradients in cell culture systems

    PubMed Central

    Keenan, Thomas M.

    2013-01-01

    Biomolecule gradients have been shown to play roles in a wide range of biological processes including development, inflammation, wound healing, and cancer metastasis. Elucidation of these phenomena requires the ability to expose cells to biomolecule gradients that are quantifiable, controllable, and mimic those that are present in vivo. Here we review the major biological phenomena in which biomolecule gradients are employed, traditional in vitro gradient-generating methods developed over the past 50 years, and new microfluidic devices for generating gradients. Microfluidic gradient generators offer greater levels of precision, quantitation, and spatiotemporal gradient control than traditional methods, and may greatly enhance our understanding of many biological phenomena. For each method, we outline the salient features, capabilities, and applications. PMID:18094760

  9. The ecological foundations of transmission potential and vector-borne disease in urban landscapes.

    PubMed

    LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z

    2015-07-01

    Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain

  10. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  11. Vector fields in multidimensional cosmology

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris E.

    2011-09-01

    Vector fields in the expanding Universe are considered within the multidimensional theory of general relativity. Vector fields in general relativity form a three-parametric variety. Our consideration includes the fields with a nonzero covariant divergence. Depending on the relations between the particular parameters and the symmetry of a problem, the vector fields can be longitudinal and/or transverse, ultrarelativistic (i.e. massless) or nonrelativistic (massive), and so on. The longitudinal and transverse vector fields are considered separately in detail in the background of the de Sitter cosmological metric. In most cases the field equations reduce to Bessel equations, and their temporal evolution is analyzed analytically. The energy-momentum tensor of the most simple zero-mass longitudinal vector fields enters the Einstein equations as an additive to the cosmological constant. In this case the de Sitter metric is the exact solution of the Einstein equations. Hence, the most simple zero-mass longitudinal vector field pretends to be an adequate tool for macroscopic description of dark energy as a source of the expansion of the Universe at a constant rate. The zero-mass vector field does not vanish in the process of expansion. On the contrary, massive fields vanish with time. Though their amplitude is falling down, the massive fields make the expansion accelerated.

  12. Insecticide resistance and vector control.

    PubMed Central

    Brogdon, W. G.; McAllister, J. C.

    1998-01-01

    Insecticide resistance has been a problem in all insect groups that serve as vectors of emerging diseases. Although mechanisms by which insecticides become less effective are similar across all vector taxa, each resistance problem is potentially unique and may involve a complex pattern of resistance foci. The main defense against resistance is close surveillance of the susceptibility of vector populations. We describe the mechanisms of insecticide resistance, as well as specific instances of resistance emergence worldwide, and discuss prospects for resistance management and priorities for detection and surveillance. PMID:9866736

  13. Vector statistics of LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Underwood, D.

    1977-01-01

    A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.

  14. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  15. An efficient parallel algorithm for matrix-vector multiplication

    SciTech Connect

    Hendrickson, B.; Leland, R.; Plimpton, S.

    1993-03-01

    The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.

  16. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  17. Vector independent transmission of the vector-borne bluetongue virus.

    PubMed

    van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M

    2016-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.

  18. Polarization Gradient Study of Interstellar Medium Turbulence Using the Canadian Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Herron, C. A.; Geisbuesch, J.; Landecker, T. L.; Kothes, R.; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Petroff, E.

    2017-02-01

    We have investigated the magneto-ionic turbulence in the interstellar medium through spatial gradients of the complex radio polarization vector in the Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square degrees, over the range 53^\\circ ≤slant {\\ell }≤slant 192^\\circ , -3^\\circ ≤slant b≤slant 5^\\circ , with an extension to b=17\\buildrel{\\circ}\\over{.} 5 in the range 101^\\circ ≤slant {\\ell }≤slant 116^\\circ , and arcminute resolution at 1420 MHz. Previous studies found a correlation between the skewness and kurtosis of the polarization gradient and the Mach number of the turbulence, or assumed this correlation to deduce the Mach number of an observed turbulent region. We present polarization gradient images of the entire CGPS data set, and analyze the dependence of these images on angular resolution. The polarization gradients are filamentary, and the length of these filaments is largest toward the Galactic anti-center, with the smallest toward the inner Galaxy. This may imply that small-scale turbulence is stronger in the inner Galaxy, or that we observe more distant features at low Galactic longitudes. For every resolution studied, the skewness of the polarization gradient is influenced by the edges of bright polarization gradient regions, which are not related to the turbulence revealed by the polarization gradients. We also find that the skewness of the polarization gradient is sensitive to the size of the box used to calculate the skewness, but insensitive to Galactic longitude, implying that the skewness only probes the number and magnitude of the inhomogeneities within the box. We conclude that the skewness and kurtosis of the polarization gradient are not ideal statistics for probing natural magneto-ionic turbulence.

  19. Three axis vector atomic magnetometer utilizing polarimetric technique

    NASA Astrophysics Data System (ADS)

    Pradhan, Swarupananda

    2016-09-01

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  20. Three axis vector atomic magnetometer utilizing polarimetric technique.

    PubMed

    Pradhan, Swarupananda

    2016-09-01

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  1. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  2. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  3. Gradient scaling for nonuniform meshes

    SciTech Connect

    Margolin, L.G.; Ruppel, H.M.; Demuth, R.B.

    1985-01-01

    This paper is concerned with the effect of nonuniform meshes on the accuracy of finite-difference calculations of fluid flow. In particular, when a simple shock propagates through a nonuniform mesh, one may fail to model the jump conditions across the shock even when the equations are differenced in manifestly conservative fashion. We develop an approximate dispersion analysis of the numerical equations and identify the source of the mesh dependency with the form of the artificial viscosity. We then derive an algebraic correction to the numerical equations - a scaling factor for the pressure gradient - to essentially eliminate the mesh dependency. We present several calculations to illustrate our theory. We conclude with an alternate interpretation of our results. 14 refs., 5 figs.

  4. Integrated Thrust Vectored Engine Control

    DTIC Science & Technology

    2001-06-01

    erformances operationnelles des aeronefs militaires, des vehicules terrestres et des vehicules maritimes] To order the complete compilation report...throttling "* Autonomous Engine Configuration Side forces demand to define nozzle vectoring "* Simple Interface FADEC -> FCS " Minimum Interaction FCS

  5. Analysis and design of prisms using the derivatives of a ray. Part II: the derivatives of boundary variable vector with respect to system variable vector.

    PubMed

    Lin, Psang Dain

    2013-06-20

    To evaluate the merit function of an optical system, it is necessary to determine the first- and second-order derivative matrices of the boundary variable vector with respect to the system variable vector. Accordingly, the present study proposes a computationally efficient method for determining both matrices for optical systems containing only flat boundary surfaces. The validity of the proposed method is demonstrated by means of two illustrative prism design problems. In general, the results show that the proposed method can provide efficient search directions in many gradient-based optical design optimization methods.

  6. Contingency Pest and Vector Surveillance

    DTIC Science & Technology

    2013-11-01

    names are used in this TG to provide specific information or photo credits and do not imply endorsement of the products named or criticism of similar...ones not mentioned. Mention of trade names does not constitute a guarantee or warranty of the products by the author, the AFPMB, the Military...VectorMap (http://www.vectormap.org/), a product of the Walter Reed Biosystematics Unit (WRBU). VectorMap provides disease maps, and mapped collection

  7. Toward an integrated view of ionospheric plasma instabilities: Altitudinal transitions and strong gradient case

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.

    2016-04-01

    A general dispersion relation is derived that integrates the Farley-Buneman, gradient-drift, and current-convective plasma instabilities (FBI, GDI, and CCI) within the same formalism for an arbitrary altitude, wave propagation vector, and background density gradient. The limiting cases of the FBI/GDI in the E region for nearly field-aligned irregularities, GDI/CCI in the main F region at long wavelengths, and GDI at high altitudes are successfully recovered using analytic analysis. Numerical solutions are found for more general representative cases spanning the entire ionosphere. It is demonstrated that the results are consistent with those obtained using a general FBI/GDI/CCI theory developed previously at and near E region altitudes under most conditions. The most significant differences are obtained for strong gradients (scale lengths of 100 m) at high altitudes such as those that may occur during highly structured soft particle precipitation events. It is shown that the strong gradient case is dominated by inertial effects and, for some scales, surprisingly strong additional damping due to higher-order gradient terms. The growth rate behavior is examined with a particular focus on the range of wave propagations with positive growth (instability cone) and its transitions between altitudinal regions. It is shown that these transitions are largely controlled by the plasma density gradients even when FBI is operational.

  8. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  9. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  10. Vector control after malaria eradication

    PubMed Central

    Micks, D. W.

    1963-01-01

    In considerable areas now in or near the consolidation phase of malaria eradication, other vector-borne diseases present serious public health problems, even though not susceptible to control on the same world-wide scale as malaria. Several of these areas are already making plans for converting their malaria eradication services to vector control services. While it is possible to use essentially the same personnel and equipment, the methods must be adapted to the biology and habits of the vector. For a smooth and rapid transition, considerable advance planning is therefore needed—preferably well ahead of the consolidation phase. The author gives several examples of the need for flexibility in effecting the changeover and of the problems likely to arise after the completion of malaria eradication programmes. He recommends that epidemiological studies should be extended to vector-borne diseases other than malaria while eradication programmes are still in progress and that vector control programmes should be integrated into the basic health services of the country as soon as possible. He also underlines the importance of water management and other aspects of environmental sanitation in vector control programmes. PMID:20604169

  11. Handling S/MAR vectors.

    PubMed

    Hagedorn, Claudia; Baiker, Armin; Postberg, Jan; Ehrhardt, Anja; Lipps, Hans J

    2012-06-01

    Nonviral episomal vectors represent attractive alternatives to currently used virus-based expression systems. In the late 1990s, it was shown that a plasmid containing an expression cassette linked to a scaffold/matrix attached region (S/MAR) replicates as a low copy number episome in all cell lines tested, as well as primary cells, and can be used for the genetic modification of higher animals. Once established in the cell, the S/MAR vector replicates early during S-phase and, in the absence of selection, is stably retained in the cells for an unlimited period of time. This vector can therefore be regarded as a minimal model system for studying the epigenetic regulation of replication and functional nuclear architecture. In theory, this construct represents an almost "ideal" expression system for gene therapy. In practice, S/MAR-based vectors stably modify mammalian cells with efficiencies far below those of virus-based constructs. Consequently, they have not yet found application in gene therapy trials. Furthermore, S/MAR vector systems are not trivial to handle and several critical technical issues have to be considered when modifying these vectors for various applications.

  12. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  13. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.

  14. Testing the limits of gradient sensing

    PubMed Central

    Lakhani, Vinal

    2017-01-01

    The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell’s accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts. PMID:28207738

  15. Morpheus unbound: reimagining the morphogen gradient.

    PubMed

    Lander, Arthur D

    2007-01-26

    The theory that the spatial organization of cell fate is orchestrated by gradients of diffusing molecules was a major contribution to 20th century developmental biology. Although the existence of morphogens is no longer in doubt, studies on the formation and function of their gradients have yielded far more puzzles than answers. On close inspection, every morphogen gradient seems to use a rich array of regulatory mechanisms, suggesting that the tasks carried out by such systems are far more extensive than previously thought.

  16. Analytic approach to the design of transverse gradient coils with co-axial return paths.

    PubMed

    Bowtell, R; Peters, A

    1999-03-01

    Transverse gradient coils with co-axial return paths offer reduced acoustic noise compared with standard cylindrical gradient coils, due to local force balancing, and can also easily be made to have a length to diameter ratio that is less than one. Analytic expressions for the magnetic field and vector potential generated by this type of coil are described here, along with a formula for calculating the coil inductance. It is shown that these expressions allow the implementation of powerful analytic methods of coil design, as well as the incorporation of active magnetic screening. It is also demonstrated how the mathematics specifies the best parameters to use when designing coils with small numbers of elements. A head gradient coil for use at 3.0 T has been designed using the analytic approach described here. The process of coil design and construction is outlined and the performance of the coil in comparison with a similar standard cylindrical coil is described.

  17. A complete implementation of the conjugate gradient algorithm on a reconfigurable supercomputer

    SciTech Connect

    Dubois, David H; Dubois, Andrew J; Connor, Carolyn M; Boorman, Thomas M; Poole, Stephen W

    2008-01-01

    The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double precision, non-preconditioned, conjugate gradient solver for fmite-element or finite-difference methods. OUf work utilizes the SRC Computers, Inc. MAPStation hardware platform along with the 'Carte' software programming environment to ease the programming workload when working with the hybrid (CPUIFPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7 non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining high performance. Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of this algorithm on that architecture.

  18. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  19. Black holes with vector hair

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  20. Density Gradient Dependent Helicon Modes

    NASA Astrophysics Data System (ADS)

    Panevsky, Martin; Bengtson, Roger

    2002-11-01

    Radially localized helicon modes have been proposed to provide a fuller description of helicon discharges over a wide span of operating conditions and gas types [1]. These plasma modes could be of vital importance to the VASIMR engine. They depend on a radial density gradient and appear to operate over a range of frequencies inaccessible to traditional helicon discharges. Our work focuses on confirming experimentally the existence and properties of these helicon modes in Argon, Helium, and Hydrogen. We investigate the density profile, power deposition, wavefields, and dispersion relation of the new helicon modes which differ substantially from the properties of the traditional helicon plasma. We are using a set of dual half-turn helical antennas driven at 13.56 MHz. Our diagnostics includes a system for monitoring the plasma impedance, a set of Langmuir probes, a set of magnetic probes, as well as sensors for monitoring the pressure and DC magnetic field. *Work supported in part by Advanced Space Propulsion Lab, Johnson Space Center, NASA [1] B. N. Breizman and A. V. Arefiev, Phys. Rev. 84, 3863 (2000)

  1. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale.

    PubMed

    Egizi, Andrea; Fefferman, Nina H; Fonseca, Dina M

    2015-04-05

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.

  2. Learning with LOGO: Logo and Vectors.

    ERIC Educational Resources Information Center

    Lough, Tom; Tipps, Steve

    1986-01-01

    This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)

  3. Discretizing delta functions via finite differences and gradient normalization

    NASA Astrophysics Data System (ADS)

    Towers, John D.

    2009-06-01

    In [J.D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915-931] the author presented two closely related finite difference methods (referred to here as FDM1 and FDM2) for discretizing a delta function supported on a manifold of codimension one defined by the zero level set of a smooth mapping u :Rn ↦ R . These methods were shown to be consistent (meaning that they converge to the true solution as the mesh size h → 0) in the codimension one setting. In this paper, we concentrate on n ⩽ 3 , but generalize our methods to codimensions other than one - now the level set function is generally a vector valued mapping u → :Rn ↦Rm, 1 ⩽ m ⩽ n ⩽ 3 . Seemingly reasonable algorithms based on simple products of approximate delta functions are not generally consistent when applied to these problems. Motivated by this, we instead use the wedge product formalism to generalize our FDM algorithms, and this approach results in accurate, often consistent approximations. With the goal of ensuring consistency in general, we propose a new gradient normalization process that is applied before our FDM algorithms. These combined algorithms seem to be consistent in all reasonable situations, with numerical experiments indicating O (h2) convergence for our new gradient-normalized FDM2 algorithm. In the full codimension setting (m = n) , our gradient normalization processing also improves accuracy when using more standard approximate delta functions. This combination also yields approximations that appear to be consistent.

  4. Episomal vectors for gene therapy.

    PubMed

    Ehrhardt, Anja; Haase, Rudolf; Schepers, Aloys; Deutsch, Manuel J; Lipps, Hans Joachim; Baiker, Armin

    2008-06-01

    The increasing knowledge of the molecular and genetic background of many different human diseases has led to the vision that genetic engineering might be used one day for their phenotypic correction. The main goal of gene therapy is to treat loss-of-function genetic disorders by delivering correcting therapeutic DNA sequences into the nucleus of a cell, allowing its long-term expression at physiologically relevant levels. Manifold different vector systems for the therapeutic gene delivery have been described over the recent years. They all have their individual advantages but also their individual limitations and must be judged on a careful risk/benefit analysis. Integrating vector systems can deliver genetic material to a target cell with high efficiency enabling long-term expression of an encoded transgene. The main disadvantage of integrating vector systems, however, is their potential risk of causing insertional mutagenesis. Episomal vector systems have the potential to avoid these undesired side effects, since they behave as separate extrachromosomal elements in the nucleus of a target cell. Within this article we present a comprehensive survey of currently available episomal vector systems for the genetic modification of mammalian cells. We will discuss their advantages and disadvantages and their applications in the context of basic research, biotechnology and gene therapy.

  5. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  6. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  7. Moving thermal gradients in gas chromatography.

    PubMed

    Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L

    2014-12-29

    This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.

  8. Geothermal gradient map of the United States

    SciTech Connect

    Kron, A.; Heiken, G.

    1980-01-01

    A geothermal gradient map is needed in order to determine the hot dry rock (HDR) geothermal resource of the United States. Based on published and unpublished data (including new measurements) the HDR program will produce updated gradient maps annually, to be used as a tool for resource evaluation and exploration. The 1980 version of this map is presented.

  9. The gradient deformation criterion for brittle fracture

    NASA Astrophysics Data System (ADS)

    Kuliev, V. D.; Morozov, E. M.

    2016-10-01

    A new fracture criterion based on the assumption that brittle fracture occurs when the strain gradient reaches its limiting value is formulated. The presence of a strain gradient at the boundary of a body's temperature drop is shown analytically. The results of an experiment with specimens under an abrupt change in temperature are presented.

  10. Calculation of exit gradients at drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage gradients play an important role in the detachment of soil particles from the side walls of stream channels and drainage ditches. Most seepage studies have focused on water losses. Relatively few have addressed the determination of these gradients as causes of soil loss and incipient gully d...

  11. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  12. A new family of conjugate gradient methods

    NASA Astrophysics Data System (ADS)

    Shi, Zhen-Jun; Guo, Jinhua

    2009-02-01

    In this paper we develop a new class of conjugate gradient methods for unconstrained optimization problems. A new nonmonotone line search technique is proposed to guarantee the global convergence of these conjugate gradient methods under some mild conditions. In particular, Polak-Ribiére-Polyak and Liu-Storey conjugate gradient methods are special cases of the new class of conjugate gradient methods. By estimating the local Lipschitz constant of the derivative of objective functions, we can find an adequate step size and substantially decrease the function evaluations at each iteration. Numerical results show that these new conjugate gradient methods are effective in minimizing large-scale non-convex non-quadratic functions.

  13. Dual fuel gradients in uranium silicide plates

    SciTech Connect

    Pace, B.W.

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  14. Chiral bag with vector mesons

    NASA Astrophysics Data System (ADS)

    Hosaka, A.; Toki, H.; Weise, W.

    1990-01-01

    We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.

  15. Vector insects and their control.

    PubMed

    Lehane, M J

    1996-01-01

    This paper emphasizes the huge influence that vector-transmitted disease has on humans using plague, epidemic typhus and nagana as examples. The continuing need for vector control in campaigns against insect-transmitted disease is shown by reference to current control programmes mounted against Chagas' disease, onchocerciasis, lymphatic filariasis and nagana. These successful campaigns have not been reliant on new breakthroughs but on the forging of available tools into effective strategies widely and efficiently used by the control authorities, and the long-lasting political commitment to the success of the schemes in question. A brief mention is made of current fashions in vector control research and that great care needs to be taken by policy-makers to achieve a balance between long-term research aiming at the production of fundamentally new control technologies and operational research aiming to forge the often highly effective tools we already have into sound control strategies.

  16. Targeting retroviral and lentiviral vectors.

    PubMed

    Sandrin, V; Russell, S J; Cosset, F L

    2003-01-01

    Retroviral vectors capable of efficient in vivo gene delivery to specific target cell types or to specific locations of disease pathology would greatly facilitate many gene therapy applications. The surface glycoproteins of membrane-enveloped viruses stand among the choice candidates to control the target cell receptor recognition and host range of retroviral vectors onto which they are incorporated. This can be achieved in many ways, such as the exchange of glycoprotein by pseudotyping, their biochemical modifications, their conjugation with virus-cell bridging agents or their structural modifications. Understanding the fundamental properties of the viral glycoproteins and the molecular mechanism of virus entry into cells has been instrumental in the functional alteration of their tropism. Here we briefly review the current state of our understanding of the structure and function of viral envelope glycoproteins and we discuss the emerging targeting strategies based on retroviral and lentiviral vector systems.

  17. Extrapolation methods for vector sequences

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Ford, William F.; Sidi, Avram

    1987-01-01

    This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.

  18. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  19. Stratospheric Balloon Gradient Geomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey; Tsvetkov, Yury

    The study of the interior structure of the Earth and laws of its evolution is one of the most difficult problems of natural science. Among the geophysical fields the anomaly magnetic field is one of the most informational in questions of the Earth's crust structure. Many important parameters of an environment are expedient for measuring at lower altitudes, than satellite ones. So, one of the alternatives is stratospheric balloon survey. The balloon flight altitudes cover the range from 20 to 50 km. At such altitudes there are steady zone air flows due to which the balloon flight trajectories can be of any direction, including round-the-world (round-the-pole). One of the examples of such sounding system have been designed, developed and maintained at IZMIRAN during already about 20 years. This system consists of three instrumental con-tainers uniformly placed along a vertical 6 km line. System allows measuring a module and vertical gradient of the geomagnetic field along the whole flight trajectory and so one's name is -stratospheric balloon magnetic gradiometer (SMBG). The GPS-receivers, located in each instrumental container, fix the flight coordinates to within several tens meters. Data trans-mission is carried out by Globalstar satellite link. The obtained data are used in solving the problems of deep sounding of the Earth's crust magnetic structure -an extraction of magnetic anomalies, determination of a depth of bedding of magnetoactive rocks and others. The developed launching technology, deployment in flight, assembly, data processing, transfer and landing the containers with the equipment can be used for other similar problems of monitoring and sounding an environment. Useful flight weights of each instrumental container may be reaching 50 kg. More than ten testing flights (1986-2009) at stratospheric altitudes (20-30 km) have proven the reliability of this system.

  20. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  1. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  2. Thrust-vectored differential turns

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Cliff, E. M.; Lefton, L.

    1980-01-01

    Barrier surface construction in the joint space of the differential turning game for thrust-vectored vs. conventional aircraft is discussed. Differential-turn studies are based on modifications of existing computer programs including an energy-turn program, and one which generates hodograph data. Optimal turning flight in energy approximation is discussed for the conventional aircraft configurations. It is concluded that any advantages realized from thrust-vectoring are minor, unless hover is possible, where advantages would be major at low energies, and affect tactics at high energies as well.

  3. Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene.

    PubMed

    Song, Y F; Zhang, H; Zhao, L M; Shen, D Y; Tang, D Y

    2016-01-25

    We report on the experimental observation of vector and bound vector solitons in a fiber laser passively mode locked by graphene. Localized interactions between vector solitons, vector soliton with bound vector solitons, and vector soliton with a bunch of vector solitons are experimentally investigated. We show that depending on the soliton interactions, various stable and dynamic multiple vector soliton states could be formed.

  4. Blind separation of convolutive sEMG mixtures based on independent vector analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Guo, Yina; Tian, Wenyan

    2015-12-01

    An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed method is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.

  5. Auxiliary function approach to independent component analysis and independent vector analysis

    NASA Astrophysics Data System (ADS)

    Ono, N.

    2015-05-01

    In this paper, we review an auxiliary function approach to independent component analysis (ICA) and independent vector analysis (IVA). The derived algorithm consists of two alternative updates: 1) weighted covariance matrix update and 2) demixing matrix update, which include no tuning parameters such as a step size in the gradient descent method. The monotonic decrease of the objective function is guaranteed by the principle of the auxiliary function method. The experimental evaluation shows that the derived update rules yield faster convergence and better results than natural gradient updates. An efficient implementation on a mobile phone is also presented.

  6. SAGRAD: A Program for Neural Network Training with Simulated Annealing and the Conjugate Gradient Method

    PubMed Central

    Bernal, Javier; Torres-Jimenez, Jose

    2015-01-01

    SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442

  7. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.

  8. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  9. Satellite gravity gradient grids for geophysics.

    PubMed

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-02-11

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  10. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  11. Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel

    2012-01-01

    Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?

  12. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  13. Tracking Vector Magnetograms with the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Schuck, Peter W.

    2012-05-01

    We present analysis of SDO/HMI magnetograms using the Differential Affine Velocity Estimator for Vector Magnetograms with Doppler Velocities (DAVE4VMwDV) which is an extension of the local Cartesian DAVE4VM velocity estimation algorithm. The new DAVE4VMWDV inversion algorithm has several advantages specifically tailored for utilizing the SDO/HMI vector magnetograms. First, the inversion incorporates the spherical geometry of the Sun and provides direct estimates of spherical components of the plasma velocity and uncertainties. Second, the inversions may be performed in the image plane with the Jacobian computed from the gradient of the Stonyhurst coordinates at each pixel --- the data does not have to be distorted into a Mercator or other projection for analysis. Third, the profiles of plasma velocity within the local aperture are expressed as discrete Legendre polynomials of arbitrary order permitting larger apertures while preserving accuracy whereas DAVE4VM was limited to an affine (linear) velocity profile within the aperture. Fourth, the contribution of individual pixels may be weighted statistically and/or individual pixels may be eliminated from the analysis because of poor inversions and/or disambiguations. Fifth, the line-of-sight Doppler velocity may be used as a weighted constraint to improve the estimate regardless of the location of the pixel on the Sun. These advantages are unique to DAVE4VMWDV and have not been implemented in any other velocity inversion algorithms. We discuss the application of DAVE4VMWDV to simulation data and SDO/HMI vector magnetograms.

  14. Portfolio Analysis for Vector Calculus

    ERIC Educational Resources Information Center

    Kaplan, Samuel R.

    2015-01-01

    Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…

  15. Vector ecology of equine piroplasmosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...

  16. Phlebotomine Vectors of Human Disease.

    DTIC Science & Technology

    1983-12-30

    different. We refrain from naming this specimen until more material becomes available. 12. Lutzomyia olmeca bicolor Fairchild and Theodor 1971...Castillo (1958) and Arzube (1960). Lutzomyia olmeca bicolor is the suspected vector of Leishmania mexicana aristedesi among rodents and marsupials in

  17. Paleomagnetic vectors and tilted dikes

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.

    2001-04-01

    Where tectonic deformation reorients rocks without penetrative strain, their paleomagnetic vectors may be restored to their original attitudes by untilting. For strata, paleomagnetic inclination is readily restored but the tilt axis must be precisely known if paleodeclination is required. For dikes, without the knowledge of the rotation(s), neither declination nor inclination of the paleomagnetic vector can be uniquely defined. Furthermore, back-rotating dike orientations to an upright attitude assumes primary verticality whereas primary dike dips are bimodal across the spreading axes (e.g. Troodos ophiolite, Cyprus). In the Cyprus ophiolite, the dikes of the Limassol Forest Transform Zone are tilted due to uplift of the mantle-sequence rocks and deflected against the Arakapas Fault. Their paleomagnetic vectors may be restored rotating about the two axes defined by the strike and the vertical, or about a net axis that is possibly the actual tectonic rotation axis. This net axis is determined from the tectonic regional dispersion of the dike orientations. In this test case, the results of the restorations differ slightly but underline the difficulty in selecting the best restoration procedure and the greater difficulty of restoring the paleomagnetic data from dikes vis à vis strata. For dikes, it is recommended that the paleomagnetic vectors are restored using average dike orientations to minimize the inaccuracies due to the large primary variation in dike orientation.

  18. Sound beam manipulation based on temperature gradients

    SciTech Connect

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  19. Gradient-based optimum aerodynamic design using adjoint methods

    NASA Astrophysics Data System (ADS)

    Xie, Lei

    2002-09-01

    Continuous adjoint methods and optimal control theory are applied to a pressure-matching inverse design problem of quasi 1-D nozzle flows. Pontryagin's Minimum Principle is used to derive the adjoint system and the reduced gradient of the cost functional. The properties of adjoint variables at the sonic throat and the shock location are studied, revealing a log-arithmic singularity at the sonic throat and continuity at the shock location. A numerical method, based on the Steger-Warming flux-vector-splitting scheme, is proposed to solve the adjoint equations. This scheme can finely resolve the singularity at the sonic throat. A non-uniform grid, with points clustered near the throat region, can resolve it even better. The analytical solutions to the adjoint equations are also constructed via Green's function approach for the purpose of comparing the numerical results. The pressure-matching inverse design is then conducted for a nozzle parameterized by a single geometric parameter. In the second part, the adjoint methods are applied to the problem of minimizing drag coefficient, at fixed lift coefficient, for 2-D transonic airfoil flows. Reduced gradients of several functionals are derived through application of a Lagrange Multiplier Theorem. The adjoint system is carefully studied including the adjoint characteristic boundary conditions at the far-field boundary. A super-reduced design formulation is also explored by treating the angle of attack as an additional state; super-reduced gradients can be constructed either by solving adjoint equations with non-local boundary conditions or by a direct Lagrange multiplier method. In this way, the constrained optimization reduces to an unconstrained design problem. Numerical methods based on Jameson's finite volume scheme are employed to solve the adjoint equations. The same grid system generated from an efficient hyperbolic grid generator are adopted in both the Euler flow solver and the adjoint solver. Several

  20. Byzantine Vector Consensus in Complete Graphs

    DTIC Science & Technology

    2013-02-11

    pi, where 1 ≤ i ≤ d, is a vector whose i-th element is 1, and the remaining elements are 0. The input vector at process pd +1 is the all-0 vector (i.e...the vector with all elements 0). Note that the d input vectors at p1, · · · , pd form the standard basis for the d-dimensional vector space. Also...in all executions in which process pd +2 does not take any steps. Suppose that all the processes are non-faulty, but process pd +2 does not take any

  1. Seismic spatial wavefield gradient and rotational rate measurements as new observables in land seismic exploration

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Sollberger, David; Van Renterghem, Cédéric; Häusler, Mauro; Robertsson, Johan; Greenhalgh, Stewart

    2016-04-01

    Traditionally, land-seismic data acquisition is conducted using vertical-component sensors. A more complete representation of the seismic wavefield can be obtained by employing multicomponent sensors recording the full vector wavefield. If groups of multicomponent sensors are deployed, then spatial seismic wavefield gradients and rotational rates can be estimated by differencing the outputs of closely spaced sensors. Such data capture all six degrees of freedom of a rigid body (three components of translation and three components of rotation), and hence allow an even more complete representation of the seismic wavefield compared to single station triaxial data. Seismic gradient and rotation data open up new possibilities to process land-seismic data. Potential benefits and applications of wavefield gradient data include local slowness estimation, improved arrival identification, wavefield separation and noise suppression. Using synthetic and field data, we explored the reliability and sensitivity of various multicomponent sensor layouts to estimate seismic wavefield gradients and rotational rates. Due to the wavelength and incidence-angle dependence of sensor-group reception patterns as a function of the number of sensors, station spacing and layout, one has to counterbalance the impacts of truncation errors, random noise attenuation, and sensitivity to perturbations such as amplitude variations and positioning errors when searching for optimum receiver configurations. Field experiments with special rotational rate sensors were used to verify array-based rotational-rate estimates. Seismic wavefield gradient estimates and inferred wavefield attributes such as instantaneous slowness enable improved arrival identification, e.g. wave type and path. Under favorable conditions, seismic-wavefield gradient attributes can be extracted from conventional vertical-component data and used to, for example, enhance the identification of shear waves. A further promising

  2. On the heat flux vector for flowing granular materials--Part I: effective thermal conductivity and background

    SciTech Connect

    Massoudi, Mehrdad

    2006-09-10

    Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier’s law of heat conduction and for complex materials such as nonlinear fluids, porous media, or granular materials, the coeffcient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier’s law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or suffcient.

  3. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications.

    PubMed

    Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten

    2015-08-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking.

  4. Velocity gradients and microturbulence in Cepheids

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1972-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere were reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  5. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.

    1995-12-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  6. SW New Mexico BHT geothermal gradient calculations

    SciTech Connect

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  7. Coreless Concept for High Gradient Induction Cell

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  8. Stability of gradient semigroups under perturbations

    NASA Astrophysics Data System (ADS)

    Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.

    2011-07-01

    In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

  9. Fast Deconvolution with Color Constraints on Gradients

    DTIC Science & Technology

    2013-01-01

    deconvolution approach for color images that combines a sparse regularization cost on the magnitudes of gradients with constraints on their direction in color...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS computer vision, deblurring, spatio-spectral image model Ayan...approach for color images that combines a sparse regularization cost on the magnitudes of gradients with constraints on their direction in color space. We

  10. Intratumoral oxygen gradients mediate sarcoma cell invasion

    PubMed Central

    Lewis, Daniel M.; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T. S. Karin; Simon, M. Celeste; Gerecht, Sharon

    2016-01-01

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm3) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1–6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245

  11. Bragg interferometer for gravity gradient measurements

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Borselli, F.; Cacciapuoti, L.; Prevedelli, M.; Rosi, G.; Sorrentino, F.; Tino, G. M.

    2016-06-01

    We report on the characterization of a dual cloud atom interferometer for gravity gradient measurements using third-order Bragg diffraction as atom optical elements. We study the dependence of the contrast and the gradiometer phase angle against the relevant experimental parameters and characterize the instrument sensitivity. We achieve a sensitivity to gravity gradient measurements of 2.6 ×10-8s-2 (26 E) after 2000 s of integration time.

  12. The Weighted Burgers Vector: a new quantity for constraining dislocation densities and types using electron backscatter diffraction on 2D sections through crystalline materials.

    PubMed

    Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R

    2009-03-01

    The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.

  13. Principal fiber bundle description of number scaling for scalars and vectors: application to gauge theory

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2015-05-01

    The purpose of this paper is to put the description of number scaling and its effects on physics and geometry on a firmer foundation, and to make it more understandable. A main point is that two different concepts, number and number value are combined in the usual representations of number structures. This is valid as long as just one structure of each number type is being considered. It is not valid when different structures of each number type are being considered. Elements of base sets of number structures, considered by themselves, have no meaning. They acquire meaning or value as elements of a number structure. Fiber bundles over a space or space time manifold, M, are described. The fiber consists of a collection of many real or complex number structures and vector space structures. The structures are parameterized by a real or complex scaling factor, s. A vector space at a fiber level, s, has, as scalars, real or complex number structures at the same level. Connections are described that relate scalar and vector space structures at both neighbor M locations and at neighbor scaling levels. Scalar and vector structure valued fields are described and covariant derivatives of these fields are obtained. Two complex vector fields, each with one real and one imaginary field, appear, with one complex field associated with positions in M and the other with position dependent scaling factors. A derivation of the covariant derivative for scalar and vector valued fields gives the same vector fields. The derivation shows that the complex vector field associated with scaling fiber levels is the gradient of a complex scalar field. Use of these results in gauge theory shows that the imaginary part of the vector field associated with M positions acts like the electromagnetic field. The physical relevance of the other three fields, if any, is not known.

  14. Context vector approach to image retrieval

    NASA Astrophysics Data System (ADS)

    Ren, Clara Z.; Means, Robert W.

    1998-04-01

    HNC developed a unique context vector approach to image retrieval in Image Contrast Addressable Retrieval System. The basis for this approach is the context vector approach to image representation. A context vector is a high dimensional vector of real numbers, derived from a set of features that are useful in discriminating between images in a particular domain. The image features are trained based upon the constrained 2D self-organizing learning law. The image context vector encodes both intra-image features and inter-image relationship. The similarity in the directions of the context vectors of a pair of images indicates their similarity of content. The context vector approach to image representation simplifies the image and retrieval indexing problem because simple Euclidean distance measurements between sets of context vectors are used as a measure of similarity.

  15. On third order integrable vector Hamiltonian equations

    NASA Astrophysics Data System (ADS)

    Meshkov, A. G.; Sokolov, V. V.

    2017-03-01

    A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.

  16. Deriving Potential Coronal Magnetic Fields from Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Welsch, Brian T.; Fisher, George H.

    2016-08-01

    The minimum-energy configuration for the magnetic field above the solar photosphere is curl-free (hence, by Ampère's law, also current-free), so can be represented as the gradient of a scalar potential. Since magnetic fields are divergence free, this scalar potential obeys Laplace's equation, given an appropriate boundary condition (BC). With measurements of the full magnetic vector at the photosphere, it is possible to employ either Neumann or Dirichlet BCs there. Historically, the Neumann BC was used with available line-of-sight magnetic field measurements, which approximate the radial field needed for the Neumann BC. Since each BC fully determines the 3D vector magnetic field, either choice will, in general, be inconsistent with some aspect of the observed field on the boundary, due to the presence of both currents and noise in the observed field. We present a method to combine solutions from both Dirichlet and Neumann BCs to determine a hybrid, "least-squares" potential field, which minimizes the integrated square of the residual between the potential and actual fields. We also explore weighting the residuals in the fit by spatially uniform measurement uncertainties. This has advantages both in not overfitting the radial field used for the Neumann BC, and in maximizing consistency with the observations. We demonstrate our methods with SDO/HMI vector magnetic field observations of active region 11158, and find that residual discrepancies between the observed and potential fields are significant, and they are consistent with nonzero horizontal photospheric currents. We also analyze potential fields for two other active regions observed with two different vector magnetographs, and find that hybrid-potential fields have significantly less energy than the Neumann fields in every case - by more than 10^{32} erg in some cases. This has major implications for estimates of free magnetic energy in coronal field models, e.g., non-linear force-free field extrapolations.

  17. Lentiviral vectors in cancer immunotherapy.

    PubMed

    Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A

    2015-01-01

    Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy.

  18. Clinical applications of power vectors.

    PubMed

    Miller, Joseph M

    2009-06-01

    The study of infant vision is closely coupled to the study of the refraction, change in refraction over time, and the effect of spectacle correction on visual development. Frequently, reports are limited to descriptions of spherical equivalent or cylinder power without regard to axis, as data are frequently collected in the clinical format of sphere, cylinder, and axis (S, C, A). Conversion from clinical notation to a power vector representation of refraction allows unambiguous description of how refractions change over time and differ between repeated measurements. This article presents a series of examples of Microsoft Excel spreadsheet formulas that make the conversion from clinical notation to power vector format, and provides examples of useful applications of these methods.

  19. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  20. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  1. Medium Modification of Vector Mesons

    SciTech Connect

    Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour

    2011-03-01

    The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.

  2. Thrust-Vector-Control System

    NASA Technical Reports Server (NTRS)

    Murray, Jonathan

    1992-01-01

    Control gains computed via matrix Riccati equation. Software-based system controlling aim of gimbaled rocket motor on spacecraft adaptive and optimal in sense it adjusts control gains in response to feedback, according to optimizing algorithm based on cost function. Underlying control concept also applicable, with modifications, to thrust-vector control on vertical-takeoff-and-landing airplanes, control of orientations of scientific instruments, and robotic control systems.

  3. GAPS IN SUPPORT VECTOR OPTIMIZATION

    SciTech Connect

    STEINWART, INGO; HUSH, DON; SCOVEL, CLINT; LIST, NICOLAS

    2007-01-29

    We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.

  4. Quantum electrodynamics for vector mesons.

    PubMed

    Djukanovic, Dalibor; Schindler, Matthias R; Gegelia, Jambul; Scherer, Stefan

    2005-07-01

    Quantum electrodynamics for rho mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the rho+ is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M(rho0)-M(rho+/-) approximately 1 MeV at tree order.

  5. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  6. Transmission parameters of vector-borne infections.

    PubMed

    Desenclos, J-C

    2011-11-01

    Vector-borne infections are those for which the agent (virus, bacteria, or parasite) is transmitted from an infected host (animal or human) to another by a hematophagous arthropod (mosquito, tick, lice, and flea). Two parameters quantify the dynamics of a vector-borne infection: (1) the basic reproductive number (R(0)) that is the mean number of secondary infections transmitted from an infectious host by the bite of the vector and (2) the generation interval that explores the speed of occurrence of secondary cases transmitted by the vector from an infectious case. In a population in which some individuals are immune, the parameter of interest is the net reproduction number (R) function of R(0) and the proportion of those immune. For vector-borne infectious agents, R(0) is determined by the number of vectors in contact with a given individual (m), the number of a given vector bites/day on individuals (a), the daily survival rate of the vector (p), the duration of the pathogenic agent's development cycle in the vector (n), the proportion of infected vectors that are really infectious (vector competence) (b), the probability of agent transmission from a viremic individual to the vector for one bite (c) and the host's infectiousness clearance rate (r) with R(0)=(m. a(2). p(n)/-lnp). b. c/r. These parameters are related to geographic and climatic conditions and cannot, therefore, be extrapolated from one situation to another.

  7. Mapping Brazilian savanna vegetation gradients with Landsat time series

    NASA Astrophysics Data System (ADS)

    Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick

    2016-10-01

    Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important

  8. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to

  9. Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors

    NASA Astrophysics Data System (ADS)

    Nocera, A.; Alvarez, G.

    2016-11-01

    Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.

  10. Automated Classification of Epiphyses in the Distal Radius and Ulna using a Support Vector Machine.

    PubMed

    Wang, Ya-hui; Liu, Tai-ang; Wei, Hua; Wan, Lei; Ying, Chong-liang; Zhu, Guang-you

    2016-03-01

    The aim of this study was to automatically classify epiphyses in the distal radius and ulna using a support vector machine (SVM) and to examine the accuracy of the epiphyseal growth grades generated by the support vector machine. X-ray images of distal radii and ulnae were collected from 140 Chinese teenagers aged between 11.0 and 19.0 years. Epiphyseal growth of the two elements was classified into five grades. Features of each element were extracted using a histogram of oriented gradient (HOG), and models were established using support vector classification (SVC). The prediction results and the validity of the models were evaluated with a cross-validation test and independent test for accuracy (PA ). Our findings suggest that this new technique for epiphyseal classification was successful and that an automated technique using an SVM is reliable and feasible, with a relative high accuracy for the models.

  11. Production and Characterization of Vectors Based on the Cardiotropic AAV Serotype 9.

    PubMed

    Kohlbrenner, Erik; Weber, Thomas

    2017-01-01

    Vectors based on adeno-associated virus serotype 9 (AAV9) efficiently transduce cardiomyocytes in both rodents and large animal models upon either systemic or regional vector delivery. In this chapter, we describe the most widely used production and purification method of AAV9. This production approach does not depend on the use of a helpervirus but instead on transient transfection of HEK293T cells with a plasmid containing the recombinant AAV genome and a second plasmid encoding the AAV9 capsid proteins, the AAV Rep proteins and the adenoviral helper functions. The recombinant AAV is then purified by iodixanol density gradient centrifugation. This chapter also describes in detail the characterization and quality control methods required for assuring high quality vector preparations, which is of particular importance for experiments in large animal models.

  12. Extension of the double-wave-vector diffusion-weighting experiment to multiple concatenations.

    PubMed

    Finsterbusch, Jürgen

    2009-06-01

    Experiments involving two diffusion-weightings in a single acquisition, so-called double- or two-wave-vector experiments, have recently been applied to measure the microscopic anisotropy in macroscopically isotropic samples or to estimate pore or compartment sizes. These informations are derived from the signal modulation observed when varying the wave vectors' orientations. However, the modulation amplitude can be small and, for short mixing times between the two diffusion-weightings, decays with increased gradient pulse lengths which hampers its detectability on whole-body MR systems. Here, an approach is investigated that involves multiple concatenations of the two diffusion-weightings in a single experiment. The theoretical framework for double-wave-vector experiments of fully restricted diffusion is adapted and the corresponding tensor approach recently presented for short mixing times extended and compared to numerical simulations. It is shown that for short mixing times (i) the extended tensor approach well describes the signal behavior observed for multiple concatenations and (ii) the relative amplitude of the signal modulation increases with the number of concatenations. Thus, the presented extension of the double-wave-vector experiment may help to improve the detectability of the signal modulations observed for short mixing times, in particular on whole-body MR systems with their limited gradient amplitudes.

  13. Surface Gradient Integrated Profiler for X-ray and EUV Optics--Calibration of the rotational angle error of the rotary encoders

    SciTech Connect

    Higashi, Yasuo; Kume, Tatsuya; Enami, Kazuhiro; Ueno, Kenji; Mori, Yuzo; Takaie, Yuichi; Endo, Katsuyoshi; Yamauchi, Kazuto; Yamamura, Kazuya; Sano, Yasuhisa

    2007-01-19

    A new ultraprecision profiler has been developed to measure for example asymmetric and aspheric profiles. The principle of our measuring method is that the normal vector at each point on the surface is determined by making the incident light beam on the mirror surface and the reflected beam at that point coincident. The gradient at each point is calculated from the normal vector, and the surface profile is then obtained by integrating the gradients. The measuring instrument was designed in accordance with the above principle for the measuring method and is called Surface Gradient Integrated Profiler (SGIP). In the design, four ultraprecision goniometers were applied to adjust the light axis for the normal vector measurement. These goniostages make it possible to attain an angular resolution of 0.018 {mu} radian by electrically dividing a pulse of the rotary encoder. The surface gradients are determined only by the rotational angle of goniometers. Thus in the measuring instrument, the most important factor is the accuracy of the normal vectors measured by the goniometers. To attain an accuracy of 0.1 {mu} radian, we developed a system for correcting the rotational angle error of the goniometers in which the trigonometric measuring method is utilized for geometrical angle determination.

  14. Importance of Ionospheric Gradients for error Correction

    NASA Astrophysics Data System (ADS)

    Ravula, Ramprasad

    Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.

  15. Polarisation effects in gradient nano-optics

    SciTech Connect

    Erokhin, N S; Shvartsburg, A B; Zueva, Yu M

    2013-09-30

    The spectra of reflection of s- and p-polarised waves from gradient nanocoatings at arbitrary angles of incidence are found within the framework of two exactly solvable models of such coatings. To use the detected spectra in the visible and IR ranges, for different frequencies and coating thicknesses we present the wave reflection coefficients as functions of dimensionless frequencies related to the refractive index gradient of the coating material. It is shown that reflection from the gradient coatings in question is an order of magnitude weaker than reflection from uniform coatings, other parameters of radiation and the reflection system being equal. We report a new exactly solvable model illustrating the specific effect of gradient film optics – the possibility of non-reflective propagation of an s-wave through such a film (an analogue of the Brewster effect). The prospects are shown for the use of gradient nanostructures with different refractive index profiles to fabricate broadband non-reflective coatings. (nanogradient dielectric coatings and metamaterials)

  16. Population Gradients in Stellar Halos from GHOSTS

    NASA Astrophysics Data System (ADS)

    Bailin, Jeremy; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Ghosts Survey

    2015-01-01

    We report on recent results from the Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters (GHOSTS) survey, an HST ACS+WFC3 imaging survey to study stellar populations in and around 16 nearby spiral galaxies. By using HST resolution to resolve the stellar halos into individual red giant branch (RGB) stars, we are able to detect distinct stellar populations at several points throughout the halo of the half dozen massive highly-inclined galaxies in the sample. In approximately half of these galaxies, we detect a gradient in the color of the RGB; which we interpret as a metallicity gradient. Stellar halo formation models predict a wide variety of metallicity gradients: those in which the halos are dominated by stars formed in situ predict stronger gradients than we observe, while accretion-dominated halo models predict weaker or nonexistent gradients. Our measurements therefore provide a useful discriminator between stellar halo models, and at first look appear most consistent with the accretion-based model of Cooper et al. (2010).

  17. Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR.

    PubMed

    Drobnjak, Ivana; Alexander, Daniel C

    2011-10-01

    Here we investigate whether varying the diffusion-gradient orientation during a general waveform single pulsed-field gradient sequence improves sensitivity to the size of coherently oriented pores over having a fixed orientation. The experiment optimises the shape and the orientation of the gradient waveform in each of a set of measurements to minimise the expected variance of estimates of the parameters of a simple model. A key application motivating the work is measuring the size of axons in white matter. Thus, we use a two compartment white matter model with impermeable, single-radius cylinders, and search for waveforms that maximise the sensitivity to axon radius, intra-cellular volume fraction and diffusion constants. Output of the optimisation suggests the only benefit of allowing the gradient orientation to vary in the plane perpendicular to the cylinders is that we can gain perpendicular gradient strength by maximising two orthogonal gradients simultaneously. This suggests that varying orientation in itself does not increase the sensitivity to model parameters. On the other hand, the variation in a plane containing the parallel direction increases the sensitivity significantly because parallel sensitivity improves the diffusion constant estimates. However, we also find that similar improvement in the estimates can be achieved without optimising the orientation, but by having one measurement in the parallel and the rest in the perpendicular direction. The optimisation searches a very large space where it cannot hope to find the global minimum so we cannot make a categorical conclusion. However, given the consistency of the results in multiple reruns and variations of the experiments reported here, we can suggest that for probing coherently oriented systems, pulse sequences with variable orientation, such as double-wave vector sequences, do not offer more advantage than fixed orientation sequences with optimised shape. The advantage of varying orientation is

  18. Evaluation of Temperature Gradient in Advanced Automated Directional Solidification Furnace (AADSF) by Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1996-01-01

    A numerical model of heat transfer using combined conduction, radiation and convection in AADSF was used to evaluate temperature gradients in the vicinity of the crystal/melt interface for variety of hot and cold zone set point temperatures specifically for the growth of mercury cadmium telluride (MCT). Reverse usage of hot and cold zones was simulated to aid the choice of proper orientation of crystal/melt interface regarding residual acceleration vector without actual change of furnace location on board the orbiter. It appears that an additional booster heater will be extremely helpful to ensure desired temperature gradient when hot and cold zones are reversed. Further efforts are required to investigate advantages/disadvantages of symmetrical furnace design (i.e. with similar length of hot and cold zones).

  19. Generation of electromagnetic waves in the very low frequency band by velocity gradient

    SciTech Connect

    Ganguli, G. Tejero, E.; Crabtree, C.; Amatucci, W.; Rudakov, L.

    2014-01-15

    It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k{sup ¯}=kc/ω{sub pe} (normalized by the electron skin depth) and the obliqueness, k{sub ⊥}/k{sub ||}, where k{sub ⊥,||} are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k{sup ¯}≫1 and k{sub ⊥}≫k{sub ||} and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of different characteristics.

  20. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue

    2014-06-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  1. Vectors derived from simian immunodeficiency virus (SIV).

    PubMed

    Nègre, Didier; Cosset, François-Loïc

    2002-11-01

    In contrast to other retroviruses, lentiviruses have the unique property of infecting non-proliferating cells. Thus vectors derived from lentiviruses are promising tools for in vivo gene delivery applications. Vectors derived from human primate and non-primate lentiviruses have recently been described and, unlike retroviral vectors derived from murine leukemia viruses, lead to stable integration of the transgene into quiescent cells in various organs. Despite all the safety safeguards that have been progressively introduced in lentiviral vectors, the clinical acceptance of vectors derived from pathogenic lentiviruses is subject to debate. It is therefore essential to design vectors derived from a wide range of lentivirus types and to comparatively examine their properties in terms of transduction efficiency and bio-safety. Here, we review the properties of lentiviral vectors derived from simian immunodeficiency virus (SIV).

  2. Vaccine Design: Replication-Defective Adenovirus Vectors.

    PubMed

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies.

  3. Multiscale vector fields for image pattern recognition

    NASA Technical Reports Server (NTRS)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  4. A Multi-Gradient Generator in a Single Microfluidic Device for Optical Microscopy and Interferometry

    NASA Astrophysics Data System (ADS)

    Bedrossian, Manuel; Nadeau, Jay; Lindensmith, Chris

    2016-11-01

    The goal of this work was to create a single microfluidic device capable of establishing multiple types of gradients in a quantifiable manner. Many microbial species are known to exhibit directed motility in the presence of stimuli. This phenomenon, known as taxis, can be used as a bio-signature and a means of identifying microorganisms. Directed microbial motility has been seen as a response to the presence of certain chemicals, light, heat, magnetic fields, and other stimuli. Microbial movement along the gradient vector, that cannot be explained by passive hydrodynamics or Brownian motion, can shed light on whether the sample contains living microbes or not. The ability to create multiple types of gradients in a single microfluidic device allows for high throughput testing of heterogeneous samples to detect taxis. There has been increased interest in the search for life within our solar system where liquid water is known to exist. Induced directional motility can serve as a viable method for detecting living organisms that actively respond to their environment. The device developed here includes a chemical, photonic, thermal, and magnetic gradient generator, while maintaining high optical quality in order to be used for microscopy as well as quantitative phase imaging This work was funded by the Gordon and Betty Moore Foundation, who the authors wish to thank for their generosity.

  5. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    PubMed

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.

  6. Density-gradient--vorticity relation in perfect-fluid Robertson-Walker perturbations

    SciTech Connect

    Ellis, G.F.R. Applied Mathematics Department, University of Cape Town, Cape Town ); Bruni, M. ); Hwang, J. )

    1990-08-15

    In a previous paper, a second-order propagation equation was derived for covariant and gauge-invariant {ital vector} {ital fields} characterizing density inhomogeneities in an almost-Friedmann-Lemaitre-Robertson-Walker (-FLRW) perfect-fluid universe. However, an error there led to omission of a term representing an effect of vorticity on {ital spatial} {ital density} {ital gradients} at linear level. Here we determine this interaction (leading to an extra term in the second-order propagation equation for the spatial density gradient), and examine its geometrical and physical meaning. We define a new local decomposition of the observed density gradient and we show that the scalar variable defined in the decomposition naturally describes density clumping, and satisfies the standard Bardeen second-order equation. The physical meaning of the other variables defined in the decomposition is discussed, and their propagation equations are presented. Finally, the vorticity-induced time growth of the density gradient is derived in the long-wavelength limit.

  7. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    SciTech Connect

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  8. Communication: Automatic code generation enables nuclear gradient computations for fully internally contracted multireference theory

    SciTech Connect

    MacLeod, Matthew K.; Shiozaki, Toru

    2015-02-07

    Analytical nuclear gradients for fully internally contracted complete active space second-order perturbation theory (CASPT2) are reported. This implementation has been realized by an automated code generator that can handle spin-free formulas for the CASPT2 energy and its derivatives with respect to variations of molecular orbitals and reference coefficients. The underlying complete active space self-consistent field and the so-called Z-vector equations are solved using density fitting. The implementation has been applied to the vertical and adiabatic ionization potentials of the porphin molecule to illustrate its capability.

  9. Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.

    PubMed

    Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S

    2004-01-01

    MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths.

  10. Application of Support Vector Machine to Forex Monitoring

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  11. Maximizing sparse matrix vector product performance in MIMD computers

    SciTech Connect

    McLay, R.T.; Kohli, H.S.; Swift, S.L.; Carey, G.F.

    1994-12-31

    A considerable component of the computational effort involved in conjugate gradient solution of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP), and hence it is the focus of most efforts at improving performance. Such efforts are hindered on MIMD machines due to constraints on memory, cache and speed of memory-cpu data transfer. This paper describes a strategy for maximizing the performance of the local computations associated with the MVP. The method focuses on single stride memory access, and the efficient use of cache by pre-loading it with data that is re-used while bypassing it for other data. The algorithm is designed to behave optimally for varying grid sizes and number of unknowns per gridpoint. Results from an assembly language implementation of the strategy on the iPSC/860 show a significant improvement over the performance using FORTRAN.

  12. Finger vein image quality evaluation using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  13. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  14. Image restoration by matching gradient distributions.

    PubMed

    Cho, Taeg Sang; Zitnick, C Lawrence; Joshi, Neel; Kang, Sing Bing; Szeliski, Richard; Freeman, William T

    2012-04-01

    The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large-scale user study supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.

  15. Preparation of gradient polyacrylate brushes in microchannels.

    PubMed

    Lee, Seongyeol; Youm, Sang Gil; Song, Yeari; Yi, Whikum; Sohn, Daewon

    2012-05-01

    Gradient poly(2-hydroxyethyl methacrylate) brushes were synthesized by surface-initiated atom transfer radical polymerization (ATRP) confined within a microfluidic system on a silicon wafer. For ATRP, surface initiator, 11-((2-bromo, 2-methyl) propionyloxy) undecyltrichlorosilane (BUC), was synthesized, and allowed to self-assemble in a monolayer on the Si wafer, as analyzed by XPS to confirm the presence of an ester group of BUC. A solution containing 2-hydroxyethylmethacrylate, Cu catalyst, and bipyridin was allowed to flow in a microchannel and polymerize, resulting in the brushes with a gradient of thickness on the Si wafer. Using ellipsometry and ATR-IR, we verified the gradients of well established brushes on the Si wafer. AFM and contact angle data showed that wettability of the brushes did not exhibit a linear relationship with hydrophilicity.

  16. Texturing of REBCO using temperature gradient.

    SciTech Connect

    Salama, K.; Athur, S. P.; Balachandran, U.; Energy Technology; Univ. of Houston

    2001-01-01

    Isothermal melt texturing is currently a well-established technique for manufacturing superconducting materials with high trapped magnetic field and levitation forces. For conductor applications, however, a temperature gradient needs to be employed in order to align the oriented domains with the a-b planes where the current will be flowing over long lengths. Melt-textured Y-123 bars of length 100 mm with Jc values of 70,000 A/cm2 at 77 K in self-field have been routinely manufactured by directional solidification. The presence of temperature gradient also lends itself to faster texturing rates. Recently, Ag-clad Yb-123 tapes made by the powder-in-tube process were successfully melt textured in the presence of a temperature gradient and controlled oxygen partial pressure. These tapes exhibit the potential to be an alternative to BSCCO tapes, for relatively high temperature and magnetic field applications.

  17. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  18. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  19. Gradients of signalling in the developing limb.

    PubMed

    Towers, Matthew; Wolpert, Lewis; Tickle, Cheryll

    2012-04-01

    The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.

  20. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  1. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  2. Vector meson electroproduction in QCD

    NASA Astrophysics Data System (ADS)

    Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan

    2012-08-01

    Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.

  3. Vector quantization for volume rendering

    NASA Technical Reports Server (NTRS)

    Ning, Paul; Hesselink, Lambertus

    1992-01-01

    Volume rendering techniques typically process volumetric data in raw, uncompressed form. As algorithmic and architectural advances improve rendering speeds, however, larger data sets will be evaluated requiring consideration of data storage and transmission issues. In this paper, we analyze the data compression requirements for volume rendering applications and present a solution based on vector quantization. The proposed system compresses volumetric data and then renders images directly from the new data format. Tests on a fluid flow data set demonstrate that good image quality may be achieved at a compression ratio of 17:1 with only a 5 percent cost in additional rendering time.

  4. Jet vectoring through nozzle asymmetry

    NASA Astrophysics Data System (ADS)

    Roh, Chris; Rosakis, Alexandros; Gharib, Morteza

    2015-11-01

    Previously, we explored the functionality of a tri-leaflet anal valve of a dragonfly larva. We saw that the dragonfly larva is capable of controlling the three leaflets independently to asymmetrically open the nozzle. Such control resulted in vectoring of the jet in various directions. To further understand the effect of asymmetric nozzle orifice, we tested jet flow through circular asymmetric nozzles. We report the relationship between nozzle asymmetry and redirecting of the jet at various Reynolds numbers. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  5. Properties of Vector Preisach Models

    NASA Technical Reports Server (NTRS)

    Kahler, Gary R.; Patel, Umesh D.; Torre, Edward Della

    2004-01-01

    This paper discusses rotational anisotropy and rotational accommodation of magnetic particle tape. These effects have a performance impact during the reading and writing of the recording process. We introduce the reduced vector model as the basis for the computations. Rotational magnetization models must accurately compute the anisotropic characteristics of ellipsoidally magnetizable media. An ellipticity factor is derived for these media that computes the two-dimensional magnetization trajectory for all applied fields. An orientation correction must be applied to the computed rotational magnetization. For isotropic materials, an orientation correction has been developed and presented. For anisotropic materials, an orientation correction is introduced.

  6. Nonviral Vectors for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Baoum, Abdulgader Ahmed

    2011-12-01

    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was

  7. Conformal vectors and stellar models

    NASA Astrophysics Data System (ADS)

    Manjonjo, A. M.; Maharaj, S. D.; Moopanar, S.

    2017-02-01

    The relationship between conformal symmetries and relativistic spheres in astrophysics is studied. We use the nonvanishing components of the Weyl tensor to classify the conformal symmetries in static spherical spacetimes. It is possible to find an explicit connection between the two gravitational potentials for both conformally flat and nonconformally flat cases. We show that the conformal Killing vector admits time dependence in terms of quadratic, trigonometric and hyperbolic functions. The Einstein and Einstein-Maxwell field equations can be written in terms of a single potential, any choice of which leads to an exact solution. Previous results of conformally invariant static spheres are contained in our treatment.

  8. Characterization of thermotropism in primary roots of maize: dependence on temperature and temperature gradient, and interaction with gravitropism

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1991-01-01

    Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.

  9. A new nonlinear conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Awad; Mamat, Mustafa; Mohd, Ismail bin; Rivaie, Mohd; Omer, Osman

    2015-02-01

    Conjugate gradient (CG) methods are essential for solving large-scale unconstrained optimization problems. Many of studies and modifications have been practiced to improve this method. In this paper, a new class of conjugate gradient coefficients (βk) with a new parameter m = ‖g/k‖ ‖dk-1‖ that possess global convergence properties is presented. The global convergence and sufficient decent property result is established using inexact line searches to determine the step size of CG, denoted as ∝k. Numerical result shows that the new formula is superior and more efficient when compared to other CG coefficients.

  10. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  11. CARS thermometry in high temperature gradients

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Dunn-Rankin, D.

    1993-01-01

    CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.

  12. The effect of density gradients on hydrometers

    NASA Astrophysics Data System (ADS)

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  13. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  14. Gradient Learning Algorithms for Ontology Computing

    PubMed Central

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  15. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  16. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  17. Enhancement of chest radiographs with gradient operators.

    PubMed

    Daponte, J S; Fox, M D

    1988-01-01

    Reference is made to the Sobel and Roberts gradient operators used to enhance image edges. Overall, the Sobel operator was found to be superior to the Roberts operator in edge enhancement. A theoretical explanation for the superior performance of the Sobel operator was developed based on the concept of analyzing the x and y Sobel masks as linear filters. By applying pill-box, Gaussian, or median filtering prior to applying a gradient operator, noise was reduced. The pill-box and Gaussian filters were more computationally efficient than the median filter with approximately equal effectiveness in noise reduction.

  18. Lean histogram of oriented gradients features for effective eye detection

    NASA Astrophysics Data System (ADS)

    Sharma, Riti; Savakis, Andreas

    2015-11-01

    Reliable object detection is very important in computer vision and robotics applications. The histogram of oriented gradients (HOG) is established as one of the most popular hand-crafted features, which along with support vector machine (SVM) classification provides excellent performance for object recognition. We investigate dimensionality deduction on HOG features in combination with SVM classifiers to obtain efficient feature representation and improved classification performance. In addition to lean HOG features, we explore descriptors resulting from dimensionality reduction on histograms of binary descriptors. We consider three-dimensionality reduction techniques: standard principal component analysis, random projections, a computationally efficient linear mapping that is data independent, and locality preserving projections (LPP), which learns the manifold structure of the data. Our methods focus on the application of eye detection and were tested on an eye database created using the BioID and FERET face databases. Our results indicate that manifold learning is beneficial to classification utilizing HOG features. To demonstrate the broader usefulness of lean HOG features for object class recognition, we evaluated our system's classification performance on the CalTech-101 dataset with favorable outcomes.

  19. Vector-tensor and vector-vector decay amplitude analysis of B0-->phiK*0.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Pegna, D Lopes; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Sanchez, P del Amo; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Lee, C L; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y; Gritsan, A V; Guo, Z J; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Diberder, F Le; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Clarke, C K; Lodovico, F Di; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; Nardo, G De; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Potter, C T; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Buono, L Del; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Marco, E Di; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Ricciardi, S; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Ricca, G Della; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2007-02-02

    We perform an amplitude analysis of the decays B(0)-->phiK*(2)(1430)(0), phiK*(892)(0), and phi(Kpi)(0)(S-wave) with a sample of about 384x10(6) BB[over ] pairs recorded with the BABAR detector. The fractions of longitudinal polarization f(L) of the vector-tensor and vector-vector decay modes are measured to be 0.853(-0.069+0.061)+/-0.036 and 0.506+/-0.040+/-0.015, respectively. Overall, twelve parameters are measured for the vector-vector decay and seven parameters for the vector-tensor decay, including the branching fractions and parameters sensitive to CP violation.

  20. Vector-Tensor and Vector-Vector Decay AmplitudeAnalysis of B0 to phi K*0

    SciTech Connect

    Aubert, B.

    2006-10-31

    We perform an amplitude analysis of the decays B{sup 0} {yields} {phi}K*{sub 2}(1430){sup 0}, {phi}K*(892){sup 0}, and {phi}(K{pi}){sub S-wave}{sup 0} with a sample of about 384 million B{bar B} pairs recorded with the BABAR detector. The fractions of longitudinal polarization f{sub L} of the vector-tensor and vector-vector decay modes are measured to be 0.853{sub -0.069}{sup +0.061} {+-} 0.036 and 0.506 {+-} 0.040 {+-} 0.015, respectively. Overall, twelve parameters are measured for the vector-vector decay and seven parameters for the vector-tensor decay, including the branching fractions and parameters sensitive to CP-violation.

  1. Viral Vectors: The Road to Reducing Genotoxicity.

    PubMed

    David, Rhiannon M; Doherty, Ann T

    2017-02-01

    Viral vector use in gene therapy has highlighted several safety concerns, including genotoxic events. Generally, vector-mediated genotoxicity results from upregulation of cellular proto-oncogenes via promoter insertion, promoter activation, or gene transcript truncation, with enhancer-mediated activation of nearby genes the primary mechanism reported in gene therapy trials. Vector-mediated genotoxicity can be influenced by virus type, integration target site, and target cell type; different vectors have distinct integration profiles which are cell-specific. Non-viral factors, including patient age, disease, and dose can also influence genotoxic potential, thus the choice of test models and clinical trial populations is important to ensure they are indicative of efficacy and safety. Efforts have been made to develop viral vectors with less risk of insertional mutagenesis, including self-inactivating (SIN) vectors, enhancer-blocking insulators, and microRNA targeting of vectors, although insertional mutagenesis is not completely abrogated. Here we provide an overview of the current understanding of viral vector-mediated genotoxicity risk from factors contributing to viral vector-mediated genotoxicity to efforts made to reduce genotoxicity, and testing strategies required to adequately assess the risk of insertional mutagenesis. It is clear that there is not a 'one size fits all' approach to vector modification for reducing genotoxicity, and addressing these challenges will be a key step in the development of therapies such as CRISPR-Cas9 and delivery of future gene-editing technologies.

  2. Therapeutic and prophylactic applications of alphavirus vectors.

    PubMed

    Atkins, Gregory J; Fleeton, Marina N; Sheahan, Brian J

    2008-11-11

    Alphavirus vectors are high-level, transient expression vectors for therapeutic and prophylactic use. These positive-stranded RNA vectors, derived from Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus, multiply and are expressed in the cytoplasm of most vertebrate cells, including human cells. Part of the genome encoding the structural protein genes, which is amplified during a normal infection, is replaced by a transgene. Three types of vector have been developed: virus-like particles, layered DNA-RNA vectors and replication-competent vectors. Virus-like particles contain replicon RNA that is defective since it contains a cloned gene in place of the structural protein genes, and thus are able to undergo only one cycle of expression. They are produced by transfection of vector RNA, and helper RNAs encoding the structural proteins. Layered DNA-RNA vectors express the Semliki Forest virus replicon from a cDNA copy via a cytomegalovirus promoter. Replication-competent vectors contain a transgene in addition to the structural protein genes. Alphavirus vectors are used for three main applications: vaccine construction, therapy of central nervous system disease, and cancer therapy.

  3. Determination of particle heterogeneity and stability of recombinant adenovirus by analytical ultracentrifugation in CsCl gradients.

    PubMed

    Yang, Xiaoyu; Agarwala, Shilpi; Ravindran, Sundari; Vellekamp, Gary

    2008-02-01

    Recombinant adenoviruses (rAd), widely used as vectors for gene therapy, are generally purified by column chromatography and frequently contain empty capsids and other aberrant forms of virus particles. To determine particle heterogeneity we utilized analytical ultracentrifugation (AUC) in CsCl density gradients. Preparations of three different rAd vectors were assessed. AUC was able to resolve multiple density forms including two empty capsid types in various virus preparations. One unusual density form (form V), was noninfectious and lacked protein VI. AUC was able to quantify empty capsids and monitor their removal during process development. Their relative concentrations were reduced by either addition of an immobilized zinc affinity chromatography (IZAC) step or by extension of the infection time. The Adenovirus Reference Material (ARM), a wild-type Ad5, had 2.2% empty capsids and no other detectable minor particle forms. Finally, AUC was utilized to monitor the thermal instability of the three rAd vectors via the transformations of different density forms. The vector and empty capsids containing protein IX were more stable than those without IX. Together, these results exemplify AUC in CsCl density gradients as a valuable technique for evaluating product particle heterogeneity and stability.

  4. Vector-Resonance-Multimode Instability

    NASA Astrophysics Data System (ADS)

    Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.

    2017-01-01

    The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.

  5. [Individual protection against insect vectors].

    PubMed

    Carnevale, P; Mouchet, J

    1997-01-01

    Many diseases for which no vaccine is available are transmitted by insect and arthropod vectors, the main exceptions being yellow fever and Japanese encephalitis B. Treatment is less and less effective due to the development of chemoresistance to therapeutic and prophylactic drugs as is well-illustrated by malaria. One of the best methods of preventing these diseases is personal protection against insect bites. Personal protection measures can be divided into three categories which can be used separately or in combination : application of repellents to the skin, wearing clothes impregnated with insecticides, and use of bed nets and other barriers impregnated with insecticides. The choice of method depends on the type of insect vector involved. For insects that are active during the day or at dusk, application of repellents to the skin gives good short-term protection and wearing impregnated clothes is useful. Bed nets that have been properly impregnated with pyrethroids are highly effective for night-time protection. Since personal protection methods are not 100% effective, they must be used in association with chemoprophylaxis according to medical guidelines. Medical advice should be sought if fever should occur especially after returning from a trip in the tropics.

  6. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  7. Evidence that implicit assumptions of ‘no evolution’ of disease vectors in changing environments can be violated on a rapid timescale

    PubMed Central

    Egizi, Andrea; Fefferman, Nina H.; Fonseca, Dina M.

    2015-01-01

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024

  8. HOT PRESSING WITH A TEMPERATURE GRADIENT

    DOEpatents

    Hausner, H.H.

    1958-05-20

    A method is described for producing powder metal compacts with a high length to width ratio, which are of substantially uniform density. The process consists in arranging a heating coil around the die and providing a temperature gradient along the length of the die with the highest temperature at the point of the compact farthest away from the ram or plunger.

  9. Escalation of polymerization in a thermal gradient.

    PubMed

    Mast, Christof B; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-05-14

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.

  10. The microfluidic lighthouse: an omnidirectional gradient generator.

    PubMed

    Nakajima, A; Ishida, M; Fujimori, T; Wakamoto, Y; Sawai, S

    2016-11-01

    Studies of chemotactic cell migration rely heavily on various assay systems designed to evaluate the ability of cells to move in response to attractant molecules. In particular, the development of microfluidics-based devices in recent years has made it possible to spatially distribute attractant molecules in graded profiles that are sufficiently stable and precise to test theoretical predictions regarding the accuracy and efficiency of chemotaxis and the underlying mechanism of stimulus perception. However, because the gradient is fixed in a direction orthogonal to the laminar flow and thus the chamber geometry, conventional devices are limited for the study of cell re-orientation to gradients that move or change directions. Here, we describe the development of a simple radially symmetric microfluidics device that can deliver laminar flow in 360°. A stimulant introduced either from the central inlet or by photo uncaging is focused into the laminar flow in a direction determined by the relative rate of regulated flow from multiple side channels. Schemes for flow regulation and an extended duplexed device were designed to generate and move gradients in desired orientations and speed, and then tested to steer cell migration of Dictyostelium and neutrophil-like HL60 cells. The device provided a high degree of freedom in the positioning and orientation of attractant gradients, and thus may serve as a versatile platform for studying cell migration, re-orientation, and steering.

  11. Examining the Education Gradient in Chronic Illness

    ERIC Educational Resources Information Center

    Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal

    2015-01-01

    We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…

  12. Gradient mechanism in a communication network

    NASA Astrophysics Data System (ADS)

    Mukherjee, Satyam; Gupte, Neelima

    2008-03-01

    We study the efficiency of the gradient mechanism of message transfer in a two-dimensional communication network of regular nodes and randomly distributed hubs. Each hub on the network is assigned some randomly chosen capacity and hubs with lower capacities are connected to the hubs with maximum capacity. The average travel times of single messages traveling on the lattice decrease rapidly as the number of hubs increase. The functional dependence of the average travel times on the hub density shows q -exponential behavior with a power-law tail. We also study the relaxation behavior of the network when a large number of messages are created simultaneously at random locations and travel on the network toward their designated destinations. For this situation, in the absence of the gradient mechanism, the network can show congestion effects due to the formation of transport traps. We show that if hubs of high betweenness centrality are connected by the gradient mechanism, efficient decongestion can be achieved. The gradient mechanism is less prone to the formation of traps than other decongestion schemes. We also study the spatial configurations of transport traps and propose minimal strategies for their elimination.

  13. Velocity gradients and microturbulence in Cepheids.

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1973-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere have been reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  14. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump.

  15. Consideration of Gravity Gradient Stabilization for Orion

    DTIC Science & Technology

    1989-03-01

    generating devices are necessary to auiment the gravityN aradient effect. Control moment gyros, reaction wheels , and magnetic torquers will be...generating devices are necessary to augment the gravity gradient effect. Control moment gyros, reaction wheels , and magnetic torquers will be investi...32 a. Reaction wheels ...................................... 33 3. C M G (s

  16. Marine submicron aerosol gradients, sources and sinks

    NASA Astrophysics Data System (ADS)

    Ceburnis, Darius; Rinaldi, Matteo; Ovadnevaite, Jurgita; Martucci, Giovanni; Giulianelli, Lara; O'Dowd, Colin D.

    2016-10-01

    Aerosol principal sources and sinks over eastern North Atlantic waters were studied through the deployment of an aerosol chemistry gradient sampling system. The chemical gradients of primary and secondary aerosol components - specifically, sea salt (SS), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), nitrate, ammonium, oxalate, amines, methanesulfonic acid (MSA) and water-soluble organic nitrogen (WSON) - were examined in great detail. Sea salt fluxes were estimated by the boundary layer box model and ranged from 0.3 to 3.5 ng m-2 s-1 over the wind speed range of 5-12 m s-1 and compared well with the derived fluxes from existing sea salt source parameterisations. The observed seasonal pattern of sea salt gradients was mainly driven by wind stress in addition to the yet unquantified effect of marine OM modifying fractional contributions of SS and OM in sea spray. WIOM gradients were a complex combination of rising and waning biological activity, especially in the flux footprint area, and wind-driven primary sea spray production supporting the coupling of recently developed sea spray and marine OM parameterisations.

  17. A latitudinal phylogeographic diversity gradient in birds.

    PubMed

    Smith, Brian Tilston; Seeholzer, Glenn F; Harvey, Michael G; Cuervo, Andrés M; Brumfield, Robb T

    2017-04-01

    High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns.

  18. On-chip temperature gradient interaction chromatography.

    PubMed

    Shih, Chi-Yuan; Chen, Yang; Xie, Jun; He, Qing; Tai, Yu-Chong

    2006-04-14

    This paper reports the first integrated microelectromechanical system (MEMS) HPLC chip that consists of a parylene high-pressure LC column, an electrochemical sensor, a resistive heater and a thermal-isolation structure for on-chip temperature gradient interaction chromatography application. The separation column was 8 mm long, 100 microm wide, 25 microm high and was packed with 5 microm sized, C18-coated beads using conventional slurry-packing technique. A novel parylene-enhanced, air-gap thermal isolation technology was used to reduce heater power consumption by 58% and to reduce temperature rise in the off-column area by 67%. The fabricated chip consumed 400 mW when operated at 100 degrees C. To test the chromatography performance of the fabricated system, a mixture of derivatized amino acids was chosen for separation. A temporal temperature gradient scanning from 25 to 65 degrees C with a ramping rate of 3.6 degrees C/min was applied to the column during separation. Successful chromatographic separation of derivatized amino acids was carried out using our chip. Compared with conventional temperature gradient HPLC system which incorporates "macro oven" to generate temporal temperature gradient on the column, our chip's thermal performance, i.e., power consumption and thermal response, is greatly improved without sacrificing chromatography quality.

  19. CMB anisotropies from a gradient mode

    SciTech Connect

    Mirbabayi, Mehrdad; Zaldarriaga, Matias E-mail: matiasz@ias.edu

    2015-03-01

    A linear gradient mode must have no observable dynamical effect on short distance physics. We confirm this by showing that if there was such a gradient mode extending across the whole observable Universe, it would not cause any hemispherical asymmetry in the power of CMB anisotropies, as long as Maldacena's consistency condition is satisfied. To study the effect of the long wavelength mode on short wavelength modes, we generalize the existing second order Sachs-Wolfe formula in the squeezed limit to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. Next, we consider effects that are of second order in the long mode. A gradient mode Φ = q⋅x generated in Single-field inflation is shown to induce an observable quadrupole moment. For instance, in a matter-dominated model it is equal to Q = 5(q⋅x){sup 2}/18. This quadrupole can be canceled by superposition of a quadratic perturbation. The result is shown to be a nonlinear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  20. CMB anisotropies from a gradient mode

    NASA Astrophysics Data System (ADS)

    Mirbabayi, Mehrdad; Zaldarriaga, Matias

    2015-03-01

    A linear gradient mode must have no observable dynamical effect on short distance physics. We confirm this by showing that if there was such a gradient mode extending across the whole observable Universe, it would not cause any hemispherical asymmetry in the power of CMB anisotropies, as long as Maldacena's consistency condition is satisfied. To study the effect of the long wavelength mode on short wavelength modes, we generalize the existing second order Sachs-Wolfe formula in the squeezed limit to include a gradient in the long mode and to account for the change in the location of the last scattering surface induced by this mode. Next, we consider effects that are of second order in the long mode. A gradient mode Φ = qṡx generated in Single-field inflation is shown to induce an observable quadrupole moment. For instance, in a matter-dominated model it is equal to Q = 5(qṡx)2/18. This quadrupole can be canceled by superposition of a quadratic perturbation. The result is shown to be a nonlinear extension of Weinberg's adiabatic modes: a long-wavelength physical mode which looks locally like a coordinate transformation.

  1. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  2. Plant reproduction: GABA gradient, guidance and growth.

    PubMed

    Ma, Hong

    2003-10-28

    How a pollen tube manages to navigate through the female tissues during plant reproduction has been a mystery. A new analysis of an Arabidopsis mutant has provided the strongest evidence yet that a GABA gradient may be a critical signal for correct targeting of the pollen tube.

  3. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  4. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  5. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  6. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  7. New protocol for lentiviral vector mass production.

    PubMed

    Segura, María Mercedes; Garnier, Alain; Durocher, Yves; Ansorge, Sven; Kamen, Amine

    2010-01-01

    Multiplasmid transient transfection is the most widely used technique for the generation of lentiviral vectors. However, traditional transient transfection protocols using 293 T adherent cells and calcium phosphate/DNA co-precipitation followed by ultracentrifugation are tedious, time-consuming, and difficult to scale up. This chapter describes a streamlined protocol for the fast mass production of lentiviral vectors and their purification by affinity chromatography. Lentiviral particles are generated by transient transfection of suspension growing HEK 293 cells in serum-free medium using polyethylenimine (PEI) as transfection reagent. Lentiviral vector production is carried out in Erlenmeyer flasks agitated on orbital shakers requiring minimum supplementary laboratory equipment. Alternatively, the method can be easily scaled up to generate larger volumes of vector stocks in bioreactors. Heparin affinity chromatography allows for selective concentration and purification of lentiviral particles in a singlestep directly from vector supernatants. The method is suitable for the production and purification of different vector pseudotypes.

  8. Gradient zone-boundary control in salt-gradient solar ponds

    DOEpatents

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  9. Regional Disease Vector Ecology Profile: The Koreas

    DTIC Science & Technology

    2015-01-01

    Regional Disease Vector Ecology Profile: The Koreas Published and Distributed by the Armed Forces Pest Management Board Information... Ecology Profile: The Koreas 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...presumed to be higher in the absence of sophisticated programs to suppress vectors or limit disease transmission. Disease Vector Ecology Profiles

  10. [Research progress on malaria vector control].

    PubMed

    Zhu, Guo-Ding; Cao, Jun; Zhou, Hua-Yun; Gao, Qi

    2013-06-01

    Vector control plays a crucial role in the stages of malaria control and elimination. Currently, it mainly relies on the chemical control methods for adult mosquitoes in malaria endemic areas, however, it is undergoing the serious threat by insecticide resistance. In recent years, the transgenic technologies of malaria vectors have made a great progress in the laboratory. This paper reviews the challenges of the traditional methods and the rapid developed genetic modified technology in the application of vector control.

  11. Pre-vector variational inequality

    SciTech Connect

    Lin, Lai-Jiu

    1994-12-31

    Let X be a Hausdorff topological vector space, (Y, D) be an ordered Hausdorff topological vector space ordered by convex cone D. Let L(X, Y) be the space of all bounded linear operator, E {improper_subset} X be a nonempty set, T : E {yields} L(X, Y), {eta} : E {times} E {yields} E be functions. For x, y {element_of} Y, we denote x {not_lt} y if y - x intD, where intD is the interior of D. We consider the following two problems: Find x {element_of} E such that < T(x), {eta}(y, x) > {not_lt} 0 for all y {element_of} E and find x {element_of} E, < T(x), {eta}(y, x) > {not_gt} 0 for all y {element_of} E and < T(x), {eta}(y, x) >{element_of} C{sub p}{sup w+} = {l_brace} {element_of} L(X, Y) {vert_bar}< l, {eta}(x, 0) >{not_lt} 0 for all x {element_of} E{r_brace} where < T(x), y > denotes linear operator T(x) at y, that is T(x), (y). We called Pre-VVIP the Pre-vector variational inequality problem and Pre-VCP complementary problem. If X = R{sup n}, Y = R, D = R{sub +} {eta}(y, x) = y - x, then our problem is the well-known variational inequality first studies by Hartman and Stampacchia. If Y = R, D = R{sub +}, {eta}(y, x) = y - x, our problem is the variational problem in infinite dimensional space. In this research, we impose different condition on T(x), {eta}, X, and < T(x), {eta}(y, x) > and investigate the existences theorem of these problems. As an application of one of our results, we establish the existence theorem of weak minimum of the problem. (P) V - min f(x) subject to x {element_of} E where f : X {yields} Y si a Frechet differentiable invex function.

  12. Building mosaics of therapeutic plasmid gene vectors.

    PubMed

    Tolmachov, Oleg E

    2011-12-01

    Plasmids are circular or linear DNA molecules propagated extra-chromosomally in bacteria. Evolution shaped plasmids are inherently mosaic structures with individual functional units represented by distinct segments in the plasmid genome. The patchwork of plasmid genetic modules is a convenient template and a model for the generation of artificial plasmids used as vehicles for gene delivery into human cells. Plasmid gene vectors are an important tool in gene therapy and in basic biomedical research, where these vectors offer efficient transgene expression in many settings in vitro and in vivo. Plasmid vectors can be attached to nuclear directing ligands or transferred by electroporation as naked DNA to deliver the payload genes to the nuclei of the target cells. Transgene expression silencing by plasmid sequences of bacterial origin and immune stimulation by bacterial unmethylated CpG motifs can be avoided by the generation of plasmid-based minimized DNA vectors, such as minicircles. Systems of efficient site-specific integration into human chromosomes and stable episomal maintenance in human cells are being developed for further reduction of the chances for transgene silencing. The successful generation of plasmid vectors is governed by a number of vector design rules, some of which are common to all gene vectors, while others are specific to plasmid vectors. This review is focused both on the guiding principles and on the technical know-how of plasmid gene vector design.

  13. Surface-engineering of lentiviral vectors.

    PubMed

    Verhoeyen, Els; Cosset, François-Loïc

    2004-02-01

    Vectors derived from retroviridae offer particularly flexible properties in gene transfer applications given the numerous possible associations of various viral surface glycoproteins (determining cell tropism) with different types of retroviral cores (determining genome replication and integration). Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses such as murine leukemia viruses (MLVs) that cannot transduce non-proliferating target cells. Generating lentiviral vectors pseudotyped with different viral glycoproteins (GPs) may modulate the physicochemical properties of the vectors, their interaction with the host immune system and their host range. There are however important gene transfer restrictions to some non-proliferative tissues or cell types and recent studies have shown that progenitor hematopoietic stem cells in G(0), non-activated primary blood lymphocytes or monocytes were not transducible by lentiviral vectors. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer applications in vivo. Several innovative approaches have been explored to overcome such problems that have given rise to novel concepts in the field and have provided promising results in preliminary evaluations in vivo. Here we review the different approaches explored to upgrade lentiviral vectors, aiming at developing vectors suitable for in vivo gene delivery.

  14. Analysis of dissection algorithms for vector computers

    NASA Technical Reports Server (NTRS)

    George, A.; Poole, W. G., Jr.; Voigt, R. G.

    1978-01-01

    Recently two dissection algorithms (one-way and incomplete nested dissection) have been developed for solving the sparse positive definite linear systems arising from n by n grid problems. Concurrently, vector computers (such as the CDC STAR-100 and TI ASC) have been developed for large scientific applications. An analysis of the use of dissection algorithms on vector computers dictates that vectors of maximum length be utilized thereby implying little or no dissection; on the other hand, minimizing operation counts suggest that considerable dissection be performed. In this paper we discuss the resolution of this conflict by minimizing the total time required by vectorized versions of the two algorithms.

  15. Production of high-capacity adenovirus vectors.

    PubMed

    Kreppel, Florian

    2014-01-01

    High-capacity adenoviral vectors (HC-Ad), also known as "helper-dependent" (HD-Ad), "gutless", "gutted", or "third-generation" Ad vectors, are devoid of all viral coding sequences and have shown promising potential for a wide variety of different applications-from classic gene therapy to genetic vaccination and tumor treatment. However, compared to first-generation adenoviral vectors their production is more complex and requires specific in-depth knowledge. This chapter delivers a detailed protocol for the successful production of HC-Ad vectors to high titers.

  16. Slow deterministic vector rogue waves

    NASA Astrophysics Data System (ADS)

    Sergeyev, S. V.; Kolpakov, S. A.; Mou, Ch.; Jacobsen, G.; Popov, S.; Kalashnikov, V.

    2016-03-01

    For an erbium-doped fiber laser mode-locked by carbon nanotubes, we demonstrate experimentally and theoretically a new type of the vector rogue waves emerging as a result of the chaotic evolution of the trajectories between two orthogonal states of polarization on the Poincare sphere. In terms of fluctuation induced phenomena, by tuning polarization controller for the pump wave and in-cavity polarization controller, we are able to control the Kramers time, i.e. the residence time of the trajectory in vicinity of each orthogonal state of polarization, and so can cause the rare events satisfying rogue wave criteria and having the form of transitions from the state with the long residence time to the state with a short residence time.

  17. Clifford tori and unbiased vectors

    NASA Astrophysics Data System (ADS)

    Andersson, Ole; Bengtsson, Ingemar

    2017-02-01

    The existence problem for mutually unbiased bases is an unsolved problem in quantum information theory. A related question is whether every pair of bases admits vectors that are unbiased to both. Mathematically this translates to the question whether two Lagrangian Clifford tori intersect, and a body of results exists concerning it. These results are however rather weak from the point of view of the first problem. We make a detailed study of how the intersections behave in the simplest nontrivial case, that of complex projective 2-space (the qutrit), for which the set of pairs of Clifford tori can be usefully parametrized by the unistochastic subset of Birkhoff's polytope. Pairs that do not intersect transversally are located. Some calculations in higher dimensions are included to see which results are special to the qutrit.

  18. Vector wind profile gust model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1981-01-01

    To enable development of a vector wind gust model suitable for orbital flight test operations and trade studies, hypotheses concerning the distributions of gust component variables were verified. Methods for verification of hypotheses that observed gust variables, including gust component magnitude, gust length, u range, and L range, are gamma distributed and presented. Observed gust modulus has been drawn from a bivariate gamma distribution that can be approximated with a Weibull distribution. Zonal and meridional gust components are bivariate gamma distributed. An analytical method for testing for bivariate gamma distributed variables is presented. Two distributions for gust modulus are described and the results of extensive hypothesis testing of one of the distributions are presented. The validity of the gamma distribution for representation of gust component variables is established.

  19. Vector wind profile gust model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1979-01-01

    Work towards establishing a vector wind profile gust model for the Space Transportation System flight operations and trade studies is reported. To date, all the statistical and computational techniques required were established and partially implemented. An analysis of wind profile gust at Cape Kennedy within the theoretical framework is presented. The variability of theoretical and observed gust magnitude with filter type, altitude, and season is described. Various examples are presented which illustrate agreement between theoretical and observed gust percentiles. The preliminary analysis of the gust data indicates a strong variability with altitude, season, and wavelength regime. An extension of the analyses to include conditional distributions of gust magnitude given gust length, distributions of gust modulus, and phase differences between gust components has begun.

  20. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  1. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    USGS Publications Warehouse

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Given the importance of size and age at reproductive maturity to population dynamics, this information on counter-gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.

  2. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure.

  3. Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage

    PubMed Central

    2016-01-01

    The construction of regularization operators presented in this work is based on the introduction of strain or damage micromorphic degrees of freedom in addition to the displacement vector and of their gradients into the Helmholtz free energy function of the constitutive material model. The combination of a new balance equation for generalized stresses and of the micromorphic constitutive equations generates the regularization operator. Within the small strain framework, the choice of a quadratic potential w.r.t. the gradient term provides the widely used Helmholtz operator whose regularization properties are well known: smoothing of discontinuities at interfaces and boundary layers in hardening materials, and finite width localization bands in softening materials. The objective is to review and propose nonlinear extensions of micromorphic and strain/damage gradient models along two lines: the first one introducing nonlinear relations between generalized stresses and strains; the second one envisaging several classes of finite deformation model formulations. The generic approach is applicable to a large class of elastoviscoplastic and damage models including anisothermal and multiphysics coupling. Two standard procedures of extension of classical constitutive laws to large strains are combined with the micromorphic approach: additive split of some Lagrangian strain measure or choice of a local objective rotating frame. Three distinct operators are finally derived using the multiplicative decomposition of the deformation gradient. A new feature is that a free energy function depending solely on variables defined in the intermediate isoclinic configuration leads to the existence of additional kinematic hardening induced by the gradient of a scalar micromorphic variable. PMID:27274684

  4. Theory of the jitter radiation in a magnetized plasma accompanying a temperature gradient

    NASA Astrophysics Data System (ADS)

    Hattori, Makoto; Fujiki, Kazushiro

    2016-04-01

    The linear stability of a magnetized plasma accompanying a temperature gradient is reexamined by using plasma kinetic theory. We propose that the anisotropic velocity distribution function should be decomposed into two components. One is proportional to the temperature gradient parallel to the background magnetic field. The other is proportional to the temperature gradient perpendicular to the background magnetic field. Since the amplitude of the anisotropic velocity distribution function is proportional to the heat conductivity, and the heat conductivity perpendicular to the magnetic field is strongly reduced, the first component of the anisotropic velocity distribution function is predominant. The anisotropic velocity distribution function induced by the temperature gradient along the background magnetic field drives plasma kinetic instability and circular polarized magnetic plasma waves are excited. We show that the instability is almost identical to the Weibel instability in the weakly magnetized plasma. However, in the case of the instability caused by the temperature gradient, whether wave vectors of modes are parallel to or antiparallel to the background magnetic field, the growth rate of one mode is suppressed and the growth rate of the other mode is enhanced due to the background magnetic field. In the strongly magnetized plasma, one mode is stabilized and only one of the modes remains unstable. The formulae for the jitter radiation spectrum emitted by relativistic electrons when they travel through the magnetized plasma with the plasma waves driven by the instability are deduced at the first time. We show that the synchrotron emission and the jitter radiation are simultaneously emitted from the same relativistic electron. The jitter radiation is expected to be circularly polarized but with a very small polarization degree since almost the same amounts of left-handed and right-handed circular polarized magnetic waves are excited by the instability.

  5. Iterative Method for Predistortion of MRI Gradient Waveforms

    PubMed Central

    Harkins, Kevin D.; Does, Mark D.; Grissom, William A.

    2014-01-01

    The purpose of this work is to correct for transient gradient waveform errors in magnetic resonance imaging (MRI), whether from eddy currents, group delay, or gradient amplifier nonlinearities, which are known to affect image quality. An iterative method is proposed to minimize error between desired and measured gradient waveforms, whose success does not depend on accurate knowledge of the gradient system impulse response. The method was applied to half-pulse excitation for 2-D ultra-short echo time (UTE) imaging on a small animal MRI system and to spiral 2-D excitation on a human 7T MRI system. Predistorted gradient waveforms reduced temporal signal variation caused by excitation gradient trajectory errors in 2-D UTE, and improved the quality of excitation patterns produced by spiral excitation pulses. Iterative gradient predistortion is useful for minimizing transient gradient errors without requiring accurate characterization of the gradient system impulse response. PMID:24801945

  6. Vector Addition: Effect of the Context and Position of the Vectors

    NASA Astrophysics Data System (ADS)

    Barniol, Pablo; Zavala, Genaro

    2010-10-01

    In this article we investigate the effect of: 1) the context, and 2) the position of the vectors, on 2D vector addition tasks. We administered a test to 512 students completing introductory physics courses at a private Mexican university. In the first part, we analyze students' responses in three isomorphic problems: displacements, forces, and no physical context. Students were asked to draw two vectors and the vector sum. We analyzed students' procedures detecting the difficulties when drawing the vector addition and proved that the context matters, not only compared to the context-free case but also between the contexts. In the second part, we analyze students' responses with three different arrangements of the sum of two vectors: tail-to-tail, head-to-tail and separated vectors. We compared the frequencies of the errors in the three different positions to deduce students' conceptions in the addition of vectors.

  7. Gradient sensing in defined chemotactic fields

    PubMed Central

    Skoge, Monica; Adler, Micha; Groisman, Alex; Levine, Herbert; Loomis, William F.; Rappel, Wouter-Jan

    2011-01-01

    Cells respond to a variety of secreted molecules by modifying their physiology, growth patterns, and behavior. Motile bacteria and eukaryotic cells can sense extracellular chemoattractants and chemorepellents and alter their movement. In this way fibroblasts and leukocytes can find their ways to sites of injury and cancer cells can home in on sites that are releasing growth factors. Social amoebae such as Dictyostelium are chemotactic to cAMP which they secrete several hours after they have initiated development. These eukaryotic cells are known to be able to sense extremely shallow gradients but the processes underlying their exquisite sensitivity are still largely unknown. In this study we determine the responses of developed cells of Dictyostelium discoideum to stable linear gradients of cAMP of varying steepness generated in 2 μm deep gradient chambers of microfluidic devices. The gradients are generated by molecular diffusion between two 50 μm deep flow-through channels, one of which is perfused with a solution of cAMP and the other with buffer, serving as continuously replenished source and sink. These low ceiling gradient chambers constrained the cells in the vertical dimension, facilitating confocal imaging, such that subcellular localization of fluorescently tagged proteins could be followed for up to 30 minutes without noticeable phototoxicity. Chemotactic cells enter these low ceiling chambers by flattening and elongating and then move almost as rapidly as unconstrained cells. By following the localization of activated Ras (RasGTP) using a Ras Binding Domain fused to Green Fluorescent Protein (RBD-GFP), we observed the rapid appearance of membrane associated patches at the tips of pseudopods. These patches remained associated with pseudopods while they continued to extend but were rapidly disassembled when pseudopods stalled and the cell moved past them. Likewise, fluorescence associated with localized RasGTP rapidly disappeared when the gradient was

  8. Can invertebrates see the e-vector of polarization as a separate modality of light?

    PubMed

    Labhart, Thomas

    2016-12-15

    The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.

  9. Can invertebrates see the e-vector of polarization as a separate modality of light?

    PubMed Central

    2016-01-01

    ABSTRACT The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, ‘color-blind’ humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert ‘water below!’ to water-seeking bugs. PMID:27974532

  10. Gradient parameter and axial and field rays in the gradient-index crystalline lens model

    NASA Astrophysics Data System (ADS)

    Pérez, M. V.; Bao, C.; Flores-Arias, M. T.; Rama, M. A.; Gómez-Reino, C.

    2003-09-01

    Gradient-index models of the human lens have received wide attention in optometry and vision sciences for considering how changes in the refractive index profile with age and accommodation may affect refractive power. This paper uses the continuous asymmetric bi-elliptical model to determine gradient parameter and axial and field rays of the human lens in order to study the paraxial propagation of light through the crystalline lens of the eye.

  11. Some new luminance-gradient effects.

    PubMed

    Zavagno, D

    1999-01-01

    Three compelling luminance-gradient effects are described. The first effect concerns a brightness enhancement and a luminous mist spreading out from a central area having the same luminance as the white background and surrounded by four rectangular inducers shaded with a linear luminance gradient. The second effect is perceived with a photographically reversed configuration, and concerns what may be considered a brightness reduction or the enhancement of a darkness quality of a target area of the visual scene. The third effect concerns the perception of a self-luminous disk inside a somewhat foggy medium. The effects are worthy of further examination because they challenge current theories of luminosity perception and brightness perception in general.

  12. Ecological gradients within a Pennsylvanian mire forest

    SciTech Connect

    DiMichele, W.A.; Falcon-Lang, H.J.; Nelson, W.J.; Brick, S.D.; Ames, P.R.

    2007-05-15

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over 1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale.

  13. Hybrid high gradient permanent magnet quadrupole

    NASA Astrophysics Data System (ADS)

    N'gotta, P.; Le Bec, G.; Chavanne, J.

    2016-12-01

    This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.

  14. Ecological gradients within a Pennsylvanian mire forest

    USGS Publications Warehouse

    DiMichele, W.A.; Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.D.; Ames, P.R.

    2007-01-01

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over ???1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale. ?? 2007 The Geological Society of America.

  15. A mesh gradient technique for numerical optimization

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1973-01-01

    A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.

  16. Temperature gradient driven lasing and stimulated cooling.

    PubMed

    Sandner, K; Ritsch, H

    2012-11-09

    A laser can be understood as a thermodynamic engine converting heat to a coherent single mode field close to Carnot efficiency. To achieve lasing, spectral shaping of the excitation light is used to generate a higher effective temperature on the pump than on the gain transition. Here, using a toy model of a quantum well structure with two suitably designed tunnel-coupled wells kept at different temperatures, we predict that lasing can also occur on an actual spatial temperature gradient between the pump and gain regions. Gain and narrow band laser emission require a sufficiently large temperature gradient and resonator quality. Lasing appears concurrent with amplified heat flow between the reservoirs and points to a new form of stimulated solid state cooling. In addition, such a mechanism could reduce intrinsic heating and thus extend the operating regime of quantum cascade lasers by substituting phonon emission driven injection by a phonon absorption step.

  17. Opinion formation models on a gradient.

    PubMed

    Gastner, Michael T; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4), not proportional g(-4/7) as in independent percolation, and the cluster size distribution is consistent with first-order percolation.

  18. Enhanced gradient for training restricted Boltzmann machines.

    PubMed

    Cho, Kyunghyun; Raiko, Tapani; Ilin, Alexander

    2013-03-01

    Restricted Boltzmann machines (RBMs) are often used as building blocks in greedy learning of deep networks. However, training this simple model can be laborious. Traditional learning algorithms often converge only with the right choice of metaparameters that specify, for example, learning rate scheduling and the scale of the initial weights. They are also sensitive to specific data representation. An equivalent RBM can be obtained by flipping some bits and changing the weights and biases accordingly, but traditional learning rules are not invariant to such transformations. Without careful tuning of these training settings, traditional algorithms can easily get stuck or even diverge. In this letter, we present an enhanced gradient that is derived to be invariant to bit-flipping transformations. We experimentally show that the enhanced gradient yields more stable training of RBMs both when used with a fixed learning rate and an adaptive one.

  19. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  20. Pressure-gradient fiber laser hydrophone

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Zhang, Faxiang; Li, Fang; Liu, Yuliang

    2009-10-01

    A pressure-gradient fiber laser hydrophone (FLH) is demonstrated. Two brass diaphragms are installed at the end of a metal cylinder as the sensing element. There are two orifices at the middle of the cylinder. This structure can work as a pressure-gradient microphone in the acoustic field. Thus the DFB fiber laser fixed at the center of the two diaphragms is elongated or shortened due to the acoustic wave. Theoretical analysis is given based on the electro-acoustic theory. Experiments are carried out to test the performance of the hydrophone. A sensitivity of 100 nm/MPa has been achieved. Furthermore, the hydrostatic pressure is self-compensated and a ultra-thin dimension is achieved based on the proposed structure.

  1. Voltammetry under a Controlled Temperature Gradient

    PubMed Central

    Krejci, Jan; Sajdlova, Zuzana; Krejci, Jan; Marvanek, Tomas

    2010-01-01

    Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference. PMID:22163578

  2. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  3. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  4. Gradient Optimization for SC CW Accelerators

    SciTech Connect

    Schneider, William; Kneisel, Peter; Rode, Claus

    2003-05-01

    The proposed rare isotope accelerator (RIA) design consists of a normally conducting radio frequency quadruple (RFQ) section, a superconducting (SC) drift tube cavity section, a SC elliptical multi-cell cavity section and two charge strippers with associated charge state selection and beam matching optics. The SC elliptical section uses two or three multi-cell beta cavity types installed into cryomodules to span the energy region of about 84.5 MeV/nucleon up to 400 MeV/nucleon. This paper focuses on the gradient optimization of these SC elliptical cavities that provide a significant portion of the total acceleration to the beam. The choice of gradient coupled with the cavity quality factor has a strong affect on the overall cost of the accelerator. The paper describes the optimization of the capital and operating cost associated with the RIA elliptical cavity cryomodules.

  5. Geothermal temperature gradient core drill, Santiam Pass

    SciTech Connect

    Not Available

    1989-01-01

    DOE is proposing to share in the cost of drilling a 3000-ft core hole to evaluate temperature gradients, subsurface geology and the geothermal potential of an area in the Cascade Mountains. The proposed core hole will be located in the Deschutes National Forest in Oregon, near Santiam Pass. The proposed action has been described in the Environmental Assessment (EA) for Geothermal Temperature Gradient Core Drill Santiam Pass Area (No. OR-050-9-51) prepared by the US Bureau of Land Management (BLM). DOE has determined that the BLM EA adequately addresses the impacts of the proposal and is hereby adopting the EA in partial fulfillment of its NEPA responsibilities. Based upon a review of the EA and an independent analysis, DOE has concluded that the proposed corehole drilling project does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, an environmental impact statement will not be prepared.

  6. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  7. Transmission of Insect-Vectored Pathogens: Effects of Vector Fitness as a Function of Infectivity Status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spread of insect vectored pathogens is dependent on the population dynamics of the vector. Epidemiology models typically assume that birth and death rates of pathogen-free and inoculative vectors are equal, an assumption which is not true for all pathosystems. Here a series of simple and gener...

  8. Cosmic ray intensity gradients in the solar system

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1975-01-01

    Recent progress in the determination of cosmic-ray intensity gradients is reviewed. Direct satellite measurements of the integral gradient are described together with various types of indirect measurements, including measurements of the Ar-37/Ar-39 ratio in samples from the Lost City meteorite, studies of anisotropies in neutron-monitor counting rates, and analysis of the sidereal diurnal anisotropy observed at a single point on earth. Nucleonic radial gradients and electron gradients measured by satellites in differential energy windows are discussed, and theoretical studies of the physical processes involved in these gradients are summarized. Observations of intensity gradients in heliographic latitude are reported.

  9. Quantized Concentration Gradient in Picoliter Scale

    NASA Astrophysics Data System (ADS)

    Hong, Jong Wook

    2010-10-01

    Generation of concentration gradient is of paramount importance in the success of reactions for cell biology, molecular biology, biochemistry, drug-discovery, chemotaxis, cell culture, biomaterials synthesis, and tissue engineering. In conventional method of conducting reactions, the concentration gradients is achieved by using pipettes, test tubes, 96-well assay plates, and robotic systems. Conventional methods require milliliter or microliter volumes of samples for typical experiments with multiple and sequential reactions. It is a challenge to carry out experiments with precious samples that have strict limitations with the amount of samples or the price to pay for the amount. In order to overcome this challenge faced by the conventional methods, fluidic devices with micrometer scale channels have been developed. These devices, however, cause restrictions on changing the concentration due to the fixed gradient set based on fixed fluidic channels.ootnotetextJambovane, S.; Duin, E. C.; Kim, S-K.; Hong, J. W., Determination of Kinetic Parameters, KM and kcat, with a Single Experiment on a Chip. textitAnalytical Chemistry, 81, (9), 3239-3245, 2009.^,ootnotetextJambovane, S.; Hong, J. W., Lorenz-like Chatotic System on a Chip In The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), The Netherlands, October, 2010. Here, we present a unique microfluidic system that can generate quantized concentration gradient by using series of droplets generated by a mechanical valve based injection method.ootnotetextJambovane, S.; Rho, H.; Hong, J., Fluidic Circuit based Predictive Model of Microdroplet Generation through Mechanical Cutting. In ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida, USA, October, 2009.^,ootnotetextLee, W.; Jambovane, S.; Kim, D.; Hong, J., Predictive Model on Micro Droplet Generation through Mechanical Cutting. Microfluidics and Nanofluidics, 7, (3), 431-438, 2009

  10. Magnetoresponsive Photonic Microspheres with Structural Color Gradient.

    PubMed

    Lee, Seung Yeol; Choi, Jongkook; Jeong, Jong-Ryul; Shin, Jung H; Kim, Shin-Hyun

    2017-02-06

    Photonic Janus particles are created by alternately sputtering silica and titania on microspheres in order to obtain a structural color gradient. In addition, the microspheres are rendered magnetoresponsive. The Janus microspheres with optical and magnetic anisotropy enable on-demand control over orientation and structural color through manipulation of an external magnetic field, thereby being useful as active color pigments for reflection-mode displays.

  11. M-step preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.

  12. Exploration of very high gradient cavities

    SciTech Connect

    Eremeev, Grigory

    2011-07-01

    Several of the 9-cell ILC cavities processed at Jlab within ongoing ILC R&D program have shown interesting behavior at high fields, such as mode mixing and sudden field emission turn-on during quench. Equipped with thermometry and oscillating superleak transducer (OST) system for quench detection, we couple our RF measurements with local dissipation measurements. In this contribution we report on our findings with high gradient SRF cavities.

  13. DC CHARACTERIZATION OF HIGH GRADIENT MULTILAYER INSULATORS

    SciTech Connect

    Watson, J A; Caporaso, G J; Sampayan, S E; Sanders, D M; Krogh, M L

    2005-05-26

    We have developed a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. We have demonstrated that these structures perform 2 to 5 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We present new testing results showing exceptional behavior at DC, with gradients in excess of 110kV/cm in vacuum.

  14. Spectroscopic Gradients in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Buzzoni, A.; Battistini, C.; Carrasco, L.; Recillas, E.

    2009-11-01

    We review some relevant properties of the observed changes of Hβ, Mg_2, and FeI Lick indices across the surface of 25 bright elliptical galaxies. The impact of these spectroscopic gradients is briefly discussed, in the framework of the leading physical mechanisms that led to galaxy formation. In particular, three relevant evolutionary scenarios are sketched, each one able, in principle, to consistently match galaxy spectral properties and effectively constrain the composing stellar populations in these systems.

  15. Reconstructing global overturning from meridional density gradients

    NASA Astrophysics Data System (ADS)

    Butler, E. D.; Oliver, K. I. C.; Hirschi, J. J.-M.; Mecking, J. V.

    2016-04-01

    Despite the complexity of the global ocean system, numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a "rotated" form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000 m) for multi-decadal (and longer) timescales, accurately reconstructing the relative magnitude of the response for different frequencies and explaining over 85 % of overturning variance on timescales of 64-2048 years. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, between 76 and 94 % of the observed variability at 4000 m is reconstructed on timescales of 32 years (and longer). The scaling law is also applied in the Indo-Pacific. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of between 0.79 and 0.99 are obtained with upper Atlantic MOC variability on timescales >25 years. These results indicate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be reconstructed from hydrography on multi-decadal and longer timescales provided that the link is made in this way.

  16. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  17. Gradient Boosting for Conditional Random Fields

    DTIC Science & Technology

    2014-09-23

    Information Processing Systems 26 ( NIPS ’13), pages 647–655. 2013. [4] J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of...and phrases and their compositionality. In Advances in Neural Information Processing Systems 26 ( NIPS ’13), pages 3111–3119. 2013. [15] A. Quattoni, M...Collins, and T. Darrell. Conditional random fields for object recognition. In Advances in Neural Information Processing Systems 17 ( NIPS ’04), pages

  18. Predicting global overturning from meridional density gradients

    NASA Astrophysics Data System (ADS)

    Butler, Edward; Oliver, Kevin; Hirschi, Joel

    2015-04-01

    Numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a "rotated" form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000m) on decadal and longer timescales, explaining at least 94% of overturning variance for timescales of 128 to 2048 years and accurately predicting the relative magnitude of the response for different frequencies. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, over 77% of the observed variability at 4000m is predicted on timescales of 32 years and longer. The scaling law is also successful in the Indo-Pacific, thus demonstrating its generality. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of at least 0.79 are obtained with upper Atlantic MOC variance on all timescales greater than 25 years. These results demonstrate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be predicted from hydrography on multi-decadal and longer timescales provided that the link is made in this way.

  19. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Murphy, D. W.

    2007-07-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (VX,VY,VZ)=(10.5,18.5,7.3)+/-0.1 km s-1 not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (VX,VY,VZ)=(9.9,15.6,6.9)+/-0.2 km s-1. The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0+/-1.4, B=-13.1+/-1.2, K=1.1+/-1.8, and C=-2.9+/-1.4 km s-1 kpc-1. The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at ~-20 km s-1 kpc-1. A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z>1 kpc), but here we surmise its existence in the thin disk at z<200 pc. The most unexpected and unexplained term within

  20. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  1. Algorithms for parallel and vector computations

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1995-01-01

    This is a final report on work performed under NASA grant NAG-1-1112-FOP during the period March, 1990 through February 1995. Four major topics are covered: (1) solution of nonlinear poisson-type equations; (2) parallel reduced system conjugate gradient method; (3) orderings for conjugate gradient preconditioners, and (4) SOR as a preconditioner.

  2. Dropwise condensation on a cold gradient substrate

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2012-11-01

    Distributions of drops that arise from dropwise condensation evolve by nucleation, growth, and coalescence of drops. An understanding of how surface-energy gradients applied to the substrate affect drop growth and coalescence is needed for design of effective surfaces for large-scale dropwise condensation. Transient dropwise condensation from a vapor phase onto a cold and chemically treated surface is reported. The surfaces were treated to deliver either a uniform contact-angle or a gradient of contact-angles by silanization. The time evolution of drop-size and number-density distributions is reported. For a typical condensation experiment, the drop distributions advance through two stages: an increase in drop density as a result of nucleation and a decrease in drop density as a result of larger scale coalescence events. Because the experiment is transient in nature, the shape of the distribution can be used to predict the number of drop generations and their stage of development. Preliminary results for gradient surfaces will be discussed and compared against observations of behavior on uniformly coated surfaces. NASA Space Technology Research Fellowship (NSTRF).

  3. Collective Chemotaxis through Noisy Multicellular Gradient Sensing

    NASA Astrophysics Data System (ADS)

    Varennes, Julien; Han, Bumsoo; Mugler, Andrew

    2016-08-01

    Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of less than 1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment and while the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to individual cells polarization to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments.

  4. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  5. PLETHORA gradient formation mechanism separates auxin responses

    PubMed Central

    Siligato, Riccardo; Smetana, Ondřej; Díaz-Triviño, Sara; Salojärvi, Jarkko; Wachsman, Guy; Prasad, Kalika; Heidstra, Renze; Scheres, Ben

    2015-01-01

    During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone1. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip2-12. In addition, auxin is also pivotal for tropic responses13,14. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation. PMID:25156253

  6. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  7. Light gradients in spherical photosynthetic vesicles.

    PubMed

    Paillotin, G; Leibl, W; Gapiński, J; Breton, J; Dobek, A

    1998-07-01

    Light-gradient photovoltage measurements were performed on EDTA-treated thylakoids and on osmotically swollen thylakoids (blebs), both of spherical symmetry but of different sizes. In the case of EDTA vesicles, a negative polarity (due to the normal light gradient) was observed in the blue range of the absorption spectrum, and a positive polarity, corresponding to an inverse light gradient, was observed at lambda = 530 and lambda = 682 nm. The sign of the photovoltage polarity measured in large blebs (swollen thylakoids) is the same as that obtained for whole chloroplasts, although differences in the amplitudes are observed. An approach based on the use of polar coordinates was adapted for a theoretical description of these membrane systems of spherical symmetry. The light intensity distribution and the photovoltage in such systems were calculated. Fits to the photovoltage amplitudes, measured as a function of light wavelength, made it possible to derive the values of the dielectric constant of the protein, epsilons = 3, and the refractive index of the photosynthetic membrane for light propagating perpendicular and parallel to the membrane surface, nt = 1.42 and nn = 1.60, respectively. The latter two values determine the birefringence of the biological membrane, Deltan = nn - nt = 0.18.

  8. SPEAR3 Gradient Dipole Core Fabrication

    SciTech Connect

    Li, Nanyang

    2003-07-29

    Traditional means of core fabrication are to glue the laminations or weld them to form the yoke structure. These means result in good yoke assemblies for shorter (<0.6m) magnets. However, because of weld distortions or mechanical strength limitations, welding and/or gluing techniques are difficult to gain high mechanical precision for longer cores. The SPEAR3 gradient dipoles are up to 1.45m long and require distortions of <0.05mm. Therefore, the SPEAR3 gradient dipole core design incorporated an assembly technique, originally devised for the PEPII insertion quadrupoles and later adapted for the ALS gradient magnets. This technique involved fabricating a rigid frame for the core, precisely stacking and compressing the laminations using hydraulic jacks and granite surfaces and straight edges, and fixing the laminations in the frame by filling the grooves between the laminations and frame using steel loaded epoxy. Although this technique has been used in the past, it has never been fully described and published. This paper is written to provide a detailed description of the procedure and to present measurement data demonstrating the mechanical precision and stiffness of the resulting product.

  9. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  10. A Context Vector Model for Information Retrieval.

    ERIC Educational Resources Information Center

    Billhardt, Holger; Borrajo, Daniel; Maojo, Victor

    2002-01-01

    Presents an indexing and information retrieval method that, based on the vector space model, incorporates term dependencies and thus obtains semantically richer representations of documents. Highlights include term context vectors; techniques for estimating the dependencies among terms; term weights; experimental results on four text collections;…

  11. Student use of vectors in mechanics

    NASA Astrophysics Data System (ADS)

    Flores, Sergio

    A functional understanding of Newton's second law as a vector equation requires that students be able to reason about vectors. In this dissertation, we present data describing students' conceptual difficulties with vector addition and subtraction, and with vector quantities such as force, acceleration and tension. These data suggest that after traditional instruction in introductory physics, some students do not recognize the vector nature of these quantities. Other students who do not have the requisite procedural knowledge to determine net force or acceleration, and are therefore unable to reason qualitatively about Newton's second law. We describe some specific procedural and reasoning difficulties we have observed in students' use of vectors. In addition, we describe modifications to laboratory instruction in mechanics that we designed on the basis of our research into student understanding. These modifications were intended to improve students' understanding of vector addition and subtraction and to promote student use of vectors when solving mechanics problems. Finally, we describe initial measures of the effectiveness of these modifications.

  12. Natural evolution of neural support vector machines.

    PubMed

    Jändel, Magnus

    2011-01-01

    Two different neural implementations of support vector machines are described and applied to one-shot trainable pattern recognition. The first model is based on oscillating associative memory and is mapped to the olfactory system. The second model is founded on competitive queuing memory originally employed for generating motor action sequences in the brain. Both models include forward pathways where a stream of support vectors is evoked from memory and merges with sensory input to produce support vector machine classifications. Misclassified events are imprinted as new support vector candidates. Support vector machine weights are tuned by virtual experimentation in sleep. Recalled training examples masquerade as sensor input and feedback from the classification process drives a learning process where support vector weights are optimized. For both support vector machine models it is demonstrated that there is a plausible evolutionary path from a simple hard-wired pattern recognizer to a full implementation of a biological kernel machine. Simple and individually beneficial modifications are accumulated in each step along this path. Neural support vector machines can apparently emerge by natural processes.

  13. Reversible vector ratchets for skyrmion systems

    NASA Astrophysics Data System (ADS)

    Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.

    2017-03-01

    We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.

  14. Observation of vector solitons with hidden vorticity.

    PubMed

    Izdebskaya, Yana V; Rebling, Johannes; Desyatnikov, Anton S; Kivshar, Yuri S

    2012-03-01

    This letter reports the first experimental observation, to our knowledge, of optical vector solitons composed of two incoherently coupled vortex components. We employ nematic liquid crystal to generate stable vector solitons with counterrotating vortices and hidden vorticity. In contrast, the solitons with explicit vorticity and corotating vortex components show azimuthal splitting.

  15. 61 FR 41181 - Vector Supercomputers From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-08-07

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Vector Supercomputers From Japan AGENCY: United States International Trade Commission. ACTION..., by reason of imports from Japan of vector supercomputers that are alleged to be sold in the...

  16. Application of Vectors to Relative Velocity

    ERIC Educational Resources Information Center

    Tin-Lam, Toh

    2004-01-01

    The topic 'relative velocity' has recently been introduced into the Cambridge Ordinary Level Additional Mathematics syllabus under the application of Vectors. In this note, the results of relative velocity and the 'reduction to rest' technique of teaching relative velocity are derived mathematically from vector algebra, in the hope of providing…

  17. 40 CFR 240.206 - Vectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vectors. 240.206 Section 240.206 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.206 Vectors....

  18. Gold-functionalized DNAzyme Nanosensors to Quantify Heavy Metal Gradients

    NASA Astrophysics Data System (ADS)

    Adriaens, P.; Vannela, R.

    2005-12-01

    The presence of heavy metals in environmental systems is characterized by steep gradients due to the presence of solid and soluble redox species. The capability to selectively quantify low concentrations of individual redox species continues to present a challenge for site characterization and risk assessment. Recently, DNAzymes, single-stranded DNA molecules with catalytic capabilities that are isolated from random-sequence DNA libraries by ``in vitro selection'', have come to the fore as unique molecular tools for metal detection in aqueous environment. Here we describe the selection and characterization of an RNA-cleaving autocatalytic DNAzyme that links chemical catalysis with real-time fluorescence signaling in the single molecule. From a random pool of 40-nt templates, we have isolated Hg-active DNAzymes using in vitro selection procedures in combination with non-homologous random recombination (NRR). However, significant cleavage was seen for DNA sequences isolated in generation G5. By G8 cycle, more than 32% of the DNA construct was cleaved after 3-h incubation. After eight rounds of selection and amplification, the amount of eluted DNA after respective reaction was found to produce active sequences leading to 32 % catalysis. The introduction of nonhomologous random recombination at 9th cycle yielded drastic increase in catalysis to 55% of the total oligonucleotide pool. DNA sequences from the 9th round of selection (G9) were amplified by PCR and cloned into a vector. DNA sequencing was performed and the M-fold software revealed variety of different families of sequences in the active pool - with DNA-010 sequence being dominant in each family. Similar experiments conducted with As5+ and selection did not show any cleavage until the 8th cycle, with cleavage increasing to 18 % at 14th cycle. Since the catalytic activity can be characterized in terms of metal specificity, speciation and affinity, the catalytic DNA serves as a sensor for a variety of metal ion

  19. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough

  20. Calculation of the magnetic gradient tensor from total magnetic anomaly field based on regularized method in frequency domain

    NASA Astrophysics Data System (ADS)

    Yin, Gang; Zhang, Yingtang; Mi, Songlin; Fan, Hongbo; Li, Zhining

    2016-11-01

    To obtain accurate magnetic gradient tensor data, a fast and robust calculation method based on regularized method in frequency domain was proposed. Using the potential field theory, the transform formula in frequency domain was deduced in order to calculate the magnetic gradient tensor from the pre-existing total magnetic anomaly data. By analyzing the filter characteristics of the Vertical vector transform operator (VVTO) and Gradient tensor transform operator (GTTO), we proved that the conventional transform process was unstable which would zoom in the high-frequency part of the data in which measuring noise locate. Due to the existing unstable problem that led to a low signal-to-noise (SNR) for the calculated result, we introduced regularized method in this paper. By selecting the optimum regularization parameters of different transform phases using the C-norm approach, the high frequency noise was restrained and the SNR was improved effectively. Numerical analysis demonstrates that most value and characteristics of the calculated data by the proposed method compare favorably with reference magnetic gradient tensor data. In addition, calculated magnetic gradient tensor components form real aeromagnetic survey provided better resolution of the magnetic sources and original profile.

  1. Control of phlebotomine (Diptera: Psychodidae) leishmaniasis vectors.

    PubMed

    Amóra, Sthenia S A; Bevilaqua, Claudia M L; Feijó, Francisco M C; D Alves, Nilza; do V Maciel, Michelline

    2009-01-01

    Phlebotomines are of medical and veterinary concern as they vector leishmaniasis, bartonellosis and some arboviruses. The adaptations of some species to places modified by humans bring these vectors into contact with dwellings, which can facilitate disease transmission, and the vector control strategies adopted have rendered controversial results. Regarding leishmaniasis, for instance, which vector and reservoirs control can be effective, there is an assumption that the incidence of human infection is directly related to the number of infectious dogs, as well as to entomological factors. Therefore, vector control can provide a cheaper and more practical solution to prevent cases of leishmaniasis. Nevertheless, due to the complexity of the factors involved, chemical control is still essential, and biological insecticides and insecticide plants, for example, represent areas for study that should be encouraged and developed since they show promising results. This paper summarizes the control strategies adopted so far, especially the methods and efficiency of the entomological components of leishmaniasis control programs.

  2. Localizing viruses in their insect vectors.

    PubMed

    Blanc, Stéphane; Drucker, Martin; Uzest, Marilyne

    2014-01-01

    The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.

  3. Vector Diffusion Maps and the Connection Laplacian

    PubMed Central

    Singer, A.; Wu, H.-T.

    2013-01-01

    We introduce vector diffusion maps (VDM), a new mathematical framework for organizing and analyzing massive high-dimensional data sets, images, and shapes. VDM is a mathematical and algorithmic generalization of diffusion maps and other nonlinear dimensionality reduction methods, such as LLE, ISOMAP, and Laplacian eigenmaps. While existing methods are either directly or indirectly related to the heat kernel for functions over the data, VDM is based on the heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding them in a low-dimensional space, and interpolating and regressing vector fields over the data. In particular, it equips the data with a metric, which we refer to as the vector diffusion distance. In the manifold learning setup, where the data set is distributed on a low-dimensional manifold ℳd embedded in ℝp, we prove the relation between VDM and the connection Laplacian operator for vector fields over the manifold. PMID:24415793

  4. Gauge vectors and double beta decay

    NASA Astrophysics Data System (ADS)

    Fonseca, Renato M.; Hirsch, Martin

    2017-02-01

    We discuss contributions to neutrinoless double beta (0 ν β β ) decay involving vector bosons. The starting point is a list of all possible vector representations that may contribute to 0 ν β β decay via d =9 or d =11 operators at tree level. We then identify gauge groups which contain these vectors in the adjoint representation. Even though the complete list of vector fields that can contribute to 0 ν β β up to d =11 is large (a total of 46 vectors), only a few of them can be gauge bosons of phenomenologically realistic groups. These latter cases are discussed in some more detail, and lower (upper) limits on gauge boson masses (mixing angles) are derived from the absence of 0 ν β β decay.

  5. Developments in Viral Vector-Based Vaccines

    PubMed Central

    Ura, Takehiro; Okuda, Kenji; Shimada, Masaru

    2014-01-01

    Viral vectors are promising tools for gene therapy and vaccines. Viral vector-based vaccines can enhance immunogenicity without an adjuvant and induce a robust cytotoxic T lymphocyte (CTL) response to eliminate virus-infected cells. During the last several decades, many types of viruses have been developed as vaccine vectors. Each has unique features and parental virus-related risks. In addition, genetically altered vectors have been developed to improve efficacy and safety, reduce administration dose, and enable large-scale manufacturing. To date, both successful and unsuccessful results have been reported in clinical trials. These trials provide important information on factors such as toxicity, administration dose tolerated, and optimized vaccination strategy. This review highlights major viral vectors that are the best candidates for clinical use. PMID:26344749

  6. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  7. Bacteriophage gene targeting vectors generated by transplacement.

    PubMed

    Aoyama, C; Woltjen, K; Mansergh, F C; Ishidate, K; Rancourt, D E

    2002-10-01

    A rate-determining step in gene targeting is the generation of the targeting vector. We have developed bacteriophage gene targeting vectorology, which shortens the timeline of targeting vector construction. Using retro-recombination screening, we can rapidly isolate targeting vectors from an embryonic stem cell genomic library via integrative and excisive recombination. We have demonstrated that recombination can be used to introduce specific point mutations or unique restriction sites into gene targeting vectors via transplacement. Using the choline/ethanolamine kinase alpha and beta genes as models, we demonstrate that transplacement can also be used to introduce specifically a neo resistance cassette into a gene targeting phage. In our experience, the lambdaTK gene targeting system offers considerable flexibility and efficiency in TV construction, which makes generating multiple vectors in one week's time possible.

  8. Alphavirus vectors for cancer gene therapy (review).

    PubMed

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  9. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  10. No-reference image quality assessment based on natural scene statistics and gradient magnitude similarity

    NASA Astrophysics Data System (ADS)

    Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang

    2014-11-01

    The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.

  11. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  12. A three-dimensional turbulent boundary layer undergoing transverse strain and streamwise pressure gradient

    NASA Technical Reports Server (NTRS)

    Hebbar, S. K.; Driver, D. M.

    1985-01-01

    Results from an experimental investigation designed to provide data on both mean and turbulence quantities in the axisymmetric, swirling boundary layer (with and without pressure gradient) flowing over a stationary cylinder downstreams of a spinning cylindrical section are presented. The pressure gradient was introduced into the flow field by a 25.4 mm-high, forward-facing, circular step mounted on the stationary cylinder, the step height being nearly equal to the thickness of the approaching boundary layer. All the measurements were made at a nominal upstream reference Reynolds number of 2.4 x 10 to the 6th power/m (corresponding to an upstream reference velocity of 36 to 37 m/sec) with the rotation of the spinner set to make its peripheral speed equal the reference velocity. The data reported included measurements of surface pressure and the mean surface shear-stress vector taken with a miniature, directional, surface-fence gage. These measurements were supplemented by oil-flow visualization studies of the stationary cylinder. The data indicates that the streamwise pressure gradient controls the development of the streamwise component of wall shear, but leaves the peripheral component of wall shear practically unaffected.

  13. Signal-to-Noise Behavior for Matches to Gradient Direction Models of Corners in Images

    SciTech Connect

    Paglieroni, D W; Manay, S

    2007-02-09

    Gradient direction models for corners of prescribed acuteness, leg length, and leg thickness are constructed by generating fields of unit vectors emanating from leg pixels that point normal to the edges. A novel FFT-based algorithm that quickly matches models of corners at all possible positions and orientations in the image to fields of gradient directions for image pixels is described. The signal strength of a corner is discussed in terms of the number of pixels along the edges of a corner in an image, while noise is characterized by the coherence of gradient directions along those edges. The detection-false alarm rate behavior of our corner detector is evaluated empirically by manually constructing maps of corner locations in typical overhead images, and then generating different ROC curves for matches to models of corners with different leg lengths and thicknesses. We then demonstrate how corners found with our detector can be used to quickly and automatically find families of polygons of arbitrary position, size and orientation in overhead images.

  14. Analysis of 3D multi-layer microfluidic gradient generator.

    PubMed

    Ha, Jang Ho; Kim, Tae Hyeon; Lee, Jong Min; Ahrberg, Christian D; Chung, Bong Geun

    2017-01-01

    We developed a three-dimensional (3D) simple multi-layer microfluidic gradient generator to create molecular gradients on the centimeter scale with a wide range of flow rates. To create the concentration gradients, a main channel (MC) was orthogonally intersected with vertical side microchannel (SC) in a 3D multi-layer microfluidic device. Through sequential dilution from the SC, a spatial gradient was generated in the MC. Two theoretical models were created to assist in the design of the 3D multi-layer microfluidic gradient generator and to compare its performance against a two-dimensional equivalent. A first mass balance model was used to predict the steady-state concentrations reached, while a second computational fluid dynamic model was employed to predict spatial development of the gradient by considering convective as well as diffusive mass transport. Furthermore, the theoretical simulations were verified through experiments to create molecular gradients in a 3D multi-layer microfluidic gradient generator.

  15. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  16. GRASS GIS Vector Processing: Towards GRASS 7

    NASA Astrophysics Data System (ADS)

    Metz, Markus; Landa, Martin; Petrasova, Anna; Petras, Vaclav; Chemin, Yann; Neteler, Markus

    2014-05-01

    The upcoming GRASS GIS 7 release improves not only raster processing and general design but the vector processing in the first place. GRASS GIS, as a topological GIS, recognizes that the topology plays the key role in the vector processing and analysis. Topology ensures that adjacent geographic components in a single vector map are related. In contrast to non-topological GIS, a border common to two areas exists only once and is shared between the two areas. Topological representation of vector data helps to produce and maintain vector maps with clean geometry as well as enables the user to perform certain analyses that can not be conducted with non-topological or spaghetti data. Non-topological vector data are automatically converted to a topological representation upon import. Further more, various cleaning tools exist to remove non-trivial topological errors. In the upcoming GRASS GIS 7 release the vector library was particularly improved to make it faster and more efficient with an improved internal vector file format. This new topological format reduces memory and disk space requirements, leading to a generally faster processing. Opening an existing vector requires less memory providing additionally support for large files. The new spatial index performs queries faster (compared to GRASS GIS 6 more than 10 times for large vectors). As a new option the user can select a file-based version of the spatial index for large vector data. All topological cleaning tools have been optimized with regard to processing speed, robustness, and system requirements. The topological engine comes with a new prototype for direct read/write support of Simple Features API/OGR. Additionally vector data can be directly exchanged with topological PostGIS 2 databases. Considering the wide spread usage of ESRI Shapefile, a non-topological format for vector data exchange, it is particularly advantageous that GRASS GIS 7 offers advanced cleaning tools. For power users and programmers, the

  17. Generalized Vector Laws of Reflection and Refraction of Forward and Backward Waves in the Presence of a Metasurface

    NASA Astrophysics Data System (ADS)

    Fisanov, V. V.

    2016-12-01

    Vector formulations of laws of reflection and refraction of plane electromagnetic waves from the plane metasurface that separates two isotropic media and is characterized by phase gradients are obtained and analyzed. The media support the forward or backward normal waves that differ by identifiers. Critical angles of total internal reflection are presented, and conditions of occurrence of negative refraction and negative reflection are specified. Retroreflection and special cases of wave refraction are considered, and restrictions on the metasurface parameters are given.

  18. A fiber-bridging model with stress gradient effects

    NASA Astrophysics Data System (ADS)

    Yi, Sun; Tao, Li

    2000-05-01

    A fiber-bridging model with stress gradient effects is proposed for unidirectional fiber-reinforced composites. The stress gradient terms are introduced by solving a micromechanical model under a non-uniform stress loading. It is shown that the stress gradient effect is significant on both the fiber-bridging stress distribution and the value of the critical load of fiber failure.

  19. DRDC Starfish Acoustic Sentinel and Phase Gradient Histogram Tracking

    DTIC Science & Technology

    2015-04-01

    exponential filters, with the frequency-domain algorithm using parallel filters in each frequency bin. A Phase Gradient bearing estimation algorithm is...algorithm and the Phase Gradient bearing estimation algorithm with Histogram Tracking. Significance for defence and security For the Force ASW project, the...1 2 Frequency-domain acoustic sentinel . . . . . . . . . . . . . . . . . . . . . . 1 3 Phase Gradient bearing estimation algorithm

  20. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2004-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  1. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  2. A recursive technique for adaptive vector quantization

    NASA Technical Reports Server (NTRS)

    Lindsay, Robert A.

    1989-01-01

    Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.

  3. Wavelet frame accelerated reduced support vector machines.

    PubMed

    Ratsch, Matthias; Teschke, Gerd; Romdhani, Sami; Vetter, Thomas

    2008-12-01

    In this paper, a novel method for reducing the runtime complexity of a support vector machine classifier is presented. The new training algorithm is fast and simple. This is achieved by an over-complete wavelet transform that finds the optimal approximation of the support vectors. The presented derivation shows that the wavelet theory provides an upper bound on the distance between the decision function of the support vector machine and our classifier. The obtained classifier is fast, since a Haar wavelet approximation of the support vectors is used, enabling efficient integral image-based kernel evaluations. This provides a set of cascaded classifiers of increasing complexity for an early rejection of vectors easy to discriminate. This excellent runtime performance is achieved by using a hierarchical evaluation over the number of incorporated and additional over the approximation accuracy of the reduced set vectors. Here, this algorithm is applied to the problem of face detection, but it can also be used for other image-based classifications. The algorithm presented, provides a 530-fold speedup over the support vector machine, enabling face detection at more than 25 fps on a standard PC.

  4. Vector curvaton with varying kinetic function

    SciTech Connect

    Dimopoulos, Konstantinos; Karciauskas, Mindaugas; Wagstaff, Jacques M.

    2010-01-15

    A new model realization of the vector curvaton paradigm is presented and analyzed. The model consists of a single massive Abelian vector field, with a Maxwell-type kinetic term. By assuming that the kinetic function and the mass of the vector field are appropriately varying during inflation, it is shown that a scale-invariant spectrum of superhorizon perturbations can be generated. These perturbations can contribute to the curvature perturbation of the Universe. If the vector field remains light at the end of inflation it is found that it can generate substantial statistical anisotropy in the spectrum and bispectrum of the curvature perturbation. In this case the non-Gaussianity in the curvature perturbation is predominantly anisotropic, which will be a testable prediction in the near future. If, on the other hand, the vector field is heavy at the end of inflation then it is demonstrated that particle production is approximately isotropic and the vector field alone can give rise to the curvature perturbation, without directly involving any fundamental scalar field. The parameter space for both possibilities is shown to be substantial. Finally, toy models are presented which show that the desired variation of the mass and kinetic function of the vector field can be realistically obtained, without unnatural tunings, in the context of supergravity or superstrings.

  5. Intracellular trafficking of hybrid gene delivery vectors.

    PubMed

    Keswani, Rahul K; Lazebnik, Mihael; Pack, Daniel W

    2015-06-10

    Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles.

  6. Biogeochemistry of a temperate forest nitrogen gradient

    USGS Publications Warehouse

    Perakis, Steven S.; Sinkhorn, Emily R.

    2011-01-01

    Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant–soil–microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (USA). Surface mineral soil N (0–10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N·ha−1·yr−1. Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for −1·yr−1. Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.

  7. Theory of resistivity-gradient-driven turbulence

    SciTech Connect

    Garcia, L.; Diamond, P.H.; Carreras, B.A.; Callen, J.D.

    1985-07-01

    A theory of the nonlinear evolution and saturation of resistivity driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation.

  8. Temperature Gradient Field Theory of Nucleation

    NASA Astrophysics Data System (ADS)

    Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.

    2016-02-01

    According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.

  9. Smoothed Analysis for the Conjugate Gradient Algorithm

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Trogdon, Thomas

    2016-11-01

    The purpose of this paper is to establish bounds on the rate of convergence of the conjugate gradient algorithm when the underlying matrix is a random positive definite perturbation of a deterministic positive definite matrix. We estimate all finite moments of a natural halting time when the random perturbation is drawn from the Laguerre unitary ensemble in a critical scaling regime explored in Deift et al. (2016). These estimates are used to analyze the expected iteration count in the framework of smoothed analysis, introduced by Spielman and Teng (2001). The rigorous results are compared with numerical calculations in several cases of interest.

  10. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  11. 3D Electromagnetic inversion using conjugate gradients

    SciTech Connect

    Newman, G.A.; Alumbaugh, D.L.

    1997-06-01

    In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.

  12. Stereo vision with distance and gradient recognition

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  13. Biogeochemistry of a temperate forest nitrogen gradient.

    PubMed

    Perakis, Steven S; Sinkhorn, Emily R

    2011-07-01

    Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant-soil-microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (U.S.A.). Surface mineral soil N (0-10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N.ha(-1) x yr(-1). Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for <20% of net N mineralization at low-N sites, increasing to 85-100% of net N mineralization at intermediate- and high-N sites. The ratio of net: gross N mineralization and nitrification increased along the gradient, indicating progressive saturation of microbial N demands at high soil N. Aboveground N uptake by plants increased asymptotically with net N mineralization to a peak of approximately 35 kg N.ha(-1) x yr(-1). Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil

  14. Microinstrument gradient-force optical trap.

    PubMed

    Collins, S D; Baskin, R J; Howitt, D G

    1999-10-01

    A micromachined fiber-optic trap is presented. The trap consists of four single-mode, 1064-nm optical intersection. The beam fibers mounted in a micromachined silicon and glass housing. Micromachining provides the necessary precision to align the four optical fibers so that the outputs have a common intersection forms a strong three-dimensional gradient-force trap with trapping forces comparable with that of optical tweezers. Characterization of the multibeam fiber trap is illustrated for capture of polystyrene microspheres, computer simulations of the trap stiffness, and experimental determination of the trapping forces.

  15. Generating Series for Nested Bethe Vectors

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Sergey; Pakuliak, Stanislav

    2008-11-01

    We reformulate nested relations between off-shell Uq(^glN) Bethe vectors as a certain equation on generating series of strings of the composed Uq(^glN) currents. Using inversion of the generating series we find a new type of hierarchical relations between universal off-shell Bethe vectors, useful for a derivation of Bethe equation. As an example of application, we use these relations for a derivation of analytical Bethe ansatz equations [Arnaudon D. et al., Ann. Henri Poincaré 7 (2006), 1217-1268, math-ph/0512037] for the parameters of universal Bethe vectors of the algebra Uq(^gl2).

  16. Theodolite-borne vector Overhauser magnetometer: DIMOVER

    NASA Astrophysics Data System (ADS)

    Sapunov, V.; Rasson, J.; Denisov, A.; Saveliev, D.; Kiselev, S.; Denisova, O.; Podmogov, Y.; Khomutov, S.

    2006-06-01

    This report covers results of the long-term research directed at developing an absolute vector proton magnetometer based on the switching of bias magnetic fields. The distinctive feature is the attempt of the installation of a miniature Overhauser sensor and optimized Garret solenoid directly on the telescope of the theodolite. Thus this design (Declination Inclination Modulus Overhauser magnetometer: DIMOVER) will complement the universally recognised DIflux absolute device by adding full vector measurement capability. Preliminary designs, which also can be interesting to the experts in vector proton magnetometers, are presented.

  17. Recursive algorithms for vector extrapolation methods

    NASA Technical Reports Server (NTRS)

    Ford, William F.; Sidi, Avram

    1988-01-01

    Three classes of recursion relations are devised for implementing some extrapolation methods for vector sequences. One class of recursion relations can be used to implement methods like the modified minimal polynomial extrapolation and the topological epsilon algorithm; another allows implementation of methods like minimal polynomial and reduced rank extrapolation; while the remaining class can be employed in the implementation of the vector E-algorithm. Operation counts and storage requirements for these methods are also discussed, and some related techniques for special applications are also presented. Included are methods for the rapid evaluations of the vector E-algorithm.

  18. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  19. Engineering targeted viral vectors for gene therapy.

    PubMed

    Waehler, Reinhard; Russell, Stephen J; Curiel, David T

    2007-08-01

    To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.

  20. Hard Exclusive Vector Meson Leptoproduction At HERMES

    SciTech Connect

    Golembiovskaya, M.

    2011-07-15

    The HERMES experiment at DESY, Hamburg collected a set of data on hard exclusive vector meson ({rho}{sup 0}{phi},{omega}) leptoproduction using the 27.6 GeV longitudinally polarized lepton beam of HERA accelerator and longitudinally or transversely polarized or unpolarized gas targets. Measurements of exclusive vector meson production provide access to the structure of the nucleon since the process can be described in terms of Generalized Parton Distributions (GPDs). An overview of the HERMES results on exclusive vector mesons production is presented.

  1. Robust vector quantization for noisy channels

    NASA Technical Reports Server (NTRS)

    Demarca, J. R. B.; Farvardin, N.; Jayant, N. S.; Shoham, Y.

    1988-01-01

    The paper briefly discusses techniques for making vector quantizers more tolerant to tranmsission errors. Two algorithms are presented for obtaining an efficient binary word assignment to the vector quantizer codewords without increasing the transmission rate. It is shown that about 4.5 dB gain over random assignment can be achieved with these algorithms. It is also proposed to reduce the effects of error propagation in vector-predictive quantizers by appropriately constraining the response of the predictive loop. The constrained system is shown to have about 4 dB of SNR gain over an unconstrained system in a noisy channel, with a small loss of clean-channel performance.

  2. A Vector Uniform Cramer-Rao Bound for SPECT System Design

    PubMed Central

    Meng, Ling-Jian; Li, Nan

    2016-01-01

    In this paper, we present the use of modified uniform Cramer-Rao type bounds (MUCRB) for the design of single photon emission tomography (SPECT) systems. The MUCRB is the lowest attainable total variance using any estimator of an unknown vector parameter, whose mean gradient matrix satisfies a given constraint. Since the mean gradient is closely related to local impulse function, the MUCRB approach can be used to evaluate the fundamental tradeoffs between spatial resolution and variance that are achievable with a given SPECT system design. As a possible application, this approach allows one to compare different SPECT system designs based on the optimum average resolution-variance tradeoffs that can be achieved across multiple control-points inside a region-of-interest. The formulation of the MUCRB allows detailed modelling of physical aspects of practical SPECT systems and requests only a modest computation load. It can be used as an analytical performance index for comparing different SPECT system or aperture designs.

  3. Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system

    NASA Astrophysics Data System (ADS)

    Tao, S.; Trzasko, J. D.; Gunter, J. L.; Weavers, P. T.; Shu, Y.; Huston, J., III; Lee, S. K.; Tan, E. T.; Bernstein, M. A.

    2017-01-01

    Due to engineering limitations, the spatial encoding gradient fields in conventional magnetic resonance imaging cannot be perfectly linear and always contain higher-order, nonlinear components. If ignored during image reconstruction, gradient nonlinearity (GNL) manifests as image geometric distortion. Given an estimate of the GNL field, this distortion can be corrected to a degree proportional to the accuracy of the field estimate. The GNL of a gradient system is typically characterized using a spherical harmonic polynomial model with model coefficients obtained from electromagnetic simulation. Conventional whole-body gradient systems are symmetric in design; typically, only odd-order terms up to the 5th-order are required for GNL modeling. Recently, a high-performance, asymmetric gradient system was developed, which exhibits more complex GNL that requires higher-order terms including both odd- and even-orders for accurate modeling. This work characterizes the GNL of this system using an iterative calibration method and a fiducial phantom used in ADNI (Alzheimer’s Disease Neuroimaging Initiative). The phantom was scanned at different locations inside the 26 cm diameter-spherical-volume of this gradient, and the positions of fiducials in the phantom were estimated. An iterative calibration procedure was utilized to identify the model coefficients that minimize the mean-squared-error between the true fiducial positions and the positions estimated from images corrected using these coefficients. To examine the effect of higher-order and even-order terms, this calibration was performed using spherical harmonic polynomial of different orders up to the 10th-order including even- and odd-order terms, or odd-order only. The results showed that the model coefficients of this gradient can be successfully estimated. The residual root-mean-squared-error after correction using up to the 10th-order coefficients was reduced to 0.36 mm, yielding spatial accuracy comparable to

  4. Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials.

    PubMed

    Doi, Knayo; Takeuchi, Yasuhiro

    2015-01-01

    Retrovirus vectors (gammaretroviral and lentiviral vectors) have been considered as promising tools to transfer therapeutic genes into patient cells because they can permanently integrate into host cellular genome. To treat monogenic, inherited diseases, retroviral vectors have been used to add correct genes into patient cells. Conventional gammaretroviral vectors achieved successful results in clinical trials: treated patients had therapeutic gene expression in target cells and had improved symptoms of diseases. However, serious side-effects of leukemia occurred, caused by retroviral insertional mutagenesis (IM). These incidences stressed the importance of monitoring vector integration sites in patient cells as well as of re-consideration on safer vectors. More recently lentiviral vectors which can deliver genes into non-dividing cells started to be used in clinical trials including neurological disorders, showing their efficacy. Vector integration site analysis revealed that lentiviruses integrate less likely to near promoter regions of oncogenes than gammaretroviruses and no adverse events have been reported in lentiviral vector-mediated gene therapy clinical trials. Therefore lentiviral vectors have promises to be applied to a wide range of common diseases in near future. For example, T cells from cancer patients were transduced to express chimeric T cell receptors recognizing their tumour cells enhancing patients' anti-cancer immunity.

  5. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  6. Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories

    NASA Astrophysics Data System (ADS)

    Ertürk, İ.; van Dommelen, J. A. W.; Geers, M. G. D.

    2009-11-01

    This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity models proposed by Evers et al. [2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52, 2379-2401; 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209-5230] and Bayley et al. [2006. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structure 43, 7268-7286; 2007. A three dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine 87, 1361-1378] (here referred to as Evers-Bayley type models), where a physical back stress plays the most important role and which are further extended here to deal with truly large deformations, and (ii) the thermodynamically consistent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin type model), where the energetic part of a higher order micro-stress is derived from a non-standard free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted from the definition of the back stresses of the improved Evers-Bayley type models. The possible defect energy forms that yield the derived physically based micro-stresses are discussed. The duality of both type of formulations is shown further by a comparison of the micro-boundary conditions. As a result, this paper provides a direct physical interpretation of the different terms present in Gurtin's model.

  7. The vector potential and stored energy of thin cosine (n{theta}) helical wiggler magnet

    SciTech Connect

    Caspi, S.

    1995-12-01

    Expressions for pure multipole field components that are present in helical devices have been derived from a current distribution on the surface of an infinitely thin cylinder of radius R. The strength of such magnetic fields varies purely as a Fourier sinusoidal series of the longitudinal coordinate Z in proportion to cos(n{theta}- {omega}{sub m}z), where {omega}{sub m} = (2m-1){pi}/L, L denotes the half-period and m = 1, 2, 3 etc. As an alternative to describing such field components as given by the negative gradient of a scalar potential function (Appendix A), one of course can derive these same fields as the curle of a vector potential function {rvec A}--specifically one for which {nabla} {times} {nabla} {times} {rvec A} = 0 and {nabla}{center_dot}{rvec A} = 0. It is noted that we seek a divergence-free vector that exhibits continuity in any of its components across the interface r = R, a feature that is free of possible concern when applying Stokes` theorem in connection with this form of vector potential. Alternative simpler forms of vector potential, that individually are divergence-free in their respective regions (r < R and r > R), do not exhibit full continuity on r = R and whose curl evaluations provide in these respective regions the correct components of magnetic field are not considered here. Such alternative forms must differ merely by the gradient of scalar functions that with the divergence-free property are required to be ``harmonic`` ({nabla}{sup 2}{Psi} = 0).

  8. Dropwise Condensation on a Radial Gradient Surface

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2013-11-01

    In transient dropwise condensation from steam onto a cool surface, distributions of drops evolve by nucleation, growth, and coalescence. This study examines how surface functionalization affects drop growth and coalescence. Surfaces are treated by silanization to deliver either a spatially uniform contact-angle (hydrophilic, neutral, and hydrophobic) or a radial gradient of contact-angles. The time evolution of number-density and associated drop-size distributions are reported. For a typical condensation experiment on a uniform angle surface, the number-density curves show two regimes: an initial increase in number-density as a result of nucleation and a subsequent decrease in number-density as a result of larger scale coalescence events. Without a removal mechanism, the fractional coverage, regardless of treatment, approaches unity. For the same angle-surface, the associated drop-size distributions progress through four different shapes along the growth curve. In contrast, for a radial gradient surface where removal by sweeping occurs, the number-density increases and then levels off to a value close to the maximum number-density that is well below unity coverage and only two shapes of distributions are observed. Implications for heat transfer will be discussed. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

  9. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  10. Sensitivity of magnetic field gradients over Fennoscandia

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2016-04-01

    Magnetic fields from forward calculations of global crustal or lithospheric models cannot be compared easily with spherical harmonic (SH) crustal field models derived from the satellite observations. The reason for this is, that the lithospheric field has a significant part in the low-degree spherical harmonics (n<14) that are dominated by the core field. These low-degree harmonics are commonly zeroed out to retrieve the lithospheric magnetic field. In addition, at satellite height far-field effects from sources outside a regional study affect the long-wavelength part of the magnetic field. Because magnetic field gradients are less sensitive to the long wavelength anomalies, they are also less affected by the far field. However, the gradients still contain information about deep lithospheric structures. We present sensitivity tests based on a synthetic model of the Fennoscandian lithosphere to validate the influence of induced and remanent magnetization in magnetic data at the height of airborne surveys and satellite missions. The use of airborne data and satellite data is complementary because, due to their different height, they are sensitive to different depth domains. To correctly account for global and local aspects of the lithospheric field, our analysis is based on surface discretization by tesseroids (spherical prisms).

  11. Pressure gradient induced generation of microbubbles

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2015-11-01

    It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.

  12. Spatial temperature gradients guide axonal outgrowth

    PubMed Central

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  13. Spatial temperature gradients guide axonal outgrowth

    NASA Astrophysics Data System (ADS)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  14. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  15. Functional evolution of a morphogenetic gradient

    PubMed Central

    Kwan, Chun Wai; Gavin-Smyth, Jackie; Ferguson, Edwin L; Schmidt-Ott, Urs

    2016-01-01

    Bone Morphogenetic Proteins (BMPs) pattern the dorsal-ventral axis of bilaterian embryos; however, their roles in the evolution of body plan are largely unknown. We examined their functional evolution in fly embryos. BMP signaling specifies two extraembryonic tissues, the serosa and amnion, in basal-branching flies such as Megaselia abdita, but only one, the amnioserosa, in Drosophila melanogaster. The BMP signaling dynamics are similar in both species until the beginning of gastrulation, when BMP signaling broadens and intensifies at the edge of the germ rudiment in Megaselia, while remaining static in Drosophila. Here we show that the differences in gradient dynamics and tissue specification result from evolutionary changes in the gene regulatory network that controls the activity of a positive feedback circuit on BMP signaling, involving the tumor necrosis factor alpha homolog eiger. These data illustrate an evolutionary mechanism by which spatiotemporal changes in morphogen gradients can guide tissue complexity. DOI: http://dx.doi.org/10.7554/eLife.20894.001 PMID:28005004

  16. Intergenerational and socioeconomic gradients of child obesity.

    PubMed

    Costa-Font, Joan; Gil, Joan

    2013-09-01

    Can the rise in obesity among children be attributed to the intergenerational transmission of parental influences? Does this trend affect the influence of parent's socioeconomic status on obesity? This paper documents evidence of an emerging social gradient of obesity in pre-school children resulting from a combination of both socio-economic status and less intensive childcare associated with maternal employment, when different forms of intergenerational transmission are controlled for. We also estimate and decompose income related inequalities in child obesity. We take advantage of a uniquely constructed dataset from Spain that contains records form 13,358 individuals for a time period (years 2003-2006) in which a significant spike in the growth of child obesity was observed. Our results suggest robust evidence of both socioeconomic and intergenerational gradients. Results are suggestive of a high income effect in child obesity, alongside evidence that income inequalities have doubled in just three years with a pure income effect accounting for as much as 72-66% of these income inequality estimates, even when intergenerational transmission is accounted for. Although, intergenerational transmission does not appear to be gender specific, when accounted for, mother's labour market participation only explains obesity among boys but not among girls. Hence, it appears income and parental influences are the central determinants of obesity among children.

  17. Preparation and characterization of gradient polymer films

    SciTech Connect

    Smith, S.C.

    1987-01-01

    Gradient polymers are multicomponent polymers whose chemical constitution varies with depth in the sample. Although these polymers may possess unique mechanical, optical, and barrier properties they remain relatively unexplored. This work is a study of the preparation of gradient polymers by sequential exposure of films to a diffusing monomer followed by electron beam irradiation. Initial experiments involved immersion of poly(vinyl chloride) (PVC) films in styrene or n-butyl methacrylate (BMA) for various time periods followed by irradiation with 1 or 10 megarads of accelerated electrons. A significant amount of poly(n-butyl methacrylate) (PBMA) formed in PVC/BMA systems, but little polystyrene could be found in the PVC/styrene films. A second set of experiments involved immersion of PVC and polyethylene (PE) films in BMA for 20, 40, 60, and 720 minutes followed by irradiation with 10 megarads of electrons. These films were then characterized using optical microscopy, quantitative transmission Fourier transform infrared spectroscopy (FTIR), and a depth profiling procedure based on quantitative attenuated total reflection (ATR) FTIR. It was concluded that the mechanism of PBMA formation in the polyethylene films was a result of events immediately following irradiation. Atmospheric oxygen diffusing into irradiated films trapped free radicals at the film surfaces. This was followed by storage in an evacuated desiccator where unintentional exposure to BMA vapor took place. This BMA reacted with free radicals that remained within the film cores, polymerizing to PBMA.

  18. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  19. Long gradient mode and large-scale structure observables

    NASA Astrophysics Data System (ADS)

    Allahyari, Alireza; Firouzjaee, Javad T.

    2017-03-01

    We extend the study of long-mode perturbations to other large-scale observables such as cosmic rulers, galaxy-number counts, and halo bias. The long mode is a pure gradient mode that is still outside an observer's horizon. We insist that gradient-mode effects on observables vanish. It is also crucial that the expressions for observables are relativistic. This allows us to show that the effects of a gradient mode on the large-scale observables vanish identically in a relativistic framework. To study the potential modulation effect of the gradient mode on halo bias, we derive a consistency condition to the first order in gradient expansion. We find that the matter variance at a fixed physical scale is not modulated by the long gradient mode perturbations when the consistency condition holds. This shows that the contribution of long gradient modes to bias vanishes in this framework.

  20. Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation.

    PubMed

    Yamane, Ikko; Sasaki, Hiroaki; Sugiyama, Masashi

    2016-07-01

    Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering.

  1. Insects as vectors: systematics and biology.

    PubMed

    Rodhain, F

    2015-04-01

    Among the many complex relationships between insects and microorganisms such as viruses, bacteria and parasites, some have resulted in the establishment of biological systems within which the insects act as a biological vector for infectious agents. It is therefore advisable to understand the identity and biology of these vectors in depth, in order to define procedures for epidemiological surveillance and anti-vector control. The following are successively reviewed in this article: Anoplura (lice), Siphonaptera (fleas), Heteroptera (bugs: Cimicidae, Triatoma, Belostomatidae), Psychodidae (sandflies), Simuliidae (black flies), Ceratopogonidae (biting midges), Culicidae (mosquitoes), Tabanidae (horseflies) and Muscidae (tsetse flies, stable flies and pupipara). The authors provide a rapid overview of the morphology, systematics, development cycle and bio-ecology of each of these groups of vectors. Finally, their medical and veterinary importance is briefly reviewed.

  2. Electron-Vector Potential Interaction Hamiltonian

    SciTech Connect

    Ritchie, B

    2003-03-27

    The authors investigate an ambiguity inherent in the definition of the vector potential used in electron-electromagnetic field interactions. Two cases, Zeeman effect and Compton scattering, are studied.

  3. [Gene engineering of the adenovirus vector].

    PubMed

    Kondo, Saki; Terashima, Miho; Fukuda, Hiromitsu; Saito, Izumu; Kanegae, Yumi

    2007-06-01

    The adenovirus vector is very attractive tool not only for the gene therapy but also for the basic sciences. However, because a construction method of this vector had been complex, only limited scientists had constructed and enjoyed the benefits. Recently, various methods were developed and the researchers came to be able to choose an efficient method, which is the COS-TPC method, or a concise procedure, which is the intact-genome transfection method (in vitro ligation method). Here we described not only these methods but also new method to construct the various Ads simultaneously using the recombinase-mediated cassette exchange (RMCE) by the site-specific recombinase. And also we want to refer the possibility to the worth of the vector, especially the vector of the expression-switch.

  4. VEST: Abstract vector calculus simplification in Mathematica

    NASA Astrophysics Data System (ADS)

    Squire, J.; Burby, J.; Qin, H.

    2014-01-01

    We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce three-dimensional scalar and vector expressions of a very general type to a well defined standard form. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by reduction, subsequently applying these to simplify large expressions. In a companion paper Burby et al. (2013) [12], we employ VEST in the automation of the calculation of high-order Lagrangians for the single particle guiding center system in plasma physics, a computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations.

  5. Gamow vectors explain the shock profile.

    PubMed

    Braidotti, Maria Chiara; Gentilini, Silvia; Conti, Claudio

    2016-09-19

    The description of shock waves beyond the shock point is a challenge in nonlinear physics and optics. Finding solutions to the global dynamics of dispersive shock waves is not always possible due to the lack of integrability. Here we propose a new method based on the eigenstates (Gamow vectors) of a reversed harmonic oscillator in a rigged Hilbert space. These vectors allow analytical formulation for the development of undular bores of shock waves in a nonlinear nonlocal medium. Experiments by a photothermal induced nonlinearity confirm theoretical predictions: the undulation period as a function of power and the characteristic quantized decays of Gamow vectors. Our results demonstrate that Gamow vectors are a novel and effective paradigm for describing extreme nonlinear phenomena.

  6. Neural net approach to predictive vector quantization

    NASA Astrophysics Data System (ADS)

    Mohsenian, Nader; Nasrabadi, Nasser M.

    1992-11-01

    A new predictive vector quantization (PVQ) technique, capable of exploring the nonlinear dependencies in addition to the linear dependencies that exist between adjacent blocks of pixels, is introduced. Two different classes of neural nets form the components of the PVQ scheme. A multi-layer perceptron is embedded in the predictive component of the compression system. This neural network, using the non-linearity condition associated with its processing units, can perform as a non-linear vector predictor. The second component of the PVQ scheme vector quantizes (VQ) the residual vector that is formed by subtracting the output of the perceptron from the original wave-pattern. Kohonen Self-Organizing Feature Map (KSOFM) was utilized as a neural network clustering algorithm to design the codebook for the VQ technique. Coding results are presented for monochrome 'still' images.

  7. Vector Potential Generation for Numerical Relativity Simulations

    NASA Astrophysics Data System (ADS)

    Silberman, Zachary; Faber, Joshua; Adams, Thomas; Etienne, Zachariah; Ruchlin, Ian

    2017-01-01

    Many different numerical codes are employed in studies of highly relativistic magnetized accretion flows around black holes. Based on the formalisms each uses, some codes evolve the magnetic field vector B, while others evolve the magnetic vector potential A, the two being related by the curl: B=curl(A). Here, we discuss how to generate vector potentials corresponding to specified magnetic fields on staggered grids, a surprisingly difficult task on finite cubic domains. The code we have developed solves this problem in two ways: a brute-force method, whose scaling is nearly linear in the number of grid cells, and a direct linear algebra approach. We discuss the success both algorithms have in generating smooth vector potential configurations and how both may be extended to more complicated cases involving multiple mesh-refinement levels. NSF ACI-1550436

  8. Students' difficulties with vector calculus in electrodynamics

    NASA Astrophysics Data System (ADS)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  9. Integrated epidemiology for vector-borne zoonoses.

    PubMed

    Wardrop, Nicola A

    2016-02-01

    The development and application of interventions for the control of vector-borne zoonoses requires broad understanding of epidemiological linkages between vector, animal infection and human infection. However, there are significant gaps in our understanding of these linkages and a lack of appropriate data poses a considerable barrier to addressing this issue. A move towards strengthened surveillance of vectors and disease in both animal and human hosts, in combination with linked human-animal surveys, could form the backbone for epidemiological integration, enabling explicit assessment of the animal-human (and vector) interface, and subsequent implications for spill-over to human populations. Currently available data on the spatial distribution of human African trypanosomiasis allow an illustrative example.

  10. A Flexible Turbulent Vector Field Generator

    NASA Astrophysics Data System (ADS)

    Benassi, A.; Davis, A.

    2004-12-01

    Analysis and generation of turbulent vector fields is a necessity in many areas, such as Atmospheric Science. A candidate model of vector field must be flexible enough to tune some features, such as the spacial distribution of vortices, sinks and sources, according to physical measures. To achieve that goal, we propose a model that depends upon a given matricial function called "topolet" and a law of random vectors family. This model has a hierarchical structure. Its spinal column is a tree: the encoding tree of the domain where the vector field lives. The sets of vortices, sinks and sources are driven by some Bernouilli subtrees, directly giving their fractal dimension. At each node of the tree is attached a rate of energy loose giving the spectral slope. All those quantities are independantly identifiable on the base of mathematical proofs. A primitive version of this model have been proposed for generating clouds.

  11. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  12. Extracting Road Vector Data from Raster Maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi; Knoblock, Craig A.

    Raster maps are an important source of road information. Because of the overlapping map features (e.g., roads and text labels) and the varying image quality, extracting road vector data from raster maps usually requires significant user input to achieve accurate results. In this paper, we present an accurate road vectorization technique that minimizes user input by combining our previous work on extracting road pixels and road-intersection templates to extract accurate road vector data from raster maps. Our approach enables GIS applications to exploit the road information in raster maps for the areas where the road vector data are otherwise not easily accessible, such as the countries of the Middle East. We show that our approach requires minimal user input and achieves an average of 93.2% completeness and 95.6% correctness in an experiment using raster maps from various sources.

  13. VEST: Abstract Vector Calculus Simplification in Mathematica

    SciTech Connect

    J. Squire, J. Burby and H. Qin

    2013-03-12

    We present a new package, VEST (Vector Einstein Summation Tools), that performs abstract vector calculus computations in Mathematica. Through the use of index notation, VEST is able to reduce scalar and vector expressions of a very general type using a systematic canonicalization procedure. In addition, utilizing properties of the Levi-Civita symbol, the program can derive types of multi-term vector identities that are not recognized by canonicalization, subsequently applying these to simplify large expressions. In a companion paper [1], we employ VEST in the automation of the calculation of Lagrangians for the single particle guiding center system in plasma physics, a computation which illustrates its ability to handle very large expressions. VEST has been designed to be simple and intuitive to use, both for basic checking of work and more involved computations. __________________________________________________

  14. Vector resonances and electromagnetic nucleon structure

    SciTech Connect

    Robert Williams; Siegfried Krewald; Kevin Linen

    1995-02-01

    Motivated by new, precise magnetic proton form factor data in the timelike region, a hybrid vector meson dominance (hVMD) formalism is employed to investigate the significance of excited vector meson resonances on electromagnetic nucleon structure. We find that the rho (1700), omega (1600), and two previously unobserved states are required to reproduce the local structure seen in the new LEAR data just above the pp-bar threshold. We also investigate sensitivity to the phi meson. The model dependence of our result is tested by introducing an alternative model which couples the isoscalar vector meson states to a hypothetical vector glueball resonance. We obtain nearly identical results from both models, except for GnE(q2) in the spacelike region which is very sensitive to the glueball mass and the effective phi NN coupling.

  15. TWSVR: Regression via Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh

    2016-02-01

    Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets.

  16. Linear prediction of stationary vector sequences

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    The class of all linear predictors of minimal order for a stationary vector-valued process is specified in terms of linear transformations on the associated Hankel covariance matrix. Two particular transformations, yielding computationally efficient construction schemes, are proposed.

  17. Viral vector-based influenza vaccines

    PubMed Central

    de Vries, Rory D.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors. PMID:27455345

  18. Vector Analysis of Human Limb Motion.

    ERIC Educational Resources Information Center

    Laferriere, Joseph E.

    1994-01-01

    Uses vectors to illustrate movement of the human appendicular structures to help students visualize the interaction of the various muscles and understand how a small number of muscles can affect movement in a potentially infinite number of directions. (ZWH)

  19. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  20. Ontology for Vector Surveillance and Management

    PubMed Central

    LOZANO-FUENTES, SAUL; BANDYOPADHYAY, ARITRA; COWELL, LINDSAY G.; GOLDFAIN, ALBERT; EISEN, LARS

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an “umbrella” for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a “term tree” to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage