Sample records for bidentate ligand coordinated

  1. Strategies, linkers and coordination polymers for high-performance sorbents

    DOEpatents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  2. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  3. Polymer complexes. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes.

    PubMed

    El-Sonbati, A Z; El-Bindary, A A; Diab, M A

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  4. Syntheses and structural characterization of mercury (II) coordination polymers with neutral bidentate flexible pyrazole-based ligands

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Salavati, Hossein; Asadi, Amin; Gajda, Roman; Woźniak, Krzysztof

    2016-03-01

    Mercury(II) coordination compounds [Hg(μ-bbd)(μ-SCN)4]n(1) and [Hg(bpp)(SCN)2] (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethypyrazol-1-yl)butane (bbd) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp), NCS- ligand and appropriate mercury(II) salts. Compound 1 forms a polymeric network with moieties which are connected by SCN groups and the mercury ions present as HgN3S2 trigonal bipyramides. The crystal structure of 2 is build of monomers and the mercury(II) ion adopts an HgN2S2 tetrahedral geometry. In the complex 1, each bbd acts as bridging ligand connecting Hg(μ-SCN)4 ions, while in the complex 2, the bpp ligand is coordinated to an mercury(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Moreover, in the tetrahedral structure of 2, the neutral molecules form a 1D chain structure through the C-H···N hydrogen bonds, whereas in 1 no hydrogen bonds are observed. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction.

  5. First-row transition metal complexes of ENENES ligands: the ability of the thioether donor to impact the coordination chemistry

    DOE PAGES

    Dub, Pavel A.; Scott, Brian L.; Gordon, John C.

    2015-12-21

    We report the reactions of two variants of ENENES ligands, E(CH 2) 2NH(CH) 2SR, where E = 4-morpholinyl, R = Ph (a), Bn (b) with MCl 2 (M = Mn, Fe, Co, Ni and Cu) in coordinating solvents (MeCN, EtOH) affords isolable complexes, whose magnetic susceptibility measurements suggest paramagnetism and a high-spin formulation. X-Ray diffraction studies of available crystals show that the ligand coordinates to the metal in either a bidentate κ 2[N,N'] or tridentate κ 3[N,N',S] fashion, depending on the nature of ligand and/or identity of the metal atom. In the case of a less basic SPh moiety, amore » bidentate coordination mode was identified for harder metals (Mn, Fe), whereas a tridentate coordination mode was identified in the case of a more basic SBn moiety with softer metals (Ni, Cu). In the intermediate case of Co, ligands a and b coordinate via κ 2[N,N'] and κ 3[N,N',S] coordination modes, which can be conveniently predicted by DFT calculations. Finally, for the softest metal (Cu), ligand a coordinates in a κ 3[N,N',S] fashion.« less

  6. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.

    PubMed

    Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P

    2010-10-21

    The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.

  7. Calibrating the coordination chemistry tool chest: metrics of bi- and tridentate ligands.

    PubMed

    Aguilà, David; Escribano, Esther; Speed, Saskia; Talancón, Daniel; Yermán, Luis; Alvarez, Santiago

    2009-09-07

    Bi- and multidentate ligands form part of the tools commonly used for designing coordination and supramolecular complexes with desired stereochemistries. Parameters and concepts usually employed include the normalized bite of bidentate ligands, their cis- or trans-coordinating ability, their rigidity or flexibility, or the duality of some ligands that can act in chelating or dinucleating modes. In this contribution we present a structural database study of over one hundred bi- and tridentate ligands that allows us to parametrize their coordinating properties and discuss the relevance of such parameters for the choice of coordination polyhedron or coordination sites.

  8. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-Qin, E-mail: songxq@mail.lzjtu.cn; Lei, Yao-Kun; Wang, Xiao-Run

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversitiesmore » indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.« less

  9. Syntheses and structural characterization of iron(II) and copper(II) coordination compounds with the neutral flexible bidentate N-donor ligands

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Lalegani, Arash; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2014-08-01

    Two new coordination compounds [Fe(bib)2(N3)2]n(1) and [Cu2(bpp)2(N3)4] (2) with azide and flexible ligands 1,4-bis(imidazolyl)butane (bib) and 1,3-bis(3,5-dimethylpyrazolyl)propane (bpp) were prepared and structurally characterized. In the 2D network structure of 1, the iron(II) ion lies on an inversion center and exhibits an FeN6 octahedral arrangement while in the dinuclear structure of 2, the copper(II) ion adopts an FeN5 distorted square pyramid geometry. In the complex 1, each μ2-bib acts as bridging ligand connecting two adjacent iron(II) ions while in the complex 2, the bpp ligand is coordinated to copper(II) ion in a cyclic-bidentate fashion forming an eight-membered metallocyclic ring. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analysis of polymer 1 was also studied.

  10. Homoleptic ligands vs heteroleptic ligands on coordination polymerizations: Construction and properties of silver(I) coordination polymers containing dialkylbis(4-pyridy)silanes

    NASA Astrophysics Data System (ADS)

    Park, Minwoo; Jang, Jaeseong; Moon, So Yun; Jung, Ok-Sang

    2014-03-01

    Investigations into pure bidentate ligand vs mixed bidentate ligands on self-assembly of AgPF6 with the respective L1, L2, L3, L1/L2, L1/L3, and L2/L3 (L1 = diethylbis(4-pyridyl)silane; L2 = ethylmethylbis(4-pyridyl)silane; L3 = cyclotetramethylenebis(4-pyridyl)silane) were carried out. The self-assembly reactions of AgPF6 with the respective ligand system produce desirable homoleptic or heteroleptic silver(I) coordination polymers. [Ag(L1)2](PF6) gives rise to a tubular loop chain whereas the other five products lead to a twofold interpenetration diamonoid structure. [Ag(L1)2](PF6) shows a strong blue luminescence at 453 nm (λex = 270 nm), which is useful to recognize alcohols. All products were characterized by thermal analyses, and in particular, calcination of [Ag(L3)2](PF6)ṡCH3OH at 600 °C finally produces silver(0) microcrystalline morphology.

  11. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  12. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  13. Metallosupramolecular Architectures Formed with Ferrocene-Linked Bis-Bidentate Ligands: Synthesis, Structures, and Electrochemical Studies.

    PubMed

    Findlay, James A; McAdam, C John; Sutton, Joshua J; Preston, Dan; Gordon, Keith C; Crowley, James D

    2018-04-02

    The self-assembly of ligands of different geometries with metal ions gives rise to metallosupramolecular architectures of differing structural types. The rotational flexibility of ferrocene allows for conformational diversity, and, as such, self-assembly processes with 1,1'-disubstituted ferrocene ligands could lead to a variety of interesting architectures. Herein, we report a small family of three bis-bidentate 1,1'-disubstituted ferrocene ligands, functionalized with either 2,2'-bipyridine or 2-pyridyl-1,2,3-triazole chelating units. The self-assembly of these ligands with the (usually) four-coordinate, diamagnetic metal ions Cu(I), Ag(I), and Pd(II) was examined using a range of techniques including 1 H and DOSY NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, X-ray crystallography, and density functional theory calculations. Additionally, the electrochemical properties of these redox-active metallosupramolecular assemblies were examined using cyclic voltammetry and differential pulse voltammetry. The copper(I) complexes of the 1,1'-disubstituted ferrocene ligands were found to be coordination polymers, while the silver(I) and palladium(II) complexes formed discrete [1 + 1] or [2 + 2] metallomacrocyclic architectures.

  14. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  15. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallejos, Javier; Brito, Iván, E-mail: ivanbritob@yahoo.com; Cárdenas, Alejandro

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differencesmore » in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.« less

  16. Bonding coordination requirements induce antiferromagnetic coupling between m-phenylene bridged o-iminosemiquinonato diradicals.

    PubMed

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo; Vaz, Maria G F

    2003-03-10

    Triply bridged bis-iminodioxolene dinuclear metal complexes of general formula M(2)(diox-diox)(3), with M = Co, Fe, have been synthesized using the bis-bidentate ligand N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,3-phenylenediamine. These complexes were characterized by means of X-ray, HF-EPR, and magnetic measurements. X-ray structures clearly show that both complexes can be described as containing three bis-iminosemiquinonato ligands acting in a bis-bidentate manner toward tripositive metal ions. The magnetic data show that both of these complexes have singlet ground states. The observed experimental behavior indicates the existence of intraligand antiferromagnetic interactions between the three pairs of m-phenylene units linked iminosemiquinonato radicals (J = 21 cm(-)(1) for the cobalt complex and J = 11 cm(-)(1) for the iron one). It is here suggested that the conditions for the ferromagnetic coupling that is expected to characterize the free diradical ligand are no longer satisfied because of the severe torsional distortion induced by the metal coordination.

  17. Solid state isostructural behavior and quantified limiting substitution kinetics in Schiff-base bidentate ligand complexes fac-[Re(O,N-Bid)(CO)3(MeOH)](n).

    PubMed

    Brink, Alice; Visser, Hendrik G; Roodt, Andreas

    2014-12-01

    A range of N,O-donor atom salicylidene complexes of the type fac-[M(O,N-Bid)(CO)3(L)](n) (O,N-Bid = anionic N,O-bidentate ligands; L = neutral coordinated ligand) have been studied. The unique feature of the complexes which crystallize in a monoclinic isostructural space group for complexes containing methanol in the sixth position (L = MeOH) is highlighted. The reactivity and stability of the complexes were evaluated by rapid stopped-flow techniques, and the methanol substitution by a range of pyridine type ligands indicates significant activation by the N,O-salicylidene type of bidentate ligands as observed from the variation in the second-order rate constants. In particular, following the introduction of the sterically demanding and electron rich cyclohexyl salicylidene moiety on the bidentate ligand, novel limiting kinetic behavior is displayed by all entering ligands, thus enabling a systematic probe and manipulation of the limiting kinetic constants. Clear evidence of an interchange type of intimate mechanism for the methanol substitution is produced. The equilibrium and rate constants (25 °C) for the two steps in the dissociative interchange mechanism for methanol substitution in fac-[Re(Sal-Cy)(CO)3(MeOH)] (5) by the pyridine type ligands 3-chloropyridine, pyridine, 4-picoline, and DMAP are k3 (s(-1)), 40 ± 4, 13 ± 2, 10.4 ± 0.7, and 2.11 ± 0.09, and K2 (M(-1)), 0.13 ± 0.01, 0.21 ± 0.03, 0.26 ± 0.02, and 1.8 ± 0.1, respectively.

  18. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  19. Investigation on biomolecular interactions of nickel(II) complexes with monoanionic bidentate ligands

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Sethupathi, Murugan; Ojwach, Stephen O.; Sengottuvelan, Nallathambi

    2018-01-01

    Reactions of monoanionic bidentate ligands 5-methylsalicylaldehyde (5-msal), 5-bromosalicylaldehyde (5-brsal), 5-nitrosalicylaldehyde (5-nsal) and 2-hydroxy-1-naphthaldehyde (2-hnap) with nickel perchlorate hexahydrate produced nickel(II) complexes 1-4, respectively. Single crystal X-ray analyses of complexes 1 and 2 confirmed bidentate mode of the ligands with O˄O coordination to give square planar geometry around nickel atoms. Complexes 1-4 showed one quasi-reversible redox peak at cathodic region (-0.67 to -0.80 V) and one redox peak at anodic region (+1.08 to +1.44 V) assignable to the Ni(II)/Ni(I) and Ni(II)/Ni(III) redox couples, respectively. The complexes exhibited good bovine serum albumin (BSA) binding abilities with a maximum binding constant of 1.96 × 105 M-1. The binding of complexes with calf thymus DNA (ctDNA) showed that the binding affinity is consistent with an increase in steric bulk of the ligands. The nuclease activity of the complexes showed efficient oxidative cleavage in the presence of hydrogen peroxide as an oxidizing agent. The complexes showed higher zone of inhibition when screened for antimicrobial activity against bacteria and human pathogenic fungi.

  20. Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone-oxime ligand derived from egonol

    NASA Astrophysics Data System (ADS)

    Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin

    2015-04-01

    A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.

  1. [1,3-Bis(diphenyl-phosphino)pentane-κP,P']tetra-carbonyl-chromium(0).

    PubMed

    Shawkataly, Omar Bin; Thangadurai, Daniel T; Pankhi, Mohd Aslam A; Shahinoor Dulal Islam, S M; Fun, Hoong-Kun

    2009-02-04

    In the title compound, [Cr(C(29)H(30)P(2))(CO)(4)], the Cr atom is octa-hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr-P and Cr-C bond lengths are 2.377 and 1.865 Å, respectively.

  2. Rational Ligand Design for U(VI) and Pu(IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szigethy, Geza

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interactionmore » of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation, these ligands exhibited increased uranyl affinity compared to bis-Me-3,2-HOPO ligands. This result is due in part to their increased denticity, but is primarily the result of the presence of the TAM moiety. In an effort to explore the relatively unexplored coordination chemistry of Pu(IV) with bidentate moieties, a series of Pu(IV) complexes were also crystallized using bidentate hydroxypyridinone and hydroxypyrone ligands. The geometries of these complexes are compared to that of the analogous Ce(IV) complexes. While in some cases these showed the expected structural similarities, some ligand systems led to significant coordination changes. A series of crystal structure analyses with Ce(IV) indicated that these differences are most likely the result of crystallization condition differences and solvent inclusion effects.« less

  3. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  4. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  5. A gallium(III) Schiff base-curcumin complex that binds to amyloid-β plaques.

    PubMed

    Lange, Jaclyn L; Hayne, David J; Roselt, Peter; McLean, Catriona A; White, Jonathan M; Donnelly, Paul S

    2016-09-01

    Gallium-68 is a positron-emitting isotope that can be used in positron-emission tomography imaging agents. Alzheimer's disease is associated with the formation of plaques in the brain primarily comprised of aggregates of a 42 amino acid protein called amyloid-β. With the goal of synthesising charge neutral, low molecular weight, lipophilic gallium complexes with the potential to cross the blood-brain barrier and bind to Aβ plaques we have used an ancillary tetradentate N 2 O 2 Schiff base ligand and the β-diketone curcumin as a bidentate ligand to give a six-coordinate Ga 3+ complex. The tetradentate Schiff base ligand adopts the cis-β configuration with deprotonated curcumin acting as a bidentate ligand. The complex binds to amyloid-β plaques in human brain tissue and it is possible that extension of this chemistry to positron-emitting gallium-68 could provide useful imaging agents for Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [1,3-Bis(diphenyl­phosphino)pentane-κ2 P,P′]tetra­carbonyl­chromium(0)

    PubMed Central

    Shawkataly, Omar bin; Thangadurai, Daniel T.; Pankhi, Mohd. Aslam A.; Shahinoor Dulal Islam, S. M.; Fun, Hoong-Kun

    2009-01-01

    In the title compound, [Cr(C29H30P2)(CO)4], the Cr atom is octa­hedrally coordinated by four carbonyl ligands and one bidentate phosphine ligand, which is bounded as a chelate in a cis position. The average Cr—P and Cr—C bond lengths are 2.377 and 1.865 Å, respectively. PMID:21582044

  7. Structural model of dioxouranium(VI) with hydrazono ligands.

    PubMed

    Mubarak, Ahmed T

    2005-04-01

    Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of OUO groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the UO bond distances were calculated. The bond distances of these complexes were also investigated.

  8. Structural model of dioxouranium(VI) with hydrazono ligands

    NASA Astrophysics Data System (ADS)

    Mubarak, Ahmed T.

    2005-04-01

    Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of O sbnd U sbnd O groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the U sbnd O bond distances were calculated. The bond distances of these complexes were also investigated.

  9. cis-Bis[2-(1,3-benzothia­zol-2-yl)-1-(4-fluoro­phen­yl)ethen­yl](pentane-2,4-dionato-κ2 O,O′)iridium(III)

    PubMed Central

    Xiao, Guo-Yong; Lei, Peng; Chi, Hai-Jun; Hu, Zhi-Zhi; Li, Xiao

    2009-01-01

    In the title compound, [Ir(C15H9FNS)2(C5H7O2)], the Ir atom is hexa­coordinated by three chelating ligands, with two cyclo­metalated 2-(1,3-benzothia­zol-2-yl)-1-(4-fluoro­phen­yl)ethenyl ligands showing N,C-bidentate coordination and an O,O′-bidenate pentane-2,4-dionate anion, thereby forming a distorted octa­hedral enviroment. PMID:21582377

  10. cis-Bis(O-methyl-dithio-carbonato-κ(2) S,S')bis-(tri-phenyl-phosphane-κP)ruthenium(II).

    PubMed

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the Ru(II) atom is in a distorted octa-hedral coordination by two xanthate anions (CH3OCS2) and two tri-phenyl-phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the Ru(II) atom with two slightly different Ru-S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C-H⋯O and C-H⋯π inter-actions.

  11. Influence of bidentate ligand donor types on the formation and stability in 2 + 1 fac-[MI(CO)3]+ (M = Re, 99mTc) complexes.

    PubMed

    Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D

    2017-01-24

    In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.

  12. Influence of Bidentate Ligand Donor Types on the Formation and Stability in 2+1 fac-[MI(CO)3]+ (M = Re, 99mTc) Complexes

    PubMed Central

    Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.

    2017-01-01

    In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466

  13. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals.

    PubMed

    Zayed, M A; El-Dien, F A Nour; Mohamed, Gehad G; El-Gamel, Nadia E A

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or dl-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  14. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  15. Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05551f Click here for additional data file.

    PubMed Central

    Cano, I.; Márquez, A.; Baquero, E. A.; Tricard, S.; Cusinato, L.; del Rosal, I.; Poteau, R.; Coppel, Y.; Philippot, K.; Chaudret, B.

    2017-01-01

    Ligand control of metal nanoparticles (MNPs) is rapidly gaining importance as ligands can stabilize the MNPs and regulate their catalytic properties. Herein we report the first example of Pt NPs ligated by imidazolium-amidinate ligands that bind strongly through the amidinate anion to the platinum surface atoms. The binding was established by 15N NMR spectroscopy, a precedent for nitrogen ligands on MNPs, and XPS. Both monodentate and bidentate coordination modes were found. DFT showed a high bonding energy of up to –48 kcal mol–1 for bidentate bonding to two adjacent metal atoms, which decreased to –28 ± 4 kcal mol–1 for monodentate bonding in the absence of impediments by other ligands. While the surface is densely covered with ligands, both IR and 13C MAS NMR spectra proved the adsorption of CO on the surface and thus the availability of sites for catalysis. A particle size dependent Knight shift was observed in the 13C MAS NMR spectra for the atoms that coordinate to the surface, but for small particles, ∼1.2 nm, it almost vanished, as theory for MNPs predicts; this had not been experimentally verified before. The Pt NPs were found to be catalysts for the hydrogenation of ketones and a notable ligand effect was observed in the hydrogenation of electron-poor carbonyl groups. The catalytic activity is influenced by remote electron donor/acceptor groups introduced in the aryl-N-substituents of the amidinates; p-anisyl groups on the ligand gave catalysts several times faster the ligand containing p-chlorophenyl groups. PMID:28451359

  16. Infrared Multiple Photon Dissociation Spectroscopy of Sodium and Potassium Chlorate Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan P. Dain; Christopher M. Leavitt; Jos Oomens

    2010-01-01

    The structures of gas-phase, metal chlorate anions with the formula [M(ClO3)2]-, M=Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species to those predicted by density functional theory and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO3)2]-. However, for [K(ClO3)2]- the best agreement between experimental and theoretical spectra is obtained frommore » a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6-311+g(3df) level of theory.« less

  17. Infrared multiple photon dissociation spectroscopy of sodium and potassium chlorate anions.

    PubMed

    Dain, Ryan P; Leavitt, Christopher M; Oomens, Jos; Steill, Jeffrey D; Groenewold, Gary S; Van Stipdonk, Michael J

    2010-01-01

    The structures of gas-phase, metal chlorate anions with the formula [M(ClO(3))(2)](-), M = Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species with those predicted by density functional theory (DFT) and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO(3))(2)](-). However, for [K(ClO(3))(2)](-) the best agreement between experimental and theoretical spectra is obtained from a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6-311+g(3df) level of theory. Copyright 2009 John Wiley & Sons, Ltd.

  18. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  19. Synthesis and Crystal Structure of Dibromido{2-[(4-tert-butylmethylphenyl) iminomethyl]pyridine-κ2 N, N'}Zinc

    NASA Astrophysics Data System (ADS)

    Khalaj, M.; Ghazanfarpour-Darjani, M.; Seftejani, F. B.; Lalegani, A.

    2017-12-01

    The title compound [Zn( dip)Br2] was synthesized using the Schiff base bidentate ligand (E)-4- tert-butyl- N-(pyridine-2-ylmethylene)benzeneamine ( dip) and zinc(II) bromide salts. It has been characterized by elemental analysis, X-ray diffraction, and optical spectroscopy. The X-ray diffraction analysis demonstrates that in this structure, the zinc(II) ion is located on an inversion center and exhibits a ZnN2Br2 tetrahedral geometry. In this structure the dip ligand is coordinated with zinc(II) ion in a cyclic-bidentate fashion forming a five-membered metallocyclic ring. The compound crystallizes in the monoclinic sp. gr. P21/ m with a = 9.2700(13) Å, b = 7.6128(11) Å, c = 12.3880(17) Å, and β = 97.021(3)°.

  20. Supramolecular structures for determination and identification of the bond lengths in novel uranyl complexes from their infrared spectra

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; Morgan, Sh. M.; Seyam, H. A.

    2018-02-01

    Novel dioxouranium (VI) heterochelates with neutral bidentate compounds (Ln) have been synthesized. The ligands and the heterochelates [UO2(Ln)2(O2NO)2] were confirmed and characterized by elemental analysis, 1H NMR, UV.-Vis, IR, mass spectroscopy, X-ray diffraction and thermogravimetric analysis (TGA). IR spectral data suggest that the molecules of the Schiff base are coordinated to the central uranium atom (ON donor). The nitrato groups are coordinated as bidentate ligands. The thermodynamic parameters were calculated using Coats-Redfern and Horowitz-Metzger methods. The ligands (Ln) and their complexes (1-3) showed the υ3 frequency of UO22+ has been shown to be an excellent molecular probe for studying the coordinating power of the ligands. The values of υ3 of the prepared complexes containing UO22+ were successfully used to calculate the force constant, FUO (1n 10-8N/Å) and the bond length RUO (Å) of the Usbnd O bond. A strategy based upon both theoretical and experimental investigations has been adopted. The theoretical aspects are described in terms of the well-known theory of 5d-4f transitions. Wilson's, matrix method, Badger's formula, and Jones and El-Sonbati equations were used to calculate the Usbnd O bond distances from the values of the stretching and interaction force constants. The most probable correlation between Usbnd O force constant to Usbnd O bond distance were satisfactorily discussed in term of Badger's rule and the equations suggested by Jones and El-Sonbati. The effect of Hammett's constant is also discussed.

  1. Synthesis and investigation of Pd(I) carbonyl complexes with heteroorganic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberov, A.A.; Polovnyak, V.K.; Akhmetov, N.S.

    1987-09-10

    Pd(I) carbonyl complexes are attracting attention because they have been shown to have catalytic properties in a series of organic syntheses. The stability and catalytic properties of these compounds are determined by the nature of the phosphine ligand and the bridge coordination of the carbonylgroup. Through the partial replacement of carbonyl and acido ligands by heteroorganic ligands in carbonyl halogenide and carbonyl acetate Pd(I) complexes, new stable Pd(I) complexes were obtained: (PdLX)/sub 2/CO, where L = PPh/sub 3/, X = OAc; L = AsPh/sub 3/, X = Cl, Br, OAc; L = SbPh/sub 3/, X = Cl Br, OAc; Lmore » = Ph/sub 2/PCH/sub 2/PPh/sub 2/, Ph/sub 2/AsCH/sub 2/AsPh/sub 2/, X = OAc. Atoms of the heteroorganic and acido ligands are equivalently coordinated to the palladium atoms. The carbonyl group in the complexes has bridge coordination to palladium atoms in the Pd(CO)Pd fragment; in complexes with bidentate heteroorganic ligands the covalent bond between palladium atoms is absent.« less

  2. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands.

    PubMed

    Khadka, Chhatra B; Najafabadi, Bahareh Khalili; Hesari, Mahdi; Workentin, Mark S; Corrigan, John F

    2013-06-17

    The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(μ4-S)6(μ-dppf)4] (1), [Cu8(μ4-Se)4(μ-dppf)3] (2), [Cu4(μ4-Te)(μ4-η(2)-Te2)(μ-dppf)2] (3), and [Cu12(μ5-Te)4(μ8-η(2)-Te2)2(μ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

  3. Synthesis, crystal structure, and luminescent properties of two coordination polymers based on 1,4-phenylenediacetic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Ma, Zhenzhen; Qiao, Lei

    2017-06-01

    Two coordination polymers, [Zn(pda)(bib)]n (1) and [Cd(pda)0.5(bib)Cl]n (2)]. (H2pda = 1,4-phenylenediacetic acid, bib = 1,2-bis(imidazol-1-ylmethyl)benzene), have been synthesized by using Zn(II)/Cd(II) salts with two flexible ligands pda and bib under hydrothermal conditions. Their structures have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray crystallography and powder X-ray diffraction (PXRD) analysis. Due to the coordination geometry around the metal ions and the diverse coordination modes of the flexible ligands, the obtained complex show diverse structures. In the structure of 1, a pair of bib ligands connect two Zn(II) atoms give rise a 22-membered ring, which is further extended by pda ligands in bidentate coordination mode leading a ring-containing 2D layer. In 2, bib ligands join [Cd2Cl2]2+ dimmers generate 1D polymeric ribbon, the pda ligands further extend such ribbon forming a 2D layer network containing rectangular windows, which discovers the effect of the central metal ions on the formation of metal-organic frameworks. In additional, luminescent properties of two complexes have also been studied, they could be potential fluorescence materials.

  4. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids.

    PubMed

    Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M

    2014-10-15

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. DFT calculations, spectroscopic, thermal analysis and biological activity of Sm(III) and Tb(III) complexes with 2-aminobenzoic and 2-amino-5-chloro-benzoic acids

    NASA Astrophysics Data System (ADS)

    Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.

    2014-10-01

    The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.

  6. Aqua­(dicyanamido-κN 1)(nitrato-κ2 O,O′)(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)manganese(II)

    PubMed Central

    Callejo, Lorena; De la Pinta, Noelia; Vitoria, Pablo; Cortés, Roberto

    2009-01-01

    In the title compound, [Mn(C2N3)(NO3)(C24H16N6)(H2O)], the central manganese(II) ion is hepta­coordinated to a tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand (tppz), a bidentate nitrate ligand, a terminal monodentate dicyanamide ligand (dca) and a water mol­ecule. The structure contains isolated neutral complexes, which are linked by O(water)—H⋯N hydrogen bonds generating chains along [010]. PMID:21581535

  7. Zinc complexes of the biomimetic N,N,O ligand family of substituted 3,3-bis(1-alkylimidazol-2-yl)propionates: the formation of oxalate from pyruvate

    PubMed Central

    Bruijnincx, Pieter C. A.; Lutz, Martin; den Breejen, Johan P.; van Koten, Gerard

    2007-01-01

    The coordination chemistry of the 2-His-1-carboxylate facial triad mimics 3,3-bis(1-methylimidazol-2-yl)propionate (MIm2Pr) and 3,3-bis(1-ethyl-4-isopropylimidazol-2-yl) propionate (iPrEtIm2Pr) towards ZnCl2 was studied both in solution and in the solid state. Different coordination modes were found depending both on the stoichiometry and on the ligand that was employed. In the 2:1 ligand-to-metal complex [Zn(MIm2Pr)2], the ligand coordinates in a tridentate, tripodal N,N,O fashion similar to the 2-His-1-carboxylate facial triad. However, the 1:1 ligand-to-metal complexes [Zn(MIm2Pr)Cl(H2O)] and [Zn(iPrEtIm2Pr)Cl] were crystallographically characterized and found to be polymeric in nature. A new, bridging coordination mode of the ligands was observed in both structures comprising N,N-bidentate coordination of the ligand to one zinc atom and O-monodentate coordination to a zinc second atom. A rather unique transformation of pyruvate into oxalate was found with [Zn(MIm2Pr)Cl], which resulted in the isolation of the new, oxalato bridged zinc coordination polymer [Zn2(MIm2Pr)2(ox)]·6H2O, the structure of which was established by X-ray crystal structure determination. PMID:17828423

  8. Three-component entanglements consisting of three crescent-shaped bidentate ligands coordinated to an octahedral metal centre.

    PubMed

    Durola, Fabien; Russo, Luca; Sauvage, Jean-Pierre; Rissanen, Kari; Wenger, Oliver S

    2007-01-01

    3,3'-biisoquinoline ligands (biiq) L, bearing aromatic substituents on their 8 and 8' positions, have been used to generate interwoven systems consisting of three crescent-shaped ligands disposed around an octahedral metal centre. Mono-ligand complexes of the type [ReL(CO)3py]+ (py: pyridine) have also been prepared, leading to sterically non-hindering complexes in spite of the endotopic nature of the chelate used. The three-component entanglements have been prepared by using either FeII or RuII as gathering metal centre. The synthetic procedure is simple and efficient, affording fully characterised complexes as their PF6 or SbCl6 salts. X-ray crystallography clearly shows that the crescent-shaped ligands do not repel each other in the tris-chelate complexes. In an analogous way, the ReI complexes show open structures with no steric repulsion between the L ligand and the ancillary CO or py groups. The FeL3 or RuL3 compounds are very unusual in the sense that, contrary to all the other tris-bidentate chelate complexes made till now, the three organic components are tangled up, in a situation which will be very favourable to the formation of new non trivial topologies of the catenane type.

  9. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase

    PubMed Central

    Patra, Niladri; Ioannidis, Efthymios I.

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases. PMID:27564542

  10. Designing a Dy2 Single-Molecule Magnet with Two Well-Differentiated Relaxation Processes by Using a Nonsymmetric Bis-bidentate Bipyrimidine- N-Oxide Ligand: A Comparison with Mononuclear Counterparts.

    PubMed

    Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique

    2018-06-04

    Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.

  11. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane doesmore » not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.« less

  12. cis-Bis(O-methyl­dithio­carbonato-κ2 S,S′)bis­(tri­phenyl­phosphane-κP)ruthenium(II)

    PubMed Central

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the RuII atom is in a distorted octa­hedral coordination by two xanthate anions (CH3OCS2) and two tri­phenyl­phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the RuII atom with two slightly different Ru—S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C—H⋯O and C—H⋯π inter­actions. PMID:24046578

  13. Photoactive devices including porphyrinoids with coordinating additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths,more » increase the external quantum efficiency of the material, or both.« less

  14. Solid-state thermolysis of a fac-rhenium(I) carbonyl complex with a redox non-innocent pincer ligand.

    PubMed

    Jurca, Titel; Chen, Wen-Ching; Michel, Sheila; Korobkov, Ilia; Ong, Tiow-Gan; Richeson, Darrin S

    2013-03-25

    The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo-octahedral products fac-[ReX(CO)3L2] (L2 = α-diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)3X] (X = Cl 2, Br 3), which were characterized by spectroscopic and X-ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)2X] (X = Cl 4, Br 5). This transformation was performed in the solid-state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer-coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d-π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time-dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo-octahedral rhenium(I) triflate complex [(2,6-{2,6-Me2C6H3N=CPh}2C5H3N)Re(CO)2OTf] (7, 93 % yield). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of structures of bidentate Schiff base type bonded-ligands derived from benzaldehyde on the photoluminescence performance of polymer-rare earth complexes.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Zhang, Dandan

    2018-02-07

    Two kinds of bidentate Schiff base ligands derived from benzaldehyde, benzaldehyde/m-aminophenol (BAMA) type and benzaldehyde/glutamic acid (BAGL) type ligands, were synchronously synthesized and bonded on the backbone of polysulfone (PSF) through molecular design and by polymer reactions, and two functional polymers, PSF-BAMA and PSF-BAGL, were obtained. Then two series of novel luminescent Schiff base-type polymer-rare earth complexes were prepared via coordination reactions. In this work, the effects of the structures of the bonded ligands on the photoluminescence performance of the complexes were investigated in detail, and for the different photophysical properties of the prepared complexes, relevant theoretical explanations were given. The experimental results show that the bonded ligand BAMA can strongly sensitize the fluorescence emission of Eu(iii) ions, and the binary complex PSF-(BAMA) 3 -Eu(iii) emits strong red fluorescence under UV light. The reason for this lies in the fact that a larger conjugate π-bond system is contained in the structure of BAMA, and so the triplet state of BAMA can be matched with the resonant energy level of the Eu(iii) ion. While the bonded ligand BAGL can effectively sensitize the fluorescence emission of Tb(iii) ions, the binary complex PSF-(BAGL) 3 -Tb(iii) exhibits very strong green fluorescence under UV light. The reason is that a smaller conjugate π-bond system is contained in the structure of BAGL and there is a good energy level matching between the triplet state of BAGL and the resonant energy level of the Tb(iii) ion. The fluorescence intensities of the two ternary complexes, PSF-(BAMA) 3 -Eu(iii)-(Phen) 1 (phenanthroline, Phen) and PSF-(BAGL) 3 -Tb(iii)-(Phen) 1 , are much stronger than that of the corresponding binary complex because Phen as the second ligand has two effects, the effect of synergistic coordination with the first ligand and the effect of replacing the coordinated water around the central ion, and it has been confirmed by fluorescence spectroscopy and thermogravimetric analysis.

  16. Chirality sensing with stereodynamic biphenolate zinc complexes.

    PubMed

    Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian

    2015-10-01

    Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods. © 2015 Wiley Periodicals, Inc.

  17. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  18. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  19. Two- and three-dimensional networks of gadolinium(III) with dicarboxylate ligands: synthesis, crystal structure, and magnetic properties.

    PubMed

    Cañadillas-Delgado, Laura; Pasan, Jorge; Fabelo, Oscar; Hernandez-Molina, María; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2006-12-25

    Four gadolinium(III) complexes with dicarboxylate ligands of formulas [Gd2(mal)3(H2O)5]n.2nH2O (1), [Gd2(mal)3(H2O)6]n (2), [NaGd(mal)(ox)(H2O)3]n (3), and [Gd2(ox)3(H2O)6]n.2.5nH2O (4) (mal = malonate; ox = oxalate) have been prepared, and their magnetic properties have been investigated as a function of the temperature. The structures of 1-3 have been determined by X-ray diffraction methods. The crystal structure of 4 was already known, and it is made of hexagonal layers of Gd atoms that are bridged by bis-bidentate oxalate. Compound 1 is isostructural with the europium(III) malonate complex [Eu2(mal)3(H2O)5]n.2nH2O,1 whose structure was reported elsewhere. The Gd atoms in 1 define a two-dimensional network where a terminal bidentate and bridging bidentate/bis-monodentate and tris-bidentate coordination modes of malonate occur. Compound 2 has a three-dimensional structure with a structural phase transition at 226 K, which involves a change of the space group from I2/a to Ia. Although its structure at room temperature was already known, that below 226 K was not. Pairs of Gd atoms with a double oxo-carboxylate bridge occur in both phases, and the main differences between both structures deal with the Gd environment and the H-bond pattern. 3 is also a three-dimensional compound, and it was obtained by reacting Gd(III) ions with malonic acid in a silica gel medium. Oxalic acid results as an oxidized product of the malonic acid, and single crystals of the heteroleptic complex were produced. The Gd atoms in 3 are connected through bis-bidentate oxalate and carboxylate-malonate bridges in the anti-anti and anti-syn coordination modes. Compounds 1 and 2 exhibit weak but significant ferromagnetic couplings between the Gd(III) ions through the single (1) and double (2) oxo-carboxylate bridges, whereas antiferromagnetic interactions across the bis-bidentate oxalate account for the overall antiferromagnetic behavior observed in 3 and 4.

  20. Syntheses, structures, and magnetic properties of three new MnII-[MoIII(CN)7]4- molecular magnets.

    PubMed

    Wei, Xiao-Qin; Pi, Qian; Shen, Fu-Xing; Shao, Dong; Wei, Hai-Yan; Wang, Xin-Yi

    2018-05-22

    By reaction of K4[MoIII(CN)7]·2H2O, Mn(ClO4)2·6H2O and bidentate chelating ligands, three new cyano-bridged compounds, namely Mn2(3-pypz)(H2O)(CH3CN)[Mo(CN)7] (1), Mn2(1-pypz)(H2O)(CH3CN)[Mo(CN)7] (2) and Mn2(pyim)(H2O)(CH3CN)[Mo(CN)7] (3) (3-pypz = 2-(1H-pyrazol-3-yl)pyridine, 1-pypz = 2-(1H-pyrazol-1-yl)pyridine, pyim = 2-(1H-imidazol-2-yl)pyridine), have been synthesized and characterized structurally and magnetically. Single crystal X-ray analyses revealed that although the chelating ligands are different, compounds 1 to 3 are isomorphous and crystallize in the same monoclinic space group C2/m. Connected by the bridging cyano groups, one crystallographically unique [Mo(CN)7]4- unit and three crystallographically unique MnII ions of different coordination environments form similar three-dimensional frameworks, which have a four-nodal 3,4,4,7-connecting topological net with a vertex symbol of {43}{44·62}2{410·611}. Magnetic measurements revealed that compounds 1-3 display long-range magnetic ordering with critical temperatures of 64, 66 and 62 K, respectively. These compounds are rare examples of a small number of chelating co-ligand coordinated [Mo(CN)7]4--based magnetic materials. Specifically, the bidentate chelating ligands were successfully introduced into the heptacyanomolybdate system for the first time.

  1. A second polymorph of catena-poly[[(1,10-phenanthroline-κ2 N,N′)copper(II)]-di-μ-thio­cyanato-κ2 N:S;κ2 S:N

    PubMed Central

    Zhang, Shi-Shen; Chen, Li-Jiang; Han, Yi-Feng

    2011-01-01

    In the title coordination polymer, [Cu(NCS)2(C12H8N2)]n, the CuII atom is situated on a twofold rotation axis and is coordinated by two N atoms from the bidentate 1,10-phenanthroline ligand and four thio­cyanate groups to confer a CuN4S2 octa­hedral geometry and resulting in a layer structure extending parallel to (100). PMID:21753934

  2. Facial and meridional isomers of holmium-nitrate N-tert-butylacetamide complexes

    NASA Astrophysics Data System (ADS)

    Chang, Ye-Di; Xue, Jun-Hui; Kang, Xiao-Yan; Yang, Li-Min; Li, Wei-Hong; Xu, Yi-Zhuang; Zhao, Guo-Zhong; Zhang, Gao-Hui; Liu, Ke-Xin; Chen, Jia-Er; Wu, Jin-Guang

    2018-06-01

    Two Ho(C6H13NO)3(NO3)3 complexes formed by holmium nitrate and N-tert-butylacetamide (NtBA) (Ho-NtBA(I) in a Cc space group, and Ho-NtBA(II) in a P21/c space group) are reported here to investigate the coordination of lanthanide ions with amide groups. Using X-ray single crystal diffraction, FTIR, Raman, FIR and THz methods the structures of the two complexes were identified, in which Ho3+ is 9-coordinated to three carbonyl oxygen atoms provided by three NtBA ligands and three bidentate nitrate ions to form the "facial" and "meridional" isomers. Their FTIR and Raman spectra indicate the formation of two holmium complexes, the variations of NtBA after holmium coordination and the spectra are similar for the isomers in some extent. Their FIR and THz spectroscopic results show the coordination of holmium ions and THz maybe more sensitive to isomers. The results demonstrate the coordination behaviors of holmium ions and NtBA ligand.

  3. Langmuir-Blodgett deposition selects carboxylate headgroup coordination

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-10-01

    Infrared reflection-absorption spectroscopy results on stearic acid Langmuir monolayers containing Mn, Co, and Cd ions show that on the water surface, the ions induce unidentate and bidentate (both chelate and bridged) coordination in the carboxylate headgroup with some trace of undissociated acid. Moreover, with Cd and Mn ions in subphase, the preferred coordination is found to be unidentate, whereas for Co, bidentate chelate is most preferred. After transfer onto amorphous substrate, not all coordinations are found to exist in the same ratio for the deposited metal stearate monolayers. More specifically, after transfer, Mn is found to coordinate with the carboxylate group as bidentate chelate, Cd as unidentate and bidentate bridged (with unidentate as the preferred coordination), and Co as preferably bidentate bridged (although all coordinations are present). Results suggest a specific interaction in each case, as the metal-carboxylate pair at the water surface is transferred to the substrate surface during Langmuir-Blodgett deposition.

  4. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    PubMed

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  5. Organic light-emitting diodes from homoleptic square planar complexes

    DOEpatents

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  6. Poly[[nona­aqua­bis­(μ-5-hy­droxy­benzene-1,3-di­carboxyl­ato)(5-hy­droxy­benzene-1,3-di­carboxyl­ato)dicerium(III)] hexa­hydrate

    PubMed Central

    Fan, Xiao; Daiguebonne, Carole; Guillou, Olivier; Camara, Magatte

    2014-01-01

    In the title coordination polymer, {[Ce2(C8H4O5)3(H2O)9]·6H2O}n, the asymmetric unit is formed by two CeIII atoms, three 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligands, nine coordinating water mol­ecules and six water mol­ecules of crystallization. The two CeIII atoms are bridged by 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligands acting in a bis-bidentate coordination mode, generating infinite chains along [101]. Both independent metal atoms are nine-coordinated, one by four O atoms from the carboxyl­ate groups of two bridging 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligands and five O atoms from water mol­ecules, generating a tricapped trigonal–prismatic geometry. The coordination around the second CeIII atom is similar, except that one of the water mol­ecules is replaced by an O atom from an additional 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligand acting in a monodentate coordination mode and forming a capped square-anti­prismatic geometry. PMID:24860313

  7. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors.

    PubMed

    Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa

    2017-01-01

    A comparative study of amine and silver carboxylate adducts [R 1 COOAg-2(R 2 NH 2 )] (R 1  = 1, 7, 11; R 2  = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13 C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ( 1 H and 13 C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism. Graphical abstractThe synthesis of a series (bis)alkylamine silver(I) carboxylate complexes in nonpolar solvents were carried out and fully characterized both in the solid and solution. Carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination. The complexes form layered structures which thermally decompose forming nanoparticles stabilized only by aliphatic carboxylates.

  8. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  9. Polymeric Cd(II), trinuclear and mononuclear Ni(II) complexes of 5-methyl-4-phenyl-1,2,4-triazole-3-thione: Synthesis, structural characterization, thermal behaviour, fluorescence properties and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.

    2017-02-01

    Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.

  10. Tantallacyclopentadiene as a unique metal-containing diene ligand coordinated to nickel for preparing tantalum-nickel heterobimetallic complexes.

    PubMed

    Laskar, Payel; Yamamoto, Keishi; Srinivas, Anga; Mifleur, Alexis; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi

    2017-10-03

    A mononuclear tantallacyclopentadiene complex, TaCl 3 (C 4 H 2 tBu 2 ) (3), serves as a unique ligand to nickel: the addition of Ni(COD) 2 to 3 selectively afforded heterobimetallic Ta-Ni complex 4. The cyclooctadiene ligand bound to the nickel center in complex 4 was readily substituted by monodentate and bidentate phosphine ligands, such as dimethylphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and 1,2-bis(diethylphosphino)ethane, to give the corresponding phosphine complexes 5, 6a, and 6b. We also examined a ligand substitution reaction with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to produce the corresponding Ta-Ni complex 7. These newly prepared Ta-Ni heterobimetallic complexes were characterized spectroscopically together with the crystal structures of 4, 6a, and 7.

  11. Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene ligand

    NASA Astrophysics Data System (ADS)

    Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua

    2016-09-01

    Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.

  12. Metal-organic frameworks in cadmium(II) complexes with 5-methoxyindole-2-carboxylic acid: structure, vibrational spectra and DFT calculations

    NASA Astrophysics Data System (ADS)

    Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta

    2016-11-01

    Two new complexes of Cd(II) with an O-deprotonated anion of 5-methoxyindole-2-carboxylic acid (5-MeOI2CA), of the formulas [Cd(5-MeOI2CA)2(H2O)2]n (1) and [Cd3(5-MeOI2CA)6(H2O)4(DMSO)4]ṡ2DMSO (2) were synthesized. In the polymeric complex 1, the 5-MeOI2CA anion acts as a bidentate bridging ligand and the coordination environment around the Cd(II) ion can be described as a distorted octahedron. Single crystal X-ray diffraction analysis of 2 has revealed that this complex is a trimer and it crystallizes in the monoclinic system (space group P21/c with a = 20.3403(4), b = 14.3079(2), c = 15.0603(3) Å, β = 92.4341(17)°, V = 4379.00(14) Å3 and Z = 2). In 2, the 5-MeOI2CA anions act as bidentate bridging and bidentate chelating ligands. The asymmetric unit of 2 contains two crystallographically independent Cd(II) cations. One of the cations is coordinated to six oxygen atoms and shows an octahedral geometry with a rhombic deformation. The other Cd(II) cation adopts a distorted seven-coordinate pentagonal-bipyramidal geometry involving seven oxygen atoms. In 2, the DMSO solvent molecules play a key role in the formation of metal-organic frameworks by filling voids, which are created by the bridging and chelating 5-MeOI2CA anions, the cadmium cations and the other DMSO molecules coordinated to cadmium. Comprehensive theoretical calculations (including the optimized structural parameters, harmonic frequencies and vibrational intensities) were performed for 2 using the B3LYP method with the 6-311++G(d,p)/LanL2DZ basis sets. The infrared and Ramana spectra were measured and a detailed assignment of the experimental spectra of 2 was performed. All cadmium-oxygen stretching vibrations occur in the range below 400 cm-1.

  13. Electronic structure and reactivity of three-coordinate iron complexes.

    PubMed

    Holland, Patrick L

    2008-08-01

    [Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate iron compounds may lead to new catalysts for oxidation and reduction reactions and may be used by nature in transient intermediates of nitrogenase enzymes.

  14. Bis(2,4-dibromo-6-formyl­phenolato-κ2 O,O′)copper(II)

    PubMed Central

    Li, Guang Zhao; Zhang, Shu Hua; Liu, Zheng

    2008-01-01

    In the title compound, [Cu(C7H3Br2O2)2], the CuII atom, which lies on an inversion centre, is coordinated by four O atoms from two chelating bidentate 2,4-dibromo-6-formyl­phenolate ligands in a slightly distorted square-planar coordination geometry. In the crystal structure, short inter­molecular Br⋯Br [3.516 (4) and 3.653 (4) Å] and Cu⋯Br [3.255 (1) Å] contacts together with C—H⋯O hydrogen bonds generate a three-dimensional network. PMID:21200624

  15. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){submore » 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology. • Complex 2 is a 1D “cage+cage”-like chain. • Complex 3 is a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology. • The fluorescent, electrochemical and magnetic properties of 1–3 were reported.« less

  16. Parametrization of the contribution of mono- and bidentate ligands on the symmetric C[triple bond]O stretching frequency of fac-[Re(CO)(3)](+) complexes.

    PubMed

    Zobi, Fabio

    2009-11-16

    A ligand parameter, IR(P)(L), is introduced in order to evaluate the effect that different monodentate and bidentate ligands have on the symmetric C[triple bond]O stretching frequency of octahedral d(6) fac-[Re(CO)(3)L(3)] complexes (L = mono- or bidentate ligand). The parameter is empirically derived by assuming that the electronic effect, or contribution, that any given ligand L will add to the fac-[ReCO(3)](+) core, in terms of the total observed energy of symmetric C[triple bond]O stretching frequency (nu(CO(obs))), is additive. The IR(P)(CO) (i.e., the IR(P) of carbon monoxide) is first defined as one-sixth that of the observed C[triple bond]O frequency (nu(CO(obs))) of [Re(CO)(6)](+). All subsequent IR(P)(L) parameters of fac-[Re(CO)(3)L(3)] complexes are derived from IR(P)(L) = (1)/(3)[nu(CO(obs)) - 3IR(P)(CO)]. The symmetric C[triple bond]O stretching frequency was selected for analysis by assuming that it alone describes the "average electronic environment" in the IR spectra of the complexes. The IR(P)(L) values for over 150 ligands are listed, and the validity of the model is tested against other octahedral d(6) fac-[M(CO)(3)L(3)] complexes (M = Mn, (99)Tc, and Ru) and cis-[Re(CO)(2)L(4)](+) species and by calculations at the density functional level of theory. The predicted symmetric C[triple bond]O stretching frequency (nu(CO(cal))) is given by nu(CO(cal)) = S(R)[ sum IR(P)(L)] + I(R), where S(R) and I(R) are constants that depend upon the metal, its oxidation state, and the number of CO ligands in its primary coordination sphere. A linear relationship between IR(P) values and the well-established ligand electrochemical parameter E(L) is found. From a purely thermodynamic point of view, it is suggested that ligands with high IR(P)(L) values should weaken the M-CO bond to a greater extent than ligands with low IR(P)(L) values. The significance of the results and the limitations of the model are discussed.

  17. Metal-assisted in situ formation of a tridentate acetylacetone ligand for complexation of fac-Re(CO)3+ for radiopharmaceutical applications.

    PubMed

    Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan

    2008-04-07

    Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.

  18. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand.

    PubMed

    Hildebrandt, Jana; Görls, Helmar; Häfner, Norman; Ferraro, Giarita; Dürst, Matthias; Runnebaum, Ingo B; Weigand, Wolfgang; Merlino, Antonello

    2016-08-02

    A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography. The comparison between the structure of purified compound 1 and that of the fragment bound to RNase A reveals an unusual mode of protein binding that includes ligand exchange and alteration of coordination sphere geometry.

  19. Di-μ-chlorido-bis­[(2-amino­benzamide-κ2 N 2,O)chlorido­copper(II)

    PubMed Central

    Damous, Maamar; Dénès, George; Bouacida, Sofiane; Hamlaoui, Meriem; Merazig, Hocine; Daran, Jean-Claude

    2013-01-01

    The title compound, [Cu2Cl4(C7H8N2O)2], crystallizes as discrete [CuLCl2]2 (L = 2-amino­benzamide) dimers with inversion symmetry. Each CuII ion is five-coordinated and is bound to two bridging chloride ligands, a terminal chloride ligand and a bidentate 2-amino­benzamide ligand. The crystal structure exhibits alternating layers parallel to (010) along the b-axis direction. In the crystal, the components are linked via N—H⋯Cl hydrogen bonds, forming a three-dimensional network. These inter­actions link the mol­ecules within the layers and also link the layers together and reinforce the cohesion of the structure. PMID:24426988

  20. The chemistry of peroxovanadium compounds relevant to insulin mimesis.

    PubMed

    Shaver, A; Ng, J B; Hall, D A; Posner, B I

    The inorganic coordination chemistry of peroxovanadium compounds relevant to insulin mimesis is reviewed. The structure and kinetic reactivity of solutions of vanadate anion, vanadyl complexes and peroxovanadate complexes are briefly compared. Peroxovanadium compounds contain an oxo group, one or two peroxo ligands (O2(2-)) and an ancillary ligand which is usually bidentate. These compounds approximate a trigonal bipyramidal structure which can be divided conceptually into a polar 'oxo' half and a relatively non-polar organic half. This presents a number of interesting design variations which are discussed with respect to the development of a rudimentary structure-activity correlation of insulin mimetic ability.

  1. Bis(tetra­phenyl­phospho­nium) tris­[N-(methyl­sulfon­yl)dithio­carbimato(2−)-κ2 S,S′]stannate(IV)

    PubMed Central

    Barolli, João P.; Oliveira, Marcelo R. L.; Corrêa, Rodrigo S.; Ellena, Javier

    2009-01-01

    In the title complex, (C24H20P)2[Sn(C2H3NO2S3)3], the SnIV atom is coordinated by three N-(methyl­sulfon­yl)dithio­carbimate bidentate ligands through the anionic S atoms in a slightly distorted octa­hedral coordination geometry. There is one half-mol­ecule in the asymmetric unit; the complex is located on a crystallographic twofold rotation axis passing through the cation and bis­ecting one of the (non-symmetric) ligands, which appears thus disordered over two sites of equal occupancy. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯S inter­actions contribute to the packing stabilization. PMID:21577695

  2. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    NASA Astrophysics Data System (ADS)

    Vallejos, Javier; Brito, Iván; Cárdenas, Alejandro; Llanos, Jaime; Bolte, Michael; López-Rodríguez, Matías

    2015-03-01

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI2 and HgBr2 salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: {[Hg(L)(Br2)]}n(1) and {[Hg(L)(I2)]}n(2). In both compounds, the ligand, (L) acts in a μ2-N:N‧-bidentate fashion to link HgBr2 and HgI2 units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differences in the optical and crystal properties of the two compounds.

  3. Pyrazine as a building block for molecular architectures with PtII.

    PubMed

    Willermann, Michael; Mulcahy, Clodagh; Sigel, Roland K O; Cerdà, Marta Morell; Freisinger, Eva; Sanz Miguel, Pablo J; Roitzsch, Michael; Lippert, Bernhard

    2006-03-06

    A series of pyrazine (pz) complexes containing cis-(NH(3))(2)Pt(II), (tmeda)Pt(II) (tmeda = N,N,N',N'-tetramethylethylenediamine), and trans-(NH(3))(2)Pt(II) entities have been prepared and characterized by X-ray crystallography and/or 1H NMR spectroscopy. In these compounds, the pz ligands act as monodentate (1-3) or bidentate bridging ligands (4-7). Three variants of the latter case are described: a dinuclear complex [Pt(II)]2 (4b), a cyclic tetranuclear [Pt(II)](4) complex (5), and a trinuclear mixed-metal complex [Pt2Ag] (7). Mono- and bidentate binding modes are readily differentiated by 1H NMR spectroscopy, and the assignment of pz protons in the case of monodentate coordination is aided by the observation of (195)Pt satellites. Formation of the open molecular box cis-[{(NH3)2Pt(pz)}4](NO3)8.3.67H2O (5) from cis-(NH3)2Pt(II) and pz follows expectations of the "molecular library approach" for the generation of a cyclic tetramer.

  4. Copper(II) and zinc(II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo[d]imidazol-2-yl) methanol derivative: Synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali

    2018-05-01

    This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.

  5. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    PubMed Central

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  6. Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.

    2005-01-01

    [reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.

  7. Synthesis,and structural characterization of [(CH3(C5H4N))Ga(SCH2(CO)O)]-[(4-MepyH)]+, a novel Ga(III) five coordinate complex.

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Duraj, Stan A.; Fanwic, Phillp E.; Hepp, Aloysius F.; Martuch, Robert A.

    2003-01-01

    The synthesis and structural characterization of a novel ionic Ga(III) five coordinate complex [{CH3(C5H4N)}Ga(SCH2(CO)O)2]-[(4-MepyH)]+, (4-Mepy = CH3(C5H5N)) from the reaction between Ga2Cl4 with sodium mercapto-acetic acid in 4-methylpyridine is described. Under basic reaction conditions the mercapto ligand is found to behave as a 2e- bidentate ligand. Single crystal X-ray diffraction studies show the complex to have a distorted square pyramidal geometry with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P2(sub 1)/c (No. 14) space group with a = 7.7413(6) A, b = 16.744(2) A, c = 14.459(2) A, V = 1987.1(6) A(sup 3), R(F) = 0.032 and R(sub w) = 0.038.

  8. O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.

    PubMed

    Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J

    2016-01-11

    A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands.

    PubMed

    Chan, Chung Ying; Barnard, Peter J

    2015-11-28

    A series of eight Rhenium(I)-N-heterocyclic carbene (NHC) complexes of the general form [ReCl(CO)3(C^C)] (where C^C is a bis(NHC) bidentate ligand), [ReCl(CO)3(C^C)]2 (where C^C is a bis-bidentate tetra-NHC ligand) and [Re(CO)3(C^N^C)](+)[X](-) (where C^N^C is a bis(NHC)-amine ligand and the counter ion X is either the ReO4(-) or PF6(-)) have been synthesised using a Ag2O transmetallation protocol. The novel precursor imidazolium salts and Re(I) complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for two imidazolium salt and six Re(I) complexes were determined by single crystal X-ray diffraction. These NHC ligand systems are of interest for possible applications in the development of Tc-99m or Re-186/188 radiopharmaceuticals and as such the stability of two complexes of the form [ReCl(CO)3(C^C)] and [Re(CO)3(C^N^C)][ReO4] were evaluated in ligand challenge experiments using the metal binding amino acids L-histidine or L-cysteine. These studies showed that the former was unstable, with the chloride ligand being replaced by either cysteine or histidine, while no evidence for transchelation was observed for the latter suggesting that bis(NHC)-amine ligands of this type may be suitable for biological applications.

  10. Photochemistry of monodentate and bidentate carbonato complexes of rhodium (3). [applications to spacecraft fuel cells

    NASA Technical Reports Server (NTRS)

    Sheridan, P. S.

    1980-01-01

    A scheme for the photochemical fixation of water is proposed which involves a five-step reaction sequence; the first step involves the 2 electron reduction of a metal by a coordinated carbonate ligand, with corresponding oxidation of the carbonate to CO2 and O2. Ligand field photolysis of trans- (RH(en)2 H2O CO3) ClO4, and (Rh(en)2 CO3) CLO4 have been studied in the solid state and in aqueous solution at various pH values. Both salts are photoinert in the solid phase, but are quite photoreactive in aqueous solution. In solution, the monodentate ion undergoes efficient isomerization to a mixture of cis and trans - (Rh(en)2 H2O CO3)+, presumably with water exchange. A minor pH increase upon photolysis is evidence of inefficient carbonate (CO3 =) release, with formation of (Rh(en)2 (H2O)2)3+. In contrast, aqueous solutions of the bidentate carbonato complex undergo efficient pH decrease upon ligand field photolysis. Changes in the electronic spectrum (200-500 nm) and pH changes indicate that the desired redox is occurring. The pH increase is due to the aqueous behavior of CO2.

  11. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  12. Novel Cobalt(II) complexes containing N,N-di(2-picolyl)amine based ligands; Synthesis, characterization and application towards methyl methacrylate polymerisation

    NASA Astrophysics Data System (ADS)

    Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun

    2016-06-01

    The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).

  13. Supramolecular Approaches To Control Activity and Selectivity in Hydroformylation Catalysis

    PubMed Central

    2018-01-01

    The hydroformylation reaction is one of the most intensively explored reactions in the field of homogeneous transition metal catalysis, and many industrial applications are known. However, this atom economical reaction has not been used to its full potential, as many selectivity issues have not been solved. Traditionally, the selectivity is controlled by the ligand that is coordinated to the active metal center. Recently, supramolecular strategies have been demonstrated to provide powerful complementary tools to control activity and selectivity in hydroformylation reactions. In this review, we will highlight these supramolecular strategies. We have organized this paper in sections in which we describe the use of supramolecular bidentate ligands, substrate preorganization by interactions between the substrate and functional groups of the ligands, and hydroformylation catalysis in molecular cages. PMID:29657887

  14. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  15. (2,2′-Biquinoline-κ2 N,N′)dichlorido­iron(II)

    PubMed Central

    Rahimi, Narjes; Safari, Nasser; Amani, Vahid; Khavasi, Hamid Reza

    2009-01-01

    In the title compound, [FeCl2(C18H12N2)], the FeII atom is four-coordinated in a distorted tetra­hedral arrangement by an N,N′-bidentate 2,2′-biquinoline ligand and two chloride ions. In the crystal, there are extensive π–π contacts between the pyridine rings [centroid–centroid distances = 3.7611 (3), 3.7603 (4), 3.5292 (4), 3.5336 (5) and 3.6656 (4) Å]. PMID:21578122

  16. Molecular water oxidation catalyst

    DOEpatents

    Gratzel, Michael; Munavalli, Shekhar; Pern, Fu-Jann; Frank, Arthur J.

    1993-01-01

    A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

  17. Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde)phenylenediimine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Ali, Omayma A. M.

    2018-06-01

    Bis-(salicylaldehyde)phenylenediimine Schiff base (H2salphen) reacted oxidatively with the triruthenium dodecacarbonyl complex, [Ru3(CO)12] to give the dicarbonyl derivative [Ru(CO)2(salphen)], 1. In presence of a secondary ligand L (L = pyridine, triphenyl phosphine, 2-aminobenzimidazole or thiourea), the monocarbonyl derivatives [Ru(CO)(salphen)L], 2-5, were isolated. When the bipyridine (bpy) ligand was used as a secondary ligand, the dicarbonyl complex [Ru(CO)2(Hsalphen)(bpy)], 6, was obtained. In complexes 1-5, the Schiff base ligand acted as a tetradentate, while it coordinated as a bidentate in complex 6. The structure and stoichiometry of the complexes were investigated by the conventional analytical and spectroscopic techniques, which revealed that they have several structural arrangements. The structures of ligand and complexes were verified by theoretical calculations based on accurate DFT approximations. The relative reactivities were estimated using chemical descriptors analysis. Biological activities of the complexes against the Escherchia coli and Staphylococcus aureus bacteria were screened.

  18. A selective naked-eye chemosensor derived from 2-methoxybenzylamine and 2,3-dihydroxybenzaldehyde - synthesis, spectral characterization and electrochemistry of its bis-bidentates Schiff bases metal complexes

    NASA Astrophysics Data System (ADS)

    Djouhra, Aggoun; Ali, Ourari; Ramiro, Ruiz-Rosas; Emilia, Morallon

    2017-09-01

    A new colorimetric receptor HL, acting as a bidentate Schiff base ligand, has been synthesized by condensation of 2-methoxybenzylamine on 2,3-dihydroxybenzaldehyde in a methanolic solution. Interestingly, this chelating agent can selectively detect Cu2 +, Co2 +, Fe2 + and Fe3 + ions with a simple and an easy-to-make, well defined naked-eye visible color changes in two different solvents like acetonitrile and methanol. This bidentate ligand coordinates three metal ions of Co(II), Cu(II) and Fe(II) via nitrogen and oxygen atoms. The molecular structures of the synthesized compounds were elucidated by various physicochemical properties such as the elemental analysis, FT-IR, HNMR, UV-Vis and the Mass spectrometry. The resulting general formulae [M(L)2·H2O] (M(II) = Cu, Fe, Co) are proposed as mononuclear complexes. The solvatochromism properties of these compounds were studied with their absorption spectra using different solvents as methanol (MeOH), acetonitrile (AN), tetrahydrofuran (THF), dimethylformamid (DMF), dimethylsulfoxid (DMSO) and dichloromethane (DC). The Electrochemical behavior of copper complex was explored in DMF solutions by cyclic voltammetry (CV) with two working electrodes: glassy carbon (GC) and platinum electrode (Pt). This study reveals that copper complex shows successively two redox systems as CuIII/II and CuII/I. The FeIII/II and CoII/I redox systems have also been studied in DMF and DMSO media.

  19. Inducing Axial Chirality in a Supramolecular Catalyst.

    PubMed

    Wenz, Katharina Marie; Leonhardt-Lutterbeck, Günter; Breit, Bernhard

    2018-03-06

    A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen-bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature- and solvent-dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI-MS measurements, as well as UV-VIS and circular dichroism spectroscopy. The chiral self-organized ligands were evaluated in the rhodium-catalyzed asymmetric hydrogenation of α-dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rhenium(V) Oxo Complexes of Novel N(2)S(2) Dithiourea (DTU) Chelate Ligands: Synthesis and Structural Characterization.

    PubMed

    Lipowska, Malgorzata; Hayes, Brittany L.; Hansen, Lory; Taylor, Andrew; Marzilli, Luigi G.

    1996-07-03

    The compounds RNHC(=S)NH(CH(2))(n)()NHC(=S)NHR were prepared in a search for new, relatively small N(2)S(2) ligands. These dithiourea (DTU) ligands are the first chelates containing two potentially bidentate thiourea moieties. A one-step reaction of 1,3-diaminopropane (1) with aryl or alkyl isothiocyanates or of 1,2-diaminoethane (2) with phenyl isothiocyanate afforded the target ligands in excellent yields (95-98%). The Re(V)=O complexes of RNHC(=S)NH(CH(2))(3)NHC(=S)NHR ligands were obtained through ligand exchange reactions with Re(V) precursors. The chemistry required neither protection of the sulfur atoms for ligand synthesis nor deprotection prior to metal complexation. The structure of (1-phenyl-3-(3-phenylthioureido)propyl]thioureato)oxorhenium(V) (7a), determined by X-ray diffraction methods, revealed the expected pseudo-square-pyramidal geometry with an N(2)S(2) basal and an apical oxo donor set. Both coordinated N's (N(c)) were deprotonated. One uncoordinated N (N(u)) was deprotonated, producing a neutral complex containing an unexpected new type of dianionic, four-membered N,S chelate. In the crystal, the N(u) atoms, N(3)H and N(4), of one complex each formed an H-bond with N(4) and N(3)H, respectively, of a symmetry-related complex. The N(c)-C-S bond angles (106.1(6) and 101.5(6) degrees ) were severely distorted from the 120 degrees expected for an sp(2)-hybridized C. However, these small bite angles and the large N-Re-N bond angle (86.1(3) degrees ) allowed for the formation of two four-membered chelate rings with normal Re-N and Re-S bond distances. Attempts to prepare complexes with the PhNHC(=S)NH(CH(2))(2)NHC(=S)NHPh ligand were unsuccessful. These results suggest that a central five-membered chelate ring is too small to accommodate bidentate coordination of both thiourea moieties. NMR studies in methanol established that the neutral complex with one uncoordinated N deprotonated was the favored form in neutral and basic solutions. However, under acidic conditions, a cationic form with both uncoordinated N's protonated was favored.

  1. A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway.

    PubMed

    Liu, Jinyong; Han, Mengwei; Wu, Dimao; Chen, Xi; Choe, Jong Kwon; Werth, Charles J; Strathmann, Timothy J

    2016-06-07

    Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.

  2. Impact of various lipophilic substituents on ruthenium(II), rhodium(III) and iridium(III) salicylaldimine-based complexes: synthesis, in vitro cytotoxicity studies and DNA interactions.

    PubMed

    Cassells, Irwin; Stringer, Tameryn; Hutton, Alan T; Prince, Sharon; Smith, Gregory S

    2018-05-30

    A series of bidentate salicylaldimine ligands was prepared and reacted with either [RuCl(µ-Cl)(p-cymene)] 2 , [RhCl(µ-Cl)(Cp*)] 2 or [IrCl(µ-Cl)(Cp*)] 2 . All of the compounds were characterised using an array of spectroscopic and analytical techniques, namely, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy and mass spectrometry. Single crystal X-ray diffraction (XRD) was used to confirm the bidentate coordination mode of the salicylaldimine ligand to the metal centre. The platinum group metal (PGM) complexes were screened against the MCF7 breast cancer cell line. The ruthenium and iridium salicylaldimine complexes showed comparable or greater cytotoxicity than cisplatin against the MCF7 cancer cells, as well as greater cytotoxicity than their rhodium counterparts. Three of the salicylaldimine complexes showed potent activity in the range 18-21 µM. Two of these complexes had a greater affinity for cancerous cells than for CHO non-cancerous cells (SI > 4). Preliminary mechanistic studies suggest that the ruthenium complexes undergo solvation prior to 5'-GMP binding, whereas the iridium complexes were inert to the solvation process.

  3. [2D correlation spectral study of a coordination polymer [Eu(PCPOA)3 (H2O)]n].

    PubMed

    Sun, Rui-qing; Zhang, Han-hui; Cao, Yan-ning; Chen, Yi-ping; Yang, Qi-yu; Wang, Zhi-yang

    2007-05-01

    A novel two dimensional coordination polymer [Eu(PCPOA)3 (H2O)], was synthesized under hydrothermal condition. Based on the determination of the structure, the 2D correlation FTIR spectra with the perturbation of magnetism and the 2D correlation fluorescence spectra with the perturbation of temperature were investigated. The energy bonds were calculated using CASTEP Program of Material studio. The Europium ions are nine-coordinated and the ligands adopted two different modes to connect the Eu3+ ions to 2D layer structure. The study of the 2D-FTIR reveals that the carboxylates coordinate with the center ions not only as monodentate, but also as bidentate chelate. The 2D fluorescence spectra indicates that the transition of (5)D0-->(7)F2 is influenced intensively by the perturbation of temperature.

  4. Reductive Elimination from Phosphine-Ligated Alkylpalladium(II) Amido Complexes To Form sp3 Carbon-Nitrogen Bonds.

    PubMed

    Peacock, D Matthew; Jiang, Quan; Hanley, Patrick S; Cundari, Thomas R; Hartwig, John F

    2018-04-11

    We report the formation of phosphine-ligated alkylpalladium(II) amido complexes that undergo reductive elimination to form alkyl-nitrogen bonds and a combined experimental and computational investigation of the factors controlling the rates of these reactions. The free-energy barriers to reductive elimination from t-Bu 3 P-ligated complexes were significantly lower (ca. 3 kcal/mol) than those previously reported from NHC-ligated complexes. The rates of reactions from complexes containing a series of electronically and sterically varied anilido ligands showed that the reductive elimination is slower from complexes of less electron-rich or more sterically hindered anilido ligands than from those containing more electron-rich and less hindered anilido ligands. Reductive elimination of alkylamines also occurred from complexes bearing bidentate P,O ligands. The rates of reactions of these four-coordinate complexes were slower than those for reactions of the three-coordinate, t-Bu 3 P-ligated complexes. The calculated pathway for reductive elimination from rigid, 2-methoxyarylphosphine-ligated complexes does not involve initial dissociation of the oxygen. Instead, reductive elimination is calculated to occur directly from the four-coordinate complex in concert with a lengthening of the Pd-O bond. To investigate this effect experimentally, a four-coordinate Pd(II) anilido complex containing a flexible, aliphatic linker between the P and O atoms was synthesized. Reductive elimination from this complex was faster than that from the analogous complex containing the more rigid, aryl linker. The flexible linker enables full dissociation of the ether ligand during reductive elimination, leading to the faster reaction of this complex.

  5. Coordination of XeF2 to calcium and cadmium hexafluorophosphates(V).

    PubMed

    Bunic, Tina; Tavcar, Gasper; Tramsek, Melita; Zemva, Boris

    2006-02-06

    [M(XeF2)5](PF6)2 (M = Ca, Cd) complexes were prepared by the reaction of MF2 and XeF2 under pressure of gaseous PF5 in anhydrous HF as solvent. The coordination sphere of the Ca atom consists of nine fluorine atoms: three from two PF6(-) units (one bidentate and one monodentate) and one from each of six XeF2 molecules. The coordination sphere of the Cd atom consists of eight fluorine atoms: one from each of two PF6(-) units and one from each of six XeF2 molecules. Two of the XeF2 ligands about M in each compound are bridging ligands and are each linked to two M, generating infinite (-M-F-Xe-F-M-F-Xe-F-) chains along the b-axis in the Ca salt and along the c-axis in the Cd compound. The Cd2+ cation is smaller and more electronegative than the Ca2+ cation. These differences account for the higher F ligand coordination in the Ca2+ salt and for other structural features that distinguish them. The different stoichiometry of the PF6(-) salts when compared with their AsF6(-) analogues, which have the composition [M(XeF2)4](AsF6)2 (M = Ca, Cd), is in accord with the lower F ligand charge in the AsF6(-) when compared with that in the PF6(-) compound. Indeed, the AsF6(-) ligand charges appear to be similar to those in the XeF2-bridged species.

  6. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  7. Determination of Cu Environments in the Cyanobacterium Anabaena flos-aquae by X-Ray Absorption Spectroscopy

    PubMed Central

    Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.

    2004-01-01

    Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554

  8. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  9. Cubes, squares, and books: a simple transition metal/bridging ligand combination can lead to a surprising range of structural types with the same metal/ligand proportions.

    PubMed

    Najar, Adel M; Tidmarsh, Ian S; Adams, Harry; Ward, Michael D

    2009-12-21

    Reaction of two structurally related bridging ligands L(26Py) and L(13Ph), in which two bidentate chelating pyrazolyl-pyridine units are connected to either a 2,6-pyridine-diyl or 1,3-benzene-diyl central group via methylene spacers, with first-row transition metal dications, results in a surprising variety of structures. The commonest is that of an octanuclear coordination cage [M(8)L(12)]X(16) [M = Co(II) or Zn(II); X = perchlorate or tetrafluoroborate] in which a metal ion is located at each of the eight vertices of an approximate cube, and one bis-bidentate bridging ligand spans each edge. The arrangement of fac and mer tris-chelate metal centers around the inversion center results in approximate (non-crystallographic) S(6) symmetry. Another structural type observed in the solid state is a hexanuclear complex [Co(6)(L(13Ph))(9)](ClO(4))(12) in which the six metal ions are in a rectangular array (two rows of three), folded about the central Co-Co vector like a partially open book, with each metal-metal edge containing one bridging ligand apart from the two outermost metal-metal edges which are spanned by a pair of bridging ligands in a double helical array. The final structural type we observed is a tetranuclear square [Ni(4)(L(26Py))(6)](BF(4))(8), with the four Ni-Ni edges spanned alternately by one and two bridging ligand such that it effectively consists of two dinuclear double helicates cross-linked by additional bridging ligands. A balance between the "cube" and "book" forms, which varied from compound to compound, was observed in solution in many cases by (1)H NMR and ES mass spectrometry studies.

  10. Structural, Spectroscopic, and Electrochemical Properties of Nonheme Fe(II)-Hydroquinonate Complexes: Synthetic Models of Hydroquinone Dioxygenases

    PubMed Central

    Baum, Amanda E.; Park, Heaweon; Wang, Denan; Lindeman, Sergey V.; Fiedler, Adam T.

    2012-01-01

    Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)] [2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)] [1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies. PMID:22930005

  11. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane.

    PubMed

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    Two new mononuclear cationic complexes in which the Tb III ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H 3 L Et , C 6 H 14 O 3 ) were prepared from Tb(NO 3 ) 3 ·5H 2 O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO 3 ) 2 (H 3 L Et ) 2 ]NO 3 ·0.5C 4 H 10 O 2 , 1 , in which the lanthanide ion is 10-coordinate and adopts an s -bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO 3 )(H 3 L Et ) 2 (H 2 O)](NO 3 ) 2 , 2 , one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1 , di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2 , the methyl group of one of the H 3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  12. Luminescent properties and structure of new CAPh-based lanthanide complexes [LnL3Q], containing additional bis-heterocyclic aromatic ligand-antenna 2-(1,3,4-oxadiazole-2-yl) pyridine

    NASA Astrophysics Data System (ADS)

    Yakovlev, Oleksii O.; Kariaka, Nataliia S.; Trush, Victor A.; Smola, Sergii S.; Siczek, Milosz; Amirkhanov, Vladimir M.

    2018-01-01

    The new lanthanide coordination compounds of general formula [LnL3Q], where Ln = Eu, Gd, Tb; L = dimethyl-N-trichloroacetylamidophosphate and Q = 2-(1,3,4-oxadiazole-2-yl)pyridine, have been synthesized and isolated in crystalline state with the purpose of finding new interesting optical materials. X-ray data reveal that complexes have molecular structure with numerous Van-der-Vaals contacts between molecules. All the ligands are coordinated in bidentate chelate manner, coordination polyhedron was interpreted as distored square antiprism (CN 8). The obtained complexes were investigated by means of IR, absorption and luminescence spectroscopy as well and thermal gravimetric analysis. It was found that complex [TbL3Q] is resistant to temperature of 200 °C. The Eu3+ and Tb3+ complexes exhibit bright metal-centered emission with decay time 1.65 and 1.74 ms respectively. Intrinsic quantum yield for [EuL3Q] equals 85% that is one of the highest values, known to date for CAPh based europium complexes.

  13. (4,5-Diaza­fluoren-9-one-κ2 N,N′)bis­(thio­cyanato-κS)mercury(II)

    PubMed Central

    Notash, Behrouz; Safari, Nasser; Amani, Vahid

    2011-01-01

    In the title compound, [Hg(NCS)2(C11H6N2O)], the HgII atom, lying on a twofold rotation axis, is four-coordinated in a distorted tetra­hedral geometry by an N,N′-bidentate diaza­fluoren-9-one ligand and two thio­cyanate anions. In the crystal, inter­molecular C—H⋯N and C—H⋯O hydrogen bonds are effective in the stabilization of the structure. PMID:21753948

  14. N,B-Bidentate Boryl Ligand-Supported Iridium Catalyst for Efficient Functional-Group-Directed C-H Borylation.

    PubMed

    Wang, Guanghui; Liu, Li; Wang, Hong; Ding, You-Song; Zhou, Jing; Mao, Shuai; Li, Pengfei

    2017-01-11

    Convenient silylborane precursors for introducing N,B-bidentate boryl ligands onto transition metals were designed, prepared, and employed in ready formation of irdium(III) complexes via Si-B oxidative addition. A practical, efficient catalytic ortho-borylation reaction of arenes with a broad range of directing groups was developed using an in situ generated catalyst from the silylborane preligand 3c and [IrCl(COD)] 2 .

  15. Flexibility of Catalytic Zinc Coordination in Thermolysin and HDAC8: A Born-Oppenheimer ab initio QM/MM Molecular Dynamics Study

    PubMed Central

    Wu, Ruibo; Hu, Po; Wang, Shenglong; Cao, Zexing; Zhang, Yingkai

    2009-01-01

    Abstracs The different coordination modes and fast ligand exchange of zinc coordination has been suggested to be one key catalytic feature of the zinc ion which makes it an invaluable metal in biological catalysis. However, partly due to the well known difficulties for zinc to be characterized by spectroscopy methods, evidence for dynamic nature of the catalytic zinc coordination has so far mainly been indirect. In this work, Born-Oppenheimer ab initio QM/MM molecular dynamics simulation has been employed, which allows for a first-principle description of the dynamics of the metal active site while properly including effects of the heterogeneous and fluctuating protein environment. Our simulations have provided direct evidence regarding inherent flexibility of the catalytic zinc coordination shell in Thermolysin (TLN) and Histone Deacetylase 8 (HDAC8). We have observed different coordination modes and fast ligand exchange during the picosecond's time-scale. For TLN, the coordination of the carboxylate group of Glu166 to Zinc is found to continuously change between monodentate and bidentate manner dynamically; while for HDAC8, the flexibility mainly comes from the coordination to a non-amino-acid ligand. Such distinct dynamics in the zinc coordination shell between two enzymes suggests that the catalytic role of Zinc in TLN and HDAC8 is likely to be different in spite of the fact that both catalyze the hydrolysis of amide bond. Meanwhile, considering that such Born-Oppenheimer ab initio QM/MM MD simulations are very much desired but are widely considered to be too computationally expensive to be feasible, our current study demonstrates the viability and powerfulness of this state-of-the-art approach in simulating metalloenzymes. PMID:20161624

  16. Structure and spectroscopic investigations of a bi-dentate N‧-[(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide and its Co(II), Ni(II), Cu(II) and Cd(II) complexes: Insights relevant to biological properties

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Krishna, P. Murali; Shantha Kumar, S. S.; Patil, Yogesh P.; Nethaji, Munirathinam

    2017-06-01

    The present paper describes the synthesis of novel ligand, N‧-[(4-ethylphenyl)methylidene]-4-hydroxy benzohydrazide (HL) and its Co(II), Ni(II), Cu(II) and Cd(II) complexes. The ligand (HL) crystallizes in orthorhombic lattice in P212121 space group with a = 7.9941 (7) Å, b = 11.6154 (10) Å, c = 15.2278 (13) Å, α = β = γ = 90°. Spectroscopic data gives the strong evidence that ligand is coordinated through azomethine nitrogen and enolic oxygen with metal ion. The DNA binding studies revealed that the complexes bind to CT-DNA via intercalation/electrostatic interaction. All the targeted compounds showed more pronounced DNA cleavage activity in the presence of H2O2 and also inhibit the growth of in vitro antibacterial activity against Gram-positive and Gram-negative bacteria.

  17. Spectroscopic studies on some fluorescent mixed-ligand titanium(IV) complexes.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar; Varma, Anand

    2011-12-15

    A novel route to synthesize some titanium(IV) complexes containing acetylacetone, straight chain carboxylic acid and hydroxycarboxylic acid ligands has been investigated. Complexes with the general formula [Ti(acac)Cl(2-n)(OOCR*)(n)(OOCC(15)H(31))] (where Hacac=acetylacetone, R*COOH=hydroxycarboxylic acids and n=1 or 2) have been isolated and characterized. Molecular weight determinations indicated mononuclear nature of the complexes. LMCT bands were observed in the electronic spectra. Infrared spectra suggested bidentate nature of the ligands. Fluorescent behaviour of the complexes was noticed on the basis of fluorescence spectra. Powder XRD indicated them to be semi-crystalline having the crystallite size in 136-185 nm range. Transmission electron microscopy (TEM) indicated spherical particles of ~ 200 nm diameter. On the basis of physico-chemical studies, it is suggested that titanium is having coordination number 7 or 8 in these complexes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Diaqua­bis­(5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2 N 3,O 4)cadmium N,N-dimethyl­formamide disolvate

    PubMed Central

    Tong, Shao-Wei; Li, Shi-Jie; Song, Wen-Dong; Miao, Dong-Liang; An, Jing-Bo

    2011-01-01

    In the title complex, [Cd(C8H9N2O4)2(H2O)2]·2C3H7NO, the six-coordinate CdII ion is in a slightly distorted octa­hedral environment, defined by two O atoms from two coordinated water mol­ecules and two carboxyl­ate O atoms and two N atoms from two N,O-bidentate 5-carb­oxy-2-propyl-1H-imidazole-4-carboxyl­ate ligands. In the crystal, complex mol­ecules and dimethyl­formamide solvent mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds into a two-dimensional supra­molecular structure. The propyl groups of the ligands are disordered over two conformations with refined occupancies of 0.680 (7) and 0.320 (7). PMID:22199635

  19. catena-Poly[[bis­(4-carboxy­cyclo­hexane­carboxyl­ato-κ2 O 1,O 1′)cadmium(II)]-μ-1,4-bis­(imidazol-1-ylmeth­yl)benzene-κ2 N 3:N 3′

    PubMed Central

    Li, Bing-Bing; Xiao, Bo

    2009-01-01

    In the title coordination polymer, [Cd(C8H11O4)2(C14H14N4)]n, the Cd atom (site symmetry 2) is six-coordin­ated by two O,O′-bidentate 4-carboxy­cyclo­hexa­necarboxyl­ate (Hchdc) ligands and two N atoms from two different 1,4-bis­(imidazol-1-ylmeth­yl)benzene (1,4-bix) mol­ecules in a very distorted cis-CdN2O4 octa­hedral environment. The 1,4-bix mol­ecules act as bridging ligands that bind two CdII atoms, thus forming an infinite chain propagating in [100], which is decorated by the Hchdc anions. The structure is completed by O—H⋯O hydrogen bonds, which link the chains together. PMID:21582692

  20. Blue phosphorescent nitrile containing C^C* cyclometalated NHC platinum(II) complexes.

    PubMed

    Tronnier, Alexander; Metz, Stefan; Wagenblast, Gerhard; Muenster, Ingo; Strassner, Thomas

    2014-02-28

    Since C^C* cyclometalated Pt(II) complexes with N-heterocyclic carbene (NHC) ligands have been identified as potential emitter materials in organic light-emitting devices (OLEDs), very promising results regarding quantum yields, colour and stability have been presented. Herein, we report on four nitrile substituted complexes with a chelating NHC ligand (1-(4-cyanophenyl)-3-isopropyl-1H-benzo[d]imidazole or 4-(tert-butyl)-1-(4-cyanophenyl)-3-methyl-1H-imidazole) and a bidentate monoanionic auxiliary ligand (acetylacetone or dimesitoylmethane). The complexes have been fully characterized including extensive 2D NMR studies (COSY, HSQC, HMBC, NOESY, (195)Pt NMR), three of them also by solid-state structures. Photophysical measurements in amorphous PMMA films and pure emitter films at room temperature reveal the impact of the mesityl groups in the auxiliary ligand, which led to a significant increase of the quantum yield, while the decay lifetimes decreased. The electron withdrawing nitrile groups shift the emission towards blue colour coordinates.

  1. Four unprecedented 2D trinuclear Mn(II)-complexes with adenine nucleobase controlled by solvent or co-ligand: Hydrothermal synthesis, crystal structure and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Zhao, Hongkun; He, Hongming; Wang, Xiuguang; Liu, Zhongyi; Ding, Bo; Yang, Hanwen

    2018-03-01

    Four unique infinite 2D Mn(II) aggregates, [Mn3(μ3-ade)2(OAc)4X]n (X = DMF for 1, DMA for 2 and C2H5O- for 3), [Mn3(μ3-ade)2(ap)2DMF]n (4) (Hade = adenine; DMF = N,N-dimethylformamide; DMA = N,N-dimethylacetamide, OAc- = acetate ion, H2ap = adipic acid) with trinuclear Mn(II) as secondary building units (SBUs), have been successfully synthesized by the assembly of Hade nucleobase and manganese acetate under solvothermal conditions. The resultant complexes can be applied to explore the influence of solvent or co-ligands on the self-assembly and properties of metal complexes based on adenine. The Hade represent tridentate μ3-N3, N7, N9 bridging coordination modes. The acetate anions exhibit μ2-η1:η1 bidentate, μ2-η1:η2 tridentate mode, and μ2-η0:η2 bidentate mode. The adipate anions in complex 4 adopt two coordination modes: one is μ4-η2:η1:η1:η1 pentadentate mode, the other one is μ3-η1:η2:η2:η1 hexadentate mode. Their magnetic behaviors exhibit interesting variations, in which the local net magnetization at low temperature increases from 1 to 3. The MnII3 SBUs in 1-3 are symmetric with an inversion center, whereas that in 4 has three crystallographically independent MnII atoms. Thus, the magnetic behaviors of 4 are different from complex 1-3.

  2. Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies.

    PubMed

    Endrizzi, Francesco; Melchior, Andrea; Tolazzi, Marilena; Rao, Linfeng

    2015-08-21

    The complex formation between a cyclic ligand glutarimidoxioxime (denoted as HL(III) in this paper) and UO2(2+) is studied by potentiometry and microcalorimetry. Glutarimidoxioxime (HL(III)), together with glutarimidedioxime (H2L(I)) and glutardiamidoxime (H2L(II)), belongs to a family of amidoxime derivatives with prospective applications as binding agents for the recovery of uranium from seawater. An optimized procedure of synthesis that leads to the preparation of glutarimidoxioxime in the absence of other amidoxime byproducts is described in this paper. Speciation models based on the thermodynamic results from this study indicate that, compared with H2L(I) and H2L(II), HL(III) forms a much weaker complex with UO2(2+), UO2(L(III))(+), and cannot effectively compete with the hydrolysis equilibria of UO2(2+) under neutral or alkaline conditions. DFT computations, taking into account the solvation by including discrete hydration water molecules and bulk solvent effects, were performed to evaluate the structures and energies of the possible isomers of UO2(L(III))(+). Differing from the tridentate or η(2)-coordination modes previously found in the U(vi) complexes with amidoxime-related ligands, a bidentate mode, involving the oxygen of the oxime group and the nitrogen of the imino group, is found to be the most probable mode in UO2(L(III))(+). The bidentate coordination mode seems to be stabilized by the formation of a hydrogen bond between the carbonyl group of HL(III) and a water molecule in the hydration sphere of UO2(2+).

  3. Ionothermal synthesis, characterization of a new layered gallium phosphate with an unusual heptamer SBU

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Huang, Liangliang; Ma, Yike; Jiao, Shufei; Jiang, Yansong; Bi, Yanfeng

    2017-10-01

    A new layered gallium phosphate Ga3(PO4)4(C2N2H8)·(H2C2N2H8)2·Cl (compound 1), has been ionothermally synthesized in the presence of deep eutectic solvent (DES) comprising mixtures of choline chloride and 2-imidazolidone (IMI). Single-crystal X-ray diffraction analysis reveals that compound 1 shows 2D layered framework with 10-ring windows, which is constructed from unusual heptamer second building units (SBUs). The ethylenediamine (en) units deriving from the decomposition of IMI, play a dual role as bidentate ligands coordinated with 6-fold coordinate gallium atoms and the templates. Additionally, compound 1 shows photoluminescence property in solid state at room temperature.

  4. Oxidative condensation reactions of (diethylenetriamine)cobalt(III) complexes with substituted bis(pyridin-2-yl)methane ligands

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory

    2005-04-01

    The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.

  5. Synthesis, characterization and single crystal x-ray analysis of a complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep; Andotra, Savit; Kaur, Mandeep

    2016-09-15

    Complex of iron(II) bis(2,4-dimethylphenyl)dithiophosphate with 4-ethylpyridine [((2,4- (CH{sub 3}){sub 2}C{sub 6}H{sub 3}O)2PS2)2Fe(NC{sub 5}H{sub 4}(C{sub 2}H{sub 5})-4){sub 2}] is synthesized and characterized by elemental analysis, magnetic moment, IR spectroscopy and single crystal X-ray analysis. Complex crystallizes in the monoclinic sp. gr. P2{sub 1}/n, Z = 2. Crystal structure consists of mononuclear units with Fe(II) ion chelated by four S atoms of the two diphenyldithiophosphate ligands in bidentate manner. N atoms from two 4-ethylpyridine ligands are axially coordinated to the Fe(II) atom leading to an octahedral geometry.

  6. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3-tert-butylimidazol-2-ylidene)borate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.

    2015-12-15

    The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  7. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synthesis, characterization and biological activity of some platinum(II) complexes with Schiff bases derived from salicylaldehyde, 2-furaldehyde and phenylenediamine.

    PubMed

    Gaballa, Akmal S; Asker, Mohsen S; Barakat, Atiat S; Teleb, Said M

    2007-05-01

    Four platinum(II) complexes of Schiff bases derived from salicylaldehyde and 2-furaldehyde with o- and p-phenylenediamine were reported and characterized based on their elemental analyses, IR and UV-vis spectroscopy and thermal analyses (TGA). The complexes were found to have the general formula [Pt(L)(H(2)O)(2)]Cl(2) x nH(2)O (where n=0 for complexes 1, 3, 4; n=1 for complex 2. The data obtained show that Schiff bases were interacted with Pt(II) ions in the neutral form as a bidentate ligand and the oxygens rather than the nitrogens are the most probable coordination sites. Square planar geometrical structure with two coordinated water molecules were proposed for all complexes The free ligands, and their metal complexes were screened for their antimicrobial activities against the following bacterial species: E. coli, B. subtilis, P. aereuguinosa, S. aureus; fungus A. niger, A. fluves; and the yeasts C. albican, S. cervisiea. The activity data show that the platinum(II) complexes are more potent antimicrobials than the parent Schiff base ligands against one or more microorganisms.

  9. Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics.

    PubMed

    Mathis Ii, Stephan R; Golafale, Saki T; Bacsa, John; Steiner, Alexander; Ingram, Conrad W; Doty, F Patrick; Auden, Elizabeth; Hattar, Khalid

    2017-01-03

    Ultra large pore isostructural metal organic frameworks (MOFs) which exhibit both photoluminescence and scintillation properties, were synthesized from trans-4,4'-stilbenedicarboxylic acid (H 2 L) and trivalent lanthanide (Ln) metal salts under solvothermal conditions (Ln = Er 3+ (1) and Tm 3+ (2)). This new class of mesoporous materials is a non-interpenetrating network that features ultra-large diamond shaped pores of dimensions with approximate cross-sectional dimensions of 28 Å × 12 Å. The fully deprotonated ligand, L, is isolated and rigidified as it serves as the organic linker component of the MOF structure. Its low density unit cells possess asymmetric units with two crystallographically independent Ln 3+ ions in seven coordinate arrangements. A distinct feature of the structure is the bis-bidentate carboxylate groups. They serve as a ligand that coordinates two Ln(iii) ions while each L connects four Ln(iii) ions yielding an exceptionally large diamond-shaped rectangular network. The structure exhibits ligand-based photoluminescence with increased lifetime compared to free stilbene molecules on exposure to UV radiation, and also exhibits strong scintillation characteristics, comprising of both prompt and delayed radioluminescence features, on exposure to ionizing radiation.

  10. Understanding the complexation of Eu3+ with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation.

    PubMed

    Sengupta, Arijit; Kadam, R M

    2017-02-15

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu 3+ with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu 3+ to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu 3+ in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D 3h local symmetry while that for Cyanex 923 and Cyanex 272 were C 3h . Judd-Ofelt analysis of these systems revealed that the covalency of EuO bond followed the trend DHOA>TBP>Cyanex 272>Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5 D 0 - 7 F 2 transition was found to be hypersensitive with ligand field with a trend DHOA>TBP>Cyanex 272>Cyanex 923. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Understanding the complexation of Eu3 + with potential ligands used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle: A luminescence investigation

    NASA Astrophysics Data System (ADS)

    Sengupta, Arijit; Kadam, R. M.

    2017-02-01

    A systematic photoluminescence based investigation was carried out to understand the complexation of Eu3 + with different ligands (TBP: tri-n-butyl phosphate, DHOA: di-n-hexyl octanamide, Cyanex 923: tri-n-alkyl phosphine oxide and Cyanex 272: Bis (2,4,4 trimethyl) pentyl phosphinic acid) used for preferential separation of lanthanides and actinides in various stages of nuclear fuel cycle. In case of TBP and DHOA complexes, 3 ligand molecules coordinated in monodentate fashion and 3 nitrate ion in bidentate fashion to Eu3 + to satisfy the 9 coordination of Eu. In case of Cyanex 923 and Cyanex 272 complexes, 3 ligand molecules, 3 nitrate ion and 3 water molecules coordinated to Eu3 + in monodentate fashion. The Eu complexes of TBP and DHOA were found to have D3h local symmetry while that for Cyanex 923 and Cyanex 272 were C3h. Judd-Ofelt analysis of these systems revealed that the covalency of Eusbnd O bond followed the trend DHOA > TBP > Cyanex 272 > Cyanex 923. Different photophysical properties like radiative and non-radiative life time, branching ratio for different transitions, magnetic and electric dipole moment transition probabilities and quantum efficiency were also evaluated and compared for these systems. The magnetic dipole transition probability was found to be almost independent of ligand field perturbation while electric dipole transition probability for 5D0-7F2 transition was found to be hypersensitive with ligand field with a trend DHOA > TBP > Cyanex 272 > Cyanex 923. Supplementary Table 2: Determination of inner sphere water molecules from the different empirical formulae reported in the literature.

  12. Synthesis, spectroscopic, electrochemical and computational studies of rhenium(i) tricarbonyl complexes based on bidentate-coordinated 2,6-di(thiazol-2-yl)pyridine derivatives.

    PubMed

    Klemens, Tomasz; Czerwińska, Katarzyna; Szlapa-Kula, Agata; Kula, Slawomir; Switlicka, Anna; Kotowicz, Sonia; Siwy, Mariola; Bednarczyk, Katarzyna; Krompiec, Stanisław; Smolarek, Karolina; Maćkowski, Sebastian; Danikiewicz, Witold; Schab-Balcerzak, Ewa; Machura, Barbara

    2017-07-25

    Nine rhenium(i) complexes possessing three carbonyl groups together with a bidentate coordinated 2,6-di(thiazol-2-yl)pyridine derivative were synthesized to examine the impact of structure modification of the triimine ligand on the photophysical, thermal and electrochemical properties of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)]. The Re(i) complexes were fully characterized using IR, 1 H and 13 C, HRMS-ESI and single crystal X-ray analysis. Their thermal properties were evaluated using DSC and TGA measurements. Photoluminescence spectra of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)] were investigated in solution and in the solid state, at 298 and 77 K. Both emission wavelengths and quantum yields of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)] were found to be structure-related, demonstrating a crucial role of the substituent attached to the 2,6-di(thiazol-2-yl)pyridine skeleton. In order to fully understand the photophysical properties of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)], density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. Furthermore, the complexes which showed appropriate solubility in chloroform were tested as an emissive active layer in OLED devices.

  13. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane

    PubMed Central

    Gregório, Thaiane; Giese, Siddhartha O. K.; Nunes, Giovana G.; Soares, Jaísa F.; Hughes, David L.

    2017-01-01

    Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane (H3 L Et, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol­ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) nitrate di­meth­oxy­ethane hemisolvate, [Tb(NO3)2(H3 L Et)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti­prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol­ecule of di­meth­oxy­ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua­nitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) dinitrate, [Tb(NO3)(H3 L Et)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol­ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol­ecule was found in either of the crystal structures and, only in the case of 1, di­meth­oxy­ethane acts as a crystallizing solvent. In both mol­ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter­molecular, are found in the crystal structures due to the number of different donor and acceptor groups present. PMID:28217359

  14. Syntheses and molecular structures of novel Ru(II) complexes with bidentate benzimidazole based ligands and their catalytic efficiency for oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Dayan, Osman; Tercan, Melek; Özdemir, Namık

    2016-11-01

    Five bidentate ligands derived from quinoline-2-carboxylic acid, i.e. 2-(1H-benzimidazol-2-yl)quinoline (L1), 2-(1-benzyl-1H-benzimidazol-2-yl)quinoline (L2), 2-[1-(2,3,5,6-tetramethylbenzyl)-1H-benzimidazol-2-yl]quinoline (L3), 2-[1-(4-chlorobenzyl)-1H-benzimidazol-2-yl]quinoline (L4), and 2-[1-(4-methylbenzyl)-1H-benzimidazol-2-yl]quinoline (L5) were synthesized. Treatment of L1-5 with [RuCl2(p-cymene)]2 and KPF6 afforded six-coordinate piano-stool Ru(II) complexes, namely, [RuCl(L1)(p-cymene)]PF6 (C1), [RuCl(L2)(p-cymene)]PF6 (C2), [RuCl(L3)(p-cymene)]PF6 (C3), [RuCl(L4)(p-cymene)]PF6 (C4), and [RuCl(L5)(p-cymene)]PF6 (C5). Synthesized compounds were characterized with different techniques such as 1H and 13C NMR, FT-IR, and UV-vis spectroscopy. The solid state structure of L1 and C3 was confirmed by single-crystal X-ray diffraction analysis. The single crystal structure of C3 verified coordination of L3 to the Ru(II) center. The Ru(II) center has a pseudo-octahedral three legged piano stool geometry. The complexes C1-5 were tested as catalysts for the catalytic oxidation of benzyl alcohol to benzaldehyde in the presence of periodic acid (H5IO6) (Substrate/Catalyst/Oxidant = 1/0.01/0.5). The best result was obtained with C2 (3 h→90%).

  15. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.

    2015-06-01

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.

  16. Synthesis, spectroscopic properties, molecular docking, anti-colon cancer and anti-microbial studies of some novel metal complexes for 2-amino-4-phenylthiazole derivative.

    PubMed

    Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A

    2015-06-15

    This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of L-proline, trans-hydroxy- L-proline and L-glutamine

    NASA Astrophysics Data System (ADS)

    Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok

    2005-12-01

    New organotin(IV) complexes of the general formula R 3Sn(L) (where R = Me, n-Bu and HL = L-proline; R = Me, Ph and HL = trans-hydroxy- L-proline and L-glutamine) and R 2Sn(L) 2 (where R = n-Bu, Ph and HL = L-proline; R = Ph, HL = trans-hydroxy- L-proline) have been synthesized by the reaction of R nSnCl 4- n (where n = 2 or 3) with sodium salt of the amino acid (HL). n-Bu 2Sn(Pro) 2 was synthesized by the reaction of n-Bu 2SnO with L-proline under azeotropic removal of water. The bonding and coordination behavior in these complexes have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid-state. Their coordination behavior in solution has been discussed with the help of multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The 119Sn Mössbauer and IR studies indicate that L-proline and trans-hydroxy- L-proline show similar coordination behavior towards organotin(IV) compounds. Pentacoordinate trigonal-bipyramidal and hexacoordinate octahedral structures, respectively, have been proposed for the tri- and diorganotin(IV) complexes of L-proline and trans-hydroxy- L-proline, in which the carboxylate group acts as bidentate group. L-Glutamine shows different coordination behavior towards organotin(IV) compounds, it acts as monoanionic bidentate ligand coordinating through carboxylate and amino group. The triorganotin(IV) complexes of L-glutamine have been proposed to have trigonal-bipyramidal environment around tin. The newly synthesized complexes have been tested for their antiinflammatory and cardiovascular activities. Their LD 50 values are >1000 mg kg -1.

  18. Diaqua­bis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethyl­idenediphophonato-κ2 O,O′]zinc(II)

    PubMed Central

    Freire, Eleonora; Vega, Daniel R.

    2009-01-01

    In the title complex, [Zn(C5H9NO7P2)2(H2O)2], the zinc atom is coordinated by two bidentate zoledronate [zoledronate = (2-(1-imidazole)-1-hydr­oxy-1,1′-ethyl­idenediphophonate)] ligands and two water mol­ecules. The coordination number is 6. There is one half-mol­ecule in the asymmetric unit with the zinc atom located on a crystallographic inversion centre. The anion exists as a zwitterion with an overall charge of −1; the protonated nitro­gen in the ring has a positive charge and the two phospho­nates groups each have a single negative charge. There are two intra­molecular O—H⋯O hydrogen bonds. The mol­ecules are linked into a chain by inter­molecular O—H⋯O hydrogen bonds. Adjacent chains are further linked by O—H⋯O hydrogen bonds involving the aqua ligands. An N—H⋯O inter­action is also observed. PMID:21578164

  19. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  20. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  1. Determination of thorium (IV) using isophthalaldehyde-tetrapyrrole as probe by resonance light scattering, second-order scattering and frequency-doubling scattering spectra

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Xue, Jinhua; Xiao, Xilin; Xu, Li; Jiang, Min; Peng, Pengcheng; Liao, Lifu

    2017-12-01

    The coordination reaction of thorium (IV) with a ditopic bidentate ligand to form supramolecular polymer was studied by resonance light scattering (RLS) spectra, second-order scattering (SOS) spectra and frequency-doubling scattering (FDS) spectra, respectively. The ditopic bidentate ligand is isophthalaldehyde-tetrapyrrole (IPTP). It was synthesized through a condensation reaction of isophthalaldehyde with pyrrole. The formation of supramolecular polymer results in remarkable intensity enhancements of the three light scattering signals. The maximum scattering wavelengths of RLS, FDS and SOS were 290, 568 and 340 nm, respectively. The reaction was used to establish new light scattering methods for the determination of thorium (IV) by using IPTP as probe. Under optimum conditions, the intensity enhancements of RLS, SOS and FDS were directly proportional to the concentration of thorium (IV) in the ranges of 0.01 to 1.2 μg mL- 1, 0.05 to 1.2 μg mL- 1 and 0.05 to 1.2 μg mL- 1, respectively. The detection limits were 0.003 μg mL- 1, 0.012 μg mL- 1 and 0.021 μg mL- 1, respectively. The methods were suitable for analyzing thorium (IV) in actual samples. The results show acceptable recoveries and precision compared with a reference method.

  2. Dichlorido[2-(phenyl­imino­meth­yl)quinoline-N,N′]palladium(II)

    PubMed Central

    Motswainyana, William M.; Onani, Martin O.; Madiehe, Abram M.

    2012-01-01

    In the title complex, [PdCl2(C16H12N2)], the PdII ion is coordinated by two N atoms [Pd—N 2.039 (2), 2.073 (2) Å] from a bidentate ligand and two chloride anions [Pd—Cl 2.2655 (7), 2.2991 (7) Å] in a distorted square-planar geometry. In the crystal, π–π inter­actions between the six-membered rings of the quinoline fragments [centroid–centroid distances = 3.815 (5), 3.824 (5) Å] link two mol­ecules into centrosymmetric dimers. PMID:22589771

  3. Spectral, coordination and thermal properties of 5-arylidene thiobarbituric acids

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; El-Marghany, Adel; Orabi, Adel; Ali, Alaa E.; Sayed, Reham

    2013-04-01

    Synthesis of 5-arylidine thiobarbituric acids containing different functional groups with variable electronic characters were described and their Co2+, Ni2+ and Cu2+ complexes. The stereochemistry and mode of bonding of 5-(substituted benzylidine)-2-TBA complexes were achieved based on elemental analysis, spectral (UV-VIS, IR, 1H NMR, MS), magnetic susceptibility and conductivity measurements. The ligands were of bidentate and tridentate bonding through S, N and O of pyrimidine nucleolus. All complexes were of octahedral configuration. The thermal data of the complexes pointed to their stability. The mechanism of the thermal decomposition is discussed. The thermodynamic parameters of the dissociation steps were evaluated and discussed.

  4. Dichlorido{[2-(diphenyl­phosphino)phenyl­imino­meth­yl]ferrocene-κ2 N,P}palladium(II) dichloro­methane hemi­solvate

    PubMed Central

    Liu, Huanyu; Shen, Dongsheng

    2009-01-01

    There are two independent PdII complex mol­ecules in the asymmetric unit of the title compound, [PdCl2{Fe(C5H5)(C24H19NP)}]·0.5CH2Cl2. One ferrocenyl ring of one complex mol­ecule is disordered over two sites with half-occupancy for each component. Both PdII cations adopt a distorted square-planar coordination geometry with a bidentate [2-(diphenyl­phosphino)phenyl­imino­meth­yl]ferrocene ligand and two chloride anions. PMID:21581545

  5. Facile Syntheses of Monodisperse Ultra-Small Au Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui

    2006-11-02

    During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less

  6. Structural diversity of benzil bis(benzoylhydrazone): Mononuclear, binuclear and trinuclear complexes.

    PubMed

    López-Torres, Elena; Mendiola, M Antonia

    2009-10-07

    The coordination behaviour of the Schiff-base, benzil bis(benzoylhydrazone), LH(2) towards divalent nickel, lead, cadmium, zinc and copper ions has been investigated. The complexes have been fully characterized by techniques including (113)Cd and (207)Pb NMR, as well as (13)C and (113)Cd CP/MAS NMR and by single crystal X-ray diffraction. All the complexes have the general formula [ML](n) (n = 1-3 depending on the metal ion), with the ligand doubly deprotonated. The nickel complex [NiL] is a monomeric compound, the lead complex [PbL](2) shows a binuclear structure, whereas zinc [ZnL](3) and copper [CuL](3) complexes are trinuclear helicates. The cadmium complex seems to be a dimer with a structure similar to that of . In the nickel and lead derivatives, the ligand behaves as a tetradentate N(2)O(2) chelate and in complex also as a bridge through one of the O atoms. In the crystal structures of Zn and Cu complexes [ML](3) each metal is in a pentadentate N(3)O(2) environment formed by two different ligands, one tridentate chelate and the other bidentate chelate, giving rise to trinuclear helicates. These results point out the versatility of benzil bis(benzoylhydrazone) on its coordination.

  7. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals.

    PubMed

    Gao, Juehan; Berden, Giel; Rodgers, M T; Oomens, Jos

    2016-03-14

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.

  8. Ligand reprogramming in dinuclear helicate complexes: a consequence of allosteric or electrostatic effects?

    PubMed

    Jeffery, John C; Rice, Craig R; Harding, Lindsay P; Baylies, Christian J; Riis-Johannessen, Thomas

    2007-01-01

    The ditopic ligand 6,6'-bis(4-methylthiazol-2-yl)-3,3'-([18]crown-6)-2,2'-bipyridine (L(1)) contains both a potentially tetradentate pyridyl-thiazole (py-tz) N-donor chain and an additional "external" crown ether binding site which spans the central 2,2'-bipyridine unit. In polar solvents (MeCN, MeNO(2)) this ligand forms complexes with Zn(II), Cd(II), Hg(II) and Cu(I) ions via coordination of the N donors to the metal ion. Reaction with both Hg(II) and Cu(I) ions results in the self-assembly of dinuclear double-stranded helicate complexes. The ligands are partitioned by rotation about the central py--py bond, such that each can coordinate to both metals as a bis-bidentate donor ligand. With Zn(II) ions a single-stranded mononuclear species is formed in which one ligand coordinates the metal ion in a planar tetradentate fashion. Reaction with Cd(II) ions gives rise to an equilibrium between both the dinuclear double-stranded helicate and the mononuclear species. These complexes can further coordinate s-block metal cations via the remote crown ether O-donor domains; a consequence of which are some remarkable changes in the binding modes of the N-donor domains. Reaction of the Hg(II)- or Cd(II)-containing helicate with either Ba(2+) or Sr(2+) ions effectively reprogrammes the ligand to form only the single-stranded heterobinuclear complexes [MM'(L(1))](4+) (M=Hg(II), Cd(II); M'=Ba(2+), Sr(2+)), where the transition and s-block cations reside in the N- and O-donor sites, respectively. In contrast, the same ions have only a minor structural impact on the Zn(II) species, which already exists as a single-stranded mononuclear complex. Similar reactions with the Cd(II) system result in a shift in equilibrium towards the single-stranded species, the extent of which depends on the size and charge of the s-block cation in question. Reaction of the dicopper(I) double-stranded helicate with Ba(2+) shows that the dinuclear structure still remains intact but the pitch length is significantly increased.

  9. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    PubMed

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Carbonate Complexation of Mn2+ in Aqueous Phase

    PubMed Central

    Dasgupta, Jyotishman; Tyryshkin, Alexei M.; Kozlov, Yuri N.; Klimov, Vyacheslav V.; Dismukes, G. Charles

    2008-01-01

    The chemical speciation of Mn2+ within cells is critical for its transport, availability and redox properties. Herein we investigate the redox behavior and complexation equilibria of Mn2+ in aqueous solutions of bicarbonate by voltametry and electron paramagnetic resonance (EPR) spectroscopy, and discuss the implications for the uptake of Mn2+ by mangano-cluster enzymes like photosystem II (PSII). Both the electrochemical reduction of Mn2+ to Mn0 at an Hg electrode and EPR (in the absence of a polarizing electrode), revealed formation of 1:1 and 1:2 Mn-(bi)carbonate complexes as a function of Mn2+ and bicarbonate concentrations. Pulsed EPR spectroscopy, including ENDOR, ESEEM and 2D-HYSCORE, were used to probe the hyperfine couplings to 1H and 13C nuclei of the ligand(s) bound to Mn2+. For the 1:2 complex the complete 13C hyperfine tensor for one of the (bi)carbonate ligands was determined and it was established that this ligand coordinates to Mn2+ in bidentate mode with 13C-Mn distance of 2.85 ± 0.1 Å. The second (bi)carbonate ligand in the 1:2 complex coordinates possibly in monodentate mode, which is structurally less defined, and its 13C signal is broad and unobservable. 1H ENDOR reveals that 1-2 water ligands are lost upon binding of one bicarbonate ion in the 1:1 complex while 3-4 water ligands are lost upon forming the 1:2 complex. Thus, we deduce that the dominant species above 0.1 M bicarbonate concentration is the 1:2 complex, [Mn(CO3)(HCO3)(OH2)3]-. PMID:16526753

  11. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.

    PubMed

    Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P

    1998-09-01

    Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.

  12. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS.

    PubMed

    Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing

    2014-06-17

    Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.

  13. Crystal structure of tetra­aqua­[2-(pyridin-2-yl)-1H-imidazole-κ2 N 2,N 3]iron(II) sulfate

    PubMed Central

    Setifi, Zouaoui; Setifi, Fatima; Francuski, Bojana M.; Novaković, Sladjana B.; Merazig, Hocine

    2015-01-01

    In the title compound, [Fe(C8H7N3)(H2O)4]SO4, the central FeII ion is octa­hedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl)-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octa­hedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1)°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17) and 2.243 (2) Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18) to 2.1340 (17) Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H⋯O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further inter­connect by N—H⋯O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H⋯O, C—H⋯π and π–π inter­actions. PMID:26029386

  14. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes.

    PubMed

    Pan, Jun; Shang, Yuequn; Yin, Jun; De Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M; Hedhili, Mohamed N; Emwas, Abdul-Hamid; Mohammed, Omar F; Ning, Zhijun; Bakr, Osman M

    2018-01-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI 3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m 2 luminance, surpassing by far LEDs made from the nonpassivated NCs.

  15. Straightforward Preparation Method for Complexes Bearing a Bidentate N-Heterocyclic Carbene to Introduce Undergraduate Students to Research Methodology

    ERIC Educational Resources Information Center

    Fernández, Alberto; López-Torres, Margarita; Fernández, Jesús J.; Vázquez-García, Digna; Marcos, Ismael

    2017-01-01

    A laboratory experiment for students in advanced inorganic chemistry is described. In this experiment, students prepare two metal complexes with a potentially bidentate-carbene ligand. The complexes are synthesized by reaction of a bisimidazolium salt with silver(I) oxide or palladium(II) acetate. Silver and palladium complexes are binuclear and…

  16. 1,2,4,5-benzenetetracarboxylate- and 2,2'-bipyrimidine-containing cobalt(II) coordination polymers: preparation, crystal structure, and magnetic properties.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2008-05-05

    Three new mixed-ligand cobalt(II) complexes of formula [Co2(H2O)6(bta)(bpym)]n.4nH2O (1), [Co2(H2O)2(bta)(bpym)]n (2), and [Co2(H2O)4(bta)(bpym)]n.2nH2O ( 3) (bpym = 2,2'-bipyrimidine and H 4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized by single crystal X-ray diffraction. 1 is a chain compound of mer-triaquacobalt(II) units which are linked through regular alternating bis-bidentate bpym and bis-monodentate bta groups. 2 and 3 are three-dimensional compounds where aquacobalt(II) ( 2) and cis-diaquacobalt(II) ( 3) entities are linked by bis-bidentate bpym ( 2 and 3) and tetrakis- ( 2 and 3) and octakis-monodentate ( 2) bta ligands. The cobalt atoms in 1- 3 exhibit somewhat distorted octahedral surroundings. Two bpym-nitrogen atoms ( 1- 3) and either two bta-oxygens ( 2) or one bta-oxygen and a water molecule ( 1 and 3) build the equatorial plane, whereas the axial positions are filled either by two water molecules ( 1) or by a bta-oxygen atom and a water molecule ( 2 and 3). The values of the cobalt-cobalt separation across the bridging bpym vary in the range 5.684(2)-5.7752(7) A, whereas those through the bta bridge cover the ranges 5.288(2)-5.7503(5) A (across the anti-syn carboxylate) and 7.715(3)-11.387(1) A (across the phenyl ring). The magnetic properties of 1- 3 have been investigated in the temperature range 1.9-290 K. They are all typical of an overall antiferromagnetic coupling with the maxima of the magnetic susceptibility at 14.5 ( 1) and 11.5 K ( 2 and 3). Although exchange pathways through bis-bidentate bpym and carboxylate-bta in different coordination modes are involved in 1- 3, their magnetic behavior is practically governed by that across the bpym bridge, the magnitude of the exchange coupling being J = -5.59(2) ( 1), -4.41(2) ( 2), and -4.49(2) ( 3) with the Hamiltonian H = - JS 1 S 2.

  17. Contrasting coordination behavior of Group 12 perchlorate salts with an acyclic N3O2 donor ligand by X-ray crystallography and (1)H NMR.

    PubMed

    Tice, Daniel B; Pike, Robert D; Bebout, Deborah C

    2016-08-09

    An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.

  18. Crystal structure of cis-di­chlorido­(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)chromium(III) (oxalato-κ2 O 1,O 2)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)chromium(III) bis(perchlorate) from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2016-01-01

    In the asymmetric unit of the title compound, [CrCl2(C10H24N4)][Cr(C2O4)(C10H24N4)](ClO4)2 (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; C2O4 = oxalate, ox), there are two independent halves of the [CrCl2(cyclam)]+ and [Cr(ox)(cyclam)]+ cations, and one perchlorate anion. In the complex cations, which are completed by application of twofold rotation symmetry, the CrIII ions are coordinated by the four N atoms of a cyclam ligand, and by two chloride ions or one oxalate bidentate ligand in a cis arrangement, displaying an overall distorted octa­hedral coordination environment. The Cr—N(cyclam) bond lengths are in the range of 2.075 (5) to 2.096 (4) Å while the Cr—Cl and Cr—O(ox) bond lengths are 2.3358 (14) and 1.956 (4) Å, respectively. Both cyclam moieties adopt the cis-V conformation. The slightly distorted tetra­hedral ClO4 − anion remains outside the coordination sphere. The supra­molecular architecture includes N—H⋯O and N—H⋯Cl hydrogen bonding between cyclam NH donor groups, O atoms of the oxalate ligand or ClO4 − anions and one Cl ligand as acceptors, leading to a three-dimensional network structure. PMID:27746932

  19. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment

    NASA Astrophysics Data System (ADS)

    El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K.

    2014-03-01

    The azodye ligand (HL1) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL2 and HL3, were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL2) and 2,4-dihydroxy-benzaldehyde (HL3). The prepared ligands were characterized by elemental analysis, IR, 1H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL1 and HL3. HL2 coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HOrad radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group.

  20. High-efficiency emitting materials based on phenylquinoline/carbazole-based compounds for organic light emitting diode applications

    NASA Astrophysics Data System (ADS)

    Jin, Sung-Ho

    2009-08-01

    Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.

  1. A Hirshfeld surface analysis, supramolecular structure and magnetic properties of a new Cu(II) complex with the 4-amino-6-methoxypyrimidine ligand

    NASA Astrophysics Data System (ADS)

    Nbili, W.; Kaabi, K.; Ferenc, W.; Cristovão, B.; Lefebvre, F.; Jelsch, Christian; Ben Nasr, Cherif

    2017-02-01

    A new Cu(II) complex with the bridge bidentate ligand 4-amino-6-methoxypyrimidine, [Cu(C5H7N3O)(H2O)(NO3)2], has been prepared at room temperature and characterized by single crystal X-ray diffraction and IR spectroscopy. The compound crystallizes in the monoclinic space group C2/c with lattice parameters a = 17.783 (4), b = 11.131 (3), c = 12.594 (3) Å, β = 117.616 (3)°, V = 2209.0 (9) Å3 and Z = 8. The Cu(II) cation is hexa-coordinated, in distorted octahedral fashion, by two nitrogen atoms of two 4-amino-6-methoxypyrimidine ligands, one water oxygen atom and three oxygen atoms of two nitrate anions. In the atomic arrangement, the organic ligands and the 6-connected Cu centers are linked with each other to give a 1-D corrugated chain running along the b-axis direction. The chains are interconnected via Osbnd H⋯O, Csbnd H⋯O, Nsbnd H⋯O hydrogen bonds to form a three dimensional network. The analysis of contacts on the Hirshfeld surface shows that the crystal packing is driven mainly by the electrostatic interactions: the coordination of Cu(II) by O and N as well as strong hydrogen bonds. The vibrational absorption bands were identified by infrared spectroscopy. Magnetic properties were also studied to characterize the complex.

  2. Bis[bis­(2,2′-bi­pyridine-κ2 N,N′)(carbon­ato-κ2 O,O′)cobalt(III)] 2-{4-[(carboxyl­atometh­yl)carbamo­yl]benz­amido}­acetate hexa­hydrate

    PubMed Central

    Pook, Niels-Patrick; Gjikaj, Mimoza; Adam, Arnold

    2014-01-01

    The complex cation of the title compound, [Co(CO3)(C10H8N2)2]2(C12H10N2O6)·6H2O, contains a CoIII atom with a distorted octa­hedral coordination environment formed by four N atoms from two bidentate 2,2′-bi­pyridine ligands and one bidentate carbonate anion. The asymmetric unit is completed by one-half of the 2-({4-[(carboxyl­atometh­yl)carbamo­yl]phen­yl}formamido)­acetate dianion, which is located on a centre of inversion, and by three water mol­ecules. Two [Co(CO3)(C10H8N2)2]+ cations are connected through C—H⋯O contacts by the uncoordinating anions. The aromatic rings of the 2,2′-bi­pyridine ligands and di­acetate anions are involved in π–π stacking and C—H⋯π inter­actions. The centroid–centroid distances are in the range 3.4898 (4)–3.6384 (5) Å. The crystal structure is stabilized by further O—H⋯O and N—H⋯O hydrogen bonds, which give rise to a three-dimensional supra­molecular network. PMID:24860299

  3. A trinuclear oxo-chromium(III) complex containing the natural flavonoid primuletin: Synthesis, characterization, and antiradical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Reginaldo C.; Alexiou, Anamaria D.P.; Decandio, Carla C.

    A new trinuclear oxo-centered chromium(III) complex with formula [Cr₃O(CH₃CO₂)₆(L)(H₂O)₂] (L = 5-hydroxyflavone, known as primuletin) was synthetized and characterized by ESI mass spectrometry, thermogravimetry, and ¹H-NMR, UV-Vis, and FTIR spectroscopies. In agreement with the experimental results, DFT calculations indicated that the flavonoid ligand is coordinated to one of the three Cr(III) centers in an O,O-bidentate mode through the 5-hydroxy/4-keto groups. In a comparative study involving the uncoordinated primuletin and its corresponding complex, systematic reactions with the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) showed that antiradical activity increases upon complexation.

  4. A trinuclear oxo-chromium(III) complex containing the natural flavonoid primuletin: Synthesis, characterization, and antiradical properties

    DOE PAGES

    Rocha, Reginaldo C.; Alexiou, Anamaria D.P.; Decandio, Carla C.; ...

    2015-04-10

    A new trinuclear oxo-centered chromium(III) complex with formula [Cr₃O(CH₃CO₂)₆(L)(H₂O)₂] (L = 5-hydroxyflavone, known as primuletin) was synthetized and characterized by ESI mass spectrometry, thermogravimetry, and ¹H-NMR, UV-Vis, and FTIR spectroscopies. In agreement with the experimental results, DFT calculations indicated that the flavonoid ligand is coordinated to one of the three Cr(III) centers in an O,O-bidentate mode through the 5-hydroxy/4-keto groups. In a comparative study involving the uncoordinated primuletin and its corresponding complex, systematic reactions with the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) showed that antiradical activity increases upon complexation.

  5. Synthesis, characterization and anticancer activities of two lanthanide(III) complexes with a nicotinohydrazone ligand

    NASA Astrophysics Data System (ADS)

    Xu, Zhou-Qin; Mao, Xian-Jie; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Cai, Hong-Xin; Bie, Hong-Yan; Chen, Ru-Hua; Ma, Tie-liang

    2015-12-01

    Two isostructural acylhydrazone based complexes, namely [Ce(penh)2(H2O)4](NO3)3·4H2O (1) and [Sm(penh)2(NO3)2](NO3)·C2H5OH (2) (penh = 2-acetylpyridine nicotinohydrazone), have been obtained and characterized by physico-chemical and spectroscopic methods. The ten-coordinated lanthanide metal ion in each complex is surrounded by two independent tridentate neutral acylhydrazones with two ON2 donor sets. The other four coordination oxygen atoms are from four water molecules and two bidentate nitrate anions for complexes 1 and 2, respectively, thus giving distorted bicapped square antiprism geometry. Both complexes have excellent antitumor activity towards human pancreatic cancer (PATU8988), human colorectal cancer (lovo) and human gastric cancer(SGC7901) cell line. Furthermore, the cell apoptosis of complex 1 is detected by AnnexinV/PI flow cytometry.

  6. Bis(O-n-butyl dithio­carbonato-κ2 S,S′)bis­(pyridine-κN)manganese(II)

    PubMed Central

    Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin

    2011-01-01

    The structure of the title manganese complex, [Mn(C5H9OS2)2(C5H5N)2] or [Mn(S2CO-n-Bu)2(C5H5N)2], consists of discrete monomeric entities with Mn2+ ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N2S4 donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa­hedral geometry are caused by the bite angle of the bidentate κ2-S2CO-n-Bu ligands [69.48 (1)°]. The O(CH2)3(CH3) chains of the O-n-butyl dithio­carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2). PMID:22090847

  7. Bis(O-n-butyl dithio-carbonato-κS,S')bis-(pyridine-κN)manganese(II).

    PubMed

    Alam, Naveed; Ehsan, Muhammad Ali; Zeller, Matthias; Mazhar, Muhammad; Arifin, Zainudin

    2011-08-01

    The structure of the title manganese complex, [Mn(C(5)H(9)OS(2))(2)(C(5)H(5)N)(2)] or [Mn(S(2)CO-n-Bu)(2)(C(5)H(5)N)(2)], consists of discrete monomeric entities with Mn(2+) ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans-N(2)S(4) donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octa-hedral geometry are caused by the bite angle of the bidentate κ(2)-S(2)CO-n-Bu ligands [69.48 (1)°]. The O(CH(2))(3)(CH(3)) chains of the O-n-butyl dithio-carbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2).

  8. Triazolylidene-Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal-Ligand Induced Catalytic Dehydrogenation of Amines.

    PubMed

    Valencia, Marta; Pereira, Ana; Müller-Bunz, Helge; Belderraín, Tomás R; Pérez, Pedro J; Albrecht, Martin

    2017-07-03

    Two iridium(III) complexes containing a C,N-bidentate pyridyl-triazolylidene ligand were prepared that are structurally very similar but differ in their pendant substituent. Whereas complex 1 contains a non-coordinating pyridyl unit, complex 2 has a phenyl group on the triazolylidene substituent. The presence of the basic pyridyl unit has distinct effects on the catalytic activity of the complex in the oxidative dehydrogenation of benzylic amines, inducing generally higher rates, higher selectivity towards formation of imines versus secondary amines, and notable quantities of tertiary amines when compared to the phenyl-functionalized analogue. The role of the pyridyl functionality has been elucidated from a set of stoichiometric experiments, which demonstrate hydrogen bonding between the pendant pyridyl unit and the amine protons of the substrate. Such N pyr ⋅⋅⋅H-N interactions are demonstrated by X-ray diffraction analysis, 1 H NMR, and IR spectroscopy, and suggest a pathway of substrate bond-activation that involves concerted substrate binding through the Lewis acidic iridium center and the Lewis basic pyridyl site appended to the triazolylidene ligand, in agreement with ligand-metal cooperative substrate activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis, spectroscopic characterization, thermal analysis and electrical conductivity studies of Mg(II), Ca(II), Sr(II) and Ba(II) vitamin B2 complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.

    2011-05-01

    Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.

  10. Synthesis, structural analysis, and magnetic properties of ethylmalonate-manganese(II) complexes.

    PubMed

    Déniz, Mariadel; Pasán, Jorge; Ferrando-Soria, Jesús; Fabelo, Oscar; Cañadillas-Delgado, Laura; Yuste, Consuelo; Julve, Miguel; Cano, Joan; Ruiz-Pérez, Catalina

    2011-11-07

    Five manganese(II) complexes of formulas [Mn(2)(Etmal)(2)(H(2)O)(2)(L)](n) (1-4) and {[Mn(Etmal)(2)(H(2)O)][Mn(H(2)O)(4)]}(n) (5) with H(2)Etmal = ethylmalonic acid (1-5) and L = 1,2-bis(4-pyridyl)ethane (bpa) (1), 4,4'-azobispyridine (azpy) (2), 4,4'-bipyridyl (4,4'-bpy) (3), and 1,2-bis(4-pyridyl)ethylene (bpe) (4) were synthesized and structurally characterized by single crystal X-ray diffraction. Their thermal behavior and variable-temperature magnetic properties were also investigated. The structure of the compounds 1-4 consists of corrugated layers of aquamanganese(II) units with intralayer carboxylate-ethylmalonate bridges in the anti-syn (equatorial-equatorial) coordination mode which are linked through bis-monodentate bpa (1), azpy (2), 4,4'-bpy (3), and bpe (4) ligands to build up a three-dimensional (3D) framework. The structure of compound 5 is made up by zigzag chains of manganese(II) ions with a regular alternation of [Mn(H(2)O)(4)](2+) and chiral (either Δ or λ enantiomeric forms) [Mn(Etmal)(2)(H(2)O)](2-) units within each chain. In contrast to the bidentate/bis-monodentate coordination mode of the Etmal ligand in 1-4, it adopts the bidentate/monodentate coordination mode in 5 with the bridging carboxylate-ethylmalonate also exhibiting the anti-syn conformation but connecting one equatorial and an axial position from adjacent metal centers. The manganese-manganese separation through the carboxylate-ethylmalonate bridge in 1-5 vary in the range 5.3167(4)-5.5336(7) Å. These values are much shorter than those across the extended bis-monodentate N-donors in 1-4 with longest/shortest values of 11.682(3) (3)/13.9745(9) Å (4). Compounds 1-5 exhibit an overall antiferromagnetic behavior, where the exchange pathway is provided by the carboxylate-ethylmalonate bridge. Monte Carlo simulations based on the classical spin approach (1-5) were used to successfully reproduce the magnetic data of 1-5. © 2011 American Chemical Society

  11. Synthesis, characterization, DNA binding and catalytic applications of Ru(III) complexes.

    PubMed

    Shoair, A F; El-Shobaky, A R; Azab, E A

    2015-01-01

    A new series of azodye ligands 5-chloro-3-hydroxy-4-(aryldiazenyl)pyridin-2(1H)-one (HLn) were synthesized by coupling of 5-chloro-3-hydroxypyridin-2(1H)-one with aniline and its p-derivatives. These ligands and their Ru(III) complexes of the type trans-[Ru(Ln)2(AsPh3)2]Cl were characterized by elemental analyses, IR, (1)H NMR and UV-Visible spectra as well as magnetic and thermal measurements. The molar conductance measurements proved that all the complexes are electrolytes. IR spectra show that the ligands (HLn) acts as a monobasic bidentate ligand by coordinating via the nitrogen atom of the azo group (NN) and oxygen atom of the deprotonated phenolic OH group, thereby forming a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The molecular and electronic structures of the investigated compounds (HLn) were also studied using quantum chemical calculations. The calf thymus DNA binding activity of the ligands (HLn) and their Ru(III) complexes were studied by absorption spectra and viscosity measurements. The mechanism and the catalytic oxidation of benzyl alcohol by trans-[Ru(Ln)2(AsPh3)2]Cl with hydrogen peroxide as co-oxidant were described. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Shiju, C.; Arish, D.; Bhuvanesh, N.; Kumaresan, S.

    2015-06-01

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, 1H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a = 7.032(2) Ǻ, b = 9.479(3) Ǻ, c = 12.425(4) Ǻ, α = 101.636(3)°, β = 99.633(3)°, γ = 94.040(3)°, V = 795.0(4) Ǻ3, Z = 2, F(0 0 0) = 352, Dc = 1.405 mg/m3, μ = 0.099 mm-1, R = 0.0378, and wR = 0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  13. Spectral and thermal studies with anti-fungal aspects of some organotin(IV) complexes with nitrogen and sulphur donor ligands derived from 2-phenylethylamine

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Kaushik, N. K.

    2008-11-01

    Some complexes of 2-phenylethyl dithiocarbamate, thiohydrazides and thiodiamines with dibenzyltin(IV) chloride, tribenzyltin(IV) chloride and di( para-chlorobenzyl)tin(IV) dichloride have been synthesized and investigated in 1:2 and 1:1 molar ratio. The dithiocarbamate ligand act as monoanionic bidentate and thiohydrazide, thiodiamines act as neutral bidentate ligand. The synthesized complexes have been characterized by elemental analysis and molecular weight determination studies and their bonding pattern suggested on the basis of electronic, infrared, 1H and 13C NMR spectroscopy. Using thermogravimetric (TG) and differential thermal analysis (DTA) various thermodynamic and kinetic parameters viz. reaction order ( n), apparent activation energy ( Ea), apparent activation entropy ( S#) and heat of reaction (Δ H) have been calculated and correlated with the structural aspects for solid-state decomposition of complexes. The ligands and their tin complexes have also been screened for their fungitoxicity activity against Rhizoctonia solanii and Sclerotium rolfsii and their ED 50 values calculated.

  14. Spectral and thermal studies with anti-fungal aspects of some organotin(IV) complexes with nitrogen and sulphur donor ligands derived from 2-phenylethylamine.

    PubMed

    Singh, Rajeev; Kaushik, N K

    2008-11-15

    Some complexes of 2-phenylethyl dithiocarbamate, thiohydrazides and thiodiamines with dibenzyltin(IV) chloride, tribenzyltin(IV) chloride and di(para-chlorobenzyl)tin(IV) dichloride have been synthesized and investigated in 1:2 and 1:1 molar ratio. The dithiocarbamate ligand act as monoanionic bidentate and thiohydrazide, thiodiamines act as neutral bidentate ligand. The synthesized complexes have been characterized by elemental analysis and molecular weight determination studies and their bonding pattern suggested on the basis of electronic, infrared, 1H and 13C NMR spectroscopy. Using thermogravimetric (TG) and differential thermal analysis (DTA) various thermodynamic and kinetic parameters viz. reaction order (n), apparent activation energy (Ea), apparent activation entropy (S#) and heat of reaction (DeltaH) have been calculated and correlated with the structural aspects for solid-state decomposition of complexes. The ligands and their tin complexes have also been screened for their fungitoxicity activity against Rhizoctonia solanii and Sclerotium rolfsii and their ED50 values calculated.

  15. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  16. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  17. Spectral, thermal, kinetic, molecular modeling and eukaryotic DNA degradation studies for a new series of albendazole (HABZ) complexes

    NASA Astrophysics Data System (ADS)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-01-01

    This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Lu, Jialin; Han, Jingyu

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connectedmore » into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.« less

  19. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    PubMed

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.

  20. Gas-phase study of new organozinc reagents by IRMPD-spectroscopy, computational modelling and tandem-MS.

    PubMed

    Massah, Ahmad R; Dreiocker, Frank; Jackson, Richard F W; Pickup, Barry T; Oomens, Jos; Meijer, Anthony J H M; Schäfer, Mathias

    2011-08-07

    An extensive set of organozinc iodides, useful for Negishi-type cross-coupling reactions, are investigated as respective cations after formal loss of iodide in the gas phase. Firstly, two new alkylzinc compounds derived from Tyrosine (Tyr) and Tryptophan (Trp) are closely examined. Secondly, the influence of specific protecting groups on the subtle balance between intra- and intermolecular coordination of zinc in these reagents is probed through trifluoroacetyl (TFA)-derivatized alkylzinc compounds. Finally, the influence of the strongly coordinating bidentate ligand N,N,N',N'-tetramethylethylenediamine (TMEDA) on the structure of alkylzinc cations is further explored in order to better understand the stability of the respective complexes towards water. A combination of electrospray (ESI)-MS/MS, accurate ion mass measurements, infrared multiple-photon dissociation (IRMPD) spectroscopy and computational modelling allowed the full characterisation of all dimethylformamide (DMF)-solvated and TMEDA-coordinated alkylzinc cations in the gas phase. The calculations indicate that the zinc cation in gas-phase alkylzinc-DMF or TMEDA-complex ions preferentially adopts a tetrahedral coordination sphere with four ligands. Additionally, conformers with only three binding partners bound to zinc but with effectively combined hydrogen-bond interactions are also found. Collision induced dissociation (CID) patterns demonstrate that the zinc-DMF interaction in tetrahedral four-coordinate mono-DMF-zinc complex ions as well as the interaction between TMEDA and zinc in the corresponding complex ions is even stronger than typical covalent bonds. In most cases, all major features of the IRMPD spectra are consistent with only a single major isomer, allowing secured identification and assignment. This journal is © the Owner Societies 2011

  1. Eight- and six-coordinated Mn(II) complexes of heteroaromatic alcohol and aldehyde: Crystal structure, spectral, magnetic, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Barszcz, Barbara; Zienkiewicz, Małgorzata; Hodorowicz, Maciej; Jezierska, Julia; Stadnicka, Katarzyna; Lechowicz, Łukasz; Kaca, Wiesław

    2014-08-01

    Crystal, molecular and electronic structure of new manganese(II) compounds: [Mn(2-CH2OHpy)2(NO3)2] (1), [Mn(4-CHO-5-MeIm)2(NO3)2] (2) and [Mn(4-CHO-5-MeIm)2Cl2] (3), where 2-hydroxymethylpyridine (2-CH2OHpy) and 5(4)-carbaldehyde-4(5)-methylimidazole (5(4)-CHO-4(5)-MeIm), have been characterised using X-ray, spectroscopic, magnetic and TG/DTG data. In compounds 1 and 2, the Mn(II) ion is eight-coordinated forming distorted pseudo-dodecahedron, that is rather unusual for the manganese(II) complexes, whereas in 3 the Mn(II) ion environment is a distorted octahedron. The high coordination number (CN = 8) of 1 and 2 results from bidentate character of the nitrate ligands. The X-band EPR spectra of compounds 2 and 3 exhibit fine structure signals resulting from zero-field splitting (ZFS) of the spin states for high spin d5 Mn(II), whereas for 1 the broad isotropic signals were observed. The estimation of ZFS for individual Mn(II) ions was carried out for all compounds using DFT calculations. The free ligands and their manganese(II) complexes have been tested in vitro against gram-positive and gram-negative bacteria in order to assess their antimicrobial properties.

  2. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.

  3. CO 2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand

    DOE PAGES

    Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi; ...

    2015-02-18

    In this study, the catalytic cycle for the production of formic acid by CO₂ hydrogenation and the reverse reaction has received renewed attention because they are viewed as offering a viable scheme for hydrogen storage and release. In this Forum Article, CO₂ hydrogenation catalyzed by iridium complexes bearing N^N-bidentate ligands is reported. We describe how a ligand containing hydroxyl groups as proton-responsive substituents enhances catalytic performance by an electronic effect of the oxyanions and a pendent-base effect through secondary coordination sphere interaction. In particular, [(Cp*IrCl)₂(TH2BPM)]Cl₂ (Cp* = pentamethyl cyclopentadienyl, TH2BPM = 4,4',6,6'-tetrahydroxy-2,2'-bipyrimidine) promotes enormously the catalytic hydrogenation of CO₂ bymore » these synergistic effects under atmospheric pressure and at room temperature. Additionally, newly designed complexes with azole-type ligands are applied to CO₂ hydrogenation. The catalytic efficiencies of the azole-type complexes are much higher than that of the unsubstituted bipyridine complex [Cp*Ir(bpy)(OH₂)]SO₄. Furthermore, the introduction of one or more hydroxyl groups into ligands such as 2-pyrazolyl-6-hydroxypyridine, 2-pyrazolyl-4,6-dihydroxyl pyrimidine, and 4-pyrazolyl-2,6-dihydroxyl pyrimidine enhanced catalytic activity. It is clear that the incorporation of electron-donating hydroxyl groups into proton-responsive ligands is effective for promoting the hydrogenation of CO₂.« less

  4. XAFS studies of metal-ligand interactions at organic surfaces and in solution

    NASA Astrophysics Data System (ADS)

    Boyanov, Maxim I.

    X-ray absorption fine structure spectroscopy (XAFS) was used as a structural probe to determine the mechanism of metal adsorption to organic surfaces. Two specific systems were investigated, Pb adsorption to heneicosanoic acid Langmuir monolayers (CH3(CH2)19COOH), and Cd adsorption to isolated cell walls of the Bacillus subtilis bacterium. Although the study of these systems is important for quite different reasons, the goal in both is metal binding site speciation and structural characterization of the surface complex. The adsorption of aqueous Cd to B. subtilis was studied as a function of pH by fluorescence mode bulk XAFS. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to protonated phosphoryl ligands below pH 4.4, while at higher pH adsorption to carboxyl groups becomes increasingly important. At pH 7.8 we observe the activation of an additional binding site, which we tentatively ascribe to deprotonated phosphoryl ligands. A quantitative Cd speciation diagram for the pH range is presented. Grazing-incidence Pb L3 edge XAFS was used in situ to determine the adsorption complex structure in the Pb-Langmuir monolayer study. The results indicate covalent binding of the Pb cations to the carboxyl headgroups, and the observed Pb-Pb coordination suggests that the metal is adsorbed as a hydrolysis polymer, rather than as individual Pb 2+ ions. The data suggest a bidentate binding mechanism and a one Pb atom to one carboxyl headgroup binding stoichiometry. We discuss how this adsorption model can explain the peculiarities observed with Pb in previous metal-Langmuir monolayer studies. A systematic study of the metal local environment in aqueous solutions was conducted and used in the above analyses. Perchlorate and acetate salt solutions of Cd, Pb, Mn, Cr, and Cu were characterized as standards of hydrated ions and metal-carboxyl complexes. The utility of XAFS in differentiating between the ionic, monodentate, bridging-bidentate, and bidentate metal-carboxyl complexes through C-C multiple scattering effects and XANES features is demonstrated.

  5. Luminescence enhancement of terbium(III) perchlorate by 2,2'-dipyridyl on bis(benzylsulfinyl)methane complex and luminescence mechanism.

    PubMed

    Feng, Shu-Yan; Li, Wen-Xian; Guo, Feng; Cao, Xiao-Fang

    2014-11-01

    A novel ternary complex, Tb(2)L4 · L'·(ClO4)6 · 8H2O, has been synthesized using bis(benzylsulfinyl)methane as the first ligand L and 2,2'-dipyridyl as the second ligand L'. The ternary complex was characterized by element analysis, molar conductivity, coordination titration analysis, infrared, thermogravimetric-differential scanning calorimetric and ultraviolet spectra. The results indicated that the composition of the complex was Tb2 L4 · L'·(ClO4)6 · 8H2O (L = C(6)H(5)CH(2) SOCH(2)SOCH(2)C(6)H(5); L' = Dipy). Fourier transform infrared results revealed that the perchlorate group was bonded with the Tb(III) ion by the oxygen atom, and the coordination was bidentate. The fluorescent spectra illustrated that the complex displayed characteristic fluorescence in the solid state. After the introduction of the second ligand, 2,2-dipyridyl, the relative emission intensity and fluorescence lifetime of the ternary complex Tb(2)L(4) · L'·(ClO(4))(6) · 8H2O were enhanced compared to the binary complex TbL(2.5)(ClO4)3 · 3H2O. This indicated that the presence of both organic ligand bis(benzylsulfinyl)methane and the second ligand 2,2-dipyridyl could sensitize the fluorescence intensity of Tb(III) ion, and introduction of the 2,2-dipyridyl group resulted in an enhancement of the fluorescence of the Tb(III) ternary rare earth complex. The strongest characteristic fluorescence emission intensity of the ternary complex was 9.36 times that of the binary complex. The phosphorescence spectra and fluorescence lifetime of the complex were also measured. Copyright © 2014 John Wiley & Sons, Ltd.

  6. 2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.

    PubMed

    Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg

    2014-07-21

    Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  8. D.C. electrical conductivity and conduction mechanism of some azo sulfonyl quinoline ligands and uranyl complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Sonbati, A Z; Salem, O L

    2011-12-01

    Supramolecular coordination of dioxouranium(VI) heterochelates 5-sulphono-7-(4'-X phenylazo)-8-hydroxyquinoline HL(n) (n=1, X=CH(3); n=2, X=H; n=3, X=Cl; n=4, X=NO(2)) have been prepared and characterized with various physico-chemical techniques. The infrared spectral studies showed a monobasic bidentate behavior with the oxygen and azonitrogen donor system. The temperature dependence of the D.C. electrical conductivity of HL(n) ligands and their uranyl complexes has been studied in the temperature range 305-415 K. The thermal activation energies E(a) for HL(n) compounds were found to be in the range 0.44-0.9 eV depending on the nature of the substituent X. The complexation process decreased E(a) values to the range 0.043-045 eV. The electrical conduction mechanism has been investigated for all samples under investigation. It was found to obey the variable range hopping mechanism (VRH). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Crystal structure of di-μ-chlorido-bis-(chlorido-{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methyl-idene]benzene-1,4-di-amine-κN4}mercury(II)).

    PubMed

    Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna

    2017-06-01

    The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].

  10. (Acetyl­acetonato)dibromido[2,2-diphenyl­hydrazin-1-ido(1−)][2,2-diphenyl­hydrazin-1-ido(2−)]molybdenum(VI)

    PubMed Central

    Bustos, Carlos; Alvarez-Thon, Luis; Ibañez, Andrés; Sánchez, Christian

    2011-01-01

    In the title compound, [MoBr2(C12H11N2)(C12H10N2)(C5H7O2)], the MoVI atom is six-coordinated in a distorted octa­hedral geometry by two N atoms from the diphenyl­hydrazide(1−) and diphenyl­hydrazide(2−) ligands, two O atoms from a bidentate acetyl­acetonate ligand and two Br− ions. The mol­ecules form an inversion dimer via a pair of weak C—H⋯O hydrogen bonds and a π–π stacking inter­action with a centroid–centroid distance of 3.7401 (12) Å. Weak intra­molecular C—H⋯Br inter­actions and an intra­molecular π–π stacking inter­action with a centroid–centroid distance of 3.8118 (15) Å are also observed. PMID:21754584

  11. Preparation, Characterization, and Antimicrobial Activities of Bimetallic Complexes of Sarcosine with Zn(II) and Sn(IV)

    PubMed Central

    Arafat, Yasir; Ali, Saqib; Shahzadi, Saira; Shahid, Muhammad

    2013-01-01

    Heterobimetallic complexes of Zn(II) and Sn(IV) with sarcosine have been synthesized at room temperature under stirring conditions by the reaction of sarcosine and zinc acetate in 2 : 1 molar ratio followed by the stepwise addition of CS2 and organotin(IV) halides, where R = Me, n-Bu, and Ph. The complexes were characterized by elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. IR data showed that the ligand acts in a bidentate manner. NMR data revealed the four coordinate geometry in solution state. In vitro antimicrobial activities data showed that complexes (3) and (4) were effective against bacterial and fungal strains with few exceptions. PMID:24235910

  12. Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Eldesoky, A. M.; Morgan, Sh. M.

    2015-01-01

    An interesting azodye heterocyclic ligand of copper(II), cobalt(II), nickel(II) and uranyl(II) complexes have been synthesized by the reaction of metal salts with 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, magnetic moments, spectral (UV-Vis, IR, 1H and 13C NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structures of the ligand tautomers are optimized theoretically and the quantum chemical parameters are calculated. The IR spectra showed that the ligand (HL) act as monobasic tridentate/neutral bidentate through the (sbnd Ndbnd N), enolic (Csbnd O)- and/or oxygen keto moiety groups forming a five/six-membered structures. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The molar conductivities show that all the complexes are non-electrolytes. The ESR spectra indicate that the free electron is in dxy orbital. The calculated bonding parameter indicates that in-plane σ-bonding is more covalent than in-plane π-bonding. The coordination geometry is five/six-coordinated trigonal bipyramidal for complex (1) and octahedral for complexes (2-6). The value of covalency factor β12 and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The synthesized ligand (HL) and its Cu(II) complexes (1, 2 and 4) are screened for their biological activity against bacterial and fungal species. The ligand (HL) showed antimicrobial activities against Escherichia coli. The ligand (HL) and its Cu(II) complexes (2 and 4) have very high antifungal activity against Penicillium italicum. The inhibitive action of ligand (HL), against the corrosion of C-steel in 2 M HCl solution has been investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).

  13. Synthesis, characterization, molecular docking and biological studies of self assembled transition metal dithiocarbamates of substituted pyrrole-2-carboxaldehyde.

    PubMed

    Nami, Shahab A A; Ullah, Irfan; Alam, Mahboob; Lee, Dong-Ung; Sarikavakli, Nursabah

    2016-07-01

    A series of self assembled 3d transition metal dithiocarbamate, M(pdtc) [where M=Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)] have been synthesized and spectroscopically characterized. The bidentate dithiocarbamate ligand Na2pdtc (Disodium-1,4-phenyldiaminobis (pyrrole-1-sulfino)dithioate) was prepared by insertion reaction of carbondisulfide with Schiff base, N,N'-bis-(1H-pyrrol-2-ylmethylene)-benzene-1,4-diamine (L1) in basic medium. The simple substitution reaction between the metal halide and Na2pdtc yielded the title complexes in moderate yields. However, the in situ procedure gives high yield with the formation of single product as evident by TLC. Elemental analysis, IR, (1)H and (13)C NMR spectra, UV-vis., magnetic susceptibility and conductance measurements were done to characterize the complexes, M(pdtc). All the evidences suggest that the complexes have tetrahedral geometry excepting Cu(II) which is found to be square planar. A symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the complexes. The conductivity data show that the complexes are non-electrolyte in nature. The anti-oxidant activity of the ligand, Na2pdtc and its transition metal complexes, M(pdtc) have been carried out using DPPH and Cu(pdtc) was found to be most effective. The anti-microbial activity of the Na2pdtc and M(pdtc) complexes have been carried out and on this basis the molecular docking study of the most effective complex, Cu(pdtc) has also been reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  15. Synthesis, structure and reactivity of tetranuclear square-type complexes of rhenium and manganese bearing pyrimidine-2-thiolate (pymS) ligands: versatile and efficient precursors for mono- and polynuclear compounds containing M(CO)(3) (M = Re, Mn) fragments.

    PubMed

    Kabir, S E; Alam, J; Ghosh, S; Kundu, K; Hogarth, G; Tocher, D A; Hossain, G M G; Roesky, H W

    2009-06-21

    Reactions of M(2)(CO)(10) (M = Re, Mn) with pyrimidine-2-thiol (pymSH) in the presence of Me(3)NO afford the tetranuclear square-type complexes [M(4)(CO)(12)(micro-kappa(3)-pymS)(4)] (, M = Re; , M = Mn). Both consist of four M(CO)(3) (M = Re, Mn) units, pairs of which are joined by tridentate pyrimidine-2-thiolate ligands. Treatment of with a variety of donor ligands results in cleavage of the square to afford mononuclear species with either a mono- or bidentate pyrimidine-2-thiolate ligand. Triphenylphosphine reacts with to give [Mn(CO)(3)(PPh(3))(kappa(2)-pymS)] () in which the pyrimidine-2-thiolate coordinates in a bidentate fashion. With diamines [M(CO)(3)(kappa(2)-L)(kappa(1)-pymS)] () (M = Re, Mn; L = 2,2'- bipy, 1,10-phen, en) result in which the pyrimidine-2-thiolate binds in a monodentate fashion through sulfur. With diphosphines, complexes with different stoichiometries and pyrimidine-2-thiolate binding modes are obtained depending on the nature of the metal and diphosphine. With dppm and dppe, gives [Re(CO)(2)(kappa(1)-pymS)(kappa(2)-dppm)] () and [Re(CO)(2)(kappa(2)-pymS)(kappa(1)-dppe)(2)] (), respectively, whereas affords [Mn(CO)(2)(kappa(2)-pymS)(kappa(1)-dppm)(2)] () and [Mn(CO)(2)(kappa(2)-pyS)(kappa(2)-dppe)] () under similar conditions. Reactions of with [Os(3)(CO)(10)(NCMe)(2)] affords mixed-metal butterfly clusters [MOs(3)(CO)(13)(micro(3)-kappa(2)-pymS)] () in which the group 7 metal occupies a wing-tip position and the pyrimidine-2-thiolate ligand caps a triangular Os(2)M face. With Ru(3)(CO)(12), carbon-sulfur bond cleavage occurs to give the tetranuclear clusters [MRu(3)(CO)(14)(micro(4)-S)(micro-kappa(1):eta(1)-pym)] () bearing both the extruded sulfur and the heterocyclic ring. The molecular structures of , and have been established by X-ray diffraction allowing the binding mode of the pyrimidine-2-thiolate ligands to be probed.

  16. Catena-poly[[bis(1H-benzotriazole-kappaN3)cobalt(II)]-di-mu-tricyanomethanido-kappa2N:N'] and catena-poly[[bis(3,5-dimethyl-1H-pyrazole-kappaN2)manganese(II)]-di-mu-tricyanomethanido-kappa2N:N'].

    PubMed

    Shao, Ze-Huai; Luo, Jun; Cai, Rui-Fang; Zhou, Xi-Geng; Weng, Lin-Hong; Chen, Zhen-Xia

    2004-06-01

    Two new one-dimensional coordination polymers, viz. the title compounds, [Co[C(CN)(3)](2)(C(6)H(5)N(3))(2)](n), (I), and [Mn[C(CN)(3)](2)(C(5)H(8)N(2))(2)](n), (II), have been synthesized and characterized by X-ray diffraction. Both complexes consist of linear chains with double 1,5-tricyanomethanide bridges between neighbouring divalent metal ions. The Co and Mn atoms are located on centres of inversion. In (I), the coordination environment of the Co(II) atom is that of an elongated octahedron. The Co(II) atom is coordinated in the equatorial plane by four nitrile N atoms of four bridging tricyanomethanide ions, with Co-N distances of 2.106 (2) and 2.110 (2) A, and in the apical positions by two N atoms from the benzotriazole ligands, with a Co-N distance of 2.149 (2) A. The [Co[C(CN)(3)](2)(C(6)H(5)N(3))(2)] units form infinite chains extending along the a axis. These chains are crosslinked via a hydrogen bond between the uncoordinated nitrile N atom of a tricyanomethanide anion and the H atom on the uncoordinated N atom of a benzotriazole ligand from an adjacent chain, thus forming a three-dimensional network structure. In (II), the Mn(II) atom also adopts a slightly distorted octahedral geometry, with four nitrile N atoms of tricyanomethanide ligands [Mn-N = 2.226 (2) and 2.227 (2) A] in equatorial positions and two N atoms of the monodentate 3,5-dimethylpyrazole ligands [Mn-N = 2.231 (2) A] in the axial sites. In (II), one-dimensional polymeric chains extending along the b axis are formed, with tricyanomethanide anions acting as bidentate bridging ligands. A hydrogen bond between the uncoordinated nitrile N atom of the tricyanomethanide ligand and the H atom on the uncoordinated N atom of a 3,5-dimethylpyrazole group from a neighbouring chain links the molecule into a two-dimensional layered structure.

  17. CO2 as a hydrogen vector - transition metal diamine catalysts for selective HCOOH dehydrogenation.

    PubMed

    Fink, Cornel; Laurenczy, Gábor

    2017-01-31

    The homogeneous catalytic dehydrogenation of formic acid in aqueous solution provides an efficient in situ method for hydrogen production, under mild conditions, and at an adjustable rate. We synthesized a series of catalysts with the chemical formula [(Cp*)M(N-N')Cl] (M = Ir, Rh; Cp* = pentamethylcyclopentadienyl; N-N = bidentate chelating nitrogen donor ligands), which have been proven to be active in selective formic acid decomposition in aqueous media. The scope of the study was to examine the relationship between stability and activity of catalysts for formic acid dehydrogenation versus electronic and steric properties of selected ligands, following a bottom-up approach by increasing the complexity of the N,N'-ligands progressively. The highest turnover frequency, TOF = 3300 h -1 was observed with a Cp*Ir(iii) complex bearing 1,2-diaminocyclohexane as the N,N'-donor ligand. From the variable temperature studies, the activation energy of formic acid dehydrogenation has been determined, E a = 77.94 ± 3.2 kJ mol -1 . It was observed that the different steric and electronic properties of the bidentate nitrogen donor ligands alter the catalytic activity and stability of the Ir and Rh compounds profoundly.

  18. Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand.

    PubMed

    Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2016-04-18

    A novel nickel(II) complex [Ni(L)2 Cl]Cl with a bidentate phosphinopyridyl ligand 6-((diphenylphosphino)methyl)pyridin-2-amine (L) was synthesized as a metal-complex catalyst for hydrogen production from protons. The ligand can stabilize a low Ni oxidation state and has an amine base as a proton transfer site. The X-ray structure analysis revealed a distorted square-pyramidal Ni(II)  complex with two bidentate L ligands in a trans arrangement in the equatorial plane and a chloride anion at the apex. Electrochemical measurements with the Ni(II) complex in MeCN indicate a higher rate of hydrogen production under weak acid conditions using acetic acid as the proton source. The catalytic current increases with the stepwise addition of protons, and the turnover frequency is 8400 s(-1) in 0.1 m [NBu4 ][ClO4 ]/MeCN in the presence of acetic acid (290 equiv) at an overpotential of circa 590 mV. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO 2 Hydrogenation

    DOE PAGES

    Ertem, Mehmed Zahid; Suna, Yuki; Himeda, Yuichiro; ...

    2017-10-06

    Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity towards CO 2 hydrogenation in 2.0 M KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2/H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4 and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generatingmore » pendent-bases in basic media, recorded high initial TOF values of 1300 h -1, 1550 h -1 and 2000 h -1, respectively. Here, spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in the high catalytic performance in basic media.« less

  20. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO2 Hydrogenation.

    PubMed

    Suna, Yuki; Himeda, Yuichiro; Fujita, Etsuko; Muckerman, James T; Ertem, Mehmed Z

    2017-11-23

    Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity toward CO 2 hydrogenation in 2.0 m KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2 /H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4, and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generating pendent bases in basic media, recorded high initial turnover frequency values of 1300, 1550, and 2000 h -1 , respectively. Spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in high catalytic performance in basic media. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    PubMed Central

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  2. NiXantphos: a deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides.

    PubMed

    Zhang, Jiadi; Bellomo, Ana; Trongsiriwat, Nisalak; Jia, Tiezheng; Carroll, Patrick J; Dreher, Spencer D; Tudge, Matthew T; Yin, Haolin; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J

    2014-04-30

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd-NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp(2))-H arylations. The advantages and importance of the Pd-NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides.

  3. NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides

    PubMed Central

    2015-01-01

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758

  4. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.

    PubMed

    Zhang, Pan; Ni, Shao-Fei; Dang, Li

    2016-09-20

    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity.

    PubMed

    Mukherjee, Arindam; Dhar, Shanta; Nethaji, Munirathinam; Chakravarty, Akhil R

    2005-01-21

    The ternary iron(II) complex [Fe(L')(L")](PF6)3(1) as a synthetic model for the bleomycins, where L' and L" are formed from metal-mediated cyclizations of N,N'-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine)(L), is synthesized and structurally characterized by X-ray crystallography. In the six-coordinate iron(ii) complex, ligands L' and L" show tetradentate and bidentate chelating modes of bonding. Ligand L' is formed from an intramolecular attack of the alcoholic OH group of L to one imine moiety leading to the formation of a stereochemically constrained five-membered ring. Ligand L" which is formed from an intermolecular reaction involving one imine moiety of L and pyridine-2-carbaldehyde has an emissive cationic imidazopyridine pendant arm. The complex binds to double-stranded DNA in the minor groove giving a Kapp value of 4.1 x 10(5) M(-1) and displays oxidative cleavage of supercoiled DNA in the presence of H2O2 following a hydroxyl radical pathway. The complex also shows photo-induced DNA cleavage activity on UV light exposure involving formation of singlet oxygen as the reactive species.

  7. Structural characterization of a bridged 99Tc-Sn-dimethylglyoxime complex: implications for the chemistry of 99mTc-radiopharmaceuticals prepared by the Sn (II) reduction of pertechnetate.

    PubMed Central

    Deutsch, E; Elder, R C; Lange, B A; Vaal, M J; Lay, D G

    1976-01-01

    Reduction of pertechnetate by tin(II) in the presence of dimethylglyoxime is shown, by single crystal x-ray analysis, to yield a technetium-tin-dimethylglyoxime complex in which tin and technetium are intimately connected by a triple bridging arrangement. One bridge consists of a single oxygen atom and it is hypothesized that this bridge arises from the inner sphere reduction of technetium by tin(II), the electrons being transferred through a technetium "yl" oxygen which eventually becomes the bridging atom. Two additional bridges arise from two dimethylglyoxime ligands that function as bidentate nitrogen donors towards Tc and monodentate oxygen donors towards Sn. The tin atom can thus be viewed as providing a three-pronged "cap" on one end of the Tc-dimethylglyoxime complex. The additional coordination sites around Tc are occupied by the two nitrogens of a third dimethylglyoxime ligand, making the Tc seven-coordinate. The additional coordination sites around Sn are occupied by three chloride anions, giving the Sn a fac octahedral coordination environment. From indirect evidence the oxidation states of tin and technetium are tentatively assigned to be IV and V, respectively. Since most 99mTc-radiopharmaceuticals are synthesized by the tin(II) reduction of pertechnetate, it is likely that the Sn-O-Tc linkage described in this work is an important feature of the chemistry of these species. This linkage also provides a ready rationale for the close association of tin and technetium observed in many 99mTc-radiopharmaceuticals. PMID:1069984

  8. Crystal structure of tetra-kis-[μ2-2-(di-methyl-amino)-ethano-lato-κ(3) N,O:O]di-μ3-hydroxido-di-thio-cyanato-κ(2) N-dichromium(III)dilead(II) di-thio-cyanate aceto-nitrile monosolvate.

    PubMed

    Rusanova, Julia A; Semenaka, Valentyna V; Omelchenko, Irina V

    2016-04-01

    The tetra-nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The Cr(III) ion is coordinated in a distorted octa-hedron, which involves two N atoms of one bidentate ligand and one thio-cyanate anion, two μ2-O atoms of 2-(di-methyl-amino)-ethano-late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the Pb(II) ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter-actions involving the coordinating and non-coordinating thio-cyanate anions are observed. In the crystal, the complex cations are linked through the thio-cyanate anions via the Pb⋯S inter-actions and O-H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto-nitrile mol-ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9-18] procedure in PLATON. The solvent is included in the reported mol-ecular formula, weight and density.

  9. Kinetic and theoretical studies on the protonation of [Ni(2-SC6H4N){PhP(CH2CH2PPh2)2}]+: nitrogen versus sulfur as the protonation site.

    PubMed

    Petrou, Athinoula L; Koutselos, Andreas D; Wahab, Hilal S; Clegg, William; Harrington, Ross W; Henderson, Richard A

    2011-02-07

    The complexes [Ni(4-Spy)(triphos)]BPh(4) and [Ni(2-Spy)(triphos)]BPh(4) {triphos = PhP(CH(2)CH(2)PPh(2))(2), 4-Spy = 4-pyridinethiolate, 2-Spy = 2-pyridinethiolate} have been prepared and characterized both spectroscopically and using X-ray crystallography. In both complexes the triphos is a tridentate ligand. However, [Ni(4-Spy)(triphos)](+) comprises a 4-coordinate, square-planar nickel with the 4-Spy ligand bound to the nickel through the sulfur while [Ni(2-Spy)(triphos)](+) contains a 5-coordinate, trigonal-bipyramidal nickel with a bidentate 2-Spy ligand bound to the nickel through both sulfur and nitrogen. The kinetics of the reactions of [Ni(4-Spy)(triphos)](+) and [Ni(2-Spy)(triphos)](+) with lutH(+) (lut = 2,6-dimethylpyridine) in MeCN have been studied using stopped-flow spectrophotometry, and the two complexes show very different reactivities. The reaction of [Ni(4-Spy)(triphos)](+) with lutH(+) is complete within the deadtime of the stopped-flow apparatus (2 ms) and corresponds to protonation of the nitrogen. However, upon mixing [Ni(2-Spy)(triphos)](+) and lutH(+) a reaction is observed (on the seconds time scale) to produce an equilibrium mixture. The mechanistic interpretation of the rate law has been aided by the application of MSINDO semiempirical and ADF calculations. The kinetics and calculations are consistent with the reaction between [Ni(2-Spy)(triphos)](+) and lutH(+) involving initial protonation of the sulfur followed by dissociation of the nitrogen and subsequent transfer of the proton from sulfur to nitrogen. The factors affecting the position of protonation and the coupling of the coordination state of the 2-pyridinethiolate ligand to the site of protonation are discussed.

  10. Comparisons of the spectroscopic and microbiological activities among coumarin-3-carboxylate, o-phenanthroline and zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Islas, María S.; Martínez Medina, Juan J.; Piro, Oscar E.; Echeverría, Gustavo A.; Ferrer, Evelina G.; Williams, Patricia A. M.

    2018-06-01

    Coumarins (2H-chromen-2-one) are oxygen-containing heterocyclic compounds that belong to the benzopyranones family. In this work we have synthesized different coordination complexes with coumarin-3-carboxylic acid (HCCA), o-phenanthroline (phen) and zinc(II). In the reported [Zn(CCA)2(H2O)2] complex, coumarin-3-carboxylate (CCA) is acting as a bidentate ligand while in the two prepared complexes, [Zn(phen)3]CCA(NO3) (obtained as a single crystal) and [Zn(CCA)2phen].4H2O, CCA is acting as a counterion of the complex cation [Zn(phen)3]+2 or coordinated to the metal center along with phen, respectively. These compounds were characterized on the basis of elemental analysis and thermogravimetry. NMR, FTIR and Raman spectroscopies of the compounds and the CCA potassium salt (KCCA) allow to determine several similarities and differences among them. Finally, their behavior against alkaline phosphatase enzyme and their antimicrobial activities were also measured.

  11. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, Mehmed Zahid; Suna, Yuki; Himeda, Yuichiro

    Pentamethylcyclopentadienyl iridium (Cp*Ir) complexes with bidentate ligands consisting of a pyridine ring and an electron-rich diazole ring were prepared. Their catalytic activity towards CO 2 hydrogenation in 2.0 M KHCO 3 aqueous solutions (pH 8.5) at 50 °C, under 1.0 MPa CO 2/H 2 (1:1) have been reported as an alternative to photo- and electrochemical CO 2 reduction. Bidentate ligands incorporating an electron-rich diazole ring improved the catalytic performance of the Ir complexes compared to the bipyridine ligand. Complexes 2, 4 and 6, possessing both a hydroxy group and an uncoordinated NH group, which are proton-responsive and capable of generatingmore » pendent-bases in basic media, recorded high initial TOF values of 1300 h -1, 1550 h -1 and 2000 h -1, respectively. Here, spectroscopic and computational investigations revealed that the reversible deprotonation changes the electronic properties of the complexes and causes interactions between pendent base and substrate and/or solvent water molecules, resulting in the high catalytic performance in basic media.« less

  13. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline) 2 building blocks

    NASA Astrophysics Data System (ADS)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen

    2008-03-01

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.

  14. Ligand-Promoted Rh(III)-Catalyzed Coupling of Aryl C-H Bonds with Arylboron Reagents.

    PubMed

    Wang, Huai-Wei; Cui, Pei-Pei; Lu, Yi; Sun, Wei-Yin; Yu, Jin-Quan

    2016-04-15

    Rhodium(III)-catalyzed C-H arylation of arenes with phenylboronic acid pinacol esters has been achieved using a readily removable N-pentafluorophenylbenzamide directing group for the first time. The use of a bidentate phosphine ligand (Binap) significantly increased the yield of the cross-coupling of C-H bonds with organoboron reagents.

  15. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    NASA Astrophysics Data System (ADS)

    Uznanski, Pawel; Zakrzewska, Joanna; Favier, Frederic; Kazmierski, Slawomir; Bryszewska, Ewa

    2017-03-01

    A comparative study of amine and silver carboxylate adducts [R1COOAg-2(R2NH2)] (R1 = 1, 7, 11; R2 = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, 13C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies (1H and 13C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  16. Complexation of Sn{sub 2}Se{sub 6} with lanthanide(III) centers influenced by ethylene polyamines: Solvothermal syntheses, crystal structures, and optical properties of lanthanide selenidostannates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Wang, Fang; Chen, Ruihong

    Lanthanide selenidostannates (H{sub 3}O){sub n}[Ce(tepa)(μ-1κ{sup 2}:2κ{sup 2}-Sn{sub 2}Se{sub 6})]{sub n} (1), [(Yb(tepa)(μ-OH)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})]{sub n}·nH{sub 2}O (2), [Htrien]{sub 2}[(Ln(trien)(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Se{sub 6})][Sn{sub 2}Se{sub 6}] (Ln=Ce(3), Nd(4)) and [(Yb(dien){sub 2}){sub 2}(μ-OH){sub 2}]Sn{sub 2}Se{sub 6} (5) were solvothermally prepared in different ethylene polyamines. The Sn{sub 2}Se{sub 6} unit connects [Ce(tepa)]{sup 3+} and [(Yb(tepa)(μ-OH)){sub 2}]{sup 4+} fragments with tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes in tepa, to form polymers 1 and 2, respectively. It joins two [Ln(trien)(tren)]{sup 3+} fragments as a μ-1κSe{sup 1}:2κSe{sup 5} ligand to form binuclear complexes 3 and 4more » in trien. Unlike the Sn{sub 2}Se{sub 6} units in 1–4 that bind with Ln(III) centers as Se-donor ligands, the Sn{sub 2}Se{sub 6} unit in 5 exists as a discrete ion. The syntheses of 1–5 show that the ethylene polyamines play an important role in the complexation of Sn{sub 2}Se{sub 6} ligand with Ln(III) centers. Compounds 1–5 exhibit optical band gaps in the range of 2.09–2.42 eV, which are influenced by the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers. - Graphical abstract: New lanthanide complexes concerning the Sn{sub 2}Se{sub 6} ligand were solvothermally prepared, and the effect of ethylene polyamines on the complexation of Sn{sub 2}Se{sub 6} with Ln(III) centers are observed. Highlights: • Lanthanide complexes concerning the selenidostannates have been solvothermally prepared in different ethylene polyamines. • A tetradentate μ-1κ{sup 2}Se{sup 1},Se{sup 2}:2κ{sup 2}Se{sup 5},Se{sup 6} and a bidentate μ-1κSe{sup 1}:2κSe{sup 5} bridging coordination modes for the Sn{sub 2}Se{sub 6} ligand is obtained. • The complexation of the Sn{sub 2}Se{sub 6} ligand with Ln(III) centers are influenced by the ethylene polyamines.« less

  17. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    NASA Astrophysics Data System (ADS)

    Beheshti, Azizolla; Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak; Motamedi, Hossein; Mayer, Peter; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2017-05-01

    Two new compounds namely [Cu(SCN)(μ-L)]n (1) and {[Ag (μ2-L)](ClO4)}n (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS2N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS4 tetrahedral geometry with 4-membered Ag2S2 rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV-vis spectrum could be attributed to the π→π* and MLCT transitions, respectively.

  18. Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium( v ) cation: implications for selectivity towards uranyl

    DOE PAGES

    Mehio, Nada; Johnson, J. Casey; Dai, Sheng; ...

    2015-10-28

    Poly(acrylamidoxime)-based fibers bearing random mixtures of carboxylate and amidoxime groups are the most widely utilized materials for extracting uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a significant challenge to the industrial mining of uranium from seawater using the current generation of adsorbents. To design more selective adsorbents, a detailed understanding of how major competing ions interact with carboxylate and amidoxime ligands is required. In this work, we employ density functional theory (DFT) and wave-function methods to investigate potential binding motifs of the dioxovanadium ion, VO 2 +, with water, formate, and formamidoximatemore » ligands. Employing higher level of theory calculations (CCSD(T)) resolve the existing controversy between the experimental results and previous DFT calculations for the structure of the hydrated VO 2 + ion. Consistent with the EXAFS data, CCSD(T) calculations predict higher stability of the distorted octahedral geometry of VO 2 +(H 2O) 4 compared to the five-coordinate complex with a single water molecule in the second hydration shell, while all seven tested DFT methods yield the reverse stability of the two conformations. Analysis of the relative stabilities of formate-VO 2 + complexes indicates that both monodentate and bidentate forms may coexist in thermodynamic equilibrium in solution, with the equilibrium balance leaning more towards the formation of monodentate species. Investigations of VO 2 + coordination with the formamidoximate anion has revealed the existence of seven possible binding motifs, four of which are within ~ 4.0 kcal/mol of each other. Calculations establish that the most stable binding motif entails the coordination of oxime oxygen and amide nitrogen atoms via a tautomeric rearrangement of amidoxime to imino hydroxylamine. Lastly, the difference in the most stable VO 2 + and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less

  19. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors.

    PubMed

    Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E

    2007-05-31

    A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.

  20. Di­chlorido­[N-(N,N-di­methyl­carbamimido­yl)-N′,N′,4-tri­methyl­benzohydrazonamide]­platinum(II) nitro­methane hemisolvate

    PubMed Central

    Bolotin, Dmitrii S.; Bokach, Nadezha A.; Haukka, Matti

    2014-01-01

    In the title compound, [PtCl2(C13H21N5)]·0.5CH3NO2, the PtII atom is coordinated in a slightly distorted square-planar geometry by two Cl atoms and two N atoms of the bidentate ligand. The (1,3,5-tri­aza­penta­diene)PtII metalla ring is slightly bent and does not conjugate with the aromatic ring. In the crystal, N—H⋯Cl hydrogen bonds link the complex mol­ecules, forming chains along [001]. The nitromethane solvent molecule shows half-occupancy and is disordered over two sets of sites about an inversion centre. PMID:24826095

  1. Slow magnetic relaxation and luminescence properties in lanthanide(iii)/anil complexes.

    PubMed

    Maniaki, Diamantoula; Mylonas-Margaritis, Ioannis; Mayans, Julia; Savvidou, Aikaterini; Raptopoulou, Catherine P; Bekiari, Vlasoula; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P

    2018-05-22

    The initial use of anils, i.e. bidentate Schiff bases derived from the condensation of anilines with salicylaldehyde or its derivatives, in 4f-metal chemistry is described. The 1 : 1 reactions between Ln(NO3)3·xH2O (Ln = lanthanide) or Y(NO3)3·6H2O and N-(5-bromosalicylidene)aniline (5BrsalanH) in MeCN has provided access to complexes [Ln(NO3)3(5BrsalanH)2(H2O)]·MeCN (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) and [Y(NO3)3(5BrsalanH)2(H2O)]·MeCN, respectively, in good yields. The structures of the isomorphous complexes with Ln = Pr(1·MeCN), Sm(3·MeCN), Gd(5·MeCN), Dy(7·MeCN) and Er(9·MeCN) have been determined by single-crystal X-ray crystallography. The other complexes were proven to be isostructural with the fully structurally characterized compounds based on elemental analyses, IR spectra, unit cell determinations and powder X-ray patterns. The 9-coordinate LnIII centre in the [Ln(NO3)3(5BrsalanH)2(H2O)] molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the organic ligands and one oxygen atom from the aquo ligand. The 5BrsalanH molecules behave as monodentate O-donors; the acidic H atom is clearly located on the imino N atom and thus the formally neutral ligands adopt an extremely rare coordination mode participating in the zwitterionic form. The coordination polyhedra defined by the nine donor atoms around the LnIII centres are best described as spherical capped square antiprisms. Various intermolecular interactions build the crystal structures and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the molecules. Solid-state IR and UV/VIS data are discussed in terms of structural features. 1H NMR data prove that the diamagnetic [Y(NO3)3(5BrsalanH)2(H2O)] complex decomposes in DMSO. Combined dc and ac magnetic susceptibility, as well as magnetization data for 7 suggest that this complex shows field-induced slow magnetic relaxation. Two magnetization relaxation processes are evident. The fit to the Arrhenius law has been performed using the 6.5-8.5 K ac data, affording an effective barrier for the magnetization reversal of 27 cm-1. Cole-Cole plot analysis in the temperature range in which the Orbach relaxation process is assumed, reveals a narrow distribution of relaxation times. The solid Dy(iii) complex 7 emits green light at 338 nm, the emission being ligand-centered. The perspectives of the present, first results in the lanthanide(iii)-anil chemistry are critically discussed.

  2. Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.

    PubMed

    Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man

    2018-02-13

    Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.

  3. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    NASA Astrophysics Data System (ADS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-03-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.

  4. Nano-sized, quaternary titanium(IV) metal-organic frameworks with multidentate ligands.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar

    2010-12-01

    Some mononuclear nano-sized, quaternary titanium(IV) complexes having the general formula [Ti(acac)(OOCR)2(SB)] (where Hacac=acetylacetone, R=C15H31 or C17H35, HSB=Schiff bases) have been synthesized using different multidentate ligands. These were characterized by elemental analyses, molecular weight determinations and spectral (FTIR, 1H NMR and powder XRD) studies. Conductance measurement indicated their non-conducting nature which may behave like insulators. Structural parameters like the values of limiting indices h, k, l, cell constants a, b, c, angles α, β, γ and particle size are calculated from powder XRD data for complex 1 which indicated nano-sized triclinic system in them. Bidentate chelating nature of acetylacetone, carboxylate and Schiff base anions in the complexes was established by their infrared spectra. Molecular weight determinations confirmed mononuclear nature of the complexes. On the basis of physico-chemical studies, coordination number 8 was assigned for titanium(IV) in the complexes. Transmission electron microscopy (TEM) and the selected area electron diffraction (SAED) studies indicated spherical particles with poor crystallinity. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. The Activity-Related Ionization in Carbonic Anhydrase

    PubMed Central

    Appleton, David W.; Sarkar, Bibudhendra

    1974-01-01

    The catalytic activity of carbonic anhydrase (EC 4.2.1.1) is linked to the ionization of a group in close proximity to the essential zinc ion. Studies have been undertaken to delineate the ionizations germane to the active-site chelate system. Several imidazole ligand systems were studied in order to approach a representative chelate. The simplest involved the complexation of Zn(II) by imidazole and by N-methylimidazole. As well, two bidentate systems, Zn(II)-4,4′-bis-imidazoylmethane and Co(II)-cyclic-L-histidyl-L-histidine were investigated. It was found that in a species containing metal-bound water and imidazole coordinated by means of the pyridinium nitrogen, the most acidic group was the pyrrole N-H in the imidazole ring. By the use of N-methylimidazole, the pKa of a metal-bound water molecule in a tri-imidazole ligand field was found to be 9.1. Noting the preference for labilization of the pyrrole hydrogen, the catalytic features of carbonic anhydrase are reexamined assuming that the pKenz is associated with the N-H ionization, and not with the ionization of metal-bound water. PMID:4209558

  6. An Icosidodecahedral Supramolecule Based on Pentaphosphaferrocene: From a Disordered Average Structure to Individual Isomers

    PubMed Central

    Heindl, Claudia; Peresypkina, Eugenia; Virovets, Alexander V.; Bushmarinov, Ivan S.; Medvedev, Michael G.; Krämer, Barbara; Dittrich, Birger

    2017-01-01

    Abstract Pentaphosphaferrocenes [CpRFe(η5‐P5)] (1) and CuI halides are excellent building blocks for the formation of discrete supramolecules. Herein, we demonstrate the potential of Cu(CF3SO3) for the construction of the novel 2D polymer [{Cp*Fe(μ4,η5:1:1:1‐P5)}{Cu(CF3SO3)}]n (2) and the unprecedented nanosphere (CH2Cl2)1.4@[{CpBnFe(η5‐P5)}12{Cu(CF3SO3)}19.6] (3). The supramolecule 3 has a unique scaffold beyond the fullerene topology, with 20 copper atoms statistically distributed over the 30 vertices of an icosidodecahedron. Combinatorics was used to interpret the average disordered structure of the supramolecules. In this case, only two pairs of enantiomers with D5 and D2 symmetry are possible for bidentate bridging coordination of the triflate ligands. DFT calculations showed that differences in the energies of the isomers are negligible. The benzyl ligands enhance the solubility of 3, enabling NMR‐spectroscopic and mass‐spectrometric investigations. PMID:28793182

  7. Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.

    2018-05-01

    Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.

  8. Proton NMR spectroscopic characterization of binary and ternary complexes of cobalt(II) carboxypeptidase A with inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertini, I.; Luchinat, C.; Messori, L.

    The binding of L- and D-phenylalanine and carboxylate inhibitors to cobalt(II)-substituted carboxypeptidase A, Co(II)CPD (E), in the presence and absence of pseudohalogens (X = N/sub 3//sup -/, NCO/sup -/, and NCS/sup -/) has been studied by /sup 1/H NMR spectroscopy. This technique monitors the proton signals of histidine residues bound to cobalt(II) and is therefore sensitive to the interactions of inhibitors that perturb the coordination sphere of the metal. Enzyme-inhibitor complexes, E/times/I, E/times/I/sub 2/, and E/times/I/times/X, each with characteristic NMR features, have been identified. The NMR data suggest that when the carboxylate group of a substrate of inhibitor binds atmore » the active site, a conformational change occurs that allows a second ligand molecule to bind to the metal ion, altering its coordination sphere and thereby attenuating the bidentate behavior of Glu-72. The /sup 1/H NMR signals also reflect alterations in the histidine interactions with the metal upon inhibitor binding. Isotropic shifts in the signals for the C-4 (c) and N protons (a) of one of the histidine ligands are readily observed in all of these complexes. These signals are relatively constant for all E/times/I and E/times/I/times/X complexes, indicating that this ligand is in a relatively fixed or buried conformation. However in the 2:1 carboxylate inhibitor (E/times/I/sub 2/) complexes, both signals are shifted upfield, suggesting a disturbance in the interaction of this histidine with the metal.« less

  9. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yao, Di; Wei, Yi; Tang, Jie; Bian, He-Dong; Huang, Fu-Ping; Liang, Hong

    2016-06-01

    Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1 ~ 4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity.

  10. Crystal structure of tetra­kis­[μ2-2-(di­methyl­amino)­ethano­lato-κ3 N,O:O]di-μ3-hydroxido-di­thio­cyanato-κ2 N-dichromium(III)dilead(II) di­thio­cyanate aceto­nitrile monosolvate

    PubMed Central

    Rusanova, Julia A.; Semenaka, Valentyna V.; Omelchenko, Irina V.

    2016-01-01

    The tetra­nuclear complex cation of the title compound, [Cr2Pb2(NCS)2(OH)2(C4H10NO)4](SCN)2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octa­hedron, which involves two N atoms of one bidentate ligand and one thio­cyanate anion, two μ2-O atoms of 2-(di­methyl­amino)­ethano­late ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb⋯S inter­actions involving the coordinating and non-coordinating thio­cyanate anions are observed. In the crystal, the complex cations are linked through the thio­cyanate anions via the Pb⋯S inter­actions and O—H⋯N hydrogen bonds into chains along the c axis. The chains are further linked together via S⋯S contacts. The contribution of the disordered solvent aceto­nitrile mol­ecule was removed with the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported mol­ecular formula, weight and density. PMID:27375871

  11. Synthesis and crystal structure of the [Co{sub 2}(Nicotinamide){sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Antsyshkina, A. S.; Koksharova, T. V.

    2007-09-15

    The [Co{sub 2}L{sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] coordination compound of cobalt(II) valerate with nicotinamide (L) is synthesized and studied by IR spectroscopy. The crystal structure of the synthesized compound is determined. The crystals are triclinic, and the unit cell parameters are as follows: a = 10.2759(10) A, b = 16.3858(10) A, c = 16.4262(10) A, {alpha} = 100.538(10) deg., {beta} = 101.199(10) deg., {gamma} = 90.813 (10) deg., Z = 2, and space group P1-bar. The structural units of the crystal are dimeric molecular complexes in which pairs of cobalt atoms are linked by triple bridges formed by oxygenmore » atoms of two bidentately coordinated valerate anions and a water molecule. The octahedral coordination of each cobalt atom is complemented by the pyridine nitrogen atoms of two nicotinamide ligands and the oxygen atom of the monodentate valerate group. The hydrocarbon chains of the valerate anions are disordered over two or three positions each.« less

  12. Sparkle model for the calculation of lanthanide complexes: AM1 parameters for Eu(III), Gd(III), and Tb(III).

    PubMed

    Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M

    2005-05-02

    Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.

  13. Paramagnetic oxotungsten(V) complexes containing the hydrotris(3,5-dimethylpyrazol-1-yl)borate ligand.

    PubMed

    Sproules, Stephen; Eagle, Aston A; Taylor, Michelle K; Gable, Robert W; White, Jonathan M; Young, Charles G

    2011-05-16

    Sky-blue Tp*WOCl(2) has been synthesized from the high-yielding reaction of Tp*WO(2)Cl with boron trichloride in refluxing toluene. Dark-red Tp*WOI(2) was prepared via thermal decarbonylation followed by aerial oxidation of Tp*WI(CO)(3) in acetonitrile. From these precursors, an extensive series of mononuclear tungstenyl complexes, Tp*WOXY [X = Cl(-), Y = OPh(-), SPh(-); X = Y = OPh(-), 2-(n-propyl)phenolate (PP(-)), SPh(-), SePh(-); XY = toluene-3,4-dithiolate (tdt(2-)), quinoxaline-2,3-dithiolate (qdt(2-)), benzene-1,2-diselenolate (bds(2-)); Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate], was prepared by metathesis with the respective alkali-metal salt of X(-)/XY(2-) or (NHEt(3))(2)(qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, IR, electron paramagnetic resonance (EPR), and electronic absorption spectroscopies, and X-ray crystallography (for X = Y = OPh(-), PP(-), SPh(-); XY = bds(2-)). The six-coordinate, distorted-octahedral tungsten centers are coordinated by terminal oxo [W≡O = 1.689(6)-1.704(3) Å], tridentate Tp*, and monodentate or bidentate O/S/Se-donor ligands. Spin Hamiltonian parameters derived from the simulation of fluid-solution X-band EPR spectra revealed that the soft-donor S/Se ligand complexes had larger g values and smaller (183)W hyperfine coupling constants than the less covalent hard-donor O/Cl species. The former showed low-energy ligand-to-metal charge-transfer bands in the near-IR region of their electronic absorption spectra. These oxotungsten(V) complexes display lower reduction potentials than their molybdenum counterparts, underscoring the preference of tungsten for higher oxidation states. Furthermore, the protonation of the pyrazine nitrogen atoms of the qdt(2-) ligand has been examined by spectroelectrochemistry; the product of the one-electron reduction of [Tp*WO(qdtH)](+) revealed usually intense low-energy bands.

  14. PuPHOS: a synthetically useful chiral bidentate ligand for the intermolecular Pauson-Khand reaction.

    PubMed

    Verdaguer, Xavier; Lledó, Agustí; López-Mosquera, Cristina; Maestro, Miguel Angel; Pericàs, Miquel A; Riera, Antoni

    2004-11-12

    Here we describe the synthesis and use of the Pulegone-derived bidentate P,S ligands PuPHOS and CyPuPHOS in the intermolecular Pauson-Khand reaction. Ligand exchange reaction of hexacarbonyldicobalt-alkyne complexes with PuPHOS provides a diasteromeric mixture of complexes (up to 4.5:1) from which the major isomers can be conveniently separated by simple crystallization. An isomerization-crystallization sequence of the original mixture results in a dynamic resolution that allows the preparation of the pure major Co(2)(mu-TMSC(2)H)(CO)(4)-PuPHOS (15a) in a multigram scale. Pauson-Khand reaction of 15a with norbornadiene provided, for the first time, the corresponding enone 18 with up to 93% yield and 97% ee. The use of (+)-18 as a surrogate of chiral cyclopentadienone is also demonstrated. Copper-catalyzed Michael addition of a Grignard reagent followed by removal of the TMS group with TBAF were the most reliable methods to transform (+)-18 into valuable starting materials 20a-e for the enantioselective synthesis of cyclopentenoid systems.

  15. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand

    NASA Astrophysics Data System (ADS)

    Sadeek, S. A.; El-Hamid, S. M. Abd

    2016-10-01

    [Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.

  16. Ligand effects on the hydrogenation of biomass-inspired substrates with bifunctional Ru, Ir, and Rh complexes.

    PubMed

    Jansen, Eveline; Jongbloed, Linda S; Tromp, Dorette S; Lutz, Martin; de Bruin, Bas; Elsevier, Cornelis J

    2013-09-01

    We herein report on the application and structural investigation of a new set of complexes that contain bidentate N-heterocyclic carbenes (NHCs) and primary amine moieties of the type [M(arene)Cl(L)] [M=Ru, Ir, or Rh; arene=p-cymene or pentamethylcyclopentadienyl; L=1-(2-aminophenyl)-3-(n-alkyl)imidazol-2-ylidine]. These complexes were tested and compared in the hydrogenation of acetophenone with hydrogen. Structural variations in the chelate ring size of the heteroditopic ligand revealed that smaller chelate ring sizes in combination with ring conjugation in the ligand are beneficial for the activity of this type of catalyst, favoring an inner-sphere coordination pathway. Additionally, increasing the steric bulk of the alkyl substituent on the NHC aided the reaction, showing almost no induction period and formation of a more active catalyst for the n-butyl complex relative to complexes with smaller Me and Et substituents. As is common in hydrogenation reactions, the activity of the complexes decreases in the order Ru>Ir>Rh. The application of [Ru(p-cym)Cl(L)]PF6 , which outperforms its reported analogues, has been successfully extended to the hydrogenation of more challenging biomass-inspired substrates. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and photocatalytic studies of ZnS nanoparticles from heteroleptic complex of Zn(II) 1-cyano-1-carboethoxy-2,-2-ethylenedithiolato diisopropylthiourea and its adducts with N-donor ligands

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.; Onwudiwe, Damian C.

    2016-12-01

    Zinc complexes of the type [Zn(diptu)2(ced)] (1), [Zn(diptu)2(ced)py] (2), [Zn(diptu)2(ced)bpy] (3), and [Zn(diptu)2(ced)phen] (4), (where (diptu)2(ced) = 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S‧-bis(N,N-diisopropyllthiourea), py = pyridine, bpy = 2, 2‧ bipyridine and phen = 1, 10 phenanthroline have been synthesized and characterized by elemental analyses, Fourier transform infra-red (FTIR) and Nuclear magnetic resonance (NMR) spectroscopies. The parent complex (1) was formulated as four coordinate species, which gave rise to 5 coordinate complex in (2) and six coordinate compounds in (3) and (4), with the dithiolate acting as bidentate chelating ligand. The complexes were used as single-source precursors for the synthesis of HDA-capped ZnS nanoparticles. The nanoparticles gave different morphologies with sizes in the range of 1.92-4.72 nm as observed from the TEM analysis and supported by XRD. The UV-vis spectroscopy showed that all the ZnS nanoparticles are blue shifted, with respect to the bulk, which confirmed quantum confinement. The photoluminescence spectra showed narrow and broad emission peaks around 290 and 360 nm which are ascribed to spontaneous emission peaks from band to band transition and surface states respectively. Photocatalytic activities of all the nanoparticles were investigated with methylene blue (MB) acting as the organic dye, and the UV-vis spectral revealed a gradual decrease in absorption peak that confirmed the degradation of the MB.

  18. Ester versus polyketone formation in the palladium-diphosphine catalyzed carbonylation of ethene.

    PubMed

    Zuidema, Erik; Bo, Carles; van Leeuwen, Piet W N M

    2007-04-04

    The origin of the chemoselectivity of palladium catalysts containing bidentate phosphine ligands toward either methoxycarbonylation of ethene or the copolymerization of ethene and carbon monoxide was investigated using density functional theory based calculations. For a palladium catalyst containing the electron-donating bis(dimethylphosphino)ethane (dmpe) ligand, the rate determining step for chain propagation is shown to be the insertion of ethene into the metal-acyl bond. The high barrier for chain propagation is attributed to the low stability of the ethene intermediate, (dmpe)Pd(ethene)(C(O)CH3). For the competing methanolysis process, the most likely pathway involves the formation of (dmpe)Pd(CH3OH)(C(O)CH3) via dissociative ligand exchange, followed by a solvent mediated proton-transfer/reductive- elimination process. The overall barrier for this process is higher than the barrier for ethene insertion into the palladium-acetyl bond, in line with the experimentally observed preference of this type of catalyst toward the formation of polyketone. Electronic bite angle effects on the rates of ethene insertion and ethanoyl methanolysis were evaluated using four electronically and sterically related ligands (Me)2P(CH2)nP(Me)2 (n = 1-4). Steric effects were studied for larger tert-butyl substituted ligands using a QM/MM methodology. The results show that ethene coordination to the metal center and subsequent insertion into the palladium-ethanoyl bond are disfavored by the addition of steric bulk around the metal center. Key intermediates in the methanolysis mechanism, on the other hand, are stabilized because of electronic effects caused by increasing the bite angle of the diphosphine ligand. The combined effects explain successfully which ligands give polymer and which ones give methyl propionate as the major products of the reaction.

  19. 2,3-Di(2-pyridyl)-5-phenylpyrazine: a NN-CNN-type bridging ligand for dinuclear transition-metal complexes.

    PubMed

    Wu, Si-Hai; Zhong, Yu-Wu; Yao, Jiannian

    2013-07-01

    A new bridging ligand, 2,3-di(2-pyridyl)-5-phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN-CNN-type coordination mode. The reaction of dpppzH with cis-[(bpy)2RuCl2] (bpy = 2,2'-bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)](2+) (1(2+)) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)](3+) (2(3+)) was prepared from complex 1(2+) and [(Mebip)RuCl3] (Mebip = bis(N-methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C≡CPh)](2+) (4(2+)) has been prepared from complex 1(2+), in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 1(2+) is emissive at room temperature, with an emission λmax = 695 nm. No emission was detected for complex 2(3+) at room temperature in MeCN, whereas complex 4(2+) displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3-di(2-pyridyl)-5,6-diphenylpyrazine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [H{sub 2}en]{sub 2}{l_brace}La{sub 2}M(SO{sub 4}){sub 6}(H{sub 2}O){sub 2}{r_brace} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan

    2005-06-15

    The first organically templated 3d-4f mixed metal sulfates, [H{sub 2}en]{sub 2}{l_brace}La{sub 2}M(SO{sub 4}){sub 6}(H{sub 2}O){sub 2}{r_brace} (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediaminemore » cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)« less

  1. Crystal structure of di-chlorido-{4-[(E)-(meth-oxy-imino-κN)meth-yl]-1,3-thia-zol-2-amine-κN (3)}palladium(II).

    PubMed

    Dyakonenko, Viktorita V; Zholob, Olga O; Orysyk, Svitlana I; Pekhnyo, Vasily I

    2015-01-01

    In the title compound, [PdCl2(C5H7N3OS)], the Pd(II) atom adopts a distorted square-planar coordination sphere defined by two N atoms of the bidentate ligand and two Cl atoms. The mean deviation from the coordination plane is 0.029 Å. The methyl group is not coplanar with the plane of the metallacycle [torsion angle C-O-N-C = 20.2 (4)°]. Steric repulsion between the methyl group and atoms of the metallacycle is manifested by shortened intra-molecular H⋯C contacts of 2.27, 2.38 and 2.64 Å, as compared with the sum of the van der Waals radii of 2.87 Å. The amino group participates via one H atom in the formation of an intra-molecular N-H⋯Cl hydrogen bond. In the crystal, the other H atom of the amino group links mol-ecules via bifurcated N-H⋯(Cl,O) hydrogen bonds into chains parallel to [001].

  2. Coordination chemistry of highly hemilabile bidentate sulfoxide N-heterocyclic carbenes with palladium(II).

    PubMed

    Yu, Kuo-Hsuan; Wang, Chia-Ching; Chang, I-Hsin; Liu, Yi-Hung; Wang, Yu; Elsevier, Cornelis J; Liu, Shiuh-Tzung; Chen, Jwu-Ting

    2014-12-01

    Imidazolium salts, [RS(O)-CH2 (C3 H3 N2 )Mes]Cl (R=Me (L1a), Ph (L1b)); Mes=mesityl), make convenient carbene precursors. Palladation of L1a affords the monodentate dinuclear complex, [(PdCl2 {MeS(O)CH2 (C3 H2 N2 )Mes})2 ] (2a), which is converted into trans-[PdCl2 (NHC)2] (trans-4a; N-heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans-4a can isomerize into cis-4a(anti) at reflux in acetonitrile. Abstraction of chlorides from 4a or 4b leads to the formation of a new dication: trans-[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me (5a), Ph (5b)). The X-ray structure of 5a provides evidence that the two bidentate SO-NHC ligands at palladium(II) are in square-planar geometry. Two sulfoxides are sulfur- and oxygen-bound, and constitute five- and six-membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5a or 5b spontaneously transform into cis-[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether-NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PEGylated N-methyl-S-methyl dithiocarbazate as a new reagent for the high-yield preparation of nitrido Tc-99m and Re-188 radiopharmaceuticals.

    PubMed

    Boschi, Alessandra; Massi, Alessandro; Uccelli, Licia; Pasquali, Micol; Duatti, Adriano

    2010-11-01

    A novel nitrido nitrogen atom donor for the preparation of (99m)Tc and (188)Re radiopharmaceuticals containing a metal-nitrogen multiple bond is presented. HO(2)C-PEG(600)-DTCZ was obtained by conjugation of N-methyl-S-methyl dithiocarbazate [H(2)N-N(CH(3))-C(S)SCH(3), HDTCZ] with polyethylene glycol 600 (PEG(600)). Asymmetrical heterocomplexes of the type [M(N)(PNP)(B)](0/+) (M=(99m)Tc, (188)Re; PNP=diphosphine ligands, B=DBODC, DEDC, NSH, H(2)OS, CysNAc, HDTCZ) and symmetrical nitride compounds of the type [M(N)(L)(2)] (L=DEDC, DPDC) have been prepared in high yield by using the newly designed nitride nitrogen atom donor HO(2)C-PEG(600)-DTCZ. A two-step procedure was applied for preparing the above symmetrical and asymmetrical complexes. The first step involved the preliminary formation of a mixture of nitride Tc-99m or Re-188 precursors, which contained the [M≡N](2+) core, through reduction of generator-eluted (99m)Tc-pertechnetate or (188)Re-perrhenate with thin (II) chloride in the presence of HO(2)C-PEG(600)-DTCZ. In the second step, the intermediate mixture was converted either in the final mixed asymmetrical complex by the simultaneous addition of diphosphine ligand and the suitable bidentate ligand B, or in the final symmetrical complex by the only addition of the bidentate ligand L. It was also demonstrated that the novel water-soluble nitride nitrogen atom donor HO(2)C-PEG(600)-DTCZ did not show coordinating properties toward the M≡N ((99m)Tc, (188)Re) core. Biodistribution studies in rats of the hitherto unreported [(99m)Tc(N)(PNP(3))DTCZ](+) and [(99m)Tc(N)(PNP(5))DTCZ](+) complexes showed that they selectively localize in the myocardium of rats with a favourable heart-to-lung and heart-to-liver uptake ratios. In particular, the heart-to-lung and heart-to-liver uptake ratios dramatically increased in the interval between 60 and 120 min postinjection. Hence, the combination of the favourable chemical and biological properties of HO(2)C-PEG(600)-DTCZ might confer to this novel compound an important role for the development of new (99m)Tc and (188)Re-nitrido radiopharmaceuticals. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization.

    PubMed

    Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H

    2017-10-16

    Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.

  5. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands.

    PubMed

    Zhang, Wei; Yao, Di; Wei, Yi; Tang, Jie; Bian, He-Dong; Huang, Fu-Ping; Liang, Hong

    2016-06-15

    Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1~4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity. Copyright © 2016. Published by Elsevier B.V.

  6. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands

    DOE PAGES

    Onishi, Naoya; Ertem, Mehmed Z.; Xu, Shaoan; ...

    2016-11-10

    In a Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m 3 of H 2/CO 2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. Furthermore, the pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions.

  7. Direction to practical production of hydrogen by formic acid dehydrogenation with Cp*Ir complexes bearing imidazoline ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Naoya; Ertem, Mehmed Z.; Xu, Shaoan

    In a Cp*Ir complex with a bidentate pyridyl-imidazoline ligand achieved the evolution of 1.02 m 3 of H 2/CO 2 gases by formic acid dehydrogenation without any additives or adjustments in the solution system. Furthermore, the pyridyl-imidazoline moieties provided the optimum pH to be 1.7, resulting in high activity and stability even at very acidic conditions.

  8. Crystal structure of bis-(μ-3-nitro-benzoato)-κ3O,O':O;κ3O:O,O'-bis-[bis-(3-cyano-pyridine-κN1)(3-nitro-benzoato-κ2O,O')cadmium].

    PubMed

    Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali

    2017-03-01

    The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.

  9. When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes.

    PubMed

    Daniels, Ruth E; Culham, Stacey; Hunter, Michael; Durrant, Marcus C; Probert, Michael R; Clegg, William; Williams, J A Gareth; Kozhevnikov, Valery N

    2016-04-28

    A new family of eight dinuclear iridium(iii) complexes has been prepared, featuring 4,6-diarylpyrimidines L(y) as bis-N^C-coordinating bridging ligands. The metal ions are also coordinated by a terminal N^C^N-cyclometallating ligand L(X) based on 1,3-di(2-pyridyl)benzene, and by a monodentate chloride or cyanide. The general formula of the compounds is {IrL(X)Z}2L(y) (Z = Cl or CN). The family comprises examples with three different L(X) ligands and five different diarylpyrimidines L(y), of which four are diphenylpyrimidines and one is a dithienylpyrimidine. The requisite proligands have been synthesised via standard cross-coupling methodology. The synthesis of the complexes involves a two-step procedure, in which L(X)H is reacted with IrCl3·3H2O to form dinuclear complexes of the form [IrL(X)Cl(μ-Cl)]2, followed by treatment with the diarylpyrimidine L(y)H2. Crucially, each complex is formed as a single compound only: the strong trans influence of the metallated rings dictates the relative disposition of the ligands, whilst the use of symmetrically substituted tridentate ligands eliminates the possibility of Λ and Δ enantiomers that are obtained when bis-bidentate units are linked through bridging ligands. The crystal structure of one member of the family has been obtained using a synchrotron X-ray source. All of the complexes are very brightly luminescent, with emission maxima in solution varying over the range 517-572 nm, according to the identity of the ligands. The highest-energy emitter is the cyanide derivative whilst the lowest is the complex with the dithienylpyrimidine. The trends in both the absorption and emission energies as a function of ligand substituent have been rationalised accurately with the aid of TD-DFT calculations. The lowest-excited singlet and triplet levels correlate with the trend in the HOMO-LUMO gap. All the complexes have quantum yields that are close to unity and phosphorescence lifetimes - of the order of 500 ns - that are unusually short for complexes of such brightness. These impressive properties stem from an unusually high rate of radiative decay, possibly due to spin-orbit coupling pathways being facilitated by the second metal ion, and to low non-radiative decay rates that may be related to the rigidity of the dinuclear scaffold.

  10. Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna

    2016-02-01

    The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.

  11. Cu(II) and Cu(I) complexes with 1,2-dithiosquarate as a ligand; from molecular compounds to supramolecular network structures

    NASA Astrophysics Data System (ADS)

    Calatayud, M. Luisa; Castro, Isabel; Julve, Miguel; Sletten, Jorunn

    2008-03-01

    Four new complexes of copper(II) and/or copper(I) with 1,2-dtsq as a ligand have been synthesized and characterized by single crystal X-ray diffraction methods, [Cu II(terpy)(1,2-dtsq)] ( 1), [Cu II(dmen)(1,2-dtsq)] n ( 2), {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n·2nH 2O( 3) and {[Cu II(men) 2][Cu I (1,2-dtsq)] 2} n·nH 2O ( 4) (1,2-dtsq = 1,2-dithiosquarate, dianion of 3,4-dimercapto-1-cyclobutene-1,2-dione; dmen = N, N-dimethylethylenediamine; men = N-methylethylenediamine, terpy = 2,2':6,2″-terpyridine). Compound 1 consists of neutral [Cu II(terpy)(1,2-dtsq)] mononuclear units which are held together by O⋯H-C and van der Waals interactions. Compound 2 is built of neutral [Cu II(dmen)(1,2-dtsq)] entities which are connected through weak Cu-S (pairs) and Cu-O (single) interactions into a layer structure. The structures of 3 and 4 feature polynuclear [Cu(1,2-dtsq)]nn- chains, in which dtsq groups are linking copper(I) ions in the μ-1,1, μ-1,1,1 and μ-1,2 bridging modes. The dtsq groups in these chains connect to the copper(II) ions of the [Cu IIL 2] 2+ cations [L being the bidentate dmen ( 3) and men ( 4) ligands], but in different manners in the two structures. The connections in compound 3 are unsymmetrical, so that columns of {[Cu II(dmen) 2][Cu I(1,2-dtsq)] 2} n where the copper(II) ions bind to 1,2-dtsq oxygen atoms with relatively strong axial bonds may be identified. These columns are further connected to each other through weak axial Cu II⋯S interactions, creating a three-dimensional (3D) network with channels containing the solvent water. In compound 4, on the other hand, the two crystallographically independent cations each forms a symmetrical link between the anionic chains through, respectively, O-Cu II-O and S-Cu II-S axial bonds, again creating a 3D structure with channels running parallel to the chain axis. The reduction of copper(II) to copper(I) by 1,2-dtsq is precluded when the coordination sphere of the copper(II) ion is partially blocked with the tridentate terpy ligand whereas this process occurs when the blocking ligands are the bidentate dmen and men groups.

  12. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  13. Site-Selective Benzannulation of N-Heterocycles in Bidentate Ligands Leads to Blue-Shifted Emission from [( P^N)Cu]2(μ-X)2 Dimers.

    PubMed

    Mondal, Rajarshi; Lozada, Issiah B; Davis, Rebecca L; Williams, J A Gareth; Herbert, David E

    2018-05-07

    Benzannulated bidentate pyridine/phosphine ( P^N) ligands bearing quinoline or phenanthridine (3,4-benzoquinoline) units have been prepared, along with their halide-bridged, dimeric Cu(I) complexes of the form [( P^N)Cu] 2 (μ-X) 2 . The copper complexes are phosphorescent in the orange-red region of the spectrum in the solid-state under ambient conditions. Structural characterization in solution and the solid-state reveals a flexible conformational landscape, with both diamond-like and butterfly motifs available to the Cu 2 X 2 cores. Comparing the photophysical properties of complexes of (quinolinyl)phosphine ligands with those of π-extended (phenanthridinyl)phosphines has revealed a counterintuitive impact of site-selective benzannulation. Contrary to conventional assumptions regarding π-extension and a bathochromic shift in the lowest energy absorption maxima, a blue shift of nearly 40 nm in the emission wavelength is observed for the complexes with larger ligand π-systems, which is assigned as phosphorescence on the basis of emission energies and lifetimes. Comparison of the ground-state and triplet excited state structures optimized from DFT and TD-DFT calculations allows attribution of this effect to a greater rigidity for the benzannulated complexes resulting in a higher energy emissive triplet state, rather than significant perturbation of orbital energies. This study reveals that ligand structure can impact photophysical properties for emissive molecules by influencing their structural rigidity, in addition to their electronic structure.

  14. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes.

  15. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir; Nozarian, Kimia; Babadi, Susan Soleymani

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, themore » adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers have different network structures. • Ag(I) polymer has more antibacterial activity than Cu(I) polymer. • DFT calculations of Cu(I) polymer has been investigated. • Cu(I) and Ag(I) polymers can destroy the structure of chromosomal and plasmid DNA.« less

  16. Di-μ-iodido-bis­{[(R)-(+)-2,2′-bis­(di­phenyl­phosphan­yl)-1,1′-binaphthyl-κ2 P,P′]copper(I)} 0.67-hydrate

    PubMed Central

    Volz, Daniel; Nieger, Martin; Bräse, Stefan

    2012-01-01

    The structure of the title compound, [Cu2I2(C44H32P2)2]·0.67H2O, has been determined because of its inter­esting catalytic and optical features. The mol­ecule, which has non-crystallographic C2-symmetry, consists of a core structure of two CuI ions, bridged by two iodide ions. Each CuI ion is also coordinated by one equivalent of the chiral bidentate (R)-BINAP ligand [BINAP = 2,2′-bis­(diphenyl­phosphan­yl)-1,1′-binaphth­yl]. Thus, both cations show a distorted tetra­hedral geometry being surrounded by two I atoms and two P atoms from the (R)-BINAP ligands. The complex consists of isolated butterfly-shaped mol­ecules featuring an angle of 146.11 (2)° between adjacent CuI2 planes. The structure displays intra­molecular C—H⋯I hydrogen bonding and contains disordered water. The absolute configuration of this chiral complex was determined by anomalous dispersion effects. PMID:22589832

  17. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  18. Silver sulfadoxinate: Synthesis, structural and spectroscopic characterizations, and preliminary antibacterial assays in vitro

    NASA Astrophysics Data System (ADS)

    Zanvettor, Nina T.; Abbehausen, Camilla; Lustri, Wilton R.; Cuin, Alexandre; Masciocchi, Norberto; Corbi, Pedro P.

    2015-02-01

    The sulfa drug sulfadoxine (SFX) reacted with Ag+ ions in aqueous solution, affording a new silver(I) complex (AgSFX), which was fully characterized by chemical, spectroscopic and structural methods. Elemental, ESI-TOF mass spectrometric and thermal analyses of AgSFX suggested a [Ag(C12H13N4O2S)] empirical formula. Infrared spectroscopic measurements indicated ligand coordination to Ag(I) through the nitrogen atoms of the (deprotonated) sulfonamide group and by the pyrimidine ring, as well as through oxygen atom(s) of the sulfonamide group. These hypotheses were corroborated by 13C and 15N SS-NMR spectroscopy and by an unconventional structural characterization based on X-ray powder diffraction data. The latter showed that AgSFX crystallizes as centrosymmetric dimers with a strong Ag⋯Ag interaction of 2.7435(6) Å, induced by the presence of exo-bidentate N,N‧ bridging ligands and the formation of an eight-membered ring of [AgNCN]2 sequence, nearly planar. Participation of oxygen atoms of the sulfonamide residues generates in the crystal a 1D coordination polymer, likely responsible for its very limited solubility in all common solvents. Besides the analytical, spectroscopic and structural description, the antibacterial properties of AgSFX were assayed using disc diffusion methods against Escherichia coli and Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) bacterial strains. The AgSFX complex showed to be active against Gram-positive and Gram-negative bacterial strains, being comparable to the activities of silver sulfadiazine.

  19. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    PubMed

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  20. Construction of a novel Mo/Cu/S cluster with a closed double-cubane-like polyhedron and a chain polymer of W/Cu/S clusters.

    PubMed

    Li, Zhihua; Du, Shaowu; Wu, Xintao

    2004-08-09

    Reaction of [MoOS(3)](2)(-) and [WS(4)](2)(-) with Cudtp (dtp = diethyl dithiophosphate) gave rise to the clusters [Bu(4)N](2)[(MoOS(3))(4)Cu(12)(dtp)(6)], 1, and [Et(4)N][(WS(4)Cu(4))(dtp)(3)], 2, respectively. In cluster 1, the dtp- ligands act as both monodentate and bidentate ligands that bridge between Cu atoms and link together a closed double-cubane-like [Mo(2)O(2)S(6)Cu(6)](2+) core and two incomplete cubane-like [MoOS(3)Cu(3)]+ units. In cluster 2, the [WS(4)Cu(4)](2+) fragments were connected via bidentate and doubly bridging dtp- bridges to give a chain polymeric anion. Cluster 1 is the first example of a Mo/Cu/S cluster that contains a closed double-cubane-like structure. Compound 2 is also rare and the first W/Cu/S polymer with dtp- linkages.

  1. Highly selective rhodium catalyzed domino C-H activation/cyclizations.

    PubMed

    Trans, Duc N; Cramer, Nicolai

    2011-01-01

    The direct functionalization of carbon-hydrogen bonds is an emerging tool to establish more sustainable and efficient synthetic methods. We present its implementation in a cascade reaction that provides a rapid assembly of functionalized indanylamines from simple and readily available starting materials. Careful choice of the ancillary ligand---an electron-rich bidentate phosphine ligand--enables highly diastereoselective rhodium(i)-catalyzed intramolecular allylations of unsubstituted ketimines induced by a directed C-H bond activation and allene carbo-metalation sequence.

  2. Removal of phosphate using copper-loaded polymeric ligand exchanger prepared by radiation grafting of polypropylene/polyethylene (PP/PE) nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Kavaklı, Pınar Akkaş; Güven, Olgun

    2010-03-01

    A novel polymeric ligand exchanger (PLE) was prepared for the removal of phosphate ions from water. 2,2'-dipyridylamine (DPA), a bidentate ligand forming compound with high coordination capacity with a variety of metal ions was bound to glycidyl methacrylate (GMA) grafted polypropylene/polyethylene (PP/PE) nonwoven fabric synthesized by radiation-induced grafting technique. DPA attachment on epoxy ring of GMA units was tested in different solvents, i.e. methanol, ethanol, dioxane and dimethylsulfoxide (DMSO). The highest amount of modification was achieved in dioxane. In order to prepare the corresponding PLE for the removal of phosphate, DPA-immobilized fabric was loaded with Cu(II) ions. Phosphate adsorption experiments were performed in batch mode at different pH (5-9) and phosphate concentrations. The fabric was found to be effective for the removal of phosphate ions. At every stage of preparation and use, the nonwoven fabric was characterized by thermal (i.e. DSC and TGA) and spectroscopic (FTIR) methods. Competitive adsorption experiments were also carried out using two solutions with different concentration levels at pH 7 to see the effect of competing ions. Phosphate adsorption was found to be effective and selective from solutions having trace amounts of competitive anions. It is expected that the novel PLE synthesized can be used for the removal of phosphate ions in low concentrations over a large range of pH.

  3. Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases.

    PubMed

    Tejaswi, Somapangu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Shivaraj

    2016-11-01

    Novel benzothiazole Schiff bases L 1 [1-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl) naphthalen-2-ol], L 2 [3-((4,6-difluorobenzo[d]thiazol-2-ylimino) methyl)benzene-1,2-diol], L 3 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol], L 4 [2-((4,6-difluorobenzo[d]thiazol-2-ylimino)methyl)-4-chlorophenol] and their binary Cu(II) complexes were synthesized. The structures of all the compounds have been discussed on the basis of elemental analysis, FT-IR, NMR, UV-Visible, ESI-Mass, TGA, ESR, SEM, powder XRD and magnetic moments. Based on the analytical and spectral data a square planar geometry has been assigned to all complexes in which the Schiff bases act as monobasic bidentate ligands, coordinating through the azomethine nitrogen and phenolic oxygen atom. DNA binding ability of these complexes was studied on CT-DNA by using UV-Vis absorption, fluorescence and viscometry. DNA cleavage ability of the complexes was examined on pBR322 DNA by using gel electrophoresis method. All the DNA binding studies reveal that they are good intercalators. The bioefficacy of the ligands and their complexes was examined against the growth of bacteria and fungi in vitro to evaluate their antimicrobial potential. The screening data revealed that the complexes showed more antimicrobial activity than the corresponding free ligands.

  4. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion.

    PubMed

    Dhayal, Rajendra S; van Zyl, Werner E; Liu, C W

    2016-01-19

    Metal hydride clusters have historically been studied to unravel their aesthetically pleasing molecular structures and interesting properties, especially toward hydrogen related applications. Central to this work is the hydride ligand, H¯, the smallest closed-shell spherical anion known. Two new developments in polyhydrido nanocluster chemistry include the determination of heretofore unknown hydride coordination modes and novel structural constructs, and conversion from the molecular entities to rhombus-shaped copper nanoparticles (CuNPs). These advances, together with hydrogen evolution and catalysis, have provided both experimentalists and theorists with a rich scientific directive to further explore. The isolation of hexameric [{(Ph3P)CuH}6] (Stryker reagent) could be regarded as the springboard for the recent emergence of polyhydrido copper cluster chemistry due to its utilization in a variety of organic chemical transformations. The stability of clusters of various nuclearity was improved through phosphine, pyridine, and carbene type ligands. Our focus lies with the isolation of novel copper (poly)hydride clusters using mostly the phosphor-1,1-dithiolato type ligands. We found such chalcogen-stabilized clusters to be exceptionally air and moisture stable over a wide range of nuclearities (Cu7 to Cu32). In this Account, we (i) report on state-of-the-art copper hydride cluster chemistry, especially with regards to the diverse and novel structural types generally, and newly discovered hydride coordination modes in particular, (ii) demonstrate the indispensable power of neutron diffraction for the unambiguous assignment and location of hydride ligand(s) within a cluster, and (iii) prove unique transformations that can occur not only between well characterized high nuclearity clusters, but also how such clusters can transform to uniquely shaped nanoparticles of several nanometers in diameter through copper hydride reduction. The increase in the number of low- to high-nuclearity hydride clusters allows for different means by which they can be classified. We chose a classification based on the coordination mode of hydride ligand within the cluster. This includes copper clusters associated with bridging (μ2-H) and capping (μ3-H) hydride modes, followed by an interstitial (μ4-H) hydride mode that was introduced for the first time into octa- and hepta-nuclear copper clusters stabilized by dichalcogen-type ligands. This breakthrough provided a means to explore higher nuclearity polyhydrido nanoclusters, which contain both capping (μ3-H) and interstitial (μ(4-6)-H) hydrides. The presence of bidentate ligands having mixed S/P dative sites led to air- and moisture-stable copper hydride nanoclusters. The formation of rhombus-shaped nanoparticles (CuNPs) from copper polyhydrides in the presence of excess borohydrides suggests the presence of metal hydrides as intermediates during the formation of nanoparticles.

  5. Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO 2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline

    NASA Astrophysics Data System (ADS)

    El-Behery, Mostafa; El-Twigry, Haifaa

    2007-01-01

    A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.

  6. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Jing; Liang Jingjing; Pan Yingli

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en){sub 2}(dien)({eta}{sup 2}-SbSe{sub 4})] (Ln=Ce(1a), Nd(1b)), [Ln(en){sub 2}(dien)(SbSe{sub 4})] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)({mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4})]{sub {infinity}} (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)({eta}{sup 2}-SbSe{sub 4})] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe{sub 4}]{sup 3-} acts as a monodentate ligand mono-SbSe{sub 4}, a bidentate chelating ligand {eta}{sup 2}-SbSe{sub 4} or a tridentate bridging ligand {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} to the lanthanide(III) center depending on themore » Ln{sup 3+} ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E{sub g} between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: > Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. > The [SbSe{sub 4}]{sup 3-} anion acts as a mono-SbSe{sub 4}, a {eta}{sup 2}-SbSe{sub 4} or a {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} ligand to the Ln{sup 3+} ions. > The soft base ligand [SbSe{sub 4}]{sup 3-} can be controlled to coordinate to the Ln{sup 3+} ions with en+dien and en+trien as co-ligands.« less

  7. Mono- and binuclear molybdenum and tungsten complexes containing asymmetric bridging ligands: Effects of ligand conjugation and conformation on metal-metal interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.; Jeffery, J.C.; Maher, J.P.

    The authors have prepared the new monodentate ligands 4-(4-methoxyphenyl)pyridine, 1-(4-pyridyl)-2-(4-methoxyphenyl)ethene, 1-(4-pyridyl)-2-(3-methoxyphenyl)ethene, and 1-(3-pyridyl)-2-(4-methoxyphenyl)ethene (L[sup 5]-L[sup 8]); demethylation of the methoxy group in each case afforded the new bridging bidentate ligands HL[sup 1]-HL[sup 4], which contain one pyridyl and one phenolate donor. Attachment of a MoL*(NO)Cl [L* = hydrotris(3,5-dimethylpyrazolyl)borate] moiety to the pyridyl groups of L[sup 5]-L[sup 8] gave the 17-electron complexes [Mo(NO)L*ClL[prime

  8. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant.

    PubMed

    Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti

    2017-01-03

    A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic iron(II) hydroperoxides are proposed to generate in situ in the reaction pathways. The difference in reactivity of the complexes toward external substrates could be attributed to the geometry of the O 2 -derived iron-oxygen oxidant. DFT calculations suggest that, among all possible geometries and spin states, high-spin side-on iron(II) hydroperoxides are energetically favorable for the complexes of 6-Me 3 -TPA, 6-Me 2 -iso-BPMEN, BPMEN, and 6-Me 2 -BPMEN ligands, while high spin end-on iron(II) hydroperoxides are favorable for the complexes of TPA, iso-BPMEN, and TBimA ligands.

  9. An intermolecular heterobimetallic system for photocatalytic water reduction.

    PubMed

    Hansen, Sven; Klahn, Marcus; Beweries, Torsten; Rosenthal, Uwe

    2012-04-01

    Teamwork: A new intermolecular heterobimetallic system for photocatalytic water reduction, consisting of a photosensitizer of the type [Ru(bpy)(2)(L)](PF(6))(2) (L=bidentate ligand), a dichloro palladium complex PdCl(2)(L) serving as the water reduction catalyst, and triethyl amine as electron donor, is presented. Variations of the ligand as well as of the palladium source results in a significant improvement of the performance of the catalyst system. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stereoselective Synthesis of Cyclometalated Iridium (III) Complexes: Characterization and Photophysical Properties

    PubMed Central

    Yang, Liangru; von Zelewsky, Alex; Nguyen, Huong P.; Muller, Gilles; Labat, Gaël; Stoeckli-Evans, Helen

    2009-01-01

    The stereoselective synthesis of a highly luminescent neutral Ir(III) complex comprising two bidentate chiral, cyclometalating phenylpyridine derivatives, and one acetylacetonate as ligands is described. The final complex and some intermediates were characterized by X-ray structural analysis, NMR-, CD-, and CPL-spectroscopy. PMID:20161195

  11. Vibrational spectroscopy of metal methanesulfonates: M = Na, Cs, Cu, Ag, Cd

    NASA Astrophysics Data System (ADS)

    Parker, Stewart F.; Zhong, Lisha

    2018-04-01

    In this work, we have used a combination of vibrational spectroscopy (infrared, Raman and inelastic neutron scattering) and periodic density functional theory to investigate six metal methanesulfonate compounds that exhibit four different modes of complexation of the methanesulfonate ion: ionic, monodentate, bidentate and pentadentate. We found that the transition energies of the modes associated with the methyl group (C-H stretches and deformations, methyl rock and torsion) are essentially independent of the mode of coordination. The SO3 modes in the Raman spectra also show little variation. In the infrared spectra, there is a clear distinction between ionic (i.e. not coordinated) and coordinated forms of the methanesulfonate ion. This is manifested as a splitting of the asymmetric S-O stretch modes of the SO3 moiety. Unfortunately, no further differentiation between the various modes of coordination: unidentate, bidentate etc … is possible with the compounds examined. While it is likely that such a distinction could be made, this will require a much larger dataset of compounds for which both structural and spectroscopic data are available than that available here.

  12. Synthesis, spectroscopic characterization, DFT calculations and biological evaluation of benzothiazole derivative bearing Mn(II) and Ni(II) metal ions

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.; Ali, Korany A.

    2017-11-01

    N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide ligand and its Nickel and Manganese complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance, mass and UV-Vis spectra, molar conductance and magnetic moment measurements. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method. N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide is a neutral bidentate ligand coordinating metal ions via thiazole ring nitrogen and amide carbonyl O forming high spin octahedral complexes with Mn(II) (2) and distorted square planar in case of Ni(II) (1). Natural bond orbital analysis and geometry optimization were carried out at DFT/B3LYP/6-31G(d) level of theory for the ligand and the mentioned complexes. Ab inito computations at the HF/6-31G(d) level of the theory is conducted in order to detect any probability of a hydrogen bond formation in the ligand. The dipole moment of the Ni(II) and Mn(II) complexes is recorded to be 9.69 and 7.39 Debye, respectively, indicating that the complexes are more polarized than the ligand 2.39 Debye. The in vitro biological activity of the metal chelates is screened against the Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), fungus (Aspergillus flavus, Candida albicans). Ni(II) complexes displayed the highest activity against Candida albicans and Staphylococcus aureus with MIC values of 13, 30 μg/cm3, respectively.

  13. Synthesis, structural, optical band gap and biological studies on iron (III), nickel (II), zinc (II) and mercury (II) complexes of benzyl α-monoxime pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2017-07-01

    New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.

  14. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc.

  15. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc. PMID:27077915

  16. Graphical evaluation of complexometric titration curves.

    PubMed

    Guinon, J L

    1985-04-01

    A graphical method, based on logarithmic concentration diagrams, for construction, without any calculations, of complexometric titration curves is examined. The titration curves obtained for different kinds of unidentate, bidentate and quadridentate ligands clearly show why only chelating ligands are usually used in titrimetric analysis. The method has also been applied to two practical cases where unidentate ligands are used: (a) the complexometric determination of mercury(II) with halides and (b) the determination of cyanide with silver, which involves both a complexation and a precipitation system; for this purpose construction of the diagrams for the HgCl(2)/HgCl(+)/Hg(2+) and Ag(CN)(2)(-)/AgCN/CN(-) systems is considered in detail.

  17. Activation of rhenium(I) toward substitution in fac-[Re(N,O'-Bid)(CO)3(HOCH3)] by Schiff-base bidentate ligands (N,O'-Bid).

    PubMed

    Brink, Alice; Visser, Hendrik G; Roodt, Andreas

    2013-08-05

    A series of fac-[Re(N,O'-Bid)(CO)3(L)] (N,O'-Bid = monoanionic bidentate Schiff-base ligands with N,O donor atoms; L = neutral monodentate ligand) has been synthesized, and the methanol substitution reactions have been investigated. The complexes were characterized by NMR, IR, and UV-vis spectroscopy. X-ray crystal structures of the compounds fac-[Re(Sal-mTol)(CO)3(HOCH3)], fac-[Re(Sal-pTol)(CO)3(HOCH3)], fac-[Re(Sal-Ph)(CO)3(HOCH3)], and fac-[Re(Sal-Ph)(CO)3(Py)] (Sal-mTol = 2-(m-tolyliminomethyl)phenolato; Sal-pTol = 2-(p-tolyliminomethyl)phenolato; Sal-Ph = 2-(phenyliminomethyl)phenolato; Py = pyridine) are reported. Significant activation for the methanol substitution is induced by the use of the N,O bidentate ligand as manifested by the second order rate constants, with limiting kinetics being observed for the first time. Rate constants (25 °C) (k1 or k3) and activation parameters (ΔHk‡, kJ mol(-1); ΔSk‡, J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Re(Sal-mTol)(CO)3(HOCH3)] 3-chloropyridine: (k1) 2.33 ± 0.01 M(-1) s(-1); 85.1 ± 0.6, 48 ± 2; fac-[Re(Sal-mTol)(CO)3(HOCH3)] pyridine: (k1) 1.29 ± 0.02 M(-1) s(-1); 92 ± 2, 66 ± 7; fac-[Re(Sal-mTol)(CO)3(HOCH3)] 4-picoline: (k1) 1.27 ± 0.05 M(-1) s(-1); 88 ± 2, 53 ± 6; (k3) 3.9 ± 0.03 s(-1); 78 ± 8, 30 ± 27; (kf) 1.7 ± 0.02 M(-1) s(-1); 86 ± 2, 49 ± 6; fac-[Re(Sal-mTol)(CO)3(HOCH3)] DMAP (k3) 1.15 ± 0.02 s(-1); 88 ± 2, 52 ± 7. An interchange dissociative mechanism is proposed.

  18. Theoretical analysis of the influence of chelate-ring size and vicinal effects on electronic circular dichroism spectra of cobalt(III) EDDA-type complexes.

    PubMed

    Wang, Ai; Wang, Yuekui; Jia, Jie; Feng, Lixia; Zhang, Chunxia; Liu, Linlin

    2013-06-20

    To assess the contributions of configurational and vicinal effects as well as chelate-ring size to rotational strengths, the geometries of a series of cobalt(III) complexes [Co(EDDA-type)(L)](±) with the tetradentate EDDA-type ligands, EDDA (ethylenediamine-N,N'-diacetate), DMEDDA (N,N'-dimethylethylenediamine-N,N'-diacetate), DEEDDA (N,N'-diethylethylenediamine-N,N'-diacetate), and a bidentate ancillary ligand L (L = ethylenediamine, oxalate, carbonate, (S)-alanine, and malonate) in aqueous solution have been optimized at the DFT/B3LYP/6-311++G(2d,p) level of theory. Based on the optimized geometries, the excitation energies and oscillator and rotational strengths have been calculated using the time-dependent density functional theory (TDDFT) method with the same functional and basis set. The calculated circular dichroism (CD) curves are in excellent agreement with the observed ones except for some small red or blue shifts in peak wavelengths. For the influence of chelate-ring size of the bidentate ligands on the CD intensities, a qualitative analysis together with the quantitative TDDFT calculation reveal that it depends on the symmetry of the cobalt-EDDA backbone. For the s-cis-isomers, the influence is negligible due to the perturbation is symmetric. For the uns-cis-isomers, the perturbation is unsymmetric. Since a small ring size means a large perturbation, this leads to the integral CD intensities decreasing with increasing the chelate ring size. The vicinal effects of asymmetric nitrogens incorporate both the substitutent effects and conformational relaxation effects, with the former being dominant. By analyzing the contributions of chiral arrays to rotational strengths, we found that the part of contributions dominated by the S-type chiral nitrogens could be considered as a good measure for the vicinal effects of chiral nitrogens. In addition, we found that the twist form (δ/λ) of the backbone ethylenediamine ring (E-ring) of the coordinated EDDA-type ligands is a key factor to understand the properties of these chelates, because it not only dominates the relative stabilities of the s-cis-Λ(SS)-diastereoisomers with the result that λ > δ but also affects the major CD band by changing the order of the first two transitions. Moreover, the twist angle of E-ring is inversely related to the vicinal effect of chiral nitrogens. These findings may help us to understand the chelate ring size as well as vicinal effect related chiroptical phenomenon of the cobalt EDDA-type chelates.

  19. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions.

    PubMed

    Birkholz, Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W N M

    2009-04-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite angles for the selected ligands: dppp, BINAP, dppf, DPEphos and Xantphos. Similarities with hydrocyanation and CO/ethene/MeOH reactions have been highlighted, while rhodium hydroformylation has been mentioned as a contrasting example, in which predictability is high and steric and electronic effects follow smooth trends. In palladium catalysis wide bite angles and bulkiness of the ligands facilitate generally the reductive elimination thus giving more efficient cross coupling catalysis (174 references).

  20. Bis(3,5-dimeth­oxy-2-{[2-(pyridin-2-yl)ethyl­imino-κN]­meth­yl}phenolato-κO)bis­(dimethyl sulfoxide)­manganese(III) perchlorate methanol 0.774-solvate

    PubMed Central

    Egekenze, Rita; Gultneh, Yilma

    2017-01-01

    The title compound, [Mn(C16H17N2O3)2(C2H6OS)2]ClO4·0.774CH3OH, comprises a central octa­hedrally coordinated MnIII cation, with two bidentate Schiff base ligands occupying the equatorial positions and two dimethyl sulfoxide (DMSO) ligands occupying the axial positions. There are two independant cations in the asymmetric unit, with the MnIII atoms of both cations being positioned on crystallographic centers of inversion. The perchlorate anion is disordered over two equivalent conformations, with occupancies of 0.744 (3) and 0.226 (3). In addition, there is a methanol solvent mol­ecule in the crystal lattice that is too close to the minor component of the perchlorate anion to be present simultaneously and thus it was refined to have the same occupancy as the major component of this anion. There is a Jahn–Teller distortion which results in Mn—ODMSO axial bond lengths of 2.2365 (12) and 2.2368 (12) Å in the two cations. In the crystal, inter­molecular π–π stacking between the non-coordinating pyridine rings of each cation is observed. This π–π stacking, along with extensive O—H⋯O hydrogen bonding and C—H⋯O inter­actions, link the components into a complex three-dimensional array. PMID:29250362

  1. Crossover from layering to island formation in Langmuir-Blodgett growth: Role of long-range intermolecular forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-04-01

    Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.

  2. New diorganotin(IV) derivatives of 7-hydroxycoumarin (umbelliferone) and their adducts with 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Nath, Mala; Jairath, Ruchi; Eng, George; Song, Xueqing; Kumar, Ashok

    2005-10-01

    New diorganotin(IV) derivatives of the general formula R 2Sn(Umb) 2 (where R = n-Bu, n-Oct and Ph; Umb = umbelliferone anion) have been synthesized either by the reaction of R 2SnO with umbelliferone under azeotropic removel of water or by the reaction of R 2SnCl 2 with sodium salt of umbelliferone. Further, the adducts of the general formula R 2Sn(Umb) 2·phen (where R = n-Bu and n-Oct; phen = 1,10-phenanthroline) have also been synthesized by the interaction of R 2Sn(Umb) 2 with 1,10-phenanthroline. The bonding and coordination behavior in these derivatives are discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in solid state. Their coordination behavior in solution is discussed by the multinuclear ( 1H, 13C and 119Sn) NMR spectral studies. The Mössbauer and IR studies indicate that umbelliferone acts as a monoanionic bidentate ligand in R 2Sn(Umb) 2 coordinating through O(7) and O(1). A distorted octahedral geometry around tin has been proposed for R 2Sn(Umb) 2 as well as for R 2Sn(Umb) 2·phen in solid state. The newly synthesized derivatives have been tested for their anti-inflammatory and cardiovascular activities. The average LD 50 value >1000 mg kg -1 of these compounds indicates their safety margin.

  3. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    PubMed

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  4. N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide and its Co(II), Ni(II) and Cu(II) complexes: Synthesis, characterization, DFT computations, thermal decomposition, antioxidant and antitumor activity

    NASA Astrophysics Data System (ADS)

    Yeşilkaynak, Tuncay; Özpınar, Celal; Emen, Fatih Mehmet; Ateş, Burhan; Kaya, Kerem

    2017-02-01

    N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide (HL: C11H8ClN3O2S) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The HL was characterized by single crystal X-ray diffraction technique. It crystallizes in the monoclinic system. The HL has the space group P 1 21/c 1, Z = 4, and its unit cell parameters are a = 4.5437(5) Å, b = 22.4550(3) Å, c = 11.8947(14) Å. The ligand coordinates the metal ions as bidentate and thus essentially yields neutral complexes of the [ML2] type. ML2 complex structures were optimized using B97D/TZVP level. Molecular orbitals of both HL ligand were calculated at the same level. Thermal decomposition of the complexes has been investigated by thermogravimetry. The complexes were screened for their anticancer and antioxidant activities. Antioxidant activity of the complexes was determined by using the DPPH and ABTS assays. The anticancer activity of the complexes was studied by using MTT assay in MCF-7 breast cancer cells.

  5. Synthesis, and structural characterization of mixed ligand copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine incorporating carboxylates

    NASA Astrophysics Data System (ADS)

    Batool, Syeda Shahzadi; Gilani, Syeda Rubina; Tahir, Muhammad Nawaz; Rüffer, Tobias

    2017-11-01

    Two ternary copper(II) complexes of N,N,N‧,N'-tetramethylethylenediamine (tmen = C6H16N2) with benzoic acid and p-aminobenzoic acid, having the formula [Cu(tmen)(BA)2(H2O)2] (1), and [Cu(tmen)(pABA)2]. 1/2 CH3OH (2) {(Where BA1- = benzoate1- (C6H5CO21-), pABA1- = p-aminobenzoate1- (p-H2NC6H5CO21-)} have been prepared and characterized by elemental combustion analysis, Uv-Visible spectroscopy, FT-IR spectroscopy, thermal, and single crystal X-ray diffraction analyses. The complex 1 is a monomer with distorted octahedral geometry. In its CuN2O4 chromophore, the Cu(II) centre is coordinated by two N atoms of a symmetrically chelating tmen ligand, by two carboxylate-O atoms from two monodentate benzoate1- anions, and by two apical aqua-O atoms, which define the distorted octahedral structure. The complex 2 is a monomer with a distorted square planar coordination geometry. In CuN2O2 chromophore, tmen is coordinated to Cu(II) ion in a chelating bidentate fashion, while the two p-aminobenzoate1- anions coordinate to Cu(II) centre through their carboxylate-O atoms in a monodentate manner, forming a square planar structure. The observed difference between asymmetric ѵas(OCO) and symmetric ѵs(OCO) stretching IR vibrations of the carboxylate moieties for 1 and 2 is 220 cm-1 and 232 cm-1, respectively, which suggests monodentate coordination mode (Δν OCO>200) of the carboxylate groups to Cu(II) ion. Thermogravimetric studies of 1 indicates removal of two water molecules at 171 °C, elimination of a tmen upto 529 °C and of two benzoate groups upto 931 °C. In tga curve of 2, methanol is lost upto 212 °C, while tmen is lost from 212 to 993 °C. The antibacterial activities of these new compounds against various bacterial strains were also investigated.

  6. Synthesis and characterization of fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] complexes (M = Re, (99m)Tc) with acetylacetone and curcumin as OO donor bidentate ligands.

    PubMed

    Triantis, Charalampos; Tsotakos, Theodoros; Tsoukalas, Charalampos; Sagnou, Marina; Raptopoulou, Catherine; Terzis, Aris; Psycharis, Vassilis; Pelecanou, Maria; Pirmettis, Ioannis; Papadopoulos, Minas

    2013-11-18

    The synthesis and characterization of neutral mixed ligand complexes fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] (M = Re, (99m)Tc), with deprotonated acetylacetone or curcumin as the OO donor bidentate ligands and a phosphine (triphenylphosphine or methyldiphenylphosphine) as the monodentate P ligand, is described. The complexes were synthesized through the corresponding fac-[M(CO)3(H2O)(OO)] (M = Re, (99m)Tc) intermediate aqua complex. In the presence of phosphine, replacement of the H2O molecule of the intermediate complex at room temperature generates the neutral tricarbonyl monophosphine fac-[Re(CO)3(P)(OO)] complex, while under reflux conditions further replacement of the trans to the phosphine carbonyl generates the new stable dicarbonyl bisphosphine complex cis-trans-[Re(CO)2(P)2(OO)]. The Re complexes were fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography showing a distorted octahedral geometry around Re. Both the monophosphine and the bisphosphine complexes of curcumin show selective binding to β-amyloid plaques of Alzheimer's disease. At the (99m)Tc tracer level, the same type of complexes, fac-[(99m)Tc(CO)3(P)(OO)] and cis-trans-[(99m)Tc(CO)2(P)2(OO)], are formed introducing new donor combinations for (99m)Tc(I). Overall, β-diketonate and phosphine constitute a versatile ligand combination for Re(I) and (99m)Tc(I), and the successful employment of the multipotent curcumin as β-diketone provides a solid example of the pharmacological potential of this system.

  7. Thermal and biological evolution of Fe(III)-Sulfanilamide complexes synthesized by green strategy

    NASA Astrophysics Data System (ADS)

    Prajapat, Garima; Rathore, Uma; Gupta, Rama; Bhojak, N.

    2018-05-01

    Sulfonamides belong to a category of sulfadrugs, that are widely used as antibiotic medicines. Their metal complexes, also called Metallodrugs, are known to have diverse pharmacological applications and are significantly used as therapeutic agents for treatment of several human diseases. Fe(III) complexes of two sulfonamides, namely Sulfanilamide and Sulfadiazine have been synthesized by the method of Microwave Assisted Organic Synthesis (MAOS), using acetone as solvent medium. Presence of excellent donor atoms such as N and O, induce these drugs to exhibit a chelating behavior with the metal ion, and to act as bidentate ligands. Both the complexes were found to have four coordinated, tetrahedral geometry with one molecule of water of crystallisation. Thermal decomposition studies were carried out in an inert nitrogen atmosphere by Thermogravimetric (TGA) and Derivative Thermogravimetric (DTA) analysis. Interpretation of thermograms have been done to evaluate various kinetic and thermodynamic parameters, using integral method of Coats and Redfern. The antibacterial activity for both complexes have been screened against E.coli, S. aureus and B. subtilis.

  8. Synthesis, spectral characterization, thermal and photoluminescence properties of Zn(II) and Cd(II)-azido/thiocyanato complexes with thiazolylazo dye and 1,2-bis(diphenylphoshino)ethane.

    PubMed

    Yamgar, B A; Sawant, V A; Bharate, B G; Chavan, S S

    2011-01-01

    A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. How Does CeIII Nitrate Dissolve in a Protic Ionic Liquid? A Combined Molecular Dynamics and EXAFS Study.

    PubMed

    Serva, Alessandra; Migliorati, Valentina; Spezia, Riccardo; D'Angelo, Paola

    2017-06-22

    A diluted solution of Ce(NO 3 ) 3 in the protic ionic liquid (IL) ethylammonium nitrate (EAN) was investigated using molecular dynamics (MD) simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy. For the first time polarizable effects were included in the MD force field to describe a heavy metal ion in a protic IL, but, unlike water, they were found to be unessential. The Ce III ion first solvation shell is formed by nitrate ions arranged in an icosahedral structure, and an equilibrium between monodentate and bidentate ligands is present in the solution. By combining distance and angular distribution functions it was possible to unambiguously identify this peculiar coordination geometry around the ions dissolved in solution. The metal ions are solvated within the polar domains of the EAN nanostructure and the dissolved salt induces almost no reorganization of the pre-existing structure of EAN upon solubilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. (5-Methyl­pyrazine-2-carboxyl­ato-κ2 N 1,O)bis­[2-(4-methyl­pyridin-2-yl-κN)-3,5-bis­(tri­fluoro­meth­yl)phenyl-κC 1]iridium(III) chloro­form hemisolvate

    PubMed Central

    Kim, Young-Inn; Song, Young-Kwang; Kang, Sung Kwon

    2014-01-01

    In the title complex, [Ir(C14H8F6N)2(C6H5N2O2)]·0.5CHCl3, the IrIII atom adopts a distorted octa­hedral geometry, being coordinated by three N atoms (arranged meridionally), two C atoms and one O atom of three bidentate ligands. The complex mol­ecules pack with no specific inter­molecular inter­actions between them. The SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148–155] was used to model a disordered chloro­form solvent mol­ecule; the calculated unit-cell data allow for the presence of half of this mol­ecule in the asymmetric unit. PMID:24764808

  11. Pentanuclear Cyanide-Bridged Complexes with High Spin Ground States S=6 and 9: Characterization and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Marvilliers, Arnaud; Hortholary, Cédric; Rogez, Guillaume; Audière, Jean-Paul; Rivière, Eric; Cano Boquera, Joan; Paulsen, Carley; Villar, Vincent; Mallah, Talal

    2001-07-01

    Two pentanuclear complexes are obtained from the reaction of hexacyanochromate(III) with one to two molar equivalents of [Ni(H2O)6]2+ and bidentate organic ligands that chelate the metal ion, leaving two coordination sites in cis positions. Even though the crystal structure was not solved, the full characterization supports the formation of pentanuclear discrete species. [Cr(CN)6]2[Ni(HIM2-py)2]3·7H2O, 1, has a ground spin state S=6 owing to the ferromagnetic interaction between CrIII (S=3/2) and NII (S=1). The presence of six organic radicals that couple ferromagnetically with NiII in [Cr(CN)6]2[Ni(IM2-py)2]3·7H2O, 2, leads to an S=9 ground state. A.c. susceptibility measurements below 2K indicate the occurrence of an antiferromagnetic order at 1.5 K in 2.

  12. Probing the Impact of Solvation on Photoexcited Spin Crossover Complexes with High-Precision X-ray Transient Absorption Spectroscopy

    DOE PAGES

    Liu, Cunming; Zhang, Jianxin; Lawson Daku, Latevi M.; ...

    2017-11-10

    Investigating the photoinduced electronic and structural response of bistable molecular building blocks incorporating transition metals in solution phase constitutes a necessary stepping stone for steering their properties towards applications and perfomance optimizations. Here, this paper presents a detailed X-ray transient absorption (XTA) spectroscopy study of a prototypical spin crossover (SCO) complex [Fe II(mbpy) 3] 2+ (where mbpy=4,4’-dimethyl-2,2’-bipyridine) with a [Fe IIN 6] first coordination shell in water (H 2O) and acetonitrile (CH 3CN). The unprecedented data quality of the XTA spectra together with the direct fitting of the difference spectra in k space using a large number of scattering pathsmore » enables resolving the subtle difference in the photoexcited structures of an Fe II complex in two solvents for the first time. Also, compared to the low spin (LS) 1A 1 state, the average Fe-N bond elongations for the photoinduced high spin (HS) 5T 2 state are found to be 0.181 ± 0.003 Å in H 2O and 0.199 ± 0.003 Å in CH 3CN. This difference in structural response is attributed to ligand-solvent interactions that are stronger in H 2O than in CH 3CN for the HS excited state. Our studies demonstrate that, although the metal center of [Fe II(mbpy) 3] 2+ could have been expected to be rather shielded by the three bidentate ligands with quasi-octahedral-coordination, the ligand field strength in the HS excited state is nevertheless indirectly affected by solvation that modifies the charge distribution within the Fe-N covalent bonds. More generally, this work highlights the importance of including solvation effects in order to develop a generalized understanding of the spin-state switching at the atomic level.« less

  13. Performance of the Effective Core Potentials of Ca, Hg and Pb in Complexes with Ligands Containing N and O Donor Atoms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Jose Z.; Vargas, Rubicelia; Garza, Jorge

    This paper presents a systematic study of the performance of the relativistic effective core potentials (RECPs) proposed by Stoll-Preuss, Christiansen-Ermler and Hay-Wadt for Ca2+, Hg2+ and Pb2+. The RECPs performance is studied when these cations are combined with ethylene glycol, 2-aminoethanol and ethylenediamine to form bidentate complexes. First, the description of the bidentate ligands is analyzed with the Kohn-Sham method by using SVWN, BLYP and B3LYP exchange-correlation functionals and they are compared with the Moeller-Plesset perturbation theory (MP2), for all these methods the TZVP basis set was used. We found that the BLYP exchange-correlation functional gives similar results that thosemore » obtained by the B3LYP and MP2 methods. Thus, the bidentate metal complexes were studied with the BLYP method combined with the RECPs. In order to compare RECPs performance, all the systems considered in this work were studied with the relativistic all-electron Douglas-Kroll (DK3) method. We observed that the Christiansen-Ermler RECPs give the best energetic and geometrical description for Ca and Hg complexes when compared with the all-electron method. For Pb complexes the spin-orbit interaction and Basis Set Superposition error must be taken into account in the RECP. In general, the trend showed in the complexation energies with the all-electron method is followed by the complexation energies computed with all the pseudopotential tested in this work. Battelle operates PNNL for the USDOE.« less

  14. First application of an efficient and versatile ligand for copper-catalyzed cross-coupling reactions of vinyl halides with N-heterocycles and phenols.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Namjoshi, Ojas A; Cook, James M

    2010-02-05

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency, that is, mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance.

  15. First Application of An Efficient and Versatile Ligand for Copper-Catalyzed Cross-Coupling Reactions of Vinyl Halides with N-Heterocycles and Phenols

    PubMed Central

    Kabir, M. Shahjahan; Lorenz, Michael; Namjoshi, Ojas A.; Cook, James M.

    2010-01-01

    2-Pyridin-2-yl-1H-benzoimidazole L3 is presented as a new, efficient, and versatile bidentate N-donor ligand suitable for the copper-catalyzed formation of vinyl C-N and C-O bonds. This inexpensive and easily prepared ligand facilitates copper-catalyzed cross-coupling reactions of alkenyl bromides and iodides with N-heterocycles and phenols to afford the desired cross-coupled products in good to excellent yields with full retention of stereochemistry. This method is particularly noteworthy given its efficiency i.e., mild reaction conditions, low catalyst loading, simplicity, versatility, and exceptional level of functional group tolerance. PMID:20039699

  16. An experimental and theoretical study on the interaction of DNA and BSA with novel Ni2 +, Cu2 + and VO2 + complexes derived from vanillin bidentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Dostani, Morteza; Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Farrokhpour, Hossein; Sabzalian, Mohammad R.; Abyar, Fatemeh; Azarian, Mohammad Hossein

    2017-06-01

    In this investigation, the structure of bidentate N,N-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol (HL) was determined by single crystal X-ray diffraction. The interaction of new [CuL2], [NiL2] and [VOL2] complexes with DNA and BSA was explored through UV-Vis and fluorescence spectroscopy. The electronic spectra changes displayed an isosbestic point for the complexes upon titration with DNA. The Kb values for the complexes [CuL2], [NiL2] and [VOL2] were 2.4 × 105, 1.9 × 105 and 4.2 × 104, respectively. [CuL2] complex was bound more toughly than [NiL2] and [VOL2] complexes. These complexes had a significant interaction with Bovine Serum Albumin (BSA) and the results demonstrated that the quenching mechanism was a static procedure. Also, the complexes interacted with BSA by more than one binding site (n > 1). Finally, the theoretical studies were performed using the docking method to calculate the binding constants and recognize the binding site of the DNA and BSA with the complexes. The ligand and complexes including Ni2 +, Cu2 + and VO2 + ions were colonized by fungal growth.

  17. Ligand-accelerated enantioselective methylene C(sp3)-H bond activation.

    PubMed

    Chen, Gang; Gong, Wei; Zhuang, Zhe; Andrä, Michal S; Chen, Yan-Qiao; Hong, Xin; Yang, Yun-Fang; Liu, Tao; Houk, K N; Yu, Jin-Quan

    2016-09-02

    Effective differentiation of prochiral carbon-hydrogen (C-H) bonds on a single methylene carbon via asymmetric metal insertion remains a challenge. Here, we report the discovery of chiral acetyl-protected aminoethyl quinoline ligands that enable asymmetric palladium insertion into prochiral C-H bonds on a single methylene carbon center. We apply these palladium complexes to catalytic enantioselective functionalization of β-methylene C-H bonds in aliphatic amides. Using bidentate ligands to accelerate C-H activation of otherwise unreactive monodentate substrates is crucial for outcompeting the background reaction driven by substrate-directed cyclopalladation, thereby avoiding erosion of enantioselectivity. The potential of ligand acceleration in C-H activation is also demonstrated by enantioselective β-C-H arylation of simple carboxylic acids without installing directing groups. Copyright © 2016, American Association for the Advancement of Science.

  18. Synthesis, crystal structure and cytotoxic activity of ruthenium(II) piano-stool complex with N,N-chelating ligand

    NASA Astrophysics Data System (ADS)

    Rogala, Patrycja; Jabłońska-Wawrzycka, Agnieszka; Kazimierczuk, Katarzyna; Borek, Agnieszka; Błażejczyk, Agnieszka; Wietrzyk, Joanna; Barszcz, Barbara

    2016-12-01

    A mononuclear compound of the general formula [(η6-p-cymene)RuIICl(2,2‧-PyBIm)]PF6 has been synthesized from a bidentate N,N-donor ligand, viz. 2,-(2‧-pyridyl)benzimidazole (2,2‧-PyBIm) and the corresponding chloro-complex [(η6-p-cymene)Ru(μ-Cl)Cl]2 (precursor). The isolated coordination compound was characterized by IR, UV-vis and 1H, 13C NMR spectroscopies. The single crystal X-ray analysis of the complex reveals that the asymmetric part of the unit cell consists of two symmetrically independent, [(η6-p-cymene)RuCl(2,2‧-PyBIm)]+ cationic complexes. Each cation exhibits a pseudo-octahedral three-legged piano-stool geometry, in which three "legs" are occupied by one chloride ion and two nitrogen donor atoms of the chelating ligand 2,2‧-PyBIm. The Hirshfeld surface analysis of obtained complex was determined, too. The ionic nature of the compound is identified by a strong band at around 830 cm-1 due to the νP-F stretching mode of the PF6- counter ion. The electronic spectrum of this monomeric complex displays high intensity bands in the ultraviolet region assignable to π→π*/n→π* transitions, as well as a band attributable to the metal-to-ligand charge transfer (MLCT) dπ(Ru)→π*(L) transition. Additionally, the complex has been screened for its cytotoxicity against three human cancer lines: non-small cell lung carcinoma (A549), colon adenocarcinoma (HT29) and breast adenocarcinoma (MCF-7) as well as normal mice fibroblast cells (BALB/3T3). The complex demonstrated a moderate antiproliferative activity against the cell lines tested.

  19. Enhanced third-order nonlinear optical properties determined in thin films using the Z-scan technique: bis(μ-4,4'-oxydibenzoato)bis[(4'-phenyl-2,2':6',2''-terpyridine)cobalt(II)].

    PubMed

    Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun

    2016-05-01

    π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP.

  20. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    NASA Astrophysics Data System (ADS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  1. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-03-01

    Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.

  2. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.

    PubMed

    Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M

    2010-01-04

    A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo flavonolate ligand exchange to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2) (M = Co, Ni, Cu; n = 1 or 2) and [Zn(3-Hfl)(2).2H(2)O]. An Fe(II) complex of 3-Hfl, [(6-Ph(2)TPA)Fe(3-Hfl)]ClO(4) (8), was isolated and characterized by elemental analysis, FTIR, UV-vis, (1)H NMR, cyclic voltammetry, and a magnetic moment measurement. This complex reacts with O(2) to produce the diiron(III) mu-oxo compound [(6-Ph(2)TPAFe(3Hfl))(2)(mu-O)](ClO(4))(2) (6).

  3. Cd(II) and Pb(II) complexes of the polyether ionophorous antibiotic salinomycin

    PubMed Central

    2011-01-01

    Background The natural polyether ionophorous antibiotics are used for the treatment of coccidiosis in poultry and ruminants. They are effective agents against infections caused by Gram-positive microorganisms. On the other hand, it was found that some of these compounds selectively bind lead(II) ions in in vivo experiments, despite so far no Pb(II)-containing compounds of defined composition have been isolated and characterized. To assess the potential of polyether ionophores as possible antidotes in the agriculture, a detailed study on their in vitro complexation with toxic metal ions is required. In the present paper we report for the first time the preparation and the structure elucidation of salinomycin complexes with ions of cadmium(II) and lead(II). Results New metal(II) complexes of the polyether ionophorous antibiotic salinomycin with Cd(II) and Pb(II) ions were prepared and structurally characterized by IR, FAB-MS and NMR techniques. The spectroscopic information and elemental analysis data reveal that sodium salinomycin (SalNa) undergoes a reaction with heavy metal(II) ions to form [Cd(Sal)2(H2O)2] (1) and [Pb(Sal)(NO3)] (2), respectively. Abstraction of sodium ions from the cavity of the antibiotic is occurring during the complexation reaction. Salinomycin coordinates with cadmium(II) ions as a bidentate monoanionic ligand through the deprotonated carboxylic moiety and one of the hydroxyl groups to yield 1. Two salinomycin anions occupy the equatorial plane of the Cd(II) center, while two water molecules take the axial positions of the inner coordination sphere of the metal(II) cation. Complex 2 consists of monoanionic salinomycin acting in polydentate coordination mode in a molar ratio of 1: 1 to the metal ion with one nitrate ion for charge compensation. Conclusion The formation of the salinomycin heavy metal(II) complexes indicates a possible antidote activity of the ligand in case of chronic/acute intoxications likely to occur in the stock farming. PMID:21906282

  4. Synthesis and spectral studies of organotin(IV) 4-amino-3-alkyl-1,2,4-triazole-5-thionates: in vitro antimicrobial activity.

    PubMed

    Nath, Mala; Sulaxna; Song, Xueqing; Eng, George; Kumar, Ashok

    2008-09-01

    Some di- and triorganotin(IV) triazolates of general formula, R(4-n)SnLn (where n=2; R=Me, n-Bu and Ph; n=1; R=Me, n-Pr, n-Bu and Ph and HL=4-amino-3-methyl-1,2,4-triazole-5-thiol (HL-1); and 4-amino-3-ethyl-1,2,4-triazole-5-thiol (HL-2)) were synthesized by the reaction of R(4-n)SnCln with sodium salt of HL-1 and HL-2. The bonding and coordination behavior in these derivatives have been discussed on the basis of IR and 119Sn Mössbauer spectroscopic studies in the solid state. Their coordination behavior in solution is discussed by multinuclear (1H, 13C and 119Sn) NMR spectral studies. The IR and 119Sn Mössbauer spectroscopic studies indicate that the ligands, HL-1 and HL-2 act as a monoanionic bidentate ligand, coordinating through Sexo- and Nring. The distorted skew trapezoidal-bipyramidal and distorted trigonal bipyramidal geometries have been proposed for R2SnL2 and R3SnL, respectively, in the solid state. In vitro antimicrobial screening of some of the newly synthesized derivatives and of some di- and triorganotin(IV) derivatives of 3-amino-1,2,4-triazole-5-thiol (HL-3) and 5-amino-3H-1,3,4-thiadiazole-2-thiol (HL-4) along with two standard drugs such as fluconazole and ciprofloxacin have been carried out against the bacteria, viz. Staphylococcus aureus and Escherichia coli, and against some fungi, viz. Aspergillus fumigatus, Candida albicans, Candida albicans (ATCC 10231), Candida krusei (GO3) and Candida glabrata (HO5) by the filter paper disc method. The studied organotin(IV) compounds show mild antifungal activity as compared to that of fluconazole, however, they show almost insignificant activity against the studied Gram-positive (Staphylococcus aureas) and Gram-negative (Escherichia coli) bacteria as compared to that of standard drug, ciprofloxacin.

  5. An insight to conserved water molecular dynamics of catalytic and structural Zn(+2) ions in matrix metalloproteinase 13 of human.

    PubMed

    Chakrabarti, Bornali; Bairagya, Hridoy R; Mallik, Payel; Mukhopadhyay, Bishnu P; Bera, Asim K

    2011-02-01

    Matrix Metalloproteinase (MMP)--13 or Collagenase--3 plays a significant role in the formation and remodeling of bone, tumor invasion and causes osteoarthritis. Water molecular dynamic studies of the five (1XUC, 1XUD, 1XUR, 456C, 830C) PDB and solvated structures of MMP-13 in human have been carried out upto 5 ns on assigning the differential charges (+2, +1, +0.5 e) to both the Zinc ions. The MM and MD-studies have revealed the coordination of three water molecules (W(H), W(I) and W(S)) to Zn(c) and one water to Zn(s). The transition of geometry around the Znc from tetrahedral to octahedral via trigonal bipyramidal, and for Zn(s) from tetrahedral to trigonal bipyramidal are seem interesting. Recognition of two zinc ions through water molecular bridging (Zn(c) - W(H) (W(1))...W(2)....W(3)....H(187) Zn(s)) and the stabilization of variable coordination geometries around metal ions may indicate the possible involvement of Zn(c) ...Zn(s) coupled mechanism in the catalytic process. So the hydrophilic topology and stereochemistry of water mediated coupling between Zn-ions may provide some plausible hope towards the design of some bidentate/polydentate bridging ligands or inhibitors for MMP-13.

  6. Ferromagnetic coupling in the three-dimensional malonato-bridged gadoliniumIII complex [Gd2(mal)3(H2O)6] (H2mal = malonic acid).

    PubMed

    Hernández-Molina, María; Ruiz-Pérez, Catalina; López, Trinidad; Lloret, Francesc; Julve, Miguel

    2003-09-08

    The novel gadolinium(III) complex of formula [Gd(2)(mal)(3)(H(2)O)(6)] (1) (H(2)mal = 1,3-propanedioic acid) has been prepared and characterized by X-ray diffraction analysis. Crystal data for 1: monoclinic, space group I2/a, a = 11.1064(10) A, b = 12.2524(10) A, c =13.6098(2) A, beta = 92.925(10) degrees, U = 1849.5(3) A(3), Z = 4. Compound 1 is a three-dimensional network made up of malonate-bridged gadolinium(III) ions where the malonate exhibits two bridging modes, eta(5)-bidentate + unidentate and eta(3):eta(3) + bis(unidentate). The gadolinium atom is nine-coordinate with three water molecules and six malonate oxygen atoms from three malonate ligands forming a distorted monocapped square antiprism. The shortest metal-metal separations are 4.2763(3) A [through the oxo-carboxylate bridge] and 6.541(3) A [through the carboxylate in the anti-syn coordination mode]. The value of the angle at the oxo-carboxylate atom is 116.8(2) degrees. Variable-temperature magnetic susceptibility measurements reveal the occurrence of a significant ferromagnetic interaction through the oxo-carboxylate pathway (J = +0.048(1) cm(-1), H = -JS(Gd(1)) x S(Gd(1a))).

  7. Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents.

    PubMed

    Wu, Fengcheng; Pu, Ning; Ye, Gang; Sun, Taoxiang; Wang, Zhe; Song, Yang; Wang, Wenqing; Huo, Xiaomei; Lu, Yuexiang; Chen, Jing

    2017-04-18

    Developing facile and robust technologies for effective enrichment of uranium from seawater is of great significance for resource sustainability and environmental safety. By exploiting mussel-inspired polydopamine (PDA) chemistry, diverse types of PDA-functionalized sorbents including magnetic nanoparticle (MNP), ordered mesoporous carbon (OMC), and glass fiber carpet (GFC) were synthesized. The PDA functional layers with abundant catechol and amine/imine groups provided an excellent platform for binding to uranium. Due to the distinctive structure of PDA, the sorbents exhibited multistage kinetics which was simultaneously controlled by chemisorption and intralayer diffusion. Applying the diverse PDA-modified sorbents for enrichment of low concentration (parts per billion) uranium in laboratory-prepared solutions and unpurified seawater was fully evaluated under different scenarios: that is, by batch adsorption for MNP and OMC and by selective filtration for GFC. Moreover, high-resolution X-ray photoelectron spectroscopic and extended X-ray absorption fine structure studies were performed for probing the underlying coordination mechanism between PDA and U(VI). The catechol hydroxyls of PDA were identified as the main bidentate ligands to coordinate U(VI) at the equatorial plane. This study assessed the potential of versatile PDA chemistry for development of efficient uranium sorbents and provided new insights into the interaction mechanism between PDA and uranium.

  8. Photophysical studies of chromium sensitizers designed for excited state hole transfer to semiconductors and sequential hole/electron transfers from photoexcited cadmium sulfide nanorods to mononuclear ruthenium water-oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Tseng, Huan-Wei

    This dissertation describes three research projects related to solar cells and solar water splitting with a goal of utilizing solar energy, a renewable energy source. The first project is focused on photophysical studies of four newly-synthesized Cr(III) tris-bipyridyl complexes featuring the 4-dmcbpy (dimethyl 2,2'-bipyridine-4,4'-dicarboxylate) ligand. Static and time-resolved emission results suggest that the complexes store ˜1.7 eV of energy for multiple microseconds. Using cyclic voltammetry, it is found that the inclusion of 4-dmcbpy shifts the E1/2 of CrIII/II by +0.2 V from the homoleptic parent complexes without 4-dmcbpy. All four complexes have excited state potentials of CrIII*/II between +1.8 and +2.0 V vs. NHE, placing them among the most powerful photooxidants reported and making them candidates for hole-injection sensitizers. The second project continues with Cr(III) complexes, but using iminopyridine Schiff base ligands. Two complexes feature hexadentate ligands and the other two are their tris-bidentate analogues. One of each pair contains methyl ester groups for attachment to semiconductors. Cyclic voltammograms show that the hexadentate and tris-bidentate analogues have almost identical reduction potentials, but the addition of ester substituents shifts the reduction potentials by +0.2 V. The absorption spectra of the hexadentate complexes show improved absorption of visible light compared to the tris-bidentate analogues. For freshly prepared sample solutions in CH3CN, time-resolved emission and transient absorption measurements for the Cr(III) tris-bidentate ester complex show a doublet excited state with a 17-19 microsecond lifetime at room temperature, while no emission or transient absorption signals from the doublet states are observed for the hexadentate analogue under the same conditions. The dramatic difference is due to the presence of a nonligated bridgehead nitrogen atom. The third project features charge transfer interactions between a photoexcited cadmium sulfide nanorod and [Ru(diethyl 2,2'-bipyridine-4,4'-dicarboxylate)(2,2':6',2"-terpyridine)Cl] +, a mononuclear water-oxidation catalyst. Upon photoexcitation, hole transfer from the cadmium sulfide nanorod oxidizes the catalyst (Ru 2+ → Ru3+) on a 100 ps to 1 ns timescale. This is followed by electron transfer (10-100 ns) from the nanorod to reduce the Ru3+ center. The relatively slow electron transfer dynamics may provide opportunities for the accumulation of multiple holes at the catalyst, which is required for water oxidation.

  9. The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine

    ERIC Educational Resources Information Center

    Berry, David E.; Carrie, Philippa; Fawkes, Kelli L.; Rebner, Bruce; Xing, Yao

    2010-01-01

    This experiment describes the reaction of palladium(II) chloride with 1,5-bis(diphenylphosphino)pentane by grinding the two powders together in the solid state. The product is the precursor for the metalation reaction at one of the methylene carbon atoms of the ligand's backbone. The final product is known to be a catalyst for Suzuki-Miyaura…

  10. Photoactivation of imatinib-antibody conjugate using low-energy visible light from Ru(ii)-polypyridyl cages.

    PubMed

    Rohrabaugh, Thomas N; Rohrabaugh, Ashley M; Kodanko, Jeremy J; White, Jessica K; Turro, Claudia

    2018-05-17

    Ru(ii)-polypyridyl cages with sterically bulky bidentate ligands provide efficient photochemical release of the anticancer drug imatinib using low energy visible light, imparting spatiotemporal control over drug bioavailability. The light-activated drug release is maintained when the Ru(ii) cage is covalently coupled to an antibody, which is expected to localize selectively on the tumor.

  11. Ligational behavior of clioquinol antifungal drug towards Ag(I), Hg(II), Cr(III) and Fe(III) metal ions: Synthesis, spectroscopic, thermal, morphological and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Refat, Moamen S.

    2015-04-01

    This article presents a synthesis, characterization, theoretical and biological (anti-bacterial, and anti-fugal) evaluation studies of Ag(I), Hg(II), Cr(III) and Fe(III) complexes of clioquinol (CQ) drug ligand. Structures of the titled complexes cited herein were discussed using elemental analyses and spectral measurements e.g., IR, 1H NMR, and electronic studies. The results confirmed the formation of the clioquinol complexes by three molar ratios (1:1) for Ag(I), (1:2) for Hg(II) and (1:3) for both Cr(III) and Fe(III) metal ions. The clioquinol reacts as a bidentate chelate bound to all respected metal ions through the oxygen and nitrogen of quinoline-8-ol. The metal(II) ions coordinated to clioquinol ligand through deprotonation of sbnd OH terminal group. Infrared and 1H NMR spectral data confirm that coordination is via the oxygen of phenolic group and nitrogen atom of quinoline moiety. The molar conductance measurements of the CQ complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ag(CQ)(H2O)2] H2O, [Hg(CQ)2]ṡ2H2O, [Cr(CQ)3] and [Fe(CQ)3]H2O. The Coats-Redfern method, the kinetic thermodynamic parameters like activation energies (E∗), entropies (ΔS∗), enthalpies (ΔH∗), and Gibbs free energies (ΔG∗) of the thermal decomposition reactions have been deduced from thermogravimetric curves (TG) with helpful of differential thermo gravimetric (DTG) curves. The narrow size distribution in nano-scale range for the clioquinol complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectrometer (EDX) analyzer.

  12. Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition.

    PubMed

    Aucagne, Vincent; Berna, José; Crowley, James D; Goldup, Stephen M; Hänni, Kevin D; Leigh, David A; Lusby, Paul J; Ronaldson, Vicki E; Slawin, Alexandra M Z; Viterisi, Aurélien; Walker, D Barney

    2007-10-03

    A synthetic approach to rotaxane architectures is described in which metal atoms catalyze covalent bond formation while simultaneously acting as the template for the assembly of the mechanically interlocked structure. This "active-metal" template strategy is exemplified using the Huisgen-Meldal-Fokin Cu(I)-catalyzed 1,3-cycloaddition of azides with terminal alkynes (the CuAAC "click" reaction). Coordination of Cu(I) to an endotopic pyridine-containing macrocycle allows the alkyne and azide to bind to metal atoms in such a way that the metal-mediated bond-forming reaction takes place through the cavity of the macrocycle--or macrocycles--forming a rotaxane. A variety of mono- and bidentate macrocyclic ligands are demonstrated to form [2]rotaxanes in this way, and by adding pyridine, the metal can turn over during the reaction, giving a catalytic active-metal template assembly process. Both the stoichiometric and catalytic versions of the reaction were also used to synthesize more complex two-station molecular shuttles. The dynamics of the translocation of the macrocycle by ligand exchange in these two-station shuttles could be controlled by coordination to different metal ions (rapid shuttling is observed with Cu(I), slow shuttling with Pd(II)). Under active-metal template reaction conditions that feature a high macrocycle:copper ratio, [3]rotaxanes (two macrocycles on a thread containing a single triazole ring) are also produced during the reaction. The latter observation shows that under these conditions the mechanism of the Cu(I)-catalyzed terminal alkyne-azide cycloaddition involves a reactive intermediate that features at least two metal ions.

  13. 2-Ferrocenyl-2-thiazoline as a building block of novel phosphine-free ligands.

    PubMed

    Corona-Sánchez, Ricardo; Toscano, Rubén A; Ortega-Alfaro, M Carmen; Sandoval-Chávez, César; López-Cortés, José G

    2013-09-07

    New 1,2-disubstituted ferrocenes [5(b-j), in which R = -SMe, -SPh, -SiPr, -SiMe3, -SePh, -SnBu3, -B(OH)2, -Me, -I] with a thiazoline ring in the ferrocene backbone using as key intermediate a ferrocenyl Fischer carbene complex were synthesized. The capability of the 2-thiazoline moiety as an ortho-directed metalation group was demonstrated by subsequent quenching of lithium intermediate with several electrophiles, proving to be an excellent method for synthesizing bidentate ligands. The catalytic scope of the [N,S] ligand 5b as the corresponding palladium complex 5b-PdCl(2) in a microwave-promoted Heck reaction was also tested. Results obtained showed better catalytic activity of 5b-PdCl(2) compared to other catalytic systems based on a [N,S] ferrocenyl ligand.

  14. Theoretical Investigation of the Electronic Structure of Fe(II) Complexes at Spin-State Transitions

    PubMed Central

    2013-01-01

    The electronic structure relevant to low spin (LS)↔high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+ (1) (tz = 1H-tetrazole), [Fe(bipy)3]2+ (2) (bipy = 2,2′-bipyridine), and [Fe(terpy)2]2+ (3) (terpy = 2,2′:6′,2″-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT), and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS–HS states (ΔEHL) applying the above methods and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two-dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed at both the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet–triplet and triplet–quintet states are separated along different coordinates, i.e., different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet–quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate. PMID:25821416

  15. Determination of Mg(2+) Speciation in a TFSI(-)-Based Ionic Liquid With and Without Chelating Ethers Using Raman Spectroscopy.

    PubMed

    Watkins, Tylan; Buttry, Daniel A

    2015-06-11

    Raman spectroscopy was employed to assess the complex environment of magnesium salts in the n-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI) room-temperature ionic liquid (RTIL). At room temperature, Mg(TFSI)2 was miscible with BMPyrTFSI and formulated by [Mg(TFSI)2](x)[BMPyrTFSI](1-x) (x ≤ 0.55). Results suggest that at low concentrations of Mg(TFSI)2, anionic complexes in which Mg(2+) is surrounded by at least four TFSI(-) were formed. Above x = 0.2 an average of three TFSI(-) surround each Mg(2+). Below x = 0.12, there is a greater number of monodentate interactions between TFSI(-) oxygens and Mg(2+) cations, whereas above x = 0.12 bidentate ligands dominate. The fraction of TFSI(-) existing in the cis conformation increased with increasing Mg(2+) concentration. Mg(ClO4)2 was also studied as a Mg(2+) source. At equivalent mole fractions to those of the Mg(TFSI)2 salt, Mg(2+) from Mg(ClO4)2 was surrounded by only two TFSI(-) anions as ClO4(-) appeared to compete with TFSI(-) for coordination with Mg(2+). Similar behavior was also observed for the less soluble halide salts MgX2 (X = Cl, Br, I). Additions of chelating ligands were shown to effectively reduce the average number of TFSI(-) around Mg(2+) in a manner consistent with maintaining a sixfold oxygen coordination number around Mg(2+). Furthermore, an alternative class of ionic liquids, known as "solvate" ionic liquids, were produced. In this case glymes (Gm, m + 1 ether oxygens) were mixed with Mg(TFSI)2 so that glymes chelated Mg(2+), creating Mg(Gm)(y)(2+) complexes. The general formula was given by Mg(Gm)(y)(TFSI)2. These solvate ILs melt between 40 and 80 °C. Raman spectra clearly showed the glyme chelating ability and stronger coordination with Mg(2+) with respect to TFSI(-). Finally, linear sweep voltammograms showed the anodic stability of the glymes to improve due to coordination with Mg(2+).

  16. Coordination properties of the oxime analogue of glycine to Cu(II).

    PubMed

    Georgieva, I; Trendafilova, N; Rodríguez-Santiago, L; Sodupe, M

    2005-06-30

    The coordination of Cu2+ by glyoxilic acid oxime (gao)--the oxime analogue of glycine amino acid--and its deprotonated (gao- and gao2-) species has been studied with different density functional methods. Single-point calculations have also been carried out at the single- and double- (triple) excitation coupled-cluster (CCSD(T)) level of theory. The isomers studied involve coordination of Cu2+ to electron-rich sites (O,N) of neutral, anionic, and dianionic gao species in different conformations. In contrast to Cu2+-glycine, for which the ground-state structure is bidentate with the CO2(-) terminus of zwitterionic glycine, for Cu2+-gao the most stable isomer shows monodentate binding of Cu2+ with the carbonylic oxygen of the neutral form. The most stable complexes of Cu2+ interacting with deprotonated gao species (gao- and gao2-) also take place through the carboxylic oxygens but in a bidentate manner. The results with different functionals show that, for these open shell (Cu2+-L) systems, the relative stability of complexes with different coordination environments (and so, different spin distribution) can be quite sensitive to the amount of "Hartree-Fock" exchange included in the functional. Among all the functionals tested in this work, the BHandHLYP is the one that better compares to CCSD(T) results.

  17. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing One Pendent Amine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Michael P.; Ho, Ming-Hsun; Wiese, Stefan

    2013-04-24

    A series of Ni-based electrocatalysts, [Ni(7PPh2NC6H4X)2](BF4)2, featuring seven-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphosphacycloheptane (7PPh2NC6H4X where X = OMe, Me, Br, Cl or CF3), have been synthesized and characterized. X-ray diffraction studies have established that the [Ni(7PPh2NC6H4X)2]2+ complexes have a square planar geometry, with bonds to four phosphorus atoms of the two bidentate diphosphine ligands. Coordination of the bidentate phosphine ligands to Ni result in one six-membered ring containing a pendent amine, and one five membered ring. Each of the complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple, with turnovermore » frequencies ranging from 2,400 to 27,000 s-1 with [(DMF)H]+ in acetonitrile. Addition of water (up to 1.0 M) accelerates the catalysis, giving turnover frequencies ranging from 4,100 - 96,000 s-1. Computational studies carried out on the [Ni(7PPh2NC6H4X)2]2+ family indicate the catalytic rates reach a maximum when the electron-donating character of X results in the pKa of the pendent amine matching that of the acid used for proton delivery. Additionally, the fast catalytic rates for hydrogen production by the [Ni(7PPh2NC6H4X)2]2+ family relative to the analogous [Ni(PPh2NC6H4X2)2]2+ family are attributed to preferred formation of endo protonated isomers with respect to the metal center in the former, which is essential for the protons to attain suitable proximity to the reduced metal center to generate H2. The results of this work highlight the importance of the necessity for precise pKa matching with the acid for proton delivery to the metal center, and the mechanistic details described herein will be used to guide future catalyst design. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. A portion of the computing resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.« less

  18. Synthesis, spectral, DFT modeling, cytotoxicity and microbial studies of novel Zr(IV), Ce(IV) and U(VI) piroxicam complexes

    NASA Astrophysics Data System (ADS)

    El-Shwiniy, Walaa H.; Zordok, Wael A.

    2018-06-01

    The Zr(IV), Ce(IV) and U(VI) piroxicam anti-inflammatory drug complexes were prepared and characterized using elemental analyses, conductance, IR, UV-Vis, magnetic moment, IHNMR and thermal analysis. The ratio of metal: Pir is found to be 1:2 in all complexes estimated by using molar ratio method. The conductance data reveal that Zr(IV) and U(VI) chelates are non-electrolytes except Ce(IV) complex is electrolyte. Infrared spectroscopic confirm that the Pir behaves as a bidentate ligand co-ordinated to the metal ions via the oxygen and nitrogen atoms of ν(Cdbnd O)carbonyl and ν(Cdbnd N)pyridyl, respectively. The kinetic parameters of thermogravimetric and its differential, such as activation energy, entropy of activation, enthalpy of activation, and Gibbs free energy evaluated using Coats-Redfern and Horowitz-Metzger equations for Pir and complexes. The geometry of the piroxicam drug in the Free State differs significantly from that in the metal complex. In the time of metal ion-drug bond formation the drug switches-on from the closed structure (equilibrium geometry) to the open one. The antimicrobial tests were assessed towards some types of bacteria and fungi. The in vitro cell cytotoxicity of the complexes in comparison with Pir against colon carcinoma (HCT-116) cell line was measured. Optimized geometrical structure of piroxicam ligand by using DFT calculations.

  19. A new 3D nickel(II) framework composed of large rings: Ionothermal synthesis and crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Ling; Choi, Eun-Young; Kwon, Young-Uk

    2008-11-15

    Ionothermal reaction between Ni{sup 2+} and 1,3,5-benzentricarboxylic acid (H{sub 3}BTC) with [AMI]Cl (AMI=1-amyl-3-methylimidazolium) as the reaction medium produced a novel 3D mixed-ligand metal-organic framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] (1) (MI=1-methylimidazole) with [AMI]{sup +} incorporated in the framework. The framework is formed by connecting 2D planes, made up of 32- and 48-membered rings, through 1D chains composed of 32-membered rings. The two BTC{sup 3-} ligands in 1 show the same connectivity mode with two bidentate and one {mu}{sub 2} bridging carboxylic groups. This is a new connectivity mode to the already existing 17 in the Ni-BTC system. The role of MImore » and [AMI]Cl in the structure formation is discussed. - Graphical Abstract: A novel 3D framework [AMI][Ni{sub 3}(BTC){sub 2}(OAc)(MI){sub 3}] is obtained in ionothermal system with [AMI]{sup +} incorporating in the cavities as structure directing template and BTC{sup 3-} showing a new coordination fashion. The 3D framework is constructed by 2D layers linked with 1D double chains. The title compound has the middle thermal stability at ca. 280 deg. C.« less

  20. Metal based biologically active compounds: Design, synthesis, DNA binding and antidiabetic activity of 6-methyl-3-formyl chromone derived hydrazones and their metal (II) complexes.

    PubMed

    Philip, Jessica Elizabeth; Shahid, Muhammad; Prathapachandra Kurup, M R; Velayudhan, Mohanan Puzhavoorparambil

    2017-10-01

    Two chromone hydrazone ligands HL 1 and HL 2 were synthesized and characterized by elemental analyses, IR, 1 H NMR & 13 C NMR, electronic absorption and mass spectra. The reactions of the chromone hydrazones with transition metals such as Ni, Cu, and Zn (II) salts of acetate afforded mononuclear metal complexes. Characterization and structure elucidation of the prepared chromone hydrazone metal (II) complexes were done by elemental, IR, electronic, EPR spectra and thermo gravimetric analyses as well as conductivity and magnetic susceptibility measurements. The spectroscopic data showed that the ligand acts as a mono basic bidentate with coordination sites are azomethine nitrogen and hydrazonic oxygen, and they exhibited distorted geometry. The biological studies involved antidiabetic activity i.e. enzyme inhibition of α-amylase and α-glucosidase, Calf Thymus - DNA (CT-DNA) interaction and molecular docking. Potential capacity of synthesized compounds to inhibit the α-amylase and α-glucosidase activity was assayed whereas DNA interaction studies were carried out with the help UV-Vis absorption titration and viscosity method. The docking studies of chromone hydrazones show that they are minor groove binders. Complexes were found to be good DNA - intercalates. Chromone hydrazones and its transition metal complexes have shown comparable antidiabetic activity with a standard drug acarbose. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Different binding modes of Cu and Pb vs. Cd, Ni, and Zn with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.

    2015-07-01

    The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and tetradentate Cu-DFOB complex, respectively. Linear free-energy relations defined by the rare earth elements are able to predict stabilities of the Cd, Zn, and one of the Pb complexes, but underestimate those of the Ni and Cu complexes. The comparison with metal-specific organic ligands detected in seawater yields fair agreement for three of the five metals, implying that they could be siderophore-like. The Cd- and Ni-specific ligands are much stronger and may contain quite different functional groups. Calculations with MINEQL incorporating our new stability constants indicate that very high DFOB concentrations would be required to match the extent of metal-organic complexation observed in seawater, however DFOB may well represent a much broader class of structurally related ligands.« less

  2. New μ-SnTe{sub 4} and μ-Sn{sub 2}Te{sub 6} ligands to transition metal: Solvothermal syntheses and characterizations of zinc tellurostannates containing polyamine ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jialin; Wang, Fang; Shen, Yali

    2014-08-15

    Zinc tellurostannates [(Zn(teta)){sub 2}(μ-1κ:2κ-SnTe{sub 4})] (1), [(Zn(teta)){sub 3}(μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4})]I{sub 2} (2), [(Zn(tren)){sub 2}(μ-1κ:2κ-Sn{sub 2}Te{sub 6})] (3), and [Zn(dien){sub 2}]{sub 4}(Sn{sub 2}Te{sub 6}){sub 1.75}(Sn{sub 2}Te{sub 8}){sub 0.25}·dien (4) were prepared by the reactions of Zn, Sn, and Te with iodine ion assistant in teta and dien. The tetrahedral [SnTe{sub 4}]{sup 4−} anion coordinates to two [Zn(teta)]{sup 2+} units as a bidentate μ-1κ:2κ-SnTe{sub 4} ligand to form the neutral complex 1. It coordinates to three [Zn(teta)]{sup 2+} units with a tridentate μ{sub 3}-1κ:2κ:3κ coordination modes, generating a complex cation [(Zn(teta)){sub 3}(μ{sub 3}-1κ:2κ:3κ- SnTe{sub 4})]{sup 2+} in 2. In 3, the [Sn{submore » 2}Te{sub 6}]{sup 4−} anion joins two [Zn(tren)]{sup 2+}cations with the trans terminal Te atoms, forming neutral complex 3. The μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands to TM centers in 1–3 have not been observed before. Compound 4 contains a normal [Sn{sub 2}Te{sub 6}]{sup 4−} and an abnormal [(Sn{sub 2}Te{sub 6}){sub 0.75}(Sn{sub 2}Te{sub 8}){sub 0.25}]{sup 4−} anions. Compounds 1–4 exhibit narrow band gaps in the range of 1.47–1.98 eV, and a distinct red-shift of the band gaps is observed from 4 to 1−3. - Graphical abstract: Zinc tellurostannates were prepared with iodine ion assistant in polyamines, and first μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands TM centers were obtained. - Highlights: • Zinc-tellurostannates were first prepared with iodine ion assistant. • Novel μ-1κ:2κ-SnTe{sub 4}, μ{sub 3}-1κ:2κ:3κ-SnTe{sub 4}, and μ-1κ:2κ-Sn{sub 2}Te{sub 6} ligands were obtained. • The Zinc tellurostannates exhibit optical bandgaps between 1.47 and 1.98 eV.« less

  3. Structure of a dinuclear cadmium complex with 2,2′-bi­pyridine, monodentate nitrate and 3-carb­oxy-6-methyl­pyridine-2-carboxyl­ate ligands: intra­molecular carbon­yl(lone pair)⋯π(ring) and nitrate(π)⋯π(ring) inter­actions

    PubMed Central

    Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo

    2015-01-01

    The centrosymmetric dinuclear complex bis­(μ-3-carb­oxy-6-methyl­pyridine-2-carboxyl­ato)-κ3 N,O 2:O 2;κ3 O 2:N,O 2-bis­[(2,2′-bi­pyridine-κ2 N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methyl­pyridine-2,3-di­carb­oxy­lic acid (mepydcH2) and 2,2′-bi­pyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3 N,O 2:O 2-mepydcH− anion, an N,N′-bidentate 2,2′-bi­pyridine group and an O-mono­dentate nitrate anion, and is completed with a methanol solvent mol­ecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH− carboxyl­ate O atom to complete the dinuclear complex mol­ecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octa­hedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form inter­stitial columnar voids that are filled by the methanol solvent mol­ecules. These in turn inter­act with the complex mol­ecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH− ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound. PMID:26396748

  4. Rhenium and technetium tricarbonyl complexes of 1,4-Substituted pyridyl-1,2,3-triazole bidentate 'click' ligands conjugated to a targeting RGD peptide.

    PubMed

    Connell, Timothy U; Hayne, David J; Ackermann, Uwe; Tochon-Danguy, Henri J; White, Jonathan M; Donnelly, Paul S

    2014-04-01

    New 1,4-substituted pyridyl-1,2,3-triazole ligands with pendent phenyl isothiocyanate functional groups linked to the heterocycle through a short methylene or longer polyethylene glycol spacers were prepared and conjugated to a peptide containing the arginine-glycine-aspartic acid peptide motif. Rhenium and technetium carbonyl complexes, [M(CO)3 L(x) (py)](+) (where M = Re(I) or (99m) Tc(I) ; L(x)  = 1,4-substituted pyridyl-1,2,3-triazole ligands and py = pyridine) were prepared. One rhenium complex has been characterized by X-ray crystallography, and the luminescent properties of [M(CO)3 L(x) (py)](+) are reported. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Double [3 + 2]-dimerisation cascade synthesis of bis(triazolyl)bisphosphanes, a new scaffold for bidentate bisphosphanes.

    PubMed

    Laborde, Coralie; Wei, Muh-Mei; van der Lee, Arie; Deydier, Eric; Daran, Jean-Claude; Volle, Jean-Noël; Poli, Rinaldo; Pirat, Jean-Luc; Manoury, Eric; Virieux, David

    2015-07-28

    A highly convergent synthesis of bis(triazolylphosphane oxides) was developed by a tandem copper-mediated Huisgen reaction-oxidative coupling. The phosphane oxides were reduced by trichlorosilane and the coordination of the resulting bisphosphanes was studied with various transition metals.

  6. An in vitro study of interactions between insulin-mimetic zinc(II) complexes and selected plasma components.

    PubMed

    Enyedy, Eva Anna; Horváth, László; Gajda-Schrantz, Krisztina; Galbács, Gábor; Kiss, Tamás

    2006-12-01

    The speciations of some potent insulin-mimetic zinc(II) complexes of bidentate ligands: maltol and 1,2-dimethyl-3-hydroxypyridinone with (O,O) and picolinic acid with (N,O) coordination modes, were studied via solution equilibrium investigations of the ternary complex formation in the presence of small relevant bioligands of the blood serum such as cysteine, histidine and citric acid. Results show that formation of the ternary complexes, especially with cysteine, is favoured at physiological pH range in almost all systems studied. Besides these low molecular mass binders, serum proteins among others albumin and transferrin can bind zinc(II) or its complexes. Accordingly, the distribution of zinc(II) between the small and high molecular mass fractions of the serum was also studied by ultrafiltration. Modelling calculations relating to the distribution of zinc(II), using the stability constants of the ternary complexes studied and those of the serum proteins reported in the literature, confirmed the ultrafiltration results, namely, the primary role of albumin in zinc(II) binding among the low and high molecular mass components of the serum.

  7. Organotin(IV) carboxylates based on 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid: Syntheses, crystal structures, luminescent properties and antitumor activities

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Liang, Jingwen; Xie, Jingyi; Liu, Xin; Zhu, Dongsheng; Dong, Yuan

    2017-10-01

    Organotin carboxylates based on an amide carboxylic acid 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid (HL): [(Bn2Sn)2O2L]2·2C6H6 (1) (Bn = benzyl group) and (Ph2Sn)(L)2 (2) were synthesized and characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy and X-ray crystallography diffraction analysis. Complex 1 is dimeric carboxylate tetraorganodistannoxane and show a "ladder-like" molecular structure. Complex 2 is a dialkyltin carboxylate monomer possessing crystallographically imposed two-fold symmetry. Ligand in 1 and 2 adopts unidentate and bidentate coordination respectively. Both 1 and 2 form 1D, 2D and 3D supramolecular organizations in the solid state mediated through Csbnd H⋯O and π⋯π interactions which are discussed in detail. The luminescent properties and preliminary antitumor activities about this series of complexes were also studied.

  8. Co(II), Ni(II) and Cu(II) complexes of methyl-5-(Phenylthio) benzimidazole-2-carbamate: Molecular structures, spectral and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mansour, Ahmed M.; El Bakry, Eslam M.; Abdel-Ghani, Nour T.

    2016-05-01

    [Co(FBZ)2(H2O)]·2NO3·0.5H2O (1), [Ni(FBZ)2X2]·zH2O (X = Cl​-, z = 0.5 (2) and X = CH3COO-, z = 1 (3)) and [Cu(FBZ)2(H2O) (NO3)]·NO3·1.5H2O (4) (FBZ = methyl-5-(Phenylthio) benzimidazole-2-carbamate; Fenbendazole) complexes were synthesized and characterized by elemental analysis, thermal, IR, EPR, UV-Vis, magnetic and conductance measurements. Geometry optimization, molecular electrostatic potential maps and natural bond orbital analysis were carried out at DFT/B3LYP/6-31G∗ level of theory. FBZ behaves as a neutral bidentate ligand via the pyridine-type nitrogen of the benzimidazole moiety and the carbamate group. Three-step ionization with pKa values of 3.38, 4.06 and 10.07 were reported for FBZ. The coordination of FBZ to the metal ions led to an increase in the antibacterial activity against the tested Staphylococcus aureus and Escherichia coli bacteria.

  9. Toward organometallic (99m)Tc imaging agents: synthesis of water-stable (99)Tc-NHC complexes.

    PubMed

    Benz, Michael; Spingler, Bernhard; Alberto, Roger; Braband, Henrik

    2013-11-20

    (99)Tc(V)O2-NHC complexes containing monodentate and bidentate N-heterocyclic carbenes (NHCs) have been prepared by the reactions of [TcO(glyc)2](-) (glyc = ethyleneglycolato) with 1,3-dimethylimidazoline-2-ylidene (L1), 1,1'-methylene-3,3'-dimethyl-4,4'-diimidazoline-2,2'-diylidene (L2), and 1,1'-methylene-3,3'-diethyl-4,4'-diimidazoline-2,2'-diylidene (L3) in THF. The resulting complexes were fully characterized and their stabilities investigated. While complexes with monodentate NHCs only are hydrolytically unstable, complexes containing bidentate NHCs are water-stable over a broad pH range. The high water stability allows interconversion of the {(99)Tc(V)O2}(+) core into {(99)Tc(V)OCl}(2+) with HCl as the H(+) and Cl(-) source. An alternative procedure to obtain (99)Tc(V)O2-NHC complexes is the in situ deprotonation of imidazolium salts, enabling the preparation of (99)Tc(V)O2-NHC compounds without free NHCs, thus increasing the scope of NHC ligands drastically. The remarkable stability and pH-controllable reactivity of the new complexes underlines the potential of NHCs as stabilizing ligands for (99)Tc complexes and paves the way for the first (99m)Tc-NHC complexes in the future.

  10. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less

  11. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogues

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2014-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  12. Crystal structure of bis­[(oxalato-κ2 O 1,O 2)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)chromium(III)] dichromate octa­hydrate from synchrotron X-ray data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2017-01-01

    The asymmetric unit of the title compound, [Cr(C2O4)(C10H24N4)]2[Cr2O7]·8H2O (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam; C2O4 = oxalate, ox) contains one [Cr(ox)(cyclam)]+ cation, one half of a dichromate anion that lies about an inversion centre so that the bridging O atom is equally disordered over two positions, and four water mol­ecules. The terminal O atoms of the dichromate anion are also disordered over two positions with a refined occupancy ratio 0.586 (6):0.414 (6). The CrIII ion is coordinated by the four N atoms of the cyclam ligand and one bidentate oxalato ligand in a cis arrangement, resulting in a distorted octa­hedral geometry. The Cr—N(cyclam) bond lengths are in the range 2.069 (2)–2.086 (2) Å, while the average Cr—O(ox) bond length is 1.936 Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The dichromate anion has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donors, and the O atoms of oxalate ligand, water mol­ecules and the Cr2O7 2− anion as acceptors, giving rise to a three-dimensional network. PMID:28316819

  13. Progress of Chiral Schiff Bases with C1 Symmetry in Metal-Catalyzed Asymmetric Reactions.

    PubMed

    Hayashi, Masahiko

    2016-12-01

    In this Personal Account, various chiral Schiff base-metal-catalyzed enantioselective organic reactions are reported; the Schiff bases used were O,N,O- as well as N,N,P-tridentate ligands and N,N-bidentate ligands having C 1 symmetry. In particular, the enantioselective addition of trimethylsilyl cyanide, dialkylzinc, and organozinc halides to aldehydes, enantioselective 1,4-addition of dialkylzinc to cyclic and acyclic enones, and asymmetric allylic oxidation are reported. Typically, ketimine-type Schiff base-metal complexes exhibited higher reactivity and enantioselectivity compared with the corresponding aldimine-type Schiff base-metal complexes. Notably, remarkable ligand acceleration was observed for all reactions. The obtained products can be used as key intermediates for optically active natural products and pharmaceuticals. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A rectangular Ni-Fe cluster with unusual cyanide bridges.

    PubMed

    Krüger, Christoph; Sato, Hiroki; Matsumoto, Takuto; Shiga, Takuya; Newton, Graham N; Renz, Franz; Oshio, Hiroki

    2012-10-07

    An asymmetric polycyanide iron complex, K(2)[Fe(III)(L1)(CN)(4)](MeOH) (HL1 = 2,2'-(1H-pyrazole-3,5-diyl)bis-pyridine), was synthesized and its complexation compatibility with nickel ions was examined. Two kinds of enantiomeric nickel-iron squares were obtained in the presence of a chiral bidentate capping ligand. The compounds display unusual cyanide bridge geometry and have ferromagnetic interactions between nickel and iron ions.

  15. Electrospray ionization study of tricarbonyl fac-[Re(CO)3 (PO)(X)]-type complexes: influence of ancillary co-ligands in the release of carbon monoxide.

    PubMed

    Tisato, Francesco; Porchia, Marina; Shegani, Antoni; Maina, Theodosia; Papadopoulos, Minas S; Seraglia, Roberta; Traldi, Pietro

    2018-05-08

    fac-[Re(CO) 3 (PO)(X)]-type complexes (PO = chelated bidentate tertiary phosphine(1-), X = various neutral, mono-dentate ligands) represent a class of compounds that meets the synthetic criteria for the preparation of potential carbon monoxide (CO) release molecules (CORMs) for medicinal application. The aim of our investigation was to achieve qualitative information whether the nature of the ancillary X ligand might influence the release of CO. The release of CO has been investigated by means of product ion spectrometry of electrospray ionization-generated [M + H] + species, produced by multiple collisional experiments, using an ion trap mass spectrometer. Tandem mass spectrometry applied to the protonated species [Re(CO) 3 (PO)(X) + H] + of seven complexes (those including X = OH 2 (1), isonitrile (2, 3), imidazole (4), pyridine (5) and phosphine (6, 7) show initial loss of coordinated water (1) or pyridine (5), whereas the majority of investigated entries display initial, sequential release of CO groups. The energetics of CO release have been investigated by breakdown curves for selected collisionally-activated decomposition processes involving CO, and compared with those involving X groups. The nature of the co-ligand X drives the primary loss in the MS n processes of [Re(CO) 3 (PO)(X) + H] + compounds. When X = solvent, the energetics of these decompositions follow the trend H 2 O < MeOH < CO. In each case, loss of CO is a favored fragmentation route with associated energies following the trend: N-py ≤ P-phosphine < C-isonitrile. Overall, MS n pathways indicate that [Re(PO)] (Re with chelated PO phosphine) constitutes the residual moiety. This behavior indicates that the presence of a functionalized phosphine is essential for a sequential, controlled release of CO. This article is protected by copyright. All rights reserved.

  16. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Magneto-structural correlations in dirhenium(iv) complexes possessing magnetic pathways with even or odd numbers of atoms.

    PubMed

    Pedersen, Anders H; Julve, Miguel; Martínez-Lillo, José; Cano, Joan; Brechin, Euan K

    2017-09-12

    The employment of pyrazine (pyz), pyrimidine (pym) and s-triazine (triz) ligands in Re IV chemistry leads to the isolation of a family of complexes of general formula (NBu 4 ) 2 [(ReX 5 ) 2 (μ-L)] (L = pyz, X = Cl (1) or Br (2); L = pym, X = Br (3); L = triz, X = Br (4)). 1-4 are dinuclear compounds where two pentahalorhenium(iv) fragments are connected by bidentate pyz, pym and triz ligands. Variable-temperature magnetic measurements, in combination with detailed theoretical studies, uncover the underlying magneto-structural correlation whereby the nature of the exchange between the metal ions is dictated by the number of intervening atoms. That is, the spin-polarization mechanism present dictates that odd and even numbers of atoms favour ferromagnetic (F) and antiferromagnetic (AF) exchange interactions, respectively. Hence, while the pyz ligand in 1 and 2 mediates AF coupling, the pym and triz ligands in 3 and 4 promote F interactions.

  18. Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands.

    PubMed

    Eliseeva, Svetlana V; Pleshkov, Dmitry N; Lyssenko, Konstantin A; Lepnev, Leonid S; Bünzli, Jean-Claude G; Kuzmina, Natalia P

    2010-10-18

    The reaction of hydrated lanthanide hexafluoroacetylacetonates, [Ln(hfa)(3)(H(2)O)(2)], with 1,4-disubstituted benzenes afforded a new series of one-dimensional coordination polymers [Ln(hfa)(3)(Q)](∞), where Ln = Eu, Gd, Tb, and Lu and Q = 1,4-diacetylbenzene (acbz), 1,4-diacetoxybenzene (acetbz), or 1,4-dimethyltherephtalate (dmtph). X-ray single crystal analyses reveal [Ln(hfa)(3)(acbz)](∞) (Ln = Eu, Gd, Tb) consisting of zigzag polymeric chains with Ln-Ln-Ln angles equal to 128°, while the arrays are more linear in [Eu(hfa)(3)(acetbz)](∞) and [Eu(hfa)(3)(dmtph)](∞), with Ln-Ln-Ln angles of 165° and 180°, respectively. In all structures, Ln(III) ions are 8-coordinate and lie in distorted square-antiprismatic environments. The coordination polymers are thermally stable up to 180-210 °C under a nitrogen atmosphere. Their volatility has been tested in vacuum sublimation experiments at 200-250 °C and 10(-2) Torr: the metal-organic frameworks with acetbz and dmtph can be quantitatively sublimed, while [Ln(hfa)(3)(acbz)](∞) undergoes thermal decomposition. The triplet state energies of the ancillary ligands, 21,600 (acetbz), 22,840 (acbz), and 24,500 (dmtph) cm(-1), lie in an ideal range for sensitizing the luminescence of Eu(III) and/or Tb(III). As a result, all of the [Ln(hfa)(3)(Q)](∞) polymers display bright red or green luminescence due to the characteristic (5)D(0) → (7)F(J) (J = 0-4) or (5)D(4) → (7)F(J) (J = 6-0) transitions, respectively. Absolute quantum yields reach 51(Eu) and 56(Tb) % for the frameworks built from dmtph. Thin films of [Eu(hfa)(3)(Q)](∞) with 100-170 nm thickness can be obtained by thermal evaporation (P < 3 × 10(-5) Torr, 200-250 °C). They are stable over a long period of time, and their photophysical parameters are similar to those of the bulk samples so that their use as active materials in luminescent devices can be envisaged. Mixtures of [Ln(hfa)(3)(dmpth)](∞) with Ln = Eu and Tb yield color-tunable microcrystalline materials from red to green. Finally, the crystalline samples exhibit strong triboluminescence, which could be useful in the design of pressure and/or damage detection probes.

  19. One phase growth of in-situ functionalized gold and silver nanoparticles and luminescent nanoclusters

    NASA Astrophysics Data System (ADS)

    Aldeek, Fadi; Muhammed, M. A. H.; Mattoussi, Hedi

    2013-02-01

    We describe the growth and characterization of a set of gold and silver nanoparticles (NPs) as well as fluorescent nanoclusters (NCs) using one-step reduction (in aqueous phase) of Au and Ag precursors in the presence of modular bifunctional ligands. These ligands are made of bidentate (lipoic acid) anchoring groups appended with poly(ethylene glycol) segment, LA-PEG. The particle size can be easily controlled by varying the metal-to-ligand molar ratio during growth. We found that while high metal-to-ligand molar ratios promote the formation of NPs, small size and highly fluorescent NCs are exclusively formed when molar excesses of ligands are used. Both sets of NCs emit in the red to near infrared (NIR) region of the optical spectrum, though the exact location of the emission depends on the material used. The growth strategy further permitted the in-situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), which opens up the opportunity to conjugate these materials to biomolecules using simple to implement coupling chemistries.

  20. Electrochemical surface-enhanced Raman scattering measurement on ligand capped PbS quantum dots at gap of Au nanodimer

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-01

    The vibrational characteristics of ligand-capped lead sulfide (PbS) quantum dots (QDs) were clarified via electrochemical surface-enhanced Raman spectroscopy (EC-SERS) using a hybridized system of gold (Au) nanodimers and PbS QDs under electrochemical potential control. Enhanced electromagnetic field caused by the coupling of QDs with plasmonic Au nanodimers allowed the characteristic behavior of the ligand oleic acid (OA) on the PbS QD surface to be detected under electrochemical potential control. Binding modes between the QDs and OA molecules were characterized using synchronous two-dimensional correlation spectra at distinct electrochemical potentials, confirming that the bidentate bridging mode was probably the most stable mode even under relatively negative potential polarization. Changes in binding modes and molecular orientations resulted in fluctuations in EC-SERS spectra. The present observations strongly recommend the validity of the QD-plasmonic nanostructure coupled system for sensitive molecular detection via EC-SERS.

  1. Cyanide-Assembled d10 Coordination Polymers and Cycles: Excited State Metallophilic Modulation of Solid-State Luminescence.

    PubMed

    Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O

    2018-01-26

    The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. FTIR, magnetic, 1H NMR spectral and thermal studies of some chelates of caproic acid: inhibitory effect on different kinds of bacteria.

    PubMed

    Refat, Moamen S; El-Korashy, Sabry A; Kumar, Deo Nandan; Ahmed, Ahmed S

    2008-06-01

    A convenient method for the preparation of complexes of the Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, ZrO2+, UO2(2+), Zr4+ and Th4+ ions with caproic acid (Hcap) is reported and this has enabled 10 complexes of caproate anion to be formulated: [Cr(cap)3].5H2O, [Mn(cap)2(H2O)2], [Fe(cap)3].12H2O, [Co(cap)2(H2O)2].4H2O, [Ni(cap)2(H2O)2].3H2O, [Zn(cap)2], [ZrO(cap)2].3H2O, [UO2(cap)(NO3)], [Zr(cap)2(Cl)2] and [Th(cap)4]. These new complexes were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. It has been found from the elemental analysis as well as thermal studies that the caproate ligand behaves as bidentate ligand and forming chelates with 1:1 (metal:ligand) stoichiometry for UO2(2+), 1:2 for (Mn2+, Co2+, Ni2+, Zn2+, ZrO2+ and Zr4+), 1:3 stoichiometry for (Cr3+ and Fe3+) and 1:4 for Th4+ caproate complexes, respectively, as bidentate chelating. The molar conductance measurements proved that the caproate complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The antibacterial activity of the caproic acid and their complexes was evaluated against some gram positive/negative bacteria.

  3. Further Insight into the Lability of MeCN Ligands of Cytotoxic Cycloruthenated Compounds: Evidence for the Antisymbiotic Effect Trans to the Carbon Atom at the Ru Center.

    PubMed

    Barbosa, Ana Soraya Lima; Werlé, Christophe; Colunga, Claudia Olivia Oliva; Rodríguez, Cecilia Franco; Toscano, Ruben Alfredo; Le Lagadec, Ronan; Pfeffer, Michel

    2015-08-03

    The two MeCN ligands in [Ru(2-C6H4-2'-Py-κC,N)(Phen, trans-C)(MeCN)2]PF6 (1), both trans to a sp(2) hybridized N atom, cannot be substituted by any other ligand. In contrast, the isomerized derivative [Ru(2-C6H4-2'-Py-κC,N)(Phen, cis-C)(MeCN)2]PF6 (2), in which one MeCN ligand is now trans to the C atom of the phenyl ring orthometalated to Ru, leads to fast and quantitative substitution reactions with several monodentate ligands. With PPh3, 2 affords [Ru(2-C6H4-2'-Py-κC,N)(Phen, cis-C)(PPh3)(MeCN)]PF6 (3), in which PPh3 is trans to the C σ bound to Ru. Compound 3 is not kinetically stable, because, under thermodynamic control, it leads to 4, in which the PPh3 is trans to a N atom of the Phen ligand. Dimethylsulfoxide (DMSO) can also substitute a MeCN ligand in 2, leading to 5, in which DMSO is coordinated to Ru via its S atom trans to the N atom of the Phen ligand, the isomer under thermodynamic control being the only compound observed. We also found evidence for the fast to very fast substitution of MeCN in 2 by water or a chloride anion by studying the electronic spectra of 2 in the presence of water or NBu4Cl, respectively. An isomerization related to that observed between 3 and 4 is also found for the known monophosphine derivative [Ru(2-C6H4-2'-Py-κC,N)(PPh3, trans-C)(MeCN)3]PF6 (10), in which the PPh3 is located trans to the C of the cyclometalated 2-phenylpyridine, since, upon treatment by refluxing MeCN, it leads to its isomer 11, [Ru(2-C6H4-2'-Py-κC,N)(PPh3, cis-C)(MeCN)3]PF6. Further substitutions are also observed on 11, whereby N^N chelates (N^N = 2,2'-bipyridine and phenanthroline) substitute two MeCN ligands, affording [Ru(2-C6H4-2'-Py-κC,N)(PPh3, cis-C)(N^N)(MeCN)]PF6 (12a and 12b). Altogether, the behavior of the obtained complexes by ligand substitution reactions can be rationalized by an antisymbiotic effect on the Ru center, trans to the C atom of the cyclometalated unit, leading to compounds having the least nucleophilic ligand trans to C whenever an isomerization, involving either a monodentate or a bidentate ligand, is possible.

  4. The Effect of Sulphate Anions on the Ultrafine Titania Nucleation

    NASA Astrophysics Data System (ADS)

    Kotsyubynsky, Volodymyr O.; Myronyuk, Ivan F.; Chelyadyn, Volodymyr L.; Hrubiak, Andriy B.; Moklyak, Volodymyr V.; Fedorchenko, Sofia V.

    2017-05-01

    The phenomenological model of sulphate anions effect on the nanodispersed titania synthesis during hydrolysis of titanium tetrachloride was studied. It was proposed that both chelating and bridging bidentate complexes formation between sulphate anions and octahedrally coordinated [Ti(OH)h(OH2)6-h](4-h)+ mononers is the determinative factor for anatase phase nucleation.

  5. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates.

    PubMed

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-05

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    NASA Astrophysics Data System (ADS)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  7. Mechanism for chelated sulfate formation from SO2 and bis (triphenylphosphine) platinum

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, A. B.

    1985-01-01

    Structure and energy surface calculations using the atom superposition and electron delocalization molecular orbital theory show that the first step in the reaction between SO2 and the dioxygen complex (PPh3)2PtO2 is the coordination of SO2 with one oxygen atom of the complex, followed by metal-oxygen bond breaking and reorientation, leading to a five-membered cyclic structure. This then rearranges to form the bidentate coordinated sulfate. Alternative pathways are considered and are found to be less favorable.

  8. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  9. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysicalmore » properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.« less

  10. Crystal structure of poly[di­aqua­(μ2-benzene-1,4-di­carboxyl­ato-κ2 O 1:O 4)(μ2-benzene-1,4-di­carboxyl­ato-κ4 O 1,O 1′:O 4,O 4′)bis­(μ2-3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole-κ2 N:N′)dinickel(II)

    PubMed Central

    Wu, Chao; Cao, Peng

    2015-01-01

    The asymmetric unit of the polymeric title compound, [Ni(C8H4O4)(C10H14N4)(H2O)]n, contains one Ni2+ cation, one coordinating water mol­ecule, one 3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole ligand and half each of two benzene-1,4-di­carboxyl­ate anions, the other halves being generated by inversion symmetry. The Ni2+ cation exhibits an octa­hedral N2O4 coordination sphere defined by the O atoms of the water mol­ecule and two different anions and the N atoms of two symmetry-related N-heterocycles. The N-heterocycles and both anions bridge adjacent Ni2+ cations into a three-dimensional network structure, with one of the anions in a bis-bidentate and the other in a bis-monodentate bridging mode. N—H⋯O and O—H⋯O hydrogen bonds between the N-heterocycles and water mol­ecules as donor groups and the carboxyl­ate O atoms as acceptor groups consolidate the crystal packing. PMID:26090165

  11. A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) based on eight-fold coordinated metals: Synthesis, crystal structure from single-crystal and powder diffraction data and thermal behaviour

    NASA Astrophysics Data System (ADS)

    Gavilan, Elisabeth; Audebrand, Nathalie; Jeanneau, Erwann

    2007-11-01

    A new series of mixed oxalates MM'(C 2O 4) 3(H 2O) 3· nH 2O (M = Cd, Hg, Pb; M' = Zr, Hf) has been prepared. The crystal structures have been solved from single-crystal and powder diffraction data. The isotypical compounds crystallise with space group P2 1/ c (No. 14). The structures consist of honeycomb layers formed by eight-fold coordinated metals, in a distorted square-based antiprismatic conformation, connected together via oxalates which act as bidentate ligands and also as monodentate in a less-common μ3-bridging mode. Sheets are built from two shifted honeycomb layers and linked to each other through a hydrogen network. The resulting frameworks of the series display a compact two-dimensional arrangement of polyhedra MO 8 and M'O 8. Weakly-bonded water molecules are located between and within the sheets. Comparisons with the 3D open-framework structures of related metal oxalates are made. The dehydration processes occur in three or four steps. The final products are MO, M'O 2 and PbZrO 3 resulting from the sublimation of PbO in air. The size of PbZrO 3 crystallites, which are on average isotropic, has been evaluated to be 1055 Å from line-broadening analysis.

  12. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water.

  13. Powder X-ray diffraction, infrared and 13C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.

    2015-03-01

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  14. Pyyromethene-BF2 Complexes as Laser Dyes

    DTIC Science & Technology

    1990-05-24

    pyrromethene S1 state via exciplex formation, a pro- cess well known for polyamines [20], was not incompatible with the available information... exciplex formation [21]. Strong fluorescence in a bidentate BF 2 complex with nitrogen and/or oxygen atoms as ligand term’ini was afforded by P-BF2...M. Gordon and W. R. Ware, Eds., "The Exciplex ," Academic Press, New York, 1975. [21] M. E. Huston, K. W. Haider, and A. W. Czarnik, J. Amer. Chem. Soc

  15. Synthesis of water-soluble, multiple functionalizable dendrons for the conversion of large dendrimers or other molecular objects into potential drug carriers.

    PubMed

    Müller, Stephan; Schlüter, A Dieter

    2005-09-19

    The synthesis of dendrons and dendrimers which carry OEG chains and bidentate ligands and/or fluorescence tags is described. The orthogonally protected functional groups of the dendrons allow modification of the substitution pattern and attachment to larger entities. Both dendrons and dendrimers are highly water-soluble. The dendrons should have considerable potential to convert, for example, commercially available, high-generation dendrimers into water-soluble, versatile support materials for antitumor therapy.

  16. Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin.

    PubMed

    Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles; Michalec, Piotr; Zalewski, Marcin

    2017-11-16

    Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase. At the density functional theory (DFT) level {essentially B3LYP/6-311+G(d,p)}, the most stable structures correspond to the conjugated, push-pull, system (NR 2 )(NH 2 )C═N-C(═NH)NH 2 (R = H, CH 3 ), further stabilized by an internal hydrogen bond. The structural and energetic aspects of protonation and lithium cation adduct formation of biguanide and metformin was examined at the same level of theory. The gas-phase protonation energetics reveal that the more stable tautomer is protonated at the terminal imino C═NH site, still with an internal hydrogen bond maintaining the structure of the neutral system. The calculated proton affinity and gas-phase basicity of the two molecules reach the domain of superbasicity. By contrast, the lithium cation prefers to bind the less stable, not fully conjugated, tautomer (NR 2 )C(═NH)-NH-C(═NH)NH 2 of biguanides, in which the two C═NH groups are separated by NH. This less stable form of biguanides binds Li + as a bidentate ligand, in agreement with what was reported in the literature for other metal cations in the solid phase. The quantitative assessment of resonance in biguanide, in metformin and in their protonated forms, using the HOMED and HOMA indices, reveals an increase in electron delocalization upon protonation. On the contrary, the most stable lithium cation adducts are less conjugated than the stable neutral biguanides, because the metal cation is better coordinated by the not-fully conjugated bidentate tautomer.

  17. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-07

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.

  18. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: Synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol

    NASA Astrophysics Data System (ADS)

    Mohamed Subarkhan, M.; Ramesh, R.

    2015-03-01

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.

  19. Chiral direction and interconnection of helical three-connected networks in metal-organic frameworks.

    PubMed

    Prior, T J; Rosseinsky, M J

    2003-03-10

    The control of the interpenetration and chirality of a family of metal-organic frameworks is discussed. These systems contain two- (A) and four-fold (B) interpenetration of helical three-connected networks generated by binding the 1,3,5-benzenetricarboxylate (btc) ligand to a metal center. These frameworks have the general formula Ni(3)(btc)(2)X(m)Y(n).solvent (where X = pyridine or 4-picoline, Y = ethylene glycol, 1,2-propanediol, 1,4-butanediol, meso-2,3-butanediol, 1,2,6-hexanetriol, glycerol). The structural and chemical effects of modifying the alcohol and aromatic amine ligands bound to the metal center include controlling the thermal stability and the degree of interpenetration. Covalent linking of the four interpenetrating networks in the A family and the switching of diol binding from mono- to bidentate are demonstrated. Recognition of chiral diols by the hand of the network helices is investigated by binding an alcohol ligand with two chiral centers of opposite sense to the same helix. This reveals the subtle nature of the helix-ligand interaction.

  20. A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics.

    PubMed

    Green, Kayla N; Jeffery, Stephen P; Reibenspies, Joseph H; Darensbourg, Marcetta Y

    2006-05-17

    The molecular structure of the acetyl CoA synthase enzyme has clarified the role of individual nickel atoms in the dinickel active site which mediates C-C and C-S coupling reactions. The NiN2S2 portion of the biocatalyst (N2S2 = a cysteine-glycine-cysteine or CGC4- tripeptide ligand) serves as an S-donor ligand comparable to classical bidentate ligands operative in organometallic chemistry, ligating the second nickel which is redox and catalytically active. Inspired by this biological catalyst, the synthesis of NiN2S2 metalloligands, including the solid-phase synthesis of resin-bound Ni(CGC)2-, and sulfur-based derivatization with W(CO)5 and Rh(CO)2+ have been carried out. Through comparison to analogous well-characterized, solution-phase complexes, Attenuated Total Reflectance FTIR spectroscopy establishes the presence of unique heterobimetallic complexes, of the form [Ni(CGC)]M(CO)x, both in solution and immobilized on resin beads. This work provides the initial step toward exploitation of such an evolutionarily optimized nickel peptide as a solid support anchor for hybrid bioinorganic-organometallic catalysts.

  1. Chelation, spectroscopic characterization, biological activity and crystal structure of 2,3-butanedione isonicotinylhydrazone: Determination of Zr4+ after flotation separation

    NASA Astrophysics Data System (ADS)

    Al-Fulaij, O. A.; Jeragh, B.; El-Sayed, A. E. M.; El-Defrawy, M. M.; El-Asmy, A. A.

    2015-02-01

    New metal complexes of Co(II), Ni(II) Cu(II), Zn(II), Cd(II), Pd(II) and Hg(II) with 2,3-butanedione isonicotinylhydrazone [BINH] have been prepared and investigated. Single crystal for BINH is grown and solved as orthorhombic with P 21 21 2 space group. The formula of the ligand was assigned based on the elemental analysis, mass spectra and conductivity measurements. The complexes assigned the formulae [M(BINH-H)Cl]ṡnH2O (Mdbnd Co(II), Ni(II), Cu(II), Zn(II); n = 0 or 1); [Hg(BINH-H)(H2O)2Cl]; [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O. All complexes are nonelectrolytes. BINH acts as a tridentate ligand in [M(BINH-H)Cl]ṡnH2O and [Hg(BINH-H)(H2O)2Cl] coordinating through Cdbnd Oketonic, Csbnd Oamedic and Cdbnd Nhy and as a neutral bidentate through Cdbnd Oketonic and Cdbnd Nhy in [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O; the pyridine nitrogen has no rule in coordination. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra provide a tetrahedral structure for the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes; square-planar for the Pd(II) complex and octahedral for the Hg(II) complex. The TGA of the complexes depicted the outer and inner water molecules as well as the final residue. The cobalt and cadmium complexes ended with the metal while the Cu(II), Zn(II) and Pd(II) complexes ended with complex species. [Hg(BINH-H)(H2O)2Cl] has no residue. The ligand is inactive against all tested organisms except for Bacillus thuringiensis. The Hg(II) complex is found more active than the other complexes. The flotation technique is found applicable for the separation of micro amount (10 ppm) of Zr4+ using 10 ppm of BINH and 1 × 10-5 mol L-1 of oleic acid at pH 6 with efficiency of 98% with no interferences.

  2. Stable divalent germanium, tin and lead amino(ether)-phenolate monomeric complexes: structural features, inclusion heterobimetallic complexes, and ROP catalysis.

    PubMed

    Wang, Lingfang; Roşca, Sorin-Claudiu; Poirier, Valentin; Sinbandhit, Sourisak; Dorcet, Vincent; Roisnel, Thierry; Carpentier, Jean-François; Sarazin, Yann

    2014-03-21

    Stable germanium(II) and lead(II) amido complexes {LO(i)}M(N(SiMe3)2) (M = Ge(II), Pb(II)) bearing amino(ether)phenolate ligands are readily available using the proteo-ligands {LO(i)}H of general formula 2-CH2NR2-4,6-tBu2-C6H2OH (i = 1, NR2 = N((CH2)2OCH3)2; i = 2, NR2 = NEt2; i = 3, NR2 = aza-15-crown-5) and M(N(SiMe3)2)2 precursors. The molecular structures of these germylenes and plumbylenes, as well as those of {LO(3)}GeCl, {LO(3)}SnCl and of the congeneric {LO(4)}Sn(II)(N(SiMe3)2) where NR2 = aza-12-crown-4, have been determined crystallographically. All complexes are monomeric, with 3-coordinate metal centres. The phenolate systematically acts as a N^O(phenolate) bidentate ligand, with no interactions between the metal and the O(side-arm) atoms in these cases (for {LO(1)}(-), {LO(3)}(-) and {LO(4)}(-)) where they could potentially arise. For each family, the lone pair of electrons essentially features ns(2) character, and there is little, if any, hybridization of the valence orbitals. Heterobimetallic complexes {LO(3)}M(N(SiMe3)2)·LiOTf, where the Li(+) cation sits inside the tethered crown-ether, were prepared by reaction of {LO(3)}M(N(SiMe3)2) and LiOTf (M = Ge(II), Sn(II)). The inclusion of Li(+) (featuring a close contact with the triflate anion) in the macrocycle bears no influence on the coordination sphere of the divalent tetrel element. In association with iPrOH, the amido germylenes, stannylenes and plumbylenes catalyse the controlled polymerisation of L- and racemic lactide. The activity increases linearly according to Ge(II) ≪ Sn(II) ≪ Pb(II). The simple germylenes generate very sluggish catalysts, but the activity is significantly boosted if the heterobimetallic complex {LO(3)}Ge(N(SiMe3)2)·LiOTf is used instead. On the other hand, with 10-25 equiv. of iPrOH, the plumbylenes afford highly active binary catalysts, converting 1000 or 5000 equiv. of monomer at 60 °C within 3 or 45 min, respectively, in a controlled fashion.

  3. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  4. Spectroscopic Observation of Water-Mediated Deformation of the CARBOXYLATE-M2+ (M= Mg, Ca) Contact Ion Pair

    NASA Astrophysics Data System (ADS)

    Kelleher, Patrick J.; DePalma, Joseph W.; Johnson, Mark

    2016-06-01

    The binding of alkaline earth dications to the biologically relevant carboxylate ligand has previously been studied using vibrational sum frequency generation (VSFG) spectroscopy of the air-water interface, infrared multiple photon dissociation (IRMPD) spectroscopy of clusters, and DFT methods. These results suggest the presence of both monodentate and bidentate binding motifs of the M2+ ions to the cayboxyl head groups depending on the extent of solvation. We revisit these systems using vibrational predissociation spectroscopy to measure the gas-phase vibrational spectra of the D2-tagged microhydrated [MgOAc(H2O)n=1-5]+ and [CaOAc(H2O)n=1-6]+ clusters. The spectra show that [MgOAc(H2O)n]+ switches from bidentate to monodentate binding promptly at n = 5, while [CaOAc(H2O)n]+ retains its bidentate attachment such that the sixth water molecule initiates the second solvation shell. The difference in binding behavior between these two divalent metal ions is analyzed in the context of the local acidity of the solvent water molecules and the strength of the metal-carboxylate and metal-water interactions. This cluster study provides insight into the chemical physics underlying the unique and surprising impacts of Mg2+ and Ca2+ on the chemistry mediated by sea spray aerosols. Funding for this work was provided by the NSF's Center for Aerosol Impacts on Climate and the Environment.

  5. Role of the Diphosphine Chelate in Emissive, Charge-Neutral Iridium(III) Complexes.

    PubMed

    Liao, Jia-Ling; Devereux, Leon R; Fox, Mark A; Yang, Chun-Chieh; Chiang, Yu-Cheng; Chang, Chih-Hao; Lee, Gene-Hsiang; Chi, Yun

    2018-01-12

    A class of neutral tris-bidentate Ir III metal complexes incorporating a diphosphine as a chelate is prepared and characterized here for the first time. Treatment of [Ir(dppBz)(tht)Cl 3 ] (1, dppBz=1,2-bis(diphenylphosphino)benzene, tht=tetrahydrothiophene) with fppzH (3-trifluoromethyl-5-(2'-pyridyl)-1H-pyrazole) afforded the dichloride complexes, trans-(Cl,Cl)[Ir(dppBz)(fppz)Cl 2 ] (2) and cis-(Cl,Cl)[Ir(dppBz)(fppz)Cl 2 ] (3). The reaction of 3 with the dianionic chelate precursor, 5,5'-di(trifluoromethyl)-3,3'-bipyrazole (bipzH 2 ) or 5,5'-(1-methylethylidene)-bis(3-trifluoromethyl-1H-pyrazole) (mepzH 2 ), in DMF gave the tris-bidentate complex [Ir(dppBz)(fppz)(bipz)] (4) or [Ir(dppBz)(fppz)(mepz)] (5), respectively. In contrast, a hydride complex [Ir(dppBz)(fppz)(bipzH)H] (6) was isolated instead of 4 in protic solvent, namely: diethylene glycol monomethyl ether (DGME). All complexes 2-6 are luminescent in powder form and thin films where the dichlorides (2, 3) emit with maxima at 590-627 nm (orange) and quantum yields (QYs) up to 90 % whereas the tris-bidentate (4, 5) and hydride (6) complexes emit at 455-458 nm (blue) with QYs up to 70 %. Hybrid (time-dependent) DFT calculations showed considerable metal-to-ligand charge transfer contribution to the orange-emitting 2 and 3 but substantial ligand-centered 3 π-π* transition character in the blue-emitting 4-6. The dppBz does not participate in the radiative transitions in 4-6, but it provides the rigidity and steric bulk needed to promote the luminescence by suppressing the self-quenching in the solid state. Fabrication of an organic light-emitting diode (OLED) with dopant 5 gave a deep-blue CIE chromaticity of (0.16, 0.15). Superior blue emitters, which are vital in OLED applications, may be found in other neutral Ir III complexes containing phosphine chelates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Equatorial coordination of uranyl: Correlating ligand charge donation with the O yl-U-O yl asymmetric stretch frequency

    DOE PAGES

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.; ...

    2017-10-14

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  7. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    PubMed

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations inmore » 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.« less

  9. Photoinduced energy transfer in transition metal complex oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared,more » characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.« less

  10. Synthesis, characterization, crystal structure, superoxide dismutase and biological activities of nickel (II) complexes with bidentate ligands possessing N and O donor atoms

    NASA Astrophysics Data System (ADS)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2017-12-01

    Two new Schiff bases 2-((E)-(4-bromo-2-chlorophenylimino)methyl)-4-bromophenol(HL1) and1-((E)-(4-bromo-2-chlorophenylimino)methyl)naphthalene-2-ol (HL2) and their new nickel (II) complexes [Ni(L1)2]·DMF(1) and [Ni(L2)2] (2) have been synthesized and characterized by various physico- chemical and spectroscopic methods. The solid-state structures of synthesized compounds were determined by single crystal X-ray crystallography, which revealed square planar geometry around Ni (II) ion. Infrared spectra, UV-Vis, thermal analysis and magnetic susceptibility measurements agreed with the observed crystal structures. The ligand (HL1) crystallized in the Orthorhombic system of the space group Pbca,a = 7.5485(4)Å, b = 11.5514(5) Å, c = 30.1370(14)Å, α = 90°, β = 90°, γ = 90°and Z = 8. Complex[Ni(L1)2]·DMF(1) crystallized in the Triclinic system of the space group P-1, a = 8.9954(3) Å, b = 9.4593(4) Å, c = 13.2657(5) Å, α = 101.478°, β = 99.595°, γ = 117.651°and Z = 2, whereas complex [Ni(L2)2]·(2) crystallized in the Monoclinic system of the space group P21/c, a = 9.301(9)Å, b = 12.149(8)Å, c = 13.792(10)Å, α = 90°, β = 106.35(4).°, γ = 90°and Z = 2. The Schiff bases (HL1and HL2) behaved as monobasic bidentate ligands possessing N and O donor atoms. The SOD activities of HL1 and its Ni (II) complex[Ni(L1)2]·DMF(1) have been measured using xanthine-xanthine oxidase as a source of superoxide radical and NBT assay as O2- scavenger. In vitro antimicrobial activities of the Ni(II) complexes (1) and (2)against Bacillus cereus and Staphylococcus aureus as Gram + ve and Salmonella typhi, Klebsiella pneumonia and Escherichia coli as Gram-ve species have been investigated comparing with the Schiff base ligands (HL1and HL2).

  11. Clarification of the binding model of lead(II) with a highly sensitive and selective fluoroionophore sensor by spectroscopic and structural study

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Li, Yue; Li, Lei; Wu, Yuqing; Buchet, Rene; Ding, Yihong

    2009-03-01

    The detection of lead ion is very important both in environment and in biological systems because of its toxicity. A fluoroionophore sensor, N-[4(1-pyrene)-butyroyl]- L-tryptophan (PLT), distinguishing Pb 2+ from other 12 metal ions and exhibiting a very high sensitivity (0.15 μM) in aqueous solution, has been reported. The present study describes the spectroscopic clarification of the intrinsic differences of the binding model between PLT with Pb 2+ and with other ions. The fluorescent property of solid metal carboxylates reflects a character of the metal complex in solution, which results in a facility to solve problems by using solid sample of complex and vibrational spectroscopy. Both FT-infrared and Raman spectroscopy are employed to clarify the binding model between lead ion and its high sensitive and selective fluoroionophore sensor PLT, and essentially to explain why the metal ions other than Pb 2+ cannot response to PLT. The IR spectral data clearly show that a bridging bidentate coordination occurs when PLT is coordinated with Cu 2+ and Zn 2+; while a chelating bidentate coordination between the carboxyl anion and Pb 2+ exists in PLT-Pb, which is a new information beyond the NMR results in previous report. Meanwhile, the present study also indicates a characteristic interaction of lead ion and indole ring as well as the hydrogen bonding between amide groups. Furthermore, the quantum chemical calculations at the DFT level confirm the spectral and structural information of PLT-Pb 2+ proposed by experiments. Thus, the type of coordination, the interaction of the indole ring with the metal ion, and the hydrogen bonding between amide groups in PLT-Pb are likely responsible for the high selectivity of PLT to the lead(II) ion.

  12. Clarification of the binding model of lead(II) with a highly sensitive and selective fluoroionophore sensor by spectroscopic and structural study.

    PubMed

    Ma, Lijun; Li, Yue; Li, Lei; Wu, Yuqing; Buchet, Rene; Ding, Yihong

    2009-03-01

    The detection of lead ion is very important both in environment and in biological systems because of its toxicity. A fluoroionophore sensor, N-[4(1-pyrene)-butyroyl]-l-tryptophan (PLT), distinguishing Pb(2+) from other 12 metal ions and exhibiting a very high sensitivity (0.15microM) in aqueous solution, has been reported. The present study describes the spectroscopic clarification of the intrinsic differences of the binding model between PLT with Pb(2+) and with other ions. The fluorescent property of solid metal carboxylates reflects a character of the metal complex in solution, which results in a facility to solve problems by using solid sample of complex and vibrational spectroscopy. Both FT-infrared and Raman spectroscopy are employed to clarify the binding model between lead ion and its high sensitive and selective fluoroionophore sensor PLT, and essentially to explain why the metal ions other than Pb(2+) cannot response to PLT. The IR spectral data clearly show that a bridging bidentate coordination occurs when PLT is coordinated with Cu(2+) and Zn(2+); while a chelating bidentate coordination between the carboxyl anion and Pb(2+) exists in PLT-Pb, which is a new information beyond the NMR results in previous report. Meanwhile, the present study also indicates a characteristic interaction of lead ion and indole ring as well as the hydrogen bonding between amide groups. Furthermore, the quantum chemical calculations at the DFT level confirm the spectral and structural information of PLT-Pb(2+) proposed by experiments. Thus, the type of coordination, the interaction of the indole ring with the metal ion, and the hydrogen bonding between amide groups in PLT-Pb are likely responsible for the high selectivity of PLT to the lead(II) ion.

  13. Mononuclear Sulfido-Tungsten(V) Complexes: Completing the Tp*MEXY (M = Mo, W; E = O, S) Series.

    PubMed

    Sproules, Stephen; Eagle, Aston A; George, Graham N; White, Jonathan M; Young, Charles G

    2017-05-01

    Orange Tp*WSCl 2 has been synthesized from the reactions of Tp*WOCl 2 with boron sulfide in refluxing toluene or Tp*WS 2 Cl with PPh 3 in dichloromethane at room temperature. Mononuclear sulfido-tungsten(V) complexes, Tp*WSXY {X = Y = Cl, OPh, SPh, SePh; X = Cl, Y = OPh; XY = toluene-3,4-dithiolate (tdt), quinoxaline-2,3-dithiolate (qdt); and Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate} were prepared by metathesis of Tp*WSCl 2 with the respective alkali metal salt of X - /XY 2- , or [NHEt 3 ] 2 (qdt). The complexes were characterized by microanalysis, mass spectrometry, electrochemistry, and infrared (IR), electron paramagnetic resonance (EPR) and electronic absorption spectroscopies. The molecular structures of Tp*WS(OPh) 2 , Tp*WS(SePh) 2 , and Tp*WS(tdt) have been determined by X-ray crystallography. The six-coordinate, distorted-octahedral W centers are coordinated by terminal sulfido (W≡S = 2.128(2) - 2.161(1) Å), terdentate facial Tp*, and monodentate/bidentate O/S/Se-donor ligands. The sulfido-W(V) complexes are characterized by lower energy electronic transitions, smaller g iso , and larger A iso ( 183 W) values, and more positive reduction potentials compared with their oxo-W(V) counterparts. This series has been probed by sulfur K-edge X-ray absorption spectroscopy (XAS), the spectra being assigned by comparison to Tp*WOXY (X = Y = SPh; XY = tdt, qdt) and time-dependent density functional theoretical (TD-DFT) calculations. This study provides insight into the electronic nature and chemistry of the catalytically and biologically important sulfido-W unit.

  14. Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms.

    PubMed

    Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S

    2016-04-01

    The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals.

    PubMed

    Huang, Xiaopeng; Hou, Xiaojing; Song, Fahui; Zhao, Jincai; Zhang, Lizhi

    2016-02-16

    In this study, the adsorption process of Cr(VI) on the hematite facets was systematically investigated with synchrotron-based Cr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, density-functional theory calculation, and surface complexation models. Structural model fitting of EXAFS spectroscopy suggested that the interatomic distances of Cr-Fe were, respectively, 3.61 Å for the chromate coordinated hematite nanoplates with exposed {001} facets, 3.60 and 3.30 Å for the chromate coordinated hematite nanorods with exposed {001} and {110} facets, which were characteristic of inner-sphere complexation. In situ ATR-FTIR spectroscopy analysis confirmed the presence of two inner-sphere surface complexes with C3ν and C2ν symmetry, while the C3ν and C2ν species were assigned to monodentate and bidentate inner-sphere surface complexes with average Cr-Fe interatomic distances of 3.60 and 3.30 Å, respectively. On the basis of these experimental and theoretical results, we concluded that HCrO4(-) as dominated Cr(VI) species was adsorbed on {001} and {110} facets in inner-sphere monodentate mononuclear and bidentate binuclear configurations, respectively. Moreover, the Cr(VI) adsorption performance of hematite facets was strongly dependent on the chromate complexes formed on the hematite facets.

  16. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late transition metals. Although coordinated to a metal, the antimony centers in these complexes retain residual Lewis acidity, as evidenced by their ability to participate in anion binding. Anion binding events at the antimony center have been shown by structural, spectroscopic, and theoretical studies to perturb the antimony-transition metal interaction and in some cases to trigger reactivity at the metal center. Coordinated Sb(III) centers in polydentate ligands have also been found to readily undergo two-electron oxidation, generating strongly Lewis acidic Sb(V) centers in the coordination sphere of the metal. Theoretical studies suggest that oxidation of the coordinated antimony center induces an umpolung of the antimony-metal bond, resulting in depletion of electron density at the metal center. In addition to elucidating the fundamental coordination and redox chemistry of antimony-containing ambiphilic ligands, our work has demonstrated that these unusual behaviors show promise for use in a variety of applications. The ability of coordinated antimony centers to bind anions has been exploited for sensing applications, in which anion coordination at antimony leads to a colorimetric response via a change in the geometry about the metal center. In addition, the capacity of antimony Lewis acids to modulate the electron density of coordinated metals has proved to be key in facilitating photochemical activation of M-X bonds as well as antimony-centered redox-controlled catalysis.

  17. Isomorphous rare-earth bis[bis(2,6-diisopropylphenyl)phosphate] complexes and their self-assembly into two-dimensional frameworks by intramolecular hydrogen bonds.

    PubMed

    Minyaev, Mikhail E; Nifant'ev, Ilya E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Zeynalova, Shadana Sh; Ananyev, Ivan V; Churakov, Andrei V

    2017-10-01

    The crystal structures of rare-earth diaryl- or dialkylphosphate derivatives are poorly explored. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]chloridotetrakis(methanol-κO)neodymium methanol disolvate, [Nd(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (1), and of the lutetium, [Lu(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (2), and yttrium, [Y(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (3), analogues have been obtained by reactions between lithium bis(2,6-diisopropylphenyl)phosphate and LnCl 3 (H 2 O) 6 (in a 2:1 ratio) in methanol. Compounds (1)-(3) crystallize in the C2/c space group. Their crystal structures are isomorphous. The molecule possesses C 2 symmetry with a twofold crystallographic axis passing through the Ln and Cl atoms. The bis(2,6-diisopropylphenyl)phosphate ligands all display a κ 1 O-monodentate coordination mode. The coordination polyhedron for the metal atom [coordination number (CN) = 7] is a distorted pentagonal bipyramid. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 2 Cl(CH 3 OH) 4 ] molecular unit exhibits two intramolecular O-H...O hydrogen bonds, forming six-membered rings, and two intramolecular O-H...Cl interactions, forming four-membered rings. Intermolecular O-H...O hydrogen bonds connect each unit via four noncoordinating methanol molecules with four other units, forming a two-dimensional hydrogen-bond network. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]tetrakis(methanol-κO)(nitrato-κ 2 O,O')neodymium methanol disolvate, [Nd(C 24 H 34 O 4 P)(NO 3 )(CH 4 O) 4 ]·2CH 3 OH, (4), have been obtained in an analogous manner from NdCl 3 (H 2 O) 6 . Compound (4) also crystalizes in the C2/c space group. Its crystal structure is similar to those of (1)-(3). The κ 2 O,O'-bidentate nitrate anion is disordered over a twofold axis, being located nearly on it. Half of the molecule is crystallographically unique (CN Nd = 8). Unlike (1)-(3), complex (4) exhibits disorder of all three methanol molecules, one isopropyl group of the phosphate ligand and the NO 3 - ligand. The structure of (4) displays intra- and intermolecular O-H...O hydrogen bonds similar to those in (1)-(3). Compounds (1)-(4) represent the first reported mononuclear bis[bis(diaryl/dialkyl)phosphate] rare-earth complexes.

  18. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting.

    PubMed

    Lovejoy, Katherine S; Lippard, Stephen J

    2009-12-28

    The five platinum anticancer compounds currently in clinical use conform to structure-activity relationships formulated (M. J. Cleare and J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187-210) shortly after the discovery that cis-diamminedichloroplatinum(II), cisplatin, has antitumor activity in mice. These compounds are neutral platinum(II) species with two am(m)ine ligands or one bidentate chelating diamine and two additional ligands that can be replaced by water through aquation reactions. The resulting cations ultimately form bifunctional adducts on DNA. Information about the chemistry of these platinum compounds and correlations of their structures with anticancer activity have provided guidance for the design of novel anticancer drug candidates based on the proposed mechanisms of action. This article discusses advances in the synthesis and evaluation of such non-traditional platinum compounds, including cationic and tumor-targeting constructs.

  19. Palladium coupling catalysts for pharmaceutical applications.

    PubMed

    Doucet, Henri; Hierso, Jean-Cyrille

    2007-11-01

    This review discusses recent advances made in the area of palladium-catalyzed coupling reactions and describes a selection of the catalytic systems that are useful in the preparation of valuable compounds for the pharmaceutical industry. Most of these types of syntheses have used either simple palladium salts or palladium precursors associated with electron-rich mono- or bidentate phosphine ligands as catalysts. For some reactions, ligands such as triphenyl phosphine, 1,1'-bis(diphenylphosphino)ferrocene, a carbene or a bipyridine have also been employed. Several new procedures for the Suzuki cross-coupling reaction, the activation of aryl chlorides, the functionalization of aromatics and the synthesis of heteroaromatics are discussed. The C-H activation/ functionalization reactions of aryl and heteroaryl derivatives have emerged as powerful tools for the preparation of biaryl compounds, and the recent procedures and catalysts employed in this promising field are also highlighted herein.

  20. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of manganese (II) complex of picolinate: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Avcı, Davut; Atalay, Yusuf; Çoşut, Bünyemin; Zorlu, Yunus; Erkovan, Mustafa; Yerli, Yusuf

    2016-02-01

    A novel manganese (II) complex with picolinic acid (pyridine 2-carboxylic acid, Hpic), namely, [Mn(pic)2(H2O)2] was prepared and its crystal structure was fully characterized by using single crystal X-ray diffraction. Picolinate (pic) ligands were coordinated to the central manganese(II) ion as bidentate N,O-donors through the nitrogen atoms of pyridine rings and the oxygen atoms of carboxylate groups forming five-membered chelate rings. The spectroscopic characterization of Mn(II) complex was performed by the applications of FT-IR, Raman, UV-vis and EPR techniques. In order to support these studies, density functional theory (DFT) calculations were carried out by using B3LYP level. IR and Raman spectra were simulated at B3LYP level, and obtained results indicated that DFT calculations generally give compatible results to the experimental ones. The electronic structure of the Mn(II) complex was predicted using time dependent DFT (TD-DFT) method with polarizable continuum model (PCM). Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength were investigated by applying natural bond orbital (NBO) analysis. Nonlinear optical properties of Mn(II) complex were investigated by the determining of molecular polarizability (α) and hyperpolarizability (β) parameters.

  1. Synthesis, crystal structure, photoluminescence and electrochemical properties of a sandwiched Ni2Ce complex

    NASA Astrophysics Data System (ADS)

    Güngör, Seyit Ali; Kose, Muhammet

    2017-12-01

    In this study, a Ni2Ce complex [(NiL)2Ce(NO3)2](NO3) was synthesized and characterized by spectroscopic and analytical methods. The structure of the complex was determined by single crystal X-ray diffraction study. In the structure of the complex, a Ce(III) ion is sandwiched between the two NiL units, which are virtually parallel to each other. The Ce(III) center is 12-coordinate, surrounded by 12 oxygen atoms; four are from phenolic groups, four from methoxy groups, and four from two bidentate nitrate ligands. Hirshfeld surface analysis was used to evaluate the inter-molecular interactions within the crystal packing. The complex molecules are linked by H⋯ONO2 interactions. The largest contribution is H⋯O/O⋯H with 41.6% contribution and followed by H⋯H contacts with 39.1%. The complex showed an excitation band in the range of 510-580 nm. A band in the range of 520-580 nm observed in the emission spectrum almost completely overlapped. This suggests that the band in the emission spectrum of the complex is not the actual fluorescence emission and is assigned to the Rayleigh scattering band. Electrochemical and thermal behaviours of the complex were also investigated.

  2. Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.

    2015-01-01

    The vanadyl(IV) adenine complex; [VO(Adn)2]ṡSO4; was synthesized and characterized. The molar conductivity of this complex was measured in DMSO solution that showed an electrolyte nature. Spectroscopic investigation of the green solid complex studied here indicate that the adenine acts as a bidentate ligand, coordinated to vanadyl(IV) ions through the nitrogen atoms N7 and nitrogen atom of amino group. Thus, from the results presented the vanadyl(IV) complex has square pyramid geometry. Further characterizations using thermal analyses and scanning electron techniques was useful. The aim of this paper was to introduce a new drug model for the diabetic complications by synthesized a novel mononuclear vanadyl(IV) adenine complex to mimic insulin action and reducing blood sugar level. The antidiabetic ability of this complex was investigated in STZ-induced diabetic mice. The results suggested that VO(IV)/adenine complex has antidiabetic activity, it improved the lipid profile, it improved liver and kidney functions, also it ameliorated insulin hormone and blood glucose levels. The vanadyl(IV) complex possesses an antioxidant activity and this was clear through studying SOD, CAT, MDA, GSH and methionine synthase. The current results support the therapeutic potentiality of vanadyl(IV)/adenine complex for the management and treatment of diabetes.

  3. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  4. Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements

    USGS Publications Warehouse

    Bargar, John R.; Reitmeyer, Rebecca; Lenhart, John J.; Davis, James A.

    2000-01-01

    We have measured U(VI) adsorption on hematite using EXAFS spectroscopy and electrophoresis under conditions relevant to surface waters and aquifers (0.01 to 10 μM dissolved uranium concentrations, in equilibrium with air, pH 4.5 to 8.5). Both techniques suggest the existence of anionic U(VI)-carbonato ternary complexes. Fits to EXAFS spectra indicate that U(VI) is simultaneously coordinated to surface FeO6 octahedra and carbonate (or bicarbonate) ligands in bidentate fashions, leading to the conclusion that the ternary complexes have an inner-sphere metal bridging (hematite-U(VI)-carbonato) structure. Greater than or equal to 50% of adsorbed U(VI) was comprised of monomeric hematite-U(VI)-carbonato ternary complexes, even at pH 4.5. Multimeric U(VI) species were observed at pH ≥ 6.5 and aqueous U(VI) concentrations approximately an order of magnitude more dilute than the solubility of crystalline β-UO2(OH)2. Based on structural constraints, these complexes were interpreted as dimeric hematite-U(VI)-carbonato ternary complexes. These results suggest that Fe-oxide-U(VI)-carbonato complexes are likely to be important transport-limiting species in oxic aquifers throughout a wide range of pH values.

  5. Anionic carbonato and oxalato cobalt(III) nitrogen mustard complexes.

    PubMed

    Craig, Peter R; Brothers, Penelope J; Clark, George R; Wilson, William R; Denny, William A; Ware, David C

    2004-02-21

    Synthetic approaches to cobalt(III) complexes [Co(L)(L')2] containing the bidentate dialkylating nitrogen mustard N,N-bis(2-chloroethyl)-1,2-ethanediamine (L = dce) together with anionic ancilliary ligands (L') which are either carbonato (CO3(2-)), oxalato (ox2-), bis(2-hydroxyethyl)dithiocarbamato (bhedtc-), 2-pyridine carboxylato (pico-) or 2-pyrazine carboxylato (pyzc-) were investigated. Synthetic routes were developed using the related amines N,N-diethyl-1,2-ethanediamine (dee) and 1,2-ethanediamine (en). The complexes [Co(CO3)2(L)]- (L = dee 1, dce 2), [Co(ox)2(L)]- (L = dee 3, dce 4), [Co(bhedtc)2(dee)]+ 5, [Co(bhedtc)2(en)]+ 6, mer-[Co(pico)3], mer-[Co(pyzc)]3 7 and [Co(pico)2(dee)]+ 8 were prepared and were characterised by IR, UV-Vis, 1H and 13C[1H] NMR spectroscopy, mass spectrometry and cyclic voltammetry. [Co(bhedtc)2(en)]BPh4 6b and trans(O)-[Co(pico)2(dee)]ClO4 8 were characterised by X-ray crystallography. In vitro biological tests were carried out on complexes 1-4 in order to assess the degree to which coordination of the mustard to cobalt attenuated its cytotoxicity, and the differential toxicity in air vs. nitrogen.

  6. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  8. Metal Complexes of New Bioactive Pyrazolone Phenylhydrazones; Crystal Structure of 4-Acetyl-3-methyl-1-phenyl-2-pyrazoline-5-one phenylhydrazone Ampp-Ph

    PubMed Central

    Idemudia, Omoruyi G.; Sadimenko, Alexander P.; Hosten, Eric C.

    2016-01-01

    The condensation reaction of phenylhydrazine and dinitrophenylhydrazine with 4-acetyl and 4-benzoyl pyrazolone precipitated air-stable acetyldinitrophenylhydrazone Ampp-Dh, benzoylphenylhydrazone Bmpp-Ph and benzoyldinitrophenylhydrazone Bmpp-Dh in their keto imine form; a study inspired by the burning interest for the development of new bioactive materials with novel properties that may become alternative therapeutic agents. Elemental analysis, FTIR, 1H, and 13C NMR, and mass spectroscopy have been used to justify their proposed chemical structures, which were in agreement with the single crystal structure of Bmpp-Dh earlier reported according to X-ray crystallography. The single crystal structure of 4-acetyl-3-methyl-1-phenyl--pyrazoline-5-one phenylhydrazone Ampp-Ph, which crystallizes in a triclinic crystal system with a P-1 (No. 2) space group is presented. Octahedral Mn(II), Ni(II), Co(II), and Cu(II) complexes of these respective ligands with two molecules each of the bidentate Schiff base, coordinating to the metal ion through the azomethine nitrogen C=N and the keto oxygen C=O, which were afforded by the reaction of aqueous solutions of the corresponding metal salts with the ligands are also reported. Their identity and proposed structures were according to elemental analysis, FTIR spectroscopy, UV-VIS spectrophotometry (electronic spectra) and Bohr magnetic moments, as well as thermogravimetric analysis (TGA) results. A look at the antibacterial and antioxidant activities of synthesized compounds using the methods of the disc diffusion against some selected bacterial isolates and 1,1-diphenyl-2-picryl-hydrazil (DPPH) respectively, showed biological activities in relation to employed standard medicinal drugs. PMID:27213342

  9. Polymer complexes. LVII. Supramolecular assemblies of novel polymer complexes of dioxouranium(VI) with some substituted allyl azo dye compounds

    NASA Astrophysics Data System (ADS)

    Diab, M. A.; El-Sonbati, A. Z.; El-Bindary, A. A.; Balboula, M. Z.

    2013-05-01

    A novel method to synthesize some dioxouranium(VI) polymer complexes of the general formula [UO2(Ln)2(OAc)2] (where HLn = azo allyl rhodanine). The structure of the novel mononuclear dioxoutranium(VI) polymer complexes was characterized using elemental analysis, spectral (electronic, infrared, 1H &13C NMR) studies, magnetic susceptibility measurements and thermal analysis. The molar conductivities show that all the polymer complexes are non-electrolytes. The IR showed that the ligand HLn act as bidentate neutral through carbonyl group and imine group nitrogen atom forming thereby a six-membered chelating ring and concomitant formation of an intramolecular hydrogen bond. The υ3 frequency of UO2+2 has been shown to be an excellent molecular probe for studying the coordinating power of the ligands. The values of υ3 of the prepared complexes containing UO2+2 were successfully used to calculate the force constant, FUO (10-8 N/Å) and the bond length RUO (Å) of the Usbnd O bond. A strategy based upon both theoretical and experimental investigations has been adopted. The theoretical aspects are described in terms of the well-known theory of 5d-4f transitions. Wilson's, matrix method, Badger's formula, and Jones and El-Sonbati equations were used to calculate the Usbnd O bond distances from the values of the stretching and interaction force constants. The most probable correlation between Usbnd O force constant to Usbnd O bond distance were satisfactorily discussed in term of Badger's rule and the equations suggested by Jones and El-Sonbati. The effect of Hammet constant is also discussed.

  10. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  11. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostructural form on the efficiency of antibiotic therapy "norfloxacin drug"

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Hawary, W. F.; Mohamed, Mahmoud A.

    2012-04-01

    This paper has reviewed the chemical and biological impact resulting from the interaction between norfloxacin (norH) antibiotic drug and two lanthanide (lanthanum(III) and cerium(III)) metal ions, which prepared in normal and nano-features. La(III) and Ce(III) complexes were synthesized with chemical formulas [La(nor)3]·3H2O and [Ce(nor)3]·2H2O. Lanthanum and cerium(III) ions coordinated toward norH with a hexadentate geometry. The norH acts as deprotonated bidentate ligand through the oxygen atom of carbonyl group and the oxygen atom of carboxylic group. Elemental analysis, FT-IR spectral, electrical conductivity, thermal analysis (TG/DTA), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements have been used to characterize the mentioned isolated complexes. The Coats-Redfern and Horowitz-Metzger integral methods are used to estimate the kinetic parameters for the major successive steps detectable in the TG curve. The brightness side in this study is to take advantage for the preparation and characterization of single phases of La2O3 and CeO2 nanoparticles using urea as precursors via a solid-state decomposition procedure. The norH ligand in comparison with both cases (normal and nano-particles) of lanthanide complexes were screened against for antibacterial (Escherichia Coli, Staphylococcus Aureus, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal (Aspergillus Flavus and Candida Albicans) activities. The highest antibacterial and antifungal activities data of the nano-particles complexes were observed with more potent than the free norH and normal lanthanide complexes.

  12. Rod shaped oxovanadium(IV) Schiff base complexes: Synthesis, mesomorphism and influence of flexible alkoxy chain lengths

    NASA Astrophysics Data System (ADS)

    Gupta, Bishop Dev; Datta, Chitraniva; Das, Gobinda; Bhattacharjee, Chira R.

    2014-06-01

    A series of oxovanadium(IV) complexes of bidentate [N,O] donor Schiff-base ligands of the type [VO(L)2], [L = N-(4-n-alkoxysalicylaldimine)-4‧-octadecyloxyaniline, n = 8, 10, 12, 14, 16 and 18] have been synthesized. The compounds were characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), 1H, 13C nuclear magnetic resonance (NMR), ultraviolet-visible spectroscopy (UV-Vis), and fast atom bombardment (FAB) mass spectrometry. The mesomorphic behavior of the compounds was studied by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The ligands and complexes are all thermally stable exhibiting smectic mesomorphism. The ligands 8-OR to16-OR show SmC phase at ∼113-118 °C and an unidentified SmX phase reminiscent of soft crystal at ∼77-91 °C whereas the complexes all showed SmA phases. Interestingly the complexes with C10 and C12 alkoxy chain length exhibited additionally SmC phases also. The melting points of the ligands linearly increases whereas mesophase to isotropic transition temperature decreases as a function of increasing carbon chain length of alkoxy arm while no trend was apparently noticeable for the complexes.

  13. Structural, thermogravimetric, B3LYP and biological studies on some heterocyclic thiosemicarbazide copper (II) complexes and evaluation of their molecular docking

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; Fayed, Tarek A.; El-Gamil, Mohammed M.; Abu El-Reash, Gaber M.

    2018-01-01

    Two copper (II) complexes of ligands H2L1 and H2L2 have been prepared and investigated. The ligands were prepared by the individually addition of picolinic acid hydrazide and 2-(2-aminothiazol-4-yl) acetohydrazide into benzoyl isothiocyanate. The results of analytical and spectroscopic equipments revealed that H2L1 act as monobasic bidentate with square planner environment. While H2L2 behaves as monobasic tetradentate with Oh geometry. The geometries of ligands and their complexes being carefully studied using Jaguar 9.1 program based on the density functional theory (DFT) to predict properties of materials performed by the hybrid density functional method B3LYP. Additionally, thermal degradation data were evaluated to determine the kinetic and thermodynamic parameters by different methods. Moreover, the anti-oxidant (using DPPH and SOD methods), and anti-bacterial activities of the compounds have been studied. Furthermore, the docking study of ligands and their complexes were applied against gram-positive S. Aureus, negative E. Coli bacterial and C. Albicans fungal strains by Schrödinger suite program using XP glide protocol.

  14. Mechanisms and rates of proton transfer to coordinated carboxydithioates: studies on [Ni(S2CR){PhP(CH2CH2PPh2)2}](+) (R = Me, Et, Bu(n) or Ph).

    PubMed

    Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G

    2015-02-21

    The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.

  15. Csbnd H⋯Ni and Csbnd H⋯π(chelate) interactions in nickel(II) complexes involving functionalized dithiocarbamates and triphenylphosphine

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, Samuele

    2018-05-01

    New bis(N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)nickel(II) (1-3) and (N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)(isothiocyanato-N)- (triphenylphosphane)nickel(II) (4-6) [where substituted benzyl = 2-HOsbnd C6H4sbnd CH2sbnd (1,4), 3-HOsbnd C6H4sbnd CH2sbnd (2,5), 4-Fsbnd C6H4sbnd CH2sbnd (3,6)] were synthesized and characterized using IR, electronic, and NMR (1H and 13C) spectra. X-ray structural analysis of homoleptic complex (1) and heteroleptic complexes (5 and 6) confirmed the presence of four coordinated nickel in a distorted square planar arrangement with NiS4 and NiS2PN chromophores, respectively. The νC-S stretching vibrations are observed around 990 cm-1 without any splitting supporting the bidentate coordination of the dithiocarbamate ligand. Electronic spectral studies of all the complexes (1-6) indicate that the geometry of the nickel atom is probably square planar. NMR spectra of all homoleptic and heteroleptic complexes (1-6) reveal a weak signal associated with the backbone carbon (N13CS2) in the region 204.0-210.0 ppm with a weak intensity characteristic of the quaternary carbon signals. The greater trans influence of triphenylphosphine in complexes 5 and 6 is supported by the long Nisbnd S distance compared to other Nisbnd S distance which is opposite to the NCS- ligand. In the structure of complex 5, C-H⋯π(chelate) interactions results in polymeric chain. Both structures show intramolecular Ni⋯H interactions but that on 6 is the strongest. C-H⋯π interactions are also found in 1, 5 and 6. Hirshfeld surface analysis and the associated 2D fingerprint plots of 1, 5 and 6 have been studied to evaluate intermolecular interactions. The molecular geometries of complexes 1, 5 and 6 have been optimized by abinitio HF method using LANL2DZ program.

  16. Crystal chemistry of thorium nitrates and chromates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigmon, Ginger E.; Burns, Peter C., E-mail: pburns@nd.ed

    2010-07-15

    The structures and infrared spectra of six novel thorium compounds are reported. Th(NO{sub 3}){sub 2}(OH){sub 2}(H{sub 2}O){sub 2} (1) crystallizes in space group C2/c, a=14.050(1), b=8.992(7), c=5.954(5) A, {beta}=101.014(2){sup o}. K{sub 2}Th(NO{sub 3}){sub 6} (2), P-3, a=13.606(1), c=6.641(6) A. (C{sub 12}H{sub 28}N){sub 2}Th(NO{sub 3}){sub 6} (3), P2{sub 1}/c, a=14.643(4), b=15.772(5), c=22.316(5) A, {beta}=131.01(1){sup o}. KTh(NO{sub 3}){sub 5}(H{sub 2}O){sub 2} (4), P2{sub 1}/c, a=10.070(8), b=12.731(9), c=13.231(8) A, {beta}=128.647(4){sup o}. Th(CrO{sub 4}){sub 2}(H{sub 2}O){sub 2} (5), P2{sub 1}/n, a=12.731(1), b=9.469(8), c=12.972(1) A, {beta}=91.793(2){sup o}. K{sub 2}Th{sub 3}(CrO{sub 4}){sub 7}(H{sub 2}O){sub 10} (6), Ama2, a=19.302(8), b=15.580(6), c=11.318(6) A. The coordination polyhedra about Thmore » in these structures are diverse. Th is coordinated by 9 O atoms in 5 and 6, seven of which are from monodentate (CrO{sub 4}) tetrahedra and two are (H{sub 2}O). The Th in compound 1 is coordinated by ten O atoms, four of which are O atoms of two bidentate (NO{sub 3}) triangles and six of which are (OH) and (H{sub 2}O). In compounds 2, 3 and 4 the Th is coordinate by 12 O atoms. In 2 and 3 there are six bidentate (NO{sub 3}) triangles, and in 4 ten of the O atoms are part of five bidentate (NO{sub 3}) triangles and the others are (H{sub 2}O) groups. The structural units of these compounds consist of a chain of thorium and nitrate polyhedra (1), isolated thorium hexanitrate clusters (2, 3), an isolated thorium pentanitrate dihydrate cluster (4), and a sheet (6) and framework (5) of thorium and chromate polyhedra. These structures illustrate the complexity inherent in the crystal chemistry of Th. - Graphical Abstract: The structures and infrared spectra of four new Th nitrates and two Th chromates are reported. The coordination numbers of the Th cations range from nine to 12 in these compounds. Structural units consist of isolated clusters, chains, sheets and frameworks.« less

  17. AsteriX: a Web server to automatically extract ligand coordinates from figures in PDF articles.

    PubMed

    Lounnas, V; Vriend, G

    2012-02-27

    Coordinates describing the chemical structures of small molecules that are potential ligands for pharmaceutical targets are used at many stages of the drug design process. The coordinates of the vast majority of ligands can be obtained from either publicly accessible or commercial databases. However, interesting ligands sometimes are only available from the scientific literature, in which case their coordinates need to be reconstructed manually--a process that consists of a series of time-consuming steps. We present a Web server that helps reconstruct the three-dimensional (3D) coordinates of ligands for which a two-dimensional (2D) picture is available in a PDF file. The software, called AsteriX, analyses every picture contained in the PDF file and attempts to determine automatically whether or not it contains ligands. Areas in pictures that may contain molecular structures are processed to extract connectivity and atom type information that allow coordinates to be subsequently reconstructed. The AsteriX Web server was tested on a series of articles containing a large diversity in graphical representations. In total, 88% of 3249 ligand structures present in the test set were identified as chemical diagrams. Of these, about half were interpreted correctly as 3D structures, and a further one-third required only minor manual corrections. It is principally impossible to always correctly reconstruct 3D coordinates from pictures because there are many different protocols for drawing a 2D image of a ligand, but more importantly a wide variety of semantic annotations are possible. The AsteriX Web server therefore includes facilities that allow the users to augment partial or partially correct 3D reconstructions. All 3D reconstructions are submitted, checked, and corrected by the users domain at the server and are freely available for everybody. The coordinates of the reconstructed ligands are made available in a series of formats commonly used in drug design research. The AsteriX Web server is freely available at http://swift.cmbi.ru.nl/bitmapb/.

  18. Coordination and structure of Ca(II)-acetate complexes in aqueous solution studied by a combination of Raman and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro

    2018-06-01

    The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.

  19. Catalytic fixation of atmospheric carbon dioxide by copper(ii) complexes of bidentate ligands.

    PubMed

    Muthuramalingam, Sethuraman; Khamrang, Themmila; Velusamy, Marappan; Mayilmurugan, Ramasamy

    2017-11-28

    New copper(ii) complexes, [Cu(L1) 2 (H 2 O)](ClO 4 ) 2 , 1 [L1 = 2-pyridin-2-yl-quinoline], [Cu(L2) 2 (H 2 O)](ClO 4 ) 2 , 2 [L2 = 2-pyridin-2-yl-quinoxaline], [Cu(L3) 2 (H 2 O)](ClO 4 ) 2 , 3 [L3 = 6,7-dimethyl-2-pyridin-2-yl-quinoxaline], [Cu(L4) 2 (H 2 O)](ClO 4 ) 2 , 4 [L4 = 4-phenyl-2-pyridin-2-yl-quinoline] and [Cu(L5) 2 (H 2 O)](ClO 4 ) 2 , 5 [L5 = 4-phenyl-2-pyridin-2-yl-quinazoline], were synthesized and characterized as catalysts for selective fixation of atmospheric CO 2 . The molecular structure of 2 was determined by single-crystal X-ray studies and shown to have an unusual trigonal bipyramid geometry (τ, 0.936) around the copper(ii) center, with the coordination of two ligand units and a water molecule. The Cu-N quin (2.040, 2.048 Å) bonds are slightly longer than the Cu-N pyr (1.987 Å) bonds but shorter than the Cu-O water bond (2.117 Å). Well-defined Cu(ii)/Cu(i) redox potentials of around 0.352 to 0.401 V were observed for 1-5 in acetonitrile. The electronic absorption spectra of 1-5 showed ligand-based transitions at around 208-286 nm with a visible shoulder at around 342-370 nm. The d-d transitions appeared at around 750-800 and 930-955 nm in acetonitrile. The rhombic EPR spectra of 1-5 exhibited three different g values g x , 2.27-2.34; g y , 2.06-2.09; and g z , 1.95-1.98 at 70 K. Atmospheric CO 2 was successfully fixed by 1-5 using Et 3 N as a sacrificial reducing agent, resulting in CO 3 2- -bound complexes of type [Cu(L)CO 3 (H 2 O)] that display an absorption band at around 614-673 nm and a ν st at 1647 cm -1 . This CO 3 2- -bound complex of 1 was crystallized from the reaction mixture and it displayed a distorted square pyramidal geometry (τ, 0.369) around the copper(ii) center via the coordination of only one ligand unit, a carbonate group, and water molecules. Furthermore, treatment of the carbonate-bound Cu(ii) complexes with one equivalent of H + under N 2 atmosphere resulted in the liberation of bicarbonate (HCO 3 - ) and regenerated the parent complexes. These regenerated catalysts were active enough to fix CO 2 in eight repeating cycles without any change in efficiency. The fixation of CO 2 possibly occurs via the formation of Cu(i)-species, which is accompanied by the formation of an MLCT band at around 450-500 nm. The rates of Cu(i)-species formation, k obs , were determined and found to be 5.41-10.31 × 10 -3 s -1 in the presence of Et 3 N in acetonitrile at 25 °C. Interestingly, the copper(i)-species of 3 has been successfully crystallized and displayed a distorted tetrahedral geometry through the coordination of two units of ligand L3.

  20. Photoinduced energy transfer in transition metal complex oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared,more » characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.« less

  1. A diketiminate-bound diiron complex with a bridging carbonate ligand

    PubMed Central

    Sadique, Azwana R.; Brennessel, William W.; Holland, Patrick L.

    2009-01-01

    Reduction of carbon dioxide by a diiron(I) complex gives μ-carbonato-κ3 O:O′,O′′-bis­{[2,2,6,6-tetra­methyl-3,5-bis­(2,4,6-triisopropyl­phenyl)heptane-2,5-diiminate(1−)-κ2 N,N′]iron(II)} toluene disolvate, [Fe2(C41H65N)2(CO3)]·2C7H8, a diiron(II) species with a bridging carbonate ligand. The asymmetric unit contains one diiron complex and two cocrystallized toluene solvent mol­ecules that are distributed over three sites, one with atoms in general positions and two in crystallographic sites. Both FeII atoms are η2-coordinated to diketiminate ligands, but η1- and η2-coordinated to the bridging carbonate ligand. Thus, one FeII center is three-coordinate and the other is four-coordinate. The bridging carbonate ligand is nearly perpendicular to the iron–diketiminate plane of the four-coordinate FeII center and parallel to the plane of the three-coordinate FeII center. PMID:19407402

  2. Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol

    NASA Astrophysics Data System (ADS)

    Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.

    2009-03-01

    A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.

  3. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    PubMed

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity

    NASA Astrophysics Data System (ADS)

    Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.

    2016-12-01

    Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.

  5. Palladium(II) complexes with N-heteroaromatic bidentate hydrazone ligands: the effect of the chelate ring size and lipophilicity on in vitro cytotoxic activity.

    PubMed

    Filipović, Nenad; Grubišić, Sonja; Jovanović, Maja; Dulović, Marija; Marković, Ivanka; Klisurić, Olivera; Marinković, Aleksandar; Mitić, Dragana; Anđelković, Katarina; Todorović, Tamara

    2014-09-01

    Novel Pd(II) complex with N-heteroaromatic Schiff base ligand, derived from 8-quinolinecarboxaldehyde (q8a) and ethyl hydrazinoacetate (haOEt), was synthesized and characterized by analytical and spectroscopy methods. The structure of novel complex, as well as structures of its quinoline and pyridine analogues, was optimized by density functional theory calculations, and theoretical data show good agreement with experimental results. A cytotoxic action of the complexes was evaluated on cultures of human promyelocytic leukemia (HL-60), human glioma (U251), rat glioma (C6), and mouse fibrosarcoma (L929) cell lines. Among investigated compounds, only complexes with quinoline-based ligands reduce the cell numbers in a dose-dependent manner in investigated cell lines. The observed cytotoxic effect of two isomeric quinoline-based complexes is predominantly mediated through the induction of apoptotic cell death in HL-60 cell line. The cytotoxicity of most efficient novel Pd(II) complex is comparable to the activity of cisplatin, in all cell lines investigated. © 2014 John Wiley & Sons A/S.

  6. Conserved active site residues limit inhibition of a copper-containing nitrite reductase by small molecules.

    PubMed

    Tocheva, Elitza I; Eltis, Lindsay D; Murphy, Michael E P

    2008-04-15

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  7. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.

  8. Conversion of the. mu. ketene ligand in (PPN)(Os/sub 3/(CO)/sub 10/(. mu. -I)(. mu. -CH/sub 2/CO)) into enolate, acyl, and vinyl ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassner, S.L.; Morrison, E.D.; Geoffroy, G.L.

    1986-08-20

    Free ketene is a valuable organic synthetic reagent, but its utility is somewhat limited by its high reactivity and tendency to dimerize to yield diketene. The ketene ligand is obviously stabilized by metal coordination in a variety of bonding modes, but it is not yet known how coordination influences the chemistry of this important molecule. The authors have studied the reactivity of the coordinated ketene ligand of type II found in the anionic cluster compound (PPN)(Os/sub 3/(CO)/sub 10/(..mu..-I)(..mu..-CH/sub 2/CO)) (1) (PPN/sup +/ = (Ph/sub 3/P)/sub 2/N/sup +/) and herein show that this ligand is readily converted into eta-enolate ligands uponmore » reaction with simple nucleophiles and into vinyl and acetyl ligands upon reaction with electrophiles.« less

  9. [Synthesis and study on the interaction of rare earth complexes of N', N-bis(2-pyridinecarboxamide)-1, 2-ethane with DNA].

    PubMed

    Lu, Xiao-Hong; Lin, Qiu-Yue; Hu, Rui-Ding; Liu, Wei-Dong; Feng, Jie

    2007-06-01

    Four rare earth complexes of N', N-bis(2-pyridinecarboxamide)-1, 2-ethane were synthesized and characterized by elemental analysis, conductivity measurement, thermal studies, IR and electronic spectra. The composition of the four complexes is [Ln(H2L)(NO3)2](NO3) x 3H2O (Ln=Sm, Eu, Gd, Tb). Results of spectral measurements indicate that the oxygen of carbonyl and the nitrogen of pyridyl coordinate with Ln(III) respectively, and the NO3- shows bidentate coordination. So the four complexes are 1 : 1 chelated complexes. The interaction between [Sm(H2L) (NO3)2](NO3) x 3H2O and DNA was studied by employing UV-Visible (UV-Vis) spectra, fluorescence spectra and SERS spectra. Experimental results show that with the incremental addition of DNA, the bands at 265 nm show hypochromism accompanied by a small red shift and the binding constant Kb Obtained is 1.24 x 10(5). Meanwhile fluorescence spectra show that the addition of [Sm(H2L) (NO3)2] (NO3) x 3H2O to DNA pretreated with EB causes an appreciable reduction in fluorescence intensity, indicating that the complex competes with ethidium bromide in binding to DNA, and free ethidium bromide increases. The addition of DNA causes the SERS signals of the complex to weaken and the band at 1 282 cm(-1) to disappear, which suggests that the planar pyridine molecule of the ligand may partly be inserted into the double-stranded helix plane in DNA, making pi electronic density of aromatic rings in complex change. The above phenomena indicate that [Sm(H2L) (NO3)] (NO3) x 3H2O interacts intensively with DNA.

  10. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya

    2017-05-01

    Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.

  11. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  12. Cobalt(II) and Cobalt(III) Coordination Compounds.

    ERIC Educational Resources Information Center

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  13. Phosphorus-supported ligands for the assembly of multimetal architectures.

    PubMed

    Chandrasekhar, Vadapalli; Murugesapandian, Balasubramanian

    2009-08-18

    Modeled after boron-based scorpionate ligands, acyclic and cyclic phosphorus-containing compounds possessing reactive groups can serve as excellent precursors for the assembly of novel phosphorus-supported ligands that can coordinate multiple sites. In such ligands, the phosphorus atom does not have any role in coordination but is used as a structural support to assemble one or more coordination platforms. In this Account, we describe the utility of inorganic heterocyclic rings such as cyclophosphazenes and carbophosphazenes as well as acyclic phosphorus-containing compounds such as (S)PCl(3), RP(O)Cl(2), and R(2)P(O)Cl for building such multisite coordination platforms. We can modulate the number and orientation of such coordination platforms through the choice of the phosphorus-containing precursor. This methodology is quite general and modular and allows the creation of well-defined libraries of multisite coordination ligands. Phosphorus-supported pyrazolyl ligands are quite useful for building multimetallic architectures. Some of these ligands are prone to P-N bond hydrolysis upon metalation, but we have exploited the P-N bond sensitivity to generate hydrolyzed ligands in situ, which are useful to build multimetal assemblies. In addition, the intimate relationship between small molecule cyclophosphazenes and the corresponding pendant cyclophosphazene-containing polymer systems facilitated our design of polymer-supported catalysts for phosphate ester hydrolysis, plasmid DNA modification, and C-C bond formation reactions. Phosphorus hydrazides containing reactive amine groups are ideal precursors for integration into more complex ligand systems. The ligand (S)P[N(Me)N=CH-C(6)H(4)-2-OH](3) (LH(3)) contains six coordination sites, and its coordination response depends upon the oxidation state of the metal ion employed. LH(3) reacts with divalent transition metal ions to afford neutral trimetallic derivatives L(2)M(3), where the three metal ions are arranged in a perfectly linear manner in many cases. Incorporating an additional methoxy group into LH(3) affords the ligand (S)P[N(Me)N=CH-C(6)H(3)-2-OH-3-OMe](3) (L'H(3)), which contains nine coordination sites: three imino nitrogen atoms, three phenolate oxygen atoms, and three methoxy oxygen atoms. The reaction of L'H(3) with transition metal salts in 1:1 ratio leads to the in situ formation of a metalloligand (L'M), which on further treatment with lanthanide salts gives heterobimetallic trinuclear cationic complexes [L'(2)M(2)Ln](+) containing a M-Ln-M linear array (M = transition metal ion in a +2 oxidation state). Many of these 3d-4f compounds behave as single-molecule magnets at low temperatures. Although challenges remain in the development of synthetic methods and in the architectural control of the coordination platforms, we see opportunities for further research into coordination platforms supported by main group elements such as phosphorus. As we have shown in this Account, one potential disadvantage, sensitivity of P-N bonds to hydrolysis, can be used successfully to build larger assemblies.

  14. A series of Ln-p-chlorobenzoic acid–terpyridine complexes: lanthanide contraction effects, supramolecular interactions and luminescent behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Korey P.; Pope, Simon J. A.; Cahill, Christopher L.

    Fifteen new lanthanide p-chlorobenzoic acid complexes, [PrL3(terpy)(H2O)]2 (1), [LnL3(terpy)(H2O)]2 (Ln = Nd (2), Sm (3), and Eu (4)), and [LnL3(terpy)(H2O)] (Ln = Sm (3'), Eu (4'), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11), Lu (12), and Y (13); HL: p-chlorobenzoic acid; terpy: 2,2':6',2''-terpyridine), have been synthesized hydrothermally at varying temperatures and structurally characterized by single crystal and powder X-ray diffraction. The series is comprised of binuclear molecular units (Pr–Eu) that give way to mononuclear molecular complexes (Sm–Y) as the lanthanide contraction takes effect. All fifteen complexes feature a tridentate terpyridine ligand, p-chlorobenzoic acidmore » ligands exhibiting multiple binding modes, bidentate, bridging bidentate, and monodentate, and a bound water molecule. Binuclear complexes 1–4 are stitched together via intermolecular interactions: aromatic–aromatic interactions for 1, halogen•••halogen interactions for 2–4, to form 1D chains. Mononuclear complexes 3', 4', and 5–13 utilize supramolecular hydrogen and halogen bonding to form 2D sheets. Visible and near-IR solid state luminescence studies were performed on complexes 2, 3, 3', 4, 4', 6, 7 and 11 and the characteristic visible luminescence of Sm(III), Eu(III), Tb(III), and Dy(III) was exhibited. The near-IR spectra of the Nd(III) and Yb(III) complexes exhibit weak characteristic luminescence, showing that terpy can act as a sensitizing chromophore in these systems.« less

  15. Structural variation in transition-metal bispidine compounds.

    PubMed

    Comba, Peter; Kerscher, Marion; Merz, Michael; Müller, Vera; Pritzkow, Hans; Remenyi, Rainer; Schiek, Wolfgang; Xiong, Yun

    2002-12-16

    The experimentally determined molecular structures of 40 transition metal complexes with the tetradentate bispyridine-substituted bispidone ligand, 2,4-bis(2-pyridine)-3,7-diazabicyclo[3.3.1]nonane-9-one [M(bisp)XYZ]n+; M = CrIII, MnII, FeII, CoII, CuII, CuI, ZnII; X, Y, Z = mono- or bidentate co-ligands; penta-, hexa- or heptacoordinate complexes) are characterized in detail, supported by force-field and DFT calculations. While the bispidine ligand is very rigid (N3...N7 distance = 2.933 +/- 0.025 A), it tolerates a large range of metal-donor bond lengths (2.07 A < sigma(M-N)/4 < 2.35 A). Of particular interest is the ratio of the bond lengths between the metal center and the two tertiary amine donors (0.84 A < M-N3/M-N7 < 1.05 A) and the fact that, in terms of this ratio there seem to be two clusters with M-N3 < M-N7 and M-N3 > or = M-N7. Calculations indicate that the two structural types are close to degenerate, and the structural form therefore depends on the metal ion, the number and type of co-ligands, as well as structural variations of the bispidine ligand backbone. Tuning of the structures is of importance since the structurally differing complexes have very different stabilities and reactivities.

  16. {μ-2-[(3-Amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1:2κ(5)O(1),O(6):N,N',O(1)}{2-[(3-amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1κ(3)N,N',O(1)}-μ-azido-1:2κ(2)N:N-azido-2κN-methanol-2κO-dinickel(II).

    PubMed

    Ghaemi, Akbar; Rayati, Saeed; Fayyazi, Kazem; Ng, Seik Weng; Tiekink, Edward R T

    2012-08-01

    Two distinct coordination geometries are found in the binuclear title complex, [Ni(2)(C(13)H(19)N(2)O(2))(2)(N(3))(2)(CH(3)OH)], as one Schiff base ligand is penta-dentate, coordinating via the anti-cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth-oxy O atom. The Ni(II) atoms are linked by a μ(2)-oxide atom and one end of a μ(2)-azide ligand, forming an Ni(2)ON core. The coordination geometry for the Ni(II) atom coordinated by the tridentate ligand is completed by the meth-oxy O atom derived from the penta-dentate ligand, with the resulting N(3)O(3) donor set defining a fac octa-hedron. The second Ni(II) atom has its cis-octa-hedral N(4)O(2) coordination geometry completed by the imine N and amine N atoms of the penta-dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra-molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra-molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

  17. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling, E-mail: qinling@hfut.edu.cn; Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymersmore » have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.« less

  18. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  19. Cationic copper (I) complexes with bulky 1,4-diaza-1,3-butadiene ligands - Synthesis, solid state structure and catalysis

    NASA Astrophysics Data System (ADS)

    Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.

    2013-05-01

    We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.

  20. Effects of ancillary ligands on selectivity of protein labeling with platinum(II) chloro complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xia-Ying.

    1990-02-01

    Potassium (2,6-pyridinedicarboxylato)chloroplatinate(II) was synthesized. The molecular structure of the complex in (n-Bu){sub 4}N(Pt(dipic)Cl){center dot}0.5H{sub 2}O was determined by x-ray crystallography. The (Pt(dipic)Cl){sup {minus}} is essentially planar and contains a Pt(II) atom, a tridentate dipicolinate dianion ligand, and a unidentate Cl{sup {minus}} ligand. The bis(bidentate) complex trans-(Pt(dipic){sub 2}){sup 2{minus}} was also observed by {sup 1}H NMR. A red gel-like substance was observed when the yellow aqueous solution of K(Pt(dipic)Cl) was cooled or concentrated. The K(Pt(dipic)Cl) molecules form stacks in the solid state and gel-like substance but remain monomeric over a wide range of concentrations and temperatures. The reactivity and selectivity of(Pt(dipic)Cl){supmore » {minus}} toward cytochromes c from horse and tuna were studied. The new transition-metal reagent is specific for methionine residues. Di(2-pyridyl-{beta}-ethyl)sulfidochloroplatinum(II) chloride dihydrate was also synthesized. This complex labels histidine and methionine residues in cytochrome c. The ancillary ligands in these platinum(II) complexes clearly determine the selectivity of protein labeling. 106 refs., 10 figs., 11 tabs.« less

  1. Crystal structure of [NaZn(BTC)(H2O)4]·1.5H2O (BTC = benzene-1,3,5-tri-carb-oxy-l-ate): a heterometallic coordination compound.

    PubMed

    Ni, Min; Li, Quanle; Chen, Hao; Li, Shengqing

    2015-07-01

    The title coordination polymer, poly[[μ-aqua-tri-aqua-(μ3-benzene-1,3,5-tri-carboxyl-ato)sodiumzinc] sesquihydrate], {[NaZn(C9H3O6)(H2O)4]·1.5H2O} n , was obtained in ionic liquid microemulsion at room temperture by the reaction of benzene-1,3,5-tri-carb-oxy-lic acid (H3BTC) with Zn(NO3)2·6H2O in the presence of NaOH. The asymmetric unit comprises two Na(+) ions (each located on an inversion centre), one Zn(2+) ion, one BTC ligand, four coordinating water mol-ecules and two solvent water molecules, one of which is disordered about an inversion centre and shows half-occupation. The Zn(2+) cation is five-coordinated by two carboxyl-ate O atoms from two different BTC ligands and three coordinating H2O mol-ecules; the Zn-O bond lengths are in the range 1.975 (2)-2.058 (3) Å. The Na(+) cations are six-coordinated but have different arrangements of the ligands: one is bound to two carboxyl-ate O atoms of two BTC ligands and four O atoms from four coordinating H2O mol-ecules while the other is bound by four carboxyl-ate O atoms from four BTC linkers and two O atoms of coordinating H2O mol-ecules. The completely deprotonated BTC ligand acts as a bridging ligand binding the Zn(2+) atom and Na(+) ions, forming a layered structure extending parallel to (100). An intricate network of O-H⋯O hydrogen bonds is present within and between the layers.

  2. Zinc ascorbate: a combined experimental and computational study for structure elucidation

    NASA Astrophysics Data System (ADS)

    Ünaleroǧlu, C.; Zümreoǧlu-Karan, B.; Mert, Y.

    2002-03-01

    The structure of Zn(HA)2·4H2O (HA=ascorbate) has been examined by a number of techniques (13C NMR, 1H NMR, IR, EI/MS and TGA) and also modeled by the semi-empirical PM3 method. The experimental and computational results agreed on a five-fold coordination around Zn(II) where one ascorbate binds monodentately, the other bidentately and two water molecules occupy the remaining sites of a distorted square pyramid.

  3. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance Raman evidence for these conformers was given previously.« less

  4. Spectroscopic studies and thermal analysis of mononuclear metal complexes with moxifloxacin and 2,2‧-bipyridine and their effects on acute lung injury induced by hydrochloric acid in rats

    NASA Astrophysics Data System (ADS)

    El-Hamid, S. M. Abd; El-Demerdash, R. S.; Arafat, H. F. H.; Sadeek, S. A.

    2017-12-01

    The article describes the interaction of Y(III), Zr(IV), La(III), Ce(IV) and U(VI) with moxifloxacin hydrochloride and 2,2‧-bipyridine. Characterization of complexes was made by elemental analyses, molar conductivity, magnetic moment measurements and spectral measurements e.g. IR, UV-Vis., 1H NMR and mass as well as thermal analyses (TG and DTG). The molar conductivity shows that the complexes are electrolytes nature. Spectroscopic investigation of the solid complexes studied here indicate that moxifloxacin hydrochloride and 2,2‧-bipyridine are coordinated to the metal ions in a neutral bidentate manner. After complete characterization, the chemical formulae of the complexes were established. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.756 Å and 637.90 Nm-1, respectively. Kinetic and thermodynamic parameters were determined using Coats-Redfern and Horowitz-Metzger equations. Establishment of hydrochloric acid that induce acute lung injury (ALI) in rats by intratracheal administration through damaging the alveolar epithelium and activation of the neutrophil and subsequent oxidative stress by increasing malondialdehyde (MDA), tumor necrosis factor (TNF-α) and neutrophil, which were confirmed by histopathological investigation while decreasing in antioxidant enzymes and lymphocytes. Whereas treatment with mixed-ligand metal complexes significantly decrease MDA, TNF-α and neutrophils and increase antioxidant and lymphocytes.

  5. Synthesis, Characterization, Cytotoxic Activity, and Interactions with CT-DNA and BSA of Cationic Ruthenium(II) Complexes Containing Dppm and Quinoline Carboxylates

    PubMed Central

    da Silva, Edinaldo N.; da Silva, Paulo A. B.; Graminha, Angélica E.; de Oliveira, Pollyanna F.; Damasceno, Jaqueline L.; Tavares, Denise C.; Batista, Alzir A.

    2017-01-01

    The complexes cis-[Ru(quin)(dppm)2]PF6 and cis-[Ru(kynu)(dppm)2]PF6 (quin = quinaldate; kynu = kynurenate; dppm = bis(diphenylphosphino)methane) were prepared and characterized by elemental analysis, electronic, FTIR, 1H, and 31P{1H} NMR spectroscopies. Characterization data were consistent with a cis arrangement for the dppm ligands and a bidentate coordination through carboxylate oxygens of the quin and kynu anions. These complexes were not able to intercalate CT-DNA as shown by circular dichroism spectroscopy. On the other hand, bovine serum albumin (BSA) binding constants and thermodynamic parameters suggest spontaneous interactions with this protein by hydrogen bonds and van der Waals forces. Cytotoxicity assays were carried out on a panel of human cancer cell lines including HepG2, MCF-7, and MO59J and one normal cell line GM07492A. In general, the new ruthenium(II) complexes displayed a moderate to high cytotoxicity in all the assayed cell lines with IC50 ranging from 10.1 to 36 µM and were more cytotoxic than the precursor cis-[RuCl2(dppm)2]. The cis-[Ru(quin)(dppm)2]PF6 were two to three times more active than the reference metallodrug cisplatin in the MCF-7 and MO59J cell lines. PMID:28814948

  6. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  7. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces

    DOE PAGES

    Wang, Xiaoming; Hu, Yongfeng; Tang, Yadong; ...

    2017-09-26

    Phosphorous (P) sorption on mineral surfaces largely controls P mobility and bioavailability, hence its pollution potential, but the sorption speciation and mechanism remain poorly understood. In this study, we have identified and quantified the speciation of both phosphate and phytate sorbed on ferrihydrite with various P loadings at pH 3–8 using differential atomic pair distribution function (d-PDF) analysis, synchrotron-based X-ray diffraction (XRD), and P and Fe K-edge X-ray absorption near edge structure (XANES) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. With increasing P sorption loading for both phosphate and phytate, the sorption mechanism transits from bidentate-binuclear surface complexation tomore » unidentified ternary complexation and to precipitation of amorphous FePO 4 and amorphous Fe-phytate. At a given P sorption loading, phosphate precipitates more readily than phytate. Both phosphate and phytate promote ferrihydrite dissolution with phytate more intensively, but the dissolved FeIII concentration in the bulk solution is low because the majority of the released Fe III precipitate with the anions. Results also show that amorphous FePO 4 and amorphous Fe-phytate have similar PO 4 local coordination environment. In conclusion, these new insights into the P surface complexation and precipitation, and the ligand-promoted dissolution behavior improve our understanding of P fate in soils, aquatic environment and water treatment systems as mediated by mineral-water interfacial reactions.« less

  8. trans-Bis[4-amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole-κN 3]diaqua­cobalt(II) bis­(3-carb­oxy-5-nitro­benzoate)

    PubMed Central

    Wang, Xi; Shao, Chun-Fu; Li, Cheng-Peng

    2011-01-01

    The title complex, [Co(C12H10N6)2(H2O)2](C8H4NO6)2, is composed of a mononuclear cobalt(II) cation and two 3-carb­oxy-5-nitro­benzoate anions for charge balance. In the cation, the CoII atom is six-coordinated in a distorted octa­hedral geometry. It bonds to two O atoms of two water mol­ecules, and two pairs of N atoms from two 4-amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole mol­ecules, which behave as bidentate chelating ligands. There are intra­molecular N—H⋯N hydrogen bonds in the cation. In the crystal, there are a number of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, as well as inter­molecular π–π stacking inter­actions [centroid–centroid distances = 3.657 (2) and 3.847 (2) Å], that link the mol­ecules into two-dimensional networks lying parallel to the ab plane. The presence of C—H⋯O inter­actions leads to the formation of a three-dimensional network. PMID:22058688

  9. Structural Insights into the Calcium-Mediated Allosteric Transition in the C-Terminal Domain of Calmodulin from Nuclear Magnetic Resonance Measurements.

    PubMed

    Kukic, Predrag; Lundström, Patrik; Camilloni, Carlo; Evenäs, Johan; Akke, Mikael; Vendruscolo, Michele

    2016-01-12

    Calmodulin is a two-domain signaling protein that becomes activated upon binding cooperatively two pairs of calcium ions, leading to large-scale conformational changes that expose its binding site. Despite significant advances in understanding the structural biology of calmodulin functions, the mechanistic details of the conformational transition between closed and open states have remained unclear. To investigate this transition, we used a combination of molecular dynamics simulations and nuclear magnetic resonance (NMR) experiments on the Ca(2+)-saturated E140Q C-terminal domain variant. Using chemical shift restraints in replica-averaged metadynamics simulations, we obtained a high-resolution structural ensemble consisting of two conformational states and validated such an ensemble against three independent experimental data sets, namely, interproton nuclear Overhauser enhancements, (15)N order parameters, and chemical shift differences between the exchanging states. Through a detailed analysis of this structural ensemble and of the corresponding statistical weights, we characterized a calcium-mediated conformational transition whereby the coordination of Ca(2+) by just one oxygen of the bidentate ligand E140 triggers a concerted movement of the two EF-hands that exposes the target binding site. This analysis provides atomistic insights into a possible Ca(2+)-mediated activation mechanism of calmodulin that cannot be achieved from static structures alone or from ensemble NMR measurements of the transition between conformations.

  10. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2‧,4,4‧-tetracarboxylic acid and varied N-donor co-ligands

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-06-01

    Three new coordination polymers, namely, {[Ni(H2L)(bix)(H2O)2]·2h2O}n (1), {[Ni(HL)(Hdpa)(H2O)2]·H2O}n (2), {[Ni(L)0.5(bpp)(H2O)]·H2O}n (3) (H4L=terphenyl-2,2‧,4,4‧-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4‧-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H4L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 66-dia-type framework with H4L ligand adopts a μ2-bridging mode with two symmetry-related carboxylate groups in μ1-η1:η0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]n ribbon chains motif, in which the H4L ligand adopts a μ2-bridging mode with two carboxylate groups in μ1-η1:η1 and μ1-η1:η0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H4L ligand displays a μ4-bridging coordination mode. The H4L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1-3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented.

  11. The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites

    PubMed Central

    2013-01-01

    Background Many Protein Data Bank (PDB) users assume that the deposited structural models are of high quality but forget that these models are derived from the interpretation of experimental data. The accuracy of atom coordinates is not homogeneous between models or throughout the same model. To avoid basing a research project on a flawed model, we present a tool for assessing the quality of ligands and binding sites in crystallographic models from the PDB. Results The Validation HElper for LIgands and Binding Sites (VHELIBS) is software that aims to ease the validation of binding site and ligand coordinates for non-crystallographers (i.e., users with little or no crystallography knowledge). Using a convenient graphical user interface, it allows one to check how ligand and binding site coordinates fit to the electron density map. VHELIBS can use models from either the PDB or the PDB_REDO databank of re-refined and re-built crystallographic models. The user can specify threshold values for a series of properties related to the fit of coordinates to electron density (Real Space R, Real Space Correlation Coefficient and average occupancy are used by default). VHELIBS will automatically classify residues and ligands as Good, Dubious or Bad based on the specified limits. The user is also able to visually check the quality of the fit of residues and ligands to the electron density map and reclassify them if needed. Conclusions VHELIBS allows inexperienced users to examine the binding site and the ligand coordinates in relation to the experimental data. This is an important step to evaluate models for their fitness for drug discovery purposes such as structure-based pharmacophore development and protein-ligand docking experiments. PMID:23895374

  12. Ring-Opening Polymerization of rac-Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes

    PubMed Central

    2015-01-01

    A series of dimethylaluminum complexes (L1a–i)AlMe2 (2a–i, where HL1a–i = 2-(2′-ArNH)phenyl-4-R1-oxazoline) bearing chiral, bidentate anilido-oxazolinate ligands have been prepared and characterized. Six of the complexes, in the presence of an alcohol cocatalyst, are shown to be active initiators for the stereoselective ring-opening polymerization of rac-lactide in toluene solution and under bulk conditions, yielding polylactides with a range of tacticity from slightly isotactic to moderately heterotactic. The reactivity and selectivity of these catalysts are discussed on the basis of the effect of their substituents. PMID:24891754

  13. Access to Formally Ni(I) States in a Heterobimetallic NiZn System

    PubMed Central

    Uyeda, Christopher

    2014-01-01

    Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786

  14. Supramolecular complexes of Co(II), Ni(II) and Zn(II) p-hydroxybenzoates with caffeine: Synthesis, spectral characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali

    2016-09-01

    Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.

  15. Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems.

    PubMed

    Cao, Wei; Gu, Yuwei; Meineck, Myriam; Li, Tianyu; Xu, Huaping

    2014-04-02

    Nanomaterials capable of achieving tunable cargo release kinetics are of significance in a fundamental sense and various biological or medical applications. We report a competitive coordination system based on a novel tellurium-containing polymer and its ligand-regulated release manners. Tellurium was introduced to water-soluble polymers for the first time as drug delivery vehicles. The coordination chemistry between platinum and tellurium was designed to enable the load of platinum-based drugs. Through the competitive coordination of biomolecules, the drugs could be released in a controlled manner. Furthermore, the release kinetics could be modulated by the competitive ligands involved due to their different coordination ability. This tellurium-containing polymer may enrich the family of delivery systems and provide a new platform for future biomedical nanotechnologies.

  16. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  17. mer, fac, and Bidentate Coordination of an Alkyl-POP Ligand in the Chemistry of Nonclassical Osmium Hydrides.

    PubMed

    Esteruelas, Miguel A; García-Yebra, Cristina; Martín, Jaime; Oñate, Enrique

    2017-01-03

    Nonclassical and classical osmium polyhydrides containing the diphosphine 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(P i Pr 2 ) 2 ), coordinated in κ 3 -mer, κ 3 -fac, and κ 2 -P,P fashions, have been isolated during the cyclic formation of H 2 by means of the sequential addition of H + and H - or H - and H + to the classical trihydride OsH 3 Cl{xant(P i Pr 2 ) 2 } (1). This complex adds H + to form the compressed dihydride dihydrogen complex [OsCl(H···H)(η 2 -H 2 ){xant(P i Pr 2 ) 2 }] + (2). Under argon, cation 2 loses H 2 and the resulting unsaturated fragment dimerizes to give [(Os(H···H){xant(P i Pr 2 ) 2 }) 2 (μ-Cl) 2 ] 2+ (3). During the transformation the phosphine changes its coordination mode from mer to fac. The benzofuran counterpart of 1, OsH 3 Cl{dbf(P i Pr 2 ) 2 } (4; dbf(P i Pr 2 ) 2 = 4,6-bis(diisopropylphosphino)dibenzofuran), also adds H + to afford the benzofuran counterpart of 2, [OsCl(H···H)(η 2 -H 2 ){xant(P i Pr 2 ) 2 }] + (5), which in contrast to the latter is stable and does not dimerize. Acetonitrile breaks the chloride bridge of 3 to form the dihydrogen [OsCl(η 2 -H 2 )(CH 3 CN){xant(P i Pr 2 ) 2 }] + (6), regenerating the mer coordination of the diphosphine. The hydride ion also breaks the chloride bridge of 3. The addition of KH to 3 leads to 1, closing a cycle for the formation of H 2 . Complex 1 reacts with a second hydride ion to give OsH 4 {xant(P i Pr 2 ) 2 } (7) as consequence of the displacement of the chloride. Similarly to the latter, the oxygen atom of the mer-coordinated diphosphine of 7 has a tendency to be displaced by the hydride ion. Thus, the addition of KH to 7 yields [OsH 5 {xant(P i Pr 2 ) 2 }] - (8), containing a κ 2 -P,P-diphosphine. Complex 8 is easily protonated to afford OsH 6 {xant(P i Pr 2 ) 2 } (9), which releases H 2 to regenerate 7, closing a second cycle for the formation of molecular hydrogen.

  18. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  19. Synthesis and characterization of tin(II) complexes of fluorinated Schiff bases derived from amino acids.

    PubMed

    Singh, Har Lal

    2010-07-01

    New tin(II) complexes of general formula Sn(L)(2) (L=monoanion of 3-methyl-4-fluoro-acetophenone phenylalanine L(1)H, 3-methyl-4-fluoro-acetophenone alanine L(2)H, 3-methyl-4-fluoro acetophenone tryptophan L(3)H, 3-methyl-4-fluoro-acetophenone valine L(4)H, 3-methyl-4-fluoro-acetophenone isoleucine L(5)H and 3-methyl-4-fluoro-acetophenone glycine L(6)H) have been prepared. It is characterized by elemental analyses, molar conductance measurements and molecular weight determinations. Bonding of these complexes is discussed in terms of their UV-visible, infrared, and nuclear magnetic resonance ((1)H, (13)C, (19)F and (119)Sn NMR) spectral studies. The ligands act as bidentate towards metal ions, via the azomethine nitrogen and deprotonated oxygen of the respective amino acid. Elemental analyses and NMR spectral data of the ligands with their tin(II) complexes agree with their proposed square pyramidal structures. A few representative ligands and their tin complexes have been screened for their antibacterial activities and found to be quite active in this respect. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Bond Strength and Reactivity Scales for Lewis Superacid Adducts: A Comparative Study with In(OTf)3 and Al(OTf)3.

    PubMed

    Compain, Guillaume; Sikk, Lauri; Massi, Lionel; Gal, Jean-François; Duñach, Elisabet

    2017-03-17

    Metal triflates, often called Lewis superacids, are potent catalysts for organic synthesis. However, the reactivity of a given Lewis superacid toward a given base is difficult to anticipate. A systematic screening of catalysts is often necessary when developing synthetic methodologies. Presented herein is the development of quantitative reactivity and bond strength scales by using mass spectrometry (MS). By applying a collision-induced dissociation (CID) technique to the adducts formed between Lewis superacids Al(OTf) 3 or In(OTf) 3 with a series of amides bases, including monodentate and bidentate ligands, different dissociation pathways were observed. Quantitative relative energy scales were established by performing energy-resolved mass spectrometry (ERMS) analysis on the adducts. ERMS of the adducts affords a bond strength scale when the fragmentation leads to the loss of a ligand, and reactivity scales when the dissociation leads to the C-F bond activation of one triflate anion or the deprotonation of the ligand. Al(OTf) 3 was found to bind stronger to amides than In(OTf) 3 and to provide the most reactive adducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Catalyst recycling via specific non-covalent adsorption on modified silicas.

    PubMed

    Kluwer, Alexander M; Simons, Chretien; Knijnenburg, Quinten; van der Vlugt, Jarl Ivar; de Bruin, Bas; Reek, Joost N H

    2013-03-14

    This article describes a new strategy for the recycling of a homogeneous hydroformylation catalyst, by selective adsorption of the catalyst to tailor-made supports after a batchwise reaction. The separation of the catalyst from the product mixture is based on selective non-covalent supramolecular interactions between a ligand and the support. Changing the solvent releases the active catalyst back into the reactor and allows a subsequent batch reaction with the recycled active catalyst. For this purpose, the bidentate NixantPhos ligand has been equipped with a pyridine group. The corresponding rhodium pre-catalyst [Rh(Nix-py)(acac)] (acac = acetylacetonate) forms a very selective, active and highly stable catalyst, and able to reach a turnover number (TON) of 170 000 in a single run (reaction performed in nearly neat 1-octene, S/C ratio of 200 000, at 140 °C, 20 bars syngas pressure). Various commercially available supports have been explored in binding studies and recycling experiments. The end-capped silica-alumina performs the best so far with respect to ligand-adsorbing properties for the current purpose. Although this system has not been fully optimized, four recycling runs could be performed successfully.

  2. Photo-degradation of CT-DNA with a series of carbothioamide ruthenium (II) complexes - Synthesis and structural analysis

    NASA Astrophysics Data System (ADS)

    Muthuraj, V.; Umadevi, M.

    2018-04-01

    The present research article is related with the method of preparation, structure and spectroscopic properties of a series of carbothioamide ruthenium (II) complexes with N and S donor ligands namely, 2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene) hydrazine carbothioamide (ClChrTs)/2-((6-methoxy-4-oxo-4H-chromen-3-yl)methylene)hydrazine carbothioamide (MeOChrTS). The synthesized complexes were characterized by several techniques using analytical methods as well as by spectral techniques such as FT-IR, 1HNMR, 13CNMR, ESI mass and thermogravimetry/differential thermal analysis (TG-DTA). The IR spectra shows that the ligand acts as a neutral bidentate with N and S donor atoms. The biological activity of the prepared compounds and metal complexes were tested against cell line of calf-thymus DNA via an intercalation mechanism (MCF-7). In addition, the interaction of Ru(II) complexes and its free ligands with CT-DNA were also investigated by titration with UV-Vis spectra, fluorescence spectra, and Circular dichroism studies. Results suggest that both of the two Ru(II) complexes can bind with calf-thymus DNA via an intercalation mechanism.

  3. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  4. A spectroscopic study on the coordination and solution structures of the interaction systems between biperoxidovanadate complexes and the pyrazolylpyridine-like ligands.

    PubMed

    Yu, Xian-Yong; Deng, Lin; Zheng, Baishu; Zeng, Bi-Rong; Yi, Pinggui; Xu, Xin

    2014-01-28

    In order to understand the substitution effects of pyrazolylpyridine (pzpy) on the coordination reaction equilibria, the interactions between a series of pzpy-like ligands and biperoxidovanadate ([OV(O2)2(D2O)](-)/[OV(O2)2(HOD)](-), abbrv. bpV) have been explored using a combination of multinuclear ((1)H, (13)C, and (51)V) magnetic resonance, heteronuclear single quantum coherence (HSQC), and variable temperature NMR in a 0.15 mol L(-1) NaCl D2O solution that mimics the physiological conditions. Both the direct NMR data and the equilibrium constants are reported for the first time. A series of new hepta-coordinated peroxidovanadate species [OV(O2)2L](-) (L = pzpy-like chelating ligands) are formed due to several competitive coordination interactions. According to the equilibrium constants for products between bpV and the pzpy-like ligands, the relative affinity of the ligands is found to be pzpy > 2-Ester-pzpy ≈ 2-Me-pzpy ≈ 2-Amide-pzpy > 2-Et-pzpy. In the interaction system between bpV and pzpy, a pair of isomers (Isomers A and B) are observed in aqueous solution, which are attributed to different types of coordination modes between the metal center and the ligands, while the crystal structure of NH4[OV(O2)2(pzpy)]·6H2O (CCDC 898554) has the same coordination structure as Isomer A (the main product for pzpy). For the N-substituted ligands, however, Isomer A or B type complexes can also be observed in solution but the molar ratios of the isomer are reversed (i.e., Isomer B type is the main product). These results demonstrate that when the N atom in the pyrazole ring has a substitution group, hydrogen bonding (from the H atom in the pyrazole ring), the steric effect (from alkyl) and the solvation effect (from the ester or amide group) can jointly affect the coordination reaction equilibrium.

  5. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  6. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L-L)M'(CO)3Cl complexes.

    PubMed

    Lunsford, Allen M; Goldstein, Kristina F; Cohan, Matthew A; Denny, Jason A; Bhuvanesh, Nattamai; Ding, Shengda; Hall, Michael B; Darensbourg, Marcetta Y

    2017-04-19

    The bipyridine ligand is renowned as a photo- and redox-active ligand in catalysis; the latter has been particularly explored in the complex Re(bipy)(CO) 3 Cl for CO 2 reduction. We ask whether a bidentate, redox-active MN 2 S 2 metallodithiolate ligand in heterobimetallic complexes of Mn and Re might similarly serve as a receptor and conduit of electrons. In order to assess the electrochemical features of such designed bimetallics, a series of complexes featuring redox active MN 2 S 2 metallodithiolates, with M = Ni 2+ , {Fe(NO)} 2+ , and {Co(NO)} 2+ , bound to M'(CO) 3 X, where M' = Mn and Re, were synthesized and characterized using IR and EPR spectroscopies, X-ray diffraction, cyclic voltammetry, and density functional theory (DFT) computations. Butterfly type structures resulted from binding of the convergent lone pairs of the cis-sulfur atoms to the M'(CO) 3 X unit. Bond distances and angles are similar across the M' metal series regardless of the ligand attached. Electrochemical characterizations of [MN 2 S 2 ·Re(CO) 3 Cl] showed the redox potential of the Re is significantly altered by the identity of the metal in the N 2 S 2 pocket. DFT calculations proved useful to identify the roles played by the MN 2 S 2 ligands, upon reduction of the bimetallics, in altering the lability of the Re-Cl bond and the ensuing effect on the reduction of Re I to Re 0 .

  7. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    PubMed

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  8. A bis(amido) ligand set that supports two-coordinate chromium in the +1, +2, and +3 oxidation states†

    PubMed Central

    Cai, Irene C.; Lipschutz, Michael I.

    2014-01-01

    The amido ligand –N(SiiPr3)DIPP (DIPP = 2,6-diisopropylphenyl) has been used to prepare two-coordinate complexes of CrI, CrII, and CrIII. The two-coordinate CrII complex has also been used to prepare a three-coordinate CrIII iodide complex, which can be used to access a stable CrIII methyl species. PMID:25222516

  9. An X-ray study of the effect of the bite angle of chelating ligands on the geometry of palladium(allyl) complexes: implications for the regioselectivity in the allylic alkylation.

    PubMed

    van Haaren, R J; Goubitz, K; Fraanje, J; van Strijdonck, G P; Oevering, H; Coussens, B; Reek, J N; Kamer, P C; van Leeuwen, P W

    2001-07-02

    X-ray crystal structures of a series of cationic (P-P)palladium(1,1-(CH(3))(2)C(3)H(3)) complexes (P-P = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene), and DPEphos (2,2'-bis(diphenylphosphino)diphenyl ether)) and the (Xantphos)Pd(C(3)H(5))BF(4) (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complex have been determined. In the solid state structure, the phenyl rings of the ligand are oriented in the direction of the nonsymmetrically bound [1,1-(CH(3))(2)C(3)H(3)] moiety. An increase of the bite angle of the chelating ligand results in an increase of the cone angle. In complexes containing ligands having a large cone angle, the distances between the phenyl rings and the allyl moiety become small, resulting in a distortion of the symmetry of the palladium-allyl bond. In solution, two types of dynamic exchange have been observed, the pi-sigma rearrangement and the apparent rotation of the allyl moiety. At the same time, the folded structure of the ligand changes from an endo to an exo orientation or vice versa. The regioselectivity in the palladium-catalyzed allylic alkylation of 3-methyl-but-2-enyl acetate is determined by the cone angle of the bidentate phosphine ligand. Nucleophilic attack by a malonate anion takes place preferentially at the allylic carbon atom having the largest distance to palladium. Ligands with a larger cone angle direct the regioselectivity to the formation of the branched product, from 8% for dppe (1) to 61% found for Xantphos (6). The influence of the cone angle on the regioselectivity has been assigned to a sterically induced electronic effect.

  10. Palladium(II) complexes with R(2)edda derived ligands. Part IV. O,O'-dialkyl esters of (S,S)-ethylenediamine-N,N'-di-2-(4-methyl)-pentanoic acid dihydrochloride and their palladium(II) complexes: synthesis, characterization and in vitro antitumoral activity against chronic lymphocytic leukemia (CLL) cells.

    PubMed

    Vujić, Jelena M; Cvijović, Milica; Kaluderović, Goran N; Milovanović, Marija; Zmejkovski, Bojana B; Volarević, Vladislav; Arsenijević, Nebojsa; Sabo, Tibor J; Trifunović, Srećko R

    2010-09-01

    Four novel bidentate N,N'-ligand precursors, including O,O'-dialkyl esters (alkyl = ethyl, n-propyl, n-butyl and n-pentyl), L1 x 2 HCl-L4 x 2 HCl, of (S,S)-ethylenediamine-N,N'-di-2-(4-methyl)-pentanoic acid dihydrochloride [(S,S)-H(4)eddl]Cl(2) and the corresponding palladium(II) complexes 1-4, were prepared and characterized by IR, (1)H NMR and (13)C NMR spectroscopy and elemental analysis. In vitro cytotoxicity of all compounds was determined against chronic lymphocytic leukemia cells (CLL). The compounds were found to exhibit higher antitumoral activity than cisplatin. The most active compound 2, [PdCl(2){(S,S)-nPr(2)eddl}], was found to be 13.6 times more active than cisplatin on CLL cells. 2010 Elsevier Masson SAS. All rights reserved.

  11. Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping

    2013-04-01

    Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.

  12. cis,cis,cis-(Acetato-κ(2) O,O')bis-[1,2-bis-(diphenyl-phosphan-yl)ethane-κ(2) P,P']ruthenium(II) 0.75-trifluoro-methane-sulfonate 0.25-chloride.

    PubMed

    Figueira, João; Rodrigues, João; Valkonen, Arto

    2013-04-01

    In the title Ru(II) carboxyl-ate compound, [Ru(C2H3O2)(C26H24P2)2](CF3O3S)0.75Cl0.25, the distorted tris-bidentate octa-hedral stereochemistry about the Ru(II) atom in the complex cation comprises four P-atom donors from two 1,2-bis-(diphenyl-phosphan-yl)ethane ligands [Ru-P = 2.2881 (13)-2.3791 (13) Å] and two O-atom donors from the acetate ligand [Ru-O = 2.191 (3) and 2.202 (3) Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoro-methane-sulfonate anions and one chloride anion, with two such formula units in the unit cell.

  13. Method for purifying bidentate organophosphorus compounds

    DOEpatents

    Schulz, Wallace W.

    1977-01-01

    Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.

  14. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  15. Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh2.

    PubMed

    Boom, Devin H A; Ehlers, Andreas W; Nieger, Martin; Devillard, Marc; Bouhadir, Ghenwa; Bourissou, Didier; Slootweg, J Chris

    2018-04-30

    In this work, we explored the coordination properties of the geminal phosphinoborane t Bu 2 PCH 2 BPh 2 ( 2 ) toward different gold(I) precursors. The reaction of 2 with an equimolar amount of the sulfur-based complex (Me 2 S)AuCl resulted in displacement of the SMe 2 ligand and formation of linear phosphine gold(I) chloride 3 . Using an excess of ligand 2 , bisligated complex 4 was formed and showed dynamic behavior at room temperature. Changing the gold(I) metal precursor to the phosphorus-based complex, (Ph 3 P)AuCl impacted the coordination behavior of ligand 2 . Namely, the reaction of ligand 2 with (Ph 3 P)AuCl led to the heterolytic cleavage of the gold-chloride bond, which is favored over PPh 3 ligand displacement. To the best of our knowledge, 2 is the first example of a P/B-ambiphilic ligand capable of cleaving the gold-chloride bond. The coordination chemistry of 2 was further analyzed by density functional theory calculations.

  16. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  17. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained from the development of this chemistry allowed for the rational design of a similarly E-styrenyl selective classical Heck reaction using aryldiazonium salts and a broad range of alkene substrates. The key mechanistic findings from the development of these reactions provide new insight into how to predictably impart catalyst control in organometallic processes that would otherwise afford complex product mixtures. Given our new understanding, we are optimistic that reactions that introduce increased complexity relative to simple classical processes may now be developed based on our ability to predict the selectivity-determining nucleopalladation and β-hydride elimination steps through catalyst design. PMID:22111756

  18. Crystal structure of tetra­aqua­bis­(pyrimidin-1-ium-4,6-diolato-κO 4)manganese(II)

    PubMed Central

    Shennara, Khaled A.

    2017-01-01

    The MnII ion in the structure of the mononuclear title compound, [Mn(C4H3N2O2)2(H2O)4], is situated on an inversion center and is coordinated by two O atoms from two deprotonated 4,6-di­hydroxy­pyrimidine ligands and by four O atoms from water mol­ecules giving rise to a slightly distorted octa­hedral coordination sphere. The complex includes an intra­molecular hydrogen bond between an aqua ligand and the non-protonated N ring atom. The extended structure is stabilized by inter­molecular hydrogen bonds between aqua ligands, by hydrogen bonds between N and O atoms of the ligands of adjacent mol­ecules, and by hydrogen bonds between aqua ligands and the non-coordinating O atom of an adjacent mol­ecule. PMID:28435734

  19. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP.

    PubMed

    Rojo, Isabel; Teixidor, Francesc; Viñas, Clara; Kivekäs, Raikko; Sillanpää, Reijo

    2004-10-25

    The anionic chelating ligand [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- has been synthesized from [3,3'-Co(1,2-C2B9H11)2]- in very good yield in a one-pot process with an easy work-up procedure. The coordinating ability of this ligand has been studied with Group 11 metal ions (Ag, Au) and with transition-metal ions (Pd, Rh). The two dicarbollide halves of the [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]- ligand can swing about one axis in a manner analogous to the constituent parts of BINAP and ferrocenyl phosphine derivatives. All these ligands function as hinges, with the most important property in relation to the coordination requirements of the metal being the PP distance. [1,1'-(PPh2)2-3,3'-Co(1,2-C2B9H10)2]-, BINAP, ferrocenyl phosphine derivatives, and other hinge ligands present a range of different PP separations, and consequently different coordination spheres and dispositions around metal cations. To account for these differences, the equation Dphi2 = D02 + 4 R2cos2(90-phi/2) has been developed. It relates the PP distance (Dphi) in a complex with the minimum PP distance (D0) that is characteristic of the hinge-type ligand.

  20. Synthesis and structure of cesium complexes of nitrilotris(methylenephosphonic) acid [Cs-μ6-NH(CH2PO3)3H4] and [Cs2-μ10-NH(CH2PO3H)3] · H2O

    NASA Astrophysics Data System (ADS)

    Somov, N. V.; Chausov, F. F.; Zakirov, R. M.

    2017-07-01

    3D coordination polymers cesium nitrilotris(methylenephosphonate) and dicesium nitrilotris( methylenephosphonate) are synthesized and their crystal structure is determined. In the crystal of [Cs-μ6-NH(CH2PO3)3H4] (space group P, Z = 2), cesium atoms occupy two crystallographically inequivalent positions with c.n. = 10 and c.n. = 14. The phosphonate ligand plays the bridging function; its denticity is nine. The crystal packing consists of alternating layers of Cs atoms in different environments with layers of ligand molecules between them. A ligand is bound to three Cs atoms of one layer and three Cs atoms of another layer. In the crystal of [Cs2-μ10-NH(CH2PO3H)3] · H2O (space group P, Z = 2), the complex has a dimeric structure: the bridging phosphonate ligand coordinates Cs to form a three-dimensional Cs4O6 cluster. The denticity of the ligand is equal to nine; the coordination numbers of cesium atoms are seven and nine. Two-dimensional corrugated layers of Cs4O6 clusters lie in the (002) plane, and layers of ligand molecules are located between them. Each ligand molecule coordinates eight Cs atoms of one layer and two Cs atoms of the neighboring layer.

  1. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  2. Stereochemistry of complexes with double and triple metal-ligand bonds: a continuous shape measures analysis.

    PubMed

    Alvarez, Santiago; Menjón, Babil; Falceto, Andrés; Casanova, David; Alemany, Pere

    2014-11-17

    To each coordination polyhedron we can associate a normalized coordination polyhedron that retains the angular orientation of the central atom-ligand bonds but has all the vertices at the same distance from the center. The use of shape measures of these normalized coordination polyhedra provides a simple and efficient way of discriminating angular and bond distance distortions from an ideal polyhedron. In this paper we explore the applications of such an approach to analyses of several stereochemical problems. Among others, we discuss how to discern the off-center displacement of the metal from metal-ligand bond shortening distortions in families of square planar biscarbene and octahedral dioxo complexes. The normalized polyhedron approach is also shown to be very useful to understand stereochemical trends with the help of shape maps, minimal distortion pathways, and ligand association/dissociation pathways, illustrated by the Berry and anti Berry distortions of triple-bonded [X≡ML4] complexes, the square pyramidal geometries of Mo coordination polyhedra in oxido-reductases, the coordination geometries of actinyl complexes, and the tetrahedricity of heavy atom-substituted carbon centers.

  3. Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.

    PubMed

    Belai, N; Dickman, M H; Pope, M T

    2001-07-01

    The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

  4. Controlled coordination in vanadium(V) dimethylhydrazido compounds.

    PubMed

    Sakuramoto, Takashi; Moriuchi, Toshiyuki; Hirao, Toshikazu

    2016-11-01

    The vanadium(V) dimethylhydrazido compounds were structurally characterized to elucidate the effect of the alkoxide ligands in the coordination environment of vanadium(V) hydrazido center. The single-crystal X-ray structure determination of the vanadium(V) dimethylhydrazido compound with isopropoxide ligands revealed a dimeric structure with the V(1)-N(1) distance of 1.680(5)Å, in which each vanadium atom is coordinated in a distorted trigonal-bipyramidal geometry (τ 5 =0.81) with the hydrazido and bridging isopropoxide ligands in the apical positions. On the contrary, nearly tetrahedral arrangement around the vanadium metal center (τ 4 =0.06) with the V(1)-N(1) distance of 1.660(2)Å was observed in the vanadium(V) dimethylhydrazido compound with tert-butoxide ligands. The introduction of the 2,2',2″-nitrilotriethoxide ligand led to a pseudo-trigonal-bipyramidal geometry (τ 5 =0.92) at the vanadium center with the V(1)-N(1) distance of 1.691(5)Å, wherein vanadium atom is pulled out of the plane formed by the nitrilotriethoxide oxygen atoms in the direction of the hydrazido nitrogen. The coordination from the apical ligand in the vanadium(V) dimethylhydrazido compound was found to result in the longer V(1)-N(1) distance. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synthesis, physicochemical characterization, DFT calculation and biological activities of Fe(III) and Co(II)-omeprazole complexes. Potential application in the Helicobacter pylori eradication

    NASA Astrophysics Data System (ADS)

    Russo, Marcos G.; Vega Hissi, Esteban G.; Rizzi, Alberto C.; Brondino, Carlos D.; Salinas Ibañez, Ángel G.; Vega, Alba E.; Silva, Humberto J.; Mercader, Roberto; Narda, Griselda E.

    2014-03-01

    The reaction between the antiulcer agent omeprazole (OMZ) with Fe(III) and Co(II) ions was studied, observing a high ability to form metal complexes. The isolated microcrystalline solid complexes were characterized by elemental analysis, X-ray powder diffraction (XRPD), Scanning Electron Microscopy (SEM), magnetic measurements, thermal study, FTIR, UV-Visible, Mössbauer, electronic paramagnetic resonance (EPR), and DFT calculations. The metal-ligand ratio for both complexes was 1:2 determined by elemental and thermal analysis. FTIR spectroscopy showed that OMZ acts as a neutral bidentate ligand through the pyridinic nitrogen of the benzimidazole ring and the oxygen atom of the sulfoxide group, forming a five-membered ring chelate. Electronic, Mössbauer, and EPR spectra together with magnetic measurements indicate a distorted octahedral geometry around the metal ions, where the coordination sphere is completed by two water molecules. SEM and XRPD were used to characterize the morphology and the crystal nature of the complexes. The most favorable conformation for the Fe(III)-OMZ and Co(II)-OMZ complexes was obtained by DFT calculations by using B3LYP/6-31G(d)&LanL2DZ//B3LYP/3-21G(d)&LanL2DZ basis set. Studies of solubility along with the antibacterial activity against Helicobacter pylori for OMZ and its Co(II) and Fe(III) complexes are also reported. Free OMZ and both metal complexes showed antibacterial activity against H. pylori. Co(II)-OMZ presented a minimal inhibitory concentration ˜32 times lower than that of OMZ and ˜65 lower than Fe(III)-OMZ, revealing its promising potential use for the treatment of gastric pathologies associated with the Gram negative bacteria. The morphological changes observed in the cell membrane of the bacteria after the incubation with the metal-complexes were also analyzed by SEM microscopy. The antimicrobial activity of the complexes was proved by the viability test.

  6. Reactions of cisplatin with cysteine and methionine at constant pH; a computational study.

    PubMed

    Zimmermann, Tomás; Burda, Jaroslav V

    2010-02-07

    Interactions of hydrated cisplatin complexes cis-[Pt(NH(3))(2)Cl(H(2)O)](+) and cis-[Pt(NH(3))(2)(OH)(H(2)O)](+) with cysteine and methionine in an aqueous solution at constant pH were explored using computational methods. Thermodynamic parameters of considered reactions were studied in a broad pH range, taking up to 4 protonation states of each molecule into account. Reaction free energies at constant pH were obtained from standard Gibbs free energies using the Legendre transformation. Solvation free energies and pK(a) values were calculated using the PCM model with UAHF cavities, recently adapted by us for transition metal complexes. The root mean square error of pK(a) values on a set of model platinum complexes and amino acids was equal to 0.74. At pH 7, the transformed Gibbs free energies differ by up to 15 kcal mol(-1) from the Gibbs free energies of model reactions with a constant number of protons. As for cysteine, calculations confirmed a strong preference for kappaS monodenate bonding in a broad pH range. The most stable product of the second reaction step, which proceeds from monodentate to chelate complex, is the kappa(2)S,N coordinated chelate. The reaction with methionine is more complex. In the first step all three considered methionine donor atoms (N, S and O) are thermodynamically preferred products depending on the platinum complex and the pH. This is in accordance with the experimental observation of a pH dependent migration between N and S donor atoms in a chemically related system. The most stable chelates of platinum with methionine are kappa(2)S,N and kappa(2)N,O bonded complexes. The comparison of reaction free energies of both amino acids suggests, that the bidentate methionine ligand can be displaced even by the monodentate cysteine ligand under certain conditions.

  7. Azide and acetate complexes plus two iron-depleted crystal structures of the di-iron enzyme delta9 stearoyl-acyl carrier protein desaturase. Implications for oxygen activation and catalytic intermediates.

    PubMed

    Moche, Martin; Shanklin, John; Ghoshal, Alokesh; Lindqvist, Ylva

    2003-07-04

    Delta9 stearoyl-acyl carrier protein (ACP) desaturase is a mu-oxo-bridged di-iron enzyme, which belongs to the structural class I of large helix bundle proteins and that catalyzes the NADPH and O2-dependent formation of a cis-double bond in stearoyl-ACP. The crystal structures of complexes with azide and acetate, respectively, as well as the apoand single-iron forms of Delta9 stearoyl-ACP desaturase from Ricinus communis have been determined. In the azide complex, the ligand forms a mu-1,3-bridge between the two iron ions in the active site, replacing a loosely bound water molecule. The structure of the acetate complex is similar, with acetate bridging the di-iron center in the same orientation with respect to the di-iron center. However, in this complex, the iron ligand Glu196 has changed its coordination mode from bidentate to monodentate, the first crystallographic observation of a carboxylate shift in Delta9 stearoyl-ACP desaturase. The two complexes are proposed to mimic a mu-1,2 peroxo intermediate present during catalytic turnover. There are striking structural similarities between the di-iron center in the Delta9 stearoyl-ACP desaturase-azide complex and in the reduced rubrerythrin-azide complex. This suggests that Delta9 stearoyl-ACP desaturase might catalyze the formation of water from exogenous hydrogen peroxide at a low rate. From the similarity in iron center structure, we propose that the mu-oxo-bridge in oxidized desaturase is bound to the di-iron center as in rubrerythrin and not as reported for the R2 subunit of ribonucleotide reductase and the hydroxylase subunit of methane monooxygenase. The crystal structure of the one-iron depleted desaturase species demonstrates that the affinities for the two iron ions comprising the di-iron center are not equivalent, Fe1 being the higher affinity site and Fe2 being the lower affinity site.

  8. Mercury(II) complexes of unsymmetric phosphorus ylides: Synthesis, spectroscopic and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Sabounchei, Seyyed Javad; Panahimehr, Mohammad; Hosseinzadeh, Marjan; Karamian, Roya; Asadbegy, Mostafa; Masumi, Azadeh

    2014-03-01

    The reaction of Ph2PCH2PPh2 (dppm) with 2-bromo-3-nitroacetophenone and 2,2‧,4‧-trichloroacetophenone in chloroform produce the new phosphonium salts [Ph2PCH2PPh2CH2C(O)C6H4NO2]Br (1) and [Ph2PCH2PPh2CH2C(O)C6H3Cl2]Cl (2). Further, by reaction of the monophosphonium salts of dppm with the strong base triethylaminethe corresponding bidentate phosphorus ylides, Ph2PCH2PPh2C(H)C(O)C6H4NO2 (3) and Ph2PCH2PPh2C(H)C(O)C6H3Cl2 (4) were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4NO2)]} [X = Cl (5), Br (6), I (7)] and {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H3Cl2)]} [X = Cl (8), Br (9), I (10)]. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H, 31P and 13C NMR. The structure of compound 1 being unequivocally determined by single crystal X-ray diffraction techniques. The mass spectrum of compound 6 (as an instance) also demonstrates the synthesize of these compounds. In all complexes the title ylides are coordinated through the ylidic carbon and the phosphine atom. These compounds form five membered ring under complexation. The antibacterial effects of DMSO solutions of the ligands and their metal complexes were evaluated by the disc diffusion method against six Gram positive and negative bacteria. All compounds represent antibacterial activity against these bacteria with high levels of inhibitory potency exhibited against the Gram positive species.

  9. Comparative solution equilibrium studies on pentamethylcyclopentadienyl rhodium complexes of 2,2'-bipyridine and ethylenediamine and their interaction with human serum albumin.

    PubMed

    Enyedy, Éva A; Mészáros, János P; Dömötör, Orsolya; Hackl, Carmen M; Roller, Alexander; Keppler, Bernhard K; Kandioller, Wolfgang

    2015-11-01

    Complex formation equilibrium processes of the (N,N) donor containing 2,2'-bipyridine (bpy) and ethylenediamine (en) with (η(5)-pentamethylcyclopentadienyl)rhodium(III) were investigated in aqueous solution via pH-potentiometry, (1)H NMR spectroscopy, and UV-vis spectrophotometry in the absence and presence of chloride ions. The structure of [RhCp*(en)Cl]ClO4 (Cp*, pentamethylcyclopentadienyl) was also studied by single-crystal X-ray diffraction. pKa values of 8.56 and 9.58 were determined for [RhCp*(bpy)(H2O)](2+) and [RhCp*(en)(H2O)](2+), respectively resulting in the formation of negligible amount of mixed hydroxido complexes at pH 7.4. Stability and the H2O/Cl(-) co-ligand exchange constants of bpy and en complexes considerably exceed those of the bidentate O-donor deferiprone. The strong affinity of the bpy and en complexes to chloride ions most probably contributes to their low antiproliferative effect. Interactions between human serum albumin (HSA) and [RhCp*(H2O)3](2+), its complexes formed with deferiprone, bpy and en were also monitored by (1)H NMR spectroscopy, ultrafiltration/UV-vis and spectrofluorometry. Numerous binding sites (≥ 8) are available for [RhCp*(H2O)3](2+); and the interaction takes place most probably via covalent bonds through the imidazole nitrogen of His. According to the various fluorescence studies [RhCp*(H2O)3](2+) binds on sites I and II, and coordination of surface side chain donor atoms of the protein is also feasible. The binding of the bpy and en complex is weaker and slower compared to that of [RhCp*(H2O)3](2+), and formation of ternary HSA-RhCp*-ligand adducts was proved. In the case of the deferiprone complex, the RhCp* fragment is cleaved off when HSA is loaded with low equivalents of the compound.

  10. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  11. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions.

    PubMed

    Yu, Hai-Zhu; Jiang, Yuan-Ye; Fu, Yao; Liu, Lei

    2010-12-29

    The ligand-dependent selectivities in Ullmann-type reactions of amino alcohols with iodobenzene by β-diketone- and 1,10-phenanthroline-ligated Cu(I) complexes were recently explained by the single-electron transfer and iodine atom transfer mechanisms (Jones, G. O., Liu, P., Houk, K. N., and Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.). The present study shows that an alternative, oxidative addition/reductive elimination mechanism may also explain the selectivities. Calculations indicate that a Cu(I) complex with a negatively charged β-diketone ligand is electronically neutral, so that oxidative addition of ArI to a β-diketone-ligated Cu(I) prefers to occur (and occur readily) in the absence of the amino alcohol. Thus, coordination of the amino alcohol in its neutral form can only occur at the Cu(III) stage where N-coordination is favored over O-coordination. The coordination step is the rate-limiting step and the outcome is that N-arylation is favored with the β-diketone ligand. On the other hand, a Cu(I) complex with a neutral 1,10-phenanthroline ligand is positively charged, so that oxidative addition of ArI to a 1,10-phenanthroline-ligated Cu(I) has to get assistance from a deprotonated amino alcohol substrate. This causes oxidative addition to become the rate-limiting step in the 1,10-phenanthroline-mediated reaction. The immediate product of the oxidative addition step is found to undergo facile reductive elimination to provide the arylation product. Because O-coordination of a deprotonated amino alcohol is favored over N-coordination in the oxidative addition transition state, O-arylation is favored with the 1,10-phenanthroline ligand.

  12. Di-μ3-chlorido-tetra-μ2-chlorido-dichloridobis(dimethyl­formamide-κO)hexa­kis­(1H-imidazole-κN 3)tetra­cadmium

    PubMed Central

    Zhu, Run-Qiang

    2011-01-01

    The centrosymmetric mol­ecule of the title complex, [Cd4Cl8(C3H4N2)6(C3H7NO)2], contains four CdII atoms, six imidazole, two dimethyl­formamide and eight chloride ligands. The structure shows a novel chloride-bridged tetra­nuclear cadmium quasi-cubane cluster. The coordination geometry of all CdII atoms is distorted octa­hedral, with the two metal atoms in the asymmetric unit in different coordination environments. One of the Cd2+ ions is coordinated by five Cl− ions and by one N atom from an imidazole ligand, while the second is coordinated by three chloride ligands, two N atoms from two imidazole ligands and one O atom from a dimethyl­formamide mol­ecule. Inter­molecular N—H⋯Cl hydrogen bonds link the mol­ecules into a two-dimensional polymeric structure parallel to the ab plane. PMID:22058708

  13. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  14. Syntheses and structural characterization of Co(II) and Cd(II) coordination polymers with 1,4-bis(imidazolyl)butane ligand

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz

    2017-11-01

    Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.

  15. Tuning the Emission and Quantum Yield of Gold and Silver Nanoclusters Through Ligand Design and Doping

    NASA Astrophysics Data System (ADS)

    Mishra, Dinesh

    Nanoparticles have been extensively studied in the past few decades due to the possibilities they offer in applications ranging from medicine to energy generation. A new class of ultra-small noble metal nanoparticles consisting of tens to hundreds of atoms, commonly known as clusters or nanoclusters, have drawn interest of the research community recently due to their unique optical, electronic and structural properties. Over the past few years, advances have been made in the synthesis of atomically precise noble metal clusters (for example, silver and gold) with distinct optical properties. Their ultra-small size distinguishes them from conventional plasmonic nanoparticles and the properties are very sensitive to the slight variation in the compositon of the cluster, i.e. the number of the metal atoms and/or the nature of the ligands. These clusters are interesting because of their potential applications in field such as sensing, imaging, catalysis, clean energy, photonics, etc. as well as they provide fundamental insight into the evolution of the optical and electronic properties of these clusters. In this project, we explored the strategies to synthesize luminescent metallic clusters of gold and silver and to promote their solubility and stability in aqueous and biological medium. We focused particularly on the thiolate protected clusters due to the higher affinity of gold and silver to sulfur. Lipoic acid (Thioctic acid) is a bio-molecule with a cyclic disulfide ring, which also acts as a chelating ligand. Due to the higher binding affinity of the cyclic disulfide ring to nanocrystal surface, lipoic acid and chemically modified lipoic acid molecules have been widely reported for the synthesis and functionalization of inorganic nanocrystals. Here, we describe the use of bidentate lipoic acid ligands in the one phase growth of luminescent gold and silver nanoclusters. In addition, we have synthesized a new set of monothiol ligands containing PEG and zwitterion for the functionalization of fluorescent clusters. Chapter 1 introduces the fundamental properties of metallic clusters and the origin of these properties from electronic and structural point of view. The optical properties of ultra-small nanocrystals (<2 nm) in comparison to the plasmonic particles is described. In addition, the variation of optical and structural properties from one metal to another as well as one ligand to another is also compared. Chapter 2 describes the synthesis of ultra-small size gold clusters with different optical emission (ranging from blue to red) using photo-activated LA-PEG ligands. The influence of various factors on the growth of the clusters is also studied. Optical properties of the clusters were studied by UV-visible absorption, PL emission and excitation and time resolved fluorescence spectroscopy. XPS and DOSY NMR were used to characterize the oxidation states and sizes of these clusters. The photo-chemical transformation of LA-PEG ligands to thiols and the effect of various experimental parameters such as solvent, oxygen, ligand functional group and effect of acid are described in chapter 3. Thiol yield percentage was quantified using ellman assay. Chapter 4 describes the one phase aqueous synthesis of Ag29 clusters capped with bidentate dihydrolipoic acid (DHLA). We also describe the drastic enhancement of the PL intensity upon gold doping of the Ag29 clusters. Optical properties along with the size characterization by electrospray ionization mass spectrometry is also described. We further describe the growth of these clusters using DHLA-PEG molecules. Chapter 5 describes the synthesis of highly fluorescent Au25-xAgx clusters stabilized with two types of ligands (triphenylphosphine and thiols). We designed a set of monothiolate ligands appended with PEG and zwitterionic moieties. This approach allows to prepare water soluble and stable metallic clusters with enhanced photoluminescence and well defined optical properties. Chapter 6 is the overall summary of our findings and prospects and outlook.

  16. Reactivity of the Donor-Stabilized Silylenes [iPrNC(Ph)NiPr]2 Si and [iPrNC(NiPr2 )NiPr]2 Si: Activation of CO2 and CS2.

    PubMed

    Mück, Felix M; Baus, Johannes A; Nutz, Marco; Burschka, Christian; Poater, Jordi; Bickelhaupt, F Matthias; Tacke, Reinhold

    2015-11-09

    Activation of CO2 by the bis(amidinato)silylene 1 and the analogous bis(guanidinato)silylene 2 leads to the structurally analogous six-coordinate silicon(IV) complexes 4 (previous work) and 8, respectively, the first silicon compounds with a chelating carbonato ligand. Likewise, CS2 activation by silylene 1 affords the analogous six-coordinate silicon(IV) complex 10, the first silicon compound with a chelating trithiocarbonato ligand. CS2 activation by silylene 2, however, yields the five-coordinate silicon(IV) complex 13 with a carbon-bound CS2 (2-) ligand, which also represents an unprecedented coordination mode in silicon coordination chemistry. Treatment of the dinuclear silicon(IV) complexes 5 and 6 with CO2 also affords the six-coordinate carbonatosilicon(IV) complexes 4 and 8, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  18. Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh2

    PubMed Central

    2018-01-01

    In this work, we explored the coordination properties of the geminal phosphinoborane tBu2PCH2BPh2 (2) toward different gold(I) precursors. The reaction of 2 with an equimolar amount of the sulfur-based complex (Me2S)AuCl resulted in displacement of the SMe2 ligand and formation of linear phosphine gold(I) chloride 3. Using an excess of ligand 2, bisligated complex 4 was formed and showed dynamic behavior at room temperature. Changing the gold(I) metal precursor to the phosphorus-based complex, (Ph3P)AuCl impacted the coordination behavior of ligand 2. Namely, the reaction of ligand 2 with (Ph3P)AuCl led to the heterolytic cleavage of the gold–chloride bond, which is favored over PPh3 ligand displacement. To the best of our knowledge, 2 is the first example of a P/B-ambiphilic ligand capable of cleaving the gold–chloride bond. The coordination chemistry of 2 was further analyzed by density functional theory calculations. PMID:29732451

  19. Poly[diaqua­tris­(μ4-1,3-phenyl­enediacetato)­dineodymium(III)

    PubMed Central

    Gao, Zhu-Qing; Lv, Dong-Yu; Li, Hong-Ji; Gu, Jin-Zhong

    2011-01-01

    In the title coordination polymer, [Nd2(C10H8O4)3(H2O)2]n, each of the two NdIII ions is nine-coordinated by eight O atoms from six different 2,2′-(m-phenyl­ene)diacetate (pda) bivalent anions and by one O atom from a water mol­ecule, forming a distorted tricapped trigonal–prismatic coordination geometry. Eight NdIII ions and 12 pda ligands form a large [Nd8(pda)12] ring, and four NdIII ions and six pda ligands form a small [Nd4(pda)6] ring. These rings are further connected by the coordination inter­actions of pda ligands and NdIII, generating a three-dimensional supra­molecular framework. PMID:21522305

  20. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  1. Design of Research on Performance of a New Iridium Coordination Compound for the Detection of Hg2.

    PubMed

    Ma, Hailing; Tsai, Sang-Bing

    2017-10-16

    Heavy metal pollution has become one of the most significant pollution problems encountered by our country in terms of environment protection. In addition to the significant effects of heavy metals on the human body and other organisms through water, food chain enrichment and other routes, heavy metals involved in daily necessities beyond the level limit could also affect people's lives, so the detection of heavy metals is extremely important. Ir (III) coordination compound, considered to be one of the best phosphorescent sensing materials, is characterized by high luminous efficiency, easy modification of the ligand and so on, and it has potential applications in the field of heavy metal detection. This project aims to product a new Ir (III) functional coordination compound by designing a new auxiliary ligand and a main ligand with a sulfur identification unit, in order to systematically investigate the application of iridium coordination compound in the detection of the heavy metal Hg 2+ . With the introduction of the sulfur identification unit, selective sensing of Hg 2+ could be achieved. Additionally, a new auxiliary ligand is also introduced to produce a functional iridium coordination compound with high quantum efficiency, and to diversify the application of iridium coordination compound in this field.

  2. Facile synthesis of novel two- and three-dimensional coordination polymers containing dialkyltin phosphonate-based tri/tetra-nuclear clusters with appended sulfonate groups.

    PubMed

    Shankar, Ravi; Jain, Archana; Singh, Atul Pratap; Kociok-Köhn, Gabriele; Molloy, Kieran C

    2009-04-20

    The coordination-driven self-assemblies of mixed-ligand dialkyltin derivatives, [(Et(2)Sn)(4) (O(2)P(OH)Me)(2)(O(3)PMe)(2)(OSO(2)Et)(2) x 2 H(2)O](n) 1, [(Et(2)Sn)(3)(O(3)PMe)(2)(OSO(2)Me)(2) x CHCl(3)](n) 2, and [(Me(2)Sn)(3)(O(3)PBu(t))(2)(OSO(2)Me)(2) x 2 CHCl(3)](n) 3 have been achieved by reacting the tin precursors, [R(2)Sn(OR(1))(OSO(2)R(1))](n) (R = Et, R(1) = Et (1a), Me (2a); R = Me, R(1) = Me (3a)) with an equimolar amount of methylphosphonic/t-butylphosphonic acid under mild conditions (rt, 8 h, CH(2)Cl(2)). These have been characterized by IR and multinuclear ((1)H, (13)C, (31)P, and (119)Sn) NMR spectroscopy as well as single crystal X-ray diffraction. The asymmetric unit of 1 is composed of a tetranuclear, Sn(4)(mu(2)-PO(2))(2)(mu(3)-PO(3))(2) core bearing an appended ethanesulfonate group on each terminal tin (Sn2) atom and two P(OH)...O hydrogen bonded water molecules. The ladder-like structural motif thus formed is extended into one-dimensional polymeric chains by virtue of bridging bidentate mode of the sulfonate groups. These chains are linked by O-H...O(S) hydrogen bonds involving H(2)O molecules and oxygen atoms of the sulfonate groups. The asymmetric units of 2 and 3 are composed of trinuclear tin clusters with a Sn(3)(mu(3)-PO(3))(2) core and two dangling methanesulfonate groups which are covalently bonded to the tin centers. The construction of three-dimensional self-assemblies is effected by variable bonding modes (mu(2), mu(3) in 2; mu(2) in 3) of the methanesulfonate groups. Both the structural motifs possess five- and six-coordinated tin atoms and form rectangular channels which are occupied by CHCl(3) molecules.

  3. A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Haudrechy, Arnaud

    2008-01-01

    Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…

  4. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: Synthesis, characterization and in vitro antimalarial activity†

    PubMed Central

    Glans, Lotta; Ehnbom, Andreas; de Kock, Carmen; Martínez, Alberto; Estrada, Jesús; Smith, Peter J.; Haukka, Matti; Sánchez-Delgado, Roberto A.; Nordlander, Ebbe

    2012-01-01

    Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η6-cym)(L1)Cl]Cl (1, cym = p-cymene, L1 = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η6-cym)(L2)Cl]Cl (2, L2 = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η6-cym)(L3)Cl] (3, L3 = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1–3 and ligands L1, L2 and L3, as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L4), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L2 also shows good activity against both the choloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR50) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR50 properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L3 to ruthenium, to give a metal complex (3) with promising antimalarial activity. PMID:22249579

  5. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-03

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Electronic Structure and Bonding in Transition Metal Inorganic and Organometallic Complexes: New Basis Sets, Linear Semibridging Carbonyls and Thiocarbonyls, and Oxidative Addition of Molecular Hydrogen to Square - Iridium Complexes.

    NASA Astrophysics Data System (ADS)

    Sargent, Andrew Landman

    Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.

  7. General molecular mechanics method for transition metal carboxylates and its application to the multiple coordination modes in mono- and dinuclear Mn(II) complexes.

    PubMed

    Deeth, Robert J

    2008-08-04

    A general molecular mechanics method is presented for modeling the symmetric bidentate, asymmetric bidentate, and bridging modes of metal-carboxylates with a single parameter set by using a double-minimum M-O-C angle-bending potential. The method is implemented within the Molecular Operating Environment (MOE) with parameters based on the Merck molecular force field although, with suitable modifications, other MM packages and force fields could easily be used. Parameters for high-spin d (5) manganese(II) bound to carboxylate and water plus amine, pyridyl, imidazolyl, and pyrazolyl donors are developed based on 26 mononuclear and 29 dinuclear crystallographically characterized complexes. The average rmsd for Mn-L distances is 0.08 A, which is comparable to the experimental uncertainty required to cover multiple binding modes, and the average rmsd in heavy atom positions is around 0.5 A. In all cases, whatever binding mode is reported is also computed to be a stable local minimum. In addition, the structure-based parametrization implicitly captures the energetics and gives the same relative energies of symmetric and asymmetric coordination modes as density functional theory calculations in model and "real" complexes. Molecular dynamics simulations show that carboxylate rotation is favored over "flipping" while a stochastic search algorithm is described for randomly searching conformational space. The model reproduces Mn-Mn distances in dinuclear systems especially accurately, and this feature is employed to illustrate how MM calculations on models for the dimanganese active site of methionine aminopeptidase can help determine some of the details which may be missing from the experimental structure.

  8. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  9. Physicochemical impact studies of gamma rays on "aspirin" analgesics drug and its metal complexes in solid form: Synthesis, spectroscopic and biological assessment of Ca(II), Mg(II), Sr(II) and Ba(II) aspirinate complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Sharshar, T.; Elsabawy, Khaled M.; Heiba, Zein K.

    2013-09-01

    Metal aspirinate complexes, M2(Asp)4, where M is Mg(II), Ca(II), Sr(II) or Ba(II) are formed by refluxed of aspirin (Asp) with divalent non-transition metal ions of group (II) and characterized by elemental analysis and spectroscopic measurements (infrared, electronic, 1H NMR, Raman, X-ray powder diffraction and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal:ligand). Infrared spectra of the complexes agree with the coordination to the central metal atom through three donation sites of two oxygen atoms of bridge bidentate carboxylate group and oxygen atom of sbnd Cdbnd O of acetyl group. Infrared spectra coupled with the results of elemental analyzes suggested a distorted octahedral structure for the M(II) aspirinate complexes. Gamma irradiation was tested as a method for stabilization of aspirin as well as their complexes. The effect of gamma irradiation, with dose of 80 Gy, on the properties of aspirinate complexes was studied. The aspirinate chelates have been screened for their in vitro antibacterial activity against four bacteria, gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial activity than the free aspirin chelate.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Zhao, Jun, E-mail: junzhao08@126.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002

    Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{supmore » 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.« less

  11. Activation of the manganese(I) tricarbonyl core by selective variation of bidentate ligands (L,L'-Bid = N,N' and N,O donor atom sets) in fac-[Mn(CO)3(L,L'-Bid)(CH3OH)](n) complexes.

    PubMed

    Twala, T N; Schutte-Smith, M; Roodt, A; Visser, H G

    2015-02-21

    A range of fac-[Mn(CO)3(L,L'-Bid)(H2O)](n) (L,L'-Bid = neutral or monoanionic bidentate ligands with varied L,L' donor atoms, N,N' and N,O, 1,10-phenanthroline, 2,2'-bipyridine, 2-picolinate, 2,4-quinolinate; n = 0, +1) has been synthesized and the methanol substitution has been investigated for the first time. The complexes were characterized by UV/vis, IR and NMR spectroscopy and X-ray crystallographic studies of the compounds fac-[Mn(CO)3(Bipy)(H2O)][CF3SO3] () and fac-[Mn(CO)3(Phen)(H2O)][CF3SO3] () are reported. A two order-of-magnitude of activation for the methanol substitution is induced as manifested by the second order rate constants with (N,N'-Bid) < (N,O-Bid). Forward and reverse rate and stability constants from slow and stopped-flow UV/vis measurements (k1, M(-1) s(-1); k-1, s(-1); K1, M(-1)) for pyridine as entering nucleophile are as follows: fac-[Mn(CO)3(Phen)(CH3OH)](+) (2.39 ± 5) × 10(-3), (1.5 ± 0.3) × 10(-5), 159 ± 32; fac-[Mn(CO)3(2,4-QuinH)(CH3OH)] (4.5 ± 0.2), (4 ± 1) × 10(-2), 113 ± 29. Activation parameters (ΔH, kJ mol(-1); ΔS, J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Mn(CO)3(Phen)(CH3OH)](+) (bromide ions) 66.7 ± 0.6, -27 ± 2; (pyridine) 80 ± 3, -25 ± 11; fac-[Mn(CO)3(Pico)(CH3OH)] (bromide ions) 68 ± 2, -24 ± 5. A dissociative interchange mechanism is proposed.

  12. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  13. A one-dimensional nickel(II) coordination polymer containing 2,6-dipicolinate and dipyrido[3,2-a:2',3'-c]phenazine.

    PubMed

    Ma, Yi; Zhang, Li-Tian; Wang, Xiao-Fang; He, Yong-Ke; Han, Zheng-Bo

    2007-12-01

    A new coordination polymer, catena-poly[[(dipyrido[3,2-a:2',3'-c]phenazine-kappa(2)N,N')nickel(II)]-mu-2,6-dipicolinato-kappa(4)O(2),N,O(6):O(2')], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one-dimensional structure in which 2,6-dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one Ni(II) center, one dipyrido[3,2-a:2',3'-c]phenazine ligand and one 2,6-dipicolinate ligand. Each Ni(II) center is six-coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2-a:2',3'-c]phenazine ligand and two different 2,6-dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by pi-pi stacking interactions and weak interactions to form a three-dimensional supramolecular network.

  14. Poly[tetra­aqua­(μ6-9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carboxyl­ato)dimanganese(II)

    PubMed Central

    Xu, Rui; Liu, Jian-Lan

    2012-01-01

    The title complex, [Mn2(C18H4O10)(H2O)4]n, was synthesized from manganese(II) chloride tetra­hydrate and 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carb­oxy­lic acid (H4AQTC) in water. The anthraquinone unit is located about a crystallographic center of inversion. Each asymmetric unit therefore contains one MnII atom, two water ligands and one half AQTC4− anion. The MnII atom is coordinated in a distorted octa­hedral geometry by four O atoms from three AQTC4− ligands and two water O atoms. Two of the carboxyl­ate groups coordinate one MnII atom in a chelating mode, whereas the others each coordinate two MnII atoms. Each AQTC4− tetra-anion therefore coordinates six different MnII ions and, as a result, a three-dimensional coordination polymer is formed. O—H⋯O hydrogen bonds, some of them bifurcated, between water ligands and neighboring water or anthraquinone ligands are observed in the crystal structure. PMID:22807779

  15. Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields

    PubMed Central

    Lima, Nathalia B. D.; Silva, Anderson I. S.; Gerson, P. C.; Gonçalves, Simone M. C.; Simas, Alfredo M.

    2015-01-01

    β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%. PMID:26710103

  16. Synthesis, Characterization, and Bioactivity of Schiff Bases and Their Cd2+, Zn2+, Cu2+, and Ni2+ Complexes Derived from Chloroacetophenone Isomers with S-Benzyldithiocarbazate and the X-Ray Crystal Structure of S-Benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate

    PubMed Central

    Break, Mohammed Khaled bin; Tahir, M. Ibrahim M.; Crouse, Karen A.; Khoo, Teng-Jin

    2013-01-01

    Two bidentate Schiff base ligands having nitrogen sulphur donor sequence were derived from the condensation of S-benzyldithiocarbazate (SBDTC) with 2-chloroacetophenone and 4-chloroacetophenone to give S-benzyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (NS2) and S-benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate (NS4) isomers. Each of the ligands was then chelated with Cd2+, Zn2+, Cu2+, and Ni2+. The compounds were characterized via IR spectroscopy and melting point while the structure of NS4 was revealed via X-ray crystallography. Finally, the compounds were screened for antimicrobial activity to investigate the effect that is brought by the introduction of the chlorine atom to the benzene ring. X-ray crystallographic analysis showed that the structure of NS4 is planar with a phenyl ring that is nearly perpendicular to the rest of the molecules. The qualitative antimicrobial assay results showed that NS4 and its complexes lacked antifungal activity while Gram-positive bacteria were generally inhibited more strongly than Gram-negative bacteria. Furthermore, NS4 metal complexes were inhibited more strongly than the ligand while the opposite was seen with NS2 ligand and its complexes due to the partial solubility in dimethyl sulfoxide (DMSO). It was concluded that generally NS2 derivatives have higher bioactivity than that of NS4 derivatives and that the Cd complexes of both ligands have pronounced activity specifically on K. rhizophila. PMID:24319401

  17. Group 1 and group 2 metal complexes supported by a bidentate bulky iminopyrrolyl ligand: synthesis, structural diversity, and ε-caprolactone polymerization study.

    PubMed

    Kottalanka, Ravi K; Harinath, A; Rej, Supriya; Panda, Tarun K

    2015-12-14

    We report here a series of alkali and alkaline earth metal complexes, each with a bulky iminopyrrolyl ligand [2-(Ph3CN=CH)C4H3NH] (1-H) moiety in their coordination sphere, synthesized using either alkane elimination or silylamine elimination methods or the salt metathesis route. The lithium salt of molecular composition [Li(2-(Ph3CN=CH)C4H3N)(THF)2] (2) was prepared using the alkane elimination method, and the silylamine elimination method was used to synthesize the dimeric sodium and tetra-nuclear potassium salts of composition [(2-(Ph3CN=CH)C4H3N)Na(THF)]2 (3) and [(2-(Ph3CN=CH)C4H3N)K(THF)0.5]4 (4) respectively. The magnesium complex of composition [(THF)2Mg(CH2Ph){2-(Ph3CN=CH)C4H3N}] (5) was synthesized through the alkane elimination method, in which [Mg(CH2Ph)2(OEt2)2] was treated with the bulky iminopyrrole ligand 1-H in 1 : 1 molar ratio, whereas the bis(iminopyrrolyl)magnesium complex [(THF)2Mg{2-(Ph3CN=CH)C4H3N}2] (6) was isolated using the salt metathesis route. The heavier alkaline earth metal complexes of the general formula {(THF)nM(2-(Ph3CN=CH)C4H3N)2} [M = Ca (7), Sr (8), and n = 2; M = Ba (9), n = 3] were prepared in pure form using two synthetic methods: in the first method, the bulky iminopyrrole ligand 1-H was directly treated with the alkaline earth metal precursor [M{N(SiMe3)2}2(THF)n] (where M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent at ambient temperature. The complexes 7-9 were also obtained using the salt metathesis reaction, which involves the treatment of the potassium salt (4) with the corresponding metal diiodides MI2 (M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent. The molecular structures of all the metal complexes (1-H, 2-9) in the solid state were established through single-crystal X-ray diffraction analysis. The complexes 5-9 were tested as catalysts for the ring-opening polymerization of ε-caprolactone. High activity was observed in the heavier alkaline earth metal complexes 7-9, with a very narrow polydispersity index in comparison to that of magnesium complexes 5 and 6.

  18. Syntheses, characterization, superoxide dismutase, antimicrobial, crystal structure and molecular studies of copper (II) and nickel (II) complexes with 2-((E)-(2, 4-dibromophenylimino) methyl)-4-bromophenol as Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Bharti, Sulakshna; Choudhary, Mukesh; Mohan, Bharti; Rawat, S. P.; Sharma, S. R.; Ahmad, Khursheed

    2017-12-01

    Three new copper (II) and nickel (II) complexes viz. [Cu(L)2](1a), [Cu(L)2](1b) and [Ni(L)2].DMF(2), where HL = 2-((E)-(2, 4-dibromophenylimino) methyl)-4-bromophenol, have been synthesized and characterized by using various physico-chemical and spectroscopic techniques. The crystal structures of Schiff base (HL) and their metal complexes (1a), (1b) and (2) were determined by single crystal X-ray diffraction. IR and UV-Vis spectra and magnetic susceptibility measurements agree with the observed crystal structures. The crystallographic and spectroscopic studies confirmed four coordinate environments around the metal (II) ions. The synthesized Schiff base ligand (HL) crystallizes in the orthorhombic system of the space group Pbca. Complex (1a) of HL was crystallized in the monoclinic system of the space group P21/c, a = 10.1712(9) Å, b = 10.9299(10) Å,c = 12.7684(11) Å,α = 90̊,β = 104.649(2)̊, γ = 90̊ and Z = 2 whereas complex (1b) and (2) crystallized in the triclinic system of the space group P-1, a = 11.499(5)Å, b = 11.598(5)Å, c = 12.211(5)Å, α = 98.860(5), β = 115.653(5),γ = 100.906(5) and Z = 2 for (1b), a = 9.080(6) Å, b = 9.545(8)Å, c = 9.545(8)Å, α = 101.43(4)º,β = 99.63(3)̊, γ = 117.71(2)º and Z = 1 for (2). The synthesized ligand (HL) was behaved as monobasic bidentate Schiff base ligand having N and O donor sites. The electron paramagnetic resonance spectra indicate a dx2-y2ground state (g|| > g⊥> 2.0023) for (1a) and (1b). Copper (II) complexes display X-band EPR spectra in 100% DMSO and 77 K, giving indicating dx2-y2ground state. Superoxide dismutase-like activities of HL and its complexes were investigated by nitrobluetetrazolium chloride-DMSO assay and IC50 values were evaluated. These complexes were also tested for their in vitro antimicrobial activities against two bacteria (E. coli and Salmonella typhi) and two fungi (Pencillium, Aspergillus sp.) comparing with the Schiff base. The antimicrobial results showed that the complexes were more biologically active compounds to the Schiff base (HL).

  19. Dioxygen Reactivity of Biomimetic Fe(II) Complexes with Noninnocent Catecholate, o-Aminophenolate, and o-Phenylenediamine Ligands

    PubMed Central

    2015-01-01

    This study describes the O2 reactivity of a series of high-spin mononuclear Fe(II) complexes each containing the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand and one of the following bidentate, redox-active ligands: 4-tert-butylcatecholate (tBuCatH–), 4,6-di-tert-butyl-2-aminophenolate (tBu2APH–), or 4-tert-butyl-1,2-phenylenediamine (tBuPDA). The preparation and X-ray structural characterization of [Fe2+(Ph2TIP)(tBuCatH)]OTf, [3]OTf and [Fe2+(Ph2TIP)(tBuPDA)](OTf)2, [4](OTf)2 are described here, whereas [Fe2+(Ph2TIP)(tBu2APH)]OTf, [2]OTf was reported in our previous paper [Bittner et al., Chem.—Eur. J.2013,19, 9686–9698]. These complexes mimic the substrate-bound active sites of nonheme iron dioxygenases, which catalyze the oxidative ring-cleavage of aromatic substrates like catechols and aminophenols. Each complex is oxidized in the presence of O2, and the geometric and electronic structures of the resulting complexes were examined with spectroscopic (absorption, EPR, Mössbauer, resonance Raman) and density functional theory (DFT) methods. Complex [3]OTf reacts rapidly with O2 to yield the ferric-catecholate species [Fe3+(Ph2TIP)(tBuCat)]+ (3ox), which undergoes further oxidation to generate an extradiol cleavage product. In contrast, complex [4]2+ experiences a two-electron (2e–), ligand-based oxidation to give [Fe2+(Ph2TIP)(tBuDIBQ)]2+ (4ox), where DIBQ is o-diiminobenzoquinone. The reaction of [2]+ with O2 is also a 2e– process, yet in this case both the Fe center and tBu2AP ligand are oxidized; the resulting complex (2ox) is best described as [Fe3+(Ph2TIP)(tBu2ISQ)]+, where ISQ is o-iminobenzosemiquinone. Thus, the oxidized complexes display a remarkable continuum of electronic structures ranging from [Fe3+(L2–)]+ (3ox) to [Fe3+(L•–)]2+ (2ox) to [Fe2+(L0)]2+ (4ox). Notably, the O2 reaction rates vary by a factor of 105 across the series, following the order [3]+ > [2]+ > [4]2+, even though the complexes have similar structures and Fe3+/2+ redox potentials. To account for the kinetic data, we examined the relative abilities of the title complexes to bind O2 and participate in H-atom transfer reactions. We conclude that the trend in O2 reactivity can be rationalized by accounting for the role of proton transfer(s) in the overall reaction. PMID:24697567

  20. Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine: structural, spectroscopic, and theoretical studies.

    PubMed

    Chan, Siu-Chung; Cheung, Ho-Yuen; Wong, Chun-Yuen

    2011-11-21

    Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine (ON(^)N) and tetradentate thioether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4), [Ru(ON(^)N)([14]aneS4)](2+) [ON(^)N = 2-(2-nitrosophenyl)pyridine (2a), 10-nitrosobenzo[h]quinoline (2b), 2-(2-nitroso-4-methylphenyl)pyridine, (2c), 2-(2-nitrosophenyl)-5-(trifluoromethyl)pyridine (2d)] and analogues with the 1,4,7-trithiacyclononane ([9]aneS3)/tert-butylisocyanide ligand set, [Ru(ON(^)N)([9]aneS3)(C≡N(t)Bu)](2+) (4a and 4b), have been prepared by insertion of a nitrosonium ion (NO(+)) into the Ru-aryl bond of cyclometalated ruthenium(II) complexes. The molecular structures of the ON(^)N-ligated complexes 2a and 2b reveal that (i) the ON(^)N ligands behave as bidentate chelates via the two N atoms and the bite angles are 86.84(18)-87.83(16)° and (ii) the Ru-N(NO) and N-O distances are 1.942(5)-1.948(4) and 1.235(6)-1.244(5) Å, respectively. The Ru-N(NO) and N-O distances, together with ν(N═O), suggest that the coordinated ON(^)N ligands in this work are neutral moiety (ArNO)(0) rather than monoanionic radical (ArNO)(•-) or dianion (ArNO)(2-) species. The nitrosated complexes 2a-2d show moderately intense absorptions centered at 463-484 nm [ε(max) = (5-6) × 10(3) dm(3) mol(-1) cm(-1)] and a clearly discriminable absorption shoulder around 620 nm (ε(max) = (6-9) × 10(2) dm(3) mol(-1) cm(-1)), which tails up to 800 nm. These visible absorptions are assigned as a mixing of d(Ru) → ON(^)N metal-to-ligand charge-transfer and ON(^)N intraligand transitions on the basis of time-dependent density functional theory (TD-DFT) calculations. The first reduction couples of the nitrosated complexes range from -0.53 to -0.62 V vs Cp(2)Fe(+/0), which are 1.1-1.2 V less negative than that for [Ru(bpy)([14]aneS4)](2+) (bpy = 2,2'-bipyridine). Both electrochemical data and DFT calculations suggest that the lowest unoccupied molecular orbitals of the nitrosated complexes are ON(^)N-centered. Natural population analysis shows that the amount of positive charge on the Ru centers and the [Ru([14]aneS4)] moieties in 2a and 2b is larger than that in [Ru(bpy)([14]aneS4)](2+). According to the results of the structural, spectroscopic, electrochemical, and theoretical investigations, the ON(^)N ligands in this work have considerable π-acidic character and behave as better electron acceptors than bpy.

Top