Safe distance car-following model including backward-looking and its stability analysis
NASA Astrophysics Data System (ADS)
Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin
2013-03-01
The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.
Studies of vehicle overtaking dynamics and its influence on traffic flow at a bidirectional road
NASA Astrophysics Data System (ADS)
Echab, H.; Marzoug, R.; Lakouari, N.; Ez-Zahraouy, H.
For the purposes of optimizing traffic flow composed of different types of vehicles, it is important to understand the interactions between them. This paper proposes a cellular automata model to investigate a bidirectional two-lane traffic flow under the periodic boundary condition. The vehicle flux and the phase diagrams of the system in the (ρ1,ρ2) space are constructed by applying two different overtaking models (symmetric, asymmetric). The inter-lane correlation and the overtaking frequency are also studied. The simulation results show that the variation of the density of one lane has an apparent influence on the traffic of the adjacent lane. Furthermore, it is found that the phase diagram on both models is classified into several regions. Thus, for the symmetric model, as the overtaking probability increases, the traffic on the system becomes better. Likewise, the results also indicate that the asymmetric model can effectively enhance the traffic capacity and alleviate the congested state.
Design and implementation of a telecommunication interface for the TAATM/TCV real-time experiment
NASA Technical Reports Server (NTRS)
Nolan, J. D.
1981-01-01
The traffic situation display experiment of the terminal configured vehicle (TCV) research program requires a bidirectional data communications tie line between an computer complex. The tie line is used in a real time environment on the CYBER 175 computer by the terminal area air traffic model (TAATM) simulation program. Aircraft position data are processed by TAATM with the resultant output sent to the facility for the generation of air traffic situation displays which are transmitted to a research aircraft.
Congestion and communication in confined ant traffic
NASA Astrophysics Data System (ADS)
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.
2014-03-01
Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.
Drawing for Traffic Marking Using Bidirectional Gradient-Based Detection with MMS LIDAR Intensity
NASA Astrophysics Data System (ADS)
Takahashi, G.; Takeda, H.; Nakamura, K.
2016-06-01
Recently, the development of autonomous cars is accelerating on the integration of highly advanced artificial intelligence, which increases demand for a digital map with high accuracy. In particular, traffic markings are required to be precisely digitized since automatic driving utilizes them for position detection. To draw traffic markings, we benefit from Mobile Mapping Systems (MMS) equipped with high-density Laser imaging Detection and Ranging (LiDAR) scanners, which produces large amount of data efficiently with XYZ coordination along with reflectance intensity. Digitizing this data, on the other hand, conventionally has been dependent on human operation, which thus suffers from human errors, subjectivity errors, and low reproductivity. We have tackled this problem by means of automatic extraction of traffic marking, which partially accomplished to draw several traffic markings (G. Takahashi et al., 2014). The key idea of the method was extracting lines using the Hough transform strategically focused on changes in local reflection intensity along scan lines. However, it failed to extract traffic markings properly in a densely marked area, especially when local changing points are close each other. In this paper, we propose a bidirectional gradient-based detection method where local changing points are labelled with plus or minus group. Given that each label corresponds to the boundary between traffic markings and background, we can identify traffic markings explicitly, meaning traffic lines are differentiated correctly by the proposed method. As such, our automated method, a highly accurate and non-human-operator-dependent method using bidirectional gradient-based algorithm, can successfully extract traffic lines composed of complex shapes such as a cross walk, resulting in minimizing cost and obtaining highly accurate results.
Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic.
Šljivo, Amina; Kerkhove, Dwight; Tian, Le; Famaey, Jeroen; Munteanu, Adrian; Moerman, Ingrid; Hoebeke, Jeroen; De Poorter, Eli
2018-01-23
So far, existing sub-GHz wireless communication technologies focused on low-bandwidth, long-range communication with large numbers of constrained devices. Although these characteristics are fine for many Internet of Things (IoT) applications, more demanding application requirements could not be met and legacy Internet technologies such as Transmission Control Protocol/Internet Protocol (TCP/IP) could not be used. This has changed with the advent of the new IEEE 802.11ah Wi-Fi standard, which is much more suitable for reliable bidirectional communication and high-throughput applications over a wide area (up to 1 km). The standard offers great possibilities for network performance optimization through a number of physical- and link-layer configurable features. However, given that the optimal configuration parameters depend on traffic patterns, the standard does not dictate how to determine them. Such a large number of configuration options can lead to sub-optimal or even incorrect configurations. Therefore, we investigated how two key mechanisms, Restricted Access Window (RAW) grouping and Traffic Indication Map (TIM) segmentation, influence scalability, throughput, latency and energy efficiency in the presence of bidirectional TCP/IP traffic. We considered both high-throughput video streaming traffic and large-scale reliable sensing traffic and investigated TCP behavior in both scenarios when the link layer introduces long delays. This article presents the relations between attainable throughput per station and attainable number of stations, as well as the influence of RAW, TIM and TCP parameters on both. We found that up to 20 continuously streaming IP-cameras can be reliably connected via IEEE 802.11ah with a maximum average data rate of 160 kbps, whereas 10 IP-cameras can achieve average data rates of up to 255 kbps over 200 m. Up to 6960 stations transmitting every 60 s can be connected over 1 km with no lost packets. The presented results enable the fine tuning of RAW and TIM parameters for throughput-demanding reliable applications (i.e., video streaming, firmware updates) on one hand, and very dense low-throughput reliable networks with bidirectional traffic on the other hand.
Performance Evaluation of IEEE 802.11ah Networks With High-Throughput Bidirectional Traffic
Kerkhove, Dwight; Tian, Le; Munteanu, Adrian; De Poorter, Eli
2018-01-01
So far, existing sub-GHz wireless communication technologies focused on low-bandwidth, long-range communication with large numbers of constrained devices. Although these characteristics are fine for many Internet of Things (IoT) applications, more demanding application requirements could not be met and legacy Internet technologies such as Transmission Control Protocol/Internet Protocol (TCP/IP) could not be used. This has changed with the advent of the new IEEE 802.11ah Wi-Fi standard, which is much more suitable for reliable bidirectional communication and high-throughput applications over a wide area (up to 1 km). The standard offers great possibilities for network performance optimization through a number of physical- and link-layer configurable features. However, given that the optimal configuration parameters depend on traffic patterns, the standard does not dictate how to determine them. Such a large number of configuration options can lead to sub-optimal or even incorrect configurations. Therefore, we investigated how two key mechanisms, Restricted Access Window (RAW) grouping and Traffic Indication Map (TIM) segmentation, influence scalability, throughput, latency and energy efficiency in the presence of bidirectional TCP/IP traffic. We considered both high-throughput video streaming traffic and large-scale reliable sensing traffic and investigated TCP behavior in both scenarios when the link layer introduces long delays. This article presents the relations between attainable throughput per station and attainable number of stations, as well as the influence of RAW, TIM and TCP parameters on both. We found that up to 20 continuously streaming IP-cameras can be reliably connected via IEEE 802.11ah with a maximum average data rate of 160 kbps, whereas 10 IP-cameras can achieve average data rates of up to 255 kbps over 200 m. Up to 6960 stations transmitting every 60 s can be connected over 1 km with no lost packets. The presented results enable the fine tuning of RAW and TIM parameters for throughput-demanding reliable applications (i.e., video streaming, firmware updates) on one hand, and very dense low-throughput reliable networks with bidirectional traffic on the other hand. PMID:29360798
Methorst, Rob; Schepers, Paul; Kamminga, Jaap; Zeegers, Theo; Fishman, Elliot
2017-08-01
Many studies have found bicycle-motor vehicle crashes to be more likely on bidirectional cycle paths than on unidirectional cycle paths because drivers do not expect cyclists riding at the right side of the road. In this paper we discuss the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions prevent this lack of expectancy and accordingly improves cycling safety. A new national standard requires careful consideration because a reversal is difficult once cyclists are used to their new freedom of route choice. We therefore explored the hypothesis using available data, research, and theories. The results show that of the length of cycle paths along distributor roads in the Netherlands, 72% is bidirectional. If drivers would become used to cyclists riding at the left side of the road, this result raises the question of why bidirectional cycle paths in the Netherlands still have a poor safety record compared to unidirectional cycle paths. Moreover, our exploration suggested that bidirectional cycle paths have additional safety problems. It increases the complexity of unsignalized intersections because drivers have to scan more directions in a short period of time. Moreover, there are some indications that the likelihood of frontal crashes between cyclists increases. We reject the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions will improve cycle safety. We recommend more attention for mitigating measures given the widespread application of bidirectional cycle paths in the Netherlands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated capabilities in heavy vehicles : human factors research needs
DOT National Transportation Integrated Search
2003-10-09
The Full Road Closure method uses facility closure and total traffic diversion, which may be for one direction or bi-directional traffic flow, to accelerate construction and reduce the negative impacts of work zones. With good planning, interagency c...
Stone, J D; Peterson, A P; Eyer, J; Oblak, T G; Sickles, D W
1999-11-15
Neurofilament modification and accumulation, occurring in toxicant-induced neuropathies, has been proposed to compromise fast axonal transport and contribute to neurological symptoms or pathology. The current study compares the effects of the neurotoxicants acrylamide (ACR) and 2,5-hexanedione (2,5-HD) on the quantity of fast, bidirectional vesicular traffic within isolated mouse sciatic nerve axons from transgenic mice lacking axonal neurofilaments (Eyer and Peterson, Neuron 12, 1-20, 1994) and nontransgenic littermates possessing neurofilaments. Fast anterograde and retrograde membrane bound organelle (MBO) traffic was quantitated within axons, before and after toxicant exposure, using video-enhanced differential interference contrast (AVEC-DIC) microscopy. Addition of 0.7 mM ACR to the buffer bathing the nerve produced a time-dependent reduction in bidirectional transport with a similar time to onset and magnitude in both transgenic and nontransgenic mice. 2,5-HD (4 mM) exposure reduced bidirectional vesicle traffic by a similar amount in both transgenic and nontransgenic animals. The time to onset of the transport reduction was less and the magnitude of the reduction was greater with 2,5-HD compared to ACR. A single 10-min exposure to ACR or 2,5-HD produced a similar reduction in transport to that produced by prolonged (1 h) exposure. Nonneurotoxic propionamide or 3,4-hexanedione (3,4-HD) produced no changes in bidirectional transport in either transgenic or nontransgenic animals. We conclude that ACR or 2,5-HD produces a rapid, saturable, nonreversible, neurotoxicant-specific reduction in fast bidirectional transport within isolated peripheral nerve axons. These actions are mediated through direct modification of axonal component(s), which are independent of toxicant-induced modifications of, or accumulations of, neurofilaments. Copyright 1999 Academic Press.
Traffic protection in MPLS networks using an off-line flow optimization model
NASA Astrophysics Data System (ADS)
Krzesinski, Anthony E.; Muller, Karen E.
2002-07-01
MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault in an MPLS network. Two MPLS-based recovery models have been proposed: IP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. IP re-routing is robust and frugal since no resources are pre-committed but is inherently slower than protection switching which is intended to offer high reliability to premium services where fault recovery takes place at the 100 ms time scale. We present a model of protection switching in MPLS networks. A variant of the flow deviation method is used to find and capacitate a set of optimal label switched paths. The traffic is routed over a set of working LSPs. Global repair is implemented by reserving a set of pre-established recovery LSPs. An analytic model is used to evaluate the MPLS-based recovery mechanisms in response to bi-directional link failures. A simulation model is used to evaluate the MPLS recovery cycle in terms of the time needed to restore the traffic after a uni-directional link failure. The models are applied to evaluate the effectiveness of protection switching in networks consisting of between 20 and 100 nodes.
Engel, Benjamin D; Ludington, William B; Marshall, Wallace F
2009-10-05
The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.
General dependencies and causality analysis of road traffic fatalities in OECD countries.
Yaseen, Muhammad Rizwan; Ali, Qamar; Khan, Muhammad Tariq Iqbal
2018-05-07
The road traffic accidents were responsible for material and human loss which was equal to 2.8 to 5% of gross national product (GNP). However, literature does not explore the elasticity coefficients and nexus of road traffic fatalities with foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers in R&D department, and environmental particulate matter. This study filled this research gap by exploring the nexus between road traffic fatalities, foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers, and environmental particulate matter in Organization for Economic Cooperation and Development (OECD) countries by using panel data from 1995 to 2015. The panel Autoregressive Distributed Lag (ARDL) bound test was used for the detection of cointegration between the variables after checking the stationarity in selected variables with different panel unit root tests. Panel vector error correction model explored the causality of road traffic fatalities, foreign direct investment, PM2.5 in the environment, and trade openness in the long run. Road traffic fatalities showed short run bi-directional causality with foreign direct investment and health expenditures. The short run bi-directional causality was also observed between trade and foreign direct investment and cellular mobile subscriptions and foreign direct investment. The panel fully modified ordinary least square (FMOLS) and panel dynamic ordinary least square (DOLS) showed the 0.947% reduction in road fatalities for 1% increase in the health expenditures in OECD countries. The significant reduction in road fatalities was also observed due to 1% increase in trade openness and researchers in R&D, which implies the importance of trade and research for road safety. It is required to invest in the health sector for the safety of precious human lives like the hospitals with latest medical equipment and improvement in the emergency services in the country. The research and development activities should be enhanced especially for the health and transportation sectors. The trade of environment-friendly technology should be promoted for the protection of environment.
Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun
2015-01-01
This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512
Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic
NASA Astrophysics Data System (ADS)
Appert-Rolland, C.; Hilhorst, H. J.; Schehr, G.
2010-08-01
Firstly, we consider a unidirectional flux \\bar {\\omega } of vehicles, each of which is characterized by its 'natural' velocity v drawn from a distribution P(v). The traffic flow is modeled as a collection of straight 'world lines' in the time-space plane, with overtaking events represented by a fixed queuing time τ imposed on the overtaking vehicle. This geometrical model exhibits platoon formation and allows, among many other things, for the calculation of the effective average velocity w\\equiv \\phi (v) of a vehicle of natural velocity v. Secondly, we extend the model to two opposite lanes, A and B. We argue that the queuing time τ in one lane is determined by the traffic density in the opposite lane. On the basis of reasonable additional assumptions we establish a set of equations that couple the two lanes and can be solved numerically. It appears that above a critical value \\bar {\\omega }_{\\mathrm {c}} of the control parameter \\bar {\\omega } the symmetry between the lanes is spontaneously broken: there is a slow lane where long platoons form behind the slowest vehicles, and a fast lane where overtaking is easy due to the wide spacing between the platoons in the opposite direction. A variant of the model is studied in which the spatial vehicle density \\bar {\\rho } rather than the flux \\bar {\\omega } is the control parameter. Unequal fluxes \\bar {\\omega }_{\\mathrm {A}} and \\bar {\\omega }_{\\mathrm {B}} in the two lanes are also considered. The symmetry breaking phenomenon exhibited by this model, even though no doubt hard to observe in pure form in real-life traffic, nevertheless indicates a tendency of such traffic.
NASA Astrophysics Data System (ADS)
Wang, Lina; Jayaratne, Rohan; Heuff, Darlene; Morawska, Lidia
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Guillemin, M; Reinert, P
2002-02-01
There is a heavy traffic of cells and DNA through the placenta during pregnancy. The rate of fetal cells in the maternal blood is correlated with abnormalities, such as aneuploidy and pre-eclampsia. Studying and quantifying these cells could improve antenatal diagnosis techniques, especially for Down syndrome. Maternal-fetal microchimerism is frequently observed in several auto-immune diseases in adulthood, such as systemic scleroderma. Studies suggest a rather allo-immune pathophysiology, involving maternal-fetal HLA compatibility. Microchimerism is also found in auto-immune diseases in children. Thus, the cells traffic offers new insights for antenatal diagnosis techniques and pathophysiology of auto-immune diseases.
Holding-time-aware asymmetric spectrum allocation in virtual optical networks
NASA Astrophysics Data System (ADS)
Lyu, Chunjian; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Virtual optical networks (VONs) have been considered as a promising solution to support current high-capacity dynamic traffic and achieve rapid applications deployment. Since most of the network services (e.g., high-definition video service, cloud computing, distributed storage) in VONs are provisioned by dedicated data centers, needing different amount of bandwidth resources in both directions, the network traffic is mostly asymmetric. The common strategy, symmetric provisioning of traffic in optical networks, leads to a waste of spectrum resources in such traffic patterns. In this paper, we design a holding-time-aware asymmetric spectrum allocation module based on SDON architecture and an asymmetric spectrum allocation algorithm based on the module is proposed. For the purpose of reducing spectrum resources' waste, the algorithm attempts to reallocate the idle unidirectional spectrum slots in VONs, which are generated due to the asymmetry of services' bidirectional bandwidth. This part of resources can be exploited by other requests, such as short-time non-VON requests. We also introduce a two-dimensional asymmetric resource model for maintaining idle spectrum resources information of VON in spectrum and time domains. Moreover, a simulation is designed to evaluate the performance of the proposed algorithm, and results show that our proposed asymmetric spectrum allocation algorithm can improve the resource waste and reduce blocking probability.
NASA Astrophysics Data System (ADS)
Shinozaki, Takashi; Okada, Masato; Reyes, Alex D.; Câteau, Hideyuki
2010-01-01
Intermingled neural connections apparent in the brain make us wonder what controls the traffic of propagating activity in the brain to secure signal transmission without harmful crosstalk. Here, we reveal that inhibitory input but not excitatory input works as a particularly useful traffic controller because it controls the degree of synchrony of population firing of neurons as well as controlling the size of the population firing bidirectionally. Our dynamical system analysis reveals that the synchrony enhancement depends crucially on the nonlinear membrane potential dynamics and a hidden slow dynamical variable. Our electrophysiological study with rodent slice preparations show that the phenomenon happens in real neurons. Furthermore, our analysis with the Fokker-Planck equations demonstrates the phenomenon in a semianalytical manner.
NASA Astrophysics Data System (ADS)
Almalaq, Yasser; Matin, Mohammad A.
2014-09-01
The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.
Glass-like dynamics in confined and congested ant traffic.
Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A D; Goldman, Daniel I
2015-09-07
The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.
Generalized model of a bidirectional DC-DC converter
NASA Astrophysics Data System (ADS)
Hinov, Nikolay; Arnaudov, Dimitar; Penev, Dimitar
2017-12-01
The following paperwork presents models of bidirectional converters. A classic bidirectional converter and a new bidirectional circuit based on a ZCS resonant converter are investigated and compared. The developed models of these converters allow comparison between their characteristics showing their advantages and disadvantages. The models allow precise models of energy storage elements to be implemented as well, which is useful for examination of energy storage systems.
Markina-Iñarrairaegui, Ane; Etxebeste, Oier; Herrero-García, Erika; Araújo-Bazán, Lidia; Fernández-Martínez, Javier; Flores, Jairo A.; Osmani, Stephen A.; Espeso, Eduardo A.
2011-01-01
Nuclear transporters mediate bidirectional macromolecule traffic through the nuclear pore complex (NPC), thus participating in vital processes of eukaryotic cells. A systematic functional analysis in Aspergillus nidulans permitted the identification of 4 essential nuclear transport pathways of a hypothetical number of 14. The absence of phenotypes for most deletants indicates redundant roles for these nuclear receptors. Subcellular distribution studies of these carriers show three main distributions: nuclear, nucleocytoplasmic, and in association with the nuclear envelope. These locations are not specific to predicted roles as exportins or importins but indicate that bidirectional transport may occur coordinately in all nuclei of a syncytium. Coinciding with mitotic NPC rearrangements, transporters dynamically modified their localizations, suggesting supplementary roles to nucleocytoplasmic transport specifically during mitosis. Loss of transportin-SR and Mex/TAP from the nuclear envelope indicates absence of RNA transport during the partially open mitosis of Aspergillus, whereas nucleolar accumulation of Kap121 and Kap123 homologues suggests a role in nucleolar disassembly. This work provides new insight into the roles of nuclear transporters and opens an avenue for future studies of the molecular mechanisms of transport among nuclei within a common cytoplasm, using A. nidulans as a model organism. PMID:21880896
NCC Simulation Model: Simulating the operations of the network control center, phase 2
NASA Technical Reports Server (NTRS)
Benjamin, Norman M.; Paul, Arthur S.; Gill, Tepper L.
1992-01-01
The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors.
NASA Astrophysics Data System (ADS)
Kumar, Love; Sharma, Vishal; Singh, Amarpal
2017-12-01
Wireless Sensor Networks (WSNs) have an assortment of application areas, for instance, civil, military, and video surveillance with restricted power resources and transmission link. To accommodate the massive traffic load in hefty sensor networks is another key issue. Subsequently, there is a necessity to backhaul the sensed information of such networks and prolong the transmission link to access the distinct receivers. Passive Optical Network (PON), a next-generation access technology, comes out as a suitable candidate for the convergence of the sensed data to the core system. The earlier demonstrated work with single-OLT-PON introduces an overloaded buffer akin to video surveillance scenarios. In this paper, to combine the bandwidth potential of PONs with the mobility capability of WSNs, the viability for the convergence of PONs and WSNs incorporating multi-optical line terminals is demonstrated to handle the overloaded OLTs. The existing M/M/1 queue theory with interleaving polling with adaptive cycle time as dynamic bandwidth algorithm is used to shun the probability of packets clash. Further, the proposed multi-sink WSN and multi-OLT PON converged structure is investigated in bidirectional mode analytically and through computer simulations. The observations establish the proposed structure competent to accommodate the colossal data traffic through less time consumption.
Heavy metal pollution in Nanchang City and its health implication on traffic policemen.
Liu, Xiaozhen; Liang, Yue; Guo, Jiangmei
2017-09-27
The purpose of this study is to evaluate the health effect of heavy metal pollution in air pollutants on traffic policemen. This study will facilitate the scientific evaluation of health status of traffic policemen. PM 10 samples were collected from industrial area, congested traffic area and residential area respectively in Nanchang City, and the concentrations of heavy metals were analyzed. The traffic policemen were examined through chest X-rays. The total of 637 urine samples and 142 blood samples have been collected, and the concentrations of Pb in samples were detected. Vehicle flux data of Nanchang City were collected from the Department of Transport's Traffic Management. Statistic analyses were carried out by statistics software of Excel 2003 and SPSS20.0, and the health effect of heavy metal pollution of PM 10 on the traffic policemen was evaluated. The discharge of pollutants from enterprises is an important reason for the high content of heavy metals in urban air pollution. With the rapid growth of urban traffic flow, Bayi Bridge becomes an important transportation hinge in Nanchang City, and the bidirectional traffic flow rate through the bridge at peak hours reached 99 vehicles per minute. The latent hazard of occupational harm on the traffic policemen caused by automobile exhaust is increasing. The concentration of Pb in the urine and blood samples from traffic policemen working in Nanchang City was 268.310 ± 177.031 and 22.873 ± 21.137 μg/L, respectively. Both results (2.04% of Pb in urine and 18.31% of Pb in blood) exceeded the highest limit of observed occupationally outdoor workers. This study provides an initial contribution for the assessment of city air pollution, esp. the health effect of heavy metal (Pb) pollution on traffic policemen.
Study of bidirectional broadband passive optical network (BPON) using EDFA
NASA Astrophysics Data System (ADS)
Almalaq, Yasser
Optical line terminals (OLTs) and number of optical network units (ONUs) are two main parts of passive optical network (PON). OLT is placed at the central office of the service providers, the ONUs are located near to the end subscribers. When compared with point-to-point design, a PON decreases the number of fiber used and central office components required. Broadband PON (BPON), which is one type of PON, can support high-speed voice, data and video services to subscribers' residential homes and small businesses. In this research, by using erbium doped fiber amplifier (EDFA), the performance of bi-directional BPON is experimented and tested for both downstream and upstream traffic directions. Ethernet PON (E-PON) and gigabit PON (G-PON) are the two other kinds of passive optical network besides BPON. The most beneficial factor of using BPON is it's reduced cost. The cost of the maintenance between the central office and the users' side is suitable because of the use of passive components, such as a splitter in the BPON architecture. In this work, a bidirectional BPON has been analyzed for both downstream and upstream cases by using bit error rate analyzer (BER). BER analyzers test three factors that are the maximum Q factor, minimum bit error rate, and eye height. In other words, parameters such as maximum Q factor, minimum bit error rate, and eye height can be analyzed utilized a BER tester. Passive optical components such as a splitter, optical circulator, and filters have been used in modeling and simulations. A 12th edition Optiwave simulator has been used in order to analyze the bidirectional BPON system. The system has been tested under several conditions such as changing the fiber length, extinction ratio, dispersion, and coding technique. When a long optical fiber above 40km was used, an EDFA was used in order to improve the quality of the signal.
NASA Astrophysics Data System (ADS)
Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.
2015-03-01
A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.
Laser pulse bidirectional reflectance from CALIPSO mission
NASA Astrophysics Data System (ADS)
Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Vaughan, Mark; Liu, Zhaoyan; Rodier, Sharon; Hunt, William; Powell, Kathy; Lucker, Patricia; Trepte, Charles
2018-06-01
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples' distribution at 30 m vertical resolution are discussed. The saturated laser pulse magnitudes from snow and ice surfaces are recovered based on information extracted from the tail end of the surface signal. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud-covered regions and MODIS BRDF-albedo model parameters. In addition to the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectances are calculated from the CALIOP lidar background data and compared with the bidirectional reflectances derived from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and are expected to have valuable applications for modelers.
Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics
NASA Astrophysics Data System (ADS)
Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.
2017-11-01
The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.
Design of a network for concurrent message passing systems
NASA Astrophysics Data System (ADS)
Song, Paul Y.
1988-08-01
We describe the design of the network design frame (NDF), a self-timed routing chip for a message-passing concurrent computer. The NDF uses a partitioned data path, low-voltage output drivers, and a distributed token-passing arbiter to provide a bandwidth of 450 Mbits/sec into the network. Wormhole routing and bidirectional virtual channels are used to provide low latency communications, less than 2us latency to deliver a 216 bit message across the diameter of a 1K node mess-connected machine. To support concurrent software systems, the NDF provides two logical networks, one for user messages and one for system messages. The two networks share the same set of physical wires. To facilitate the development of network nodes, the NDF is a design frame. The NDF circuitry is integrated into the pad frame of a chip leaving the center of the chip uncommitted. We define an analytic framework in which to study the effects of network size, network buffering capacity, bidirectional channels, and traffic on this class of networks. The response of the network to various combinations of these parameters are obtained through extensive simulation of the network model. Through simulation, we are able to observe the macro behavior of the network as opposed to the micro behavior of the NDF routing controller.
Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes
Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...
Molecular motor traffic: From biological nanomachines to macroscopic transport
NASA Astrophysics Data System (ADS)
Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.
2006-12-01
All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.
2012-01-10
water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ... model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with...proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing
Automated Synthesis of Long Communication Delays for Testing
NASA Technical Reports Server (NTRS)
Seibert, Marc; McKim, James
2005-01-01
Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.
ERIC Educational Resources Information Center
Paschall, Katherine W.; Mastergeorge, Ann M.
2016-01-01
The concept of bidirectionality represents a process of mutual influence between parent and child, whereby each influences the other as well as the dyadic relationship. Despite the widespread acceptance of bidirectional models of influence, there is still a lack of integration of such models in current research designs. Research on…
Survey of the Influence of the Width of Urban Branch Roads on the Meeting of Two-Way Vehicle Flows
Chen, Qun; Zhao, Yunan; Pan, Shuangli; Wang, Yan
2016-01-01
Branch roads, which are densely distributed in cities, allow for the flow of local traffic and provide connections between the city and outlying areas. Branch roads are typically narrow, and two-way traffic flows on branch roads are thus affected when vehicles traveling in opposite directions meet. This study investigates the changes in the velocities of vehicles when they meet on two-way branch roads. Various widths of branch roads were selected, and their influence on traffic flows was investigated via a video survey. The results show that, depending on the average vehicle velocity, branch roads require different widths to prevent a large decrease in velocity when vehicles meet. When the velocity on a branch road is not high (e.g., the average velocity without meeting is approximately 6 m/s), appropriately increasing the road width will notably increase the meeting velocity. However, when the velocity is high (e.g., the average velocity without meeting is greater than 10 m/s), there is a large decrease in velocity when meeting even if the road surface is wide (6.5 m). This study provides a basis for selecting the width of urban branch roads and the simulation of bidirectional traffic on such roads. PMID:26881427
Survey of the Influence of the Width of Urban Branch Roads on the Meeting of Two-Way Vehicle Flows.
Chen, Qun; Zhao, Yunan; Pan, Shuangli; Wang, Yan
2016-01-01
Branch roads, which are densely distributed in cities, allow for the flow of local traffic and provide connections between the city and outlying areas. Branch roads are typically narrow, and two-way traffic flows on branch roads are thus affected when vehicles traveling in opposite directions meet. This study investigates the changes in the velocities of vehicles when they meet on two-way branch roads. Various widths of branch roads were selected, and their influence on traffic flows was investigated via a video survey. The results show that, depending on the average vehicle velocity, branch roads require different widths to prevent a large decrease in velocity when vehicles meet. When the velocity on a branch road is not high (e.g., the average velocity without meeting is approximately 6 m/s), appropriately increasing the road width will notably increase the meeting velocity. However, when the velocity is high (e.g., the average velocity without meeting is greater than 10 m/s), there is a large decrease in velocity when meeting even if the road surface is wide (6.5 m). This study provides a basis for selecting the width of urban branch roads and the simulation of bidirectional traffic on such roads.
Bi-directional transition nets
NASA Astrophysics Data System (ADS)
Staines, Anthony Spiteri
2017-06-01
Ordinary Petri nets are forward directed transition systems. Modern transition systems events and event flows are reversible. Hence modeling structures that reflect this are important. The creation of a bi-directional Petri net extends the modeling power of Petri nets. This work presents the successful implementation of a bi-directional transition net. Some toy examples in comparison to Petri nets are given showing the increased modeling power in a compacted form. The results show some interesting findings on how the expressive power of these structures has been increased.
EMMI-Electric solar wind sail facilitated Manned Mars Initiative
NASA Astrophysics Data System (ADS)
Janhunen, Pekka; Merikallio, Sini; Paton, Mark
2015-08-01
The novel propellantless electric solar wind sail concept promises efficient low thrust transportation in the Solar System outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars and allow smaller fuel fraction of spacecraft than what is achievable by traditional means. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in the orbit of Mars provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the International Space Station, ISS.
NASA Astrophysics Data System (ADS)
Geetha, A.; Subramani, C.; Thamizh Thentral, T. M.; Krithika, V.; Usha, S.
2018-04-01
Non isolated Bidirectional DC-DC Converter (NIBDDC) is a good interface between DC source and inverter Fed induction motor drive. This paper deals with comparison between open loop and PI controlled Bidirectional DC to DC Converter Inverter System (BDDCIS). The modelling and control of BDDC is becomes an important issue. Open loop BDDCIS and closed loop PI controlled BDDCIS are designed, modelled and simulated using Matlab- simulink and their results are presented. The investigations indicate superior performance of PI controlled BDDCIS. The proposed BDDCIS has advantages like bidirectional power transfer ability, reduced hardware count and improved dynamic response.
Development and evaluation of an ammonia bidirectional flux parameterization for air quality models
NASA Astrophysics Data System (ADS)
Pleim, Jonathan E.; Bash, Jesse O.; Walker, John T.; Cooter, Ellen J.
2013-05-01
is an important contributor to particulate matter in the atmosphere and can significantly impact terrestrial and aquatic ecosystems. Surface exchange between the atmosphere and biosphere is a key part of the ammonia cycle. New modeling techniques are being developed for use in air quality models that replace current ammonia emissions from fertilized crops and ammonia dry deposition with a bidirectional surface flux model including linkage to a detailed biogeochemical and farm management model. Recent field studies involving surface flux measurements over crops that predominate in North America have been crucial for extending earlier bidirectional flux models toward more realistic treatment of NH3 fluxes for croplands. Comparisons of the ammonia bidirection flux algorithm to both lightly fertilized soybeans and heavily fertilized corn demonstrate that the model can capture the magnitude and dynamics of observed ammonia fluxes, both net deposition and evasion, over a range of conditions with overall biases on the order of the uncertainty of the measurements. However, successful application to the field experiment in heavily fertilized corn required substantial modification of the model to include new parameterizations for in-soil diffusion resistance, ground quasi-laminar boundary layer resistance, and revised cuticular resistance that is dependent on in-canopy NH3 concentration and RH at the leaf surface. This new bidirectional flux algorithm has been incorporated in an air quality modeling system, which also includes an implementation of a soil nitrification model.
Modeling and Measurements to Improve Bidirectional Exchange in CMAQ
Ammonia, NH3, is an emerging atmospheric pollutant of interest. It is an aerosol precursor and growing constituent of nitrogen deposition. In this presentation, the bidirectional exchange model for NH¬3 in the Community Multiscale Air Quality (CMAQ) model will be reviewed and...
Bidirectional reflectance modeling of non-homogeneous plant canopies
NASA Technical Reports Server (NTRS)
Norman, John M.
1986-01-01
The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. Leaf bidirectional reflectance and transmittance distribution functions were measured for corn and soybean leaves. The measurements clearly show that leaves are complex scatterers and considerable specular reflectance is possible. Because of the character of leaf reflectance, true leaf reflectance is larger than the nadir reflectances that are normally used to represent leaves. A 3-dimensional reflectance model, named BIGAR (Bidirectional General Array Model), was developed and compared with measurements from corn and soybean. The model is based on the concept that heterogeneous canopies can be described by a combination of many subcanopies, which contain all the foliage, and these subcanopy envelopes can be characterized by ellipsoids of various sizes and shapes. The model/measurement comparison results indicate that this relatively simple model captures the essential character of row crop BRDF's. Finally, two soil BDRF models were developed: one represents soil particles as rectangular blocks and the other represents soil particles as spheres. The sphere model was found to be superior.
ERIC Educational Resources Information Center
Zhang, Xiao
2013-01-01
Using a two-year and three-wave cross-lagged design with a sample of 118 Chinese preschoolers, the present study examined bidirectional longitudinal relations between father-child relationships and children's social competence. The results of structural equation modeling showed bidirectional effects between father-child conflict and social…
Analytical investigation of bidirectional ductile diaphragms in multi-span bridges
NASA Astrophysics Data System (ADS)
Wei, Xiaone; Bruneau, Michel
2018-04-01
In the AASHTO Guide Specifications for Seismic Bridge Design Provisions, ductile diaphragms are identified as Permissible Earthquake-Resisting Elements (EREs), designed to help resist seismic loads applied in the transverse direction of bridges. When adding longitudinal ductile diaphragms, a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge's longitudinal and transverse axes. This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces (BRBs) in straight multi-span bridge with simply supported floating spans. The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered. Design procedures for the bidirectional ductile diaphragms are first proposed. An analytical model of the example bridge with bidirectional ductile diaphragms, designed based on the proposed methodology, is then built in SAP2000. Pushover and nonlinear time history analyses are performed on the bridge model, and corresponding results are presented. The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated, in order to better understand the impact on the bridge's dynamic performance.
Bidirectional reflectance function in coastal waters: modeling and validation
NASA Astrophysics Data System (ADS)
Gilerson, Alex; Hlaing, Soe; Harmel, Tristan; Tonizzo, Alberto; Arnone, Robert; Weidemann, Alan; Ahmed, Samir
2011-11-01
The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms, specifically tuned for typical coastal waters and other case 2 conditions, are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyperspectral radiometers which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths.
Sunobe, Tomoki; Sado, Tetsuya; Hagiwara, Kiyoshi; Manabe, Hisaya; Suzuki, Toshiyuki; Kobayashi, Yasuhisa; Sakurai, Makoto; Dewa, Shin-Ichi; Matsuoka, Midori; Shinomiya, Akihiko; Fukuda, Kazuya; Miya, Masaki
2017-04-01
Size-advantage and low-density models have been used to explain how mating systems favor hermaphroditism or gonochorism. However, these models do not indicate historical transitions in sexuality. Here, we investigate the evolution of bidirectional sex change and gonochorism by phylogenetic analysis using the mitochondrial gene of the gobiids Trimma (31 species), Priolepis (eight species), and Trimmatom (two species). Trimma and Priolepis formed a clade within the sister group Trimmatom. Gonadal histology and rearing experiments revealed that Trimma marinae, Trimma nasa, and Trimmatom spp. were gonochoric, whereas all other Trimma and Priolepis spp. were bidirectional sex changers or inferred ones. A maximum-likelihood reconstruction analysis demonstrated that the common ancestor of the three genera was gonochoristic. Bidirectional sex change probably evolved from gonochorism in a common ancestor of Trimma and Priolepis. As the gonads of bidirectional sex changers simultaneously contain mature ovarian and immature testicular components or vice versa, individuals are always potentially capable of functioning as females or males, respectively. Monogamy under low-density conditions may have been the ecological condition for the evolution of bidirectional sex change in a common ancestor. As T. marinae and T. nasa are a monophyletic group, gonochorism should have evolved from bidirectional sex change in a common ancestor.
NASA Astrophysics Data System (ADS)
Sunobe, Tomoki; Sado, Tetsuya; Hagiwara, Kiyoshi; Manabe, Hisaya; Suzuki, Toshiyuki; Kobayashi, Yasuhisa; Sakurai, Makoto; Dewa, Shin-ichi; Matsuoka, Midori; Shinomiya, Akihiko; Fukuda, Kazuya; Miya, Masaki
2017-04-01
Size-advantage and low-density models have been used to explain how mating systems favor hermaphroditism or gonochorism. However, these models do not indicate historical transitions in sexuality. Here, we investigate the evolution of bidirectional sex change and gonochorism by phylogenetic analysis using the mitochondrial gene of the gobiids Trimma (31 species), Priolepis (eight species), and Trimmatom (two species). Trimma and Priolepis formed a clade within the sister group Trimmatom. Gonadal histology and rearing experiments revealed that Trimma marinae, Trimma nasa, and Trimmatom spp. were gonochoric, whereas all other Trimma and Priolepis spp. were bidirectional sex changers or inferred ones. A maximum-likelihood reconstruction analysis demonstrated that the common ancestor of the three genera was gonochoristic. Bidirectional sex change probably evolved from gonochorism in a common ancestor of Trimma and Priolepis. As the gonads of bidirectional sex changers simultaneously contain mature ovarian and immature testicular components or vice versa, individuals are always potentially capable of functioning as females or males, respectively. Monogamy under low-density conditions may have been the ecological condition for the evolution of bidirectional sex change in a common ancestor. As T. marinae and T. nasa are a monophyletic group, gonochorism should have evolved from bidirectional sex change in a common ancestor.
Estimating safety effects of pavement management factors utilizing Bayesian random effect models.
Jiang, Ximiao; Huang, Baoshan; Zaretzki, Russell L; Richards, Stephen; Yan, Xuedong
2013-01-01
Previous studies of pavement management factors that relate to the occurrence of traffic-related crashes are rare. Traditional research has mostly employed summary statistics of bidirectional pavement quality measurements in extended longitudinal road segments over a long time period, which may cause a loss of important information and result in biased parameter estimates. The research presented in this article focuses on crash risk of roadways with overall fair to good pavement quality. Real-time and location-specific data were employed to estimate the effects of pavement management factors on the occurrence of crashes. This research is based on the crash data and corresponding pavement quality data for the Tennessee state route highways from 2004 to 2009. The potential temporal and spatial correlations among observations caused by unobserved factors were considered. Overall 6 models were built accounting for no correlation, temporal correlation only, and both the temporal and spatial correlations. These models included Poisson, negative binomial (NB), one random effect Poisson and negative binomial (OREP, ORENB), and two random effect Poisson and negative binomial (TREP, TRENB) models. The Bayesian method was employed to construct these models. The inference is based on the posterior distribution from the Markov chain Monte Carlo (MCMC) simulation. These models were compared using the deviance information criterion. Analysis of the posterior distribution of parameter coefficients indicates that the pavement management factors indexed by Present Serviceability Index (PSI) and Pavement Distress Index (PDI) had significant impacts on the occurrence of crashes, whereas the variable rutting depth was not significant. Among other factors, lane width, median width, type of terrain, and posted speed limit were significant in affecting crash frequency. The findings of this study indicate that a reduction in pavement roughness would reduce the likelihood of traffic-related crashes. Hence, maintaining a low level of pavement roughness is strongly suggested. In addition, the results suggested that the temporal correlation among observations was significant and that the ORENB model outperformed all other models.
Bhatti, A Aziz
2009-12-01
This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.
Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.
1988-01-01
Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.
Mouse is the new woman? Translational research in reproductive immunology.
Clark, David A
2016-11-01
In an outbred mating typical of human reproduction, the embryo and feto-placental unit express paternal antigens to which the mother's immune system can react. However, the embryo and feto-placental unit can engineer the maternal immune defense system towards helpful rather than harmful reactions. Indeed, this begins with the prospective mother's exposure to paternal seminal plasma. In this review, the pregnancy complications of implantation failure (infertility), recurrent spontaneous abortion, pre-eclampsia and intrauterine growth restriction, and premature labor are examined to determine the degree of similarity between events in women and events in lab mouse models. The artificially induced model of endometriosis (which contributes to infertility) is also compared to what occurs in women. One may conclude that the female mouse provides a good analog of the human female. Nevertheless, it is always important to validate mouse data with human studies. The discussion focuses on the intrauterine interface between embryonic and placental tissues and maternal uterine tissues and the dialogue that is referred to as cross-talk. Issues relating to bidirectional transplacental traffic of immune system cells are not discussed as there is very little relevant data.
Content-Addressable Memory Storage by Neural Networks: A General Model and Global Liapunov Method,
1988-03-01
point ex- ists. Liapunov functions were also described for Volterra -Lotka systems whose off-diagonal terms are relatively small (Kilmer, 1972...field, bidirectional associative memory, Volterra -Lotka, Gilpin-Ayala, and Eigen- Schuster models. The Cohen-Grossberg model thus defines a general...masking field, bidirectional associative memory. Volterra -Lotka, Gilpin-Ayala. and Eigen-Schuster models. The Cohen-Grossberg model thus defines a
The Cognitive, Perceptual, and Neural Bases of Skilled Performance
1988-09-01
shunting, masking field, bidirectional associative memory, Volterra - Lotka , Gilpin-Ayala, ani Eigen-Schuster models. The Cohen-Grossberg model thus...field, bidirectional associative memory, Volterra - Lotka , Gilpin-Ayala, and Eigen-Schuster models. A Liapunov functional method is described for...storage by neural networks: A general model and global Liapunov method. In E.L. Schwartz (Ed.), Computational neuroscience. Cambridge, MA: MIT Press
On the Study of Cognitive Bidirectional Relaying with Asymmetric Traffic Demands
NASA Astrophysics Data System (ADS)
Ji, Xiaodong
2015-05-01
In this paper, we consider a cognitive radio network scenario, where two primary users want to exchange information with each other and meanwhile, one secondary node wishes to send messages to a cognitive base station. To meet the target quality of service (QoS) of the primary users and raise the communication opportunity of the secondary nodes, a cognitive bidirectional relaying (BDR) scheme is examined. First, system outage probabilities of conventional direct transmission and BDR schemes are presented. Next, a new system parameter called operating region is defined and calculated, which indicates in which position a secondary node can be a cognitive relay to assist the primary users. Then, a cognitive BDR scheme is proposed, giving a transmission protocol along with a time-slot splitting algorithm between the primary and secondary transmissions. Information-theoretic metric of ergodic capacity is studied for the cognitive BDR scheme to evaluate its performance. Simulation results show that with the proposed scheme, the target QoS of the primary users can be guaranteed, while increasing the communication opportunity for the secondary nodes.
Dixon, Kristiana J; Edwards, Katie M; Gidycz, Christine A
2016-10-01
Previous research has examined the association between intimate partner violence (IPV) victimization experiences and investment model variables, particularly with relation to leaving intentions. However, research only has begun to explore the impact that various dyadic patterns of IPV (i.e., unidirectional victimization, unidirectional perpetration, bidirectional violence, and non-violence) have on investment model variables. Grounded in behavioral principles, the current study used a sample of college women to assess the impact that perpetration and victimization have on investment model variables. Results indicated that 69.2% of the sample was in a relationship with no IPV. Among those who reported IPV in their relationships, 11.9% reported unidirectional perpetration, 10.6% bidirectional violence, and 7.4% unidirectional victimization. Overall, the findings suggest that women's victimization (i.e., victim only and bidirectional IPV) is associated with lower levels of satisfaction and commitment, and that women's perpetration (i.e., perpetration only and bidirectional IPV) is associated with higher levels of investment. Women in bidirectionally violent relationships reported higher quality alternatives than women in non-violent relationships. The current study emphasizes the importance of considering both IPV perpetration and IPV victimization experiences when exploring women's decisions to remain in relationships. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Voss, K. J.; Morel, A.; Antoine, D.
2007-09-01
The radiance viewed from the ocean depends on the illumination and viewing geometry along with the water properties, and this variation is called the bidirectional effect. This bidirectional effect depends on the inherent optical properties of the water, including the volume scattering function, and is important when comparing data from different satellite sensors. The current model of f/Q, which contains the bidirectional effect, by Morel et al. (2002) depends on modeled, not measured, water parameters, thus must be carefully validated. In this paper we combined upwelling radiance distribution data from several cruises, in varied water types and with a wide range of solar zenith angles. We compared modeled and measured Lview/Lnadir and found that the average difference between the model and data was less than 0.01, while the RMS difference between the model and data was on the order of 0.02-0.03. This is well within the statistical noise of the data, which was on the order of 0.04-0.05, due to environmental noise sources such as wave focusing.
Hybrid scheduling mechanisms for Next-generation Passive Optical Networks based on network coding
NASA Astrophysics Data System (ADS)
Zhao, Jijun; Bai, Wei; Liu, Xin; Feng, Nan; Maier, Martin
2014-10-01
Network coding (NC) integrated into Passive Optical Networks (PONs) is regarded as a promising solution to achieve higher throughput and energy efficiency. To efficiently support multimedia traffic under this new transmission mode, novel NC-based hybrid scheduling mechanisms for Next-generation PONs (NG-PONs) including energy management, time slot management, resource allocation, and Quality-of-Service (QoS) scheduling are proposed in this paper. First, we design an energy-saving scheme that is based on Bidirectional Centric Scheduling (BCS) to reduce the energy consumption of both the Optical Line Terminal (OLT) and Optical Network Units (ONUs). Next, we propose an intra-ONU scheduling and an inter-ONU scheduling scheme, which takes NC into account to support service differentiation and QoS assurance. The presented simulation results show that BCS achieves higher energy efficiency under low traffic loads, clearly outperforming the alternative NC-based Upstream Centric Scheduling (UCS) scheme. Furthermore, BCS is shown to provide better QoS assurance.
Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.
Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N
2017-08-07
In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.
Activity-dependent trafficking of lysosomes in dendrites and dendritic spines
Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J.; Ellisman, Mark H.
2017-01-01
In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. PMID:28630145
Modeling of the bi-directional fluxes (BDFs) of ammonia (NH3) over fertilized soybean and corn canopies was evaluated for three intensive sampling periods: the first, during the summer of 2002 in Warsaw, North Carolina (NC), USA; and the second and third during the summer of 2007...
Onfelt, Björn; Nedvetzki, Shlomo; Benninger, Richard K P; Purbhoo, Marco A; Sowinski, Stefanie; Hume, Alistair N; Seabra, Miguel C; Neil, Mark A A; French, Paul M W; Davis, Daniel M
2006-12-15
We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.
Bidirectional plant canopy reflection models derived from the radiation transfer equation
NASA Technical Reports Server (NTRS)
Beeth, D. R.
1975-01-01
A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.
Modeling and simulation of a 2-DOF bidirectional electrothermal microactuator
NASA Astrophysics Data System (ADS)
Topaloglu, N.; Elbuken, C.; Nieva, P. M.; Yavuz, M.; Huissoon, J. P.
2008-03-01
In this paper we present the modeling and simulation of a 2 degree-of-freedom (DOF) bidirectional electrothermal actuator. The four arm microactuator was designed to move in both the horizontal and vertical axes. By tailoring the geometrical parameters of the design, the in-plane and out-of-plane motions were decoupled, resulting in enhanced mobility in both directions. The motion of the actuator was modeled analytically using an electro-thermo-mechanical analysis. To validate the analytical model, finite element simulations were performed using ANSYS. The microactuators were fabricated using PolyMUMPS process and experimental results show good agreement with both the analytical model and the simulations. We demonstrated that the 2-DOF bidirectional electrothermal actuator can achieve 3.7 μm in-plane and 13.3 μm out-of-plane deflections with an input voltage of 10 V.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M.
1984-01-01
Efforts to develop a three dimensional model to predict canopy, bidirectional reflectance for heterogenous plant stands using incident radiation and canopy structural descriptions as inputs are described. Utility programs were developed to cope with the complex output from the 3 dimensional model. In addition an attempt was made to define leaf and soil properties, which are appropriate to the mode, by measuring leaf and soil bidirectional reflectance distribution functions; since almost no data exist on these distributions. In the process it was realized that most models probably are using the wrong leaf spectral properties, and that off-nadir reflectance measurements are difficult to make because of non-Lambertian properties of reference surfaces. Also, in the visible wavebands, rough soil may not be distinguishable from canopies when viewed from above.
Loeber, Rolf; Hinshaw, Stephen P.; Pardini, Dustin A.
2018-01-01
Coercive parent–child interaction models posit that an escalating cycle of negative, bidirectional interchanges influences the development of boys’ externalizing problems and caregivers’ maladaptive parenting over time. However, longitudinal studies examining this hypothesis have been unable to rule out the possibility that between-individual factors account for bidirectional associations between child externalizing problems and maladaptive parenting. Using a longitudinal sample of boys (N = 503) repeatedly assessed eight times across 6-month intervals in childhood (in a range between 6 and 13 years), the current study is the first to use novel within-individual change (fixed effects) models to examine whether parents tend to increase their use of maladaptive parenting strategies following an increase in their son’s externalizing problems, or vice versa. These bidirectional associations were examined using multiple facets of externalizing problems (i.e., interpersonal callousness, conduct and oppositional defiant problems, hyperactivity/impulsivity) and parenting behaviors (i.e., physical punishment, involvement, parent–child communication). Analyses failed to support the notion that when boys increase their typical level of problem behaviors, their parents show an increase in their typical level of maladaptive parenting across the subsequent 6 month period, and vice versa. Instead, across 6-month intervals, within parent-son dyads, changes in maladaptive parenting and child externalizing problems waxed and waned in concert. Fixed effects models to address the topic of bidirectional relations between parent and child behavior are severely underrepresented. We recommend that other researchers who have found significant bidirectional parent–child associations using rank-order change models reexamine their data to determine whether these findings hold when examining changes within parent–child dyads. PMID:26780209
Besemer, Sytske; Loeber, Rolf; Hinshaw, Stephen P; Pardini, Dustin A
2016-10-01
Coercive parent-child interaction models posit that an escalating cycle of negative, bidirectional interchanges influences the development of boys' externalizing problems and caregivers' maladaptive parenting over time. However, longitudinal studies examining this hypothesis have been unable to rule out the possibility that between-individual factors account for bidirectional associations between child externalizing problems and maladaptive parenting. Using a longitudinal sample of boys (N = 503) repeatedly assessed eight times across 6-month intervals in childhood (in a range between 6 and 13 years), the current study is the first to use novel within-individual change (fixed effects) models to examine whether parents tend to increase their use of maladaptive parenting strategies following an increase in their son's externalizing problems, or vice versa. These bidirectional associations were examined using multiple facets of externalizing problems (i.e., interpersonal callousness, conduct and oppositional defiant problems, hyperactivity/impulsivity) and parenting behaviors (i.e., physical punishment, involvement, parent-child communication). Analyses failed to support the notion that when boys increase their typical level of problem behaviors, their parents show an increase in their typical level of maladaptive parenting across the subsequent 6 month period, and vice versa. Instead, across 6-month intervals, within parent-son dyads, changes in maladaptive parenting and child externalizing problems waxed and waned in concert. Fixed effects models to address the topic of bidirectional relations between parent and child behavior are severely underrepresented. We recommend that other researchers who have found significant bidirectional parent-child associations using rank-order change models reexamine their data to determine whether these findings hold when examining changes within parent-child dyads.
NASA Astrophysics Data System (ADS)
Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy
2018-05-01
This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.
Fite, Paula J.; Burke, Jeffrey D.
2010-01-01
This study examined the bidirectional relationship between parent and teacher reported conduct problems in youth and parenting practices using a longitudinal sample of boys assessed from 6 to 16 years of age. Analyses tested whether these bidirectional associations changed across development and whether the nature of these associations varied across African-American and Caucasian families. Overall, the results supported a bidirectional relationship between conduct problems and all parenting practices examined from childhood to adolescence. The influence of conduct problems on changes in parenting behaviors was as strong as the influence of parenting behaviors on changes in conduct problems across development. Changes in the bidirectional relationship across development were found in some, but not all, models. While corporal punishment was more strongly related to changes in teacher-reported conduct problems for African-American boys compared to Caucasian boys, more similarities than differences were found between the ethnic groups in terms of the bidirectional associations examined. PMID:17899362
Leu, Kevin; Boxerman, Jerrold L; Lai, Albert; Nghiemphu, Phioanh L; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M
2016-11-01
To evaluate a leakage correction algorithm for T 1 and T2* artifacts arising from contrast agent extravasation in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) that accounts for bidirectional contrast agent flux and compare relative cerebral blood volume (CBV) estimates and overall survival (OS) stratification from this model to those made with the unidirectional and uncorrected models in patients with recurrent glioblastoma (GBM). We determined median rCBV within contrast-enhancing tumor before and after bevacizumab treatment in patients (75 scans on 1.5T, 19 scans on 3.0T) with recurrent GBM without leakage correction and with application of the unidirectional and bidirectional leakage correction algorithms to determine whether rCBV stratifies OS. Decreased post-bevacizumab rCBV from baseline using the bidirectional leakage correction algorithm significantly correlated with longer OS (Cox, P = 0.01), whereas rCBV change using the unidirectional model (P = 0.43) or the uncorrected rCBV values (P = 0.28) did not. Estimates of rCBV computed with the two leakage correction algorithms differed on average by 14.9%. Accounting for T 1 and T2* leakage contamination in DSC-MRI using a two-compartment, bidirectional rather than unidirectional exchange model might improve post-bevacizumab survival stratification in patients with recurrent GBM. J. Magn. Reson. Imaging 2016;44:1229-1237. © 2016 International Society for Magnetic Resonance in Medicine.
Ogushi, Fumiko; Kertész, János; Kaski, Kimmo; Shimada, Takashi
2017-08-01
Living organisms, ecosystems, and social systems are examples of complex systems in which robustness against inclusion of new elements is an essential feature. A recently proposed simple model has revealed a general mechanism by which such systems can become robust against inclusion of elements with totally random interactions when the elements have a moderate number of links. The interaction is, however, in many systems often intrinsically bidirectional like for mutual symbiosis and competition in ecology. This study reports the strong reinforcement effect of the bidirectionality of the interactions on the robustness of evolving systems. We show that the system with purely bidirectional interactions can grow with twofold average degree, in comparison with the purely unidirectional system. This drastic shift of the transition point comes from the reinforcement of each node, not from a change in structure of the emergent system. For systems with partially bidirectional interactions we find that the regime of the growing phase gets expanded. In the dense interaction regime, there exists an optimum proportion of bidirectional interactions for the growth rate at around 1/3. In the sparsely connected systems, small but finite fraction of bidirectional links can change the system's behaviour from non-growing to growing.
MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family
Chan, Li F.; Webb, Tom R.; Chung, Teng-Teng; Meimaridou, Eirini; Cooray, Sadani N.; Guasti, Leonardo; Chapple, J. Paul; Egertová, Michaela; Elphick, Maurice R.; Cheetham, Michael E.; Metherell, Louise A.; Clark, Adrian J. L.
2009-01-01
The melanocortin receptor (MCR) family consists of 5 G protein-coupled receptors (MC1R–MC5R) with diverse physiologic roles. MC2R is a critical component of the hypothalamic–pituitary–adrenal axis, whereas MC3R and MC4R have an essential role in energy homeostasis. Mutations in MC4R are the single most common cause of monogenic obesity. Investigating the way in which these receptors signal and traffic to the cell membrane is vital in understanding disease processes related to MCR dysfunction. MRAP is an MC2R accessory protein, responsible for adrenal MC2R trafficking and function. Here we identify MRAP2 as a unique homologue of MRAP, expressed in brain and the adrenal gland. We report that MRAP and MRAP2 can interact with all 5 MCRs. This interaction results in MC2R surface expression and signaling. In contrast, MRAP and MRAP2 can reduce MC1R, MC3R, MC4R, and MC5R responsiveness to [Nle4,D-Phe7]alpha-melanocyte-stimulating hormone (NDP-MSH). Collectively, our data identify MRAP and MRAP2 as unique bidirectional regulators of the MCR family. PMID:19329486
NASA Astrophysics Data System (ADS)
Pinto, Thiago M.; Schilstra, Maria J.; Steuber, Volker; Roque, Antonio C.
2015-12-01
Long-term plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses is thought to mediate cerebellar motor learning. It is known that calcium-calmodulin dependent protein kinase II (CaMKII) is essential for plasticity in the cerebellum. Recently, Van Woerden et al. demonstrated that the β isoform of CaMKII regulates the bidirectional inversion of PF-PC plasticity. Because the cellular events that underlie these experimental findings are still poorly understood, our work aims at unravelling how β CaMKII controls the direction of plasticity at PF-PC synapses. We developed a bidirectional plasticity model that replicates the experimental observations by Van Woerden et al. Simulation results obtained from this model indicate the mechanisms that underlie the bidirectional inversion of cerebellar plasticity. As suggested by Van Woerden et al., the filamentous actin binding enables β CaMKII to regulate the bidirectional plasticity at PF-PC synapses. Our model suggests that the reversal of long-term plasticity in PCs is based on a combination of mechanisms that occur at different calcium concentrations.
Surface roughness effects on bidirectional reflectance
NASA Technical Reports Server (NTRS)
Smith, T. F.; Hering, R. G.
1972-01-01
An experimental study of surface roughness effects on bidirectional reflectance of metallic surfaces is presented. A facility capable of irradiating a sample from normal to grazing incidence and recording plane of incidence bidirectional reflectance measurements was developed. Samples consisting of glass, aluminum alloy, and stainless steel materials were selected for examination. Samples were roughened using standard grinding techniques and coated with a radiatively opaque layer of pure aluminum. Mechanical surface roughness parameters, rms heights and rms slopes, evaluated from digitized surface profile measurements are less than 1.0 micrometers and 0.28, respectively. Rough surface specular, bidirectional, and directional reflectance measurements for selected values of polar angle of incidence and wavelength of incident energy within the spectral range of 1 to 14 micrometers are reported. The Beckmann bidirectional reflectance model is compared with reflectance measurements to establish its usefulness in describing the magnitude and spatial distribution of energy reflected from rough surfaces.
Bidirectional optimization of the melting spinning process.
Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping
2014-02-01
A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Belcour, Laurent; Pacanowski, Romain; Delahaie, Marion; Laville-Geay, Aude; Eupherte, Laure
2014-12-01
We compare the performance of various analytical retroreflecting bidirectional reflectance distribution function (BRDF) models to assess how they reproduce accurately measured data of retroreflecting materials. We introduce a new parametrization, the back vector parametrization, to analyze retroreflecting data, and we show that this parametrization better preserves the isotropy of data. Furthermore, we update existing BRDF models to improve the representation of retroreflective data.
Large-scale measurement and modeling of backbone Internet traffic
NASA Astrophysics Data System (ADS)
Roughan, Matthew; Gottlieb, Joel
2002-07-01
There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.
Optical backplane interconnect switch for data processors and computers
NASA Technical Reports Server (NTRS)
Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.
1989-01-01
An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.
Integrating high dimensional bi-directional parsing models for gene mention tagging.
Hsu, Chun-Nan; Chang, Yu-Ming; Kuo, Cheng-Ju; Lin, Yu-Shi; Huang, Han-Shen; Chung, I-Fang
2008-07-01
Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Data sets, programs and an on-line service of our gene mention tagger can be accessed at http://aiia.iis.sinica.edu.tw/biocreative2.htm.
Nature and Nurturing: Parenting in the Context of Child Temperament
ERIC Educational Resources Information Center
Kiff, Cara J.; Lengua, Liliana J.; Zalewski, Maureen
2011-01-01
Accounting for both bidirectional and interactive effects between parenting and child temperament can fine-tune theoretical models of the role of parenting and temperament in children's development of adjustment problems. Evidence for bidirectional and interactive effects between parenting and children's characteristics of frustration, fear,…
Estimation of NH3 Bi-Directional Flux from Managed Agricultural Soils
The Community Multi-Scale Air Quality model (CMAQ v4.7) contains a bi-directional ammonia (NH3) flux option that computes emission and deposition of ammonia derived from commercial fertilizer via a temperature dependent parameterization of canopy and soil compensation ...
Proposed Session: Emissions Inventories, Models and processes: Last year a new CMAQ bidirectional option for the estimation of ammonia flux (emission and deposition) was released. This option essentially replaces NEI crop ammonia emissions with emissions calculated dynamically...
2014-09-01
the MLI coating, and similarly, the surface model as represented by the bidirectional reflectance distribution function ( BRDF ) will never be...surface model as represented by the bidirectional reflectance distribution function ( BRDF ) will never be identical to that found on actual space objects... BRDF model and how it compares to the Ashikhmin-Shirley BRDF [14] using similar nomenclature can be found in Ref. [15]. In this scenario, the state
Laser Pulse Bidirectional Reflectance from CALIPSO Mission
NASA Technical Reports Server (NTRS)
Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Liu, Zhaoyan; Vaughan, Mark; Lucker, Patricia; Trepte, Charles
2017-01-01
In this Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) study, we present a simple way of determining laser pulse bidirectional reflectance over snow/ice surface using the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) 532 nanometer polarization channels' measurements. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The method overview and initial assessment of the method performance will be presented. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and Moderate Resolution Imaging Spectroradiometer (Earth Observing System (EOS)) (MODIS) Bi-directional Reflectance Distribution Function (BRDF) / Albedo model parameters. The comparisons show that the snow surface bidirectional reflectance over Antarctica for saturation region are generally reliable with a mean value of about 0.90 plus or minus 0.10, while the mean surface reflectance from cloud cover region is about 0.84 plus or minus 0.13 and the calculated MODIS reflectance at 555 nanometers from the BRDF / Albedo model with near nadir illumination and viewing angles is about 0.96 plus or minus 0.04. The comparisons here demonstrate that the snow surface reflectance underneath the cloud with cloud optical depth of about 1 is significantly lower than that for a clear sky condition.
Leaf bidirectional reflectance and transmittance in corn and soybean
NASA Technical Reports Server (NTRS)
Walter-Shea, E. A.; Norman, J. M.; Blad, B. L.
1989-01-01
Bidirectional optical properties of leaves must be adequately characterized to develop comprehensive and reliably predictive canopy radiative-transfer models. Directional reflectance and transmittance factors of individual corn and soybean leaves were measured at source incidence angles (SIAs) 20, 45, and 70 deg and numerous view angles in the visible and NIR. Bidirectional reflectance distributions changed with increasing SIA, with forward scattering most pronounced at 70 deg. Directional-hemispherical reflectance generally increased and transmittance decreased with increased SIA. Directional-hemispherical reflectance factors were higher and transmittances were lower than the nadir-viewed reflectance component.
A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance
ERIC Educational Resources Information Center
Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.
2005-01-01
In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…
Observations of bi-directional leader development in a triggered lightning flash
NASA Technical Reports Server (NTRS)
Laroche, P.; Idone, V.; Eybert-Berard, A.; Barret, L.
1991-01-01
Observations of a modified form of rocket triggered lightning are described. A flash triggered during the summer of 1989 is studied as part of an effort to model bidirectional discharge. It is suggested that the altitude triggering technique provides a realistic means of studying the attachment process.
ERIC Educational Resources Information Center
Mrug, Sylvie; Windle, Michael
2009-01-01
This study utilized cross-lagged longitudinal models to examine prospective, bidirectional relationships between witnessing violence and victimization and three adjustment variables--delinquency, conduct problems, and school connectedness. Participants included 603 early adolescent boys and girls (78% African American, 20% Caucasian). Witnessing…
A cropland farm management modeling system for regional air quality and field-scale applications of bi-directional ammonia exchange was presented at ITM XXI. The goal of this research is to improve estimates of nitrogen deposition to terrestrial and aquatic ecosystems and ambien...
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Jupp, David L. B.
1990-01-01
Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.
Development of a traffic noise prediction model for an urban environment.
Sharma, Asheesh; Bodhe, G L; Schimak, G
2014-01-01
The objective of this study is to develop a traffic noise model under diverse traffic conditions in metropolitan cities. The model has been developed to calculate equivalent traffic noise based on four input variables i.e. equivalent traffic flow (Q e ), equivalent vehicle speed (S e ) and distance (d) and honking (h). The traffic data is collected and statistically analyzed in three different cases for 15-min during morning and evening rush hours. Case I represents congested traffic where equivalent vehicle speed is <30 km/h while case II represents free-flowing traffic where equivalent vehicle speed is >30 km/h and case III represents calm traffic where no honking is recorded. The noise model showed better results than earlier developed noise model for Indian traffic conditions. A comparative assessment between present and earlier developed noise model has also been presented in the study. The model is validated with measured noise levels and the correlation coefficients between measured and predicted noise levels were found to be 0.75, 0.83 and 0.86 for case I, II and III respectively. The noise model performs reasonably well under different traffic conditions and could be implemented for traffic noise prediction at other region as well.
REVIEW ARTICLE: Hither and yon: a review of bi-directional microtubule-based transport
NASA Astrophysics Data System (ADS)
Gross, Steven P.
2004-06-01
Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.
Xu, Chengcheng; Wang, Wei; Liu, Pan; Zhang, Fangwei
2015-01-01
This study aimed to identify the traffic flow variables contributing to crash risks under different traffic states and to develop a real-time crash risk model incorporating the varying crash mechanisms across different traffic states. The crash, traffic, and geometric data were collected on the I-880N freeway in California in 2008 and 2009. This study considered 4 different traffic states in Wu's 4-phase traffic theory. They are free fluid traffic, bunched fluid traffic, bunched congested traffic, and standing congested traffic. Several different statistical methods were used to accomplish the research objective. The preliminary analysis showed that traffic states significantly affected crash likelihood, collision type, and injury severity. Nonlinear canonical correlation analysis (NLCCA) was conducted to identify the underlying phenomena that made certain traffic states more hazardous than others. The results suggested that different traffic states were associated with various collision types and injury severities. The matching of traffic flow characteristics and crash characteristics in NLCCA revealed how traffic states affected traffic safety. The logistic regression analyses showed that the factors contributing to crash risks were quite different across various traffic states. To incorporate the varying crash mechanisms across different traffic states, random parameters logistic regression was used to develop a real-time crash risk model. Bayesian inference based on Markov chain Monte Carlo simulations was used for model estimation. The parameters of traffic flow variables in the model were allowed to vary across different traffic states. Compared with the standard logistic regression model, the proposed model significantly improved the goodness-of-fit and predictive performance. These results can promote a better understanding of the relationship between traffic flow characteristics and crash risks, which is valuable knowledge in the pursuit of improving traffic safety on freeways through the use of dynamic safety management systems.
Prokhorov, Alexander
2012-05-01
This paper proposes a three-component bidirectional reflectance distribution function (3C BRDF) model consisting of diffuse, quasi-specular, and glossy components for calculation of effective emissivities of blackbody cavities and then investigates the properties of the new reflection model. The particle swarm optimization method is applied for fitting a 3C BRDF model to measured BRDFs. The model is incorporated into the Monte Carlo ray-tracing algorithm for isothermal cavities. Finally, the paper compares the results obtained using the 3C model and the conventional specular-diffuse model of reflection.
A mixing evolution model for bidirectional microblog user networks
NASA Astrophysics Data System (ADS)
Yuan, Wei-Guo; Liu, Yun
2015-08-01
Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.
Effects of aerosols and surface shadowing on bidirectional reflectance measurements of deserts
NASA Technical Reports Server (NTRS)
Bowker, David E.; Davis, Richard E.
1987-01-01
Desert surfaces are probably one of the most stable of the Earth's natural targets for remote sensing. The bidirectional reflectance properties of the Saudi Arabian desert was investigated during the Summer Monsoon Experiment (Summer Monex). A comparison of high-altitude with near-surface measurements of the White Sands desert showed significant differences. These discrepancies have been attributed to forward scattering of the dust-laden atmosphere prevalent during Summer Monex. This paper is concerned in general with modeling the effects of atmospheric aerosols and surface shadowing on the remote sensing of bidirectional reflectance factors of desert targets, and in particular with comparing the results of these models with flight results. Although it is possible to approximate the latter, it is felt that a surface reflectance model with a smaller specular component would have permitted using a more realistic set of atmospheric conditions in the simulations.
Bidirectional reflection functions from surface bump maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, B.; Max, N.; Springmeyer, R.
1987-04-29
The Torrance-Sparrow model for calculating bidirectional reflection functions contains a geometrical attenuation factor to account for shadowing and occlusions in a hypothetical distribution of grooves on a rough surface. Using an efficient table-based method for determining the shadows and occlusions, we calculate the geometric attenuation factor for surfaces defined by a specific table of bump heights. Diffuse and glossy specular reflection of the environment can be handled in a unified manner by using an integral of the bidirectional reflection function times the environmental illumination, over the hemisphere of solid angle above a surface. We present a method of estimating themore » integral, by expanding the bidirectional reflection coefficient in spherical harmonics, and show how the coefficients in this expansion can be determined efficiently by reorganizing our geometric attenuation calculation.« less
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerner, Boris S.
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (formore » example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.« less
A Sarsa(λ)-based control model for real-time traffic light coordination.
Zhou, Xiaoke; Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control.
NASA Technical Reports Server (NTRS)
1973-01-01
The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).
Correcting Bidirectional Effects in Remote Sensing Reflectance from Coastal Waters
NASA Astrophysics Data System (ADS)
Stamnes, K. H.; Fan, Y.; Li, W.; Voss, K. J.; Gatebe, C. K.
2016-02-01
Understanding bidirectional effects including sunglint is important for GEO-CAPE for several reasons: (i) correct interpretation of ocean color data; (ii) comparing consistency of spectral radiance data derived from space observations with a single instrument for a variety of illumination and viewing conditions; (iii) merging data collected by different instruments operating simultaneously. We present a new neural network (NN) method to correct bidirectional effects in water-leaving radiance for both Case 1 and Case 2 waters. We also discuss a new BRDF and 2D sun-glint model that was validated by comparing simulated surface reflectances with Cloud Absorption Radiometer (CAR) data. Finally, we present an extension of our marine bio-optical model to the UV range that accounts for the seasonal dependence of the inherent optical properties (IOPs).
NASA Astrophysics Data System (ADS)
Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang
2017-10-01
Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.
Zamarreno-Ramos, C; Linares-Barranco, A; Serrano-Gotarredona, T; Linares-Barranco, B
2013-02-01
This paper presents a modular, scalable approach to assembling hierarchically structured neuromorphic Address Event Representation (AER) systems. The method consists of arranging modules in a 2D mesh, each communicating bidirectionally with all four neighbors. Address events include a module label. Each module includes an AER router which decides how to route address events. Two routing approaches have been proposed, analyzed and tested, using either destination or source module labels. Our analyses reveal that depending on traffic conditions and network topologies either one or the other approach may result in better performance. Experimental results are given after testing the approach using high-end Virtex-6 FPGAs. The approach is proposed for both single and multiple FPGAs, in which case a special bidirectional parallel-serial AER link with flow control is exploited, using the FPGA Rocket-I/O interfaces. Extensive test results are provided exploiting convolution modules of 64 × 64 pixels with kernels with sizes up to 11 × 11, which process real sensory data from a Dynamic Vision Sensor (DVS) retina. One single Virtex-6 FPGA can hold up to 64 of these convolution modules, which is equivalent to a neural network with 262 × 10(3) neurons and almost 32 million synapses.
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks
Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi
2017-01-01
In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.
Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi
2017-01-30
In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.
A Sarsa(λ)-Based Control Model for Real-Time Traffic Light Coordination
Zhu, Fei; Liu, Quan; Fu, Yuchen; Huang, Wei
2014-01-01
Traffic problems often occur due to the traffic demands by the outnumbered vehicles on road. Maximizing traffic flow and minimizing the average waiting time are the goals of intelligent traffic control. Each junction wants to get larger traffic flow. During the course, junctions form a policy of coordination as well as constraints for adjacent junctions to maximize their own interests. A good traffic signal timing policy is helpful to solve the problem. However, as there are so many factors that can affect the traffic control model, it is difficult to find the optimal solution. The disability of traffic light controllers to learn from past experiences caused them to be unable to adaptively fit dynamic changes of traffic flow. Considering dynamic characteristics of the actual traffic environment, reinforcement learning algorithm based traffic control approach can be applied to get optimal scheduling policy. The proposed Sarsa(λ)-based real-time traffic control optimization model can maintain the traffic signal timing policy more effectively. The Sarsa(λ)-based model gains traffic cost of the vehicle, which considers delay time, the number of waiting vehicles, and the integrated saturation from its experiences to learn and determine the optimal actions. The experiment results show an inspiring improvement in traffic control, indicating the proposed model is capable of facilitating real-time dynamic traffic control. PMID:24592183
Lerner, Matthew D.; Lonigan, Christopher J.
2017-01-01
Despite the importance of phonological awareness for the development of reading in alphabetic languages, little attention has been paid to its developmental origins. In this study, dual-process, latent growth models were used to examine patterns of bidirectional relations between letter knowledge and phonological awareness during preschool. The sample comprised 358 children (mean age = 48.60 months, SD = 7.26). Growth models were used to quantify the unique longitudinal relations between the initial level of each skill and growth in the other skill during the preschool year, after controlling for initial level of the same skill, vocabulary, age, and growth in the code-related skill being used as a predictor. Letter-name knowledge and phonological awareness were bi-directionally related; the initial level of each uniquely predicted growth in the other. Initial letter-sound knowledge and phonological awareness growth were not uniquely related, and vocabulary was not related to growth in phonological awareness. These findings extend the evidence of the relation between letter knowledge and phonological awareness to supra-phonemic tasks, indicating that this bidirectional relation begins at an earlier point in the development of phonological awareness than previously reported. In addition, these findings help to rule out general growth in letter knowledge and phonological awareness as an alternative explanation for the bidirectional relation between these two code-related skills. PMID:26745710
Wade, John J.; McDaid, Liam J.; Harkin, Jim; Crunelli, Vincenzo; Kelso, J. A. Scott
2011-01-01
In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a “learning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters. PMID:22242121
NASA Technical Reports Server (NTRS)
Easley, Wesley C.; Carter, Donald; Mcluer, David G.
1994-01-01
An amateur packet radio system operating in the very high frequency (VHF) range has been implemented in the Transport Systems Research Vehicle at the NASA Langley Research Center to provide an economical, bidirectional, real-time, ground-to-air data link. The packet system has been used to support flight research involving air traffic control (ATC), differential global positioning systems (DGPS), and windshear terminal doppler weather radar (TDWR). A data maximum rate of 2400 baud was used. Operational reliability of the packet system has been very good. Also, its versatility permits numerous specific configurations. These features, plus its low cost, have rendered it very satisfactory for support of data link flight experiments that do not require high data transfer rates.
NASA Astrophysics Data System (ADS)
Whaley, Cynthia H.; Makar, Paul A.; Shephard, Mark W.; Zhang, Leiming; Zhang, Junhua; Zheng, Qiong; Akingunola, Ayodeji; Wentworth, Gregory R.; Murphy, Jennifer G.; Kharol, Shailesh K.; Cady-Pereira, Karen E.
2018-02-01
Atmospheric ammonia (NH3) is a short-lived pollutant that plays an important role in aerosol chemistry and nitrogen deposition. Dominant NH3 emissions are from agriculture and forest fires, both of which are increasing globally. Even remote regions with relatively low ambient NH3 concentrations, such as northern Alberta and Saskatchewan in northern Canada, may be of interest because of industrial oil sands emissions and a sensitive ecological system. A previous attempt to model NH3 in the region showed a substantial negative bias compared to satellite and aircraft observations. Known missing sources of NH3 in the model were re-emission of NH3 from plants and soils (bidirectional flux) and forest fire emissions, but the relative impact of these sources on NH3 concentrations was unknown. Here we have used a research version of the high-resolution air quality forecasting model, GEM-MACH, to quantify the relative impacts of semi-natural (bidirectional flux of NH3 and forest fire emissions) and direct anthropogenic (oil sand operations, combustion of fossil fuels, and agriculture) sources on ammonia volume mixing ratios, both at the surface and aloft, with a focus on the Athabasca Oil Sands region during a measurement-intensive campaign in the summer of 2013. The addition of fires and bidirectional flux to GEM-MACH has improved the model bias, slope, and correlation coefficients relative to ground, aircraft, and satellite NH3 measurements significantly.By running the GEM-MACH-Bidi model in three configurations and calculating their differences, we find that averaged over Alberta and Saskatchewan during this time period an average of 23.1 % of surface NH3 came from direct anthropogenic sources, 56.6 % (or 1.24 ppbv) from bidirectional flux (re-emission from plants and soils), and 20.3 % (or 0.42 ppbv) from forest fires. In the NH3 total column, an average of 19.5 % came from direct anthropogenic sources, 50.0 % from bidirectional flux, and 30.5 % from forest fires. The addition of bidirectional flux and fire emissions caused the overall average net deposition of NHx across the domain to be increased by 24.5 %. Note that forest fires are very episodic and their contributions will vary significantly for different time periods and regions.This study is the first use of the bidirectional flux scheme in GEM-MACH, which could be generalized for other volatile or semi-volatile species. It is also the first time CrIS (Cross-track Infrared Sounder) satellite observations of NH3 have been used for model evaluation, and the first use of fire emissions in GEM-MACH at 2.5 km resolution.
Jiang, Geng-Ming; Li, Zhao-Liang
2008-11-10
This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.
Multi-phasic bi-directional chemotactic responses of the growth cone
Naoki, Honda; Nishiyama, Makoto; Togashi, Kazunobu; Igarashi, Yasunobu; Hong, Kyonsoo; Ishii, Shin
2016-01-01
The nerve growth cone is bi-directionally attracted and repelled by the same cue molecules depending on the situations, while other non-neural chemotactic cells usually show uni-directional attraction or repulsion toward their specific cue molecules. However, how the growth cone differs from other non-neural cells remains unclear. Toward this question, we developed a theory for describing chemotactic response based on a mathematical model of intracellular signaling of activator and inhibitor. Our theory was first able to clarify the conditions of attraction and repulsion, which are determined by balance between activator and inhibitor, and the conditions of uni- and bi-directional responses, which are determined by dose-response profiles of activator and inhibitor to the guidance cue. With biologically realistic sigmoidal dose-responses, our model predicted tri-phasic turning response depending on intracellular Ca2+ level, which was then experimentally confirmed by growth cone turning assays and Ca2+ imaging. Furthermore, we took a reverse-engineering analysis to identify balanced regulation between CaMKII (activator) and PP1 (inhibitor) and then the model performance was validated by reproducing turning assays with inhibitions of CaMKII and PP1. Thus, our study implies that the balance between activator and inhibitor underlies the multi-phasic bi-directional turning response of the growth cone. PMID:27808115
Wiechert, W; de Graaf, A A
1997-07-05
The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution.
Risk Factors for Unidirectional and Bidirectional Intimate Partner Violence among Young Adults
ERIC Educational Resources Information Center
Renner, Lynette M.; Whitney, Stephen D.
2012-01-01
Objective: The purpose of this study was to identify common and unique risk factors for intimate partner violence (IPV) among young adults in relationships. Guided by two models of IPV, the same set of risk factors was used to examine outcomes of unidirectional (perpetration or victimization) and bidirectional (reciprocal) IPV separately for males…
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
NASA Technical Reports Server (NTRS)
Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir
2012-01-01
Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.
The Pavlovian analysis of instrumental conditioning.
Gormezano, I; Tait, R W
1976-01-01
An account was given of the development within the Russian literature of a uniprocess formulation of classical and instrumental conditioning, known as the bidirectional conditioning hypothesis. The hypothesis purports to offer a single set of Pavlovian principles to account for both paradigms, based upon a neural model which assumes that bidirectional (forward and backward) connections are formed in both calssical and instrumental conditioning situations. In instrumental conditioning, the bidirectional connections are hypothesized to be simply more complex than those in classical conditioning, and any differences in empirical functions are presumed to lie not in difference in mechanism, but in the strength of the forward and backward connections. Although bidirectional connections are assumed to develop in instrumental conditioning, the experimental investigation of the bidirectional conditioning hypothesis has been essentially restricted to the classical conditioning operations of pairing two CSs (sensory preconditioning training), a US followed by a CS (backward conditioning training) and two USs. However, the paradigm involving the pairing of two USs, because of theoretical and analytical considerations, is the one most commonly employed by Russian investigators. The results of an initial experiment involving the pairing of two USs, and reference to the results of a more extensive investigation, leads us to tentatively question the validity of the bidirectional conditioning account of instrumental conditioning.
Assessment of Traffic-Related Noise in Three Cities in the United States
Lee, Eunice Y.; Jerrett, Michael; Ross, Zev; Coogan, Patricia F.; Seto, Edmund Y. W.
2014-01-01
Background Traffic-related noise is a growing public health concern in developing and developed countries due to increasing vehicle traffic. Epidemiological studies have reported associations between noise exposure and high blood pressure, increased risk of hypertension and heart disease, and stress induced by sleep disturbance and annoyance. These findings motivate the need for regular noise assessments within urban areas. This paper assesses the relationships between traffic and noise in three US cities. Methods Noise measurements were conducted in downtown areas in three cities in the United States: Atlanta, Los Angeles, and New York City. For each city, we measured ambient noise levels, and assessed their correlation with simultaneously measured vehicle counts, and with traffic data provided by local Metropolitan Planning Organizations (MPO). Additionally, measured noise levels were compared to noise levels predicted by the Federal Highway Administration’s Traffic Noise Model using (1) simultaneously measured traffic counts or (2) MPO traffic data sources as model input. Results We found substantial variations in traffic and noise within and between cities. Total number of vehicle counts explained a substantial amount of variation in measured ambient noise in Atlanta (78%), Los Angeles (58%), and New York City (62%). Modeled noise levels were moderately correlated with measured noise levels when observed traffic counts were used as model input. Weaker correlations were found when MPO traffic data was used as model input. Conclusions Ambient noise levels measured in all three cities were correlated with traffic data, highlighting the importance of traffic planning in mitigating noise-related health effects. Model performance was sensitive to the traffic data used as input. Future noise studies that use modeled noise estimates should evaluate traffic data quality and should ideally include other factors, such as local roadway, building, and meteorological characteristics. PMID:24792415
DOT National Transportation Integrated Search
1971-05-01
The report describes a dynamic model of a traffic circle which has been implemented on a CRT display terminal. The model includes sufficient parameters to allow changes in the structure of the traffic circle, the frequency of traffic introduced to th...
Control of Networked Traffic Flow Distribution - A Stochastic Distribution System Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Aziz, H M Abdul; Young, Stan
Networked traffic flow is a common scenario for urban transportation, where the distribution of vehicle queues either at controlled intersections or highway segments reflect the smoothness of the traffic flow in the network. At signalized intersections, the traffic queues are controlled by traffic signal control settings and effective traffic lights control would realize both smooth traffic flow and minimize fuel consumption. Funded by the Energy Efficient Mobility Systems (EEMS) program of the Vehicle Technologies Office of the US Department of Energy, we performed a preliminary investigation on the modelling and control framework in context of urban network of signalized intersections.more » In specific, we developed a recursive input-output traffic queueing models. The queue formation can be modeled as a stochastic process where the number of vehicles entering each intersection is a random number. Further, we proposed a preliminary B-Spline stochastic model for a one-way single-lane corridor traffic system based on theory of stochastic distribution control.. It has been shown that the developed stochastic model would provide the optimal probability density function (PDF) of the traffic queueing length as a dynamic function of the traffic signal setting parameters. Based upon such a stochastic distribution model, we have proposed a preliminary closed loop framework on stochastic distribution control for the traffic queueing system to make the traffic queueing length PDF follow a target PDF that potentially realizes the smooth traffic flow distribution in a concerned corridor.« less
Zhang, Xin; Liu, Pan; Chen, Yuguang; Bai, Lu; Wang, Wei
2014-01-01
The primary objective of this study was to identify whether the frequency of traffic conflicts at signalized intersections can be modeled. The opposing left-turn conflicts were selected for the development of conflict predictive models. Using data collected at 30 approaches at 20 signalized intersections, the underlying distributions of the conflicts under different traffic conditions were examined. Different conflict-predictive models were developed to relate the frequency of opposing left-turn conflicts to various explanatory variables. The models considered include a linear regression model, a negative binomial model, and separate models developed for four traffic scenarios. The prediction performance of different models was compared. The frequency of traffic conflicts follows a negative binominal distribution. The linear regression model is not appropriate for the conflict frequency data. In addition, drivers behaved differently under different traffic conditions. Accordingly, the effects of conflicting traffic volumes on conflict frequency vary across different traffic conditions. The occurrences of traffic conflicts at signalized intersections can be modeled using generalized linear regression models. The use of conflict predictive models has potential to expand the uses of surrogate safety measures in safety estimation and evaluation.
Properties of Traffic Risk Coefficient
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Huang, Hai-Jun; Shang, Hua-Yan; Xue, Yu
2009-10-01
We use the model with the consideration of the traffic interruption probability (Physica A 387(2008)6845) to study the relationship between the traffic risk coefficient and the traffic interruption probability. The analytical and numerical results show that the traffic interruption probability will reduce the traffic risk coefficient and that the reduction is related to the density, which shows that this model can improve traffic security.
Traffic Games: Modeling Freeway Traffic with Game Theory
Cortés-Berrueco, Luis E.; Gershenson, Carlos; Stephens, Christopher R.
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers’ interactions. PMID:27855176
Traffic Games: Modeling Freeway Traffic with Game Theory.
Cortés-Berrueco, Luis E; Gershenson, Carlos; Stephens, Christopher R
2016-01-01
We apply game theory to a vehicular traffic model to study the effect of driver strategies on traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic model and aims to incorporate phenomena caused by driver-driver interactions. To achieve this goal, a game-theoretic description of driver interaction was developed. This game-theoretic formalization allows one to model different lane-changing behaviors and to keep track of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility performance for different modeled behaviors. The analysis of these results indicates a mobility optimization process achieved by drivers' interactions.
Downer, Jason T.; Booren, Leslie
2014-01-01
In the present study, 314 preschool classrooms and 606 children were observed to understand the behavioral exchanges between teachers and children. Teachers’ emotionally and organizationally supportive behaviors and children’s engagement were explored for longitudinal associations throughout a day. Observations were conducted in each classroom wherein emotional and organizational supports were assessed, followed by observations of two children’s positive engagement with teachers, tasks, and peers as well as negative classroom engagement. Cross-lagged autoregressive models were used to test for time-lagged associations which could be unidirectional or bidirectional. Results indicated teachers’ emotionally and organizationally supportive behaviors were related to later child engagement in seven of eight models. Furthermore, in two of those seven models, we found evidence of bidirectional associations whereby children’s engagement was associated with later teacher emotional and organizational supports. Findings are discussed in terms of understanding classroom processes over the course of a day in preschool. PMID:26722153
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy
NASA Astrophysics Data System (ADS)
Minh, David D. L.; Adib, Artur B.
2008-05-01
An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.
Model of bidirectional reflectance distribution function for metallic materials
NASA Astrophysics Data System (ADS)
Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun
2016-09-01
Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
Solar radiance models for determination of ERBE scanner filter factor
NASA Technical Reports Server (NTRS)
Arduini, R. F.
1985-01-01
Shortwave spectral radiance models for use in the spectral correction algorithms for the ERBE Scanner Instrument are provided. The required data base was delivered to the ERBe Data Reduction Group in October 1984. It consisted of two sets of data files: (1) the spectral bidirectional angular models and (2) the spectral flux modes. The bidirectional models employ the angular characteristics of reflection by the Earth-atmosphere system and were derived from detailed radiance calculations using a finite difference model of the radiative transfer process. The spectral flux models were created through the use of a delta-Eddington model to economically simulate the effects of atmospheric variability. By combining these data sets, a wide range of radiances may be approximated for a number of scene types.
NASA Astrophysics Data System (ADS)
Lu, Feng; Liu, Kang; Duan, Yingying; Cheng, Shifen; Du, Fei
2018-07-01
A better characterization of the traffic influence among urban roads is crucial for traffic control and traffic forecasting. The existence of spatial heterogeneity imposes great influence on modeling the extent and degree of road traffic correlation, which is usually neglected by the traditional distance based method. In this paper, we propose a traffic-enhanced community detection approach to spatially reveal the traffic correlation in city road networks. First, the road network is modeled as a traffic-enhanced dual graph with the closeness between two road segments determined not only by their topological connection, but also by the traffic correlation between them. Then a flow-based community detection algorithm called Infomap is utilized to identify the road segment clusters. Evaluated by Moran's I, Calinski-Harabaz Index and the traffic interpolation application, we find that compared to the distance based method and the community based method, our proposed traffic-enhanced community based method behaves better in capturing the extent of traffic relevance as both the topological structure of the road network and the traffic correlations among urban roads are considered. It can be used in more traffic-related applications, such as traffic forecasting, traffic control and guidance.
NASA Astrophysics Data System (ADS)
Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye
2016-10-01
With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).
Dennis, Robin L.; Schwede, Donna B.; Bash, Jesse O.; Pleim, Jon E.; Walker, John T.; Foley, Kristen M.
2013-01-01
Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent. PMID:23713122
Dennis, Robin L; Schwede, Donna B; Bash, Jesse O; Pleim, Jon E; Walker, John T; Foley, Kristen M
2013-07-05
Reactive nitrogen (Nr) is removed by surface fluxes (air-surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air-surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1-4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.
Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network
NASA Astrophysics Data System (ADS)
Yang, Bin
2017-07-01
Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately
A queuing model for road traffic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.
We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme.
Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng
2014-12-30
This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.
A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu
2016-12-01
Mixed traffic flow sharing the “same lane” and having no discipline on road is a common phenomenon in the developing countries. For example, motorized vehicles (m-vehicles) and nonmotorized vehicles (nm-vehicles) may share the m-vehicle lane or nm-vehicle lane and pedestrians may share the nm-vehicle lane. Simulating pedestrian-vehicle mixed traffic flow consisting of three kinds of traffic objects: m-vehicles, nm-vehicles and pedestrians, can be a challenge because there are some erratic drivers or pedestrians who fail to follow the lane disciplines. In the paper, we investigate various moving and interactive behavior associated with mixed traffic flow, such as lateral drift including illegal lane-changing and transverse crossing different lanes, overtaking and forward movement, and propose some new moving and interactive rules for pedestrian-vehicle mixed traffic flow based on a refined and dynamic cellular automaton (CA) model. Simulation results indicate that the proposed model can be used to investigate the traffic flow characteristic in a mixed traffic flow system and corresponding complicated traffic problems, such as, the moving characteristics of different traffic objects, interaction phenomenon between different traffic objects, traffic jam, traffic conflict, etc., which are consistent with the actual mixed traffic system. Therefore, the proposed model provides a solid foundation for the management, planning and evacuation of the mixed traffic flow.
Allan Cheyne, J; Solman, Grayden J F; Carriere, Jonathan S A; Smilek, Daniel
2009-04-01
We present arguments and evidence for a three-state attentional model of task engagement/disengagement. The model postulates three states of mind-wandering: occurrent task inattention, generic task inattention, and response disengagement. We hypothesize that all three states are both causes and consequences of task performance outcomes and apply across a variety of experimental and real-world tasks. We apply this model to the analysis of a widely used GO/NOGO task, the Sustained Attention to Response Task (SART). We identify three performance characteristics of the SART that map onto the three states of the model: RT variability, anticipations, and omissions. Predictions based on the model are tested, and largely corroborated, via regression and lag-sequential analyses of both successful and unsuccessful withholding on NOGO trials as well as self-reported mind-wandering and everyday cognitive errors. The results revealed theoretically consistent temporal associations among the state indicators and between these and SART errors as well as with self-report measures. Lag analysis was consistent with the hypotheses that temporal transitions among states are often extremely abrupt and that the association between mind-wandering and performance is bidirectional. The bidirectional effects suggest that errors constitute important occasions for reactive mind-wandering. The model also enables concrete phenomenological, behavioral, and physiological predictions for future research.
Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir
2012-01-10
Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters. © 2012 Optical Society of America
A cellular automaton model for ship traffic flow in waterways
NASA Astrophysics Data System (ADS)
Qi, Le; Zheng, Zhongyi; Gang, Longhui
2017-04-01
With the development of marine traffic, waterways become congested and more complicated traffic phenomena in ship traffic flow are observed. It is important and necessary to build a ship traffic flow model based on cellular automata (CAs) to study the phenomena and improve marine transportation efficiency and safety. Spatial discretization rules for waterways and update rules for ship movement are two important issues that are very different from vehicle traffic. To solve these issues, a CA model for ship traffic flow, called a spatial-logical mapping (SLM) model, is presented. In this model, the spatial discretization rules are improved by adding a mapping rule. And the dynamic ship domain model is considered in the update rules to describe ships' interaction more exactly. Take the ship traffic flow in the Singapore Strait for example, some simulations were carried out and compared. The simulations show that the SLM model could avoid ship pseudo lane-change efficiently, which is caused by traditional spatial discretization rules. The ship velocity change in the SLM model is consistent with the measured data. At finally, from the fundamental diagram, the relationship between traffic ability and the lengths of ships is explored. The number of ships in the waterway declines when the proportion of large ships increases.
Cooperativity of self-organized Brownian motors pulling on soft cargoes.
Orlandi, Javier G; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume
2010-12-01
We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.
Cooperativity of self-organized Brownian motors pulling on soft cargoes
NASA Astrophysics Data System (ADS)
Orlandi, Javier G.; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume
2010-12-01
We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.
Traffic and Driving Simulator Based on Architecture of Interactive Motion.
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.
Traffic and Driving Simulator Based on Architecture of Interactive Motion
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711
Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Suttles, J. T.
1986-01-01
Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.
Assessment of traffic noise levels in urban areas using different soft computing techniques.
Tomić, J; Bogojević, N; Pljakić, M; Šumarac-Pavlović, D
2016-10-01
Available traffic noise prediction models are usually based on regression analysis of experimental data, and this paper presents the application of soft computing techniques in traffic noise prediction. Two mathematical models are proposed and their predictions are compared to data collected by traffic noise monitoring in urban areas, as well as to predictions of commonly used traffic noise models. The results show that application of evolutionary algorithms and neural networks may improve process of development, as well as accuracy of traffic noise prediction.
Construction and simulation of a novel continuous traffic flow model
NASA Astrophysics Data System (ADS)
Hwang, Yao-Hsin; Yu, Jui-Ling
2017-12-01
In this paper, we aim to propose a novel mathematical model for traffic flow and apply a newly developed characteristic particle method to solve the associate governing equations. As compared with the existing non-equilibrium higher-order traffic flow models, the present one is put forward to satisfy the following three conditions: Preserve the equilibrium state in the smooth region. Yield an anisotropic propagation of traffic flow information. Expressed with a conservation law form for traffic momentum. These conditions will ensure a more practical simulation in traffic flow physics: The current traffic will not be influenced by the condition in the behind and result in unambiguous condition across a traffic shock. Through analyses of characteristics, stability condition and steady-state solution adherent to the equation system, it is shown that the proposed model actually conform to these conditions. Furthermore, this model can be cast into its characteristic form which, incorporated with the Rankine-Hugoniot relation, is appropriate to be simulated by the characteristic particle method to obtain accurate computational results.
[Modeling polarimetric BRDF of leaves surfaces].
Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min
2010-12-01
The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.
Hierarchical and coupling model of factors influencing vessel traffic flow.
Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi
2017-01-01
Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.
Hierarchical and coupling model of factors influencing vessel traffic flow
Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi
2017-01-01
Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system. PMID:28414747
Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach
NASA Astrophysics Data System (ADS)
Liu, Hui; Sun, Dihua; Liu, Weining
2016-11-01
Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.
Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao
2018-06-01
Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.
Hutka, Stefanie; Bidelman, Gavin M.; Moreno, Sylvain
2013-01-01
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain’s processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer. PMID:24454295
Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain
2013-12-30
There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.
NASA Astrophysics Data System (ADS)
Lee, Yuang-Shung; Chiu, Yin-Yuan; Cheng, Ming-Wang; Ko, Yi-Pin; Hsiao, Sung-Hsin
The proposed quasi-resonant (QR) zero current switching (ZCS) switched-capacitor (SC) converter is a new type of bidirectional power flow control conversion scheme. The proposed converter is able to provide voltage conversion ratios from -3/-{1 \\over 3} (triple-mode/trisection-mode) to -n/-{1 \\over n} (-n-mode/-{1 \\over n}-mode) by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse power flow control schemes. It possesses the advantages of low switching losses and current stress in this QR ZCS SC converter. The principle of operation, theoretical analysis of the proposed triple-mode/trisection-mode bidirectional power conversion scheme is described in detail with circuit model analysis. Simulation and experimental studies are carried out to verify the performance of the proposed inverting type ZCS SC QR bidirectional converter. The proposed converters can be applied to battery equalization for battery management system (BMS).
Schryer, David W; Peterson, Pearu; Paalme, Toomas; Vendelin, Marko
2009-04-17
Isotope labeling is one of the few methods of revealing the in vivo bidirectionality and compartmentalization of metabolic fluxes within metabolic networks. We argue that a shift from steady state to dynamic isotopomer analysis is required to deal with these cellular complexities and provide a review of dynamic studies of compartmentalized energy fluxes in eukaryotic cells including cardiac muscle, plants, and astrocytes. Knowledge of complex metabolic behaviour on a molecular level is prerequisite for the intelligent design of genetically modified organisms able to realize their potential of revolutionizing food, energy, and pharmaceutical production. We describe techniques to explore the bidirectionality and compartmentalization of metabolic fluxes using information contained in the isotopic transient, and discuss the integration of kinetic models with MFA. The flux parameters of an example metabolic network were optimized to examine the compartmentalization of metabolites and and the bidirectionality of fluxes in the TCA cycle of Saccharomyces uvarum for steady-state respiratory growth.
Gaviño, Michael A; Ford, Kevin J; Archila, Santiago; Davis, Graeme W
2015-01-01
Homeostatic signaling stabilizes synaptic transmission at the neuromuscular junction (NMJ) of Drosophila, mice, and human. It is believed that homeostatic signaling at the NMJ is bi-directional and considerable progress has been made identifying mechanisms underlying the homeostatic potentiation of neurotransmitter release. However, very little is understood mechanistically about the opposing process, homeostatic depression, and how bi-directional plasticity is achieved. Here, we show that homeostatic potentiation and depression can be simultaneously induced, demonstrating true bi-directional plasticity. Next, we show that mutations that block homeostatic potentiation do not alter homeostatic depression, demonstrating that these are genetically separable processes. Finally, we show that homeostatic depression is achieved by decreased presynaptic calcium channel abundance and calcium influx, changes that are independent of the presynaptic action potential waveform. Thus, we identify a novel mechanism of homeostatic synaptic plasticity and propose a model that can account for the observed bi-directional, homeostatic control of presynaptic neurotransmitter release. DOI: http://dx.doi.org/10.7554/eLife.05473.001 PMID:25884248
Farley, Julee P; Kim-Spoon, Jungmeen
2014-06-01
Self-regulation plays an important role in adolescent development, predicting success in multiple domains including school and social relationships. While researchers have paid increasing attention to the influence of parents on the development of adolescent self-regulation, we know little about the influence of peers and friends and even less about the influence of romantic partners on adolescent development of self-regulation. Extant studies examined a unidirectional model of self-regulation development rather than a bidirectional model of self-regulation development. Given that relationships and self-regulation develop in tandem, a model of bidirectional development between relationship context and adolescent self-regulation may be relevant. This review summarizes extant literature and proposes that in order to understand how adolescent behavioral and emotional self-regulation develops in the context of social relationships one must consider that each relationship builds upon previous relationships and that self-regulation and relationship context develop bidirectionally. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng
2007-10-01
Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.
Traffic analysis toolbox volume XI : weather and traffic analysis, modeling and simulation.
DOT National Transportation Integrated Search
2010-12-01
This document presents a weather module for the traffic analysis tools program. It provides traffic engineers, transportation modelers and decisions makers with a guide that can incorporate weather impacts into transportation system analysis and mode...
Transportation data requirements : evaluation of portable traffic recorders.
DOT National Transportation Integrated Search
1978-01-01
The objective of this study was to evaluate the accuracy of the Department's portable traffic recorder models under diverse types of traffic conditions. The study was conducted by (1) reviewing the characteristics of five models of traffic recorders,...
Liu, Hong; Zhu, Jingping; Wang, Kai
2015-08-24
The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.
NASA Astrophysics Data System (ADS)
de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann
2016-03-01
We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.
Abar, Caitlin C; Jackson, Kristina M; Wood, Mark
2014-09-01
The current study prospectively examined hypothesized short- and long-term reciprocal relations between perceived parental knowledge and adolescent heavy episodic drinking, marijuana use, and delinquency. Using the contextual model of parenting style (Darling & Steinberg, 1993), we examined the extent to which the bidirectional nature of associations between knowledge and adolescent outcomes is dependent on a facet of parenting style: the quality of the parent-child relationship. Data came from the first 4 waves of the National Longitudinal Study of Youth 1997. The sample for the current study consisted of 5,419 students between 12 and 14 years of age at baseline (52% male) surveyed annually for 4 years. Parallel process, autoregressive latent trajectory models were used to examine relations between initial levels and change over time in perceived parental knowledge and adolescent risk, and short-term cross-lagged paths were included to examine bidirectionality while accounting for long-term associations. Results showed significant short-term and long-term bidirectionality between perceived parental knowledge and adolescent outcomes, with parent effects on students and student effects on parents. Long-term associations across constructs were negative, whereas short-term associations were positive. These reciprocal associations were shown to differ across levels of parent-child relationship quality with regard to adolescent heavy episodic drinking and delinquency, providing support for the contextual model of parenting style. Implications for future work on parent-child bidirectional relationships and parent-based interventions are discussed.
Minimal Traffic Model with Safe Driving Conditions
NASA Astrophysics Data System (ADS)
Terborg, Heinrich; Pérez, Luis A.
We have developed a new computational traffic model in which security aspects are fundamental. In this paper we show that this model reproduces many known empirical aspects of vehicular traffic such as the three states of traffic flow and the backward speed of the downstream front of a traffic jam (C), without the aid of adjustable parameters. The model is studied for both open and closed single lane traffic systems. Also, we were able to analytically compute the value of C as 15.37 km/h from a relation that only includes the human reaction time, the mean vehicle length and the effective friction coefficient during the braking process of a vehicle as its main components.
Unsupervised Ensemble Anomaly Detection Using Time-Periodic Packet Sampling
NASA Astrophysics Data System (ADS)
Uchida, Masato; Nawata, Shuichi; Gu, Yu; Tsuru, Masato; Oie, Yuji
We propose an anomaly detection method for finding patterns in network traffic that do not conform to legitimate (i.e., normal) behavior. The proposed method trains a baseline model describing the normal behavior of network traffic without using manually labeled traffic data. The trained baseline model is used as the basis for comparison with the audit network traffic. This anomaly detection works in an unsupervised manner through the use of time-periodic packet sampling, which is used in a manner that differs from its intended purpose — the lossy nature of packet sampling is used to extract normal packets from the unlabeled original traffic data. Evaluation using actual traffic traces showed that the proposed method has false positive and false negative rates in the detection of anomalies regarding TCP SYN packets comparable to those of a conventional method that uses manually labeled traffic data to train the baseline model. Performance variation due to the probabilistic nature of sampled traffic data is mitigated by using ensemble anomaly detection that collectively exploits multiple baseline models in parallel. Alarm sensitivity is adjusted for the intended use by using maximum- and minimum-based anomaly detection that effectively take advantage of the performance variations among the multiple baseline models. Testing using actual traffic traces showed that the proposed anomaly detection method performs as well as one using manually labeled traffic data and better than one using randomly sampled (unlabeled) traffic data.
Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.
Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe
2017-10-01
Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.
Evidence of Long Range Dependence and Self-similarity in Urban Traffic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Gautam S; Helmy, Ahmed; Hui, Pan
2015-01-01
Transportation simulation technologies should accurately model traffic demand, distribution, and assignment parame- ters for urban environment simulation. These three param- eters significantly impact transportation engineering bench- mark process, are also critical in realizing realistic traffic modeling situations. In this paper, we model and charac- terize traffic density distribution of thousands of locations around the world. The traffic densities are generated from millions of images collected over several years and processed using computer vision techniques. The resulting traffic den- sity distribution time series are then analyzed. It is found using the goodness-of-fit test that the traffic density dis- tributions follows heavy-tailmore » models such as Log-gamma, Log-logistic, and Weibull in over 90% of analyzed locations. Moreover, a heavy-tail gives rise to long-range dependence and self-similarity, which we studied by estimating the Hurst exponent (H). Our analysis based on seven different Hurst estimators strongly indicate that the traffic distribution pat- terns are stochastically self-similar (0.5 H 1.0). We believe this is an important finding that will influence the design and development of the next generation traffic simu- lation techniques and also aid in accurately modeling traffic engineering of urban systems. In addition, it shall provide a much needed input for the development of smart cities.« less
Cellular automata model for traffic flow at intersections in internet of vehicles
NASA Astrophysics Data System (ADS)
Zhao, Han-Tao; Liu, Xin-Ru; Chen, Xiao-Xu; Lu, Jian-Cheng
2018-03-01
Considering the effect of the front vehicle's speed, the influence of the brake light and the conflict of the traffic flow, we established a cellular automata model called CE-NS for traffic flow at the intersection in the non-vehicle networking environment. According to the information interaction of Internet of Vehicles (IoV), introducing parameters describing the congestion and the accurate speed of the front vehicle into the CE-NS model, we improved the rules of acceleration, deceleration and conflict, and finally established a cellular automata model for traffic flow at intersections of IoV. The relationship between traffic parameters such as vehicle speed, flow and average travel time is obtained by numerical simulation of two models. Based on this, we compared the traffic situation of the non-vehicle networking environment with conditions of IoV environment, and analyzed the influence of the different degree of IoV on the traffic flow. The results show that the traffic speed is increased, the travel time is reduced, the flux of intersections is increased and the traffic flow is more smoothly under IoV environment. After the vehicle which achieves IoV reaches a certain proportion, the operation effect of the traffic flow begins to improve obviously.
NASA Astrophysics Data System (ADS)
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data.
Wang, Xiaomeng; Peng, Ling; Chi, Tianhe; Li, Mengzhu; Yao, Xiaojing; Shao, Jing
2015-01-01
Urban-scale traffic monitoring plays a vital role in reducing traffic congestion. Owing to its low cost and wide coverage, floating car data (FCD) serves as a novel approach to collecting traffic data. However, sparse probe data represents the vast majority of the data available on arterial roads in most urban environments. In order to overcome the problem of data sparseness, this paper proposes a hidden Markov model (HMM)-based traffic estimation model, in which the traffic condition on a road segment is considered as a hidden state that can be estimated according to the conditions of road segments having similar traffic characteristics. An algorithm based on clustering and pattern mining rather than on adjacency relationships is proposed to find clusters with road segments having similar traffic characteristics. A multi-clustering strategy is adopted to achieve a trade-off between clustering accuracy and coverage. Finally, the proposed model is designed and implemented on the basis of a real-time algorithm. Results of experiments based on real FCD confirm the applicability, accuracy, and efficiency of the model. In addition, the results indicate that the model is practicable for traffic estimation on urban arterials and works well even when more than 70% of the probe data are missing.
Transactional Process of African American Adolescents' Family Conflict and Violent Behavior.
Choe, Daniel Ewon; Zimmerman, Marc A
2014-12-01
This is the first longitudinal study of urban African American adolescents that has examined bidirectional effects between their family conflict and violent behavior across all of high school. Structured interviews were administered to 681 students each year in high school at ages 15, 16 17, and 18 years. We used structural equation modeling to test a transactional model and found bidirectional effects between family conflict and violent behavior across the middle years of high school, while accounting for sex and socioeconomic status. Findings suggest a reciprocal process involving interpersonal conflict in African American families and adolescent engagement in youth violence.
NASA Technical Reports Server (NTRS)
Marsden, R. G.; Sanderson, T. R.; Wenzel, K. P.; Smith, E. J.
1985-01-01
It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sossoe, K.S., E-mail: kwami.sossoe@irt-systemx.fr; Lebacque, J-P., E-mail: jean-patrick.lebacque@ifsttar.fr
2015-03-10
We present in this paper a model of vehicular traffic flow for a multimodal transportation road network. We introduce the notion of class of vehicles to refer to vehicles of different transport modes. Our model describes the traffic on highways (which may contain several lanes) and network transit for pubic transportation. The model is drafted with Eulerian and Lagrangian coordinates and uses a Logit model to describe the traffic assignment of our multiclass vehicular flow description on shared roads. The paper also discusses traffic streams on dedicated lanes for specific class of vehicles with event-based traffic laws. An Euler-Lagrangian-remap schememore » is introduced to numerically approximate the model’s flow equations.« less
Zhang, Xujun; Pang, Yuanyuan; Cui, Mengjing; Stallones, Lorann; Xiang, Huiyun
2015-02-01
Road traffic injuries have become a major public health problem in China. This study aimed to develop statistical models for predicting road traffic deaths and to analyze seasonality of deaths in China. A seasonal autoregressive integrated moving average (SARIMA) model was used to fit the data from 2000 to 2011. Akaike Information Criterion, Bayesian Information Criterion, and mean absolute percentage error were used to evaluate the constructed models. Autocorrelation function and partial autocorrelation function of residuals and Ljung-Box test were used to compare the goodness-of-fit between the different models. The SARIMA model was used to forecast monthly road traffic deaths in 2012. The seasonal pattern of road traffic mortality data was statistically significant in China. SARIMA (1, 1, 1) (0, 1, 1)12 model was the best fitting model among various candidate models; the Akaike Information Criterion, Bayesian Information Criterion, and mean absolute percentage error were -483.679, -475.053, and 4.937, respectively. Goodness-of-fit testing showed nonautocorrelations in the residuals of the model (Ljung-Box test, Q = 4.86, P = .993). The fitted deaths using the SARIMA (1, 1, 1) (0, 1, 1)12 model for years 2000 to 2011 closely followed the observed number of road traffic deaths for the same years. The predicted and observed deaths were also very close for 2012. This study suggests that accurate forecasting of road traffic death incidence is possible using SARIMA model. The SARIMA model applied to historical road traffic deaths data could provide important evidence of burden of road traffic injuries in China. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Carlsen, Hanne Krage; Bäck, Erik; Eneroth, Kristina; Gislason, Thorarinn; Holm, Mathias; Janson, Christer; Jensen, Steen Solvang; Johannessen, Ane; Kaasik, Marko; Modig, Lars; Segersson, David; Sigsgaard, Torben; Forsberg, Bertil; Olsson, David; Orru, Hans
2017-10-01
Few studies have investigated associations between self-reported and modelled exposure to traffic pollution. The objective of this study was to examine correlations between self-reported traffic exposure and modelled (a) NOX and (b) traffic proximity in seven different northern European cities; Aarhus (Denmark), Bergen (Norway), Gothenburg, Umeå, and Uppsala (Sweden), Reykjavik (Iceland), and Tartu (Estonia). We analysed data from the RHINE III (Respiratory Health in Northern Europe, http://www.rhine.nu)
A traffic analyzer for multiple SpaceWire links
NASA Astrophysics Data System (ADS)
Liu, Scige J.; Giusi, Giovanni; Di Giorgio, Anna M.; Vertolli, Nello; Galli, Emanuele; Biondi, David; Farina, Maria; Pezzuto, Stefano; Spinoglio, Luigi
2014-07-01
Modern space missions are becoming increasingly complex: the interconnection of the units in a satellite is now a network of terminals linked together through routers, where devices with different level of automation and intelligence share the same data-network. The traceability of the network transactions is performed mostly at terminal level through log analysis and hence it is difficult to verify in real time the reliability of the interconnections and the interchange protocols. To improve and ease the traffic analysis in a SpaceWire network we implemented a low-level link analyzer, with the specific goal to simplify the integration and test phases in the development of space instrumentation. The traffic analyzer collects signals coming from pod probes connected in-series on the interested links between two SpaceWire terminals. With respect to the standard traffic analyzers, the design of this new tool includes the possibility to internally reshape the LVDS signal. This improvement increases the robustness of the analyzer towards environmental noise effects and guarantees a deterministic delay on all analyzed signals. The analyzer core is implemented on a Xilinx FPGA, programmed to decode the bidirectional LVDS signals at Link and Network level. Successively, the core packetizes protocol characters in homogeneous sets of time ordered events. The analyzer provides time-tagging functionality for each characters set, with a precision down to the FPGA Clock, i.e. about 20nsec in the adopted HW environment. The use of a common time reference for each character stream allows synchronous performance measurements. The collected information is then routed to an external computer for quick analysis: this is done via high-speed USB2 connection. With this analyzer it is possible to verify the link performances in terms of induced delays in the transmitted signals. A case study focused on the analysis of the Time-Code synchronization in presence of a SpaceWire Router is shown in this paper as well.
Doulamis, A D; Doulamis, N D; Kollias, S D
2003-01-01
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
Traffic signal synchronization in the saturated high-density grid road network.
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.
Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A
2015-06-01
Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.
Traffic jam dynamics in stochastic cellular automata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, K.; Schreckenberg, M.
1995-09-01
Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less
Motion sickness is linked to nystagmus-related trigeminal brain stem input: a new hypothesis.
Gupta, Vinod Kumar
2005-01-01
Motion sickness is a common and distressing but poorly understood syndrome associated with nausea/vomiting and autonomic nervous system accompaniments that develops in the air or space as well as on sea or land. A bidirectional aetiologic link prevails between migraine and motion-sickness. Motion sickness provokes jerk nystagmus induced by both optokinetic and vestibular stimulation. Fixation of gaze or closure of eyes generally prevents motion sickness while vestibular otolithic function is eliminated in microgravity of space, indicating a predominant pathogenetic role for visuo-sensory input. Scopolamine, dimenhydrinate, and promethazine reduce motion-related nystagmus. Contraction of extraocular muscles generates proprioceptive neural traffic and can provoke an ocular hypertensive response. It is proposed that repetitive contractions of the extraocular muscles during motion-related jerk nystagmus rapidly augment brain stem afferent input by increasing proprioceptive neural traffic through connections of the oculomotor nerves with the ophthalmic nerve in the lateral wall of the cavernous sinus as well as by raising the intraocular pressure thereby stimulating anterior segment ocular trigeminal nerve fibers. This verifiable hypothesis defines the pathophysiological basis of individual susceptibility to motion sickness, elucidates the preventive mechanism of gaze fixation or ocular closure, advances the aetiologic link between MS and migraine, rationalizes the mechanism of known preventive drugs, and explores new therapeutic possibilities.
Veenendaal, Nathalie J.; Groen, Margriet A.; Verhoeven, Ludo
2016-01-01
The purpose of this study was to examine the directionality of the relationship between text reading prosody and reading comprehension in the upper grades of primary school. We compared three theoretical possibilities: Two unidirectional relations from text reading prosody to reading comprehension and from reading comprehension to text reading prosody and a bidirectional relation between text reading prosody and reading comprehension. Further, we controlled for autoregressive effects and included decoding efficiency as a measure of general reading skill. Participants were 99 Dutch children, followed longitudinally, from fourth- to sixth-grade. Structural equation modeling showed that the bidirectional relation provided the best fitting model. In fifth-grade, text reading prosody was related to prior decoding and reading comprehension, whereas in sixth-grade, reading comprehension was related to prior text reading prosody. As such, the results suggest that the relation between text reading prosody and reading comprehension is reciprocal, but dependent on grade level. PMID:27667916
Ni, Zhaoheng; Yuksel, Ahmet Cem; Ni, Xiuyan; Mandel, Michael I; Xie, Lei
2017-08-01
Brain fog, also known as confusion, is one of the main reasons for low performance in the learning process or any kind of daily task that involves and requires thinking. Detecting confusion in a human's mind in real time is a challenging and important task that can be applied to online education, driver fatigue detection and so on. In this paper, we apply Bidirectional LSTM Recurrent Neural Networks to classify students' confusion in watching online course videos from EEG data. The results show that Bidirectional LSTM model achieves the state-of-the-art performance compared with other machine learning approaches, and shows strong robustness as evaluated by cross-validation. We can predict whether or not a student is confused in the accuracy of 73.3%. Furthermore, we find the most important feature to detecting the brain confusion is the gamma 1 wave of EEG signal. Our results suggest that machine learning is a potentially powerful tool to model and understand brain activity.
Rodas, Naomi V.; Chavira, Denise A.; Baker, Bruce L.
2017-01-01
Mothers’ and fathers’ emotion socialization (ES) practices have been widely associated with child socioemotional outcomes. To extend this research, we examined the bidirectional relationship between parent ES practices (supportive and non-supportive parenting) and internalizing behavior problems in children of Anglo and Latino parents. Participants were 182 mothers and 162 fathers and their children with or without intellectual disability (ID). We compared the stability of mother and father ES practices across child ages 4 to 8. We utilized cross-lagged panel modeling to examine the bidirectional relationship between parents’ ES and child internalizing behavior problems. Emotion socialization practices differed across time by parent gender, with mothers displaying higher levels of supportive parenting and lower levels of non-supportive parenting than fathers. Cross-lagged panel models revealed differential relationships between child internalizing behaviors and emotion socialization practices by parent gender and by ethnicity. Implications for intervening with culturally diverse families of children with ID are discussed. PMID:28103495
A thermodynamic analysis of a novel bidirectional district heating and cooling network
Zarin Pass, R.; Wetter, M.; Piette, M. A.
2017-11-29
In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less
A thermodynamic analysis of a novel bidirectional district heating and cooling network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarin Pass, R.; Wetter, M.; Piette, M. A.
In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less
NASA Technical Reports Server (NTRS)
1973-01-01
A condensed summary of the traffic analyses and systems requirements for the new traffic model is presented. The results of each study activity are explained, key analyses are described, and important results are highlighted.
DOT National Transportation Integrated Search
2001-08-20
In 1998, the United States Federal Highway Administration (FHWA) released a new tool for highway traffic noise prediction and noise barrier design, the Traffic Noise Model (TNM). In order to assess the accuracy and make recommendations on the use of ...
Spatial Copula Model for Imputing Traffic Flow Data from Remote Microwave Sensors.
Ma, Xiaolei; Luan, Sen; Du, Bowen; Yu, Bin
2017-09-21
Issues of missing data have become increasingly serious with the rapid increase in usage of traffic sensors. Analyses of the Beijing ring expressway have showed that up to 50% of microwave sensors pose missing values. The imputation of missing traffic data must be urgently solved although a precise solution that cannot be easily achieved due to the significant number of missing portions. In this study, copula-based models are proposed for the spatial interpolation of traffic flow from remote traffic microwave sensors. Most existing interpolation methods only rely on covariance functions to depict spatial correlation and are unsuitable for coping with anomalies due to Gaussian consumption. Copula theory overcomes this issue and provides a connection between the correlation function and the marginal distribution function of traffic flow. To validate copula-based models, a comparison with three kriging methods is conducted. Results indicate that copula-based models outperform kriging methods, especially on roads with irregular traffic patterns. Copula-based models demonstrate significant potential to impute missing data in large-scale transportation networks.
Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide
NASA Technical Reports Server (NTRS)
Etheridge, Melvin; Plugge, Joana; Retina, Nusrat
1998-01-01
The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.
Organization of the ER–Golgi interface for membrane traffic control
Brandizzi, Federica; Barlowe, Charles
2014-01-01
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER–Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER–Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway. PMID:23698585
Cascaded multiplexed optical link on a telecommunication network for frequency dissemination.
Lopez, Olivier; Haboucha, Adil; Kéfélian, Fabien; Jiang, Haifeng; Chanteau, Bruno; Roncin, Vincent; Chardonnet, Christian; Amy-Klein, Anne; Santarelli, Giorgio
2010-08-02
We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 x 10(-15) at one second measurement time and 5 x 10(-20) at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.
Cellular automata model for use with real freeway data
DOT National Transportation Integrated Search
2002-01-01
The exponential rate of increase in freeway traffic is expanding the need for accurate and : realistic methods to model and predict traffic flow. Traffic modeling and simulation facilitates an : examination of both microscopic and macroscopic views o...
Neural networks for continuous online learning and control.
Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long
2006-11-01
This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.
Impacts of moving bottlenecks on traffic flow
NASA Astrophysics Data System (ADS)
Ou, Hui; Tang, Tie-Qiao
2018-06-01
Bottleneck (especially the moving bottleneck) widely exists in the urban traffic system. However, little effort has been made to study the impacts of the moving bottleneck on traffic flow (especially the evolution and propagation of traffic flow). In this article, we introduce the speed of a moving bottleneck into a traffic flow model, then propose an extended macro traffic flow with a moving bottleneck, and finally use the proposed model to study the effects of a moving bottleneck on the evolution and propagation of traffic flow under uniform flow and a small perturbation. The numerical results indicate that the moving bottleneck has prominent influences on the evolution of traffic flow under the two typical traffic situations and that the impacts are dependent on the initial density.
Applicability of models to estimate traffic noise for urban roads.
Melo, Ricardo A; Pimentel, Roberto L; Lacerda, Diego M; Silva, Wekisley M
2015-01-01
Traffic noise is a highly relevant environmental impact in cities. Models to estimate traffic noise, in turn, can be useful tools to guide mitigation measures. In this paper, the applicability of models to estimate noise levels produced by a continuous flow of vehicles on urban roads is investigated. The aim is to identify which models are more appropriate to estimate traffic noise in urban areas since several models available were conceived to estimate noise from highway traffic. First, measurements of traffic noise, vehicle count and speed were carried out in five arterial urban roads of a brazilian city. Together with geometric measurements of width of lanes and distance from noise meter to lanes, these data were input in several models to estimate traffic noise. The predicted noise levels were then compared to the respective measured counterparts for each road investigated. In addition, a chart showing mean differences in noise between estimations and measurements is presented, to evaluate the overall performance of the models. Measured Leq values varied from 69 to 79 dB(A) for traffic flows varying from 1618 to 5220 vehicles/h. Mean noise level differences between estimations and measurements for all urban roads investigated ranged from -3.5 to 5.5 dB(A). According to the results, deficiencies of some models are discussed while other models are identified as applicable to noise estimations on urban roads in a condition of continuous flow. Key issues to apply such models to urban roads are highlighted.
Comparison of modeled traffic exposure zones using on-road air pollution measurements
Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...
Linking Traffic Noise, Noise Annoyance and Life Satisfaction: A Case Study
Urban, Jan; Máca, Vojtěch
2013-01-01
The primary purpose of this study was to explore the link between rail and road traffic noise and overall life satisfaction. While the negative relationship between residential satisfaction and traffic noise is relatively well-established, much less is known about the effect of traffic noise on overall life satisfaction. Based on results of previous studies, we propose a model that links objective noise levels, noise sensitivity, noise annoyance, residential satisfaction and life satisfaction. Since it is not clear whether a bottom-up or top-down relationship between residential satisfaction and life satisfaction holds, we specify models that incorporate both of these theoretical propositions. Empirical models are tested using structural equation modeling and data from a survey among residents of areas with high levels of road traffic noise (n1 = 354) and rail traffic noise (n2 = 228). We find that traffic noise has a negative effect on residential satisfaction, but no significant direct or indirect effects on overall life satisfaction. Noise annoyance due to road and rail traffic noise has strong negative effect on residential satisfaction rather than on overall life satisfaction. These results are very similar for the road and railway traffic contexts and regardless of whether the model assumes the top-down or bottom-up direction of the causation between life satisfaction and residential satisfaction. PMID:23652784
Linking traffic noise, noise annoyance and life satisfaction: a case study.
Urban, Jan; Máca, Vojtěch
2013-05-07
The primary purpose of this study was to explore the link between rail and road traffic noise and overall life satisfaction. While the negative relationship between residential satisfaction and traffic noise is relatively well-established, much less is known about the effect of traffic noise on overall life satisfaction. Based on results of previous studies, we propose a model that links objective noise levels, noise sensitivity, noise annoyance, residential satisfaction and life satisfaction. Since it is not clear whether a bottom-up or top-down relationship between residential satisfaction and life satisfaction holds, we specify models that incorporate both of these theoretical propositions. Empirical models are tested using structural equation modeling and data from a survey among residents of areas with high levels of road traffic noise (n1 = 354) and rail traffic noise (n2 = 228). We find that traffic noise has a negative effect on residential satisfaction, but no significant direct or indirect effects on overall life satisfaction. Noise annoyance due to road and rail traffic noise has strong negative effect on residential satisfaction rather than on overall life satisfaction. These results are very similar for the road and railway traffic contexts and regardless of whether the model assumes the top-down or bottom-up direction of the causation between life satisfaction and residential satisfaction.
Curve Estimation of Number of People Killed in Traffic Accidents in Turkey
NASA Astrophysics Data System (ADS)
Berkhan Akalin, Kadir; Karacasu, Murat; Altin, Arzu Yavuz; Ergül, Bariş
2016-10-01
One or more than one vehicle in motion on the highway involving death, injury and loss events which have resulted are called accidents. As a result of increasing population and traffic density, traffic accidents continue to increase and this leads to both human losses and harm to the economy. In addition, also leads to social problems. As a result of increasing population and traffic density, traffic accidents continue to increase and this leads to both human losses and harm to the economy. In addition to this, it also leads to social problems. As a result of traffic accidents, millions of people die year by year. A great majority of these accidents occur in developing countries. One of the most important tasks of transportation engineers is to reduce traffic accidents by creating a specific system. For that reason, statistical information about traffic accidents which occur in the past years should be organized by versed people. Factors affecting the traffic accidents are analyzed in various ways. In this study, modelling the number of people killed in traffic accidents in Turkey is determined. The dead people were modelled using curve fitting method with the number of people killed in traffic accidents in Turkey dataset between 1990 and 2014. It was also predicted the number of dead people by using various models for the future. It is decided that linear model is suitable for the estimates.
Traffic Signal Synchronization in the Saturated High-Density Grid Road Network
Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye
2015-01-01
Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835
Direction of Coupling from Phases of Interacting Oscillators: A Permutation Information Approach
NASA Astrophysics Data System (ADS)
Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P. V. E.; Kantz, H.
2008-02-01
We introduce a directionality index for a time series based on a comparison of neighboring values. It can distinguish unidirectional from bidirectional coupling, as well as reveal and quantify asymmetry in bidirectional coupling. It is tested on a numerical model of coupled van der Pol oscillators, and applied to cardiorespiratory data from healthy subjects. There is no need for preprocessing and fine-tuning the parameters, which makes the method very simple, computationally fast and robust.
2015-09-01
scattering albedo (SSA) according to Hapke theory assuming bidirectional scattering at nadir look angles and uses a constrained linear model on the computed...following Hapke 9 (1993); and Mustard and Pieters 18 (1987)) assuming the reflectance spectra are bidirectional . SSA spectra were also generated...from AVIRIS data collected during a JPL/USGS campaign in response to the Deep Water Horizon (DWH) oil spill incident. 27 Out of the numerous
NASA Astrophysics Data System (ADS)
Fields, Renny A.; Kozlowski, David A.; Yura, Harold T.; Wong, Robert L.; Wicker, Josef M.; Lunde, Carl T.; Gregory, Mark; Wandernoth, Bernhard K.; Heine, Frank F.; Luna, Joseph J.
2011-11-01
5.625 Gbps bidirectional laser communication at 1064 nm has been demonstrated on a repeatable basis between a Tesat coherent laser communication terminal with a 6.5 cm diameter ground aperture mounted inside the European Space Agency Optical Ground Station dome at Izana, Tenerife and a similar space-based terminal (12.4 cm diameter aperture) on the Near-Field InfraRed Experiment (NFIRE) low-earth-orbiting spacecraft. Both night and day bidirectional links were demonstrated with the longest being 177 seconds in duration. Correlation with atmospheric models and preliminary atmospheric r0 and scintillation measurements have been made for the conditions tested, suggesting that such coherent systems can be deployed successfully at still lower altitudes without resorting to the use of adaptive optics for compensation.
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
Horikawa, Yo
2016-04-01
Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamical implications of bi-directional resource exchange within a meta-ecosystem.
Messan, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel C; Kang, Yun
2018-05-05
The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018 Elsevier Inc. All rights reserved.
FHWA Traffic Noise Model user's guide (version 2.5 addendum)
DOT National Transportation Integrated Search
2004-04-30
In March 1998, the Federal Highway Administration (FHWA), Office of Natural and Human Environment, released the FHWA Traffic Noise Model (TNM), Version 1.0, a state-of-the-art computer model for highway traffic noise prediction and analysis. Since th...
Coesens, Carolien; De Mol, Jan; De Bourdeaudhuij, Ilse; Buysse, Ann
2010-11-01
This study investigates children's eating behavior in a context of bidirectional parent-child influences. Parents and children were asked about their sense of influence and of being influenced concerning food rules. For parents, these feelings seemed to be partly correlated with children's eating behavior. Additionally, Social Relations Model analysis revealed that parents' and children's feelings of influence and being influenced were not only dependent on characteristics of the rater or actor, but also characteristics of the partner and of the unique relationship were found to be important. Furthermore, evidence was found for bidirectional influences, but only for the mother-older sibling dyad.
Transactional Process of African American Adolescents’ Family Conflict and Violent Behavior
Choe, Daniel Ewon; Zimmerman, Marc A.
2014-01-01
This is the first longitudinal study of urban African American adolescents that has examined bidirectional effects between their family conflict and violent behavior across all of high school. Structured interviews were administered to 681 students each year in high school at ages 15, 16 17, and 18 years. We used structural equation modeling to test a transactional model and found bidirectional effects between family conflict and violent behavior across the middle years of high school, while accounting for sex and socioeconomic status. Findings suggest a reciprocal process involving interpersonal conflict in African American families and adolescent engagement in youth violence. PMID:25400490
NASA Astrophysics Data System (ADS)
Zhang, Mingyang
2018-06-01
To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.
Multi-scale Material Appearance
NASA Astrophysics Data System (ADS)
Wu, Hongzhi
Modeling and rendering the appearance of materials is important for a diverse range of applications of computer graphics - from automobile design to movies and cultural heritage. The appearance of materials varies considerably at different scales, posing significant challenges due to the sheer complexity of the data, as well the need to maintain inter-scale consistency constraints. This thesis presents a series of studies around the modeling, rendering and editing of multi-scale material appearance. To efficiently render material appearance at multiple scales, we develop an object-space precomputed adaptive sampling method, which precomputes a hierarchy of view-independent points that preserve multi-level appearance. To support bi-scale material appearance design, we propose a novel reflectance filtering algorithm, which rapidly computes the large-scale appearance from small-scale details, by exploiting the low-rank structures of Bidirectional Visible Normal Distribution Functions and pre-rotated Bidirectional Reflectance Distribution Functions in the matrix formulation of the rendering algorithm. This approach can guide the physical realization of appearance, as well as the modeling of real-world materials using very sparse measurements. Finally, we present a bi-scale-inspired high-quality general representation for material appearance described by Bidirectional Texture Functions. Our representation is at once compact, easily editable, and amenable to efficient rendering.
NASA Astrophysics Data System (ADS)
Zhou, Tong; Chen, Dong; Liu, Weining
2018-03-01
Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.
Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang
2016-01-01
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.
Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang
2016-01-01
Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust. PMID:27551829
Macroscopic modeling of freeway traffic using an artificial neural network
DOT National Transportation Integrated Search
1997-01-01
Traffic flow on freeways is a complex process that often is described by a set of highly nonlinear, dynamic equations in the form of a macroscopic traffic flow model. However, some of the existing macroscopic models have been found to exhibit instabi...
Modeling Traffic on the Web Graph
NASA Astrophysics Data System (ADS)
Meiss, Mark R.; Gonçalves, Bruno; Ramasco, José J.; Flammini, Alessandro; Menczer, Filippo
Analysis of aggregate and individual Web requests shows that PageRank is a poor predictor of traffic. We use empirical data to characterize properties of Web traffic not reproduced by Markovian models, including both aggregate statistics such as page and link traffic, and individual statistics such as entropy and session size. As no current model reconciles all of these observations, we present an agent-based model that explains them through realistic browsing behaviors: (1) revisiting bookmarked pages; (2) backtracking; and (3) seeking out novel pages of topical interest. The resulting model can reproduce the behaviors we observe in empirical data, especially heterogeneous session lengths, reconciling the narrowly focused browsing patterns of individual users with the extreme variance in aggregate traffic measurements. We can thereby identify a few salient features that are necessary and sufficient to interpret Web traffic data. Beyond the descriptive and explanatory power of our model, these results may lead to improvements in Web applications such as search and crawling.
Microscopic modeling of multi-lane highway traffic flow
NASA Astrophysics Data System (ADS)
Hodas, Nathan O.; Jagota, Anand
2003-12-01
We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.
Variable speed limit strategies analysis with link transmission model on urban expressway
NASA Astrophysics Data System (ADS)
Li, Shubin; Cao, Danni
2018-02-01
The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.
Spatial Copula Model for Imputing Traffic Flow Data from Remote Microwave Sensors
Ma, Xiaolei; Du, Bowen; Yu, Bin
2017-01-01
Issues of missing data have become increasingly serious with the rapid increase in usage of traffic sensors. Analyses of the Beijing ring expressway have showed that up to 50% of microwave sensors pose missing values. The imputation of missing traffic data must be urgently solved although a precise solution that cannot be easily achieved due to the significant number of missing portions. In this study, copula-based models are proposed for the spatial interpolation of traffic flow from remote traffic microwave sensors. Most existing interpolation methods only rely on covariance functions to depict spatial correlation and are unsuitable for coping with anomalies due to Gaussian consumption. Copula theory overcomes this issue and provides a connection between the correlation function and the marginal distribution function of traffic flow. To validate copula-based models, a comparison with three kriging methods is conducted. Results indicate that copula-based models outperform kriging methods, especially on roads with irregular traffic patterns. Copula-based models demonstrate significant potential to impute missing data in large-scale transportation networks. PMID:28934164
A knowledge-based system for controlling automobile traffic
NASA Technical Reports Server (NTRS)
Maravas, Alexander; Stengel, Robert F.
1994-01-01
Transportation network capacity variations arising from accidents, roadway maintenance activity, and special events as well as fluctuations in commuters' travel demands complicate traffic management. Artificial intelligence concepts and expert systems can be useful in framing policies for incident detection, congestion anticipation, and optimal traffic management. This paper examines the applicability of intelligent route guidance and control as decision aids for traffic management. Basic requirements for managing traffic are reviewed, concepts for studying traffic flow are introduced, and mathematical models for modeling traffic flow are examined. Measures for quantifying transportation network performance levels are chosen, and surveillance and control strategies are evaluated. It can be concluded that automated decision support holds great promise for aiding the efficient flow of automobile traffic over limited-access roadways, bridges, and tunnels.
Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian
2014-04-01
Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.
Evaluation of Intersection Traffic Control Measures through Simulation
NASA Astrophysics Data System (ADS)
Asaithambi, Gowri; Sivanandan, R.
2015-12-01
Modeling traffic flow is stochastic in nature due to randomness in variables such as vehicle arrivals and speeds. Due to this and due to complex vehicular interactions and their manoeuvres, it is extremely difficult to model the traffic flow through analytical methods. To study this type of complex traffic system and vehicle interactions, simulation is considered as an effective tool. Application of homogeneous traffic models to heterogeneous traffic may not be able to capture the complex manoeuvres and interactions in such flows. Hence, a microscopic simulation model for heterogeneous traffic is developed using object oriented concepts. This simulation model acts as a tool for evaluating various control measures at signalized intersections. The present study focuses on the evaluation of Right Turn Lane (RTL) and Channelised Left Turn Lane (CLTL). A sensitivity analysis was performed to evaluate RTL and CLTL by varying the approach volumes, turn proportions and turn lane lengths. RTL is found to be advantageous only up to certain approach volumes and right-turn proportions, beyond which it is counter-productive. CLTL is found to be advantageous for lower approach volumes for all turn proportions, signifying the benefits of CLTL. It is counter-productive for higher approach volume and lower turn proportions. This study pinpoints the break-even points for various scenarios. The developed simulation model can be used as an appropriate intersection lane control tool for enhancing the efficiency of flow at intersections. This model can also be employed for scenario analysis and can be valuable to field traffic engineers in implementing vehicle-type based and lane-based traffic control measures.
Impulsive Personality and Alcohol Use: Bidirectional Relations Over One Year
Kaiser, Alison; Bonsu, Jacqueline A.; Charnigo, Richard J.; Milich, Richard; Lynam, Donald R.
2016-01-01
Objective: Impulsive personality traits have been found to be robust predictors of substance use and problems in both cross-sectional and longitudinal research. Studies examining the relations of substance use and impulsive personality over time indicate a bidirectional relation, where substance use is also predictive of increases in later impulsive personality. The present study sought to build on these findings by examining the bidirectional relations among the different impulsive personality traits assessed by the UPPS-P Impulsive Behavior Scale, with an interest in urgency (the tendency to act rashly when experiencing strong affect). Method: Participants were 525 first-year college students (48.0% male, 81.1% White), who completed self-report measures assessing personality traits and a structured interview assessing past and current substance use. Data collection took place at two different time points: the first occurred during the participants’ first year of college, and the second occurred approximately 1 year later. Bidirectional relations were examined using structural equation modeling. Results: Time 1 (T1) positive urgency predicted higher levels of alcohol use at Time 2 (T2), whereas T1 lack of perseverance predicted lower levels of alcohol use at T2. T1 alcohol use predicted higher levels of positive urgency, negative urgency, sensation seeking, and lack of premeditation at T2. Conclusions: Findings provide greater resolution in characterizing the bidirectional relation between impulsive personality traits and substance use. PMID:27172580
Bidirectional relations between work-related stress, sleep quality and perseverative cognition.
Van Laethem, Michelle; Beckers, Debby G J; Kompier, Michiel A J; Kecklund, Göran; van den Bossche, Seth N J; Geurts, Sabine A E
2015-11-01
In this longitudinal two-wave study, bidirectional relations between work-related stress and sleep quality were examined. Moreover, it was investigated whether perseverative cognition is a potential underlying mechanism in this association, related to both work-related stress and sleep quality. A randomly selected sample of Dutch employees received an online survey in 2012 and 2013. Of all invited employees, 877 participated in both waves. Structural equation modeling was performed to analyze the data. We found evidence for reversed relations between work-related stress and sleep quality. Specifically, when controlling for perseverative cognition, work-related stress was not directly related to subsequent sleep quality, but low sleep quality was associated with an increase in work-related stress over time. Moreover, negative bidirectional associations over time were found between perseverative cognition and sleep quality, and positive bidirectional associations were found between work-related stress and perseverative cognition. Lastly, a mediation analysis showed that perseverative cognition fully mediated the relationship between work-related stress and sleep quality. The study findings suggest that perseverative cognition could be an important underlying mechanism in the association between work-related stress and sleep quality. The bidirectionality of the studied relationships could be an indication of a vicious cycle, in which work-related stress, perseverative cognition, and sleep quality mutually influence each other over time. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Batterman, Stuart; Cook, Richard; Justin, Thomas
2015-04-01
Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates.
Batterman, Stuart; Cook, Richard; Justin, Thomas
2015-01-01
Traffic activity encompasses the number, mix, speed and acceleration of vehicles on roadways. The temporal pattern and variation of traffic activity reflects vehicle use, congestion and safety issues, and it represents a major influence on emissions and concentrations of traffic-related air pollutants. Accurate characterization of vehicle flows is critical in analyzing and modeling urban and local-scale pollutants, especially in near-road environments and traffic corridors. This study describes methods to improve the characterization of temporal variation of traffic activity. Annual, monthly, daily and hourly temporal allocation factors (TAFs), which describe the expected temporal variation in traffic activity, were developed using four years of hourly traffic activity data recorded at 14 continuous counting stations across the Detroit, Michigan, U.S. region. Five sites also provided vehicle classification. TAF-based models provide a simple means to apportion annual average estimates of traffic volume to hourly estimates. The analysis shows the need to separate TAFs for total and commercial vehicles, and weekdays, Saturdays, Sundays and observed holidays. Using either site-specific or urban-wide TAFs, nearly all of the variation in historical traffic activity at the street scale could be explained; unexplained variation was attributed to adverse weather, traffic accidents and construction. The methods and results presented in this paper can improve air quality dispersion modeling of mobile sources, and can be used to evaluate and model temporal variation in ambient air quality monitoring data and exposure estimates. PMID:25844042
NASA Astrophysics Data System (ADS)
Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.
2016-10-01
Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Li, Xiao-Wen; Jupp, David L. B.
1991-01-01
The bidirectional radiance or reflectance of a forest or woodland can be modeled using principles of geometric optics and Boolean models for random sets in a three dimensional space. This model may be defined at two levels, the scene includes four components; sunlight and shadowed canopy, and sunlit and shadowed background. The reflectance of the scene is modeled as the sum of the reflectances of the individual components as weighted by their areal proportions in the field of view. At the leaf level, the canopy envelope is an assemblage of leaves, and thus the reflectance is a function of the areal proportions of sunlit and shadowed leaf, and sunlit and shadowed background. Because the proportions of scene components are dependent upon the directions of irradiance and exitance, the model accounts for the hotspot that is well known in leaf and tree canopies.
Prokhorov, Alexander; Prokhorova, Nina I
2012-11-20
We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.
Nishino, Ko; Lombardi, Stephen
2011-01-01
We introduce a novel parametric bidirectional reflectance distribution function (BRDF) model that can accurately encode a wide variety of real-world isotropic BRDFs with a small number of parameters. The key observation we make is that a BRDF may be viewed as a statistical distribution on a unit hemisphere. We derive a novel directional statistics distribution, which we refer to as the hemispherical exponential power distribution, and model real-world isotropic BRDFs as mixtures of it. We derive a canonical probabilistic method for estimating the parameters, including the number of components, of this novel directional statistics BRDF model. We show that the model captures the full spectrum of real-world isotropic BRDFs with high accuracy, but a small footprint. We also demonstrate the advantages of the novel BRDF model by showing its use for reflection component separation and for exploring the space of isotropic BRDFs.
POlarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I)
NASA Technical Reports Server (NTRS)
Sarto, Anthony W.; Woldemar, Christopher M.; Vanderbilt, V. C.
1989-01-01
The light scattering properties of leaves are used as input data for models which mathematically describe the transport of photons within plant canopies. Polarization measurements may aid in the investigation of these properties. This paper describes an instrument for rapidly determining the bidirectional light scattering properties of leaves illuminated by linearly polarized light. Results for one species, magnolia, show large differences in the bidirectional light scattering properties depending whether or not the electric vector E is parallel to the foliage surface.
Cellular automata model for urban road traffic flow considering pedestrian crossing street
NASA Astrophysics Data System (ADS)
Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu
2016-11-01
In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.
A new cellular automaton for signal controlled traffic flow based on driving behaviors
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Yan-Yan
2015-03-01
The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined. Project supported by the National Basic Research Program of China (Grand No. 2012CB723303) and the Beijing Committee of Science and Technology, China (Grand No. Z1211000003120100).
Self-Organized Transport System
DOT National Transportation Integrated Search
2009-09-28
This report presents the findings of the simulation model for a self-organized transport system where traffic lights communicate with neighboring traffic lights and make decisions locally to adapt to traffic conditions in real time. The model is insp...
Mean-field velocity difference model considering the average effect of multi-vehicle interaction
NASA Astrophysics Data System (ADS)
Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di
2018-06-01
In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.
Research on three-phase traffic flow modeling based on interaction range
NASA Astrophysics Data System (ADS)
Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting
2017-12-01
On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.
Stochastic Car-Following Model for Explaining Nonlinear Traffic Phenomena
NASA Astrophysics Data System (ADS)
Meng, Jianping; Song, Tao; Dong, Liyun; Dai, Shiqiang
There is a common time parameter for representing the sensitivity or the lag (response) time of drivers in many car-following models. In the viewpoint of traffic psychology, this parameter could be considered as the perception-response time (PRT). Generally, this parameter is set to be a constant in previous models. However, PRT is actually not a constant but a random variable described by the lognormal distribution. Thus the probability can be naturally introduced into car-following models by recovering the probability of PRT. For demonstrating this idea, a specific stochastic model is constructed based on the optimal velocity model. By conducting simulations under periodic boundary conditions, it is found that some important traffic phenomena, such as the hysteresis and phantom traffic jams phenomena, can be reproduced more realistically. Especially, an interesting experimental feature of traffic jams, i.e., two moving jams propagating in parallel with constant speed stably and sustainably, is successfully captured by the present model.
DOT National Transportation Integrated Search
2017-02-01
This project covered the development and calibration of a Dynamic Traffic Assignment (DTA) model and explained the procedures, constraints, and considerations for usage of this model for the Reno-Sparks area roadway network in Northern Nevada. A lite...
Effect of current vehicle’s interruption on traffic stability in cooperative car-following theory
NASA Astrophysics Data System (ADS)
Zhang, Geng; Liu, Hui
2017-12-01
To reveal the impact of the current vehicle’s interruption information on traffic flow, a new car-following model with consideration of the current vehicle’s interruption is proposed and the influence of the current vehicle’s interruption on traffic stability is investigated through theoretical analysis and numerical simulation. By linear analysis, the linear stability condition of the new model is obtained and the negative influence of the current vehicle’s interruption on traffic stability is shown in the headway-sensitivity space. Through nonlinear analysis, the modified Korteweg-de Vries (mKdV) equation of the new model near the critical point is derived and it can be used to describe the propagating behavior of the traffic density wave. Finally, numerical simulation confirms the analytical results, which shows that the current vehicle’s interruption information can destabilize traffic flow and should be considered in real traffic.
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Framework based on stochastic L-Systems for modeling IP traffic with multifractal behavior
NASA Astrophysics Data System (ADS)
Salvador, Paulo S.; Nogueira, Antonio; Valadas, Rui
2003-08-01
In a previous work we have introduced a multifractal traffic model based on so-called stochastic L-Systems, which were introduced by biologist A. Lindenmayer as a method to model plant growth. L-Systems are string rewriting techniques, characterized by an alphabet, an axiom (initial string) and a set of production rules. In this paper, we propose a novel traffic model, and an associated parameter fitting procedure, which describes jointly the packet arrival and the packet size processes. The packet arrival process is modeled through a L-System, where the alphabet elements are packet arrival rates. The packet size process is modeled through a set of discrete distributions (of packet sizes), one for each arrival rate. In this way the model is able to capture correlations between arrivals and sizes. We applied the model to measured traffic data: the well-known pOct Bellcore, a trace of aggregate WAN traffic and two traces of specific applications (Kazaa and Operation Flashing Point). We assess the multifractality of these traces using Linear Multiscale Diagrams. The suitability of the traffic model is evaluated by comparing the empirical and fitted probability mass and autocovariance functions; we also compare the packet loss ratio and average packet delay obtained with the measured traces and with traces generated from the fitted model. Our results show that our L-System based traffic model can achieve very good fitting performance in terms of first and second order statistics and queuing behavior.
Odle-Dusseau, Heather N; Britt, Thomas W; Greene-Shortridge, Tiffany M
2012-01-01
The goal of the current study was to test a model where organizational resources (aimed at managing work and family responsibilities) predict job attitudes and supervisor ratings of performance through the mechanisms of work-family conflict and work-family enrichment. Employees (n = 174) at a large metropolitan hospital were surveyed at two time periods regarding perceptions of family supportive supervisor behaviors (FSSB), family supportive organizational perceptions (FSOP), bidirectional work-family conflict, bidirectional work-family enrichment, and job attitudes. Supervisors were also asked to provide performance ratings at Time 2. Results revealed FSSB at Time 1 predicted job satisfaction, organizational commitment and intention to leave, as well as supervisor ratings of performance, at Time 2. In addition, both work-family enrichment and family-work enrichment were found to mediate relationships between FSSB and various organizational outcomes, while work-family conflict was not a significant mediator. Results support further testing of supervisor behaviors specific to family support, as well models that include bidirectional work-family enrichment as the mechanism by which work-family resources predict employee and organizational outcomes.
Life Times of Simulated Traffic Jams
NASA Astrophysics Data System (ADS)
Nagel, Kai
We study a model for freeway traffic which includes strong noise taking into account the fluctuations of individual driving behavior. The model shows emergent traffic jams with a self-similar appearance near the throughput maximum of the traffic. The lifetime distribution of these jams shows a short scaling regime, which gets considerably longer if one reduces the fluctuations when driving at maximum speed but leaves the fluctuations for slowing down or accelerating unchanged. The outflow from a traffic jam self-organizes into this state of maximum throughput.
Aircraft/Air Traffic Management Functional Analysis Model: Technical Description. 2.0
NASA Technical Reports Server (NTRS)
Etheridge, Melvin; Plugge, Joana; Retina, Nusrat
1998-01-01
The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) under a National Aeronautics and Space Administration (NASA) contract. This document provides a technical description of FAM 2.0 and its computer files to enable the modeler and programmer to make enhancements or modifications to the model. Those interested in a guide for using the model in analysis should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Users Manual.
An agent-based model for queue formation of powered two-wheelers in heterogeneous traffic
NASA Astrophysics Data System (ADS)
Lee, Tzu-Chang; Wong, K. I.
2016-11-01
This paper presents an agent-based model (ABM) for simulating the queue formation of powered two-wheelers (PTWs) in heterogeneous traffic at a signalized intersection. The main novelty is that the proposed interaction rule describing the position choice behavior of PTWs when queuing in heterogeneous traffic can capture the stochastic nature of the decision making process. The interaction rule is formulated as a multinomial logit model, which is calibrated by using a microscopic traffic trajectory dataset obtained from video footage. The ABM is validated against the survey data for the vehicular trajectory patterns, queuing patterns, queue lengths, and discharge rates. The results demonstrate that the proposed model is capable of replicating the observed queue formation process for heterogeneous traffic.
Reader, Brenda F.; Jarrett, Brant L.; McKim, Daniel B.; Wohleb, Eric S.; Godbout, Jonathan P.; Sheridan, John F.
2015-01-01
The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. PMID:25596319
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
DOT National Transportation Integrated Search
2006-04-01
In this research report, an investigation was conducted to identify a suitable traffic monitoring device for collecting traffic data during actual emergency evacuation conditions that may result from hurricanes in Louisiana. The study reviewed thorou...
Joint parameter and state estimation algorithms for real-time traffic monitoring.
DOT National Transportation Integrated Search
2013-12-01
A common approach to traffic monitoring is to combine a macroscopic traffic flow model with traffic sensor data in a process called state estimation, data fusion, or data assimilation. The main challenge of traffic state estimation is the integration...
Pan, Long; Yao, Enjian; Yang, Yang
2016-12-01
With the rapid development of urbanization and motorization in China, traffic-related air pollution has become a major component of air pollution which constantly jeopardizes public health. This study proposes an integrated framework for estimating the concentration of traffic-related air pollution with real-time traffic and basic meteorological information and also for further evaluating the impact of traffic-related air pollution. First, based on the vehicle emission factor models sensitive to traffic status, traffic emissions are calculated according to the real-time link-based average traffic speed, traffic volume, and vehicular fleet composition. Then, based on differences in meteorological conditions, traffic pollution sources are divided into line sources and point sources, and the corresponding methods to determine the dynamic affecting areas are also proposed. Subsequently, with basic meteorological data, Gaussian dispersion model and puff integration model are applied respectively to estimate the concentration of traffic-related air pollution. Finally, the proposed estimating framework is applied to calculate the distribution of CO concentration in the main area of Beijing, and the population exposure is also calculated to evaluate the impact of traffic-related air pollution on public health. Results show that there is a certain correlation between traffic indicators (i.e., traffic speed and traffic intensity) of the affecting area and traffic-related CO concentration of the target grid, which indicates the methods to determine the affecting areas are reliable. Furthermore, the reliability of the proposed estimating framework is verified by comparing the predicted and the observed ambient CO concentration. In addition, results also show that the traffic-related CO concentration is higher in morning and evening peak hours, and has a heavier impact on public health within the Fourth Ring Road of Beijing due to higher population density and higher CO concentration under calm wind condition in this area. Copyright © 2016 Elsevier Ltd. All rights reserved.
A model of traffic signs recognition with convolutional neural network
NASA Astrophysics Data System (ADS)
Hu, Haihe; Li, Yujian; Zhang, Ting; Huo, Yi; Kuang, Wenqing
2016-10-01
In real traffic scenes, the quality of captured images are generally low due to some factors such as lighting conditions, and occlusion on. All of these factors are challengeable for automated recognition algorithms of traffic signs. Deep learning has provided a new way to solve this kind of problems recently. The deep network can automatically learn features from a large number of data samples and obtain an excellent recognition performance. We therefore approach this task of recognition of traffic signs as a general vision problem, with few assumptions related to road signs. We propose a model of Convolutional Neural Network (CNN) and apply the model to the task of traffic signs recognition. The proposed model adopts deep CNN as the supervised learning model, directly takes the collected traffic signs image as the input, alternates the convolutional layer and subsampling layer, and automatically extracts the features for the recognition of the traffic signs images. The proposed model includes an input layer, three convolutional layers, three subsampling layers, a fully-connected layer, and an output layer. To validate the proposed model, the experiments are implemented using the public dataset of China competition of fuzzy image processing. Experimental results show that the proposed model produces a recognition accuracy of 99.01 % on the training dataset, and yield a record of 92% on the preliminary contest within the fourth best.
Evaluation of the impacts of traffic states on crash risks on freeways.
Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin
2012-07-01
The primary objective of this study is to divide freeway traffic flow into different states, and to evaluate the safety performance associated with each state. Using traffic flow data and crash data collected from a northbound segment of the I-880 freeway in the state of California, United States, K-means clustering analysis was conducted to classify traffic flow into five different states. Conditional logistic regression models using case-controlled data were then developed to study the relationship between crash risks and traffic states. Traffic flow characteristics in each traffic state were compared to identify the underlying phenomena that made certain traffic states more hazardous than others. Crash risk models were also developed for different traffic states to identify how traffic flow characteristics such as speed and speed variance affected crash risks in different traffic states. The findings of this study demonstrate that the operations of freeway traffic can be divided into different states using traffic occupancy measured from nearby loop detector stations, and each traffic state can be assigned with a certain safety level. The impacts of traffic flow parameters on crash risks are different across different traffic flow states. A method based on discriminant analysis was further developed to identify traffic states given real-time freeway traffic flow data. Validation results showed that the method was of reasonably high accuracy for identifying freeway traffic states. Copyright © 2012 Elsevier Ltd. All rights reserved.
FHWA traffic noise model, version 1.0 : user's guide
DOT National Transportation Integrated Search
1998-01-01
This User's Guide is for the Federal Highway Administration's Traffic Noise Model (FHWA TNM), Version 1.0 -- the FHWAs computer program for highway traffic noise prediction and analysis. Two companion reports, a Technical Manual and a data repor...
Value of Information and Information Services
DOT National Transportation Integrated Search
1975-10-01
The report describes the salient features of the SCOT (Simulation of Corridor Traffic) model and a successful calibration and validation. SCOT is a computer model that may be applied to an urban traffic corridor and will simulate vehicular traffic on...
Application of dynamic traffic assignment to advanced managed lane modeling.
DOT National Transportation Integrated Search
2013-11-01
In this study, a demand estimation framework is developed for assessing the managed lane (ML) : strategies by utilizing dynamic traffic assignment (DTA) modeling, instead of the traditional : approaches that are based on the static traffic assignment...
FHWA Traffic Noise Model, version 1.0 technical manual
DOT National Transportation Integrated Search
1998-02-01
This Technical Manual is for the Federal Highway Administrations Traffic Noise Model (FHWA TNM), Version 1.0 -- the FHWAs computer program for highway traffic noise prediction and analysis. Two companion reports, a Users Guide and a data r...
Traffic flow simulation for an urban freeway corridor
DOT National Transportation Integrated Search
1998-01-01
The objective of this paper is to develop a realistic and operational macroscopic traffic flow simulation model which requires relatively less data collection efforts. Such a model should be capable of delineating the dynamics of traffic flow created...
Exact results of 1D traffic cellular automata: The low-density behavior of the Fukui-Ishibashi model
NASA Astrophysics Data System (ADS)
Salcido, Alejandro; Hernández-Zapata, Ernesto; Carreón-Sierra, Susana
2018-03-01
The maximum entropy states of the cellular automata models for traffic flow in a single-lane with no anticipation are presented and discussed. The exact analytical solutions for the low-density behavior of the stochastic Fukui-Ishibashi traffic model were obtained and compared with computer simulations of the model. An excellent agreement was found.
Cross-lagged relationships between workplace demands, control, support, and sleep problems.
Hanson, Linda L Magnusson; Åkerstedt, Torbjörn; Näswall, Katharina; Leineweber, Constanze; Theorell, Töres; Westerlund, Hugo
2011-10-01
Sleep problems are experienced by a large part of the population. Work characteristics are potential determinants, but limited longitudinal evidence is available to date, and reverse causation is a plausible alternative. This study examines longitudinal, bidirectional relationships between work characteristics and sleep problems. Prospective cohort/two-wave panel. Sweden. 3065 working men and women approximately representative of the Swedish workforce who responded to the 2006 and 2008 waves of the Swedish Longitudinal Occupational Survey of Health (SLOSH). N/A. Bidirectional relationships between, on the one hand, workplace demands, decision authority, and support, and, on the other hand, sleep disturbances (reflecting lack of sleep continuity) and awakening problems (reflecting feelings of being insufficiently restored), were investigated by structural equation modeling. All factors were modeled as latent variables and adjusted for gender, age, marital status, education, alcohol consumption, and job change. Concerning sleep disturbances, the best fitting models were the "forward" causal model for demands and the "reverse" causal model for support. Regarding awakening problems, reciprocal models fitted the data best. Cross-lagged analyses indicates a weak relationship between demands at Time 1 and sleep disturbances at Time 2, a "reverse" relationship from support T1 to sleep disturbances T2, and bidirectional associations between work characteristics and awakening problems. In contrast to an earlier study on demands, control, sleep quality, and fatigue, this study suggests reverse and reciprocal in addition to the commonly hypothesized causal relationships between work characteristics and sleep problems based on a 2-year time lag.
Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.
Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony
1998-05-01
The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.
Biased Competition in Visual Processing Hierarchies: A Learning Approach Using Multiple Cues.
Gepperth, Alexander R T; Rebhan, Sven; Hasler, Stephan; Fritsch, Jannik
2011-03-01
In this contribution, we present a large-scale hierarchical system for object detection fusing bottom-up (signal-driven) processing results with top-down (model or task-driven) attentional modulation. Specifically, we focus on the question of how the autonomous learning of invariant models can be embedded into a performing system and how such models can be used to define object-specific attentional modulation signals. Our system implements bi-directional data flow in a processing hierarchy. The bottom-up data flow proceeds from a preprocessing level to the hypothesis level where object hypotheses created by exhaustive object detection algorithms are represented in a roughly retinotopic way. A competitive selection mechanism is used to determine the most confident hypotheses, which are used on the system level to train multimodal models that link object identity to invariant hypothesis properties. The top-down data flow originates at the system level, where the trained multimodal models are used to obtain space- and feature-based attentional modulation signals, providing biases for the competitive selection process at the hypothesis level. This results in object-specific hypothesis facilitation/suppression in certain image regions which we show to be applicable to different object detection mechanisms. In order to demonstrate the benefits of this approach, we apply the system to the detection of cars in a variety of challenging traffic videos. Evaluating our approach on a publicly available dataset containing approximately 3,500 annotated video images from more than 1 h of driving, we can show strong increases in performance and generalization when compared to object detection in isolation. Furthermore, we compare our results to a late hypothesis rejection approach, showing that early coupling of top-down and bottom-up information is a favorable approach especially when processing resources are constrained.
NASA Astrophysics Data System (ADS)
Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu
2017-09-01
Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.
Do alcohol excise taxes affect traffic accidents? Evidence from Estonia.
Saar, Indrek
2015-01-01
This article examines the association between alcohol excise tax rates and alcohol-related traffic accidents in Estonia. Monthly time series of traffic accidents involving drunken motor vehicle drivers from 1998 through 2013 were regressed on real average alcohol excise tax rates while controlling for changes in economic conditions and the traffic environment. Specifically, regression models with autoregressive integrated moving average (ARIMA) errors were estimated in order to deal with serial correlation in residuals. Counterfactual models were also estimated in order to check the robustness of the results, using the level of non-alcohol-related traffic accidents as a dependent variable. A statistically significant (P <.01) strong negative relationship between the real average alcohol excise tax rate and alcohol-related traffic accidents was disclosed under alternative model specifications. For instance, the regression model with ARIMA (0, 1, 1)(0, 1, 1) errors revealed that a 1-unit increase in the tax rate is associated with a 1.6% decrease in the level of accidents per 100,000 population involving drunk motor vehicle drivers. No similar association was found in the cases of counterfactual models for non-alcohol-related traffic accidents. This article indicates that the level of alcohol-related traffic accidents in Estonia has been affected by changes in real average alcohol excise taxes during the period 1998-2013. Therefore, in addition to other measures, the use of alcohol taxation is warranted as a policy instrument in tackling alcohol-related traffic accidents.
Disaster management and mitigation: the telecommunications infrastructure.
Patricelli, Frédéric; Beakley, James E; Carnevale, Angelo; Tarabochia, Marcello; von Lubitz, Dag K J E
2009-03-01
Among the most typical consequences of disasters is the near or complete collapse of terrestrial telecommunications infrastructures (especially the distribution network--the 'last mile') and their concomitant unavailability to the rescuers and the higher echelons of mitigation teams. Even when such damage does not take place, the communications overload/congestion resulting from significantly elevated traffic generated by affected residents can be highly disturbing. The paper proposes innovative remedies to the telecommunications difficulties in disaster struck regions. The offered solutions are network-centric operations-cap able, and can be employed in management of disasters of any magnitude (local to national or international). Their implementation provide ground rescue teams (such as law enforcement, firemen, healthcare personnel, civilian authorities) with tactical connectivity among themselves, and, through the Next Generation Network backbone, ensure the essential bidirectional free flow of information and distribution of Actionable Knowledge among ground units, command/control centres, and civilian and military agencies participating in the rescue effort.
NASA Astrophysics Data System (ADS)
Hustim, M.; Arifin, Z.; Aly, S. H.; Ramli, M. I.; Zakaria, R.; Liputo, A.
2018-04-01
This research aimed to predict the noise produced by the traffic in the road network in Makassar City using ASJ-RTN Model 2008 by calculating the horn sound. Observations were taken at 37 survey points on road side. The observations were conducted at 06.00 - 18.00 and 06.00 - 21.00 which research objects were motorcycle (MC), light vehicle (LV) and heavy vehicle (HV). The observed data were traffic volume, vehicle speed, number of horn and traffic noise using Sound Level Meter Tenmars TM-103. The research result indicates that prediction noise model by calculating the horn sound produces the average noise level value of 78.5 dB having the Pearson’s correlation and RMSE of 0.95 and 0.87. Therefore, ASJ-RTN Model 2008 prediction model by calculating the horn sound is said to be sufficiently good for predicting noise level.
Ahmed, Yusra; Wagner, Richard K.; Lopez, Danielle
2013-01-01
Relations between reading and writing have been studied extensively but the less is known about the developmental nature of their interrelations. This study applied latent change score modeling to investigate longitudinal relations between reading and writing skills at the word, sentence and text levels. Latent change score models were used to compare unidirectional pathways (reading-to-writing and writing-to-reading) and bidirectional pathways in a test of nested models. Participants included 316 boys and girls who were assessed annually in grades 1 through 4. Measures of reading included pseudo-word decoding, sentence reading efficiency, oral reading fluency and passage comprehension. Measures of writing included spelling, a sentence combining task and writing prompts. Findings suggest that a reading-to-writing model better described the data for the word and text levels of language, but a bidirectional model best fit the data at the sentence level. PMID:24954951
Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.
Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh
2009-01-01
This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.
Deep hierarchical attention network for video description
NASA Astrophysics Data System (ADS)
Li, Shuohao; Tang, Min; Zhang, Jun
2018-03-01
Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.
Why is bidirectional sex change rare?
Yamaguchi, Sachi; Iwasa, Yoh
2018-09-14
Various species of fish living in coral reef communities show sequential hermaphroditism, or sex change. In a typical case, an individual first matures as a female, and later, when it becomes dominant in the mating group, it becomes a male (i.e., protogynous sex change). Many species show only unidirectional changes but some of coral reef fishes exhibit bidirectional sex changes, in which even a dominant male may revert to female when a socially more dominant competitor arrives. However, bidirectional sex change has rarely been observed in natural conditions, even among those species exhibiting it under experimental conditions. Here we explain the rarity of bidirectional sex change by studying dynamics of hormones controlling sex expression. We consider social status factor, S F , which is elevated when the individual becomes more dominant in the mating group. When the S F level is high, the dynamics would culminate with low estradiol expression and high testosterone expression, suggesting a male phenotype. In contrast, when S F level is low, the system converges to an equilibrium with high estradiol expression and low testosterone expression, suggesting a female phenotype. There is a parameter region in which the dynamics exhibit bistability. The model demonstrates hysteresis: as S F increases smoothly, the system undergoes a sudden transition in the levels of sex hormones. The model can explain why species show unidirectional sex change, in that an individual's switch to a new sex is irreversible, even if the individual's social situation returns to the original subdominant status. Copyright © 2018 Elsevier Ltd. All rights reserved.
Do, Young Kyung; Shin, Eunhae
2017-07-01
Scholarly interest in time preference as a potential predictor of risky health behaviors in adolescents has increased in recent years. However, most of the existing literature is limited due to the exclusive reliance on cross-sectional data, precluding the possibility of establishing the direction of causality. Using longitudinal data from the Korea Youth Panel Survey (2003-7), which followed up a nationally representative sample of 3449 adolescents aged 14years for five years, this study examines a bidirectional relationship between time preference and smoking and drinking behaviors among adolescents. We used discrete time hazard models of smoking and drinking initiation as a function of time preference measured at the baseline and fixed-effects ordered logit model of time preference, respectively. Our measure of time preference was derived from the survey question on a hypothetical choice between immediate enjoyment today and likely higher scores on an exam tomorrow. The overall results provide evidence on the bidirectional relationship; that is, higher time discounting (i.e., greater relative preference for present utility over future utility) results in an increased risk of engaging in smoking and drinking, and conversely, adopting such behaviors leads to a higher discount rate. The bidirectional relationship may function as a mechanism for adolescents to engage in increased smoking and drinking or additional negative health behaviors via gateway effects, strengthening the case for preventing the initiation of risky health behaviors among adolescents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2011-10-01
We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules "acceleration," "deceleration," "randomization," and "motion" of the Nagel-Schreckenberg CA model as well as "overacceleration through lane changing to the faster lane," "comparison of vehicle gap with the synchronization gap," and "speed adaptation within the synchronization gap" of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.
Instability of cooperative adaptive cruise control traffic flow: A macroscopic approach
NASA Astrophysics Data System (ADS)
Ngoduy, D.
2013-10-01
This paper proposes a macroscopic model to describe the operations of cooperative adaptive cruise control (CACC) traffic flow, which is an extension of adaptive cruise control (ACC) traffic flow. In CACC traffic flow a vehicle can exchange information with many preceding vehicles through wireless communication. Due to such communication the CACC vehicle can follow its leader at a closer distance than the ACC vehicle. The stability diagrams are constructed from the developed model based on the linear and nonlinear stability method for a certain model parameter set. It is found analytically that CACC vehicles enhance the stabilization of traffic flow with respect to both small and large perturbations compared to ACC vehicles. Numerical simulation is carried out to support our analytical findings. Based on the nonlinear stability analysis, we will show analytically and numerically that the CACC system better improves the dynamic equilibrium capacity over the ACC system. We have argued that in parallel to microscopic models for CACC traffic flow, the newly developed macroscopic will provide a complete insight into the dynamics of intelligent traffic flow.
A critical review of principal traffic noise models: Strategies and implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, Naveen, E-mail: ngarg@mail.nplindia.ernet.in; Department of Mechanical, Production and Industrial Engineering, Delhi Technological University, Delhi 110042; Maji, Sagar
2014-04-01
The paper presents an exhaustive comparison of principal traffic noise models adopted in recent years in developed nations. The comparison is drawn on the basis of technical attributes including source modelling and sound propagation algorithms. Although the characterization of source in terms of rolling and propulsion noise in conjunction with advanced numerical methods for sound propagation has significantly reduced the uncertainty in traffic noise predictions, the approach followed is quite complex and requires specialized mathematical skills for predictions which is sometimes quite cumbersome for town planners. Also, it is sometimes difficult to follow the best approach when a variety ofmore » solutions have been proposed. This paper critically reviews all these aspects pertaining to the recent models developed and adapted in some countries and also discusses the strategies followed and implications of these models. - Highlights: • Principal traffic noise models developed are reviewed. • Sound propagation algorithms used in traffic noise models are compared. • Implications of models are discussed.« less
Characterize older driver behavior for traffic simulation and vehicle emission model.
DOT National Transportation Integrated Search
2012-05-01
The use of traffic simulation models is becoming more widespread as a means of : assessing traffic, safety and environmental impacts as a result of infrastructure, control and : operational changes at disaggregate levels. It is imperative that these ...
Gulf Coast megaregion evacuation traffic simulation modeling and analysis.
DOT National Transportation Integrated Search
2015-12-01
This paper describes a project to develop a micro-level traffic simulation for a megaregion. To : accomplish this, a mass evacuation event was modeled using a traffic demand generation process that : created a spatial and temporal distribution of dep...
FHWA Traffic Noise Model user's guide (version 2.0 addendum).
DOT National Transportation Integrated Search
2002-03-01
In March 1998, the Federal Highway Administration (FHWA) Office of Natural : Environment, released the FHWA Traffic Noise Model (FHWA TNM) Version 1.0, a : state-of-the-art computer program for highway traffic noise prediction and : analysis. Since t...
First Coast Guard district traffic model report
DOT National Transportation Integrated Search
1997-11-01
The purpose of this report was to describe the methodology used in developing the First Coast Guard District (CGD1) Traffic Model and to document the potential National Distress System (NDS) voice and data traffic forecasted for the year 2001. The ND...
A Framework for Validating Traffic Simulation Models at the Vehicle Trajectory Level
DOT National Transportation Integrated Search
2017-03-01
Based on current practices, traffic simulation models are calibrated and validated using macroscopic measures such as 15-minute averages of traffic counts or average point-to-point travel times. For an emerging number of applications, including conne...
Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search
NASA Astrophysics Data System (ADS)
Chen, Caixia; Shi, Chun
2018-03-01
Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.
Lipfert, Frederick W; Wyzga, Ronald E; Baty, Jack D; Miller, J Philip
2009-04-01
For this paper, we considered relationships between mortality, vehicular traffic density, and ambient levels of 12 hazardous air pollutants, elemental carbon (EC), oxides of nitrogen (NOx), sulfur dioxide (SO2), and sulfate (SO4(2-)). These pollutant species were selected as markers for specific types of emission sources, including vehicular traffic, coal combustion, smelters, and metal-working industries. Pollutant exposures were estimated using emissions inventories and atmospheric dispersion models. We analyzed associations between county ambient levels of these pollutants and survival patterns among approximately 70,000 U.S. male veterans by mortality period (1976-2001 and subsets), type of exposure model, and traffic density level. We found significant associations between all-cause mortality and traffic-related air quality indicators and with traffic density per se, with stronger associations for benzene, formaldehyde, diesel particulate, NOx, and EC. The maximum effect on mortality for all cohort subjects during the 26-yr follow-up period is approximately 10%, but most of the pollution-related deaths in this cohort occurred in the higher-traffic counties, where excess risks approach 20%. However, mortality associations with diesel particulates are similar in high- and low-traffic counties. Sensitivity analyses show risks decreasing slightly over time and minor differences between linear and logarithmic exposure models. Two-pollutant models show stronger risks associated with specific traffic-related pollutants than with traffic density per se, although traffic density retains statistical significance in most cases. We conclude that tailpipe emissions of both gases and particles are among the most significant and robust predictors of mortality in this cohort and that most of those associations have weakened over time. However, we have not evaluated possible contributions from road dust or traffic noise. Stratification by traffic density level suggests the presence of response thresholds, especially for gaseous pollutants. Because of their wider distributions of estimated exposures, risk estimates based on emissions and atmospheric dispersion models tend to be more precise than those based on local ambient measurements.
A two-lane cellular automaton traffic flow model with the influence of driver, vehicle and road
NASA Astrophysics Data System (ADS)
Zhao, Han-Tao; Nie, Cen; Li, Jing-Ru; Wei, Yu-Ao
2016-07-01
On the basis of one-lane comfortable driving model, this paper established a two-lane traffic cellular automata model, which improves the slow randomization effected by brake light. Considering the driver psychological characteristics and mixed traffic, we studied the lateral influence between vehicles on adjacent lanes. Through computer simulation, the space-time diagram and the fundamental figure under different conditions are obtained. The study found that aggressive driver makes a slight congestion in low-density traffic and improves the capacity of high-density traffic, when the density exceeds 20pcu/km the more aggressive drivers the greater the flow, when the density below 40pcu/km driver character makes an effect, the more cautious driver, the lower the flow. The ratio of big cars has the same effect as the ratio of aggressive drivers. Brake lights have the greatest impact on traffic flow and when the density exceeds 10pcu/km the traffic flow fluctuates. Under periodic boundary conditions, the disturbance of road length on traffic is minimal. The lateral influence only play a limited role in the medium-density conditions, and only affect the average speed of traffic at low density.
Satellite switched FDMA advanced communication technology satellite program
NASA Technical Reports Server (NTRS)
Atwood, S.; Higton, G. H.; Wood, K.; Kline, A.; Furiga, A.; Rausch, M.; Jan, Y.
1982-01-01
The satellite switched frequency division multiple access system provided a detailed system architecture that supports a point to point communication system for long haul voice, video and data traffic between small Earth terminals at Ka band frequencies at 30/20 GHz. A detailed system design is presented for the space segment, small terminal/trunking segment at network control segment for domestic traffic model A or B, each totaling 3.8 Gb/s of small terminal traffic and 6.2 Gb/s trunk traffic. The small terminal traffic (3.8 Gb/s) is emphasized, for the satellite router portion of the system design, which is a composite of thousands of Earth stations with digital traffic ranging from a single 32 Kb/s CVSD voice channel to thousands of channels containing voice, video and data with a data rate as high as 33 Mb/s. The system design concept presented, effectively optimizes a unique frequency and channelization plan for both traffic models A and B with minimum reorganization of the satellite payload transponder subsystem hardware design. The unique zoning concept allows multiple beam antennas while maximizing multiple carrier frequency reuse. Detailed hardware design estimates for an FDMA router (part of the satellite transponder subsystem) indicate a weight and dc power budget of 353 lbs, 195 watts for traffic model A and 498 lbs, 244 watts for traffic model B.
Safety performance of traffic phases and phase transitions in three phase traffic theory.
Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin
2015-12-01
Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bidirectional Pressure-Regulator System
NASA Technical Reports Server (NTRS)
Burke, Kenneth; Miller, John R.
2008-01-01
A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.
Identifying crash-prone traffic conditions under different weather on freeways.
Xu, Chengcheng; Wang, Wei; Liu, Pan
2013-09-01
Understanding the relationships between traffic flow characteristics and crash risk under adverse weather conditions will help highway agencies develop proactive safety management strategies to improve traffic safety in adverse weather conditions. The primary objective is to develop separate crash risk prediction models for different weather conditions. The crash data, weather data, and traffic data used in this study were collected on the I-880N freeway in California in 2008 and 2010. This study considered three different weather conditions: clear weather, rainy weather, and reduced visibility weather. The preliminary analysis showed that there was some heterogeneity in the risk estimates for traffic flow characteristics by weather conditions, and that the crash risk prediction model for all weather conditions cannot capture the impacts of the traffic flow variables on crash risk under adverse weather conditions. The Bayesian random intercept logistic regression models were applied to link the likelihood of crash occurrence with various traffic flow characteristics under different weather conditions. The crash risk prediction models were compared to their corresponding logistic regression model. It was found that the random intercept model improved the goodness-of-fit of the crash risk prediction models. The model estimation results showed that the traffic flow characteristics contributing to crash risk were different across different weather conditions. The speed difference between upstream and downstream stations was found to be significant in each crash risk prediction model. Speed difference between upstream and downstream stations had the largest impact on crash risk in reduced visibility weather, followed by that in rainy weather. The ROC curves were further developed to evaluate the predictive performance of the crash risk prediction models under different weather conditions. The predictive performance of the crash risk model for clear weather was better than those of the crash risk models for adverse weather conditions. The research results could promote a better understanding of the impacts of traffic flow characteristics on crash risk under adverse weather conditions, which will help transportation professionals to develop better crash prevention strategies in adverse weather. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.
Impact of traffic composition on accessibility as indicator of transport sustainability
NASA Astrophysics Data System (ADS)
Nahdalina; Hadiwardoyo, S. P.; Nahry
2017-05-01
Sustainable transport is closely related to quality of life in the community at present and in the future. Some indicators of transport sustainability are accessibility measurement of origin/destination, the operating costs of transport (vehicle operating cost or VOC) and external transportation costs (emission cost). The indicators could be combined into accessibility measurement model. In other case, almost traffic congestion occurred on the condition of mixed traffic. This paper aimed to analyse the indicator of transport sustainability through simulation under condition of various traffic composition. Various composition of truck to total traffic flow are 0%, 10% and 20%. Speed and V/C are calculated from traffic flow to estimate the VOC and emission cost. 5 VOC components and 3 types of emission cost (CO2, CH4 and N2O) are counted to be a travel cost. Accessibility measurement was calculated using travel cost and gravity model approaches. Result of the research shows that the total traffic flow has indirect impact on accessibility measurement if using travel cost approach. Meanwhile, the composition of traffic flow has an affect on accessibility measurement if using gravity model approach.
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
NASA Astrophysics Data System (ADS)
Impemba, Ernesto; Inzerilli, Tiziano
2003-07-01
Integration of satellite access networks with the Internet is seen as a strategic goal to achieve in order to provide ubiquitous broadband access to Internet services in Next Generation Networks (NGNs). One of the main interworking aspects which has been most studied is an efficient management of satellite resources, i.e. bandwidth and buffer space, in order to satisfy most demanding application requirements as to delay control and bandwidth assurance. In this context, resource management in DVB-S/DVB-RCS satellite technologies, emerging technologies for broadband satellite access and transport of IP applications, is a research issue largely investigated as a means to provide efficient bi-directional communications across satellites. This is in particular one of the principal goals of the SATIP6 project, sponsored within the 5th EU Research Programme Framework, i.e. IST. In this paper we present a possible approach to efficiently exploit bandwidth, the most critical resource in a broadband satellite access network, while pursuing satisfaction of delay and bandwidth requirements for applications with guaranteed QoS through a traffic control architecture to be implemented in ground terminals. Performance of this approach is assessed in terms of efficient exploitation of the uplink bandwidth and differentiation and minimization of queuing delays for most demanding applications over a time-varying capacity. Opnet simulations is used as analysis tool.
Chen, Feng; Chen, Suren; Ma, Xiaoxiang
2016-01-01
Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling. PMID:27322306
FHWA Traffic Noise Model version 1.1 user's guide (Addendum)
DOT National Transportation Integrated Search
2000-09-30
In March 1998, the Federal Highway Administration (FHWA) Office of Natural Environment, released the FHWA Traffic Noise Model (FHWA TNM) Version 1.0, a state-of-the-art computer program for highway traffic noise prediction and analysis. Since then, t...
DOT National Transportation Integrated Search
2011-01-01
Inductive loops are widely used nationwide for traffic monitoring as a data source for a variety of : needs in generating traffic information for operation and planning analysis, validations of travel : demand models, freight studies, pavement design...
Proof of Concept for the Trajectory-Level Validation Framework for Traffic Simulation Models
DOT National Transportation Integrated Search
2017-10-30
Based on current practices, traffic simulation models are calibrated and validated using macroscopic measures such as 15-minute averages of traffic counts or average point-to-point travel times. For an emerging number of applications, including conne...
Bidirectional Associations between Peer Relations and Attention Problems from 9 to 16 Years.
Ji, Linqin; Pan, Bin; Zhang, Wenxin; Zhang, Liang; Chen, Liang; Deater-Deckard, Kirby
2018-05-12
We examined the bidirectional relations between peer relations and attention problems from middle childhood through adolescence. Using data from the Longitudinal Study of Chinese Children and Adolescents (LSCCA, N = 2157, 51.9% male), three key aspects of peer relations (acceptance, rejection, and victimization) were assessed annually from 9 to 16 years of age. Attention problems were assessed at 9 and 15 years. Latent growth modeling indicated that greater attention problems at age 9 were linked with a lower intercept for peer acceptance, and higher intercepts for rejection and victimization. Also, prior lower acceptance and greater rejection and victimization, along with a higher increase over time in rejection and lower decrease over time in victimization, predicted attention problems at age 15. Cross-lagged analysis showed that attention problems were associated with less subsequent peer acceptance and greater subsequent rejection and victimization. Only peer rejection (but neither victimization nor acceptance) predicted more subsequent attention problems. Findings point to bidirectional associations between attention problems and peer relations in the developmental transition across adolescence. Evidence for differential bidirectionality of attention problems with the multiple peer experience (group versus dyadic; good versus bad) emerged, and future replications are needed.
Switching performance of OBS network model under prefetched real traffic
NASA Astrophysics Data System (ADS)
Huang, Zhenhua; Xu, Du; Lei, Wen
2005-11-01
Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Usui, Naotaka; Inoue, Yushi; Toichi, Motomi
2017-09-01
Faces contain multifaceted information that is important for human communication. Neuroimaging studies have revealed face-specific activation in multiple brain regions, including the inferior occipital gyrus (IOG) and amygdala; it is often assumed that these regions constitute the neural network responsible for the processing of faces. However, it remains unknown whether and how these brain regions transmit information during face processing. This study investigated these questions by applying dynamic causal modeling of induced responses to human intracranial electroencephalography data recorded from the IOG and amygdala during the observation of faces, mosaics, and houses in upright and inverted orientations. Model comparisons assessing the experimental effects of upright faces versus upright houses and upright faces versus upright mosaics consistently indicated that the model having face-specific bidirectional modulatory effects between the IOG and amygdala was the most probable. The experimental effect between upright versus inverted faces also favored the model with bidirectional modulatory effects between the IOG and amygdala. The spectral profiles of modulatory effects revealed both same-frequency (e.g., gamma-gamma) and cross-frequency (e.g., theta-gamma) couplings. These results suggest that the IOG and amygdala communicate rapidly with each other using various types of oscillations for the efficient processing of faces. Hum Brain Mapp 38:4511-4524, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?
Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther
2012-01-01
Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909
Yildirim, Özal
2018-05-01
Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
NASA Astrophysics Data System (ADS)
Skene, Katherine J.; Gent, Janneane F.; McKay, Lisa A.; Belanger, Kathleen; Leaderer, Brian P.; Holford, Theodore R.
2010-12-01
An integrated exposure model was developed that estimates nitrogen dioxide (NO 2) concentration at residences using geographic information systems (GIS) and variables derived within residential buffers representing traffic volume and landscape characteristics including land use, population density and elevation. Multiple measurements of NO 2 taken outside of 985 residences in Connecticut were used to develop the model. A second set of 120 outdoor NO 2 measurements as well as cross-validation were used to validate the model. The model suggests that approximately 67% of the variation in NO 2 levels can be explained by: traffic and land use primarily within 2 km of a residence; population density; elevation; and time of year. Potential benefits of this model for health effects research include improved spatial estimations of traffic-related pollutant exposure and reduced need for extensive pollutant measurements. The model, which could be calibrated and applied in areas other than Connecticut, has importance as a tool for exposure estimation in epidemiological studies of traffic-related air pollution.
A microcomputer based traffic evacuation modeling system for emergency planning application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathi, A.K.
1994-12-01
Vehicular evacuation is one of the major and often preferred protective action options available for emergency management in a real or anticipated disaster. Computer simulation models of evacuation traffic flow are used to estimate the time required for the affected populations to evacuate to safer areas, to evaluate effectiveness of vehicular evacuations as a protective action option. and to develop comprehensive evacuation plans when required. Following a review of the past efforts to simulate traffic flow during emergency evacuations, an overview of the key features in Version 2.0 of the Oak Ridge Evacuation Modeling System (OREMS) are presented in thismore » paper. OREMS is a microcomputer-based model developed to simulate traffic flow during regional emergency evacuations. OREMS integrates a state-of-the-art dynamic traffic flow and simulation model with advanced data editing and output display programs operating under a MS-Windows environment.« less
Highway traffic estimation of improved precision using the derivative-free nonlinear Kalman Filter
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Siano, Pierluigi; Zervos, Nikolaos; Melkikh, Alexey
2015-12-01
The paper proves that the PDE dynamic model of the highway traffic is a differentially flat one and by applying spatial discretization its shows that the model's transformation into an equivalent linear canonical state-space form is possible. For the latter representation of the traffic's dynamics, state estimation is performed with the use of the Derivative-free nonlinear Kalman Filter. The proposed filter consists of the Kalman Filter recursion applied on the transformed state-space model of the highway traffic. Moreover, it makes use of an inverse transformation, based again on differential flatness theory which enables to obtain estimates of the state variables of the initial nonlinear PDE model. By avoiding approximate linearizations and the truncation of nonlinear terms from the PDE model of the traffic's dynamics the proposed filtering methods outperforms, in terms of accuracy, other nonlinear estimators such as the Extended Kalman Filter. The article's theoretical findings are confirmed through simulation experiments.
Childhood incident asthma and traffic-related air pollution at home and school.
McConnell, Rob; Islam, Talat; Shankardass, Ketan; Jerrett, Michael; Lurmann, Fred; Gilliland, Frank; Gauderman, Jim; Avol, Ed; Künzli, Nino; Yao, Ling; Peters, John; Berhane, Kiros
2010-07-01
Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma. We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children's Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO(2)), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric. Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25-1.82] and near schools (HR 1.45; 95% CI, 1.06-1.98). Ambient NO(2) measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18-4.01). In models with both NO(2) and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO(2) was attenuated (HR 1.37; 95% CI, 0.69-2.71). Traffic-related pollution exposure at school and homes may both contribute to the development of asthma.
Flanagan, Julianne C; Jaquier, Véronique; Overstreet, Nicole; Swan, Suzanne C; Sullivan, Tami P
2014-12-15
Avoidance coping is consistently linked with negative mental health outcomes among women experiencing intimate partner violence (IPV). This study extended the literature examining the potentially mediating role of avoidance coping strategies on both mental health and substance use problems to a highly generalizable, yet previously unexamined population (i.e., women experiencing bidirectional IPV) and examined multiple forms of IPV (i.e., psychological, physical, and sexual) simultaneously. Among a sample of 362 women experiencing bidirectional IPV, four separate path models were examined, one for each outcome variable. Avoidance coping mediated the relationships between psychological and sexual IPV victimization and the outcomes of PTSD symptom severity, depression severity, and drug use problems. Findings indicate nuanced associations among IPV victimization, avoidance coping, and mental health and substance use outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Learning in neural networks based on a generalized fluctuation theorem
NASA Astrophysics Data System (ADS)
Hayakawa, Takashi; Aoyagi, Toshio
2015-11-01
Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.
Longitudinal Bi-directional Effects of Disordered Eating, Depression and Anxiety.
Puccio, Francis; Fuller-Tyszkiewicz, Matthew; Youssef, George; Mitchell, Sarah; Byrne, Michelle; Allen, Nick; Krug, Isabel
2017-09-01
The present study aims to explore the potentially longitudinal bi-directional effects of disordered eating (DE) symptoms with depression and anxiety. Participants were 189 (49.5% male) adolescents from Melbourne, Australia. DE, depressive and anxiety symptoms were assessed at approximately 15, 16.5 and 18.5 years of age. Analysis of longitudinal bi-directional effects assessed via cross-lagged models indicated that DE symptoms of eating and shape/weight concerns were risk factors for anxiety. Results also showed that depression was a risk factor for eating concerns. Our findings provide preliminary evidence that preventative measures designed to target concerns about eating and shape/weight might be most efficacious in reducing the transmission of effects between symptoms of DE, depression and anxiety. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
A Novel User Created Message Application Service Design for Bidirectional TPEG
NASA Astrophysics Data System (ADS)
Lee, Sang-Hee; Jo, Kang-Hyun
The T-DMB (Terrestrial-Digital Multimedia Broadcasting) is the national service, currently successful in use in Korea since 2008. Among other services, TPEG (Transport Protocol Experts Group) service has been spotlighted in the aspects of creating earnings. At present, TPEG service is not so popular as it fails to satisfy the user’s demands on various aspects. Thus, the variety of services including bidirectional service is necessary in stage of DMB2.0. In this paper, the limitations of existing TPEG-POI (Point of Interest) application service using the wireless communication network are indicated. To overcome such limitations, we propose a business model for TPEG-UCM (User Created Message) application service which uses individual bidirectional media. The experiment shown in this paper proves the usability and operability of the proposed method, suggesting that the implementation of the proposed method would be overcome a lack of variety and unidirectional of existing TPEG application.
Myers, Kara; Chou, Calvin L
2016-11-01
Current literature on feedback suggests that clinical preceptors lead feedback conversations that are primarily unidirectional, from preceptor to student. While this approach may promote clinical competency, it does not actively develop students' competency in facilitating feedback discussions and providing feedback across power differentials (ie, from student to preceptor). This latter competency warrants particular attention given its fundamental role in effective health care team communication and its related influence on patient safety. Reframing the feedback process as collaborative and bidirectional, where both preceptors and students provide and receive feedback, maximizes opportunities for role modeling and skills practice in the context of a supportive relationship, thereby enhancing team preparedness. We describe an initiative to introduce these fundamental skills of collaborative, bidirectional feedback in the nurse-midwifery education program at the University of California, San Francisco. © 2016 by the American College of Nurse-Midwives.
The influence of following on bidirectional flow through a doorway
NASA Astrophysics Data System (ADS)
Graves, Amy; Diamond, Rachel; Saakashvili, Eduard
Pedestrian dynamics is a subset of the study of self-propelled particles. We simulate two species of pedestrians undergoing bidirectional flow through a narrow doorway. Using the Helbing-Monlár-Farkas-Vicsek Social Force Model, our pedestrians are soft discs that experience psychosocial and physical contact forces. We vary the ``following'' parameter which determines the degree to which a pedestrian matches its direction of movement to the average of nearby, same-species pedestrians. Current density, efficiency and statistics of bursts and lags are calculated. These indicate that choosing different following parameters for each species affects the efficacy of transport - greater following being associated with lower efficacy. The information entropy associated with velocity and the long time tails of the complementary CDF of lag times are additional indicators of the dynamical consequences of following during bidirectional flow. Acknowledgement is made to the donors of the ACS Petrolium Research Fund, and the Vandervelde-Cheung Fund of Swarthmore College.
NASA Astrophysics Data System (ADS)
Rong, Ying; Wen, Huiying
2018-05-01
In this paper, the appearing probability of truck is introduced and an extended car-following model is presented to analyze the traffic flow based on the consideration of driver's characteristics, under honk environment. The stability condition of this proposed model is obtained through linear stability analysis. In order to study the evolution properties of traffic wave near the critical point, the mKdV equation is derived by the reductive perturbation method. The results show that the traffic flow will become more disorder for the larger appearing probability of truck. Besides, the appearance of leading truck affects not only the stability of traffic flow, but also the effect of other aspects on traffic flow, such as: driver's reaction and honk effect. The effects of them on traffic flow are closely correlated with the appearing probability of truck. Finally, the numerical simulations under the periodic boundary condition are carried out to verify the proposed model. And they are consistent with the theoretical findings.
Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies
NASA Technical Reports Server (NTRS)
Norman, J. M. (Principal Investigator)
1985-01-01
The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. The model (named BIGAR) considers the angular distribution of leaves, leaf area index, the location and size of individual subcanopies such as widely spaced rows or trees, spectral and directional properties of leaves, multiple scattering, solar position and sky condition, and characteristics of the soil. The model relates canopy biophysical attributes to down-looking radiation measurements for nadir and off-nadir viewing angles. Therefore, inversion of this model, which is difficult but practical should provide surface biophysical pattern; a fundamental goal of remote sensing. Such a model also will help to evaluate atmospheric limitations to satellite remote sensing by providing a good surface boundary condition for many different kinds of canopies. Furthermore, this model can relate estimates of nadir reflectance, which is approximated by most satellites, to hemispherical reflectance, which is necessary in the energy budget of vegetated surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor
2011-01-21
We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.
Otremba, Zbigniew; Piskozub, Jacek
2004-04-19
The Bi-directional Reflectance Distribution Function (BRDF) of both clean seawaters and those polluted with oil film was determined using the Monte Carlo radiative transfer technique in which the spectrum of complex refractive index of Romashkino crude oil and the optical properties of case II water for chosen wavelengths was considered. The BRDF values were recorded for 1836 solid angular sectors of throughout the upper hemisphere. The visibility of areas polluted with oil observed from various directions and for various wavelengths is discussed.
NASA Astrophysics Data System (ADS)
Lonsdale, Chantelle R.; Hegarty, Jennifer D.; Cady-Pereira, Karen E.; Alvarado, Matthew J.; Henze, Daven K.; Turner, Matthew D.; Capps, Shannon L.; Nowak, John B.; Neuman, J. Andy; Middlebrook, Ann M.; Bahreini, Roya; Murphy, Jennifer G.; Markovic, Milos Z.; VandenBoer, Trevor C.; Russell, Lynn M.; Scarino, Amy Jo
2017-02-01
NH3 retrievals from the NASA Tropospheric Emission Spectrometer (TES), as well as surface and aircraft observations of NH3(g) and submicron NH4(p), are used to evaluate modeled concentrations of NH3(g) and NH4(p) from the Community Multiscale Air Quality (CMAQ) model in the San Joaquin Valley (SJV) during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. We find that simulations of NH3 driven with the California Air Resources Board (CARB) emission inventory are qualitatively and spatially consistent with TES satellite observations, with a correlation coefficient (r2) of 0.64. However, the surface observations at Bakersfield indicate a diurnal cycle in the model bias, with CMAQ overestimating surface NH3 at night and underestimating it during the day. The surface, satellite, and aircraft observations all suggest that daytime NH3 emissions in the CARB inventory are underestimated by at least a factor of 2, while the nighttime overestimate of NH3(g) is likely due to a combination of overestimated NH3 emissions and underestimated deposition.Running CMAQ v5.0.2 with the bi-directional NH3 scheme reduces NH3 concentrations at night and increases them during the day. This reduces the model bias when compared to the surface and satellite observations, but the increased concentrations aloft significantly increase the bias relative to the aircraft observations. We attempt to further reduce model bias by using the surface observations at Bakersfield to derive an empirical diurnal cycle of NH3 emissions in the SJV, in which nighttime and midday emissions differ by about a factor of 4.5. Running CMAQv5.0.2 with a bi-directional NH3 scheme together with this emissions diurnal profile further reduces model bias relative to the surface observations. Comparison of these simulations with the vertical profile retrieved by TES shows little bias except for the lowest retrieved level, but the model bias relative to flight data aloft increases slightly. Our results indicate that both diurnally varying emissions and a bi-directional NH3 scheme should be applied when modeling NH3(g) and NH4(p) in this region. The remaining model errors suggest that the bi-directional NH3 scheme in CMAQ v5.0.2 needs further improvements to shift the peak NH3 land-atmosphere flux to earlier in the day. We recommend that future work include updates to the current CARB NH3 inventory to account for NH3 from fertilizer application, livestock, and other farming practices separately; adding revised information on crop management practices specific to the SJV region to the bi-directional NH3 scheme; and top-down studies focused on determining the diurnally varying biases in the canopy compensation point that determines the net land-atmosphere NH3 fluxes.
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Ying; Lin, Jingran; Wu, Sissi Xiaoxiao
2017-09-01
Consider a full-duplex (FD) bidirectional secure communication system, where two communication nodes, named Alice and Bob, simultaneously transmit and receive confidential information from each other, and an eavesdropper, named Eve, overhears the transmissions. Our goal is to maximize the sum secrecy rate (SSR) of the bidirectional transmissions by optimizing the transmit covariance matrices at Alice and Bob. To tackle this SSR maximization (SSRM) problem, we develop an alternating difference-of-concave (ADC) programming approach to alternately optimize the transmit covariance matrices at Alice and Bob. We show that the ADC iteration has a semi-closed-form beamforming solution, and is guaranteed to converge to a stationary solution of the SSRM problem. Besides the SSRM design, this paper also deals with a robust SSRM transmit design under a moment-based random channel state information (CSI) model, where only some roughly estimated first and second-order statistics of Eve's CSI are available, but the exact distribution or other high-order statistics is not known. This moment-based error model is new and different from the widely used bounded-sphere error model and the Gaussian random error model. Under the consider CSI error model, the robust SSRM is formulated as an outage probability-constrained SSRM problem. By leveraging the Lagrangian duality theory and DC programming, a tractable safe solution to the robust SSRM problem is derived. The effectiveness and the robustness of the proposed designs are demonstrated through simulations.
Advanced Traffic Management Systems (ATMS) research analysis database system
DOT National Transportation Integrated Search
2001-06-01
The ATMS Research Analysis Database Systems (ARADS) consists of a Traffic Software Data Dictionary (TSDD) and a Traffic Software Object Model (TSOM) for application to microscopic traffic simulation and signal optimization domains. The purpose of thi...
Air pollution and health risks due to vehicle traffic.
Zhang, Kai; Batterman, Stuart
2013-04-15
Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must consider travel time, the duration of rush-hour, congestion-specific emission estimates, and uncertainties. Copyright © 2013 Elsevier B.V. All rights reserved.
Air pollution and health risks due to vehicle traffic
Zhang, Kai; Batterman, Stuart
2014-01-01
Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed–volume relationship, the California Line Source Dispersion Model, an empirical NO2–NOx relationship, estimated travel time changes during congestion, and concentration–response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, “U” shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2–NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must consider travel time, the duration of rush-hour, congestion-specific emission estimates, and uncertainties. PMID:23500830
Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research
Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi
2016-01-01
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637
Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Gatebe, C. K.; Redemann, J.; Kahn, R.; Brandt, R.; Russell, P.; King, M. D.; Pedersen, C. A.; Gerland, S.; Poudyal, R.;
2010-01-01
The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about plus or minus 0.05 with a possible bias of plus or minus 0.03 in the spectral range 0.4-2.2 micrometers. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions.
Multilane Traffic Flow Modeling Using Cellular Automata Theory
NASA Astrophysics Data System (ADS)
Chechina, Antonina; Churbanova, Natalia; Trapeznikova, Marina
2018-02-01
The paper deals with the mathematical modeling of traffic flows on urban road networks using microscopic approach. The model is based on the cellular automata theory and presents a generalization of the Nagel-Schreckenberg model to a multilane case. The created program package allows to simulate traffic on various types of road fragments (T or X type intersection, strait road elements, etc.) and on road networks that consist of these elements. Besides that, it allows to predict the consequences of various decisions regarding road infrastructure changes, such as: number of lanes increasing/decreasing, putting new traffic lights into operation, building new roads, entrances/exits, road junctions.
Traffic Behavior Recognition Using the Pachinko Allocation Model
Huynh-The, Thien; Banos, Oresti; Le, Ba-Vui; Bui, Dinh-Mao; Yoon, Yongik; Lee, Sungyoung
2015-01-01
CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification. PMID:26151213
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-10-27
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-01-01
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794
Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow
NASA Astrophysics Data System (ADS)
Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael
2011-10-01
We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.
23 CFR 772.17 - Traffic noise prediction.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Traffic noise prediction. 772.17 Section 772.17 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.17 Traffic noise prediction. (a) Any analysis required by this subpart must use the FHWA Traffic Noise Model (FHWA TNM), which is described in...
DOT National Transportation Integrated Search
2006-04-01
The objective of this part of the research study was to select and acquire a mobile traffic counter capable of providing traffic flow and average speed data in intervals of time no greater than 15 minutes and transmit the data back to a central locat...
NASA Astrophysics Data System (ADS)
Li, Xiang; Sun, Jian-Qiao
2017-02-01
Drivers often change lanes on the road to maintain desired speed and to avoid slow vehicles, pedestrians, obstacles and lane closure. Understanding the effect of lane-changing on the traffic is an important topic in designing optimal traffic control systems. This paper presents a comprehensive study of this topic. We review the theory of microscopic dynamic car-following models and the lane-changing models, propose additional lane-changing rules to deal with moving bottleneck and lane reduction, and investigate the effects of lane-changing on the traffic efficiency, traffic safety and fuel consumption as a function of different variables including the distance of the emergency sign ahead of the lane closure, speed limit, traffic density, etc. Extensive simulations of the traffic system have been carried out in different scenarios. A number of important findings of the effect of various factors on the traffic are reported. These findings provide guidance on the traffic management and are important to the designers and engineers of modern highway or inner city roads to achieve high traffic efficiency and safety with minimum environmental impact.
Capacity-constrained traffic assignment in networks with residual queues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, W.H.K.; Zhang, Y.
2000-04-01
This paper proposes a capacity-constrained traffic assignment model for strategic transport planning in which the steady-state user equilibrium principle is extended for road networks with residual queues. Therefore, the road-exit capacity and the queuing effects can be incorporated into the strategic transport model for traffic forecasting. The proposed model is applicable to the congested network particularly when the traffic demands exceeds the capacity of the network during the peak period. An efficient solution method is proposed for solving the steady-state traffic assignment problem with residual queues. Then a simple numerical example is employed to demonstrate the application of the proposedmore » model and solution method, while an example of a medium-sized arterial highway network in Sioux Falls, South Dakota, is used to test the applicability of the proposed solution to real problems.« less
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1992-01-01
This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.
Modeling the Environmental Impact of Air Traffic Operations
NASA Technical Reports Server (NTRS)
Chen, Neil
2011-01-01
There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.
Ran, Bin; Song, Li; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. PMID:27448326
Ran, Bin; Song, Li; Zhang, Jian; Cheng, Yang; Tan, Huachun
2016-01-01
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%.
The Influence of Individual Driver Characteristics on Congestion Formation
NASA Astrophysics Data System (ADS)
Wang, Lanjun; Zhang, Hao; Meng, Huadong; Wang, Xiqin
Previous works have pointed out that one of the reasons for the formation of traffic congestion is instability in traffic flow. In this study, we investigate theoretically how the characteristics of individual drivers influence the instability of traffic flow. The discussions are based on the optimal velocity model, which has three parameters related to individual driver characteristics. We specify the mappings between the model parameters and driver characteristics in this study. With linear stability analysis, we obtain a condition for when instability occurs and a constraint about how the model parameters influence the unstable traffic flow. Meanwhile, we also determine how the region of unstable flow densities depends on these parameters. Additionally, the Langevin approach theoretically validates that under the constraint, the macroscopic characteristics of the unstable traffic flow becomes a mixture of free flows and congestions. All of these results imply that both overly aggressive and overly conservative drivers are capable of triggering traffic congestion.
Traffic evacuation time under nonhomogeneous conditions.
Fazio, Joseph; Shetkar, Rohan; Mathew, Tom V
2017-06-01
During many manmade and natural crises such as terrorist threats, floods, hazardous chemical and gas leaks, emergency personnel need to estimate the time in which people can evacuate from the affected urban area. Knowing an estimated evacuation time for a given crisis, emergency personnel can plan and prepare accordingly with the understanding that the actual evacuation time will take longer. Given the urban area to be evacuated, street widths exiting the area's perimeter, the area's population density, average vehicle occupancy, transport mode share and crawl speed, an estimation of traffic evacuation time can be derived. Peak-hour traffic data collected at three, midblock, Mumbai sites of varying geometric features and traffic composition were used in calibrating a model that estimates peak-hour traffic flow rates. Model validation revealed a correlation coefficient of +0.98 between observed and predicted peak-hour flow rates. A methodology is developed that estimates traffic evacuation time using the model.
NASA Technical Reports Server (NTRS)
Arnaout, Georges M.; Bowling, Shannon R.
2011-01-01
Traffic congestion is an ongoing problem of great interest to researchers from different areas in academia. With the emerging technology for inter-vehicle communication, vehicles have the ability to exchange information with predecessors by wireless communication. In this paper, we present an agent-based model of traffic congestion and examine the impact of having CACC (Cooperative Adaptive Cruise Control) embedded vehicle(s) on a highway system consisting of 4 traffic lanes without overtaking. In our model, CACC vehicles adapt their acceleration/deceleration according to vehicle-to-vehicle inter-communication. We analyze the average speed of the cars, the shockwaves, and the evolution of traffic congestion throughout the lifecycle of the model. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce the oscillatory behavior (stop and go) resulting from the acceleration/deceleration of the vehicles.
Modeling level-of-safety for bus stops in China.
Ye, Zhirui; Wang, Chao; Yu, Yongbo; Shi, Xiaomeng; Wang, Wei
2016-08-17
Safety performance at bus stops is generally evaluated by using historical traffic crash data or traffic conflict data. However, in China, it is quite difficult to obtain such data mainly due to the lack of traffic data management and organizational issues. In light of this, the primary objective of this study is to develop a quantitative approach to evaluate bus stop safety performance. The concept of level-of-safety for bus stops is introduced and corresponding models are proposed to quantify safety levels, which consider conflict points, traffic factors, geometric characteristics, traffic signs and markings, pavement conditions, and lighting conditions. Principal component analysis and k-means clustering methods were used to model and quantify safety levels for bus stops. A case study was conducted to show the applicability of the proposed model with data collected from 46 samples for the 7 most common types of bus stops in China, using 32 of the samples for modeling and 14 samples for illustration. Based on the case study, 6 levels of safety for bus stops were defined. Finally, a linear regression analysis between safety levels and the number of traffic conflicts showed that they had a strong relationship (R(2) value of 0.908). The results indicated that the method was well validated and could be practically used for the analysis and evaluation of bus stop safety in China. The proposed model was relatively easy to implement without the requirement of traffic crash data and/or traffic conflict data. In addition, with the proposed method, it was feasible to evaluate countermeasures to improve bus stop safety (e.g., exclusive bus lanes).
NASA Astrophysics Data System (ADS)
Iwamura, Yoshiro; Tanimoto, Jun
2018-02-01
To investigate an interesting question as to whether or not social dilemma structures can be found in a realistic traffic flow reproduced by a model, we built a new microscopic model in which an intentional driver may try lane-changing to go in front of other vehicles and may hamper others’ lane-changes. Our model consists of twofold parts; cellular automaton emulating a real traffic flow and evolutionary game theory to implement a driver’s decision making-process. Numerical results reveal that a social dilemma like the multi-player chicken game or prisoner’s dilemma game emerges depending on the traffic phase. This finding implies that a social dilemma, which has been investigated by applied mathematics so far, hides behind a traffic flow, which has been explored by fluid dynamics. Highlight - Complex system of traffic flow with consideration of driver’s decision making process is concerned. - A new model dovetailing cellular automaton with game theory is established. - Statistical result from numerical simulations reveals a social dilemma structure underlying traffic flow. - The social dilemma is triggered by a driver’s egocentric actions of lane-changing and hampering other’s lane-change.
On sequential data assimilation for scalar macroscopic traffic flow models
NASA Astrophysics Data System (ADS)
Blandin, Sébastien; Couque, Adrien; Bayen, Alexandre; Work, Daniel
2012-09-01
We consider the problem of sequential data assimilation for transportation networks using optimal filtering with a scalar macroscopic traffic flow model. Properties of the distribution of the uncertainty on the true state related to the specific nonlinearity and non-differentiability inherent to macroscopic traffic flow models are investigated, derived analytically and analyzed. We show that nonlinear dynamics, by creating discontinuities in the traffic state, affect the performances of classical filters and in particular that the distribution of the uncertainty on the traffic state at shock waves is a mixture distribution. The non-differentiability of traffic dynamics around stationary shock waves is also proved and the resulting optimality loss of the estimates is quantified numerically. The properties of the estimates are explicitly studied for the Godunov scheme (and thus the Cell-Transmission Model), leading to specific conclusions about their use in the context of filtering, which is a significant contribution of this article. Analytical proofs and numerical tests are introduced to support the results presented. A Java implementation of the classical filters used in this work is available on-line at http://traffic.berkeley.edu for facilitating further efforts on this topic and fostering reproducible research.
Batterman, Stuart; Burke, Janet; Isakov, Vlad; Lewis, Toby; Mukherjee, Bhramar; Robins, Thomas
2014-01-01
Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studies would all benefit from an improved understanding of the key information and metrics needed to assess exposures, as well as the strengths and limitations of alternate exposure metrics. This study develops and evaluates several metrics for characterizing exposure to traffic-related air pollutants for the 218 residential locations of participants in the NEXUS epidemiology study conducted in Detroit (MI, USA). Exposure metrics included proximity to major roads, traffic volume, vehicle mix, traffic density, vehicle exhaust emissions density, and pollutant concentrations predicted by dispersion models. Results presented for each metric include comparisons of exposure distributions, spatial variability, intraclass correlation, concordance and discordance rates, and overall strengths and limitations. While showing some agreement, the simple categorical and proximity classifications (e.g., high diesel/low diesel traffic roads and distance from major roads) do not reflect the range and overlap of exposures seen in the other metrics. Information provided by the traffic density metric, defined as the number of kilometers traveled (VKT) per day within a 300 m buffer around each home, was reasonably consistent with the more sophisticated metrics. Dispersion modeling provided spatially- and temporally-resolved concentrations, along with apportionments that separated concentrations due to traffic emissions and other sources. While several of the exposure metrics showed broad agreement, including traffic density, emissions density and modeled concentrations, these alternatives still produced exposure classifications that differed for a substantial fraction of study participants, e.g., from 20% to 50% of homes, depending on the metric, would be incorrectly classified into “low”, “medium” or “high” traffic exposure classes. These and other results suggest the potential for exposure misclassification and the need for refined and validated exposure metrics. While data and computational demands for dispersion modeling of traffic emissions are non-trivial concerns, once established, dispersion modeling systems can provide exposure information for both on- and near-road environments that would benefit future traffic-related assessments. PMID:25226412
Zhang, Peng; Liu, Ru-Xun; Wong, S C
2005-05-01
This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.
Jerrett, Michael; McConnell, Rob; Wolch, Jennifer; Chang, Roger; Lam, Claudia; Dunton, Genevieve; Gilliland, Frank; Lurmann, Fred; Islam, Talat; Berhane, Kiros
2014-06-09
Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5-11 years. Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002-2010 and analyzed in 2011-12. Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models. Traffic pollution was positively associated with growth in BMI in children aged 5-11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children.
Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis
2014-01-01
Background Biologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5–11 years. Methods Participants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002–2010 and analyzed in 2011–12. Results Traffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models. Conclusions Traffic pollution was positively associated with growth in BMI in children aged 5–11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children. PMID:24913018
Gene-Culture Coevolutionary Games
ERIC Educational Resources Information Center
Blute, Marion
2006-01-01
Gene-culture interactions have largely been modelled employing population genetic-type models. Moreover, in the most notable application to date, the "interactive" modes have been one way rather than bidirectional. This paper suggests using game theoretic, fully interactive models. Employing the logic utilized in population ecology for coevolution…
Dynamic interactions between visual working memory and saccade target selection
Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew
2014-01-01
Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
NASA Astrophysics Data System (ADS)
Cao, Jinde; Wang, Yanyan
2010-05-01
In this paper, the bi-periodicity issue is discussed for Cohen-Grossberg-type (CG-type) bidirectional associative memory (BAM) neural networks (NNs) with time-varying delays and standard activation functions. It is shown that the model considered in this paper has two periodic orbits located in saturation regions and they are locally exponentially stable. Meanwhile, some conditions are derived to ensure that, in any designated region, the model has a locally exponentially stable or globally exponentially attractive periodic orbit located in it. As a special case of bi-periodicity, some results are also presented for the system with constant external inputs. Finally, four examples are given to illustrate the effectiveness of the obtained results.
NASA Astrophysics Data System (ADS)
Song, Qiankun; Cao, Jinde
2007-05-01
A bidirectional associative memory neural network model with distributed delays is considered. By constructing a new Lyapunov functional, employing the homeomorphism theory, M-matrix theory and the inequality (a[greater-or-equal, slanted]0,bk[greater-or-equal, slanted]0,qk>0 with , and r>1), a sufficient condition is obtained to ensure the existence, uniqueness and global exponential stability of the equilibrium point for the model. Moreover, the exponential converging velocity index is estimated, which depends on the delay kernel functions and the system parameters. The results generalize and improve the earlier publications, and remove the usual assumption that the activation functions are bounded . Two numerical examples are given to show the effectiveness of the obtained results.
Study on bi-directional pedestrian movement using ant algorithms
NASA Astrophysics Data System (ADS)
Sibel, Gokce; Ozhan, Kayacan
2016-01-01
A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity-density and flux-density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones.
Development of a bidirectional ring thermal actuator
NASA Astrophysics Data System (ADS)
Stevenson, Mathew; Yang, Peng; Lai, Yongjun; Mechefske, Chris
2007-10-01
A new planar micro electrothermal actuator capable of bidirectional rotation is presented. The ring thermal actuator has a wheel-like geometry with eight arms connecting an outer ring to a central hub. Thermal expansion of the arms results in a rotation of the outer ring about its center. An analytical model is developed for the electrothermal and thermal-mechanical aspects of the actuator's operation. Finite element analysis is used to validate the analytic study. The actuator has been fabricated using the multi-user MEMS process and experimental displacement results are compared with model predictions. Experiments show a possible displacement of 7.4 µm in each direction. Also, by switching the current between the arms it is possible to achieve an oscillating motion.
Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model
NASA Astrophysics Data System (ADS)
Zhu, Wen-Xing; Zhang, H. M.
2018-04-01
We investigated the mixed traffic flow with human-driving and autonomous cars. A new mathematical model with adjustable sensitivity and smooth factor was proposed to describe the autonomous car's moving behavior in which smooth factor is used to balance the front and back headway in a flow. A lemma and a theorem were proved to support the stability criteria in traffic flow. A series of simulations were carried out to analyze the mixed traffic flow. The fundamental diagrams were obtained from the numerical simulation results. The varying sensitivity and smooth factor of autonomous cars affect traffic flux, which exhibits opposite varying tendency with increasing parameters before and after the critical density. Moreover, the sensitivity of sensors and smooth factors play an important role in stabilizing the mixed traffic flow and suppressing the traffic jam.
Improvement of driving safety in road traffic system
NASA Astrophysics Data System (ADS)
Li, Ke-Ping; Gao, Zi-You
2005-05-01
A road traffic system is a complex system in which humans participate directly. In this system, human factors play a very important role. In this paper, a kind of control signal is designated at a given site (i.e., signal point) of the road. Under the effect of the control signal, the drivers will decrease their velocities when their vehicles pass the signal point. Our aim is to transit the traffic flow states from disorder to order and then improve the traffic safety. We have tested this technique for the two-lane traffic model that is based on the deterministic Nagel-Schreckenberg (NaSch) traffic model. The simulation results indicate that the traffic flow states can be transited from disorder to order. Different order states can be observed in the system and these states are safer.
Wang, Guang-Zhong; Lercher, Martin J.; Hurst, Laurence D.
2011-01-01
Abstract How is noise in gene expression modulated? Do mechanisms of noise control impact genome organization? In yeast, the expression of one gene can affect that of a very close neighbor. As the effect is highly regionalized, we hypothesize that genes in different orientations will have differing degrees of coupled expression and, in turn, different noise levels. Divergently organized gene pairs, in particular those with bidirectional promoters, have close promoters, maximizing the likelihood that expression of one gene affects the neighbor. With more distant promoters, the same is less likely to hold for gene pairs in nondivergent orientation. Stochastic models suggest that coupled chromatin dynamics will typically result in low abundance-corrected noise (ACN). Transcription of noncoding RNA (ncRNA) from a bidirectional promoter, we thus hypothesize to be a noise-reduction, expression-priming, mechanism. The hypothesis correctly predicts that protein-coding genes with a bidirectional promoter, including those with a ncRNA partner, have lower ACN than other genes and divergent gene pairs uniquely have correlated ACN. Moreover, as predicted, ACN increases with the distance between promoters. The model also correctly predicts ncRNA transcripts to be often divergently transcribed from genes that a priori would be under selection for low noise (essential genes, protein complex genes) and that the latter genes should commonly reside in divergent orientation. Likewise, that genes with bidirectional promoters are rare subtelomerically, cluster together, and are enriched in essential gene clusters is expected and observed. We conclude that gene orientation and transcription of ncRNAs are candidate modulators of noise. PMID:21402863
DOT National Transportation Integrated Search
2007-05-01
VISUM Online is a traffic management system for processing online traffic data. The system implements both a road network model and a traffic demand model. VISUM Online uses all available real-time and historic data to calculate current and forecaste...
Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization
NASA Astrophysics Data System (ADS)
Bombelli, Alessandro
Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning--determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated--is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is weather predicted that causes significant delays to the scheduled flights. Airborne reroute options are computed and added to the route model, and it is shown that the predicted delays can be significantly reduced. The test results also indicate the computational feasibility of the approach for a planning problem of this size.
Barbot, Baptiste; Crossman, Elizabeth; Hunter, Scott R.; Grigorenko, Elena L.; Luthar, Suniya S.
2014-01-01
This study examines longitudinally the bidirectional influences between maternal parenting (behaviors and parenting stress) and mothers' perceptions of their children's adjustment, in a multivariate approach. Data was gathered from 361 low-income mothers (many with psychiatric diagnoses) reporting on their parenting behavior, parenting stress and their child's adjustment, in a two-wave longitudinal study over 5 years. Measurement models were developed to derive four broad parenting constructs (Involvement, Control, Rejection, and Stress) and three child adjustment constructs (Internalizing problems, Externalizing problems, and Social competence). After measurement invariance of these constructs was confirmed across relevant groups and over time, both measurement models were integrated in a single crossed-lagged regression analysis of latent constructs. Multiple reciprocal influence were observed between parenting and perceived child adjustment over time: Externalizing and internalizing problems in children were predicted by baseline maternal parenting behaviors, while child social competence was found to reduce parental stress and increase parental involvement and appropriate monitoring. These findings on the motherhood experience are discussed in light of recent research efforts to understand mother-child bi-directional influences, and their potential for practical applications. PMID:25089759
Role of Imaging Specrometer Data for Model-based Cross-calibration of Imaging Sensors
NASA Technical Reports Server (NTRS)
Thome, Kurtis John
2014-01-01
Site characterization benefits from imaging spectrometry to determine spectral bi-directional reflectance of a well-understood surface. Cross calibration approaches, uncertainties, role of imaging spectrometry, model-based site characterization, and application to product validation.
NASA Astrophysics Data System (ADS)
Zhao, Bo-Han; Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song
2009-11-01
A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phase traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.
An original traffic additional emission model and numerical simulation on a signalized road
NASA Astrophysics Data System (ADS)
Zhu, Wen-Xing; Zhang, Jing-Yu
2017-02-01
Based on VSP (Vehicle Specific Power) model traffic real emissions were theoretically classified into two parts: basic emission and additional emission. An original additional emission model was presented to calculate the vehicle's emission due to the signal control effects. Car-following model was developed and used to describe the traffic behavior including cruising, accelerating, decelerating and idling at a signalized intersection. Simulations were conducted under two situations: single intersection and two adjacent intersections with their respective control policy. Results are in good agreement with the theoretical analysis. It is also proved that additional emission model may be used to design the signal control policy in our modern traffic system to solve the serious environmental problems.
STOL Traffic environment and operational procedures
NASA Technical Reports Server (NTRS)
Schlundt, R. W.; Dewolf, R. W.; Ausrotas, R. A.; Curry, R. E.; Demaio, D.; Keene, D. W.; Speyer, J. L.; Weinreich, M.; Zeldin, S.
1972-01-01
The expected traffic environment for an intercity STOL transportation system is examined, and operational procedures are discussed in order to identify problem areas which impact STOL avionics requirements. Factors considered include: traffic densities, STOL/CTOL/VTOL traffic mix, the expect ATC environment, aircraft noise models and community noise models and community noise impact, flight paths for noise abatement, wind considerations affecting landing, approach and landing considerations, STOLport site selection, runway capacity, and STOL operations at jetports, suburban airports, and separate STOLports.
INTEGRATED SPEED ESTIMATION MODEL FOR MULTILANE EXPREESSWAYS
NASA Astrophysics Data System (ADS)
Hong, Sungjoon; Oguchi, Takashi
In this paper, an integrated speed-estimation model is developed based on empirical analyses for the basic sections of intercity multilane expressway un der the uncongested condition. This model enables a speed estimation for each lane at any site under arb itrary highway-alignment, traffic (traffic flow and truck percentage), and rainfall conditions. By combin ing this model and a lane-use model which estimates traffic distribution on the lanes by each vehicle type, it is also possible to es timate an average speed across all the lanes of one direction from a traffic demand by vehicle type under specific highway-alignment and rainfall conditions. This model is exp ected to be a tool for the evaluation of traffic performance for expressways when the performance me asure is travel speed, which is necessary for Performance-Oriented Highway Planning and Design. Regarding the highway-alignment condition, two new estimators, called effective horizo ntal curvature and effective vertical grade, are proposed in this paper which take into account the influence of upstream and downstream alignment conditions. They are applied to the speed-estimation model, and it shows increased accuracy of the estimation.
An extended macro model accounting for acceleration changes with memory and numerical tests
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Ge, Hongxia; Sun, Fengxin; Wang, Jufeng
2018-09-01
Considering effect of acceleration changes with memory, an improved continuum model of traffic flow is proposed in this paper. By applying the linear stability theory, we derived the new model's linear stability condition. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the extended traffic flow model, which explores how acceleration changes with memory affected each car's velocity, density and fuel consumption and exhaust emissions. Numerical results demonstrate that acceleration changes with memory have significant negative effect on dynamic characteristic of traffic flow. Furthermore, research results verify that the effect of acceleration changes with memory will deteriorate the stability of traffic flow and increase cars' total fuel consumptions and emissions during the whole evolution of small perturbation.
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting
Ming-jun, Deng; Shi-ru, Qu
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258
Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.
Deng, Ming-jun; Qu, Shi-ru
2015-01-01
Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting.
Traffic jams induced by fluctuation of a leading car.
Nagatani, T
2000-04-01
We present a phase diagram of the different kinds of congested traffic triggered by fluctuation of a leading car in an open system without sources and sinks. Traffic states and density waves are investigated numerically by varying the amplitude of fluctuation using a car following model. The phase transitions among the free traffic, oscillatory congested traffic, and homogeneous congested traffic occur by fluctuation of a leading car. With increasing the amplitude of fluctuation, the transition between the free traffic and oscillatory traffic occurs at lower density and the transition between the homogeneous congested traffic and the oscillatory traffic occurs at higher density. The oscillatory congested traffic corresponds to the coexisting phase. Also, the moving localized clusters appear just above the transition lines.
NASA Astrophysics Data System (ADS)
Fourrate, K.; Loulidi, M.
2006-01-01
We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.
MMPP Traffic Generator for the Testing of the SCAR 2 Fast Packet Switch
NASA Technical Reports Server (NTRS)
Chren, William A., Jr.
1995-01-01
A prototype MWP Traffic Generator (TG) has been designed for testing of the COMSAT-supplied SCAR II Fast Packet Switch. By generating packets distributed according to a Markov-Modulated Poisson Process (MMPP) model. it allows the assessment of the switch performance under traffic conditions that are more realistic than could be generated using the COMSAT-supplied Traffic Generator Module. The MMPP model is widely believed to model accurately real-world superimposed voice and data communications traffic. The TG was designed to be as much as possible of a "drop-in" replacement for the COMSAT Traffic Generator Module. The latter fit on two Altera EPM7256EGC 192-pin CPLDs and produced traffic for one switch input port. No board changes are necessary because it has been partitioned to use the existing board traces. The TG, consisting of parts "TGDATPROC" and "TGRAMCTL" must merely be reprogrammed into the Altera devices of the same name. However, the 040 controller software must be modified to provide TG initialization data. This data will be given in Section II.
Developing a Measure of Traffic Calming Associated with Elementary School Students’ Active Transport
Nicholson, Lisa M.; Turner, Lindsey; Slater, Sandy J.; Abuzayd, Haytham; Chriqui, Jamie F.; Chaloupka, Frank
2014-01-01
The objective of this study is to develop a measure of traffic calming with nationally available GIS data from NAVTEQ and to validate the traffic calming index with the percentage of children reported by school administrators as walking or biking to school, using data from a nationally representative sample of elementary schools in 2006-2010. Specific models, with and without correlated errors, examined associations of objective GIS measures of the built environment, nationally available from NAVTEQ, with the latent construct of traffic calming. The best fit model for the latent traffic calming construct was determined to be a five factor model including objective measures of intersection density, count of medians/dividers, count of low mobility streets, count of roundabouts, and count of on-street parking availability, with no correlated errors among items. This construct also proved to be a good fit for the full measurement model when the outcome measure of percentage of students walking or biking to school was added to the model. The traffic calming measure was strongly, significantly, and positively correlated with the percentage of students reported as walking or biking to school. Applicability of results to public health and transportation policies and practices are discussed. PMID:25506255
Nicholson, Lisa M; Turner, Lindsey; Slater, Sandy J; Abuzayd, Haytham; Chriqui, Jamie F; Chaloupka, Frank
2014-12-01
The objective of this study is to develop a measure of traffic calming with nationally available GIS data from NAVTEQ and to validate the traffic calming index with the percentage of children reported by school administrators as walking or biking to school, using data from a nationally representative sample of elementary schools in 2006-2010. Specific models, with and without correlated errors, examined associations of objective GIS measures of the built environment, nationally available from NAVTEQ, with the latent construct of traffic calming. The best fit model for the latent traffic calming construct was determined to be a five factor model including objective measures of intersection density, count of medians/dividers, count of low mobility streets, count of roundabouts, and count of on-street parking availability, with no correlated errors among items. This construct also proved to be a good fit for the full measurement model when the outcome measure of percentage of students walking or biking to school was added to the model. The traffic calming measure was strongly, significantly, and positively correlated with the percentage of students reported as walking or biking to school. Applicability of results to public health and transportation policies and practices are discussed.
Nazif-Munoz, José Ignacio; Quesnel-Vallée, Amélie; van den Berg, Axel
2015-06-01
The objective of the current study is to determine to what extent the reduction of Chile's traffic fatalities and injuries during 2000-2012 was related to the police traffic enforcement increment registered after the introduction of its 2005 traffic law reform. A unique dataset with assembled information from public institutions and analyses based on ordinary least square and robust random effects models was carried out. Dependent variables were traffic fatality and severe injury rates per population and vehicle fleet. Independent variables were: (1) presence of new national traffic law; (2) police officers per population; (3) number of traffic tickets per police officer; and (4) interaction effect of number of traffic tickets per police officer with traffic law reform. Oil prices, alcohol consumption, proportion of male population 15-24 years old, unemployment, road infrastructure investment, years' effects and regions' effects represented control variables. Empirical estimates from instrumental variables suggest that the enactment of the traffic law reform in interaction with number of traffic tickets per police officer is significantly associated with a decrease of 8% in traffic fatalities and 7% in severe injuries. Piecewise regression model results for the 2007-2012 period suggest that police traffic enforcement reduced traffic fatalities by 59% and severe injuries by 37%. Findings suggest that traffic law reforms in order to have an effect on both traffic fatality and injury rates reduction require changes in police enforcement practices. Last, this case also illustrates how the diffusion of successful road safety practices globally promoted by WHO and World Bank can be an important influence for enhancing national road safety practices. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.
2012-01-01
Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.
NASA Astrophysics Data System (ADS)
Munigety, Caleb Ronald
2018-04-01
The traditional traffic microscopic simulation models consider driver and vehicle as a single unit to represent the movements of drivers in a traffic stream. Due to this very fact, the traditional car-following models have the driver behavior related parameters, but ignore the vehicle related aspects. This approach is appropriate for homogeneous traffic conditions where car is the major vehicle type. However, in heterogeneous traffic conditions where multiple vehicle types are present, it becomes important to incorporate the vehicle related parameters exclusively to account for the varying dynamic and static characteristics. Thus, this paper presents a driver-vehicle integrated model hinged on the principles involved in physics-based spring-mass-damper mechanical system. While the spring constant represents the driver’s aggressiveness, the damping constant and the mass component take care of the stability and size/weight related aspects, respectively. The proposed model when tested, behaved pragmatically in representing the vehicle-type dependent longitudinal movements of vehicles.
Traffic and related self-driven many-particle systems
NASA Astrophysics Data System (ADS)
Helbing, Dirk
2001-10-01
Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.
Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video
NASA Astrophysics Data System (ADS)
Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.
1997-01-01
We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.
The bidirectional associations between state anger and rumination and the role of trait mindfulness.
Borders, Ashley; Lu, Shou-En
2017-07-01
Rumination is associated with exacerbated angry mood. Angry moods may also trigger rumination. However, research has not empirically tested the bidirectional associations of state rumination and anger, as experience sampling methodology can do. We predicted that state anger and rumination would be bi-directionally associated, both concurrently and over time, even controlling for trait anger and rumination. In addition, because mindfulness is associated with rumination and anger at the bivariate level, we examined the effect of trait mindfulness on the bidirectional association between state rumination and anger. We examined two hypotheses: (i) state rumination mediates the effect of trait mindfulness on state anger; and (ii) trait mindfulness weakens, or moderates, the bidirectional associations between state rumination and anger. In an experience-sampling study, 200 college students reported their current ruminative thinking and angry mood several times a day for 7 days. Mixed model analyses indicated that state anger and rumination predicted each other concurrently. In cross-lagged analyses, previous anger did not uniquely predict current rumination; previous rumination predicted current anger, although the effect was small. In support of our hypothesis, state rumination mediated the association between trait mindfulness and state anger. Additionally, trait mindfulness moderated the concurrent and cross-lagged associations between state rumination and anger, although the results were complex. This study contributes new information about the complex interplay of rumination and anger. Findings also add support to the theory that mindfulness decreases emotional reactivity. Aggr. Behav. 43:342-351, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.
2018-02-01
In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.
Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents
NASA Astrophysics Data System (ADS)
Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui
2015-09-01
The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.
The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology
NASA Astrophysics Data System (ADS)
Yang, Wang-Dong; Wang, Tao
On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.
A Study on Urban Road Traffic Safety Based on Matter Element Analysis
Hu, Qizhou; Zhou, Zhuping; Sun, Xu
2014-01-01
This paper examines a new evaluation of urban road traffic safety based on a matter element analysis, avoiding the difficulties found in other traffic safety evaluations. The issue of urban road traffic safety has been investigated through the matter element analysis theory. The chief aim of the present work is to investigate the features of urban road traffic safety. Emphasis was placed on the construction of a criterion function by which traffic safety achieved a hierarchical system of objectives to be evaluated. The matter element analysis theory was used to create the comprehensive appraisal model of urban road traffic safety. The technique was used to employ a newly developed and versatile matter element analysis algorithm. The matter element matrix solves the uncertainty and incompatibility of the evaluated factors used to assess urban road traffic safety. The application results showed the superiority of the evaluation model and a didactic example was included to illustrate the computational procedure. PMID:25587267
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedic, Vladimir, E-mail: vnedic@kg.ac.rs; Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs; Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs
2014-11-15
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. Themore » output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.« less
NASA Astrophysics Data System (ADS)
Sayegh, Arwa; Tate, James E.; Ropkins, Karl
2016-02-01
Oxides of Nitrogen (NOx) is a major component of photochemical smog and its constituents are considered principal traffic-related pollutants affecting human health. This study investigates the influence of background concentrations of NOx, traffic density, and prevailing meteorological conditions on roadside concentrations of NOx at UK urban, open motorway, and motorway tunnel sites using the statistical approach Boosted Regression Trees (BRT). BRT models have been fitted using hourly concentration, traffic, and meteorological data for each site. The models predict, rank, and visualise the relationship between model variables and roadside NOx concentrations. A strong relationship between roadside NOx and monitored local background concentrations is demonstrated. Relationships between roadside NOx and other model variables have been shown to be strongly influenced by the quality and resolution of background concentrations of NOx, i.e. if it were based on monitored data or modelled prediction. The paper proposes a direct method of using site-specific fundamental diagrams for splitting traffic data into four traffic states: free-flow, busy-flow, congested, and severely congested. Using BRT models, the density of traffic (vehicles per kilometre) was observed to have a proportional influence on the concentrations of roadside NOx, with different fitted regression line slopes for the different traffic states. When other influences are conditioned out, the relationship between roadside concentrations and ambient air temperature suggests NOx concentrations reach a minimum at around 22 °C with high concentrations at low ambient air temperatures which could be associated to restricted atmospheric dispersion and/or to changes in road traffic exhaust emission characteristics at low ambient air temperatures. This paper uses BRT models to study how different critical factors, and their relative importance, influence the variation of roadside NOx concentrations. The paper highlights the importance of either setting up local background continuous monitors or improving the quality and resolution of modelled UK background maps and the need to further investigate the influence of ambient air temperature on NOx emissions and roadside NOx concentrations.
Kasten, Chelsea R.; Blasingame, Shelby N.; Boehm, Stephen L.
2014-01-01
The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides “binge-like” ethanol access to mice by restricting access to a two hour period, three hours into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-hour two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)- baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)- baclofen, chronic intake was not significantly altered. S(-)- baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. PMID:25557834
Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L
2015-02-01
The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. Copyright © 2015 Elsevier Inc. All rights reserved.
Towards a climate-dependent paradigm of ammonia emission and deposition
Existing descriptions of bi-directional ammonia (NH3) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale ...
An extended lattice model accounting for traffic jerk
NASA Astrophysics Data System (ADS)
Redhu, Poonam; Siwach, Vikash
2018-02-01
In this paper, a flux difference lattice hydrodynamics model is extended by considering the traffic jerk effect which comes due to vehicular motion of non-motor automobiles. The effect of traffic jerk has been examined through linear stability analysis and shown that it can significantly enlarge the unstable region on the phase diagram. To describe the phase transition of traffic flow, mKdV equation near the critical point is derived through nonlinear stability analysis. The theoretical findings have been verified using numerical simulation which confirms that the jerk parameter plays an important role in stabilizing the traffic jam efficiently in sensing the flux difference of leading sites.
NASA Astrophysics Data System (ADS)
Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz
2017-12-01
This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.
Radiative transfer model for contaminated rough slabs.
Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard
2015-11-01
We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.
A SPATIOTEMPORAL APPROACH FOR HIGH RESOLUTION TRAFFIC FLOW IMPUTATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Lee; Chin, Shih-Miao; Hwang, Ho-Ling
Along with the rapid development of Intelligent Transportation Systems (ITS), traffic data collection technologies have been evolving dramatically. The emergence of innovative data collection technologies such as Remote Traffic Microwave Sensor (RTMS), Bluetooth sensor, GPS-based Floating Car method, automated license plate recognition (ALPR) (1), etc., creates an explosion of traffic data, which brings transportation engineering into the new era of Big Data. However, despite the advance of technologies, the missing data issue is still inevitable and has posed great challenges for research such as traffic forecasting, real-time incident detection and management, dynamic route guidance, and massive evacuation optimization, because themore » degree of success of these endeavors depends on the timely availability of relatively complete and reasonably accurate traffic data. A thorough literature review suggests most current imputation models, if not all, focus largely on the temporal nature of the traffic data and fail to consider the fact that traffic stream characteristics at a certain location are closely related to those at neighboring locations and utilize these correlations for data imputation. To this end, this paper presents a Kriging based spatiotemporal data imputation approach that is able to fully utilize the spatiotemporal information underlying in traffic data. Imputation performance of the proposed approach was tested using simulated scenarios and achieved stable imputation accuracy. Moreover, the proposed Kriging imputation model is more flexible compared to current models.« less
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
Using temporal detrending to observe the spatial correlation of traffic.
Ermagun, Alireza; Chatterjee, Snigdhansu; Levinson, David
2017-01-01
This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis-St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models.
Using temporal detrending to observe the spatial correlation of traffic
2017-01-01
This empirical study sheds light on the spatial correlation of traffic links under different traffic regimes. We mimic the behavior of real traffic by pinpointing the spatial correlation between 140 freeway traffic links in a major sub-network of the Minneapolis—St. Paul freeway system with a grid-like network topology. This topology enables us to juxtapose the positive and negative correlation between links, which has been overlooked in short-term traffic forecasting models. To accurately and reliably measure the correlation between traffic links, we develop an algorithm that eliminates temporal trends in three dimensions: (1) hourly dimension, (2) weekly dimension, and (3) system dimension for each link. The spatial correlation of traffic links exhibits a stronger negative correlation in rush hours, when congestion affects route choice. Although this correlation occurs mostly in parallel links, it is also observed upstream, where travelers receive information and are able to switch to substitute paths. Irrespective of the time-of-day and day-of-week, a strong positive correlation is witnessed between upstream and downstream links. This correlation is stronger in uncongested regimes, as traffic flow passes through consecutive links more quickly and there is no congestion effect to shift or stall traffic. The extracted spatial correlation structure can augment the accuracy of short-term traffic forecasting models. PMID:28472093
Wang, Ling; Abdel-Aty, Mohamed; Wang, Xuesong; Yu, Rongjie
2018-02-01
There have been plenty of traffic safety studies based on average daily traffic (ADT), average hourly traffic (AHT), or microscopic traffic at 5 min intervals. Nevertheless, not enough research has compared the performance of these three types of safety studies, and seldom of previous studies have intended to find whether the results of one type of study is transferable to the other two studies. First, this study built three models: a Bayesian Poisson-lognormal model to estimate the daily crash frequency using ADT, a Bayesian Poisson-lognormal model to estimate the hourly crash frequency using AHT, and a Bayesian logistic regression model for the real-time safety analysis using microscopic traffic. The model results showed that the crash contributing factors found by different models were comparable but not the same. Four variables, i.e., the logarithm of volume, the standard deviation of speed, the logarithm of segment length, and the existence of diverge segment, were positively significant in the three models. Additionally, weaving segments experienced higher daily and hourly crash frequencies than merge and basic segments. Then, each of the ADT-based, AHT-based, and real-time models was used to estimate safety conditions at different levels: daily and hourly, meanwhile, the real-time model was also used in 5 min intervals. The results uncovered that the ADT- and AHT-based safety models performed similar in predicting daily and hourly crash frequencies, and the real-time safety model was able to provide hourly crash frequency. Copyright © 2017 Elsevier Ltd. All rights reserved.
A mass balance eutrophication model, Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to describe nitrogen, phosphorus and primary production in the Louisiana shelf of the Gulf of Mexico. Features of this model include bi-directional boundary exchan...
Zhang, Xiaoyu; Ju, Han; Penney, Trevor B; VanDongen, Antonius M J
2017-01-01
Humans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher's discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits.
The Bidirectional Relationship Between Depressive Symptoms and Homebound Status Among Older Adults.
Xiang, Xiaoling; An, Ruopeng; Oh, Hyunsung
2018-01-25
This study aimed to examine the bidirectional relationship between depressive symptoms and homebound status among older adults. The study sample included 7,603 community-dwelling older adults from the National Health and Aging Trends Study. A bivariate latent state-trait model of depressive symptoms and homebound status was estimated via structural equation modeling. The model fit the data well (Root Mean Square Error of Approximation = .02, Comparative Fit Index = .97, Standardized Root Mean Square Residual = .06). The relationship between homebound status and depressive symptoms can be decomposed into three parts: a moderate correlation between the stable trait components (r = .56, p <.001); a contemporary association of the state components (b = .17, p <.001); and bidirectional lagged effects between the state components. Change in homebound status was as a stronger predictor of depressive symptoms (b = .19, p < .001) than change in depressive symptoms was of homebound status (b = .06, p < .001; test of difference: Δ scaled χ2(1) = 24.2, p < .001). Homebound status and depressive symptoms form a feedback loop to influence each other. Improving the outdoor mobility of older adults may have immediate benefits for reducing depressive symptoms. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lazarides, Rebecca; Rubach, Charlott; Ittel, Angela
2017-03-01
Research based on the Eccles model of parent socialization demonstrated that parents are an important source of value and ability information for their children. Little is known, however, about the bidirectional effects between students' perceptions of their parents' beliefs and behaviors and the students' own domain-specific values. This study analyzed how students' perceptions of parents' beliefs and behaviors and students' mathematics values and mathematics-related career plans affect each other bidirectionally, and analyzed the role of students' gender as a moderator of these relations. Data from 475 students in 11th and 12th grade (girls: 50.3%; 31 classrooms; 12 schools), who participated in 2 waves of the study, were analyzed. Results of longitudinal structural equation models demonstrated that students' perceptions of their parents' mathematics value beliefs at Time 1 affected the students' own mathematics utility value at Time 2. Bidirectional effects were not shown in the full sample but were identified for boys. The paths within the tested model varied for boys and girls. For example, boys', not girls', mathematics intrinsic value predicted their reported conversations with their fathers about future occupational plans. Boys', not girls', perceived parents' mathematics value predicted the mathematics utility value. Findings are discussed in relation to their implications for parents and teachers, as well as in relation to gendered motivational processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
2017-01-01
Abstract Humans instantly recognize a previously seen face as “familiar.” To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher’s discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits. PMID:28534043
Memory effects in microscopic traffic models and wide scattering in flow-density data
NASA Astrophysics Data System (ADS)
Treiber, Martin; Helbing, Dirk
2003-10-01
By means of microscopic simulations we show that noninstantaneous adaptation of the driving behavior to the traffic situation together with the conventional method to measure flow-density data provides a possible explanation for the observed inverse-λ shape and the wide scattering of flow-density data in “synchronized” congested traffic. We model a memory effect in the response of drivers to the traffic situation for a wide class of car-following models by introducing an additional dynamical variable (the “subjective level of service”) describing the adaptation of drivers to the surrounding traffic situation during the past few minutes and couple this internal state to parameters of the underlying model that are related to the driving style. For illustration, we use the intelligent-driver model (IDM) as the underlying model, characterize the level of service solely by the velocity, and couple the internal variable to the IDM parameter “time gap” to model an increase of the time gap in congested traffic (“frustration effect”), which is supported by single-vehicle data. We simulate open systems with a bottleneck and obtain flow-density data by implementing “virtual detectors.” The shape, relative size, and apparent “stochasticity” of the region of the scattered data points agree nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles, although the proposed model is a time-continuous, deterministic, single-lane car-following model with a unique fundamental diagram.
NASA Astrophysics Data System (ADS)
Chen, Dong; Sun, Dihua; Zhao, Min; Zhou, Tong; Cheng, Senlin
2018-07-01
In fact, driving process is a typical cyber physical process which couples tightly the cyber factor of traffic information with the physical components of the vehicles. Meanwhile, the drivers have situation awareness in driving process, which is not only ascribed to the current traffic states, but also extrapolates the changing trend. In this paper, an extended car-following model is proposed to account for drivers' situation awareness. The stability criterion of the proposed model is derived via linear stability analysis. The results show that the stable region of proposed model will be enlarged on the phase diagram compared with previous models. By employing the reductive perturbation method, the modified Korteweg de Vries (mKdV) equation is obtained. The kink-antikink soliton of mKdV equation reveals theoretically the evolution of traffic jams. Numerical simulations are conducted to verify the analytical results. Two typical traffic Scenarios are investigated. The simulation results demonstrate that drivers' situation awareness plays a key role in traffic flow oscillations and the congestion transition.
An integrated approach to evaluate policies for controlling traffic law violations.
Mehmood, Arif
2010-03-01
Modeling dynamics of the driver behavior is a complex problem. In this paper a system approach is introduced to model and to analyze the driver behavior related to traffic law violations in the Emirate of Abu Dhabi. This paper demonstrates how the theoretical relationships between different factors can be expressed formally, and how the resulting model can assist in evaluating potential benefits of various policies to control the traffic law violations Using system approach, an integrated dynamic simulation model is developed, and model is tested to simulate the driver behavior for violating traffic laws during 2002-2007 in the Emirate of Abu Dhabi. The dynamic simulation model attempts to address the questions: (1) "what" interventions should be implemented to reduce and eventually control traffic violations which will lead to improving road safety and (2) "how" to justify those interventions will be effective or ineffective to control the violations in different transportation conditions. The simulation results reveal promising capability of applying system approach in the policy evaluation studies. Copyright 2009 Elsevier Ltd. All rights reserved.
Hydraulic performance improvement of the bidirectional pit pump installation based on CFD
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhou, D. Q.
2013-12-01
At present, the efficiency of bidirectional pit pump installation with lift under 2m is still low because of lack of research on it in the past. In the paper, the CFD numerical method and experimental test were applied to study flow characteristic of bidirectional pit pump installation under positive and reverse condition. Through changing airfoil type and position of blade and stay vane, the comprehensive performance of improved model were obtained by calculating many different models. The results showed that when improved model is obtained with type A runner with 4 blades that is 0.7D away from pit exit and unsymmetrical guide vane 0.25dh which away from the impeller outlet, and the flow pattern of the improved solution is steady with high efficiency. Compared with the original scheme, the efficiency of positive and reverse design condition reach to 67.23% and 58.32% respectively, which is increased 6% more than original model on the design condition and 5% on the optimum operating condition, and it achieved the purpose of improvement. According to the runner blade angle of the optimization solution, model synthetic characteristic curve was drawn and internal flow field characteristics was analyzed under optimal positive and reverse conditions. The numerical calculation shows that owing to the lack of stay vane to recycle the energy in outlet runner chamber, the water flow regime is not steady enough in the outlet passage, and that is the main reason for lower efficiency at reverse condition than that at positive condition.
Safety analysis of urban signalized intersections under mixed traffic.
S, Anjana; M V L R, Anjaneyulu
2015-02-01
This study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models. Hierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections. The study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study. As a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predicting commuter flows in spatial networks using a radiation model based on temporal ranges
NASA Astrophysics Data System (ADS)
Ren, Yihui; Ercsey-Ravasz, Mária; Wang, Pu; González, Marta C.; Toroczkai, Zoltán
2014-11-01
Understanding network flows such as commuter traffic in large transportation networks is an ongoing challenge due to the complex nature of the transportation infrastructure and human mobility. Here we show a first-principles based method for traffic prediction using a cost-based generalization of the radiation model for human mobility, coupled with a cost-minimizing algorithm for efficient distribution of the mobility fluxes through the network. Using US census and highway traffic data, we show that traffic can efficiently and accurately be computed from a range-limited, network betweenness type calculation. The model based on travel time costs captures the log-normal distribution of the traffic and attains a high Pearson correlation coefficient (0.75) when compared with real traffic. Because of its principled nature, this method can inform many applications related to human mobility driven flows in spatial networks, ranging from transportation, through urban planning to mitigation of the effects of catastrophic events.
General phase transition models for vehicular traffic with point constraints on the flow
NASA Astrophysics Data System (ADS)
Dal Santo, E.; Rosini, M. D.; Dymski, N.; Benyahia, M.
2017-12-01
We generalize the phase transition model studied in [R. Colombo. Hyperbolic phase transition in traffic flow.\\ SIAM J.\\ Appl.\\ Math., 63(2):708-721, 2002], that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the \\emph{free-flow} phase and by a system of two conservation laws in the \\emph{congested} phase. In particular, we study the resulting Riemann problems in the case a local point constraint on the flux of the solutions is enforced.
Chaotic Ising-like dynamics in traffic signals
Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki
2013-01-01
The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034
Developing a stochastic traffic volume prediction model for public-private partnership projects
NASA Astrophysics Data System (ADS)
Phong, Nguyen Thanh; Likhitruangsilp, Veerasak; Onishi, Masamitsu
2017-11-01
Transportation projects require an enormous amount of capital investment resulting from their tremendous size, complexity, and risk. Due to the limitation of public finances, the private sector is invited to participate in transportation project development. The private sector can entirely or partially invest in transportation projects in the form of Public-Private Partnership (PPP) scheme, which has been an attractive option for several developing countries, including Vietnam. There are many factors affecting the success of PPP projects. The accurate prediction of traffic volume is considered one of the key success factors of PPP transportation projects. However, only few research works investigated how to predict traffic volume over a long period of time. Moreover, conventional traffic volume forecasting methods are usually based on deterministic models which predict a single value of traffic volume but do not consider risk and uncertainty. This knowledge gap makes it difficult for concessionaires to estimate PPP transportation project revenues accurately. The objective of this paper is to develop a probabilistic traffic volume prediction model. First, traffic volumes were estimated following the Geometric Brownian Motion (GBM) process. Monte Carlo technique is then applied to simulate different scenarios. The results show that this stochastic approach can systematically analyze variations in the traffic volume and yield more reliable estimates for PPP projects.
A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.
Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming
2015-01-01
Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.
Modeling self-consistent multi-class dynamic traffic flow
NASA Astrophysics Data System (ADS)
Cho, Hsun-Jung; Lo, Shih-Ching
2002-09-01
In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.
Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzese, Oscar
2010-08-01
The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigationsmore » for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to improve and expedite the traffic investigation part of the EIS process are presented.« less
A retrospective evaluation of traffic forecasting techniques.
DOT National Transportation Integrated Search
2016-08-01
Traffic forecasting techniquessuch as extrapolation of previous years traffic volumes, regional travel demand models, or : local trip generation rateshelp planners determine needed transportation improvements. Thus, knowing the accuracy of t...
Bidirectional Active Learning: A Two-Way Exploration Into Unlabeled and Labeled Data Set.
Zhang, Xiao-Yu; Wang, Shupeng; Yun, Xiaochun
2015-12-01
In practical machine learning applications, human instruction is indispensable for model construction. To utilize the precious labeling effort effectively, active learning queries the user with selective sampling in an interactive way. Traditional active learning techniques merely focus on the unlabeled data set under a unidirectional exploration framework and suffer from model deterioration in the presence of noise. To address this problem, this paper proposes a novel bidirectional active learning algorithm that explores into both unlabeled and labeled data sets simultaneously in a two-way process. For the acquisition of new knowledge, forward learning queries the most informative instances from unlabeled data set. For the introspection of learned knowledge, backward learning detects the most suspiciously unreliable instances within the labeled data set. Under the two-way exploration framework, the generalization ability of the learning model can be greatly improved, which is demonstrated by the encouraging experimental results.
NASA Astrophysics Data System (ADS)
Bag, S.; de, A.
2010-09-01
The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.
Li, Xiaolu; Liang, Yu; Xu, Lijun
2014-09-01
To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.
Improving Model Representation of Reduced Nitrogen in the Greater Yellowstone Area
NASA Astrophysics Data System (ADS)
Thompson, T. M.
2015-12-01
Human activity, including fossil fuel combustion and agriculture has greatly increased the amount of reactive nitrogen (RN) in the atmosphere and its subsequent deposition to land. Increases in deposition of RN compounds can adversely affect sensitive ecosystems and is a growing problem in many natural areas. The National Park Service in conjunction with Colorado State University researchers and assistance from the Forest Service conducted the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) involving spatially and temporally detailed measurements of RN during spring/summer 2011. In this work it was found that during summer months at the high elevation site Grand Targhee, 62% of the nitrogen deposition was due to reduced nitrogen, about equally split between dry and wet deposition, oxidized nitrogen accounted for 27% of the total, and the remaining was wet deposited organic nitrogen. An important next step to GrandTReNDS is the use of chemical transport models (CTMs) to estimate source contributions to RN in the park. Given the large contribution of reduced nitrogen species to total nitrogen deposition in the park, understanding and properly characterizing ammonia in CTMs is critical to estimating the total nitrogen deposition. A model performance evaluation of the CAMx uni-directional model and CMAQ bi-direction and uni-directional 2011 model simulations versus GrandTReNDS and other datasets was conducted. Preliminary results suggest that, in some areas, model performance of ambient ammonia concentration is more sensitive to the spatial resolution of the model and the accuracy of the spatial representation of emissions than to the incorporation of bi-directional flux. Additional model sensitivity runs, including sensitivity to resolution (with and without bi-directional flux capabilities), changes to model estimated ammonia dry deposition velocities, and improved representation of the spatial distribution of ammonia emissions, are used to identify the best set of options for GrandTReNDS modeling, and to provide a measure of uncertainties. This will help atmospheric scientists identify deficiencies in the models and inform future model development.
NASA Astrophysics Data System (ADS)
Palatella, Luigi; Trevisan, Anna; Rambaldi, Sandro
2013-08-01
Valuable information for estimating the traffic flow is obtained with current GPS technology by monitoring position and velocity of vehicles. In this paper, we present a proof of concept study that shows how the traffic state can be estimated using only partial and noisy data by assimilating them in a dynamical model. Our approach is based on a data assimilation algorithm, developed by the authors for chaotic geophysical models, designed to be equivalent but computationally much less demanding than the traditional extended Kalman filter. Here we show that the algorithm is even more efficient if the system is not chaotic and demonstrate by numerical experiments that an accurate reconstruction of the complete traffic state can be obtained at a very low computational cost by monitoring only a small percentage of vehicles.
Evaluation of air traffic control models and simulations.
DOT National Transportation Integrated Search
1971-06-01
Approximately two hundred reports were identified as describing Air Traffic Control (ATC) modeling and simulation efforts. Of these, about ninety analytical and simulation models dealing with virtually all aspects of ATC were formally evaluated. The ...
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...
A simple, dynamic, hydrological model of a mesotidal salt marsh
Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...
Hyde, M W; Schmidt, J D; Havrilla, M J
2009-11-23
A polarimetric bidirectional reflectance distribution function (pBRDF), based on geometrical optics, is presented. The pBRDF incorporates a visibility (shadowing/masking) function and a Lambertian (diffuse) component which distinguishes it from other geometrical optics pBRDFs in literature. It is shown that these additions keep the pBRDF bounded (and thus a more realistic physical model) as the angle of incidence or observation approaches grazing and better able to model the behavior of light scattered from rough, reflective surfaces. In this paper, the theoretical development of the pBRDF is shown and discussed. Simulation results of a rough, perfect reflecting surface obtained using an exact, electromagnetic solution and experimental Mueller matrix results of two, rough metallic samples are presented to validate the pBRDF.
NASA Technical Reports Server (NTRS)
Seldner, K.
1977-01-01
An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-06-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-02-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
The Impact of the Thai Motorcycle Transition on Road Traffic Injury: Thai Cohort Study Results
Berecki-Gisolf, Janneke; Yiengprugsawan, Vasoontara; Kelly, Matthew; McClure, Roderick; Seubsman, Sam-ang; Sleigh, Adrian
2015-01-01
Objectives The aim of this study was to investigate the impact of motorcycle to car transitioning and urbanisation on traffic injury rates in Thailand. Design Analysis of two consecutive surveys of a large national cohort study. Setting Thailand. Participants The data derived from 57,154 Thai Cohort Study (TCS) participants who provided relevant data on both the 2005 and 2009 surveys. Primary and secondary outcome measures Motorcycle and car traffic crash injury self-reported in 2009, with twelve months’ recall. Results In 2009, 5608(10%) participants reported a traffic crash injury. Most crashes involved a motorcycle (74%). Car access increased and motorcycle use decreased between 2005 and 2009. Among those who used a motorcycle at both time points, traffic injury incidence was 2.8 times greater compared to those who did not use a motorcycle at either time point. Multivariable logistic regression models were used to test longitudinal and cross sectional factors associated with traffic crash injury: in the adjusted model, cars were negatively and motorcycles positively associated with injury. Living in an urban area was not injury protective in the adjusted model of traffic crash injury. Conclusions Ongoing urbanisation in Thailand can be expected to lead to further reductions in road traffic injuries based on transition from motorcycles to cars in urban areas. Cities, however, do not provide an intrinsically safer traffic environment. To accommodate a safe transition to car use in Thailand, traffic infrastructural changes anticipating the growing car density in urban areas is warranted. PMID:25826214
Epidemiologic Pattern of Fatal Traffic Injuries among Iranian Drivers; 2004–2010
BAKHTIYARI, Mahmood; MEHMANDAR, Mohammad Reza; RIAHI, Seyed Mohammad; MANSOURNIA, Mohammad Ali; SARTIPI, Majid; BAHADORIMONFARED, Ayad
2016-01-01
Background: Due to their specific nature, such as high incidence, high intensity and direct involvement of all members of society, traffic injuries are of particular importance. Through a mega data, this study investigated the epidemiological aspects and depict current situation of road traffic injuries in Iran. Methods: Using legal medicine and traffic police data, deaths from road traffic injuries in men were predicted through determining the most appropriate model for death using time series statistical models; and then most important human factors associated with it in a period of 6 yr in Iran was analyzed using multi-nominal regression model. Results: The frequency of deaths from traffic injuries in the last seven years was 172,834 cases and the number of deaths at the accident scene was 42798 cases, of which 24.24% (41,971 cases) were recorded by the Traffic Police experts. Death rate from traffic injuries has been declined from 38 cases per 100,000 people in 2004 to 31 cases per 100,000 people between 2009 and 2010. Fatigue and sleepiness (AOR=10.36, 95% CI: 8.41–13.3) was the most significant human risk factors for death outcome in the urban and suburban traffic injuries. According to the predictions, the death rate is about 16488 (CI 95%, 8531–24364) for the year 2012. Conclusion: Despite all measures to prevent such injuries, even fatal injuries have still a high incidence. Intervention in the human risk factors field would be more effective due to their important roles in traffic injuries in Iran. PMID:27252920
NASA Astrophysics Data System (ADS)
Mertens, Mariano; Kerkweg, Astrid; Grewe, Volker; Jöckel, Patrick
2016-04-01
Road traffic is an important anthropogenic source of NOx, CO and non-methane hydrocarbons (NMHCs) which act as precursors for the formation of tropospheric ozone. The formation of ozone is highly non-linear. This means that the contribution of the road traffic sector cannot directly be derived from the amount of emitted species, because they are also determined by local emissions of other anthropogenic and natural sources. In addition, long range transport of precursors and ozone can play an important role in determining the local ozone budget. For a complete assessment of the impact of road traffic emissions it is therefore important to resolve both, local emissions and long range transport. This can be achieved by the use of the newly developed MECO(n) model system, which on-line couples the global chemistry-climate-model EMAC with the regional chemistry-climate-model COSMO-CLM/MESSy. Both models use the same chemical speciation. This allows a highly consistent model chain from the global to the local scale. To quantify the contribution of the road traffic emissions to tropospheric ozone we use an accounting system of the relevant reaction pathways of the different species from different sources (called tagging method). This tagging scheme is implemented consistently on all scales, allowing a direct comparison of the contributions. With this model configuration we investigate the impact of road traffic emissions to the tropospheric ozone budget in Europe. For the year 2008 we compare different emission scenarios and investigate the influence of both model and emission resolution. In addition, results of a mitigation scenario for the year 2030 are presented. They indicate that the contribution of the road traffic sector can be reduced by local reductions of emissions during summer. During winter the importance of long range transport increases. This can lead to increased contributions of the road traffic sector (e.g. by increased emissions in the US) even if local emissions are reduced.
Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert
2015-01-01
Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.
Nonlinear image registration with bidirectional metric and reciprocal regularization
Ying, Shihui; Li, Dan; Xiao, Bin; Peng, Yaxin; Du, Shaoyi; Xu, Meifeng
2017-01-01
Nonlinear registration is an important technique to align two different images and widely applied in medical image analysis. In this paper, we develop a novel nonlinear registration framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced to assume that the deformation between two images is an exact diffeomorphism. In detail, first, we adopt a bidirectional metric to improve the symmetry of the energy functional, whose variables are two reciprocal deformations. Secondly, we slack these two deformations into two independent variables and introduce a reciprocal regularizer to assure the deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strategy to decouple the model into two minimizing subproblems, where a new closed form for the approximate velocity of deformation is calculated. Finally, we compare our proposed algorithm on two data sets of real brain MR images with two relative and conventional methods. The results validate that our proposed method improves accuracy and robustness of registration, as well as the gained bidirectional deformations are actually reciprocal. PMID:28231342
NASA Astrophysics Data System (ADS)
Raut, U.
2017-12-01
We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.
NASA Astrophysics Data System (ADS)
Jian, Mei-Ying; Shi, Jing; Liu, Yang
2016-09-01
As the global population ages, there are more and more older drivers on the road. The decline in driving performance of older drivers may influence the properties of traffic flow and safety. The purpose of this paper is to investigate the effect of older drivers’ driving behaviors on traffic flow. A modified cellular automaton (CA) model which takes driving behaviors of older drivers into account is proposed. The simulation results indicate that older drivers’ driving behaviors induce a reduction in traffic flow especially when the density is higher than 15 vehicles per km per lane and an increase in Lane-changing frequency. The analysis of stability shows that a number of disturbances could frequently emerge, be propagated and eventually dissipate in this modified model. The results also reflect that with the increase of older drivers on the road, the probability of the occurrence of rear-end collisions increases greatly and obviously. Furthermore, the value of acceleration influences the traffic flow and safety significantly. These results provide the theoretical basis and reference for the traffic management departments to develop traffic management measure in the aging society.
Computing Programs for Determining Traffic Flows from Roundabouts
NASA Astrophysics Data System (ADS)
Boroiu, A. A.; Tabacu, I.; Ene, A.; Neagu, E.; Boroiu, A.
2017-10-01
For modelling road traffic at the level of a road network it is necessary to specify the flows of all traffic currents at each intersection. These data can be obtained by direct measurements at the traffic light intersections, but in the case of a roundabout this is not possible directly and the literature as well as the traffic modelling software doesn’t offer ways to solve this issue. Two sets of formulas are proposed by which all traffic flows from the roundabouts with 3 or 4 arms are calculated based on the streams that can be measured. The objective of this paper is to develop computational programs to operate with these formulas. For each of the two sets of analytical relations, a computational program was developed in the Java operating language. The obtained results fully confirm the applicability of the calculation programs. The final stage for capitalizing these programs will be to make them web pages in HTML format, so that they can be accessed and used on the Internet. The achievements presented in this paper are an important step to provide a necessary tool for traffic modelling because these computational programs can be easily integrated into specialized software.
Relationship between road traffic accidents and conflicts recorded by drive recorders.
Lu, Guangquan; Cheng, Bo; Kuzumaki, Seigo; Mei, Bingsong
2011-08-01
Road traffic conflicts can be used to estimate the probability of accident occurrence, assess road safety, or evaluate road safety programs if the relationship between road traffic accidents and conflicts is known. To this end, we propose a model for the relationship between road traffic accidents and conflicts recorded by drive recorders (DRs). DRs were installed in 50 cars in Beijing to collect records of traffic conflicts. Data containing 1366 conflicts were collected in 193 days. The hourly distributions of conflicts and accidents were used to model the relationship between accidents and conflicts. To eliminate time series and base number effects, we defined and used 2 parameters: average annual number of accidents per 10,000 vehicles per hour and average number of conflicts per 10,000 vehicles per hour. A model was developed to describe the relationship between the two parameters. If A(i) = average annual number of accidents per 10,000 vehicles per hour at hour i, and E(i) = average number of conflicts per 10,000 vehicles per hour at hour i, the relationship can be expressed as [Formula in text] (α>0, β>0). The average number of traffic accidents increases as the number of conflicts rises, but the rate of increase decelerates as the number of conflicts increases further. The proposed model can describe the relationship between road traffic accidents and conflicts in a simple manner. According to our analysis, the model fits the present data.
A novel interacting multiple model based network intrusion detection scheme
NASA Astrophysics Data System (ADS)
Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry
2006-04-01
In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.
Reader, B F; Jarrett, B L; McKim, D B; Wohleb, E S; Godbout, J P; Sheridan, J F
2015-03-19
The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. RSD induces activation of the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis activation, increases bone marrow production and egress of primed, GC-insensitive monocytes, and stimulates the trafficking of these cells to tissues including the spleen, lung, and brain. Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Roswall, Nina; Raaschou-Nielsen, Ole; Jensen, Steen Solvang; Tjønneland, Anne; Sørensen, Mette
2018-01-01
Road traffic noise exposure has been found associated with diabetes incidence. Evidence for an association between railway noise exposure is less clear, as large studies with detailed railway noise modelling are lacking. To investigate the association between residential railway noise and diabetes incidence, and to repeat previous analyses on road traffic noise and diabetes with longer follow-up time. Among 50,534 middle-aged Danes enrolled into the Diet, Cancer and Health cohort from 1993 to 97, we identified 5062 cases of incident diabetes during a median follow-up of 15.5 years. Present and historical residential addresses from 1987 to 2012 were found in national registries, and railway and road traffic noise (L den ) were modelled for all addresses, using the Nordic prediction method. We used Cox proportional hazard models to investigate the association between residential traffic noise over 1 and 5 years before diagnosis, and diabetes incidence. Hazard ratios (HRs) were calculated as crude and adjusted for potential confounders. We found no association between railway noise exposure and diabetes incidence among the 9527 persons exposed, regardless of exposure time-window: HR 0.99 (0.94-1.04) per 10dB for 5-year exposure in fully adjusted models. There was no effect modification by sex, road traffic noise, and education. We confirmed the previously found association between road traffic noise exposure and diabetes including 6 additional years of follow-up: HR 1.08 (1.04-1.13) per 10dB for 5-year exposure in fully adjusted models. The study does not suggest an association between residential railway noise exposure and diabetes incidence, but supports the finding of a direct association with residential road traffic noise. Copyright © 2017 Elsevier Inc. All rights reserved.
Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael
2014-05-01
Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.
Bidirectional Relationship between Cognitive Function and Pneumonia
Shah, Faraaz Ali; Pike, Francis; Alvarez, Karina; Angus, Derek; Newman, Anne B.; Lopez, Oscar; Tate, Judith; Kapur, Vishesh; Wilsdon, Anthony; Krishnan, Jerry A.; Hansel, Nadia; Au, David; Avdalovic, Mark; Fan, Vincent S.; Barr, R. Graham
2013-01-01
Rationale: Relationships between chronic health conditions and acute infections remain poorly understood. Preclinical studies suggest crosstalk between nervous and immune systems. Objectives: To determine bidirectional relationships between cognition and pneumonia. Methods: We conducted longitudinal analyses of a population-based cohort over 10 years. We determined whether changes in cognition increase risk of pneumonia hospitalization by trajectory analyses and joint modeling. We then determined whether pneumonia hospitalization increased risk of subsequent dementia using a Cox model with pneumonia as a time-varying covariate. Measurements and Main Results: Of the 5,888 participants, 639 (10.9%) were hospitalized with pneumonia at least once. Most participants had normal cognition before pneumonia. Three cognition trajectories were identified: no, minimal, and severe rapid decline. A greater proportion of participants hospitalized with pneumonia were on trajectories of minimal or severe decline before occurrence of pneumonia compared with those never hospitalized with pneumonia (proportion with no, minimal, and severe decline were 67.1%, 22.8%, and 10.0% vs. 76.0%, 19.3%, and 4.6% for participants with and without pneumonia, respectively; P < 0.001). Small subclinical changes in cognition increased risk of pneumonia, even in those with normal cognition and physical function before pneumonia (β = −0.02; P < 0.001). Participants with pneumonia were subsequently at an increased risk of dementia (hazard ratio, 2.24 [95% confidence interval, 1.62–3.11]; P = 0.01). Associations were independent of demographics, health behaviors, other chronic conditions, and physical function. Bidirectional relationship did not vary based on severity of disease, and similar associations were noted for those with severe sepsis and other infections. Conclusions: A bidirectional relationship exists between pneumonia and cognition and may explain how a single episode of infection in well-appearing older individuals accelerates decline in chronic health conditions and loss of functional independence. PMID:23848267
Valiant load-balanced robust routing under hose model for WDM mesh networks
NASA Astrophysics Data System (ADS)
Zhang, Xiaoning; Li, Lemin; Wang, Sheng
2006-09-01
In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.
NASA Astrophysics Data System (ADS)
Gosse, Conrad A.; Clarens, Andres F.
2013-03-01
Efforts to reduce the environmental impacts of transportation infrastructure have generally overlooked many of the efficiencies that can be obtained by considering the relevant engineering and economic aspects as a system. Here, we present a framework for quantifying the burdens of ground transportation in urban settings that incorporates travel time, vehicle fuel and pavement maintenance costs. A Pareto set of bi-directional lane configurations for two-lane roadways yields non-dominated combinations of lane width, bicycle lanes and curb parking. Probabilistic analysis and microsimulation both show dramatic mobility reductions on road segments of insufficient width for heavy vehicles to pass bicycles without encroaching on oncoming traffic. This delay is positively correlated with uphill grades and increasing traffic volumes and inversely proportional to total pavement width. The response is nonlinear with grade and yields mixed uphill/downhill optimal lane configurations. Increasing bicycle mode share is negatively correlated with total costs and emissions for lane configurations allowing motor vehicles to safely pass bicycles, while the opposite is true for configurations that fail to facilitate passing. Spatial impacts on mobility also dictate that curb parking exhibits significant spatial opportunity costs related to the total cost Pareto curve. The proposed framework provides a means to evaluate relatively inexpensive lane reconfiguration options in response to changing modal share and priorities. These results provide quantitative evidence that efforts to reallocate limited pavement space to bicycles, like those being adopted in several US cities, could appreciably reduce costs for all users.
Jou, Rong-Chang; Chen, Tzu-Ying
2015-12-01
In this study, willingness to pay (WTP) for loss of productivity and consolation compensation by parties to traffic accidents is investigated using the Tobit model. In addition, WTP is compared to compensation determined by Taiwanese courts. The modelling results showed that variables such as education, average individual monthly income, traffic accident history, past experience of severe traffic accident injuries, the number of working days lost due to a traffic accident, past experience of accepting compensation for traffic accident-caused productivity loss and past experience of accepting consolation compensation caused by traffic accidents have a positive impact on WTP. In addition, average WTP for these two accident costs were obtained. We found that parties to traffic accidents were willing to pay more than 90% of the compensation determined by the court in the scenario of minor and moderate injuries. Parties were willing to pay approximately 80% of the compensation determined by the court for severe injuries, disability and fatality. Therefore, related agencies can use our study findings as the basis for determining the compensation that parties should pay for productivity losses caused by traffic accidents of different types. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new macro model of traffic flow by incorporating both timid and aggressive driving behaviors
NASA Astrophysics Data System (ADS)
Peng, Guanghan; Qing, Li
2016-10-01
In this paper, a novel macro model is derived from car-following model by applying the relationship between the micro and macro variables by incorporating the timid and aggressive effects of optimal velocity on a single lane. Numerical simulation shows that the timid and aggressive macro model of traffic flow can correctly reproduce common evolution of shock, rarefaction waves and local cluster effects under small perturbation. Also, the results uncover that the aggressive effect can smoothen the front of the shock wave and the timid effect results in local press peak, which means that the timid effect hastens the process of congregation in the shock wave. The more timid traffic behaviors are, the smaller is the stable range. Furthermore, the research shows that the advantage of the aggressive effect over the timid one lies in the fact that the aggressive traffic behaviors can improve the stability of traffic flow with the consideration of incorporating timid and aggressive driving behaviors at the same time.
An extended continuum model considering optimal velocity change with memory and numerical tests
NASA Astrophysics Data System (ADS)
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
GIS and Transportation Planning
DOT National Transportation Integrated Search
1998-09-16
Two main objectives of transportation planning are to simulate the current : traffic volume and to forecast the future traffic volume on a transportation : network. Traffic demand modeling typically consists of the following : tasks (1)defining traff...
Traffic forecasting report : 2007.
DOT National Transportation Integrated Search
2008-05-01
This is the sixth edition of the Traffic Forecasting Report (TFR). This edition of the TFR contains the latest (predominantly 2007) forecasting/modeling data as follows: : Functional class average traffic volume growth rates and trends : Vehi...
A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons
NASA Astrophysics Data System (ADS)
Liu, J.; Fu, X.; Tao, S.
2016-12-01
Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.
A novel multisensor traffic state assessment system based on incomplete data.
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.
A Novel Multisensor Traffic State Assessment System Based on Incomplete Data
Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang
2014-01-01
A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system. PMID:25162055
Traffic dynamics around weaving section influenced by accident: Cellular automata approach
NASA Astrophysics Data System (ADS)
Kong, Lin-Peng; Li, Xin-Gang; Lam, William H. K.
2015-07-01
The weaving section, as a typical bottleneck, is one source of vehicle conflicts and an accident-prone area. Traffic accident will block lanes and the road capacity will be reduced. Several models have been established to study the dynamics around traffic bottlenecks. However, little attention has been paid to study the complex traffic dynamics influenced by the combined effects of bottleneck and accident. This paper presents a cellular automaton model to characterize accident-induced traffic behavior around the weaving section. Some effective control measures are proposed and verified for traffic management under accident condition. The total flux as a function of inflow rates, the phase diagrams, the spatial-temporal diagrams, and the density and velocity profiles are presented to analyze the impact of accident. It was shown that the proposed control measures for weaving traffic can improve the capacity of weaving section under both normal and accident conditions; the accidents occurring on median lane in the weaving section are more inclined to cause traffic jam and reduce road capacity; the capacity of weaving section will be greatly reduced when the accident happens downstream the weaving section.
NASA Astrophysics Data System (ADS)
Seelos, F. P.; Arvidson, R. E.; Guinness, E. A.; Wolff, M. J.
2004-12-01
The Mars Exploration Rover (MER) Panoramic Camera (Pancam) observation strategy included the acquisition of multispectral data sets specifically designed to support the photometric analysis of Martian surface materials (J. R. Johnson, this conference). We report on the numerical inversion of observed Pancam radiance-on-sensor data to determine the best-fit surface bidirectional reflectance parameters as defined by Hapke theory. The model bidirectional reflectance parameters for the Martian surface provide constraints on physical and material properties and allow for the direct comparison of Pancam and orbital data sets. The parameter optimization procedure consists of a spatial multigridding strategy driving a Levenberg-Marquardt nonlinear least squares optimization engine. The forward radiance models and partial derivatives (via finite-difference approximation) are calculated using an implementation of the DIScrete Ordinate Radiative Transfer (DISORT) algorithm with the four-parameter Hapke bidirectional reflectance function and the two-parameter Henyey-Greenstein phase function defining the lower boundary. The DISORT implementation includes a plane-parallel model of the Martian atmosphere derived from a combination of Thermal Emission Spectrometer (TES), Pancam, and Mini-TES atmospheric data acquired near in time to the surface observations. This model accounts for bidirectional illumination from the attenuated solar beam and hemispherical-directional skylight illumination. The initial investigation was limited to treating the materials surrounding the rover as a single surface type, consistent with the spatial resolution of orbital observations. For more detailed analyses the observation geometry can be calculated from the correlation of Pancam stereo pairs (J. M. Soderblom et al., this conference). With improved geometric control, the radiance inversion can be applied to constituent surface material classes such as ripple and dune forms in addition to the soils on the Meridiani plain. Under the assumption of a Henyey-Greenstein phase function, initial results for the Opportunity site suggest a single scattering albedo on the order of 0.25 and a Henyey-Greenstein forward fraction approaching unity at an effective wavelength of 753 nm. As an extension of the photometric modeling, the radiance inversion also provides a means of calculating surface reflectance independent of the radiometric calibration target. This method for determining observed reflectance will provide an additional constraint on the dust deposition model for the calibration target.
NASA Technical Reports Server (NTRS)
Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.
2000-01-01
A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.
Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu; Li, Bixiang
2016-05-01
With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.
Neurobehavioral performance in adolescents is inversely associated with traffic exposure.
Kicinski, Michal; Vermeir, Griet; Van Larebeke, Nicolas; Den Hond, Elly; Schoeters, Greet; Bruckers, Liesbeth; Sioen, Isabelle; Bijnens, Esmée; Roels, Harry A; Baeyens, Willy; Viaene, Mineke K; Nawrot, Tim S
2015-02-01
On the basis of animal research and epidemiological studies in children and elderly there is a growing concern that traffic exposure may affect the brain. The aim of our study was to investigate the association between traffic exposure and neurobehavioral performance in adolescents. We examined 606 adolescents. To model the exposure, we constructed a traffic exposure factor based on a biomarker of benzene (urinary trans,trans-muconic acid) and the amount of contact with traffic preceding the neurobehavioral examination (using distance-weighted traffic density and time spent in traffic). We used a Bayesian structural equation model to investigate the association between traffic exposure and three neurobehavioral domains: sustained attention, short-term memory, and manual motor speed. A one standard deviation increase in traffic exposure was associated with a 0.26 standard deviation decrease in sustained attention (95% credible interval: -0.02 to -0.51), adjusting for gender, age, smoking, passive smoking, level of education of the mother, socioeconomic status, time of the day, and day of the week. The associations between traffic exposure and the other neurobehavioral domains studied had the same direction but did not reach the level of statistical significance. The results remained consistent in the sensitivity analysis excluding smokers and passive smokers. The inverse association between sustained attention and traffic exposure was independent of the blood lead level. Our study in adolescents supports the recent findings in children and elderly suggesting that traffic exposure adversely affects the neurobehavioral function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Towards Realistic Urban Traffic Experiments Using DFROUTER: Heuristic, Validation and Extensions.
Zambrano-Martinez, Jorge Luis; Calafate, Carlos T; Soler, David; Cano, Juan-Carlos
2017-12-15
Traffic congestion is an important problem faced by Intelligent Transportation Systems (ITS), requiring models that allow predicting the impact of different solutions on urban traffic flow. Such an approach typically requires the use of simulations, which should be as realistic as possible. However, achieving high degrees of realism can be complex when the actual traffic patterns, defined through an Origin/Destination (O-D) matrix for the vehicles in a city, remain unknown. Thus, the main contribution of this paper is a heuristic for improving traffic congestion modeling. In particular, we propose a procedure that, starting from real induction loop measurements made available by traffic authorities, iteratively refines the output of DFROUTER, which is a module provided by the SUMO (Simulation of Urban MObility) tool. This way, it is able to generate an O-D matrix for traffic that resembles the real traffic distribution and that can be directly imported by SUMO. We apply our technique to the city of Valencia, and we then compare the obtained results against other existing traffic mobility data for the cities of Cologne (Germany) and Bologna (Italy), thereby validating our approach. We also use our technique to determine what degree of congestion is expectable if certain conditions cause additional traffic to circulate in the city, adopting both a uniform pattern and a hotspot-based pattern for traffic injection to demonstrate how to regulate the overall number of vehicles in the city. This study allows evaluating the impact of vehicle flow changes on the overall traffic congestion levels.
NASA Astrophysics Data System (ADS)
Voss, K. J.; Morel, A.; Antoine, D.
2007-06-01
The radiance viewed from the ocean depends on the illumination and viewing geometry along with the water properties and this variation is called the bidirectional effect, or BRDF of the water. This BRDF depends on the inherent optical properties of the water, including the volume scattering function, and is important when comparing data from different satellite sensors. The current model by Morel et al. (2002) depends on modeled water parameters, thus must be carefully validated. In this paper we combined upwelling radiance distribution data from several cruises, in varied water types and with a wide range of solar zenith angles. We found that the average error of the model, when compared to the data was less than 1%, while the RMS difference between the model and data was on the order of 0.02-0.03. This is well within the statistical noise of the data, which was on the order of 0.04-0.05, due to environmental noise sources such as wave focusing.
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Luo, Xiao-Feng; Liu, Kai
2016-09-01
The driver's bounded rationality has significant influences on the micro driving behavior and researchers proposed some traffic flow models with the driver's bounded rationality. However, little effort has been made to explore the effects of the driver's bounded rationality on the trip cost. In this paper, we use our recently proposed car-following model to study the effects of the driver's bounded rationality on his running cost and the system's total cost under three traffic running costs. The numerical results show that considering the driver's bounded rationality will enhance his each running cost and the system's total cost under the three traffic running costs.
Spontaneous density fluctuations in granular flow and traffic
NASA Astrophysics Data System (ADS)
Herrmann, Hans J.
It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.
ERIC Educational Resources Information Center
Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.
2005-01-01
The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…
Future Air Traffic Growth and Schedule Model, Supplement
NASA Technical Reports Server (NTRS)
Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.
2004-01-01
The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Nonlinear analysis of an improved continuum model considering headway change with memory
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Wang, Jufeng; Ge, Hongxia; Li, Zhipeng
2018-01-01
Considering the effect of headway changes with memory, an improved continuum model of traffic flow is proposed in this paper. By means of linear stability theory, the new model’s linear stability with the effect of headway changes with memory is obtained. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the improved traffic flow model, which explores how the headway changes with memory affected each car’s velocity, density and energy consumption. Numerical results show that when considering the effects of headway changes with memory, the traffic jams can be suppressed efficiently. Furthermore, research results demonstrate that the effect of headway changes with memory can avoid the disadvantage of historical information, which will improve the stability of traffic flow and minimize car energy consumption.
Wang, Ting; Xie, Shao-dong
2010-03-01
In order to investigate the vehicle pollution situation in the streets in Beijing and the abatement during the Olympic Games, the OSPM model was applied to calculate the concentrations of PM10, CO, NO2 and O3 inside the urban streets of Beijing before and during the Olympic traffic controlling period in July, 2008. The modeled concentrations before the traffic control are 146 micog/m3, 3.83 mg/m3, 114.4 microg/m3 and 4.71 x 10(-1), while after the traffic control are 112 microg/m3, 3.16 mg/m3, 102.4 microg/m3 and 5.31 x 10(-9) , with the reduction rates of 23.4%, 20.5%, 10.5% and -12.5%, respectively. The research on these concentration changes and the daily variations of the pollutants reveals: the concentration of PM10 is most influenced by the traffic control; the concentration of CO presents the most similar daily variation with the traffic flow; the reduction of NO2 concentration is limited, indicating the influence of other factors other than the traffic emission; the concentration of O3 increases after the traffic control, which means the traffic management measures can not abate the O3 pollution in the street. Furthermore, the comparison between the calculation results in different types of street canyons reveals that the fleet composition and street geometry impact the concentration changes. In a word, the vehicle pollution inside the streets of Beijing before the traffic control is relatively serious, as the concentrations of PM10, CO and NO2, all approach or exceed the Grade II National Air Quality Standard; the traffic control measures take effect in reducing the primary pollutants, but the secondary pollutants may increase after the traffic control.
NASA Astrophysics Data System (ADS)
Majdalani, Joseph
2012-10-01
In this work, two families of helical motions are investigated as prospective candidates for describing the bidirectional vortex field in a right-cylindrical chamber. These basic solutions are relevant to cyclone separators and to idealized representations of vortex-fired liquid and hybrid rocket engines in which bidirectional vortex motion is established. To begin, the bulk fluid motion is taken to be isentropic along streamlines, with no concern for reactions, heat transfer, viscosity, compressibility or unsteadiness. Then using the Bragg-Hawthorne equation for steady, inviscid, axisymmetric motion, two families of Euler solutions are derived. Among the characteristics of the newly developed solutions one may note the axial dependence of the swirl velocity, the Trkalian and Beltramian types of the helical motions, the sensitivity of the solutions to the outlet radius, the alternate locations of the mantle, and the increased axial and radial velocity magnitudes, including the rate of mass transfer across the mantle, for which explicit approximations are obtained. Our results are compared to an existing, complex lamellar model of the bidirectional vortex in which the swirl velocity reduces to a free vortex. In this vein, we find the strictly Beltramian flows to share virtually identical pressure variations and radial pressure gradients with those associated with the complex lamellar motion. Furthermore, both families warrant an asymptotic treatment to overcome their endpoint limitations caused by their omission of viscous stresses. From a broader perspective, the work delineates a logical framework through which self-similar, axisymmetric solutions to bidirectional and multidirectional vortex motions may be pursued. It also illustrates the manner through which different formulations may be arrived at depending on the types of wall boundary conditions. For example, both the slip condition at the sidewall and the inlet flow pattern at the headwall may be enforced or relaxed.
NASA Astrophysics Data System (ADS)
Ke, Haohao; Ondov, John M.; Rogge, Wolfgang F.
2013-12-01
Composite chemical profiles of motor vehicle emissions were extracted from ambient measurements at a near-road site in Baltimore during a windless traffic episode in November, 2002, using four independent approaches, i.e., simple peak analysis, windless model-based linear regression, PMF, and UNMIX. Although the profiles are in general agreement, the windless-model-based profile treatment more effectively removes interference from non-traffic sources and is deemed to be more accurate for many species. In addition to abundances of routine pollutants (e.g., NOx, CO, PM2.5, EC, OC, sulfate, and nitrate), 11 particle-bound metals and 51 individual traffic-related organic compounds (including n-alkanes, PAHs, oxy-PAHs, hopanes, alkylcyclohexanes, and others) were included in the modeling.
NASA Astrophysics Data System (ADS)
Jin, Zhizhan; Li, Zhipeng; Cheng, Rongjun; Ge, Hongxia
2018-01-01
Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.
Continuum modeling of cooperative traffic flow dynamics
NASA Astrophysics Data System (ADS)
Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.
2009-07-01
This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.
NASA Astrophysics Data System (ADS)
Sun, Di-Hua; Zhang, Geng; Zhao, Min; Cheng, Sen-Lin; Cao, Jian-Dong
2018-03-01
Recently, the influence of driver's individual behaviors on traffic stability is research hotspot with the fasting developing transportation cyber-physical systems. In this paper, a new traffic lattice hydrodynamic model is proposed with consideration of driver's feedforward anticipation optimal flux difference. The neutral stability condition of the new model is obtained through linear stability analysis theory. The results show that the stable region will be enlarged on the phase diagram when the feedforward anticipation optimal flux difference effect is taken into account. In order to depict traffic jamming transition properties theoretically, the mKdV equation near the critical point is derived via nonlinear reductive perturbation method. The propagation behavior of traffic density waves can be described by the kink-antikink solution of the mKdV equation. Numerical simulations are conducted to verify the analytical results and all the results confirms that traffic stability can be enhanced significantly by considering the feedforward anticipation optimal flux difference in traffic lattice hydrodynamic theory.
Physics of automated driving in framework of three-phase traffic theory.
Kerner, Boris S
2018-04-01
We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.
Physics of automated driving in framework of three-phase traffic theory
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2018-04-01
We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.
Validation of air traffic controller workload models
DOT National Transportation Integrated Search
1979-09-01
During the past several years, computer models have been developed for off-site : estimat ion of control ler's workload. The inputs to these models are audio and : digital data normally recorded at an Air Route Traffic Control Center (ARTCC). : This ...
Improving traffic signal management and operations : a basic service model.
DOT National Transportation Integrated Search
2009-12-01
This report provides a guide for achieving a basic service model for traffic signal management and : operations. The basic service model is based on simply stated and defensible operational objectives : that consider the staffing level, expertise and...
DOT National Transportation Integrated Search
2014-05-01
Travel demand forecasting models are used to predict future traffic volumes to evaluate : roadway improvement alternatives. Each of the metropolitan planning organizations (MPO) in : Alabama maintains a travel demand model to support planning efforts...
Cloud-based large-scale air traffic flow optimization
NASA Astrophysics Data System (ADS)
Cao, Yi
The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.
Atmospheric ammonia (NH3) plays an important role in fine-mode aerosol formation. Accurate estimates of ammonia from both human and natural emissions can reduce uncertainties in air quality modeling. The majority of ammonia anthropogenic emissions come from the agricul...
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-01-01
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Majdandžić, Mirjana; de Vente, Wieke; Feinberg, Mark E; Aktar, Evin; Bögels, Susan M
2012-03-01
Research into anxiety has largely ignored the dynamics of family systems in anxiety development. Coparenting refers to the quality of coordination between individuals responsible for the upbringing of children and links different subsystems within the family, such as the child, the marital relationship, and the parents. This review discusses the potential mechanisms and empirical findings regarding the bidirectional relations of parent and child anxiety with coparenting. The majority of studies point to bidirectional associations between greater coparenting difficulties and higher levels of anxiety. For example, the few available studies suggest that paternal and perhaps maternal anxiety is linked to lower coparental support. Also, research supports the existence of inverse links between coparenting quality and child anxiety. A child's reactive temperament appears to have adverse effects on particularly coparenting of fathers. A conceptual model is proposed that integrates the role of parental and child anxiety, parenting, and coparenting, to guide future research and the development of clinical interventions. Future research should distinguish between fathers' and mothers' coparenting behaviors, include parental anxiety, and investigate the coparental relationship longitudinally. Clinicians should be aware of the reciprocal relations between child anxiety and coparenting quality, and families presenting for treatment who report child (or parent) anxiety should be assessed for difficulties in coparenting. Clinical approaches to bolster coparenting quality are called for.
Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.
2014-01-01
Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Yan-Yan
2016-12-01
The signalized traffic is considerably complex due to the fact that various driving behaviors have emerged to respond to traffic signals. However, the existing cellular automaton models take the signal-vehicle interactions into account inadequately, resulting in a potential risk that vehicular traffic flow dynamics may not be completely explored. To remedy this defect, this paper proposes a more realistic cellular automaton model by incorporating a number of the driving behaviors typically observed when the vehicles are approaching a traffic light. In particular, the anticipatory behavior proposed in this paper is realized with a perception factor designed by considering the vehicle speed implicitly and the gap to its preceding vehicle explicitly. Numerical simulations have been performed based on a signal controlled road which is partitioned into three sections according to the different reactions of drivers. The effects of microscopic driving behaviors on Kerner's time-delayed traffic breakdown at signal (Kerner 2011, 2013) have been investigated with the assistance of spatiotemporal pattern and trajectory analysis. Furthermore, the contributions of the driving behaviors on the traffic breakdown have been statistically examined. Finally, with the activation of the anticipatory behavior, the influences of the other driving behaviors on the formation of platoon have been investigated in terms of the number of platoons, the averaged platoon size, and the averaged flow rate.
Bakhtiyari, Mahmood; Delpisheh, Ali; Monfared, Ayad Bahadori; Kazemi-Galougahi, Mohammad Hassan; Mehmandar, Mohammad Reza; Riahi, Mohammad; Salehi, Masoud; Mansournia, Mohammad Ali
2015-01-01
Traffic crashes are multifactorial events caused by human factors, technical issues, and environmental conditions. The present study aimed to determine the role of human factors in traffic crashes in Iran using the proportional odds regression model. The database of all traffic crashes in Iran in 2010 (n = 592, 168) registered through the "COM.114" police forms was investigated. Human risk factors leading to traffic crashes were determined and the odds ratio (OR) of each risk factor was estimated using an ordinal regression model and adjusted for potential confounding factors such as age, gender, and lighting status within and outside of cities. The drivers' mean age ± standard deviation was 34.1 ± 14.0 years. The most prevalent risk factors leading to death within cities were disregarding traffic rules and regulations (45%), driver rushing (31%), and alcohol consumption (12.3%). Using the proportional odds regression model, alcohol consumption was the most significant human risk factor in traffic crashes within cities (OR = 6.5, 95% confidence interval [CI], 4.88-8.65) and outside of cities (OR = 1.73, 95% CI, 1.22-3.29). Public health strategies and preventive policies should be focused on more common human risk factors such as disregarding traffic rules and regulations, drivers' rushing, and alcohol consumption due to their greater population attributable fraction and more intuitive impacts on society.
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Transition Characteristic Analysis of Traffic Evolution Process for Urban Traffic Network
Chen, Hong; Li, Yang
2014-01-01
The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns. PMID:24982969
Models of Weather Impact on Air Traffic
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao
2017-01-01
Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.
Circulation of fluids in the gastrovascular system of a stoloniferan octocoral.
Parrin, Austin P; Netherton, Sarah E; Bross, Lori S; McFadden, Catherine S; Blackstone, Neil W
2010-10-01
Cilia-based transport systems characterize sponges and placozoans. Cilia are employed in cnidarian gastrovascular systems as well, but typically function in concert with muscular contractions. Previous reports suggest that anthozoans may be an exception to this pattern, utilizing only cilia in their gastrovascular systems. With an inverted microscope and digital image analysis, we used stoloniferan octocoral colonies growing on microscope cover glass to quantitatively describe the movement of fluids in this system for the first time. Flow in stolons (diameter ≈300 μm) is simultaneously bidirectional, with average velocities of 100-200 μm/s in each direction. Velocities are maximal immediately adjacent to the stolon wall and decrease to a minimum in the center of the stolon. Flow velocity is unaffected by stolonal contractions, suggesting that muscular peristalsis is not a factor in propelling the flow. Stolon intersections (diameter ≈500 μm) occur below polyps and serve as traffic roundabouts with unidirectional, circular flow. Such cilia-driven transport may be the plesiomorphic state for the gastrovascular system of cnidarians.
Simulation of traffic control signal systems
NASA Technical Reports Server (NTRS)
Connolly, P. J.; Concannon, P. A.; Ricci, R. C.
1974-01-01
In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.
Torija, Antonio J; Ruiz, Diego P
2012-10-01
Road traffic has a heavy impact on the urban sound environment, constituting the main source of noise and widely dominating its spectral composition. In this context, our research investigates the use of recorded sound spectra as input data for the development of real-time short-term road traffic flow estimation models. For this, a series of models based on the use of Multilayer Perceptron Neural Networks, multiple linear regression, and the Fisher linear discriminant were implemented to estimate road traffic flow as well as to classify it according to the composition of heavy vehicles and motorcycles/mopeds. In view of the results, the use of the 50-400 Hz and 1-2.5 kHz frequency ranges as input variables in multilayer perceptron-based models successfully estimated urban road traffic flow with an average percentage of explained variance equal to 86%, while the classification of the urban road traffic flow gave an average success rate of 96.1%. Copyright © 2012 Elsevier B.V. All rights reserved.
Review of Airport Ground Traffic Models Including an Evaluation of the ASTS Computer Program
DOT National Transportation Integrated Search
1972-12-01
The report covers an evaluation of Airport Ground Traffic models for the purpose of simulating an Autonomous Local Intersection Controller. All known models were reviewed and a detailed study was performed on the two in-house models the ASTS and ROSS...
Abdul Manan, Muhammad Marizwan
2014-09-01
This paper uses data from an observational study, conducted at access points in straight sections of primary roads in Malaysia in 2012, to investigate the effects of motorcyclists' behavior and road environment attributes on the occurrence of serious traffic conflicts involving motorcyclists entering primary roads via access points. In order to handle the unobserved heterogeneity in the small sample data size, this study applies mixed effects logistic regression with multilevel bootstrapping. Two statistically significant models (Model 2 and Model 3) are produced, with 2 levels of random effect parameters, i.e. motorcyclists' attributes and behavior at Level 1, and road environment attributes at Level 2. Among all the road environment attributes tested, the traffic volume and the speed limit are found to be statistically significant, only contributing to 26-29% of the variations affecting the traffic conflict outcome. The implication is that 71-74% of the unmeasured or undescribed attributes and behavior of motorcyclists still have an importance in predicting the outcome: a serious traffic conflict. As for the fixed effect parameters, both models show that the risk of motorcyclists being involved in a serious traffic conflict is 2-4 times more likely if they accept a shorter gap to a single approaching vehicle (time lag <4s) and in between two vehicles (time gap <4s) when entering the primary road from the access point. A road environment factor, such as a narrow lane (seen in Model 2), and a behavioral factor, such as stopping at the stop line (seen in Model 3), also influence the occurrence of a serious traffic conflict compared to those entering into a wider lane road and without stopping at the stop line, respectively. A discussion of the possible reasons for this seemingly strange result, including a recommendation for further research, concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assessing crash risk considering vehicle interactions with trucks using point detector data.
Hyun, Kyung Kate; Jeong, Kyungsoo; Tok, Andre; Ritchie, Stephen G
2018-03-12
Trucks have distinct driving characteristics in general traffic streams such as lower speeds and limitations in acceleration and deceleration. As a consequence, vehicles keep longer headways or frequently change lane when they follow a truck, which is expected to increase crash risk. This study introduces several traffic measures at the individual vehicle level to capture vehicle interactions between trucks and non-trucks and analyzed how the measures affect crash risk under different traffic conditions. The traffic measures were developed using headways obtained from Inductive Loop Detectors (ILDs). In addition, a truck detection algorithm using a Gaussian Mixture (GM) model was developed to identify trucks and to estimate truck exposure from ILD data. Using the identified vehicle types from the GM model, vehicle interaction metrics were categorized into three groups based on the combination of leading and following vehicle types. The effects of the proposed traffic measures on crash risk were modeled in two different cases of prior- and non-crash using a case-control approach utilizing a conditional logistic regression. Results showed that the vehicle interactions between the leading and following vehicle types were highly associated with crash risk, and further showed different impacts on crash risk by traffic conditions. Specifically, crashes were more likely to occur when a truck following a non-truck had shorter average headway but greater headway variance in heavy traffic while a non-truck following a truck had greater headway variance in light traffic. This study obtained meaningful conclusions that vehicle interactions involved with trucks were significantly related to the crash likelihood rather than the measures that estimate average traffic condition such as total volume or average headway of the traffic stream. Copyright © 2018 Elsevier Ltd. All rights reserved.
Measurement of surface physical properties and radiation balance for KUREX-91 study
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.
1992-01-01
Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.
A new model to improve aggregate air traffic demand predictions
DOT National Transportation Integrated Search
2007-08-20
Federal Aviation Administration (FAA) air traffic flow management (TFM) : decision-making is based primarily on a comparison of predictions of traffic demand and : available capacity at various National Airspace System (NAS) elements such as airports...
Model performance specifications for police traffic radar devices
DOT National Transportation Integrated Search
1982-03-01
This report provides information about all of the research work regarding police traffic radar completed by the National Bureau of Standards (NBS) under an Inter-Agency Agreement with the National Highway Traffic Safety Administration (NHTSA). Chapte...
Traffic prediction using wireless cellular networks : final report.
DOT National Transportation Integrated Search
2016-03-01
The major objective of this project is to obtain traffic information from existing wireless : infrastructure. : In this project freeway traffic is identified and modeled using data obtained from existing : wireless cellular networks. Most of the prev...
Querying and Extracting Timeline Information from Road Traffic Sensor Data
Imawan, Ardi; Indikawati, Fitri Indra; Kwon, Joonho; Rao, Praveen
2016-01-01
The escalation of traffic congestion in urban cities has urged many countries to use intelligent transportation system (ITS) centers to collect historical traffic sensor data from multiple heterogeneous sources. By analyzing historical traffic data, we can obtain valuable insights into traffic behavior. Many existing applications have been proposed with limited analysis results because of the inability to cope with several types of analytical queries. In this paper, we propose the QET (querying and extracting timeline information) system—a novel analytical query processing method based on a timeline model for road traffic sensor data. To address query performance, we build a TQ-index (timeline query-index) that exploits spatio-temporal features of timeline modeling. We also propose an intuitive timeline visualization method to display congestion events obtained from specified query parameters. In addition, we demonstrate the benefit of our system through a performance evaluation using a Busan ITS dataset and a Seattle freeway dataset. PMID:27563900
A research of the community’s opening to the outside world
NASA Astrophysics Data System (ADS)
Xu, Lan; Liu, Xiangzhuo
2017-03-01
Closed residential areas, called community, the traffic network and result in various degrees of traffic congestion such as amputating, dead ends and T-shaped roads. In order to reveal the mechanism of the congestion, establish an effective evaluation index system and finally provide theoretical basis for the study of traffic congestion, we have done researches on factors for traffic congestion and have established a scientific evaluation index system combining experiences home and abroad, based on domestic congestion status. Firstly, we analyse the traffic network as the entry point, and then establish the evaluation model of road capacity with the method of AHP index system. Secondly, we divide the condition of urban congestion into 5 levels from congestion to smoothness. Besides, with VISSIM software, simulations about traffic capacity before and after community opening are carried out. Finally, we provide forward reasonable suggestions upon the combination of models and reality.
Direct flux measurements of NH3 are expensive, time consuming, and require detailed supporting measurements of soil, vegetation, and atmospheric chemistry for interpretation and model parameterization. It is therefore often necessary to infer fluxes by combining measurements of...
Development and evaluation of an ammonia bidirectional flux parameterization for air quality models
Ammonia is an important contributor to particulate matter in the atmosphere and can significantly impact terrestrial and aquatic ecosystems. Surface exchange between the atmosphere and biosphere is a key part of the ammonia cycle. New modeling techniques are being developed for u...
NASA Technical Reports Server (NTRS)
Zernic, Michael J.
2001-01-01
Communications technologies are being developed to address safety issues during aviation travel. Some of these technologies enable the aircraft to be in constant bidirectional communications with necessary systems, people, and other aircraft that are not currently in place today. Networking technologies, wireless datalinks, and advanced avionics techniques are areas of particular importance that the NASA Glenn Research Center has contributed. Glenn, in conjunction with the NASA Ames Research Center, NASA Dryden Flight Research Center, and NASA Langley Research Center, is investigating methods and applications that would utilize these communications technologies. In mid-June 2000, the flight readiness of the network and communications technologies were demonstrated via a simulated aircraft. A van simulating an aircraft was equipped with advanced phased-array antennas (Advanced Communications/Air Traffic Management (AC/ATM) Advanced Air Transportation Technologies (AATT) project) that used commercial Ku-band satellite communications to connect Glenn, Dryden, and Ames in a combined system ground test. This test simulated air-ground bidirectional transport of real-time digital audio, text, and video data via a hybrid network configuration that demonstrated the flight readiness of the network and communications technologies. Specifically, a Controller Pilot Data Link Communications application was used with other applications to demonstrate a multiprotocol capability via Internet-protocol encapsulated ATN (Aeronautical Telecommunications Network) data packets. The significance of this combined ground test is its contribution to the Aero Information Technology Base Program Level I milestone (Software Technology investment area) of a real-time data link for the National Airspace System. The objective of this milestone was to address multiprotocol technology applicable for real-time data links between aircraft, a satellite, and the ground as well as the ability to distribute flight data with multilevel priorities among several sites.
A Statistical Theory of Bidirectionality
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Ulbrich, Norbert
2013-01-01
Original concepts related to the quantification and assessment of bidirectionality in strain-gage balances were introduced by Ulbrich in 2012. These concepts are extended here in three ways: 1) the metric originally proposed by Ulbrich is normalized, 2) a categorical variable is introduced in the regression analysis to account for load polarity, and 3) the uncertainty in both normalized and non-normalized bidirectionality metrics is quantified. These extensions are applied to four representative balances to assess the bidirectionality characteristics of each. The paper is tutorial in nature, featuring reviews of certain elements of regression and formal inference. Principal findings are that bidirectionality appears to be a common characteristic of most balance outputs and that unless it is taken into account, it is likely to consume the entire error budget of a typical balance calibration experiment. Data volume and correlation among calibration loads are shown to have a significant impact on the precision with which bidirectionality metrics can be assessed.