Science.gov

Sample records for bifunctional chelator alternative

  1. Macrocyclic bifunctional chelating agents

    DOEpatents

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  2. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    2000-02-08

    Bicyclo[2.2.2]octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo[2.2.1]heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  3. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, M.P.; Mease, R.C.; Srivastava, S.C.

    1998-07-21

    Bicyclo[2.2.2] octane-2,3 diamine-N,N,N`,N`-tetraacetic acids (BODTA) and bicyclo[2.2.1] heptane-2,3 diamine-N,N,N`,N`-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  4. Rigid bifunctional chelating agents

    DOEpatents

    Sweet, Mark P.; Mease, Ronnie C.; Srivastava, Suresh C.

    1998-07-21

    Bicyclo›2.2.2! octane-2,3 diamine-N,N,N',N'-tetraacetic acids (BODTA) and bicyclo›2.2.1! heptane-2,3 diamine-N,N,N',N'-tetraacetic acid (BHDTA) are chelating agents useful in forming detectably labeled bioconjugate compounds for diagnostic and therapeutic purposes. New compounds and processes of forming BODTA and BHDTA are disclosed. Radioimmunoconjugates of the present invention show high and prolonged tumor uptake with low normal tissue uptakes.

  5. Bifunctional Gallium-68 Chelators: Past, Present, and Future.

    PubMed

    Spang, Philipp; Herrmann, Christian; Roesch, Frank

    2016-09-01

    This article reviews the development of bifunctional chelates for synthesising (68)Ga radiopharmaceuticals. It structures the chelates into groups of macrocycles, nonmacrocycles, and chimeric derivatives. The most relevant bifunctional chelates are discussed in chelate structure, parameters of (68)Ga-labeling, and stability of the (68)Ga-chelate complexes. Furthermore those derivatives are included, where (67)Ga was applied instead of (68)Ga. A particular feature discussed is the ability of certain bifunctional chelate structures to function in kit-type preparation of the (68)Ga radiopharmaceuticals. Currently, nonmacrocyclic and chimeric derivates attract particular attention such as THP-derivates and DATA-derivates. PMID:27553464

  6. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  7. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  8. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  9. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  10. Novel Bifunctional Cyclic Chelator for 89Zr Labeling–Radiolabeling and Targeting Properties of RGD Conjugates

    PubMed Central

    2015-01-01

    Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents. PMID:25941834

  11. Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates.

    PubMed

    Zhai, Chuangyan; Summer, Dominik; Rangger, Christine; Franssen, Gerben M; Laverman, Peter; Haas, Hubertus; Petrik, Milos; Haubner, Roland; Decristoforo, Clemens

    2015-06-01

    Within the last years (89)Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with (89)Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [(89)Zr]FSC-RGD conjugates or [(89)Zr]triacetylfusarinine C (TAFC). Quantitative (89)Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [(89)Zr]DFO, [(89)Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [(89)Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of (89)Zr-based PET imaging agents.

  12. Chemistry and bifunctional chelating agents for binding (177)Lu.

    PubMed

    Parus, Józef L; Pawlak, Dariusz; Mikolajczak, Renata; Duatti, Adriano

    2015-01-01

    A short overview of fundamental chemistry of lutetium and of structural characteristics of lutetium coordination complexes, as relevant for understanding the properties of lutetium-177 radiopharmaceuticals, is presented. This includes basic concepts on lutetium electronic structure, lanthanide contraction, coordination geometries, behavior in aqueous solution and thermodynamic stability. An illustration of the structure and binding properties of the most important chelating agents for the Lu(3+) ion in aqueous solution is also reported with specific focus on coordination complexes formed with linear and macrocyclic polydentate amino-carboxylate donor ligands.

  13. MA-NOTMP: A Triazacyclononane Trimethylphosphinate Based Bifunctional Chelator for Gallium Radiolabelling of Biomolecules.

    PubMed

    Poty, Sophie; Désogère, Pauline; Šimeček, Jakub; Bernhard, Claire; Goncalves, Victor; Goze, Christine; Boschetti, Frédéric; Notni, Johannes; Wester, Hans J; Denat, Franck

    2015-09-01

    In the past few years, gallium-68 has demonstrated significant potential as a radioisotope for positron emission tomography (PET), and the optimization of chelators for gallium coordination is a major goal in the development of radiopharmaceuticals. Methylaminotriazacyclononane trimethylphosphinate (MA-NOTMP), a new C-functionalized triazacyclononane derivative with phosphinate pendant arms, presents excellent coordination properties for (68) Ga (low ligand concentration, labelling at low pH even at room temperature). A "ready-to-be-grafted" bifunctional chelating agent (p-NCS-Bz-MA-NOTMP) was prepared to allow (68) Ga labelling of sensitive biological vectors. Conjugation to a bombesin(7-14) derivative was performed, and preliminary in vitro experiments demonstrated the potential of MA-NOTMP in the development of radiopharmaceuticals. This new chelator is therefore of major interest for labelling sensitive biomolecules, and further in vivo experiments will soon be performed.

  14. Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for (64)Cu Radiotracers.

    PubMed

    Dale, Ajit V; An, Gwang Il; Pandya, Darpan N; Ha, Yeong Su; Bhatt, Nikunj; Soni, Nisarg; Lee, Hochun; Ahn, Heesu; Sarkar, Swarbhanu; Lee, Woonghee; Huynh, Phuong Tu; Kim, Jung Young; Gwon, Mi-Ri; Kim, Sung Hong; Park, Jae Gyu; Yoon, Young-Ran; Yoo, Jeongsoo

    2015-09-01

    Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides. PMID:26286436

  15. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    PubMed

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  16. Stable bifunctional chelates of metals used in radiotherapy.

    PubMed

    Moi, M K; DeNardo, S J; Meares, C F

    1990-02-01

    Monoclonal antibody technology allows the specificity of an antibody for its antigen to be used in targeting cancer cells. The conjugation of metals, particularly radionuclides such as 90Y or 67Cu, to monoclonal antibodies results in agents for radioimmunotherapy and other medical applications. Chelators that can hold radiometals with high stability under physiological conditions are essential to avoid excessive radiation damage to nontarget cells. Derivatives of polyazamacrocycles (bearing a C-substituted functional group for antibody attachment) can exhibit remarkable kinetic inertness; for example, the copper complex of the 14-membered 6-(p-nitrobenzyl)-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''- tetraacetic acid is very stable in human serum under physiological conditions, and a conjugate of this complex with a monoclonal antibody has tested well in tumor-bearing mice. Desreux and coworkers [Loncin, M. F., Desreux, J. F., and Merciny, E. Inorg. Chem., 25: 2646-2648, 1986] have shown that complexes of lanthanides with 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid have formation constants that are several orders of magnitude higher than that of 1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid; thus the 12-membered macrocycle is the favored target for binding trivalent yttrium. We have developed a new synthetic route to these macrocycles via peptide synthesis and intramolecular tosylamide ring closure. Incubation of the 88Y-(III) complex of 2-p-nitrobenzyl-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''- tetraacetic acid for 18 days in serum results in loss of so little Y(III) from the complex (less than 0.5%) that the rate of loss cannot be measured under these conditions.

  17. Synthesis and evaluation of analogues of HYNIC as bifunctional chelators for technetium.

    PubMed

    Meszaros, Levente K; Dose, Anica; Biagini, Stefano C G; Blower, Philip J

    2011-06-21

    6-Hydrazinonicotinic acid (HYNIC, 1) is a well-established bifunctional technetium-binding ligand often used to synthesise bioconjugates for radiolabelling with Tc-99m. It is capable of efficient capture of technetium at extremely low concentrations, but the structure of the labelled complexes is heterogeneous and incompletely understood. In particular, it is of interest to determine whether, at the no-carrier-added level, it acts in a chelating or non-chelating mode. Here we report two new isomers of HYNIC: 2-hydrazinonicotinic acid (2-HYNIC, 2), which (like 1) is capable of chelation through the mutually ortho hydrazine and pyridine nitrogens and 4-hydrazinonicotinic acid (4-HYNIC, 3), which is not (due to the para-relationship of the hydrazine and pyridine nitrogens). LC-MS shows that the coordination chemistry of 2 with technetium closely parallels that of conventional 1, and no advantages of one over the other in terms of potential labelling efficiency or isomerism were discernable. Both 1 and 2 formed complexes with the loss of 5 protons from the ligand set, whether the co-ligand was tricine or EDDA. Ligand 3, however, failed to complex technetium except at very high ligand concentration: the marked contrast with 1 and 2 suggests that chelation, rather than nonchelating coordination, is a key feature of technetium coordination by HYNIC. Two further new HYNIC analogues, 2-chloro-6-hydrazinonicotinic acid (2-chloro-HYNIC, 4a) and 2,6-dihydrazinonicotinic acid (diHYNIC, 5) were also synthesised. The coordination chemistry of 4a with technetium was broadly parallel to that of 1 and 2 although it was a less efficient chelator, while 5 also behaved as an efficient chelator of technetium, but its coordination chemistry remains poorly defined and requires further investigation before it can sensibly be adopted for (99m)Tc-labelling. The new analogues 4a and 5 present an opportunity to develop trifunctional HYNIC analogues for more complex bioconjugate synthesis.

  18. Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates.

    PubMed

    Ait-Mohand, Samia; Fournier, Patrick; Dumulon-Perreault, Véronique; Kiefer, Garry E; Jurek, Paul; Ferreira, Cara L; Bénard, François; Guérin, Brigitte

    2011-08-17

    Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'''-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu

  19. Pd(0)@UiO-68-AP: chelation-directed bifunctional heterogeneous catalyst for stepwise organic transformations.

    PubMed

    Li, Yan-An; Yang, Song; Liu, Qi-Kui; Chen, Gong-Jun; Ma, Jian-Ping; Dong, Yu-Bin

    2016-05-01

    A bifunctional heterogeneous catalyst Pd(0)@UiO-68-AP based on a chelation-directed post-synthetic approach is reported. It exhibits typical heterogeneous catalytic behaviour and can promote benzyl alcohol oxidiation-Knoevenagel condensation in a stepwise way. PMID:27035589

  20. The determination of the rate of conjugation immunoglobuline with bifunctional chelator

    NASA Astrophysics Data System (ADS)

    Málek, Z.; Miler, V.; Budský, F.

    2006-01-01

    The work was performed under the GACR project: "Technology of preparation of radionuclides and their labelled compounds for nuclear medicine and pharmacy with the use of the reactor LVR-15" reg. no. 104/03/0499. Imaging of cell’s antigens with the use of labelled immunoglobulines allows imaging of specific receptors on cell membrane and specific tumours. It is necessary to carry out the labelling of the immunoglobulines with radionuclides of suitable physical properties, which form cations (e.g., 111In, 90Y, 177Lu) that form very strong chelates of sufficiently high stability constant preventing the dissociation of complexes or the radionuclide under “in-vivo” conditions. The immunoglobuline must be conjugated with the bifunctional chelator (BCH), which contains both chelating unit and reactive group for binding to the immunoglobuline. In our laboratory we have conjugated human IgG and monoclonal antibody CD20 with diethylenetriamine pentaacetic acid dianhydride (cDTPAA). Radionuclides 90Y and 177Lu prepared on the LVR-15 reactor in NRI Rez were used for labelling. After conjugation and labelling the yields in relation to the amount of isotopic carrier have been determined.

  1. A new bifunctional chelator enables facile biocoupling and radiolabeling as the basis for a bioconjugation kit.

    PubMed

    Barandov, Ali; Grünstein, Dan; Apostolova, Ivalaya; Buchert, Ralph; Roger, Michel; Brenner, Winfried; Abram, Ulrich; Seeberger, Peter H

    2014-05-01

    A new tridentate bifunctional chelator, N-(-2-picolyl)(-4-hydroxy)(-3-amino)benzoic acid (PHAB), was designed to efficiently coordinate the [(99m)Tc(CO)3](+) core and facilitate coupling reactions to biomolecules. The chelator can be procured in the form of the corresponding benzotriazole ester (PHAB-OBT), which can be stored and used as a bioconjugation kit. PHAB-OBT reacts with modified carbohydrates with high selectivity and efficiency in a single step in both aqueous and organic media. As is desirable for a kit, no complicated chemical bench work is required. Glycoconjugate postlabeling resulted in neutral radiolabeled glycans with high radiochemical yields. Prelabeling approaches were assessed by successive reaction of PHAB-OBT with the [(99m)Tc(CO)3](+) core and a modified galactose model. The radiolabeled galactose was obtained in 84% yield as defined by HPLC analysis. Biodistribution of the radioactive (99m)Tc-labeled chelator, as well as the glycoconjugates, were examined in mice. Noticeably different biodistribution patterns were observed that reflect trends in the uptake of carbohydrate analogues by various organs.

  2. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    DOEpatents

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  3. Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68.

    PubMed

    Zhai, Chuangyan; Summer, Dominik; Rangger, Christine; Haas, Hubertus; Haubner, Roland; Decristoforo, Clemens

    2015-05-15

    Fusarinine C (FSC), a siderophore-based chelator coupled with the model peptide c(RGDfK) (FSC(succ-RGD)3), revealed excellent targeting properties in vivo using positron emission tomography (PET). Here, we report the details of radiolabeling conditions and specific activity as well as selectivity for (68)Ga. (68)Ga labeling of FSC(succ-RGD)3 was optimized regarding peptide concentration, pH, temperature, reaction time, and buffer system. Specific activity (SA) of [(68)Ga]FSC(succ-RGD)3 was compared with (68)Ga-1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid RGD ([(68)Ga]NODAGA-RGD). Stability was evaluated in 1000-fold ethylenediaminetetraacetic acid (EDTA) solution (pH 7) and phosphate-buffered saline (PBS). Metal competition tests (Fe, Cu, Zn, Al, and Ni) were carried out using [(68)Ga]-triacetylfusarinine C. High radiochemical yield was achieved within 5 min at room temperature, in particular allowing labeling with (68)Ga up to pH 8 with excellent stability in 1000-fold EDTA solution and PBS. The 10-fold to 20-fold lower concentrations of FSC(succ-RGD)3 led to the same radiochemical yield compared with [(68)Ga]NODAGA-RGD with SA up to 1.8 TBq/µmol. Metal competition tests showed high selective binding of (68)Ga to FSC. FSC is a multivalent siderophore-based bifunctional chelator allowing fast and highly selective labeling with (68)Ga in a wide pH range and results in stable complexes with high SA. Thus it is exceptionally well suited for the development of new (68)Ga-tracers for in vivo molecular imaging with PET. PMID:25874571

  4. Synthesis, Characterization, and in Vitro Evaluation of a New TSPO-Selective Bifunctional Chelate Ligand.

    PubMed

    Denora, Nunzio; Margiotta, Nicola; Laquintana, Valentino; Lopedota, Angela; Cutrignelli, Annalisa; Losacco, Maurizio; Franco, Massimo; Natile, Giovanni

    2014-06-12

    The 18-kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. Thus, TSPO has become an extremely attractive subcellular target not only for imaging disease states overexpressing this protein, but also for a selective mitochondrial drug delivery. In this work we report the synthesis, the characterization, and the in vitro evaluation of a new TSPO-selective ligand, 2-(8-(2-(bis(pyridin-2-yl)methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfils the requirements for a bifunctional chelate approach. The goal was to provide a new TSPO ligand that could be used further to prepare coordination complexes of a metallo drug to be used in diagnosis and therapy. However, the ligand itself proved to be a potent tumor cell growth inhibitor and DNA double-strand breaker.

  5. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes.

    PubMed

    Juran, Stefanie; Walther, Martin; Stephan, Holger; Bergmann, Ralf; Steinbach, Jörg; Kraus, Werner; Emmerling, Franziska; Comba, Peter

    2009-02-01

    The preparation and use of bispidine derivatives (3,7-diazabicyclo[3.3.1]nonane) as chelate ligands for radioactive copper isotopes for diagnosis (64Cu) or therapy (67Cu) are reported. Starting from the hexadentate bispidine-based bis(amine)tetrakis(pyridine) ligand 1 with a keto and two ester substituents, the corresponding mono-ol 2 and two dicarboxylic acid derivatives 3 and 5 have been synthesized. A range of techniques, including single-crystal X-ray structure analysis, UV/vis spectroscopy, cyclic voltammetry, thin-layer- (TLC), and high-performance liquid chromatography (HPLC), have been used to characterize the structure and stability of the copper(II)-bispidine complexes. A rapid formation (within 1 min) of stable copper(II)-bispidine complexes under mild conditions (ambient temperature, aqueous solution) has been observed. Challenge experiments of these complexes in the presence of a high excess of competing ligands, such as glutathione, cyclam, or superoxide dismutase (SOD), as well as in rat plasma, gave no evidence of demetalation or transchelation. The bifunctional bispidine derivative 5 can be readily functionalized with biologically active molecules at the pendant carboxylate groups. The coupling of a bombesin analogue betahomo-Glu-betaAla-betaAla-[Cha(13),Nle(14)]BBN(7-14), by condensation of a carboxylate of the bispidine backbone with the N-terminus of the peptide produced the bifunctional ligand 6. The radiocopper(II) complex of this bombesin-bispidine conjugate has a considerable hydrophilicity (log D(o/w) < -2.4), and this leads to a very fast blood clearance (blood: 0.28 +/- 0.02 SUV, 1 h p.i.), low liver tissue accumulation (liver: 1.20 +/- 0.27 SUV, 1 h p.i.), and rapid renal-urinary excretion (kidneys: 6.06 +/- 2.96 SUV, 1 h p.i.) as shown by biodistribution studies of 64Cu-6 in Wistar rats. Preliminary in vivo studies of 64Cu-6 in NMRI nu/nu mice, bearing the human prostate tumor PC-3 showed an accumulation of the conjugate in the tumor (2

  6. Combining bifunctional chelator with (3 + 2)-cycloaddition approaches: synthesis of dual-function technetium complexes.

    PubMed

    Braband, Henrik; Imstepf, Sebastian; Benz, Michael; Spingler, Bernhard; Alberto, Roger

    2012-04-01

    A new concept for the synthesis of dual-functionalized technetium (Tc) compounds is presented, on the basis of the reactivity of fac-{Tc(VII)O(3)}(+) complexes. The concept combines the "classical" bifunctional chelator (BFC) approach with the new ligand centered labeling strategy of fac-{TcO(3)}(+) complexes with alkenes ((3 + 2)-cycloaddition approach). To evidence this concept, fac-{(99)TcO(3)}(+) model complexes containing functionalized 1,4,7-triazacyclononane (tacn) derivatives N-benzyl-2-(1,4,7-triazonan-1-yl)acetamide (tacn-ba) and 2,2',2″-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (nota·3H) were synthesized and characterized. Whereas [(99)TcO(3)(tacn-ba)](+) [2](+) can be synthesized following a established oxidation procedure starting from the Tc(V) complex [(99)TcO(glyc)(tacn-ba)](+) [1](+), a new synthetic pathway for the synthesis of [(99)TcO(3)(nota)](2-) [5](2-) had to be developed, starting from [(99)Tc(nota·3H)(CO)(3)](+) [4](+) and using sodium perborate tetrahydrate (NaBO(3)·4H(2)O) as oxidizing reagent. While [(99)TcO(3)(nota)](2-) [5](2-) is a very attractive candidate for the development of trisubstituted novel multifunctional radioprobes, (3 + 2)-cycloaddition reactions of [(99)TcO(3)(tacn-ba)](+) [2](+) with 4-vinylbenzenesulfonate (styrene-SO(3)(-)) demonstrated the suitability of monosubstituted tacn derivatives for the new mixed "BFC-(3 + 2)-cycloaddition" approach. Kinetic studies of this reaction lead to the conclusion that the alteration of the electronic structure of the nitrogen donors by, e.g., alkylation can be used to tune the rate of the (3 + 2)-cycloaddition.

  7. Propylene cross-bridged macrocyclic bifunctional chelator: a new design for facile bioconjugation and robust (64)Cu complex stability.

    PubMed

    Pandya, Darpan N; Bhatt, Nikunj; An, Gwang Il; Ha, Yeong Su; Soni, Nisarg; Lee, Hochun; Lee, Yong Jin; Kim, Jung Young; Lee, Woonghee; Ahn, Heesu; Yoo, Jeongsoo

    2014-09-11

    The first macrocyclic bifunctional chelator incorporating propylene cross-bridge was efficiently synthesized from cyclam in seven steps. After the introduction of an extra functional group for facile conjugation onto the propylene cross-bridge, the two carboxylic acid pendants could contribute to strong coordination of Cu(II) ions, leading to a robust Cu complex. The cyclic RGD peptide conjugate of PCB-TE2A-NCS was prepared and successfully radiolabeled with (64)Cu ion. The radiolabeled peptide conjugate was evaluated in vivo through a biodistribution study and animal PET imaging to demonstrate high tumor uptake with low background.

  8. Enantiopure bifunctional chelators for copper radiopharmaceuticals--does chirality matter in radiotracer design?

    PubMed

    Singh, Ajay N; Dakanali, Marianna; Hao, Guiyang; Ramezani, Saleh; Kumar, Amit; Sun, Xiankai

    2014-06-10

    It is well recognized that carbon chirality plays a critical role in the design of drug molecules. However, very little information is available regarding the effect of stereoisomerism of macrocyclic bifunctional chelators (BFC) on biological behaviors of the corresponding radiopharmaceuticals. To evaluate such effects, three enantiopure stereoisomers of a copper radiopharmaceutical BFC bearing two chiral carbon atoms were synthesized in forms of R,R-, S,S-, and R,S-. Their corresponding peptide conjugates were prepared by coupling with a model peptide sequence, c(RGDyK), which targets the αvβ3 integrin for in vitro and in vivo evaluation of their biological behaviors as compared to the racemic conjugate. Despite the chirality differences, all the conjugates showed a similar in vitro binding affinity profile to the αvβ3 integrin (106, 108, 85 and 100 nM for rac-H2-1, RR-H2-1, SS-H2-1, and RS-H2-1 respectively with all p values > 0.05) and a similar level of in vivo tumor uptake (2.72 ± 0.45, 2.60 ± 0.52, 2.45 ± 0.48 and 2.88 ± 0.59 for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 at 1 h p.i. respectively). Furthermore, they demonstrated a nearly identical biodistribution pattern in major organs (e.g. 2.07 ± 0.21, 2.13 ± 0.58, 1.70 ± 0.20 and 1.90 ± 0.46 %ID/g at 24 h p.i. in liver for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively; 1.80 ± 0.46, 2.30 ± 1.49, 1.73 ± 0.31 and 2.23 ± 0.71 at 24 h p.i. in kidneys for rac-(64)Cu-1, RR-(64)Cu-1, SS-(64)Cu-1, and RS-(64)Cu-1 respectively). Therefore we conclude that the chirality of BFC plays a negligible role in αvβ3-targeted copper radiopharmaceuticals. However, we believe it is still worthwhile to consider the chirality effects of BFCs on other targeted imaging or therapeutic agents.

  9. Transferrin conjugates of triazacyclononane-based bifunctional NE3TA chelates for PET imaging: Synthesis, Cu-64 radiolabeling, and in vitro and in vivo evaluation.

    PubMed

    Kang, Chi Soo; Wu, Ningjie; Chen, Yunwei; Sun, Xiang; Bandara, Nilantha; Liu, Dijie; Lewis, Michael R; Rogers, Buck E; Chong, Hyun-Soon

    2016-01-01

    Three different polyaminocarboxylate-based bifunctional NE3TA (7-[2-[carboxymethyl)amino]ethyl]-1,4,7-triazacyclononane-1,4-diacetic acid) chelating agents were synthesized for potential use in copper 64-PET imaging applications. The bifunctional chelates were comparatively evaluated using transferrin (Tf) as a model targeting vector that binds to the transferrin receptor overexpressed in many different cancer cells. The transferrin conjugates of the NE3TA-based bifunctional chelates were evaluated for radiolabeling with (64)Cu. In vitro stability and cellular uptake of (64)Cu-radiolabeled conjugates were evaluated in human serum and prostate (PC-3) cancer cells, respectively. Among the three NE3TA-Tf conjugates tested, N-NE3TA-Tf was identified as the best conjugate for radiolabeling with (64)Cu. N-NE3TA-Tf rapidly bound to (64)Cu (>98% radiolabeling efficiency, 1min, RT), and (64)Cu-N-NE3TA-Tf remained stable in human serum for 2days and demonstrated high uptake in PC-3 cancer cells. (64)Cu-N-NE3TA-Tf was shown to have rapid blood clearance and increasing tumor uptake in PC-3 tumor bearing mice over a 24h period. This bifunctional chelate presents highly efficient chelation chemistry with (64)Cu under mild condition that can be applied for radiolabeling of various tumor-specific biomolecules with (64)Cu for potential use in PET imaging applications.

  10. Promising bifunctional chelators for copper 64-PET imaging: practical (64)Cu radiolabeling and high in vitro and in vivo complex stability.

    PubMed

    Wu, Ningjie; Kang, Chi Soo; Sin, Inseok; Ren, Siyuan; Liu, Dijie; Ruthengael, Varyanna C; Lewis, Michael R; Chong, Hyun-Soon

    2016-04-01

    Positron emission tomography (PET) using copper-64 is a sensitive and non-invasive imaging technique for diagnosis and staging of cancer. A bifunctional chelator that can present rapid radiolabeling kinetics and high complex stability with (64)Cu is a critical component for targeted PET imaging. Bifunctional chelates 3p-C-NE3TA, 3p-C-NOTA, and 3p-C-DE4TA were evaluated for complexation kinetics and stability with (64)Cu in vitro and in vivo. Hexadentate 3p-C-NOTA and heptadentate 3p-C-NE3TA possess a smaller TACN-based macrocyclic backbone, while nonadentate 3p-C-DE4TA is constructed on a larger CYCLEN-based ring. The frequently explored chelates of (64)Cu, octadentate C-DOTA and hexadentate C-NOTA were also comparatively evaluated. Radiolabeling kinetics of bifunctional chelators with (64)Cu was assessed under mild conditions. All bifunctional chelates instantly bound to (64)Cu in excellent radiolabeling efficiency at room temperature. C-DOTA was less efficient in binding (64)Cu than all other chelates. All (64)Cu-radiolabeled bifunctional chelates remained stable in human serum without any loss of (64)Cu for 2 days. When challenged by an excess amount of EDTA, (64)Cu complexes of C-NOTA, 3p-C-NE3TA and 3p-C-NOTA were shown to be more stable than (64)Cu-C-DOTA and (64)Cu-3p-C-DE4TA. (64)Cu complexes of the new chelates 3p-C-NE3TA and 3p-C-NOTA displayed comparable in vitro and in vivo complex stability to (64)Cu-C-NOTA. In vivo biodistribution result indicates that the (64)Cu-radiolabeled complexes of 3p-C-NOTA and 3p-C-NE3TA possess excellent in vivo complex stability, while (64)Cu-3p-C-DE4TA was dissociated as evidenced by high renal and liver retention in mice. The results of in vitro and in vivo studies suggest that the bifunctional chelates 3p-C-NE3TA and 3p-C-NOTA offer excellent chelation chemistry with (64)Cu for potential PET imaging applications. PMID:26666778

  11. Isothiocyanate-functionalized bifunctional chelates and fac-[MI(CO)3]+ (M = Re, 99mTc) complexes for targeting uPAR in prostate cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing strategies to rapidly incorporate the fac-[MI(CO)3]+ (M = Re, 99mTc) core into biological targeting vectors is a growing realm in radiopharmaceutical development. This work presents the preparation of a novel isothiocyanate-functionalized bifunctional chelate based on 2,2´-dipicolylamine ...

  12. Comparison of 64Cu-complexing bifunctional chelators for radioimmunoconjugation: labeling efficiency, specific activity and in vitro/in vivo stability

    PubMed Central

    Cooper, Maggie S.; Ma, Michelle T.; Sunassee, Kavitha; Shaw, Karen P.; Williams, Jennifer D.; Paul, Rowena L.; Donnelly, Paul S.; Blower, Philip J.

    2016-01-01

    High radiolabeling efficiency, preferably to high specific activity, and good stability of the radioimmunoconjugate are essential features for a successful immunoconjugate for imaging or therapy. In this study, the radiolabeling efficiency, in vitro stability and biodistribution of immunoconjugates with eight different bifunctional chelators labeled with 64Cu were compared. The anti-CD20 antibody, rituximab, was conjugated to four macrocyclic bifunctional chelators (p-SCN-Bn-DOTA, p-SCN-Bn-Oxo-DO3A, p-SCN-NOTA and p-SCN-PCTA), three DTPA derivatives (p-SCN-Bn-DTPA, p-SCN-CHX-A”-DTPA and ITC-2B3M-DTPA) and a macrobicyclic hexamine (“sarcophagine”) chelator (sar-CO2H) = (1-NH2-8-NHCO(CH2)3CO2H)sar where sar = sarcophagine = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane). Radiolabeling efficiency under various conditions, in vitro stability in serum at 37°C and in vivo biodistribution and imaging in normal mice over 48 h were studied. All chelators except sar-CO2H were conjugated to rituximab by thiourea bond formation with an average of 4.9 +/− 0.9 chelators per antibody molecule. Sar-CO2H was conjugated to rituximab by amide bond formation with 0.5 chelators per antibody molecule. Efficiencies of 64Cu radiolabeling were dependent on the concentration of immunoconjugate. Notably, the 64Cu-NOTA-rituximab conjugate demonstrated highest radiochemical yield (95%) under very dilute conditions (31 nM NOTA-rituximab conjugate). Similarly, sar-CO-rituximab, containing 1/10th the number of chelators per antibody compared to other conjugates retained high labeling efficiency (98 %) at an antibody concentration of 250 nM. In contrast to the radioimmunoconjugates containing DTPA derivatives, which demonstrated poor serum stability, all macrocyclic radioimmunoconjugates were very stable in serum with <6 % dissociation of 64Cu over 48 h. In vivo biodistribution profiles in normal female Balb/C mice were similar for all the macrocyclic radioimmunoconjugates with most of the

  13. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency.

    PubMed

    Singh, Ajay N; Liu, Wei; Hao, Guiyang; Kumar, Amit; Gupta, Anjali; Öz, Orhan K; Hsieh, Jer-Tsong; Sun, Xiankai

    2011-08-17

    The role of the multivalent effect has been well recognized in the design of molecular imaging probes toward the desired imaging signal amplification. Recently, we reported a bifunctional chelator (BFC) scaffold design, which provides a simple and versatile approach to impart multivalency to radiometal based nuclear imaging probes. In this work, we report a series of BFC scaffolds ((t)Bu(3)-1-COOH, (t)Bu(3)-2-(COOH)(2), and (t)Bu(3)-3-(COOH)(3)) constructed on the framework of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) for (68)Ga-based PET probe design and signal amplification via the multivalent effect. For proof of principle, a known integrin α(v)β(3) specific ligand (c(RGDyK)) was used to build the corresponding NOTA conjugates (H(3)1, H(3)2, and H(3)3), which present 1-3 copies of c(RGDyK) peptide, respectively, in a systematic manner. Using the integrin α(v)β(3) binding affinities (IC(50) values), enhanced specific binding was observed for multivalent conjugates (H(3)2: 43.9 ± 16.1 nM; H(3)3: 14.7 ± 5.0 nM) as compared to their monovalent counterpart (H(3)1: 171 ± 60 nM) and the intact c(RGDyK) peptide (204 ± 76 nM). The obtained conjugates were efficiently labeled with (68)Ga(3+) within 30 min at room temperature in high radiochemical yields (>95%). The in vivo evaluation of the labeled conjugates, (68)Ga-1, (68)Ga-2, and (68)Ga-3, was performed using male severe combined immunodeficiency (SCID) mice bearing integrin α(v)β(3) positive PC-3 tumor xenografts (n = 3). All (68)Ga-labeled conjugates showed high in vivo stability with no detectable metabolites found by radio-HPLC within 2 h postinjection (p.i.). The PET signal amplification in PC-3 tumor by the multivalent effect was clearly displayed by the tumor uptake of the (68)Ga-labeled conjugates ((68)Ga-3: 2.55 ± 0.50%ID/g; (68)Ga-2: 1.90 ± 0.10%ID/g; (68)Ga-1: 1.66 ± 0.15%ID/g) at 2 h p.i. In summary, we have designed and synthesized a series of NOTA-based BFC scaffolds with signal

  14. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with 68Ga3+

    PubMed Central

    2015-01-01

    Two new bifunctional tris(hydroxypyridinone) (THP) chelators designed specifically for rapid labeling with 68Ga have been synthesized, each with pendant isothiocyanate groups and three 1,6-dimethyl-3-hydroxypyridin-4-one groups. Both compounds have been conjugated with the primary amine group of a cyclic integrin targeting peptide, RGD. Each conjugate can be radiolabeled and formulated by treatment with generator-produced 68Ga3+ in over 95% radiochemical yield under ambient conditions in less than 5 min, with specific activities of 60–80 MBq nmol–1. Competitive binding assays and in vivo biodistribution in mice bearing U87MG tumors demonstrate that the new 68Ga3+-labeled THP peptide conjugates retain affinity for the αvβ3 integrin receptor, clear within 1–2 h from circulation, and undergo receptor-mediated tumor uptake in vivo. We conclude that bifunctional THP chelators can be used for simple, efficient labeling of 68Ga biomolecules under mild conditions suitable for peptides and proteins. PMID:26286399

  15. p-carboxyethyl-phenylglyoxal bis(n-methylthiosemicarbazone) (CE-DTS), a bifunctional chelating agent for Tc-99m labeled monoclonal antibody

    SciTech Connect

    Arano, Y.; Yokoyama, A.; Furukawa, T.; Saji, H.; Endo, K.; Torizaka, K.

    1985-05-01

    In the search for bifunctional chelating agents (BCA) with better affinity, selectivity and stability as for Tc-99m, synthesis of a novel BCA containing di-thio-semicarbazone as for Tc-99m chelating site has offered interesting characteristics for the labeling of macromolecules. In the present paper, monoclonal IgG (MoAb) against human thyroglobulin was selected as a model and conditions for coupling, labeling reactions were tested along with immunological reactivity. CE-DTS was coupled to MoAb by the azido method and effect of conjugation on the MoAb immunoreactivity was followed by RIA. When CE-DTS was coupled to MoAb at the molar ratio of 1:1, no loss of its original immunoreactivity was observed. Tc-99m labeling, using the stannous ion reducing method, indicated the reaction pH as being a determinant parameter. The reducing agent prepared in tartrate buffer (pH 3) offered high yield and stable Tc-99m-CE-DTS-MoAb, as evidence by HPLC. In vivo studies in mice indicated percent of injected dose and blood clearance alike the I-131-MoAb. This good labeled state of Tc-99m-CE-DTS-MoAb was also demonstrated by using second antibody reaction in serum of mice. The newly synthesized CE-DTS offered good basis for the Tc-99m labeling of monclonal antibodies with preserved immunological properties, as desirable for the radioimmunodetection. Work with tumor related monoclonal antibodies is under progress.

  16. Isothiocyanate-Functionalized Bifunctional Chelates and fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) Complexes for Targeting uPAR in Prostate Cancer.

    PubMed

    Kasten, Benjamin B; Ma, Xiaowei; Cheng, Kai; Bu, Lihong; Slocumb, Winston S; Hayes, Thomas R; Trabue, Steven; Cheng, Zhen; Benny, Paul D

    2016-01-20

    Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).

  17. Thiol- and thioether-based bifunctional chelates for the {M(CO)3}+ core (M = Tc, Re).

    PubMed

    Lazarova, Neva; Babich, John; Valliant, John; Schaffer, Paul; James, Shelly; Zubieta, Jon

    2005-09-19

    By analogy to the recently described single amino acid chelate (SAAC) technology for complexation of the {M(CO)3}+ core (M = Tc, Re), a series of tridentate ligands containing thiolate and thioether groups, as well as amino and pyridyl nitrogen donors, have been prepared: (NC5H4CH2)2NCH2CH2SEt (L1); (NC5H4CH2)2NCH2CH2SH (L2); NC5H4CH2N(CH2CH2SH)2 (L3); (NC5H4CH2)N(CH2CH2SH)(CH2CO2R) [R = H (L4); R = -C2H5 (L5). The {Re(CO)3}+ core complexes of L1-L5 were prepared by the reaction of [Re(CO)3(H2O)3]Br or [NEt4]2[Re(CO)3Br3] with the appropriate ligand in methanol and characterized by infrared spectroscopy, 1H and 13C NMR spectroscopy, mass spectrometry, and in the case of [Re(CO)3(L2)] (Re-2) and [Re(CO)3(L1)Re(CO)3Br2] (Re-1a) by X-ray crystallography. The structure of Re-2 consists of discrete neutral monomers with a fac-Re(CO)3 coordination unit and the remaining coordination sites occupied by the amine, pyridyl, and thiolate donors of L2, leaving a pendant pyridyl arm. In contrast, the structure of Re-1a consists of discrete binuclear units, constructed from a {Re(CO)3(L1)}+ subunit linked to a {Re(CO)3Br2}- group through the sulfur donor of the pendant thioether arm. The series of complexes establishes that thiolate donors are effective ligands for the {M(CO)3}+ core and that a qualitative ordering of the coordination preferences of the core may be proposed: pyridyl nitrogen approximately thiolate > carboxylate > thioether sulfur > thiophene sulfur. The ligands L1 and L2 react cleanly with [99mTc(CO)3(H2O)3]+ in H2O/DMSO to give [99mTc(CO)3(L1)]+ (99m)Tc-1) and [99mTc(CO)3(L2)] (99mTc-2), respectively, in ca. 90% yield after HPLC purification. The Tc analogues 99mTc-1 and 99mTc-2 were subjected to ligand challenges by incubating each in the presence of 1000-fold excesses of both cysteine and histidine. The radiochromatograms showed greater than 95% recovery of the complexes. PMID:16156635

  18. Chemistry of bifunctional photoprobes. 3 -- Correlation between the efficiency of CH insertion by photolabile chelating agents and lifetimes of singlet nitrenes by flash photolysis: First example of photochemical attachment of {sup 99m}Tc-complex with human serum albumin

    SciTech Connect

    Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Volkert, W.A.; Rogowski, J.; Platz, M.S.

    1998-11-27

    Systematic functionalization of perfluoroaryl azides with chelating agents capable of complexing transition metals produces a new class of bifunctional photolabile chelating agents (BFPCAs). The strategy is shield the azide functionality from the electronic and steric influence of the electron-rich metal Pd through ester and amide bridges raised CH insertion efficiency to unprecedented levels (>92%) in a model solvent (cyclohexane). In contrast, perfluoroaryl azides attached to chelating agents via hydrazones show no significant CH insertion in cyclohexane upon photolysis. Measurements of the lifetimes of the singlet nitrenes derived from these agents by flash photolysis techniques correlate well with the efficiency of CH insertion by demonstrating longer lifetimes (10--50 times) for singlet nitrenes derived from azidotetrafluorinated esters and amides compared with the related hydrazones, which failed to yield significant CH insertion. A representative BFPCA 12 is chelated to diagnostic radionuclide {sup 99m}Tc and covalently attached to human serum albumin via photochemical activation extending the favorable bimolecular insertion characteristics of BFPCA to tracer level concentrations in buffer conditions. Flash photolysis experiments correlate singlet nitrene lifetimes with the efficiency of intermolecular insertion reactions. This work provides new photo-cross-linking technology, useful in radiodiagnostics and radiotherapy in nuclear medicine.

  19. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis

    PubMed Central

    El-Awaad, Islam; Bocola, Marco; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Xanthones are natural products present in plants and microorganisms. In plants, their biosynthesis starts with regioselective cyclization of 2,3′,4,6-tetrahydroxybenzophenone to either 1,3,5- or 1,3,7-trihydroxyxanthones, catalysed by cytochrome P450 (CYP) enzymes. Here we isolate and express CYP81AA-coding sequences from Hypericum calycinum and H. perforatum in yeast. Microsomes catalyse two consecutive reactions, that is, 3′-hydroxylation of 2,4,6-trihydroxybenzophenone and C–O phenol coupling of the resulting 2,3′,4,6-tetrahydroxybenzophenone. Relative to the inserted 3′-hydroxyl, the orthologues Hc/HpCYP81AA1 cyclize via the para position to form 1,3,7-trihydroxyxanthone, whereas the paralogue HpCYP81AA2 directs cyclization to the ortho position, yielding the isomeric 1,3,5-trihydroxyxanthone. Homology modelling and reciprocal mutagenesis reveal the impact of S375, L378 and A483 on controlling the regioselectivity of HpCYP81AA2, which is converted into HpCYP81AA1 by sextuple mutation. However, the reciprocal mutations in HpCYP81AA1 barely affect its regiospecificity. Product docking rationalizes the alternative C–O phenol coupling reactions. Our results help understand the machinery of bifunctional CYPs. PMID:27145837

  20. Alternative Chelator for 89Zr Radiopharmaceuticals: Radiolabeling and Evaluation of 3,4,3-(LI-1,2-HOPO)

    PubMed Central

    2015-01-01

    Zirconium-89 is an effective radionuclide for antibody-based positron emission tomography (PET) imaging because its physical half-life (78.41 h) matches the biological half-life of IgG antibodies. Desferrioxamine (DFO) is currently the preferred chelator for 89Zr4+; however, accumulation of 89Zr in the bones of mice suggests that 89Zr4+ is released from DFO in vivo. An improved chelator for 89Zr4+ could eliminate the release of osteophilic 89Zr4+ and lead to a safer PET tracer with reduced background radiation dose. Herein, we present an octadentate chelator 3,4,3-(LI-1,2-HOPO) (or HOPO) as a potentially superior alternative to DFO. The HOPO ligand formed a 1:1 Zr-HOPO complex that was evaluated experimentally and theoretically. The stability of 89Zr-HOPO matched or surpassed that of 89Zr-DFO in every experiment. In healthy mice, 89Zr-HOPO cleared the body rapidly with no signs of demetalation. Ultimately, HOPO has the potential to replace DFO as the chelator of choice for 89Zr-based PET imaging agents. PMID:24814511

  1. A versatile bifunctional chelate for radiolabeling humanized anti-CEA antibody with In-111 and Cu-64 at either thiol or amino groups: PET imaging of CEA-positive tumors with whole antibodies.

    PubMed

    Li, Lin; Bading, James; Yazaki, Paul J; Ahuja, Amitkumar H; Crow, Desiree; Colcher, David; Williams, Lawrence E; Wong, Jeffrey Y C; Raubitschek, Andrew; Shively, John E

    2008-01-01

    Radiolabeled anti-carcinoembryonic antigen (CEA) antibodies have the potential to give excellent images of a wide variety of human tumors, including tumors of the colon, breast, lung, and medullar thyroid. In order to realize the goals of routine and repetitive clinical imaging with anti-CEA antibodies, it is necessary that the antibodies have a high affinity for CEA, low cross reactivity and uptake in normal tissues, and low immunogenicity. The humanized anti-CEA antibody hT84.66-M5A (M5A) fulfills these criteria with an affinity constant of >10 (10) M (-1), no reactivity with CEA cross-reacting antigens found in normal tissues, and >90% human protein sequence. A further requirement for routine clinical use of radiolabeled antibodies is a versatile method of radiolabeling that allows the use of multiple radionuclides that differ in their radioemissions and half-lives. We describe a versatile bifunctional chelator, DO3A-VS (1,4,7-tris(carboxymethyl)-10-(vinylsulfone)-1,4,7,10-tetraazacyclododecane) that binds a range of radiometals including 111 In for gamma-ray imaging and 64Cu for positron emission tomography (PET), and which can be conjugated with negligible loss of immunoreactivity either to sulfhydryls (SH) in the hinge region of lightly reduced immunoglobulins or surface lysines (NH) of immunoglobulins. Based on our correlative studies comparing the kinetics of radiolabeled anti-CEA antibodies in murine models with those in man, we predict that 64Cu-labeled intact, humanized antibodies can be used to image CEA positive tumors in the clinic.

  2. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg(-1) oilcake manure+5 mmol kg(-1) EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg(-1) and lead accumulation up to 16.11, 13.44 and 3.17 mg kg(-1), respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg(-1) oilcake manure +2 g kg(-1) humic acid]. Applied EDDS altered chlorophyll-a, chlorophyll-b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65%, and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process.

  3. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  4. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg(-1) oilcake manure+5 mmol kg(-1) EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg(-1) and lead accumulation up to 16.11, 13.44 and 3.17 mg kg(-1), respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg(-1) oilcake manure +2 g kg(-1) humic acid]. Applied EDDS altered chlorophyll-a, chlorophyll-b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65%, and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process. PMID:25397984

  5. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUN

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, is an innovative extension of zero-valent metal (ZVM) technology for ground water remediation. Bifunctional aluminum has a dual functionality of simultaneously decomposing both reductively- an...

  6. MTBE OXIDATION BY BIFUNCTIONAL ALUMINUM

    EPA Science Inventory

    Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, has a dual functionality of simultaneously decomposing both reductively- and oxidatively-degradable contaminants. In this work, the use of bifunctional aluminum for the degradation of methyl te...

  7. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  8. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89†

    PubMed Central

    Pandya, Darpan N.; Pailloux, Sylvie; Tatum, David; Magda, Darren; Wadas, Thaddeus J.

    2015-01-01

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 (89Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with 89Zr and are highly stable in vitro. They represent a novel class of chelators, which are worthy of further development as BFCs for 89Zr. PMID:25556851

  9. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89.

    PubMed

    Pandya, Darpan N; Pailloux, Sylvie; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2015-02-11

    The development of bifunctional chelators (BFCs) which can stably chelate zirconium-89 ((89)Zr) while being conjugated to targeting molecules is an area of active research. Herein we report the first octadentate terephthalamide ligands, which are easily radiolabeled with (89)Zr and are highly stable in vitro. They represent a novel class of chelators, which are worthy of further development as BFCs for (89)Zr.

  10. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  11. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials.

  12. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.

  13. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings

  14. Bifunctional Asymmetric Catalysis

    PubMed Central

    PAULL, DANIEL H.; ABRAHAM, CIBY J.; SCERBA, MICHAEL T.; ALDEN-DANFORTH, ETHAN; LECTKA, THOMAS

    2008-01-01

    CONSPECTUS In the field of catalytic, asymmetric synthesis, there is a growing emphasis on multifunctional systems, in which multiple parts of a catalyst or multiple catalysts work together to promote a specific reaction. These efforts, in part, are result-driven, and they are also part of a movement toward emulating the efficiency and selectivity of nature’s catalysts, enzymes. In this Account, we illustrate the importance of bifunctional catalytic methods, focusing on the cooperative action of Lewis acidic and Lewis basic catalysts by the simultaneous activation of both electrophilic and nucleophilic reaction partners. For our part, we have contributed three separate bifunctional methods that combine achiral Lewis acids with chiral cinchona alkaloid nucleophiles, for example, benzoylquinine (BQ), to catalyze highly enantioselective cycloaddition reactions between ketene enolates and various electrophiles. Each method requires a distinct Lewis acid to coordinate and activate the electrophile, which in turn increases the reaction rates and yields, without any detectable influence on the outstanding enantioselectivities inherent to these reactions. To place our results in perspective, many important contributions to this emerging field are highlighted and our own reports are chronicled. PMID:18402470

  15. Hydroxypyridonate chelating agents

    DOEpatents

    Raymond, Kenneth N.; Scarrow, Robert C.; White, David L.

    1987-01-01

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided.

  16. Bifunctional DTPA-type ligand

    SciTech Connect

    Gansow, O.A.; Brechbiel, M.W.

    1990-03-26

    The subject matter of the invention relates to bifunctional cyclohexyl DTPA ligands and methods of using these compounds. Specifically, such ligands are useful for radiolabeling proteins with radioactive metals, and can consequently be utilized with respect to radioimmunoimaging and/or radioimmunotherapy.

  17. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  18. Iron-chelation therapy: an update.

    PubMed

    Franchini, Massimo; Veneri, Dino

    2004-01-01

    Chronically transfused patients develop iron overload that leads to organ damage and ultimately to death. The introduction of the iron-chelating agent, desferrioxamine mesylate, dramatically improved the life expectancy of these patients. However, the very demanding nature of this treatment (subcutaneous continuous infusion via a battery-operated portable pump) has been the motivation for attempts to develop alternative forms of treatment that would facilitate the patients' compliance. In this review, we describe the most important advances in iron-chelating therapy. In particular, we analyze a new method of administering desferrioxamine mesylate (twice daily subcutaneous bolus injections) and a novel, orally active iron chelator (ICL670A). We also present a meta-analysis of the largest trials on the oral iron chelator deferiprone and the results of combined therapy (deferiprone and desferrioxamine).

  19. Genetics Home Reference: D-bifunctional protein deficiency

    MedlinePlus

    ... Genetics Home Health Conditions D-bifunctional protein deficiency D-bifunctional protein deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description D-bifunctional protein deficiency is a disorder that causes ...

  20. The Chelate Effect Redefined.

    ERIC Educational Resources Information Center

    da Silva, J. J. R. Frausto

    1983-01-01

    Discusses ambiguities of the accepted definition of the chelate effect, suggesting that it be defined in terms of experimental observation rather than mathematical abstraction. Indicates that the effect depends on free energy change in reaction, ligand basicity, pH of medium, type of chelates formed, and concentration of ligands in solution. (JN)

  1. (S)-5-(p-Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics

    PubMed Central

    Tircsó, Gyula; Benyó, Enikő Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E.; Sherry, A. Dean; Kovács, Zoltán

    2009-01-01

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N, N′, N″-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO2-Bn-PCTA) (M = Mg2+, Ca2+, Cu2+, Zn2+) complexes was similar to that of the corresponding PCTA complexes while the stability of Ln3+ complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO2-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid catalyzed decomplexation kinetic studies of the selected Ln(NO2-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO2-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications. PMID:19220012

  2. Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of (90)Y and (177)Lu.

    PubMed

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R; Liu, Dijie; Ruthengael, Varyanna C; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-03-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin's lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu.

  3. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons.

    PubMed

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P; Martens, Johan A

    2015-12-10

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as 'the closer the better' for positioning metal and acid sites. Here we show for a bifunctional catalyst--comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder--that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  4. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    PubMed Central

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2016-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the maximum distance between the two site types beyond which catalytic activity decreases. The lack of synthesis and material characterization methods with nanometer precision has long prevented in-depth exploration of the criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites8–11. Here we show for a bifunctional catalyst, comprised of an intimate mixture of zeolite Y and alumina binder and with platinum (Pt) metal controllably deposited20,21 on either the zeolite or the binder, that close proximity between metal and zeolite acid sites can be detrimental: the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains Pt on the binder, i.e. with a larger distance between metal and acid sites. Cracking of the large and complex hydrocarbon molecules typically derived from alternative sources such as gas-to-liquid technology, vegetable oil or algal oil6–7 should thus benefit especially from bifunctional catalysts that avoid locating Pt on the zeolite as the traditionally assumed optimal location. More generally, we anticipate that the ability to spatially organize different active sites at the nanoscale demonstrated here will benefit the further development and optimization of the newly emerging generation of multifunctional catalysts12–15. PMID:26659185

  5. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  6. Evaluation of a 3-hydroxypyridin-2-one (2,3-HOPO) Based Macrocyclic Chelator for 89Zr4+ and Its Use for ImmunoPET Imaging of HER2 Positive Model of Ovarian Carcinoma in Mice

    PubMed Central

    N.Tinianow, Jeff; Pandya, Darpan N.; Pailloux, Sylvie L.; Ogasawara, Annie; Vanderbilt, Alexander N.; Gill, Herman S.; Williams, Simon-P.; Wadas, Thaddeus J.; Magda, Darren; Marik, Jan

    2016-01-01

    A novel octadentate 3-hydroxypyridin-2-one (2,3-HOPO) based di-macrocyclic ligand was evaluated for chelation of 89Zr; subsequently, it was used as a bi-functional chelator for preparation of 89Zr-labeled antibodies. Quantitative chelation of 89Zr4+ with the octadentate ligand forming 89ZrL complex was achieved under mild conditions within 15 minutes. The 89Zr-complex was stable in vitro in presence of DTPA, but a slow degradation was observed in serum. In vivo, the hydrophilic 89Zr-complex showed prevalently renal excretion; and an elevated bone uptake of radioactivity suggested a partial release of 89Zr4+ from the complex. The 2,3-HOPO based ligand was conjugated to the monoclonal antibodies, HER2-specific trastuzumab and an isotypic anti-gD antibody, using a p-phenylene bis-isothiocyanate linker to yield products with an average loading of less than 2 chelates per antibody. Conjugated antibodies were labeled with 89Zr under mild conditions providing the PET tracers in 60-69% yield. Despite the limited stability in mouse serum; the PET tracers performed very well in vivo. The PET imaging in mouse model of HER2 positive ovarian carcinoma showed tumor uptake of 89Zr-trastuzumab (29.2 ± 12.9 %ID/g) indistinguishable (p = 0.488) from the uptake of positive control 89Zr-DFO-trastuzumab (26.1 ± 3.3 %ID/g). In conclusion, the newly developed 3-hydroxypyridin-2-one based di-macrocyclic chelator provides a viable alternative to DFO-based heterobifunctional ligands for preparation of 89Zr-labeled monoclonal antibodies for immunoPET studies. PMID:26941844

  7. Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts.

    PubMed

    Bryant, Laura A; Fanelli, Rossana; Cobb, Alexander J A

    2016-01-01

    Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens. PMID:27340439

  8. Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts

    PubMed Central

    Bryant, Laura A; Fanelli, Rossana

    2016-01-01

    Summary Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens. PMID:27340439

  9. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    DOE PAGES

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; et al

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  10. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    SciTech Connect

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C. H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  11. Structural basis for bifunctional peptide recognition at human δ-Opioid receptor

    PubMed Central

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C.H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-01-01

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt(1)-Tic(2)-Phe(3)-Phe(4)-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt(1) and Tic(2). The observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics. PMID:25686086

  12. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    PubMed

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics.

  13. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    PubMed

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics. PMID:25686086

  14. Tailored bifunctional polymer for plutonium monitoring.

    PubMed

    Paul, Sumana; Pandey, Ashok K; Kumar, Pranaw; Kaity, Santu; Aggarwal, Suresh K

    2014-07-01

    Monitoring of actinides with sophisticated conventional methods is affected by matrix interferences, spectral interferences, isobaric interferences, polyatomic interferences, and abundance sensitivity problems. To circumvent these limitations, a self-supported disk and membrane-supported bifunctional polymer were tailored in the present work for acidity-dependent selectivity toward Pu(IV). The bifunctional polymer was found to be better than the polymer containing either a phosphate group or a sulfonic acid group in terms of (i) higher Pu(IV) sorption efficiency at 3-4 mol L(-1) HNO3, (ii) selective preconcentration of Pu(IV) in the presence of a trivalent actinide such as Am(III), and (iii) preferential sorption of Pu(IV) in the presence of a large excess of U(VI). The bifunctional polymer was formed as a self-supported matrix by bulk polymerization and also as a 1-2 μm thin layer anchored on a microporous poly(ether sulfone) by surface grafting. The proportions of sulfonic acid and phosphate groups in both the self-supported disk and membrane-supported bifunctional polymer were found to be the same as expected from the mole proportions of monomers in polymerizing solutions used for syntheses. α radiography by a solid-state nuclear track detector indicated fairly homogeneous anchoring of the bifunctional polymer on the surface of the membrane. Pu(IV) preconcentrated on a single bifunctional bead was used for determination of the Pu isotopic composition by thermal ionization mass spectrometry. The membrane-supported bifunctional polymer was used for preconcentration and subsequent quantification of Pu(IV) by α spectrometry using the absolute efficiency at a fixed counting geometry. The analytical performance of the membrane-supported-bifunctional-polymer-based α spectrometry method was found to be highly reproducible for assay of Pu(IV) in a variety of complex samples.

  15. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  16. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  17. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy.

  18. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  19. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  20. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  1. Chelation of cadmium.

    PubMed Central

    Andersen, O

    1984-01-01

    The toxicity of cadmium is determined by chelation reactions: in vivo, Cd2+ exists exclusively in coordination complexes with biological ligands, or with administered chelating agents. The Cd2+ ion has some soft character, but it is not a typical soft ion. It has a high degree of polarizability, and its complexes with soft ligands have predominantly covalent bond characteristics. Cd2+ forms the most stable complexes with soft donor atoms (S much greater than N greater than 0). The coordination stereochemistry of Cd2+ is unusually varied, including coordination numbers from 2 to 8. Even though the Cd2+ ion is a d10 ion, disturbed coordination geometries are often seen. Generally, the stability of complexes increases with the number of coordination groups contributed by the ligand; consequently, complexes of Cd2+ with polydentate ligands containing SH groups are very stable. Cd2+ in metallothionein (MT) is coordinated with 4 thiolate groups, and the log stability constant is estimated to 25.5. Complexes between Cd2+ and low molecular weight monodentate or bidentate ligands, e.g., free amino acids (LMW-Cd), seem to exist very briefly, and Cd2+ is rapidly bound to high molecular weight proteins, mainly serum albumin. These complexes (HMW-Cd) are rapidly scavenged from blood, mainly by the liver, and Cd2+ is redistributed to MT. After about 1 day the Cd-MT complex (MT-Cd) almost exclusively accounts for the total retained dose of Cd2+, independent of the route of exposure. MT-Cd is slowly transferred to and accumulated in kidney cortex. The acute toxicity and interorgan distribution of parenterally administered Cd2+ are strongly influenced by preceding MT induction, or decreased capacity for MT synthesis; however, the gastrointestinal (GI) uptake of Cd2+ seems unaffected by preceding MT induction resulting in considerable capacity for Cd2+ chelation in intestinal mucosa, and this finding indicates that endogenous MT is not involved in Cd2+ absorption. The toxicity of

  2. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  3. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  4. Polycatecholamide chelating agents

    DOEpatents

    Weitl, Frederick L.; Raymond, Kenneth N.

    1984-01-01

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula ##STR1## Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO.sub.3 H, SO.sub.3 M, NO.sub.2, CO.sub.2 H or CO.sub.2 M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr.sub.3 or BCl.sub.3 in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  5. Novel polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1981-08-24

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. Formulas of the compounds are given. To prepare them polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO/sub 3/H, SO/sub 3/M, NO/sub 2/, CO/sub 2/H or CO/sub 2/M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr/sub 3/ or BCl/sub 3/ in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated.

  6. Polycatecholamide chelating agents

    DOEpatents

    Weitl, F.L.; Raymond, K.N.

    1984-04-10

    Novel polybenzamide compounds useful for in vitro or in vivo chelation are described. The compounds have the formula given in patent. Polyamines are reacted with 2,3-dimethoxy benzoyl chloride unsubstituted or substituted with SO[sub 3]H, SO[sub 3]M, NO[sub 2], CO[sub 2]H or CO[sub 2]M as desired is reacted with a polyamine in an inert solvent then demethylated with BBr[sub 3] or BCl[sub 3] in an inert solvent. Where compounds symmetrically substituted on the terminal N's are desired, the polyamine is first reductively alkylated by reaction with an aldehyde or ketone and the resulting Schiff base is hydrogenated. No Drawings

  7. The bi-functional organization of human basement membranes.

    PubMed

    Halfter, Willi; Monnier, Christophe; Müller, David; Oertle, Philipp; Uechi, Guy; Balasubramani, Manimalha; Safi, Farhad; Lim, Roderick; Loparic, Marko; Henrich, Paul Bernhard

    2013-01-01

    The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B) The epithelial side of BMs is twice as stiff as the stromal side, and C) epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers.

  8. A TACTful reappraisal of chelation therapy in cardiovascular disease.

    PubMed

    Sidhu, Mandeep S; Saour, Basil M; Boden, William E

    2014-03-01

    Atherosclerotic cardiovascular disease (CVD) is highly prevalent and, despite therapeutic advances, remains a leading cause of morbidity and mortality. Many patients with CVD seek additional alternative therapies when symptoms are not controlled with evidence-based therapies. Although its therapeutic efficacy is unproven, chelation therapy with ethylenediamine tetra acetic acid (EDTA) is increasingly being used in patients with CVD. Early studies of chelation in atherosclerotic CVD provided the basis for the randomized Trial to Assess Chelation Therapy (TACT), in which chelation with disodium EDTA was compared with placebo in patients who had experienced a myocardial infarction. Here, we discuss the results, limitations, and implications of TACT in the context of other studies in the field. We believe that the findings from TACT are not robust and do not marshal evidence in support of the potential clinical use of chelation therapy for CVD, with the potential exception of certain high-risk cohorts such as patients with diabetes mellitus. Therefore, chelation is unlikely to become a widely-accepted approach until additional data are available.

  9. Development of novel bifunctional chelating agents containing rigid cyclic hydrocarbon backbones

    SciTech Connect

    Sweet, M.P.; Joshi, V.; Mease, R.C.

    1995-05-01

    We are developing a new class of ligands in which the metal-binding polyaminocarboxylate groups are incorporated onto rigid cyclic hydrocarbon backbones. These ligands, with increased preorganization, should produce radiometal-bioconjugates with higher in-vivo stability. The synthesis of the first in this series of ligands (2,3-diaminobicyclo[2.2.2] octanetetraacetic acid, BODTA) began with a Diels-Alder reaction of 1,3-diacetylimidazolin-2-one and 1,3-cyclohexadiene. Base hydrolysis, alkylation with ethyl iodoacetate, hydrolysis of the esters, and catalytic hydrogenation gave BODTA. For conjugation to MAbs, an average of one COOH group of unsaturated BODTA was converted into an NHS ester using 0.8 equivalent of DCC. The second ligand under development is the decadentate tethered bis-cyclohexyl-EDTA (bis-CDTA) in which 2 cyclohexyl rings are tied together with an ethylene tether. Acylation of monotrityl-1,2-diaminocyclohexane with the di-NHS ester of oxalic acid, reduction of the amide moieties, and removal of the trityl groups followed by cyanomethylation has afforded a hexanitrile whose hydrolysis will produce tethered bis-CDTA. An anti-CEA F(ab{prime}){sub 2} MAb was conjugated with an average of 0.6 BODTA per MAb molecule, labeled with Co-57, and purified by size-exclusion HPLC. Stability of this radioconjugate in mouse serum at 48 h was somewhat better (2% loss) than that of the conventional DTPA-dianhydride (DTPA-DA) conjugate (8% loss). In human tumor-xenografted nude mice (LS-174T cells), tumor (T), blood (B), liver (L), and kidney (K) uptakes (% ID/g) at 24h were: TODTA, 21.6, 4.4, 4.8, 6.0; DTPA-DA, 13.6, 2.5, 5.0, 2.9. The tumor to normal tissue ratios at 48 h for BODTA and DTPA-DA respectively were: T/B, 18.0, 13.9; T/L 4.9, 2.3; T/K, 5.4, 3.9. These preliminary results show promise for using the basic BODTA structure to produce improved bioconjugates with small radiometal ions.

  10. Bis(thiosemicarbazones) as bifunctional chelators for the room temperature 64-copper labeling of peptides.

    PubMed

    Hueting, Rebekka; Christlieb, Martin; Dilworth, Jonathan R; García Garayoa, Elisa; Gouverneur, Véronique; Jones, Michael W; Maes, Veronique; Schibli, Roger; Sun, Xin; Tourwé, Dirk A

    2010-04-21

    A range of new carboxylate functionalised bis(thiosemicarbazone) ligands and their Cu(II) complexes have been prepared, fully characterised and radiolabeled in high yield with both (64)Cu and (99m)Tc. Conjugation to a bombesin derivative was achieved using standard solid phase synthetic methodologies and the (64)Cu-labeled conjugate was shown to have good tumour uptake in mice with xenografted PC-3 tumours.

  11. Bifunctional hydrogen bonds in monohydrated cycloether complexes.

    PubMed

    Vallejos, Margarita M; Angelina, Emilio L; Peruchena, Nélida M

    2010-03-01

    In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds. PMID:20136161

  12. Bifunctional hydrogen bonds in monohydrated cycloether complexes.

    PubMed

    Vallejos, Margarita M; Angelina, Emilio L; Peruchena, Nélida M

    2010-03-01

    In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds.

  13. Hydroxypyridonate chelating agents and synthesis thereof

    DOEpatents

    Raymond, K.N.; Scarrow, R.C.; White, D.L.

    1985-11-12

    Chelating agents having 1-hydroxy-2-pyridinone (HOPO) and related moieties incorporated within their structures, including polydentate HOPO-substituted polyamines such as spermidine and spermine, and HOPO-substituted desferrioxamine. The chelating agents are useful in selectively removing certain cations from solution, and are particularly useful as ferric ion and actinide chelators. Novel syntheses of the chelating agents are provided. 4 tabs.

  14. Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64 for targeted molecular imaging.

    PubMed

    Rockey, William M; Huang, Ling; Kloepping, Kyle C; Baumhover, Nicholas J; Giangrande, Paloma H; Schultz, Michael K

    2011-07-01

    Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g., copper-64, (64)Cu) to enable radiolabeling for in vivo imaging of tumors. This study investigates the choice of chelator and radiolabeling parameters such as pH and temperature for the development of (64)Cu-labeled RNA-based targeted agents for PET imaging. The characterization and optimization of labeling conditions are described for four chelator-aptamer complexes. Three commercially available bifunctional macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid mono N-hydroxysuccinimide [DOTA-NHS]; S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid [p-SCN-Bn-NOTA]; and p-SCN-Bn-3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid [p-SCN-Bn-PCTA]), as well as the polyamino-macrocyclic diAmSar (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane-1,8-diamine) were conjugated to A10-3.2, a RNA aptamer which has been shown to bind specifically to a prostate cancer-specific cell-surface antigen (PSMA). Although a commercial bifunctional version of diAmSar was not available, RNA conjugation with this chelator was achieved in a two-step reaction by the addition of a disuccinimidyl suberate linker. Radiolabeling parameters (e.g., pH, temperature, and time) for each chelator-RNA conjugate were assessed in order to optimize specific activity and RNA stability. Furthermore, the radiolabeled chelator-coupled RNA aptamers were evaluated for binding specificity to their target antigen. In summary, key parameters were established for optimal radiolabeling of RNA aptamers for eventual PET imaging with (64)Cu.

  15. Chelation therapy in intoxications with mercury, lead and copper.

    PubMed

    Cao, Yang; Skaug, Marit Aralt; Andersen, Ole; Aaseth, Jan

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid or tetrathiomolybdate may be more suitable alternatives today. In copper-toxicity, a free radical scavenger might be recommended as adjuvant to the chelator therapy.

  16. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.

    PubMed

    Zhan, Yi; Du, Guojun; Yang, Shiliu; Xu, Chaohe; Lu, Meihua; Liu, Zhaolin; Lee, Jim Yang

    2015-06-17

    Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts. PMID:25997179

  17. The scientific basis for chelation: animal studies and lead chelation.

    PubMed

    Smith, Donald; Strupp, Barbara J

    2013-12-01

    This presentation summarizes several of the rodent and non-human studies that we have conducted to help inform the efficacy and clinical utility of succimer (meso-2,3-dimercaptosuccincinic acid) chelation treatment. We address the following questions: (1) What is the extent of body lead, and in particular brain lead reduction with chelation, and do reductions in blood lead accurately reflect reductions in brain lead? (2) Can succimer treatment alleviate the neurobehavioral impacts of lead poisoning? And (3) does succimer treatment, in the absence of lead poisoning, produce neurobehavioral deficits? Results from our studies in juvenile primates show that succimer treatment is effective at accelerating the elimination of lead from the body, but chelation was only marginally better than the complete cessation of lead exposure alone. Studies in lead-exposed adult primates treated with a single 19-day course of succimer showed that chelation did not measurably reduce brain lead levels compared to vehicle-treated controls. A follow-up study in rodents that underwent one or two 21-day courses of succimer treatment showed that chelation significantly reduced brain lead levels, and that two courses of succimer were significantly more efficacious at reducing brain lead levels than one. In both the primate and rodent studies, reductions in blood lead levels were a relatively poor predictor of reductions in brain lead levels. Our studies in rodents demonstrated that it is possible for succimer chelation therapy to alleviate certain types of lead-induced behavioral/cognitive dysfunction, suggesting that if a succimer treatment protocol that produced a substantial reduction of brain lead levels could be identified for humans, a functional benefit might be derived. Finally, we also found that succimer treatment produced lasting adverse neurobehavioral effects when administered to non-lead-exposed rodents, highlighting the potential risks of administering succimer or other metal-chelating

  18. Questions and Answers on Unapproved Chelation Products

    MedlinePlus

    ... OTC) to prevent or treat diseases. Companies are marketing unapproved OTC chelation therapy products to patients with ... 4. Why did FDA take this action? Companies marketing unapproved OTC chelation products with unsubstantiated treatment claims ...

  19. Hydroxypyridonate and hydroxypyrimidinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Doble, Daniel M.; Sunderland, Christopher J.; Thompson, Marlon

    2005-01-25

    The present invention provides hydroxypyridinone and hydroxypyrimidone chelating agents. Also provides are Gd(III) complexes of these agents, which are useful as contrast enhancing agents for magnetic resonance imaging. The invention also provides methods of preparing the compounds of the invention, as well as methods of using the compounds in magnetic resonance imaging applications.

  20. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, Eugene T.

    1988-01-01

    This invention relates to the preparation of new, naturally produced chelating agents as well as to the method and resulting chelates of desorbing cultures in a bioavailable form involving Pseudomonas species or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 100-1,000 and also forms chelates with uranium of molecular weight in the area of 100-1,000 and 1,000-2,000.

  1. Iron chelation and multiple sclerosis

    PubMed Central

    Weigel, Kelsey J.; Lynch, Sharon G.; LeVine, Steven M.

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen. PMID:24397846

  2. Luminescent lanthanide chelates and methods of use

    DOEpatents

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  3. Copper-64 labelling of triazacyclononane-triphosphinate chelators.

    PubMed

    Simeček, Jakub; Wester, Hans-Jürgen; Notni, Johannes

    2012-12-01

    The 1,4,7-triazacyclononane-1,4,7-tris(methylenephosphinic acid) chelators TRAP and NOPO are complexing copper-64 with similar efficiency as 1,4,7-triazacyclononane-triacetic acid (NOTA). The kinetic stability of Cu-64-labelled TRAP-peptides is sufficient for PET imaging at early time points (1-2 h post injection). For labelling of TRAP conjugates, Cu-64 can be recommended as an alternative to Ga-68 to achieve higher resolution of PET images.

  4. New chelating agent for attaching indium-111 to monoclonal antibodies: in vitro and in vivo evaluation.

    PubMed

    Subramanian, R; Colony, J; Shaban, S; Sidrak, H; Haspel, M V; Pomato, N; Hanna, M G; McCabe, R P

    1992-01-01

    111In possesses excellent radiophysical properties suitable for use in immunoscintigraphy of cancerous tissues when attached to an antitumor antibody. However, 111In has a tendency to accumulate in normal tissues such as liver. Instability of the linkage between 111In and antibody may contribute to this problem. To avoid this, we developed a new bifunctional chelating agent, 1,3-bis[N-[N-(2-aminoethyl)-2-aminoethyl]-2-aminoacetamido]-2-(4- isothiocyanatobenzyl)propane-N,N,N',N'',N''',N'''',N''''',N'''''- octaacetic acid (LiLo), that forms a kinetically stable chelate with metal ions such as indium. Using LiLo, indium-111 was conjugated to a human monoclonal antibody, 16.88. Competitive binding analysis revealed that the 16.88-LiLo conjugate is as immunoreactive as the unconjugated native antibody. This conjugate was compared with 111In-16.88, where diethylenetriaminepentaacetic acid dianhydride (DTPAa) was used as the chelating agent. In vitro stability studies showed that 111In was more stably bound to 16.88-LiLo than to 16.88-DTPA. Biodistribution studies in athymic mice bearing colorectal tumor xenografts indicated less liver retention with 16.88-LiLo than with 16.88-DTPA. These results demonstrate that LiLo is superior to DTPAa for attachment of 111In to the monoclonal antibodies.

  5. Chelators for investigating zinc metalloneurochemistry.

    PubMed

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  6. Chelating agents and cadmium intoxication

    SciTech Connect

    Shinobu, L.A.

    1985-01-01

    A wide range of conventional chelating agents have been screened for (a) antidotal activity in acute cadmium poisoning and (b) ability to reduce aged liver and kidney deposits of cadmium. Chelating agents belonging to the dithiocarbamate class have been synthesized and tested in both the acute and chronic modes of cadmium intoxication. Several dithiocarbamates, not only provide antidotal rescue, but also substantially decrease the intracellular deposits of cadmium associated with chronic cadmium intoxication. Fractionating the cytosol from the livers and kidneys of control and treated animals by Sephadex G-25 gel filtration clearly demonstrates that the dithiocarbamates are reducing the level of metallothionein-bound cadmium. However, the results of cell culture (Ehrlich ascites) studies designed to investigate the removal of cadmium from metallothionein and subsequent transport of the resultant cadmium complex across the cell membrane were inconclusive. In other in vitro investigations, the interaction between isolated native Cd, Zn-metallothionein and several chelating agents was explored. Ultracentrifugation, equilibrium dialysis, and Sephadex G-25 gel filtration studies have been carried out in an attempt to determine the rate of removal of cadmium from metallothionein by these small molecules. Chemical shifts for the relevant cadmium-dithiocarbamate complexes have been determined using natural abundance Cd-NMR.

  7. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals.

    PubMed

    Fani, Melpomeni; André, João P; Maecke, Helmut R

    2008-01-01

    PET (positron emission tomography) is a powerful diagnostic and imaging technique which requires short-lived positron emitting isotopes. The most commonly used are accelerator-produced (11)C and (18)F. An alternative is the use of metallic positron emitters. Among them (68)Ga deserves special attention because of its availability from long-lived (68)Ge/(68)Ga generator systems which render (68)Ga radiopharmacy independent of an onsite cyclotron. The coordination chemistry of Ga(3+) is dominated by its hard acid character. A variety of mono- and bifunctional chelators have been developed which allow the formation of stable (68)Ga(3+)complexes and convenient coupling to biomolecules. (68)Ga coupling to small biomolecules is potentially an alternative to (18)F- and (11)C-based radiopharmacy. In particular, peptides targeting G-protein coupled receptors overexpressed on human tumour cells have shown preclinically and clinically high and specific tumour uptake. Kit-formulated precursors along with the generator may be provided, similar to the (99)Mo/(99m)Tc-based radiopharmacy, still the mainstay of nuclear medicine.

  8. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    PubMed

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. PMID:24700633

  9. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  10. Iron Chelation Therapy in Myelodysplastic Syndromes

    PubMed Central

    Messa, Emanuela; Cilloni, Daniela; Saglio, Giuseppe

    2010-01-01

    Myelodysplastic syndromes (MDS) are a heterogeneous disorder of the hematopoietic stem cells, frequently characterized by anemia and transfusion dependency. In low-risk patients, transfusion dependency can be long lasting, leading to iron overload. Iron chelation therapy may be a therapeutic option for these patients, especially since the approval of oral iron chelators, which are easier to use and better accepted by the patients. The usefulness of iron chelation in MDS patients is still under debate, mainly because of the lack of solid prospective clinical trials that should take place in the future. This review aims to summarize what is currently known about the incidence and clinical consequences of iron overload in MDS patients and the state-of the-art of iron chelation therapy in this setting. We also give an overview of clinical guidelines for chelation in MDS published to date and some perspectives for the future. PMID:20672005

  11. Bi-functional air electrodes for metal-air batteries. Final report, September 15, 1993--December 14, 1994

    SciTech Connect

    Swette, L.L.; Manoukian, M.; LaConti, A.B.

    1995-12-01

    The program was directed to the need for development of bifunctional air electrodes for Zn-Air batteries for the consumer market. The Zn-Air system, widely used as a primary cell for hearing-aid batteries and as a remote-site power source in industrial applications, has the advantage of high energy density, since it consumes oxygen from the ambient air utilizing a thin, efficient fuel-cell-type gas-diffusion electrode, and is comparatively low in cost. The disadvantages of the current technology are a relatively low rate capability, and the lack of simple reversibility. {open_quotes}Secondary{close_quotes} Zn-Air cells require a third electrode for oxygen evolution or mechanical replacement of the Zinc anodes; thus the development of a bifunctional air electrode (i.e., an electrode that can alternately consume and evolve oxygen) would be a significant advance in Zn-Air cell technology. Evaluations of two carbon-free non-noble metal perovskite-type catalyst systems, La{sub 1-x}CA{sub x}CoO{sub 3} as bifunctional catalysts for potential application in Zn-air batteries were carried out. The technical objectives were to develop higher-surface-area materials and to fabricate reversible electrodes by modifying the hydrophobic/hydrophilic balance of the catalyst-binder structures.

  12. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease. PMID:23329319

  13. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  14. Antimalarial properties of orally active iron chelators.

    PubMed

    Heppner, D G; Hallaway, P E; Kontoghiorghes, G J; Eaton, J W

    1988-07-01

    The appearance of widespread multiple drug resistance in human malaria has intensified the search for new antimalarial compounds. Metal chelators, especially those with high affinity for iron, represent one presently unexploited class of antimalarials. Unfortunately the use of previously identified chelators as antimalarials has been precluded by their toxicity and, in the case of desferrioxamine, the necessity for parenteral administration. The investigators now report that a new class of orally active iron chelators, namely the derivatives of alpha-ketohydroxypyridines (KHPs), are potent antimalarials against cultured Plasmodium falciparum. The KHPs evidently exert this effect by sequestering iron because a preformed chelator:iron complex has no antimalarial action. The pool(s) of iron being sequestered by the chelators have not been identified but may not include serum transferrin. Preincubation of human serum with KHPs followed by removal of the drug results in the removal of greater than 97% of total serum iron. Nonetheless, this serum effectively supports the growth of P falciparum cultures. Therefore the KHPs may exert antimalarial effect through chelation of erythrocytic rather than serum iron pool(s). The investigators conclude that these powerful, orally active iron chelators may form the basis of a new class of antimalarial drugs. PMID:3291984

  15. Positron emission tomographic imaging of copper 64- and gallium 68-labeled chelator conjugates of the somatostatin agonist tyr3-octreotate.

    PubMed

    Nedrow, Jessie R; White, Alexander G; Modi, Jalpa; Nguyen, Kim; Chang, Albert J; Anderson, Carolyn J

    2014-01-01

    The bifunctional chelator and radiometal have been shown to have a direct effect on the pharmacokinetics of somatostatin receptor (SSTR)-targeted imaging agents. We evaluated three Y3-TATE analogues conjugated to NOTA-based chelators for radiolabeling with 64Cu and 68Ga for small-animal positron emission tomographic/computed tomographic (PET/CT) imaging. Two commercially available NOTA analogues, p-SCN-Bn-NOTA and NODAGA, were evaluated. The p-SCN-Bn-NOTA analogues were conjugated to Y3-TATE through β-Ala and PEG8 linkages. The NODAGA chelator was directly conjugated to Y3-TATE. The analogues labeled with 64Cu or 68Ga were analyzed in vitro for binding affinity and internalization and in vivo by PET/CT imaging, biodistribution, and Cerenkov imaging (68Ga analogues). We evaluated the effects of the radiometals, chelators, and linkers on the performance of the SSTR subtype 2--targeted imaging agents and also compared them to a previously reported agent, 64Cu-CB-TE2A-Y3-TATE. We found that the method of conjugation, particularly the length of the linkage between the chelator and the peptide, significantly impacted tumor and nontarget tissue uptake and clearance. Among the 64Cu- and 68Ga-labeled NOTA analogues, NODAGA-Y3-TATE had the most optimal in vivo behavior and was comparable to 64Cu-CB-TE2A-Y3-TATE. An advantage of NODAGA-Y3-TATE is that it allows labeling with 64Cu and 68Ga, providing a versatile PET probe for imaging SSTr subtype 2-positive tumors.

  16. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients.

    PubMed

    Peguero, Julio G; Arenas, Ivan; Lamas, Gervasio A

    2014-08-01

    Medical practitioners have treated atherosclerotic disease with chelation therapy for over 50 years. Lack of strong of evidence led conventional practitioners to abandon its use in the 1960s and 1970s. This relegated chelation therapy to complementary and alternative medicine practitioners, who reported good anecdotal results. Concurrently, the epidemiologic evidence linking xenobiotic metals with cardiovascular disease and mortality gradually accumulated, suggesting a plausible role for chelation therapy. On the basis of the continued use of chelation therapy without an evidence base, the National Institutes of Health released a Request for Applications for a definitive trial of chelation therapy. The Trial to Assess Chelation Therapy (TACT) was formulated as a 2 × 2 factorial randomized controlled trial of intravenous EDTA-based chelation vs. placebo and high-dose oral multivitamins and multiminerals vs. oral placebo. The composite primary endpoint was death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. A total of 1708 post-MI patients who were 50 years or older with a creatinine of 2.0 or less were enrolled and received 55,222 infusions of disodium EDTA or placebo with a median follow-up of 55 months. Patients were on evidence-based post-MI medications including statins. EDTA proved to be safe. EDTA chelation therapy reduced cardiovascular events by 18%, with a 5-year number needed to treat (NNT) of 18. Prespecified subgroup analysis revealed a robust benefit in patients with diabetes mellitus with a 41% reduction in the primary endpoint (5-year NNT = 6.5), and a 43% 5-year relative risk reduction in all-cause mortality (5-year NNT = 12). The magnitude of benefit is such that it suggests urgency in replication and implementation, which could, due to the excellent safety record, occur simultaneously.

  17. Chelation and mobilization of cellular iron by different classes of chelators.

    PubMed

    Zanninelli, G; Glickstein, H; Breuer, W; Milgram, P; Brissot, P; Hider, R C; Konijn, A M; Libman, J; Shanzer, A; Cabantchik, Z I

    1997-05-01

    Iron chelators belonging to three distinct chemical families were assessed in terms of their physicochemical properties and the kinetics of iron chelation in solution and in two biological systems. Several hydroxypyridinones, reversed siderophores, and desferrioxamine derivatives were selected to cover agents with different iron-binding stoichiometry and geometry and a wide range of lipophilicity, as determined by the octanol-water partition coefficients. The selection also included highly lipophilic chelators with potentially cell-cleavable ester groups that can serve as precursors of hydrophilic and membrane-impermeant chelators. Iron binding was determined by the chelator capacity for restoring the fluorescence of iron-quenched calcein (CA), a dynamic fluorescent metallosensor. The iron-scavenging properties of the chelators were assessed under three different conditions: (a) in solution, by mixing iron salts with free CA; (b) in resealed red cell ghosts, by encapsulation of CA followed by loading with iron; and (c) in human erythroleukemia K562 cells, by loading with the permeant CA-acetomethoxy ester, in situ formation of free CA, and binding of cytosolic labile iron. The time-dependent recovery of fluorescence in the presence of a given chelator provided a continuous measure for the capacity of the chelator to access the iron/CA-containing compartment. The resulting rate constants of fluorescence recovery indicated that chelation in solution was comparable for the members of each family of chelators, whereas chelation in either biological system was largely dictated by the lipophilicity of the free chelator. For example, desferrioxamine was among the fastest and most efficient iron scavengers in solution but was essentially ineffective in either biological system when used at < or = 200 microM over a 2-hr period at 37 degrees. On the other hand, the highly lipophilic and potentially cell-cleavable hydroxypyridinones and reversed siderophores were highly

  18. H4octapa-Trastuzumab: Versatile Acyclic Chelate System for 111In and 177Lu Imaging and Therapy

    PubMed Central

    Price, Eric W.; Zeglis, Brian M.; Cawthray, Jacqueline F.; Ramogida, Caterina F.; Ramos, Nicholas

    2013-01-01

    A bifunctional derivative of the versatile acyclic chelator H4octapa, p-SCNBn- H4octapa, has been synthesized for the first time. The chelator was conjugated to the HER2/neu-targeting antibody trastuzumab and labeled in high radiochemical purity and specific activity with the radioisotopes 111In and 177Lu. The in vivo behavior of the resulting radioimmunoconjugates was investigated in mice bearing ovarian cancer xenografts and compared to analogous radioimmunoconjugates employing the ubiquitous chelator DOTA. The H4octapa-trastuzumab conjugates displayed faster radiolabeling kinetics with more reproducible yields under milder conditions (15 min, RT, ~94–95%) than those based on DOTA-trastuzumab (60 min, 37 °C ~50–88%). Further, antibody integrity was better preserved in the 111In- and 177Lu-octapatrastuzumab constructs, with immunoreactive fractions of 0.99 for each compared to 0.93–0.95 for 111In- and 177Lu-DOTA-trastuzumab. These results translated to improved in vivo biodistribution profiles and SPECT imaging results for 111In- and 177Lu-octapa-trastuzumab compared to 111In- and 177Lu-DOTA-trastuzumab, with increased tumor uptake and higher tumor-to-tissue activity ratios. PMID:23901833

  19. Permselective, metal chelate containing, plasma polymers

    SciTech Connect

    Morosoff, N.C.; Clymer, S.D.; Stannett, V.T.; Skelly, J.M.; Crumbliss, A.L.

    1993-12-31

    Metal chelates, including cobalt Schiff bases and a cobalt porphyrin complex, have been codeposited with hydrocarbon plasma polymers to form thin films. The hydrocarbon monomers used were trans-2-butene and cyclooctene. The sorption of O{sub 2} by such membranes before and after reaction with pyridine (Pyr) or 1-methylimidazole (1-MeIm) was measured and the association FTIR and uv/visible absorption spectra were obtained. In addition permeability to O{sub 2} and N{sub 2} was determined. It was found that the structure of the metal chelates, which were sublimed into the plasma, was preserved. When bound to an axial base (Pyr or 1-MeIm), the plasma polymer occluded chelates bound O{sub 2} reversibly. O{sub 2} diffusion coefficients varied with the nature of the plasma polymer matrix. The ideal separation factor (O{sub 2}/N{sub 2}) increased for metal chelate containing plasma polymers vis-a-vis that for the plasma polymer matrix (without metal chelate). The ideal separation factor was at a maximum for low metal chelate loading and at a {open_quotes}mass thickness{close_quotes} of {approximately} 10 {mu}g/(cm{sup 2}min).

  20. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  1. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  2. Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential T1 Theranostic Magnetic Resonance Imaging Agent.

    PubMed

    Kang, Min-Kyoung; Lee, Gang Ho; Jung, Ki-Hye; Jung, Jae-Chang; Kim, Hee-Kyung; Kim, Yeon-Hee; Lee, Jongmin; Ryeom, Hun-Kyu; Kim, Tae-Jeong; Chang, Yongmin

    2016-05-01

    This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B.

  3. Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential T1 Theranostic Magnetic Resonance Imaging Agent.

    PubMed

    Kang, Min-Kyoung; Lee, Gang Ho; Jung, Ki-Hye; Jung, Jae-Chang; Kim, Hee-Kyung; Kim, Yeon-Hee; Lee, Jongmin; Ryeom, Hun-Kyu; Kim, Tae-Jeong; Chang, Yongmin

    2016-05-01

    This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B. PMID:27305813

  4. The aminoindanol core as a key scaffold in bifunctional organocatalysts.

    PubMed

    G Sonsona, Isaac; Marqués-López, Eugenia; Herrera, Raquel P

    2016-01-01

    The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel-Crafts alkylation, Michael addition, Diels-Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  5. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    PubMed Central

    G. Sonsona, Isaac

    2016-01-01

    Summary The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts. PMID:27340443

  6. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  7. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  8. The aminoindanol core as a key scaffold in bifunctional organocatalysts.

    PubMed

    G Sonsona, Isaac; Marqués-López, Eugenia; Herrera, Raquel P

    2016-01-01

    The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel-Crafts alkylation, Michael addition, Diels-Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts. PMID:27340443

  9. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  10. Stereoselective Glycosylation of 2-Nitrogalactals Catalyzed by a Bifunctional Organocatalyst

    PubMed Central

    2016-01-01

    The use of a bifunctional cinchona/thiourea organocatalyst for the direct and α-stereoselective glycosylation of 2-nitrogalactals is demonstrated for the first time. The conditions are mild, practical, and applicable to a wide range of glycoside acceptors with products being isolated in good to excellent yields. The method is exemplified in the synthesis of mucin type Core 6 and 7 glycopeptides. PMID:27529800

  11. Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea.

    PubMed

    Van Engelen, Debra L; Sharpe-Pedler, Rachel C; Moorhead, Kevin K

    2007-06-01

    Brassica juncea, or Indian mustard, was grown in soil artificially contaminated with either a soluble salt, CdCl(2), at 186mg Cdkg(-1), or alternately an insoluble, basic salt, CdCO(3), at 90mg Cdkg(-1). These experiments study the range of Cd uptake by Indian mustard from conditions of very high Cd concentration in a soluble form to the other extreme with an insoluble Cd salt. After plants were established, four different chelating agents were applied. Chelating agents increased plant uptake of Cd from the CdCl(2) soil but did not significantly increase plant uptake of Cd from the CdCO(3) contaminated soil. Addition of ethylenediaminetetraacetic acid (EDTA) increased the plant concentration of Cd by almost 10-fold in soils contaminated with CdCl(2), with a concentration of 1283mg Cdkg(-1) in the dried EDTA-treated plants over a concentration of 131mg Cdkg(-1) in plants without added chelate. However, EDTA increased the aqueous solubility of Cd by 36 times over the soil matrix without added chelator, and thereby, increased the possibility of leaching. Other chelators used in both experiments were ethylenebis(oxyethylenenitrilo)tetraacetic acid, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, and diethylenetriaminepentaacetic acid (DTPA) increasing Cd in plants to 1240, 962, and 437mg Cdkg(-1), respectively. The other chelating agents increased the solubility of Cd in the leachate but not to the extent of EDTA. Comparing all chelating agents studied, DTPA increased plant uptake in terms of Cd in dried plant concentration most relative to the solubility of complexed Cd in runoff water.

  12. Invariants reveal multiple forms of robustness in bifunctional enzyme systems.

    PubMed

    Dexter, Joseph P; Dasgupta, Tathagata; Gunawardena, Jeremy

    2015-08-01

    Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements.

  13. Copper Chelation in Alzheimer's Disease Protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. AD is primarily characterized at the cellular level by densely tangled fibrils of amyloid- β protein. These protein clusters have been found in association with elevated levels of multiple transition metals, with copper being the most egregious. Interestingly, metal chelation has shown promise in attenuating the symptoms of AD in recent clinical studies. We investigate this process by constructing an atomistic model of the amyloid- β-copper complex and profile the energetic viability in each of its subsequent disassociation stages. Our results indicate that five energetic barriers must be overcome for full metal chelation. The energy barriers are biologically viable in the presence water mediated bond and proton transfer between the metal and the protein. We model the chelation reaction using a consecutive path nudged elastic band method implemented in our ab initio real-space multi-grid code to obtain a viable sequence. This reaction model details a physically consistent explanation of the chelation process that could lead to the discovery of more effective chelation agents in the treatment of AD.

  14. Bifunctional reactivity of amidoximes observed upon nucleophilic addition to metal-activated nitriles.

    PubMed

    Bolotin, Dmitrii S; Demakova, Marina Ya; Novikov, Alexander S; Avdontceva, Margarita S; Kuznetsov, Maxim L; Bokach, Nadezhda A; Kukushkin, Vadim Yu

    2015-04-20

    Treatment of the aromatic nitrile complexes trans-[PtCl2(RC6H4CN)2] (R = p-CF3 NC1, H NC2, o-Cl NC3) with the aryl amidoximes p-R'C6H4C(NH2)=NOH (R' = Me AO1, H AO2, Br AO3, CF3 AO4, NO2 AO5) in all combinations, followed by addition of 1 equiv of AgOTf and then 5 equiv of Et3N, leads to the chelates [PtCl{HN=C(RC6H4)ON=C(C6H4R'-p)NC(RC6H4)═NH}] (1-15; 15 examples; yields 71-88% after column chromatography) derived from the platinum(II)-mediated coupling between metal-activated nitriles and amidoximes. The mechanism of this reaction was studied experimentally by trapping and identification of the reaction intermediates, and it was also investigated theoretically at the DFT level of theory. The combined experimental and theoretical results indicate that the coupling with the nitrile ligands involves both the HON and monodeprotonated NH2 groups of the amidoximes, whereas in the absence of the base, the NH2 functionality is inactive toward the coupling. The observed reaction represents the first example of bifunctional nucleophilic behavior of amidoximes. The complexes 1-16 were characterized by elemental analyses (C, H, N), high-resolution ESI(+)-MS, FTIR, and (1)H NMR techniques, whereas unstable 17 was characterized by HRESI(+)-MS and FTIR. In addition, 8·C4H8O2, 12, and 16·CHCl3 were studied by single-crystal X-ray diffraction. PMID:25822628

  15. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  16. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  17. Method of encapsulating polyaminopolycarboxylic acid chelating agents in liposomes

    DOEpatents

    Rahman, Yueh Erh

    1977-11-10

    A method is provided for transferring a polyaminopolycarboxylic acid chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes, which liposomes will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. The chelating agent is encapsulated within liposomes by drying a lipid mixture to form a thin film and wetting the lipid film with a solution containing the chelating agent. Mixing then results in the formation of a suspension of liposomes encapsulating the chelating agent, which liposomes can then be separated.

  18. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    DOE PAGES

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; et al

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilitiesmore » to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, Lpy was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. Lpy complexes Bi³⁺ more rapidly than DOTA, yet the resulting complexes are of similar stability. DFT

  19. Impact of histidine residue on chelating ability of 2'-deoxyriboadenosine.

    PubMed

    Lodyga-Chruścińska, Elżbieta; Ołdziej, Stanisław; Sochacka, Elżbieta; Korzycka, Karolina; Chruściński, Longin; Micera, Giovanni; Sanna, Daniele; Turek, Monika; Pawlak, Justyna

    2011-09-01

    Copper(II) complexes with a new chelator-type nucleoside-histidine modified 2'-deoxyriboadenosine (N-[(9-β-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine) were studied by potentiometric and spectroscopic (UV-visible, CD, EPR) techniques, in conjunction with computer modeling optimization. The ligand can act as bidentate or tridentate depending on pH range. In acidic pH a very stable dimeric complex Cu(2)L(2) predominates with coordination spheres of both metal ions composed of oxygen atoms from carboxylic groups, one oxygen atom from ureido group and two nitrogen atoms derived from purine base and histidine ring. Above pH 5, deprotonation of carbamoyl nitrogens leads to the formation of CuL(2), Cu(2)L(2)H(-1) and Cu(2)L(2)H(-2) species. The CuL(2)H(-1) and CuL(2)H(-2) complexes with three or four nitrogens in Cu(II) coordination sphere have been detected in alkaline medium. Our findings suggest that N-[(9-beta-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine chelates copper(II) ions very efficiently. The resulting complex might be used as an alternative base-pairing mode in which hydrogen-bonded base pairs present in natural DNA are replaced by metal-mediated ones. PMID:21723807

  20. Impact of histidine residue on chelating ability of 2'-deoxyriboadenosine.

    PubMed

    Lodyga-Chruścińska, Elżbieta; Ołdziej, Stanisław; Sochacka, Elżbieta; Korzycka, Karolina; Chruściński, Longin; Micera, Giovanni; Sanna, Daniele; Turek, Monika; Pawlak, Justyna

    2011-09-01

    Copper(II) complexes with a new chelator-type nucleoside-histidine modified 2'-deoxyriboadenosine (N-[(9-β-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine) were studied by potentiometric and spectroscopic (UV-visible, CD, EPR) techniques, in conjunction with computer modeling optimization. The ligand can act as bidentate or tridentate depending on pH range. In acidic pH a very stable dimeric complex Cu(2)L(2) predominates with coordination spheres of both metal ions composed of oxygen atoms from carboxylic groups, one oxygen atom from ureido group and two nitrogen atoms derived from purine base and histidine ring. Above pH 5, deprotonation of carbamoyl nitrogens leads to the formation of CuL(2), Cu(2)L(2)H(-1) and Cu(2)L(2)H(-2) species. The CuL(2)H(-1) and CuL(2)H(-2) complexes with three or four nitrogens in Cu(II) coordination sphere have been detected in alkaline medium. Our findings suggest that N-[(9-beta-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine chelates copper(II) ions very efficiently. The resulting complex might be used as an alternative base-pairing mode in which hydrogen-bonded base pairs present in natural DNA are replaced by metal-mediated ones.

  1. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  2. Current approach to iron chelation in children.

    PubMed

    Aydinok, Yesim; Kattamis, Antonis; Viprakasit, Vip

    2014-06-01

    Transfusion-dependent children, mostly with thalassaemia major, but also and occasionally to a more significant degree, with inherited bone marrow failures, can develop severe iron overload in early life. Moreover, chronic conditions associated with ineffective erythropoiesis, such as non-transfusion-dependent thalassaemia (NTDT), may lead to iron overload through increased gut absorption of iron starting in childhood. Currently, the goal of iron chelation has shifted from treating iron overload to preventing iron accumulation and iron-induced end-organ complications, in order to achieve a normal pattern of complication-free survival and of quality of life. New chelation options increase the likelihood of achieving these goals. Timely initiation, close monitoring and continuous adjustment are the cornerstones of optimal chelation therapy in children, who have a higher transfusional requirements compared to adults in order to reach haemoglobin levels adequate for normal growth and development. Despite increased knowledge, there are still uncertainties about the level of body iron at which iron chelation therapy should be started and about the appropriate degree of iron stores' depletion.

  3. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  4. Development of an upconverting chelate assay

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong; Haushalter, Jeanne P.; Kotz, Kenneth T.; Faris, Gregory W.

    2005-04-01

    We report progress on performing a cell-based assay for the detection of EGFR on cell surfaces by using upconverting chelates. An upconversion microscope has been developed for performing assays and testing optical response. A431 cells are labeled with europium DOTA and imaged using this upconverting microscope.

  5. Shortened forms of provocative lead chelation

    SciTech Connect

    Sokas, R.K.; Atleson, J.; Keogh, J.P.

    1988-05-01

    Shortened urinary lead collections following provocative chelation have been standardized for pediatric patients, but have not been considered adequate for adults. This study compared shortened urine collections for lead excretion post chelation with standard 24-hour collections. Thirty-five patients without known current lead exposure and with serum creatinine measurements less than 2 mg/dL were hospitalized and had provocative chelation performed as follows: One gram of CaNa2-ethylenediaminetetraacetic acid (EDTA) was administered in 250 mL of a 5% dextrose in water solution intravenously over one hour; the same dose was repeated 12 hours later. A 24-hour urine collection for lead excretion was begun at the time of initiation of the first dose. At three hours and six hours from start of first dose, each patient was instructed to void, total volume to that point was recorded, and a 10-mL aliquot was withdrawn for lead measurement. Both three-hour and six-hour urinary lead excretion following a single dose of EDTA correlated linearly with 24-hour lead excretion post chelation (r = .89 and .94, respectively). When a 24-hour level of 600 micrograms was defined as true positive the three-hour collection had a sensitivity of 76% and specificity of 95% and six-hour urinary lead excretion had 82% sensitivity and 100% specificity. Mild renal insufficiency (reflected by serum creatinine levels between 1.5 and 2.1 mg/dL) did not significantly alter the correlation between three-, six-, and 24-hour urinary post-chelation lead excretion.

  6. Bifunctional heterometallic Ln3+-Gd3+ (Ln = Eu, Tb) hybrid silica microspheres: luminescence and MRI contrast agent property.

    PubMed

    Li, Yan-Yan; Yan, Bing; Li, Qiu-Ping

    2013-02-01

    A novel series of homometallic and heterometallic lanthanide (Eu(3+)(Tb(3+))-Gd(3+)) hybrid silica microspheres (EDTA-(Eu(Tb)-Gd)-TTA-SiO(2)) are synthesized with 2-thenoyltrifluoroacetone (TTA) functionalized silane and ethylenediaminetetraacetic acid (EDTA) by sol-gel process, whose physical characterization are carried out and especially the luminescence and the magnetic resonance imaging (MRI) contrast agent properties are discussed. These hybrids present uniform silica microsphere morphology with particle size of 1 μm. Comparing to the homometallic hybrid silica microsphere EDTA-Ln-TTA-SiO(2) without Gd(3+) ion, the heterometallic hybrid silica microspheres EDTA-Eu-Gd-TTA-SiO(2) exhibit stronger luminescent intensity, longer lifetime and higher luminescent quantum efficiency, which is due to the fact that inert ion Gd(3+) can enhance the luminescence of the Eu(3+) or Tb(3+) within the hybrid system. In addition, the MRI relaxivity of the heterometallic lanthanide hybrid silica microspheres in water is assessed, showing a lower T1 relaxation rate than homometallic gadolinium hybrid one (EDTA-Gd-TTA-SiO(2)). Both of them show higher T1 relaxation rate than the conventional Gd chelate of diethylenetriamine pentaacetic acid. These bifunctional hybrid materials exhibit both luminescent and MRI magnetic contrast agent properties, whose further investigation can be expected to have potential application in practical fields such as optical storage and sensors, etc. PMID:23154785

  7. [Functionalized Metal Chelates Based on Diethylenetriaminetetraacetic Acids for Chemical Modification of Proteins and Small Biomolecules].

    PubMed

    Kuprienko, O S; Dubovskaya, L V; Shabunya, P S; Fatykhava, S A; Sviridov, O V

    2015-01-01

    Bifunctional reagents based on diethylenetriaminetetraacetic acid containing a bound metal ion and a reactive functional group for the interaction with proteins and low-molecular-weight substances have been synthesized. An Amino-derivative of a complexonate was obtained by acylation of monosubstituted diamine with diethylenetriaminepentaacetic acid dianhydride followed by deprotection ofthe amino group, purification by anion exchange chromatography and chelation of Eu3+. This metal chelate derivative was used for labeling 17α-hydroxyprogesterone 3-(O-carboxymethyl)oxime and horseradish peroxidase. The enzyme modified with the Eu3+ complexonate at the carbohydrate component and with a cortisol derivative at the polypeptide chain was used in a dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) as well as in an enzyme immunoassay of the steroid hormone. DELFIA showed that labeled 17α-hydroxyprogesterone retained the affinity for corresponding antibodies. A Eu(3+)-complexonate carboxy-derivative N-succinimide ester was obtained by acylation of the aminochelate with p-phthalic acid di-N-succinimide ester. It was used for modification of amino groups of lysine residues in polypeptide chains of human serum albumin and some immunoglobulins G. Purification of Eu3+ complexonate-protein conjugates by gel-chromatography on a Superose- 12 column allowed to separate the modified proteins from unreacted low molecular weight Eu(3+)-derivatives and to determine a degree of lanthanide inclusion into a protein. The amount of Eu3+ covalently attached to a protein was determined by measuring the fluorescence of a conjugate in the dissociative-enhancement solution. The obtained values correlated well with the results of ICP-MS determination of Eu3+ concentration in a conjugate solution. It was shown that conjugates of monoclonal antibodies obtained by the proposed method possessed the required characteristics of fluorescence intensity, signal-to-noise ratio, sensitivity

  8. Enantioselective Iodolactonization of Disubstituted Olefinic Acids Using a Bifunctional Catalyst

    PubMed Central

    Fang, Chao; Paull, Daniel H.; Hethcox, J. Caleb; Shugrue, Christopher R.; Martin, Stephen F.

    2012-01-01

    The enantioselective iodolactonizations of a series of diversely-substituted olefinic carboxylic acids are promoted by a BINOL-derived, bifunctional catalyst. Reactions involving 5-alkyl- and 5-aryl-4(Z)-pentenoic acids and 6-alkyl- and 6-aryl-5(Z)-hexenoic acids provide the corresponding γ- and δ-lactones having stereogenic C–I bonds in excellent yields and >97:3 er. Significantly, this represents the first organocatalyst that promotes both bromo- and iodolactonization with high enantioselectivities. The potential of this catalyst to induce kinetic resolutions of racemic unsaturated acids is also demonstrated. PMID:23199100

  9. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications

    SciTech Connect

    Nagai, Rhoji; Murray, David B.; Metz, Thomas O.; Baynes, John

    2012-03-01

    Advanced glycation or glycoxidation end-products (AGE) increase in tissue proteins with age, and their rate of accumulation is increased in diabetes, nephropathy and inflammatory diseases. AGE inhibitors include a range of compounds that are proposed to act by trapping carbonyl and dicarbonyl intermediates in AGE formation. However, some among the newer generation of AGE inhibitors lack reactive functional groups that would trap reaction intermediates, indicating an alternative mechanism of action. We propose that AGE inhibitors function primarily as chelators, inhibiting metal-catalyzed oxidation reactions. The AGE-inhibitory activity of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers is also consistent with their chelating activity. Finally, compounds described as AGE breakers, or their hydrolysis products, also have strong chelating activity, suggesting that these compounds also act through their chelating activity. We conclude that chelation is the common, and perhaps the primary, mechanism of action of AGE inhibitors and breakers, and that chronic, mild chelation therapy should prove useful in treatment of diabetes and age-related diseases characterized by oxidative stress, inflammation and increased chemical modification of tissue proteins by advanced glycoxidation and lipoxidation end-products.

  10. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    DOEpatents

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  11. Current recommendations for chelation for transfusion-dependent thalassemia.

    PubMed

    Kwiatkowski, Janet L

    2016-03-01

    Regular red cell transfusions used to treat thalassemia cause iron loading that must be treated with chelation therapy. Morbidity and mortality in thalassemia major are closely linked to the adequacy of chelation. Chelation therapy removes accumulated iron and detoxifies iron, which can prevent and reverse much of the iron-mediated organ injury. Currently, three chelators are commercially available--deferoxamine, deferasirox, and deferiprone--and each can be used as monotherapy or in combination. Close monitoring of hepatic and cardiac iron burden is central to tailoring chelation. Other factors, including properties of the individual chelators, ongoing transfusional iron burden, and patient preference, must be considered. Monotherapy generally is utilized if the iron burden is in an acceptable or near-acceptable range and the dose is adjusted accordingly. Combination chelation often is employed for patients with high iron burden, iron-related organ injury, or where adverse effects of chelators preclude administration of an appropriate chelator dose. The combination of deferoxamine and deferiprone is the best studied, but increasing data are available on the safety and efficacy of newer chelator combinations, including deferasirox with deferoxamine and the oral-only combination of deferasirox with deferiprone. The expanding chelation repertoire should enable better control of iron burden and improved outcomes.

  12. Fabrication of a potentiometric/amperometric bifunctional enzyme microbiosensor.

    PubMed

    Reddy, K Ravi Charan; Turcu, Florin; Schulte, Albert; Kayastha, Arvind M; Schuhmann, Wolfgang

    2005-08-01

    We report the fabrication and functional characterization of a needle-type bifunctional enzyme microbiosensor that has, as technical novelty, simultaneously integrated a potentiometric and amperometric detection of an enzyme-catalyzed reaction at the tip of a pulled glass micropipet. The construction involved immobilizing an enzyme onto the platinized outer tip surface using the precipitation of electrodeposition paint with direct entrapment of the biocomponent in the slowly growing polymer film. Products of enzyme-substrate reaction could then be targeted in a dual-detection mode on one hand with the covered Pt layer at the tip region as amperometric detector and on the other hand with a proton-selective liquid membrane-based potentiometric sensor inside the open pipet tip. Completing and testing bifunctional glucose microsensors demonstrated the functionality of the proposed strategy. Synchronized amperometric and potentiometric detection of the addition of a glucose standard to a buffer solution became evident by observing stepwise increases in the amperometric H2O2 oxidation current and corresponding increases in the potential of the pH-selective sensor, which translates to a local pH decrease around the tip due to hydrolysis of enzymatically formed gluconic acid. PMID:16053323

  13. Photovoltachromic device with a micropatterned bifunctional counter electrode.

    PubMed

    Cannavale, Alessandro; Manca, Michele; De Marco, Luisa; Grisorio, Roberto; Carallo, Sonia; Suranna, Gian Paolo; Gigli, Giuseppe

    2014-02-26

    A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time <2 s and bleaching time <5 s). A fairly efficient photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

  14. Paramagnetic lanthanide chelates for multicontrast MRI.

    PubMed

    Cakić, Nevenka; Savić, Tanja; Stricker-Shaver, Janice; Truffault, Vincent; Platas-Iglesias, Carlos; Mirkes, Christian; Pohmann, Rolf; Scheffler, Klaus; Angelovski, Goran

    2016-07-28

    The preparation of a paramagnetic chelator that serves as a platform for multicontrast MRI, and can be utilized either as a T1-weighted, paraCEST or (19)F MRI contrast agent is reported. Its europium(iii) complex exhibits an extremely slow water exchange rate which is optimal for the use in CEST MRI. The potential of this platform was demonstrated through a series of MRI studies on tube phantoms and animals. PMID:27291157

  15. Federal regulation of unapproved chelation products.

    PubMed

    Lee, Charles E

    2013-12-01

    Chelation products can be helpful in the treatment of metal poisoning. However, many unapproved products with unproven effectiveness and safety are marketed to consumers, frequently via the internet. This paper describes the primary responsibility of the Health Fraud and Consumer Outreach Branch of the United States Food and Drug Administration to identify and address health fraud products. Efforts to prevent direct and indirect hazards to the population's health through regulatory actions are described.

  16. Acute iron poisoning. Rescue with macromolecular chelators.

    PubMed Central

    Mahoney, J R; Hallaway, P E; Hedlund, B E; Eaton, J W

    1989-01-01

    Acute iron intoxication is a frequent, sometimes life-threatening, form of poisoning. Present therapy, in severe cases, includes oral and intravenous administration of the potent iron chelator, deferoxamine. Unfortunately, high dose intravenous deferoxamine causes acute hypotension additive with that engendered by the iron poisoning itself. To obviate this problem, we have covalently attached deferoxamine to high molecular weight carbohydrates such as dextran and hydroxyethyl starch. These macromolecular forms of deferoxamine do not cause detectable decreases in blood pressure of experimental animals, even when administered intravenously in very large doses, and persist in circulation much longer than the free drug. These novel iron-chelating substances, but not deferoxamine itself, will prevent mortality from otherwise lethal doses of iron administered to mice either orally or intraperitoneally. Further reflecting this enhanced therapeutic efficacy, the high molecular weight iron chelators also abrogate iron-mediated hepatotoxicity, suppressing the release of alanine aminotransferase. We conclude that high molecular weight derivatives of deferoxamine hold promise for the effective therapy of acute iron intoxication and may also be useful in other clinical circumstances in which control of free, reactive iron is therapeutically desirable. PMID:2794068

  17. Biodegradable chelating agents for industrial, domestic, and agricultural applications--a review.

    PubMed

    Pinto, Isabel S S; Neto, Isabel F F; Soares, Helena M V M

    2014-10-01

    Aminopolycarboxylates, like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA), are chelating agents widely used in several industrial, agricultural, and domestic applications. However, the fact that they are not biodegradable leads to the presence of considerable amounts in aquatic systems, with serious environmental consequences. The replacement of these compounds by biodegradable alternatives has been the object of study in the last three decades. This paper reviews the most relevant studies towards the use of environmentally friendly chelating agents in a large number of applications: oxidative bleaching, detergents and cleaning compositions, scale prevention and reduction, remediation of soils, agriculture, electroplating, waste treatment, and biocides. Nitrilotriacetic acid (NTA), ethylenediaminedisuccinic acid (EDDS), and iminodisuccinic acid (IDS) are the most commonly suggested to replace the nonbiodegradable chelating agents. Depending on the application, the requirements for metal complexation might differ. Metal chelation ability of the most promising compounds [NTA, EDDS, IDS, methylglycinediacetic acid (MGDA), L-glutamic acid N,N-diacetic acid (GLDA), ethylenediamine-N,N'-diglutaric acid (EDDG), ethylenediamine-N,N'-dimalonic acid (EDDM), 3-hydroxy-2,2-iminodisuccinic acid (HIDS), 2-hydroxyethyliminodiacetic acid (HEIDA), pyridine-2,6-dicarboxylic acid (PDA)] with Fe, Mn, Cu, Pb, Cd, Zn, Ca, and Mg was simulated by computer calculations. The advantages or disadvantages of each compound for the most important applications were discussed.

  18. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO{sub 2}

    SciTech Connect

    J. F. Brennecke; M. A. Stadtherr

    1999-12-10

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO{sub 2}. Extraction with CO{sub 2} is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO{sub 2} to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO{sub 2} and CO{sub 2}/cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO{sub 2} and CO{sub 2}/co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO{sub 2}, as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination.

  19. Evaluation of iron-chelating agents in cultured heart muscle cells. Identification of a potential drug for chelation therapy.

    PubMed

    Sciortino, C V; Byers, B R; Cox, P

    1980-12-01

    Primary cultures of neonatal rat cardiac muscle cells incorporated radioiron from both [55Fe]transferrin and 59FeCl3 (added simultaneously). To evaluate the effect of iron chelators on such uptake, deferri chelators were added 6 hr after addition of the radioiron sources. The microbial chelator agrobactin was significantly more effective than the drug defoxamine in reduction of 55Fe uptake from [55Fe]transferrin; both chelators halted 59Fe3+ uptake. Agrobactin may have potential in chelation therpay for iron-overload disease. Certain other microbial chelators lowered radioiron uptake from either [55Fe]transferrin of 59FeCl3. These chelators should be useful inhibitors for studies of animal cell iron uptake and intracellular iron flow.

  20. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  1. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  2. Bifunctional magnetic-fluorescent nanoparticles: synthesis, characterization, and cell imaging.

    PubMed

    Lu, Yanjiao; Zheng, Yang; You, Shusen; Wang, Feng; Gao, Zhuo; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2015-03-11

    A new type of bifunctional magnetic-fluorescent Fe3O4@SiO2-PDI-PAA/Ca(2+) nanoparticles has been prepared by coating PDI-cored star polymers (PDI-PAA) onto the surface of Fe3O4@SiO2 core-shell nanostructures. The morphology and properties of the composite nanoparticles are investigated by transmission electron microscopy, ultraviolet-visible spectrometry, fluorescence spectrometry, and vibrating sample magnetometry. The composite nanoparticles display a strong red emission and superparamagnetic behavior at room temperature. The cell viability and uptake assays reveal good biocompatibility of these hybrid nanoparticles. Hence, the composite nanoparticles are of potential to be further explored as therapeutic vector in biomedical field. PMID:25691125

  3. GSK-3β: A Bifunctional Role in Cell Death Pathways

    PubMed Central

    Jacobs, Keith M.; Bhave, Sandeep R.; Ferraro, Daniel J.; Jaboin, Jerry J.; Hallahan, Dennis E.; Thotala, Dinesh

    2012-01-01

    Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases including Alzheimer's disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development. PMID:22675363

  4. Bifunctional magnetic-fluorescent nanoparticles: synthesis, characterization, and cell imaging.

    PubMed

    Lu, Yanjiao; Zheng, Yang; You, Shusen; Wang, Feng; Gao, Zhuo; Shen, Jie; Yang, Wantai; Yin, Meizhen

    2015-03-11

    A new type of bifunctional magnetic-fluorescent Fe3O4@SiO2-PDI-PAA/Ca(2+) nanoparticles has been prepared by coating PDI-cored star polymers (PDI-PAA) onto the surface of Fe3O4@SiO2 core-shell nanostructures. The morphology and properties of the composite nanoparticles are investigated by transmission electron microscopy, ultraviolet-visible spectrometry, fluorescence spectrometry, and vibrating sample magnetometry. The composite nanoparticles display a strong red emission and superparamagnetic behavior at room temperature. The cell viability and uptake assays reveal good biocompatibility of these hybrid nanoparticles. Hence, the composite nanoparticles are of potential to be further explored as therapeutic vector in biomedical field.

  5. Chelators whose affinity for calcium is decreased by illumination

    NASA Technical Reports Server (NTRS)

    Tsien, Roger Y. (Inventor); Grynkiewicz, Grzegorz (Inventor); Minta, Akwasi (Inventor)

    1987-01-01

    The present invention discloses a group of calcium chelating compounds which have a descreased affinity for calcium following illumination. These new compounds contain a photolabile nitrobenzyl derivative coupled to a tetracarboxylate Ca.sup.2+ chelating parent compound having the octacoordinate chelating groups characteristic of EGTA or BAPTA. In a first form, the new compounds are comprised of a BAPTA-like chelator coupled to a single 2-nitrobenzyl derivative, which in turn is a photochemical precursor of a 2-nitrosobenzophenone. In a second form, the new compounds are comprised of a BAPTA-like chelator coupled to two 2-nitrobenzyl derivatives, themselves photochemical prcursors of the related 2-nitrosobenzophenones. The present invention also discloses a novel method for preparing 1-hydroxy- or 1-alkoxy-1-(2-nitroaryl)-1-aryl methanes. Methanes of this type are critical to the preparation of, or actually constitute, the photolabile Ca.sup.2+ chelating compounds disclosed and claimed herein.

  6. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  7. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L

    2011-02-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism.

  8. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    PubMed

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. PMID:26545408

  9. Heavy metal chelation in neurotoxic exposures.

    PubMed

    Jang, David H; Hoffman, Robert S

    2011-08-01

    Metals such as iron and copper are critical to living organisms, whereas other metals such as lead and arsenic have no known biologic role. Any metals in large amounts may cause toxicity. Many metals cause pervasive systemic effects involving the nervous system, which can be subtle in some cases. Although challenging, the diagnosis and treatment of metal poisoning can be made based on history, physical examination, and the proper use of metal testing. This article focuses on the use, and misuse, of chelation in the diagnosis and management of metal intoxication. PMID:21803213

  10. Chemically optimized antimyosin Fab conjugates with chelating polymers: importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarction localization.

    PubMed

    Trubetskoy, V S; Narula, J; Khaw, B A; Torchilin, V P

    1993-01-01

    Murine antimyosin Fab fragment was conjugated with 111In-labeled N-terminal-modified DTPA-polylysine using three bifunctional reagents: N-hydroxysuccinimide esters of 3-(2-pyridyldithio)propionic acid (SPDP conjugate), 4-(maleimidomethyl)cyclohexanecarboxylic acid (SMCC conjugate) and bromoacetic acid (BrAc conjugate) for potential localization of experimental myocardial infarction. Using various antibody preparations and a rabbit acute myocardial infarction model the following parameters were observed: (1) an in vitro antigen binding activity of SPDP conjugate = SMCC conjugate > BrAc conjugate, (2) a blood clearance rate of SPDP conjugate > BrAc conjugate > SMCC conjugate, (3) a liver and splenic accumulation of SPDP conjugate > BrAc conjugate > SMCC conjugate, and (4) the infarcted tissue activity showed an accumulation of SMCC conjugate > SPDP conjugate > BrAc conjugate. This study exemplifies the importance of rational chemical design of antimyosin Fab-chelating polymer conjugate for improved target tissue localization in vivo.

  11. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, Shih-Ger; Littlejohn, David; Shi, Yao

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH.sub.3. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20.degree. and 90.degree. C. to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution.

  12. Metal regeneration of iron chelates in nitric oxide scrubbing

    DOEpatents

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  13. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells.

    PubMed

    Bao, Yizhong; Wang, Dan; Li, Zhiming; Hu, Yuxing; Xu, Aihong; Wang, Quanrui; Shao, Chunlin; Chen, Honghong

    2013-05-15

    Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa₃. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levels in urine, kidneys and femurs were measured 24 h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24 h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa₃.

  14. Unconventional Bifunctional Lewis-Brønsted Acid Activation Mode in Bicyclic Guanidine-Catalyzed Conjugate Addition Reactions.

    PubMed

    Cho, Bokun; Wong, Ming Wah

    2015-08-18

    DFT calculations have demonstrated that the unconventional bifunctional Brønsted-Lewis acid activation mode is generally applicable to a range of nucleophilic conjugate additions catalyzed by bicyclic guanidine catalysts. It competes readily with the conventional bifunctional Brønsted acid mode of activation. The optimal pro-nucleophiles for this unconventional bifunctional activation are acidic substrates with low pKa, while the best electrophiles are flexible 1,4-diamide and 1,4-diester conjugated systems.

  15. Chelation treatment of neurological Wilson's disease.

    PubMed

    Walshe, J M; Yealland, M

    1993-03-01

    The results of chelation treatment of 137 patients presenting with neurological Wilson's disease are described, together with the more commonly observed toxic reactions to the various drugs employed. Fifty-seven patients made an excellent response to treatment and became symptom free. Thirty-six patients made a good recovery, but were left with some minor neurological deficit. Twenty-four patients had a poor response: although the disease process was arrested they were left more or less disabled. Twenty patients died: nine had little or no treatment, but 11 died despite apparently adequate chelation therapy. There was no obvious reason for this failure. The liver copper level was estimated in six of these patients: it was still significantly elevated in only one, but in all four in whom it was possible to make the determination, the concentration of copper in the basal ganglia was in excess of 45 micrograms/g wet weight. It was not apparent why adequate therapy failed to remove copper from the brains of these patients. There was no obvious clinical, histological or biochemical indicator of failure to respond to treatment. Initial deterioration before improvement was seen in 30 patients: the prognosis for a useful recovery was not necessarily worse than that in patients who did not show this phenomenon.

  16. Differential ferrioxamine test for measuring chelatable body iron

    PubMed Central

    Fielding, J.

    1965-01-01

    The differential ferrioxamine test is a simple method for the measurement of chelation of body iron by desferrioxamine. A single six-hour specimen of urine is obtained after intravenous Desferal, accompanied by 59Fe-ferrioxamine. Two values are measured: Fd, the excretion of ferrioxamine derived from body iron by chelation, and Fex, the proportion of ferrioxamine excreted from a known intravenous dose. The data enables Fv, chelation of iron in vivo, to be calculated by simple proportion. Desferrioxamine chelation proceeds for about half an hour after injection. The results in normal subjects, in cases with known high iron stores, and in cases of iron-deficiency anaemia are described. High, normal, and low body iron states have been differentiated. Fv values in the higher ranges obtained in iron-storage diseases and in haemolytic states are differentiated by the pattern of excretion, high Fd values and low Fex values respectively. It is suggested that there are two main sources of chelatable body iron: as ferritin-haemosiderin and as iron newly released from haem in a more readily chelatable form. The significance of variable chelation susceptibility in iron metabolism is briefly discussed. It is suggested that variable chelatability of different sources of body iron may explain the preferential utilization of iron released from red cells or absorbed from the intestine, rather than storage iron, in the biosynthesis of haem. PMID:14247711

  17. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    ERIC Educational Resources Information Center

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  18. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  19. Clawing Back: Broadening the Notion of Metal Chelators in Medicine

    PubMed Central

    Franz, Katherine J.

    2013-01-01

    The traditional notion of chelation therapy is the administration of a chemical agent to remove metals from the body. But formation of a metal-chelate can have biological ramifications that are much broader than metal elimination. Exploring these other possibilities could lead to pharmacological interventions that alter the concentration, distribution, or reactivity of metals in targeted ways for therapeutic benefit. This review highlights recent examples that showcase four general strategies of using principles of metal chelation in medicinal contexts beyond the traditional notion of chelation therapy. These strategies include altering metal biodistribution, inhibiting specific metalloenzymes associated with disease, enhancing the reactivity of a metal complex to promote cytotoxicity, and conversely, passivating the reactivity of metals by site-activated chelation to prevent cytotoxicity. PMID:23332666

  20. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals†

    PubMed Central

    Cai, Zhengxin; Anderson, Carolyn J.

    2014-01-01

    The development of chelating agents for copper radionuclides in positron emission tomography radiopharmaceuticals has been a highly active and important area of study in recent years. The rapid evolution of chelators has resulted in highly specific copper chelators that can be readily conjugated to biomolecules and efficiently radiolabeled to form stable complexes in vivo. Chelators are not only designed for conjugation to monovalent biomolecules but also for incorporation into multivalent targeting ligands such as theranostic nanoparticles. These advancements have strengthened the role of copper radionuclides in the fields of nuclear medicine and molecular imaging. This review emphasizes developments of new copper chelators that have most greatly advanced the field of copper-based radiopharmaceuticals over the past 5 years. PMID:24347474

  1. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers

    PubMed Central

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi0.5Sb1.5Te3/Ni provides a promising solution. The Bi0.5Sb1.5Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m2K and a volume power density of 10 kW/m3 using low-grade heat sources below 100°C. The Bi0.5Sb1.5Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347

  2. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    PubMed

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

  3. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    PubMed

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347

  4. Chelation in metal intoxication XXI: chelation in lead intoxication during vitamin B complex deficiency

    SciTech Connect

    Not Available

    1986-09-01

    The vitamin B-complex deficiency increases the vulnerability to neuro- and systemic toxicity of Pb in young rats. Thus, the nutritional status of vitamins like that of protein or minerals seems to influence the etiology of Pb toxicity and may be expected to affect the response toward Pb chelators. 2,3 dimercaptosuccinic acid (DMSA) and N-(2-hydroxyethyl) ethylene-diamine triacetic acid (HEDTA) have been found to be effective antidotes to Pb intoxication. In the present study, these selective metal chelating agents were compared for their ability to reduce the body burden of Pb and restore the altered biochemical parameters in young developing Pb intoxicated rats maintained on normal or vitamin B-complex deficient diet. The investigation was aimed to suggest suitable prophylaxis of Pb poisoning prevalent among children who may also be suffering from vitamin deficiency in developing and poor countries.

  5. Evaluation of nitrogen-rich macrocyclic ligands for the chelation of therapeutic bismuth radioisotopes

    SciTech Connect

    Wilson, Justin J.; Ferrier, Maryline; Radchenko, Valery; Maassen, Joel R.; Engle, Jonathan W.; Batista, Enrique R.; Martin, Richard L.; Nortier, Francois M.; Fassbender, Michael E.; John, Kevin D.; Birnbaum, Eva R.

    2015-05-01

    The use of α-emitting isotopes for radionuclide therapy is a promising treatment strategy for small micro-metastatic disease. The radioisotope ²¹³Bi is a nuclide that has found substantial use for targeted α-therapy (TAT). The relatively unexplored aqueous chemistry of Bi³⁺, however, hinders the development of bifunctional chelating agents that can successfully deliver these Bi radioisotopes to the tumor cells. Here, a novel series of nitrogen-rich macrocyclic ligands is explored for their potential use as Bi-selective chelating agents. The ligands, 1,4,7,10-tetrakis(pyridin-2-ylmethyl)-1,4,7,10-tetraazacyclododecane (Lpy), 1,4,7,10-tetrakis(3-pyridazylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyd), 1,4,7,10-tetrakis(4-pyrimidylmethyl)-1,4,7,10-tetraazacyclododecane (Lpyr), and 1,4,7,10-tetrakis(2-pyrazinylmethyl)-1,4,7,10-tetraazacyclododecane (Lpz), were prepared by a previously reported method and investigated here for their abilities to bind Bi radioisotopes. The commercially available and commonly used ligands 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and N-[(R)-2-amino-3-(p-isothiocyanato-phenyl)propyl]-trans-(S,S)- cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A''-DTPA) were also explored for comparative purposes. Radio-thin-layer chromatography (TLC) was used to measure the binding kinetics and stabilities of the complexes formed. The long-lived isotope, ²⁰⁷Bi (t1/2 = 32 years), was used for these studies. Density functional theory (DFT) calculations were also employed to probe the ligand interactions with Bi³⁺ and the generator parent ion Ac³⁺.In contrast to DOTA and CHX-A''-DTPA, these nitrogen-rich macrocycles selectively chelate Bi³⁺ in the presence of the parent isotope Ac³⁺. Among the four tested, Lpy was found to exhibit optimal Bi³⁺-binding kinetics and complex stability. Lpy complexes

  6. Relationship between conformational flexibility and chelate cooperativity.

    PubMed

    Misuraca, M Cristina; Grecu, Tudor; Freixa, Zoraida; Garavini, Valentina; Hunter, Christopher A; van Leeuwen, Piet W N M; Segarra-Maset, M Dolores; Turega, Simon M

    2011-04-15

    A family of four biscarbamates (AA) and four bisphenols (DD) were synthesized, and H-bonding interactions between all AA•DD combinations were characterized using (1)H NMR titrations in carbon tetrachloride. A chemical double mutant cycle analysis shows that there are no secondary electrostatic interactions or allosteric cooperativity in these systems, and the system therefore provides an ideal platform for investigating the relationship between chemical structure and chelate cooperativity. Effective molarities (EMs) were measured for 12 different systems, where the number of rotors in the chains connecting the two H-bond sites was varied from 5 to 20. The association constants vary by less than an order of magnitude for all 12 complexes, and the variation in EM is remarkably small (0.1-0.9 M). The results provide a relationship between EM and the number of rotors in the connecting chains (r): EM ≈ 10r(-3/2). The value of 10 M is the upper limit for the value of EM for a noncovalent intramolecular interaction. Introduction of rotors reduces the value of EM from this maximum in accord with a random walk analysis of the encounter probability of the chain ends (r(-3/2)). Noncovalent EMs never reach the very high values observed for covalent processes, which places limitations on the magnitudes of the effects that one is likely to achieve through the use of chelate cooperativity in supramolecular assembly and catalysis. On the other hand, the decrease in EM due to the introduction of conformational flexibility is less dramatic than one might expect based on the behavior of covalent systems, which limits the losses in binding affinity caused by poor preorganization of the interaction sites.

  7. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  8. Fixation kinetics of chelated and non-chelated zinc in semi-arid alkaline soils: application to zinc management

    NASA Astrophysics Data System (ADS)

    Udeigwe, Theophilus K.; Eichmann, Madeleine; Menkiti, Matthew C.

    2016-07-01

    This study was designed to examine the fixation pattern and kinetics of zinc (Zn) in chelated (ethylenediaminetetraacetic acid, EDTA) and non-chelated mixed micronutrient systems of semi-arid alkaline soils from the Southern High Plains, USA. Soils were characterized for a suite of chemical and physical properties and data obtained from extraction experiments fitted to various kinetic models. About 30 % more plant-available Zn was fixed in the non-chelated system within the first 14 days with only about 18 % difference observed between the two systems by day 90, suggesting that the effectiveness of the chelated compounds tended to decrease over time. The strengths of the relationships of change in available Zn with respect to other micronutrients (copper, iron, and manganese) were higher and more significant in the non-chelated system (average R2 of 0.83), compared to the chelated (average R2 of 0.42). Fixation of plant-available Zn was best described by the power-function model (R2 = 0.94, SE = 0.076) in the non-chelated system, and was poorly described by all the models examined in the chelated system. Reaction rate constants and relationships generated from this study can serve as important tools for micronutrient management and for future micronutrient modeling studies on these soils and other semi-arid regions of the world.

  9. Medical toxicology case presentations: to chelate or not to chelate, is that the question?

    PubMed

    McKay, Charles A

    2013-12-01

    Four case studies described in this article were presented to a panel of physicians participating in the ACMT "Use and Misuse of Metal Chelation Therapy" Symposium in February 2012. The individuals who participated in the panel are listed in the appendix. These cases highlight some of the practical questions facing medical providers when issues of metal toxicity and its treatment arise. Medical toxicologists are valuable resources for information, public debate, consultation, and treatment of patients with concerns about heavy metal exposure.

  10. Medical toxicology case presentations: to chelate or not to chelate, is that the question?

    PubMed

    McKay, Charles A

    2013-12-01

    Four case studies described in this article were presented to a panel of physicians participating in the ACMT "Use and Misuse of Metal Chelation Therapy" Symposium in February 2012. The individuals who participated in the panel are listed in the appendix. These cases highlight some of the practical questions facing medical providers when issues of metal toxicity and its treatment arise. Medical toxicologists are valuable resources for information, public debate, consultation, and treatment of patients with concerns about heavy metal exposure. PMID:24243289

  11. Identification of a Bifunctional Maize C- and O-Glucosyltransferase*

    PubMed Central

    Falcone Ferreyra, María Lorena; Rodriguez, Eduardo; Casas, María Isabel; Labadie, Guillermo; Grotewold, Erich; Casati, Paula

    2013-01-01

    Flavonoids accumulate in plant vacuoles usually as O-glycosylated derivatives, but several species can also synthesize flavonoid C-glycosides. Recently, we demonstrated that a flavanone 2-hydroxylase (ZmF2H1, CYP93G5) converts flavanones to the corresponding 2-hydroxy derivatives, which are expected to serve as substrates for C-glycosylation. Here, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT708A6), and its activity was characterized by in vitro and in vivo bioconversion assays. In vitro assays using 2-hydroxyflavanones as substrates and in vivo activity assays in yeast co-expressing ZmF2H1 and UGT708A6 show the formation of the flavones C-glycosides. UGT708A6 can also O-glycosylate flavanones in bioconversion assays in Escherichia coli as well as by in vitro assays with the purified recombinant protein. Thus, UGT708A6 is a bifunctional glycosyltransferase that can produce both C- and O-glycosidated flavonoids, a property not previously described for any other glycosyltransferase. PMID:24045947

  12. Gemini, a Bifunctional Enzymatic and Fluorescent Reporter of Gene Expression

    PubMed Central

    Endy, Drew

    2009-01-01

    Background The development of collections of quantitatively characterized standard biological parts should facilitate the engineering of increasingly complex and novel biological systems. The existing enzymatic and fluorescent reporters that are used to characterize biological part functions exhibit strengths and limitations. Combining both enzymatic and fluorescence activities within a single reporter protein would provide a useful tool for biological part characterization. Methodology/Principal Findings Here, we describe the construction and quantitative characterization of Gemini, a fusion between the β-galactosidase (β-gal) α-fragment and the N-terminus of full-length green fluorescent protein (GFP). We show that Gemini exhibits functional β-gal activity, which we assay with plates and fluorometry, and functional GFP activity, which we assay with fluorometry and microscopy. We show that the protein fusion increases the sensitivity of β-gal activity and decreases the sensitivity of GFP. Conclusions/Significance Gemini is therefore a bifunctional reporter with a wider dynamic range than the β-gal α-fragment or GFP alone. Gemini enables the characterization of gene expression, screening assays via enzymatic activity, and quantitative single-cell microscopy or FACS via fluorescence activity. The analytical flexibility afforded by Gemini will likely increase the efficiency of research, particularly for screening and characterization of libraries of standard biological parts. PMID:19888458

  13. Radical initiated polymerization in a bifunctional mixture via computer simulation

    NASA Astrophysics Data System (ADS)

    Diamond, Keri L.; Pandey, Ras B.; Thames, Shelby F.

    2004-06-01

    Computer simulations are performed to study the polymerization behavior in a mixture of bifunctional groups such as olefins (A) and acrylates (B) in an effective solvent (a coarse description for vegetable oil derived macromonomers (VOMMs) in solution) on a cubic lattice. A set of interactions between these units and solvent (S) constituents and their relative concentrations (pA, pB, and pS) are considered. Samples are equilibrated with Metropolis algorithm to model the perceived behavior of VOMMs. The covalent bonding between monomeric units is then implemented via reaction pathways initiated by stochastic motion of free radicals (a very small fraction). The rate of reaction shows decay patterns with the time steps (t) with power laws (i.e., Rabαt-r, r≅0.4-0.8), exponential decays (i.e., Rabαe-0.001t), and their combination. Growth of A-B bonding is studied as a function of polymer concentration p=pA+pB for four different model systems appropriate for VOMMs. The data from the free radical initiated simulations are compared to the original simulations with homopolymerization. While most of the data are consistent with experimental observations, the variations are found to be model dependent.

  14. A bifunctional spin detector made of quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wu, Jiansheng

    2016-10-01

    The spin selection of the topological boundary states (TBS) which are protected by the chiral-like symmetry in quantum anomalous Hall insulator (QAHI) can be used to construct a bifunctional spin detector (SD). Such device made of QAHIs in parallel with opposite chirality can divide an incoming spin-polarized current into two outgoing currents. The agreement between numerical and analytical calculation proves that the SD device functions as both spin filter and spin separator well in reflecting the spin polarization of source material from the ratio of two currents. The monotonic relation of spin polarization and current ratio suggests that using such kind of device, the spin polarization can be obtained directly. We also find that such device has a broad working energy region attributed by the TBS within the bulk gap. Combining with the result that the current ratio is barely dependent on the coupling between candidate materials and device, it is reasonable to apply this technique with a stable measuring accuracy. Furthermore, the features such as having simple geometry, being manipulated without external magnetic field, and the prospect of working at room temperature make this proposed device seem promising in developing future low-power-consumption spintronic device.

  15. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    PubMed

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization. PMID:26646606

  16. Gold(I) catalysts with bifunctional P, N ligands.

    PubMed

    Wetzel, Corinna; Kunz, Peter C; Thiel, Indre; Spingler, Bernhard

    2011-08-15

    A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds [(5)(2)Au(3)Cl(2)]Cl and [(3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene). PMID:21761834

  17. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    PubMed

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  18. Pressure assisted chelating extraction: a novel technique for digesting metals in solid matrices.

    PubMed

    Wanekaya, Adam K; Myung, Sunnie; Sadik, Omowunmi A

    2002-09-01

    This work describes a novel technique for the digestion of metals in solid matrices. The technique is called pressure assisted chelating extraction (PACE). In a typical procedure, a solid sample is placed in a stainless steel cell and is mixed with appropriate chelating agents. Using a programmed sequence of temperature, static time, pressure and thermal equilibration available in ASE 200, the metal is removed under moderate temperature (up to 200 degrees C) and pressure (up to 3000 psi). PACE achieves metal recovery that is equivalent to that of wet digestion techniques and also provides for a clean and safe operation by substituting the strong acids commonly used during wet digestion with chelating agents. It uses less solvents and significantly less time (minutes vs. hours) for metal digestion. PACE has been validated using certified standard reference materials (SRMs) including industrial sludge, buffalo river sediments and coal fly ash. The total time required to remove metals was approximately 20 min. Results show that the PACE system provides an ideal platform for efficient, rapid, and safe metal digestion. Good agreement between measured and reference values for Pb, Mn, and Cu were found with recoveries averaging between 80 and 101% and a relative standard deviation of less than 5%. This approach may provide an alternative digestion technique for environmental samples, alloys, biological materials and samples of geological importance. The potential advantage offered lies in non-destruction of the sample, automation and the exclusion of concentrated mineral acids during the digestion procedure.

  19. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries.

    PubMed

    Park, Hey Woong; Lee, Dong Un; Park, Moon Gyu; Ahmed, Raihan; Seo, Min Ho; Nazar, Linda F; Chen, Zhongwei

    2015-03-01

    Developing an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.5 Co0.8 Fe0.2 O3 nanoparticles (LSCF-NPs). Confirmed by half-cell testing, op-LN exhibits synergistic effects of LSCF-NP and NCNT with excellent bifunctionality for both the oxygen reduction reaction and the oxygen evolution reaction. Furthermore, op-LN exhibits comparable performances in these reactions to Pt/C and Ir/C, respectively, which highlights its potential for use as a commercially viable bifunctional catalyst. Moreover, the results obtained by testing op-LN in a practical Li-air battery demonstrate improved and complementary charge/discharge performance compared to those of LSCF-NP and NCNT, and this confirms that simply prepared op-LN is a promising candidate as a highly effective bifunctional catalyst for rechargeable metal-air batteries.

  20. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    PubMed

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials.

  1. Nanoparticle and Iron Chelators as a Potential Novel Alzheimer Therapy

    PubMed Central

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2010-01-01

    Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages of the disease, but do not arrest the disease progression or bring in meaningful remission. New approaches to the disease management are urgently needed. Although the etiology of AD is largely unknown, oxidative damage mediated by metals is likely a significant contributor since metals such as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting. Other chelators are under development and have shown various strengths and weaknesses. Here, we propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles conjugated to chelators show unique ability to cross the blood–brain barrier (BBB), chelate metals, and exit through the BBB with their corresponding complexed metal ions. This method may provide a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this chapter. PMID:20013176

  2. Chelation: harnessing and enhancing heavy metal detoxification--a review.

    PubMed

    Sears, Margaret E

    2013-01-01

    Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  3. Synthetic and natural iron chelators: therapeutic potential and clinical use

    PubMed Central

    Hatcher, Heather C; Singh, Ravi N; Torti, Frank M; Torti, Suzy V

    2013-01-01

    Iron-chelation therapy has its origins in the treatment of iron-overload syndromes. For many years, the standard for this purpose has been deferoxamine. Recently, considerable progress has been made in identifying synthetic chelators with improved pharmacologic properties relative to deferoxamine. Most notable are deferasirox (Exjade®) and deferiprone (Ferriprox®), which are now available clinically. In addition to treatment of iron overload, there is an emerging role for iron chelators in the treatment of diseases characterized by oxidative stress, including cardiovascular disease, atherosclerosis, neurodegenerative diseases and cancer. While iron is not regarded as the underlying cause of these diseases, it does play an important role in disease progression, either through promotion of cellular growth and proliferation or through participation in redox reactions that catalyze the formation of reactive oxygen species and increase oxidative stress. Thus, iron chelators may be of therapeutic benefit in many of these conditions. Phytochemicals, many of which bind iron, may also owe some of their beneficial properties to iron chelation. This review will focus on the advances in iron-chelation therapy for the treatment of iron-overload disease and cancer, as well as neurodegenerative and chronic inflammatory diseases. Established and novel iron chelators will be discussed, as well as the emerging role of dietary plant polyphenols that effectively modulate iron biochemistry. PMID:21425984

  4. Affinity purification of copper chelating peptides from chickpea protein hydrolysates.

    PubMed

    Megías, Cristina; Pedroche, Justo; Yust, Maria M; Girón-Calle, Julio; Alaiz, Manuel; Millan, Francisco; Vioque, Javier

    2007-05-16

    Chickpea protein hydrolysates obtained with alcalase and flavourzyme were used for purification of copper chelating peptides by affinity chromatography using copper immobilized on solid supports. The chelating activity of purified peptides was indirectly measured by the inhibition of beta-carotene oxidation in the presence of copper. Two protein hydrolysates, obtained after 10 and 100 min of hydrolysis, were the most inhibitory of beta-carotene oxidation. Purified copper chelating peptides from these protein hydrolysates contained 19.7 and 35.1% histidine, respectively, in comparison to 2.7 and 2.6% in the protein hydrolysates. Chelating peptides from hydrolysate obtained after 10 min of hydrolysis were the most antioxidative being 8.3 times more antioxidative than the hydrolysate, while chelating peptides purified from protein hydrolysate obtained after 100 min were 3.1 times more antioxidative than its hydrolysate. However, the histidine content was higher in peptides derived from the 100 min hydrolysate (19.7 against 35.1% in 10 min hydrolysate), indicating that this amino acid is not the only factor involved in the antioxidative activity, and other factors such as peptide size or amino acid sequence are also determinant. This manuscript shows that affinity chromatography is a useful procedure for purification of copper chelating peptides. This method can be extended to other metals of interest in nutrition, such as calcium, iron, or zinc. Purified chelating peptides, in addition to their antioxidative properties, may also be useful in food mineral fortification for increasing the bioavailability of these metals.

  5. Chelation therapy for metal intoxication: comments from a thermodynamic viewpoint.

    PubMed

    Nurchi, Valeria Marina; Alonso, Miriam Crespo; Toso, Leonardo; Lachowicz, Joanna Izabela; Crisponi, Guido

    2013-10-01

    Chelation therapy plays a prominent role in the clinical treatment of metal intoxication. In this paper the principal causes of metal toxicity are exposed, and the chemical and biomedical requisites of a chelating agent are sketched. The chelating agents currently in use for scavenging toxic metal ions from humans belong to few categories: those characterized by coordinating mercapto groups, by oxygen groups, poliaminocarboxylic acids, and dithiocarbamates. Considering that the complex formation equilibria have been studied for less than 50% of chelators in use, some reflections on the utility of stability constants are presented, together with an evaluation of ligands under the stability profile. The competition between endogenous and toxic target metal ions for the same chelating agent is furthermore examined. A thorough examination of stability constant databases has allowed to select, for each toxic metal, the ligands distinguished by the best pMe values. Even though this selection does not consider the biomedical requisites of a chelating agent, it gives a clear picture both of the pMe values that can be attained, and of the most appropriate chelators for each metal ion.

  6. Chelation therapy for metal intoxication: comments from a thermodynamic viewpoint.

    PubMed

    Nurchi, Valeria Marina; Alonso, Miriam Crespo; Toso, Leonardo; Lachowicz, Joanna Izabela; Crisponi, Guido

    2013-10-01

    Chelation therapy plays a prominent role in the clinical treatment of metal intoxication. In this paper the principal causes of metal toxicity are exposed, and the chemical and biomedical requisites of a chelating agent are sketched. The chelating agents currently in use for scavenging toxic metal ions from humans belong to few categories: those characterized by coordinating mercapto groups, by oxygen groups, poliaminocarboxylic acids, and dithiocarbamates. Considering that the complex formation equilibria have been studied for less than 50% of chelators in use, some reflections on the utility of stability constants are presented, together with an evaluation of ligands under the stability profile. The competition between endogenous and toxic target metal ions for the same chelating agent is furthermore examined. A thorough examination of stability constant databases has allowed to select, for each toxic metal, the ligands distinguished by the best pMe values. Even though this selection does not consider the biomedical requisites of a chelating agent, it gives a clear picture both of the pMe values that can be attained, and of the most appropriate chelators for each metal ion. PMID:23895193

  7. Minimal role of metallothionein in decreased chelator efficacy for cadmium.

    PubMed

    Waalkes, M P; Watkins, J B; Klaassen, C D

    1983-05-01

    Chelator efficacy in Cd poisoning drops precipitously if therapy is not commenced almost immediately after exposure. Metallothionein (MT), a low-molecular-weight metal-binding protein with high affinity for Cd, may be important for this phenomenon. To more fully assess this role of MT in the acute drop in chelator efficacy following Cd poisoning, rats were injected iv with radioisotopic Cd (1mg/kg as CdCl2; 50 muCi/kg) followed by diethylenetriaminepentaacetic acid (DTPA; 90 mg/kg ip) at various times (0, 15, 30, 60, and 120 min) after Cd. Ther percentage of the Cd dose remaining in major organs 24 hr following Cd was determined. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal MT did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D treatment (1.25 mg/kg, 1 hr before Cd) failed to prolong the chelators effectiveness. Furthermore, newborn rats have high levels of hepatic MT which had no effect on the time course of chelator effectiveness since DTPA still decreased Cd organ contents if given immediately following Cd but had no effect if given 2 hr after Cd. Therefore, if appears that MT does not have an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The quick onset of chelator ineffectiveness may be due to the rapid uptake of Cd into tissues which makes it relatively unavailable of chelation.

  8. Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and non-coordinating substituents on inertness and relaxivity of Gd(III) chelates with DO3A-like ligands

    PubMed Central

    Polasek, Miloslav; Caravan, Peter

    2013-01-01

    Gadolinium chelates with octadentate ligands are widely used as contrast agents for magnetic resonance imaging (MRI), with macrocyclic ligands based on DO3A being preferred for the high kinetic inertness of their Gd chelates. A major challenge in the design of new bifunctional MRI probes is the need to control the rotational motion of the chelate, which greatly affects its relaxivity. In this work we explored facile alkylation of a secondary amine in macrocyclic DO3A-like ligands to create a short, achiral linkage to limit the undesired internal motion of chelates within larger molecular constructs. The acetate moiety on the trans nitrogen was also replaced with either a bidentate (ethoxyacetate, L1 or methyl picolinate, L2) or bulky monodentate (methyl phosphonate, L3) donor arm to give octa- or heptadentate ligands, respectively. The resultant Gd(III) complexes were all monohydrated (q = 1) and exhibited water residency times that spanned 2 orders of magnitude (τM = 2190 ± 170, 3500 ± 90 and 12.7 ± 3.8 ns at 37 °C for GdL1, GdL2 and GdL3 respectively). Alkylation of the secondary amine with a non-coordinating biphenyl moiety resulted in coordinatively saturated q = 0 complexes of octadentate ligands L1 and L2. Relaxivities were limited by slow water exchange and/or lack of water co-ligand. All complexes showed decreased inertness compared to [Gd(DO3A)] despite higher ligand denticity, and inertness was further decreased upon N-alkylation. These results demonstrate that high kinetic inertness and in vivo safety of Gd chelates with macrocyclic ligands should not be generalized. PMID:23517079

  9. Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications.

    PubMed

    Jeon, Jong-Rok; Chang, Yoon-Seok

    2013-06-01

    Laccases have been widely used in several biotechnological areas, including organic synthesis, bioremediation, and pulp/textile bleaching. In most applications, the enzymatic actions start with single-electron oxidation of small organics followed by formation of the corresponding radicals. These radicals are subsequently involved in either oxidative coupling (i.e., bond formation) or bond cleavage of target organics. These bifunctional actions--catabolic versus anabolic--are readily identifiable in in vivo metabolic processes involving laccases. Here, we characterize the bifunctionality of laccase-mediated oxidation of small organics and present the view that knowledge of the biological functions of these metabolic processes in vivo can illuminate potential biotechnological applications of this bifunctionality.

  10. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases. PMID:26165289

  11. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases.

  12. Polymer-Supported Reagents: The Role of Bifunctionality in the Design of Ion-Selective Complexants

    SciTech Connect

    Alexandratos, S. D.

    2001-06-01

    The importance of multi-functionality in the preparation of ion-selective polymers is evident from the structure of enzymes where specific metal ions are bound through cooperative interactions among different amino acids. In synthetic polymers, ionic selectivity is enhanced when a chemical reaction is superimposed on an ion-exchange process. The concept of reactive ion exchange has been extended through the synthesis of crosslinked polymers whose metal ion selectivity is a function of reduction, coordination or precipitation reactions as determined by various covalently bound ligands. Development of three classes of dual mechanism bifunctional polymers, a new series of bifunctional diphosphonate polymers, and novel bifunctional ion-selective polymers with enhanced ionic accessibility has been accomplished.

  13. Complementary and Alternative Therapies in ALS

    PubMed Central

    Bedlack, Richard S.; Joyce, Nanette; Carter, Gregory T.; Pagononi, Sabrina; Karam, Chafic

    2015-01-01

    Synopsis Given the severity of their illness and lack of effective disease modifying agents, it is not surprising that most patients with ALS consider trying complementary and alternative therapies. Some of the most commonly considered alternative therapies include special diets, nutritional supplements, cannabis, acupuncture, chelation and energy healing. This chapter reviews these in detail. We also describe 3 models by which physicians may frame discussions about alternative therapies: paternalism, autonomy and shared decision making. Finally, we review a program called ALSUntangled which using shared shared decision making to review alternative therapies for ALS. PMID:26515629

  14. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  15. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  16. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  17. Physical properties of bifunctional BST/LSMO nanocomposites

    SciTech Connect

    Beltran-Huarac, Juan Morell, Gerardo; Martinez, Ricardo

    2014-02-28

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.

  18. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle.

  19. Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria.

    PubMed

    Atteia, Ariane; van Lis, Robert; Mendoza-Hernández, Guillermo; Henze, Katrin; Martin, William; Riveros-Rosas, Hector; González-Halphen, Diego

    2003-09-01

    Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble, mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of sequence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an adaptation to an anaerobic lifestyle. PMID:14756315

  20. Transformation of phenol and its ethers in conditions of hydrogenation on bifunctional zeolite catalysts

    SciTech Connect

    Marchenko, L.S.; Levin, D.Z.; Plakhotnik, V.A.; Mortikov, E.S.

    1986-07-10

    The reaction of hydrodimerization of phenol, anisole, and phenetole on bifunctional zeolite catalysts and the products and mechanism of the reaction were investigated. 2-Cyclohexylcyclohexanone is the basic product of the hydrodimerization of phenol, anisole, and phenetole in the presence of bifunctional zeolite catalysts containing palladium, nickel, rhodium, calcium, and lanthanum. The activity of the catalysts is a function of the type of cations added. Hydrodimerization of phenol and its ethers takes place through the stage of hydrogenation of the starting substances to cyclohexanone on metallic sites with subsequent condensation to 2-cyclohexylidenecyclohexane on acid sites and hydrogenation of the latter to 2-cyclohexylcyclohexanone.

  1. Opioid Bifunctional Ligands from Morphine and the Opioid Pharmacophore Dmt-Tic

    PubMed Central

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D.; Knapp, Brian I.; Bidlack, Jean M.; Lazarus, Lawrence H.; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L.

    2010-01-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism. PMID:21216504

  2. Chelation of organoarsenate with dimercaptosuccinic acid.

    PubMed

    Shum, S; Whitehead, J; Vaughn, L; Shum, S; Hale, T

    1995-06-01

    Alkane arsenate herbicides are available commercially, and their acute toxicity has been well documented in previous studies. Animal studies have indicated that dimercaptosuccinic acid (DMSA) can be used as an oral chelating agent. A 20-y-old white male cocaine addict attempted suicide by drinking approximately 500 ml of a 16% monosodium methanearsenate solution. He vomited 10 or more times and was admitted to the intensive care unit with impending shock and early liver and renal involvement. Four 5-day courses of 30 mg DMSA/kg/24 h were given. This brought the serum arsenic level from 2,871 micrograms/L to 6 micrograms/L, and his urine arsenic level from 78,920 micrograms/L to 21 micrograms/L in 30 d. Renal function tests returned to normal, with normal renal creatinine clearance, normal blood urea nitrogen and serum creatinine. However liver functions were abnormal, with elevation of serum transaminases, which later proved secondary to chronic hepatitis. No side effects of DMSA was encountered during the therapy. DMSA was successfully used to detoxify acute organoarsenate poisoning in a clinical setting, supporting experimental reports in the literature.

  3. Fabrication and Characterization of Luminescent Magnetic Bifunctional Nanocomposite Based on TbPO4·H2O Nanowires and Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huong, Nguyen Thanh; Hung, Nguyen Manh; Lien, Pham Thi; Van, Nguyen Duc; Nam, Pham Hong; Binh, Nguyen Thanh; Minh, Le Quoc

    2016-07-01

    The fabrication and properties of luminescent magnetic bifunctional nanocomposites comprised of TbPO4·H2O nanowires as a core and magnetite nanoparticles as a shell are presented. TbPO4·H2O nanowires were synthesized by a microwave-assisted method while the grafting process of freshly-formed superparamagnetic magnetite nanoparticles on the surface of luminescent nanowires was carried out by a co-precipitate method. The effects of the Fe3O4/TbPO4·H2O mass ratio on the luminescent and magnetic properties of the obtained nanocomposite were also investigated. The results showed that, for the optimized bifunctional nanocomposites, green luminescent emissions at 488 nm, 542 nm, 585 nm, 620 nm and superparamagnetic behavior with saturation magnetization M s of 6 emu/g were achieved. With a hyperthermia temperature of ~43.5°C under an alternating current (AC) magnetic field, the obtained TbPO4·H2O/Fe3O4 nanocomposite was expected to be used for both optical probing and hyperthermia cancer treatments in biomedical applications.

  4. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions.

    PubMed

    Chen, Binling; Li, Rong; Ma, Guiping; Gou, Xinglong; Zhu, Yanqiu; Xia, Yongde

    2015-12-28

    Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs.-0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm(-2) current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies. PMID:26599403

  5. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth; Xu, Jide

    1999-01-01

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity.

  6. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  7. Potential of iron chelators as effective antiproliferative agents.

    PubMed

    Richardson, D R

    1997-01-01

    Initially the impetus to develop iron (Fe) chelators for clinical use was based upon the need for a drug to treat Fe-overload diseases such as beta-thalassemia. However, it has become clear that Fe chelators may be useful for the treatment of a wide variety of disease states, including cancer, malaria, and free radical mediated injury. In particular, over the last 10 years a number of studies have shown that Fe chelators may be of use in the treatment of a number of aggressive human cancers, including neuroblastoma and leukemia, and several clinical trials have substantiated their potential. In the current review the role of Fe in cellular proliferation will be discussed, followed by the possible sites and mechanism of action of some of the most effective ligands. Attention will then be turned to examine the Fe chelators shown to possess antiproliferative activity and the clinical trials performed to assess their efficacy.

  8. An Evaluation of the Chelating Agent EDDS for Marigold Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopolycarboxylic acid (APCA) ligands (chelating agents) like ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) are commonly used in soluble fertilizers to supply copper (Cu), iron (Fe), manganese (Mn), and/or zinc (Zn) to plants. The offsite runoff and contamina...

  9. An efficient chelator for complexation of thorium-227.

    PubMed

    Ramdahl, Thomas; Bonge-Hansen, Hanne T; Ryan, Olav B; Larsen, Smund; Herstad, Gunnar; Sandberg, Marcel; Bjerke, Roger M; Grant, Derek; Brevik, Ellen M; Cuthbertson, Alan S

    2016-09-01

    We present the synthesis and characterization of a highly efficient thorium chelator, derived from the octadentate hydroxypyridinone class of compounds. The chelator forms extremely stable complexes with fast formation rates in the presence of Th-227 (ambient temperature, 20min). In addition, mouse biodistribution data are provided which indicate rapid hepatobiliary excretion route of the chelator which, together with low bone uptake, supports the stability of the complex in vivo. The carboxylic acid group may be readily activated for conjugation through the ɛ-amino groups of lysine residues in biomolecules such as antibodies. This chelator is a critical component of a new class of Targeted Thorium Conjugates (TTCs) currently under development in the field of oncology. PMID:27476138

  10. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    NASA Astrophysics Data System (ADS)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  11. Chelation in metal intoxication XVI. Influence of chelating agents on chromate poisoned rats

    SciTech Connect

    Tandon, S.K.; Srivastava, L.

    1985-01-01

    The ability of selective polyaminocarboxylic acids and common drugs to reduce the body burden of chromium and restore Cr induced biochemical alterations in chromate intoxicated rats was investigated. 1,2 Cychlohexylene dinitrilotetraacetic acid (CDTA) and triethylenetetramine hexacetic acid (TTHA) were more effective than p-aminosalicylic acid (PAS) and isoniazid (INH) in enhancing urinary excretion of Cr, lowering hepatic and blood levels of Cr and restoring inhibited activity of hepatic aldolase. The chromate antidotal property of chelators seem to be related to the combination of nitrogen and oxygen as the electron donating centres.

  12. Alteration of tissue disposition of cadmium by chelating agents.

    PubMed Central

    Klaassen, C D; Waalkes, M P; Cantilena, L R

    1984-01-01

    The effect of several chelating agents (diethyldithiocarbamic acid, DDC; nitrilotriacetic acid, NTA; 2,3-dimercaptopropanol, BAL; d,l-penicillamine, PEN; 2,3-dimercaptosuccinic acid, DMSA; ethylenediaminetetraacetic acid, EDTA; and diethylenetriaminepentaacetic acid, DTPA) on the toxicity, distribution and excretion of cadmium (Cd) was determined in mice. When chelators were administered immediately after Cd, significant increases in survival were noted after treatment with DMSA, EDTA, and DTPA. DTPA, followed by EDTA and then DMSA, were consistently the most effective in decreasing the tissue concentrations of Cd and increasing the excretion of Cd. NTA, BAL, DDC and PEN had no beneficial effects. The effects of increasing the time interval between Cd administration and initiation of chelation therapy was determined by using a single administration of DTPA, EDTA, and DMSA. Mice treated immediately after Cd administration excreted approximately 50% of the administered dose of Cd compared to 0.2% in controls. Treatment with chelator at later times significantly increased Cd excretion but the magnitude of the effect was much less than that seen in mice treated immediately after Cd. To determine the role of MT in the acute decrease in chelator efficacy following Cd poisoning, rats were injected IV with Cd followed by DTPA at various times after Cd. Although DTPA reduced Cd content in the various organs when given immediately after Cd, the chelator was ineffective at all later times. Increases in hepatic and renal metallothionein (MT) did not occur until 2 hr after Cd, and did not coincide with the earlier drop in chelator efficacy. Blockade of MT synthesis by actinomycin D failed to eliminate this decreased DTPA effectiveness. Therefore, it appears that MT does not play an important role in the acute decrease in efficacy of chelation therapy for Cd poisoning. The effect of repeated daily administration of chelators on the distribution and excretion of Cd was studied by

  13. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition.

    PubMed

    Welling, Søren H; Hubálek, František; Jacobsen, Jette; Brayden, David J; Rahbek, Ulrik L; Buckley, Stephen T

    2014-04-01

    The excipient citric acid (CA) has been reported to improve oral absorption of peptides by different mechanisms. The balance between its related properties of calcium chelation and permeation enhancement compared to a proteolysis inhibition was examined. A predictive model of CA's calcium chelation activity was developed and verified experimentally using an ion-selective electrode. The effects of CA, its salt (citrate, Cit) and the established permeation enhancer, lauroyl carnitine chloride (LCC) were compared by measuring transepithelial electrical resistance (TEER) and permeability of insulin and FD4 across Caco-2 monolayers and rat small intestinal mucosae mounted in Ussing chambers. Proteolytic degradation of insulin was determined in rat luminal extracts across a range of pH values in the presence of CA. CA's capacity to chelate calcium decreased ~10-fold for each pH unit moving from pH 6 to pH 3. CA was an inferior weak permeation enhancer compared to LCC in both in vitro models using physiological buffers. At pH 4.5 however, degradation of insulin in rat luminal extracts was significantly inhibited in the presence of 10mM CA. The capacity of CA to chelate luminal calcium does not occur significantly at the acidic pH values where it effectively inhibits proteolysis, which is its dominant action in oral peptide formulations. On account of insulin's low basal permeability, inclusion of alternative permeation enhancers is likely to be necessary to achieve sufficient oral bioavailability since this is a weak property of CA.

  14. Design and discovery of new pyrimidine coupled nitrogen aromatic rings as chelating groups of JMJD3 inhibitors.

    PubMed

    Hu, Jianping; Wang, Xin; Chen, Lin; Huang, Min; Tang, Wei; Zuo, Jianping; Liu, Yu-Chih; Shi, Zhe; Liu, Rongfeng; Shen, Jingkang; Xiong, Bing

    2016-02-01

    The histone methylation on lysine residues is one of the most studied post-translational modifications, and its aberrant states have been associated with many human diseases. In 2012, Kruidenier et al. reported GSK-J1 as a selective Jumonji H3K27 demethylase (JMJD3 and UTX) inhibitor. However, there is limited information on the structure-activity relationship of this series of compounds. Moreover, there are few scaffolds reported as chelating groups for Fe(II) ion in Jumonji demethylase inhibitors development. To further elaborate the structure-activity relationship of selective JMJD3 inhibitors and to explore the novel chelating groups for Fe(II) ion, we initialized a medicinal chemistry modification based on the GSK-J1 structure. Finally, we found that several compounds bearing different chelating groups showed similar activities with respect to GSK-J1 and excellent metabolic stability in liver microsomes. The ethyl ester prodrugs of these inhibitors also showed a better activity than GSK-J4 for inhibition of TNF-α production in LPS-stimulated murine macrophage cell line Raw 264.7 cells. Taking together, the current study not only discovered alternative potent JMJD3 inhibitors, but also can benefit other researchers to design new series of Jumonji demethylase inhibitors based on the identified chelating groups.

  15. A Practical Guide on the Synthesis of Metal Chelates for Molecular Imaging and Therapy by Means of Click Chemistry.

    PubMed

    Notni, Johannes; Wester, Hans-Jürgen

    2016-08-01

    The copper-catalyzed cycloaddition of organic azides and alkynes (CuAAC) is one of the most popular reactions for rapid assembly of multifunctional molecular frameworks from commercially available building blocks. It is also attractive for synthesis of conjugates of multidentate chelate ligands (chelators) with molecular targeting vectors, such as peptides or proteins, which serve as precursors for labeling with metal radionuclides or are useful as MRI contrast agents after Gd(III) complexation. However, applicability of CuAAC for such purposes is complicated by formation of unwanted copper chelates. The alternative use of copper-free click chemistry, for example, the strain-promoted alkyne-azide cycloaddition (SPAAC) or the Diels-Alder reaction of tetrazines and strained alkenes, entails other specific challenges: Introduction of large, isomerically non-homogeneous and hydrophobic linker groups affects product homogeneity and can severely change pharmacokinetic profiles. Against this background, this review elucidates scope and applicability of both Cu-catalyzed and Cu-free alkyne-azide cycloadditions pertinent to the elaboration of radiometal chelates and MRI contrast agents, with an emphasis on strategies to tackle the problem of copper complexation during CuAAC. PMID:27333118

  16. Chelation of bismuth by combining desferrioxamine and deferiprone in rats.

    PubMed

    Tubafard, S; Fatemi, S J

    2008-05-01

    Consumption and production of bismuth compounds are increasing, however, a little information on the toxic effect and also the effective method in removal of bismuth compounds are available. The present research aimed to characterize the potential efficiency of two chelators after bismuth administration for 55A days following two dose levels of 20 and 40A mg/kg body weight daily to male rats. However, we found abnormalities after bismuth administration in clinical signs, such as body weight, kidneys and liver damages, a black line on gums and skin reactions. Furthermore, the hypothesis that the two chelators might be more efficient as combined therapy than as single therapy in removing bismuth from the body was considered. Along this line, two known chelators deferiprone (1, 2-dimethy1-3-hydroxypyride-4-one, L(1)) and desferrioxamine (DFO) were chosen and tested in the acute rat model. Chelators were given orally (L(1)) or intraperitoneally (DFO) as a single or combined therapy for the period of a week. Doses of L(1) and DFO were 110A mg/kg body weight in experiments. Bismuth and iron concentrations in various tissues were determined by graphite furnace and flame atomic absorption spectrometry, respectively. The combined chelation therapy results show that DFO and L(1) are able to remove bismuth ions from the body, whereas iron concentration returned to the normal level and symptoms are also decreased. DFO was more effective than L1 in reducing bismuth concentration in tissues. The efficiency of DFOA +A L(1) is more than DFO or L(1) in removing bismuth from organs. Our results are indicative that the design procedure might be useful for preliminary in-vivo testing of the efficiency of chelating agents. Results of combined chelators' treatment should be confirmed in a different experimental model before extrapolation to other systems. This testing procedure of course does not provide all the relevant answers for efficiency of chelating agents in bismuth toxicity.

  17. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    PubMed Central

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  18. Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins.

    PubMed

    Chin, Lily; Leung, David W M; Harry Taylor, H

    2009-07-01

    Reported correlations between tannin level and metal accumulation within plant tissues suggest that metal-chelating tannins may help plants to tolerate toxic levels of heavy metal contaminants. This paper supports such correlations using a new method that demonstrated the ability of plant tannins to chelate heavy metals, and showed that the relative levels of tannins in tissues were quantitatively related to lead chelation in vitro. Using this in vitro metal chelation method, we showed that immobilised tannins prepared from lateral roots of Symphytum officinale L., that contained high tannin levels, chelated 3.5 times more lead than those from main roots with lower tannin levels. This trend was confirmed using increasing concentrations of tannins from a single root type, and using purified tannins (tannic acid) from Chinese gallnuts. This study presents a new, simple, and reliable method that demonstrates direct lead-tannin chelation. In relation to phytoremediation, it also suggests that plant roots with more 'built-in' tannins may advantageously accumulate more lead. PMID:19477483

  19. Technetium-99m chelators in nuclear medicine. A review.

    PubMed

    Hjelstuen, O K

    1995-03-01

    Nuclear medicine is a branch of medical imaging that uses radioactive tracers to examine the function of body systems. The radionuclide used in about 90% of all examinations is 99Tcm, which is available from 99Mo/99Tcm generators at most nuclear medicine departments. In aqueous medium, technetium is chemically stable as pertechnetate, 99TcmO4-. Injected into the human body, pertechnetate will be absorbed by the thyroid gland because of the similarity to iodide in its radius and charge. To reach targets in the human body other than glandula thyreoidea, 99Tcm needs a carrier molecule, usually a chelating agent. Many chelators that form stable complexes with 99Tcm have affinities for certain tissues in the human body. Other chelators can be manipulated by pharmaceutical formation to be retained in certain body systems. In order to form bonds with technetium, the chelator must contain electron donors like nitrogen, oxygen and sulfur. Space between multiple electron donor atoms is required to allow several bonds to form with the central metal. The stability of the complex increases with increasing number of bonds. Today, chelators for the use with 99Tcm exist for a number of highly sensitive scintigraphic studies of the brain, heart, skeleton, kidneys, hepatobiliary system and lungs. This includes chelators such as dimercaptosuccinic acid, 1,2-ethylenediylbis-L-cysteine diethyl ester, methylenediphosphonate, hexamethylpropyleneamineoxime and hexakis(methoxy isobutyl isonitrile).

  20. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  1. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  2. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    SciTech Connect

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-10-25

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics.

  3. The magnesium chelation step in chlorophyll biosynthesis

    SciTech Connect

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  4. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  5. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.

    PubMed

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-09-01

    Gold is known currently as the most active single-element electrocatalyst for CO2 electroreduction reaction to CO. In this work, we combine Au with a second metal element, Cu, to reduce the amount of precious metal content by increasing the surface-to-mass ratio and to achieve comparable activity to Au-based catalysts. In particular, we demonstrate that the introduction of a Au-Cu bifunctional "interface" is more beneficial than a simple and conventional homogeneous alloying of Au and Cu in stabilizing the key intermediate species, *COOH. The main advantages of the proposed metal-metal bifunctional interfacial catalyst over the bimetallic alloys include that (1) utilization of active materials is improved, and (2) intrinsic properties of metals are less affected in bifunctional catalysts than in alloys, which can then facilitate a rational bifunctional design. These results demonstrate for the first time the importance of metal-metal interfaces and morphology, rather than the simple mixing of the two metals homogeneously, for enhanced catalytic synergies. PMID:27526778

  6. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  7. Dual-responses for electrochemical and electrochemiluminescent detection based on a bifunctional probe.

    PubMed

    Han, Jing; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2014-03-28

    A bifunctional probe (PTC-Tb) which acts as not only a well-defined and stable electrochemical redox molecule but also as a highly efficient co-reactant of an electrochemiluminescent oxygen-peroxydisulfate system was firstly synthesized and applied to the construction of dual-response aptasensors for thrombin detection.

  8. Characterization of a Bifunctional Archaeal Acyl Coenzyme A Carboxylase

    PubMed Central

    Chuakrut, Songkran; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2003-01-01

    Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an α4β4γ4 subunit structure. The optimum temperature for the enzyme was 60 to 70°C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent Km for acetyl-CoA was 0.17 ± 0.03 mM, with a Vmax of 43.3 ± 2.8 U mg−1, and the Km for propionyl-CoA was 0.10 ± 0.008 mM, with a Vmax of 40.8 ± 1.0 U mg−1. This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit. PMID:12533469

  9. Alternative security

    SciTech Connect

    Weston, B.H. )

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview.

  10. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, Kenneth N.; Xu, Jide

    1997-01-01

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of said chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to said 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities.

  11. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  12. Oxidation-Induced Degradable Nanogels for Iron Chelation

    PubMed Central

    Liu, Zhi; Wang, Yan; Purro, Max; Xiong, May P.

    2016-01-01

    Iron overload can increase cellular oxidative stress levels due to formation of reactive oxygen species (ROS); untreated, it can be extremely destructive to organs and fatal to patients. Since elevated oxidative stress levels are inherent to the condition in such patients, oxidation-induced degradable nanogels for iron chelation were rationally designed by simultaneously polymerizing oxidation-sensitive host-guest crosslinkers between β-cyclodextrin (β-CD) and ferrocene (Fc) and iron chelating moieties composed of deferoxamine (DFO) into the final gel scaffold in reverse emulsion reaction chambers. UV-Vis absorption and atomic absorption spectroscopy (AAS) was used to verify iron chelating capability of nanogels. These materials can degrade into smaller chelating fragments at rates proportional to the level of oxidative stress present. Conjugating DFO reduces the cytotoxicity of the chelator in the macrophage cells. Importantly, the nanogel can effectively reduce cellular ferritin expression in iron overloaded cells and regulate intracellular iron levels at the same time, which is important for maintaining a homeostatic level of this critical metal in cells. PMID:26868174

  13. 3-hydroxy-2(1H)-pyridinone chelating agents

    DOEpatents

    Raymond, K.N.; Xu, J.

    1997-04-29

    Disclosed is a series of improved metal chelating agents, which are highly effective upon both injection and oral administration; several of the most effective are of low toxicity. These chelating agents incorporate within their structure 1-hydroxy-2-pyridinone (1,2-HOPO) and 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy or oxo groups of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with its adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provides a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. Also disclosed is a method of making the chelating agents and a method of producing a known compound, 3-hydroxy-1-alkyl-2(1H)pyridinone, used as a precursor to the chelating agent, safely and in large quantities. 2 figs.

  14. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review.

  15. Essential Metalloelement Chelates Facilitate Repair of Radiation Injury

    PubMed Central

    Soderberg, Lee S. F.; Chang, Louis W.; Walker, Richard B.

    2001-01-01

    Treatment with essential metalloelement (Cu, Fe, Mn, and Zn) chelates or combinations of them before and/or after radiation injury is a useful approach to overcoming radiation injury. No other agents are known to increase survival when they are used to treat after irradiation, in a radiorecovery treatment paradigm. These chelates may be useful in facilitating de novo syntheses of essential metalloelement-dependent enzymes required to repair radiation injury. Reports of radioprotection, which involves treatment before irradiation, with calcium-channel blockers, acyl Melatonin homologs, and substituted anilines, which may serve as chelating agents after biochemical modification in vivo, as well as Curcumin, which is a chelating agent, have been included in this review. These inclusions are intended to suggest additional approaches to combination treatments that may be useful in facilitating radiation recovery. These approaches to radioprotection and radiorecovery offer promise in facilitating recovery from radiation-induced injury experienced by patients undergoing radiotherapy for neoplastic disease and by individuals who experience environmental, occupational, or accidental exposure to ultraviolet, x-ray, or γ-ray radiation. Since there are no existing treatments of radiation-injury intended to facilitate tissue repair, studies of essential metalloelement chelates and combinations of them, as well as combinations of them with existing organic radioprotectants, seem worthwhile. PMID:18475999

  16. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  17. Chelation in metal intoxication--Principles and paradigms.

    PubMed

    Aaseth, Jan; Skaug, Marit Aralt; Cao, Yang; Andersen, Ole

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new oral iron antidotes deferiprone and desferasirox have entered into the clinical arena. Comparisons of these agents and deferoxamine infusions are in progress. General principles for research and development of new chelators are briefly outlined in this review. PMID:25457281

  18. Ab Initio Coordination Chemistry for Nickel Chelation Motifs

    PubMed Central

    Jesu Jaya Sudan, R.; Lesitha Jeeva Kumari, J.; Sudandiradoss, C.

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  19. The role of chelation in the treatment of other metal poisonings.

    PubMed

    Smith, Silas W

    2013-12-01

    These proceedings will review the role of chelation in five metals-aluminum, cadmium, chromium, cobalt, and uranium-in order to illustrate various chelation concepts. The process of "chelation" can often be oversimplified, leading to incorrect assumptions and risking patient harm. For chelation to be effective, two critical assumptions must be fulfilled: the presumed "metal toxicity" must correlate with a given body or a particular compartment burden, and reducing this compartmental or the body burden (through chelation) attenuates toxicity. Fulfilling these assumptions requires an established dose-response relationship, a validated, reproducible means of toxicity assessment (clinical, biochemical, or radiographical), and an appropriate assessment mechanisms of body or compartment burden. While a metal might "technically" be capable of chelation (and readily demonstrable in urine or feces), this is an insufficient endpoint. Clinical relevance must be affirmed. Deferoxamine is an accepted chelator for appropriately documented aluminum toxicity. There is a very minimal treatment window in order to address chelation in cadmium toxicity. In acute toxicity, while no definitive chelation benefit is described, succimer (DMSA), diethylenetriaminepentaacetate (DTPA), and potentially ethylenediaminetetraacetic acid (EDTA) have been considered. In chronic toxicity, chelation is unsupported. There is little evidence to suggest that currently available chromium chelators are efficacious. Similarly, scant human evidence exists with which to provide recommendation for cobalt chelation. DTPA has been recommended for cobalt radionuclide chelation, although DMSA, EDTA, and N-acetylcysteine have also been suggested. DTPA is unsupported for uranium chelation. Sodium bicarbonate is currently recommended, although animal evidence is conflicting.

  20. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction.

    PubMed

    Zhu, Chengzhou; Zhai, Junfeng; Dong, Shaojun

    2012-09-28

    We demonstrated a facile and green approach to synthesize bifunctional fluorescent carbon nanodots via soy milk, which not only showed favorable photoluminescent properties, but also exhibited good electrocatalytic activity towards oxygen reduction reaction.

  1. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.

    PubMed

    Tsang, Daniel C W; Hartley, Neil R

    2014-03-01

    Biodegradable chelating agents ([S,S]-ethylenediamine-N,N-disuccinic acid (EDDS) and glutamic-N,N-diacetic acid (GLDA)) and natural humic substances (lignite-derived, standard, and commercially available humic acids) are potentially useful for enhancing soil remediation of timber treatment sites. This study integrated macroscopic and spectroscopic analyses to assess their influence on the distribution and chemical speciation of the remaining metals as well as their interaction with the soil surface after 48-h washing of a field-contaminated soil. The results demonstrated that EDDS and GLDA were an appealing alternative to non-biodegradable ethylenediamine-tetraacetic acid, but the three humic substances were less effective. As shown by sequential extractions, Cu was primarily extracted from the carbonate fraction while Cr and As extraction resulted from (co-)dissolution of the oxide fraction. As a result, the relative proportion of strongly bound organic matter and residual fractions increased by 7-16 %. However, it was noteworthy that the exchangeable fraction also increased by 5-11 %, signifying that a portion of the remaining metals was destabilized by chelating agents and transformed to be more labile in the treated soil. The X-ray photoelectron spectroscopy spectra confirmed the substantial removal of readily accessible Cu from the soil surface, but Cr maintained its original chemical forms of trivalent chromium oxides and iron-chromium coprecipitates, whereas As remained as arsenic trioxide/pentoxide and copper arsenate precipitates. On the other hand, the absence of characteristic peaks of adsorbed carboxylate groups in the Fourier-transform infrared (FTIR) spectra inferred that the extent of adsorption of chelating agents and humic substances on the bulk soil was insufficient to be characterized by FTIR analysis. These results suggested that attention should be paid to the exchangeable fraction of Cu and oxides/coprecipitates of As prior to possible on

  2. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates

    PubMed Central

    Mikhailov, Oleg V.

    2014-01-01

    This article is a review of recent developments in the self-assembled nanostructures based on chelate coordination compounds. Molecular nanotechnologies of self-assembly of 3d-element aza- and thiazametalmacrocyclic complexes that happen in nanoreactors on the basis of metal hexacyanoferrate(II) gelatin-immobilized matrix under their contact with water solutions containing various (N,O,S)-donor atomic ligands and organic compounds having one or two carbonyl groups have been considered in this review. It has been noted that the assortment of macrocyclic metal chelates obtained as a result of using molecular nanotechnologies in such specific conditions considerably differs from the assortment of metal chelates formed at the conditions traditional for chemical synthesis. PMID:24516711

  3. Chelation and foam separation of metal ions from solutions

    SciTech Connect

    Carleson, T.E.; Moussavi, M.

    1988-08-01

    An experimental study was conducted on the chelation and foam separation of trace amounts of cadmium, zinc, and lead from their water solutions. The chelation agents ethylenediaminetetraacetate (sodium salt), sodium diethyldithiocarbamate, and citric acid were used with sodium dodecylsulfate (SDS) as a foam-producing agent. The chelation agents did not produce metal complexes that were very surface active. The foam-producing agent produced metal ion complexes that were surface active and resulted in appreciable separation of the metal ions. The use of 100 ppm SDS resulted in separation of 90% of the zinc ions from solution containing 2 to 20 ppm zinc. At concentrations below and above this, the removal efficiency dropped significantly.

  4. Iron chelation inhibits the development of pulmonary vascular remodeling.

    PubMed

    Wong, Chi-Ming; Preston, Ioana R; Hill, Nicholas S; Suzuki, Yuichiro J

    2012-11-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Because iron is an important regulator of ROS biology, this study examined the effects of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited the growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension.

  5. Role of EDTA chelation therapy in cardiovascular diseases.

    PubMed

    Shrihari, J S; Roy, A; Prabhakaran, D; Reddy, K Srinath

    2006-01-01

    Chelation therapy is a widely practised mode of treatment for atherosclerotic cardiovascular diseases all over the world. However, evidence for the utility of this therapy is limited and conflicting. We did a systematic review of the literature. The reference listings of the articles, obtained from a Pubmed search using relevant keywords, were searched for additional related articles. Most of the evidence supporting the use of EDTA chelation therapy is from case reports, small series or uncontrolled, open-label clinical trials. The published randomized controlled trials include few patients and their results are of limited value. Uncontrolled studies have reported symptomatic improvements but the few controlled trials suggest that these benefits are due to a placebo effect. The available data do not support the use of chelation in cardiovascular diseases. This therapy should be used only in the context of a research trial including patients who have failed to respond to conventional treatment.

  6. Iron chelation inhibits the development of pulmonary vascular remodeling

    PubMed Central

    Wong, Chi-Ming; Preston, Ioana R.; Hill, Nicholas S.; Suzuki, Yuichiro J.

    2012-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. Since iron is an important regulator of ROS biology, the present study examined the effect of iron chelation on the development of pulmonary vascular remodeling. The administration of an iron chelator, deferoxamine, to rats prevented chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling. Various iron chelators inhibited growth of cultured pulmonary artery smooth muscle cells. Protein carbonylation, an important iron-dependent biological event, was promoted in association with pulmonary vascular remodeling and cell growth. A proteomic approach identified that Rho GDP-dissociation inhibitor (a negative regulator of RhoA) is carbonylated. In human plasma, the protein carbonyl content was significantly higher in patients with idiopathic pulmonary arterial hypertension than in healthy controls. These results suggest that iron plays an important role in the ROS-dependent mechanism underlying the development of pulmonary hypertension. PMID:22974762

  7. Predicting stability constants of various chelating agents using QSAR technology

    SciTech Connect

    Okey, R.W.; Lin, S.W.; Hong, P.K.A.

    1995-12-31

    The practice of capturing metals from contaminated soil slurry often involves the use of organics as chelators. This work was undertaken to develop information on the molecular characteristics which optimize the removal or the complexation of cadmium, copper, lead and zinc. Quantitative structure-activity relationship (QSAR) technology was employed using special techniques developed for the determination of the correct set of variables. The linear free energy relationship was applied using a 183 case data set to obtain regression coefficients. Equations obtained are provided. The differences in the coefficients and variables may be used as a guide in selecting the optimum chelator for a specific metal. The use of QSAR technology appears effective in furthering the understanding of metal-chelator relationships. A variable set combining molecular connectivity indices and fragments or groups can be used to minimize the size of the data set required for a valid regression and for the avoidance of collinearity problems.

  8. Novel chelate-induced magnetic alignment of biological membranes.

    PubMed Central

    Prosser, R S; Volkov, V B; Shiyanovskaya, I V

    1998-01-01

    A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb3+) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb3+, is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases. PMID:9788910

  9. Clinical monitoring and management of complications related to chelation therapy in patients with β-thalassemia.

    PubMed

    Saliba, Antoine N; El Rassi, Fuad; Taher, Ali T

    2016-01-01

    Iron chelating agents - deferoxamine (DFO), deferiprone (DFP), and deferasirox (DFX) - are used to treat chronic iron overload in patients with β-thalassemia in an attempt to reduce morbidity and mortality related to siderosis. Each of the approved iron chelating agents has its own advantages over the others and also has its own risks, whether related to over-chelation or not. In this review, we briefly discuss the methods to monitor the efficacy of iron chelation therapy (ICT) and the evidence behind the use of each iron chelating agent. We also portray the risks and complications associated with each iron chelating agent and recommend strategies to manage adverse events.

  10. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    NASA Astrophysics Data System (ADS)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  11. Efficacy of chelation therapy to remove aluminium intoxication.

    PubMed

    Fulgenzi, Alessandro; De Giuseppe, Rachele; Bamonti, Fabrizia; Vietti, Daniele; Ferrero, Maria Elena

    2015-11-01

    There is a distinct correlation between aluminium (Al) intoxication and neurodegenerative diseases (ND). We demonstrated how patients affected by ND showing Al intoxication benefit from short-term treatment with calcium disodium ethylene diamine tetraacetic acid (EDTA) (chelation therapy). Such therapy further improved through daily treatment with the antioxidant Cellfood. In the present study we examined the efficacy of long-term treatment, using both EDTA and Cellfood. Slow intravenous treatment with the chelating agent EDTA (2 g/10 mL diluted in 500 mL physiological saline administered in 2 h) (chelation test) removed Al, which was detected (using inductively coupled plasma mass spectrometry) in urine samples collected from patients over 12 h. Patients that revealed Al intoxication (expressed in μg per g creatinine) underwent EDTA chelation therapy once a week for ten weeks, then once every two weeks for a further six or twelve months. At the end of treatment (a total of 22 or 34 chelation therapies, respectively), associated with daily assumption of Cellfood, Al levels in the urine samples were analysed. In addition, the following blood parameters were determined: homocysteine, vitamin B12, and folate, as well as the oxidative status e.g. reactive oxygen species (ROS), total antioxidant capacity (TAC), oxidized LDL (oxLDL), and glutathione. Our results showed that Al intoxication reduced significantly following EDTA and Cellfood treatment, and clinical symptoms improved. After treatment, ROS, oxLDL, and homocysteine decreased significantly, whereas vitamin B12, folate and TAC improved significantly. In conclusion, our data show the efficacy of chelation therapy associated with Cellfood in subjects affected by Al intoxication who have developed ND.

  12. Lauriston S. Taylor Lecture: the quest for therapeutic actinide chelators.

    PubMed

    Durbin, Patricia W

    2008-11-01

    All of the actinides are radioactive. Taken into the body, they damage and induce cancer in bone and liver, and in the lungs if inhaled, and U(VI) is a chemical kidney poison. Containment of radionuclides is fundamental to radiation protection, but if it is breached accidentally or deliberately, decontamination of exposed persons is needed to reduce the consequences of radionuclide intake. The only known way to reduce the health risks of internally deposited actinides is to accelerate their excretion with chelating agents. Ethylendiaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) were introduced in the 1950's. DTPA is now clinically accepted, but its oral activity is low, it must be injected as a Ca(II) or Zn(II) chelate to avoid toxicity, and it is structurally unsuitable for chelating U(VI) or Np(V). Actinide penetration into the mammalian iron transport and storage systems suggested that actinide ions would form stable complexes with the Fe(III)-binding units found in potent selective natural iron chelators (siderophores). Testing of that biomimetic approach began in the late 1970's with the design, production, and assessment for in vivo Pu(IV) chelation of synthetic multidentate ligands based on the backbone structures and Fe(III)-binding groups of siderophores. New efficacious actinide chelators have emerged from that program, in particular, octadentate 3,4,3-LI(1,2-HOPO) and tetradentate 5-LIO(Me-3,2-HOPO) have potential for clinical acceptance. Both are much more effective than CaNa3-DTPA for decorporation of Pu(IV), Am(III), U(VI), and Np(IV,V), they are orally active, and toxicity is acceptably low at effective dosage.

  13. Interaction of chelating agents with cadmium in mice and rats

    SciTech Connect

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-03-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl/sub 2/ and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl/sub 2/ was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl/sub 2/ and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes.

  14. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    SciTech Connect

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  15. Chelation-assisted regioselective C-O bond clevage reactions

    SciTech Connect

    Sue-Min Yeh; yu-Huei Chen; Ruey-Min Chen

    1995-12-31

    Chelation demonstrates a unique role to direct the chemo- and regioselectivity on a variety of fascinating transformations. The strategy has been extensively employed in the regioselective intramolecular addition of an organometallic species to a coordinated double bond and in the activation of a neighboring C-H bond. In this paper, the authors present the recent progress on applications of the chelation-assisted C-O bond cleavage reactions in acetals. Thus, treatments of various acetonides of monosaccharide and inositol derivatives with the Grignard reagent afford regioselectively the corresponding products having only one free hydroxy group.

  16. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  17. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells

    SciTech Connect

    Bao, Yizhong; Wang, Dan; Li, Zhiming; Hu, Yuxing; Xu, Aihong; Wang, Quanrui; Shao, Chunlin; Chen, Honghong

    2013-05-15

    Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa{sub 3}. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levels in urine, kidneys and femurs were measured 24 h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24 h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa{sub 3}. - Highlights: ► BPCBG accelerated the urine U(VI) excretion and reduced the tissues U(VI) in rats.

  18. Integrative cardiac revitalization: bypass surgery, angioplasty, and chelation. Benefits, risks, and limitations.

    PubMed

    Kidd, P M

    1998-02-01

    Coronary artery disease (CAD) is still the main cause of premature death in the industrialized world. The revascularization modalities, bypass surgery and angioplasty, when successful provide restored blood flow to the myocardium. Bypass remains the most proven means for managing more severe cases of CAD, namely triple vessel disease with or without complications, while angioplasty works best for cases of single or double vessel disease with minimal complications. Both types of intervention partially relieve angina as they clear arterial blockage. Both save lives to an extent greater than medication alone. However, both are limited to being palliative since they fail to treat the underlying atherosclerotic occlusive process. EDTA chelation therapy appears to achieve revitalization of the myocardium, and is a viable alternative or adjunct to revascularization. Fish oils are now proven to help revitalize vessel wall endothelia and to partially reverse atherosclerotic damage. Being safe and having proven benefits, chelation therapy and fish oils can be integrated together with nutrients, lifestyle-dietary revision, exercise, and medications as necessary, into a cardiovascular revitalization strategy. Cardiovascular revitalization would be highly cost-effective and procedurally compatible with the revascularization modalities, while extending beyond revascularization to halt atherosclerotic progression, restore cardiac functionality, extend survival, and improve quality of life.

  19. Rhodium catalyzed chelation-assisted C-H bond functionalization reactions.

    PubMed

    Colby, Denise A; Tsai, Andy S; Bergman, Robert G; Ellman, Jonathan A

    2012-06-19

    Over the last several decades, researchers have achieved remarkable progress in the field of organometallic chemistry. The development of metal-catalyzed cross-coupling reactions represents a paradigm shift in chemical synthesis, and today synthetic chemists can readily access carbon-carbon and carbon-heteroatom bonds from a vast array of starting compounds. Although we cannot understate the importance of these methods, the required prefunctionalization to carry out these reactions adds cost and reduces the availability of the starting reagents. The use of C-H bond activation in lieu of prefunctionalization has presented a tantalizing alternative to classical cross-coupling reactions. Researchers have met the challenges of selectivity and reactivity associated with the development of C-H bond functionalization reactions with an explosion of creative advances in substrate and catalyst design. Literature reports on selectivity based on steric effects, acidity, and electronic and directing group effects are now numerous. Our group has developed an array of C-H bond functionalization reactions that take advantage of a chelating directing group, and this Account surveys our progress in this area. The use of chelation control in C-H bond functionalization offers several advantages with respect to substrate scope and application to total synthesis. The predictability and decreased dependence on the inherent stereoelectronics of the substrate generally result in selective and high yielding transformations with broad applicability. The nature of the chelating moiety can be chosen to serve as a functional handle in subsequent elaborations. Our work began with the use of Rh(I) catalysts in intramolecular aromatic C-H annulations, which we further developed to include enantioselective transformations. The application of this chemistry to the simple olefinic C-H bonds found in α,β-unsaturated imines allowed access to highly substituted olefins, pyridines, and piperidines. We

  20. New developments and controversies in iron metabolism and iron chelation therapy.

    PubMed

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-03-26

    haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies.

  1. New developments and controversies in iron metabolism and iron chelation therapy

    PubMed Central

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-01-01

    haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies. PMID:27019793

  2. New developments and controversies in iron metabolism and iron chelation therapy.

    PubMed

    Kontoghiorghe, Christina N; Kontoghiorghes, George J

    2016-03-26

    haemochromatosis, thalassaemia intermedia and ex-thalassaemia transplanted patients who are safely treated with venesection. Iron chelating drugs can override normal regulatory pathways, correct iron imbalance and minimise iron toxicity. The use of iron chelating drugs as main, alternative or adjuvant therapy is in progress in many conditions, especially those with non established or effective therapies. PMID:27019793

  3. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  4. A predictive model of bifunctional transcription factor signaling during embryonic tissue patterning.

    PubMed

    Junker, Jan Philipp; Peterson, Kevin A; Nishi, Yuichi; Mao, Junhao; McMahon, Andrew P; van Oudenaarden, Alexander

    2014-11-24

    Hedgehog signaling controls pattern formation in many vertebrate tissues. The downstream effectors of the pathway are the bifunctional Gli transcription factors, which, depending on hedgehog concentration, act as either transcriptional activators or repressors. Quantitatively understanding the interplay between Gli activator and repressor forms for patterning complex tissues is an open challenge. Here, we describe a reductionist mathematical model for how Gli activators and repressors are integrated in space and time to regulate transcriptional outputs of hedgehog signaling, using the pathway readouts Gli1 and Ptch1 as a model system. Spatially resolved measurements of absolute transcript numbers for these genes allow us to infer spatiotemporal variations of Gli activator and repressor levels. We validate our model by successfully predicting expression changes of Gli1 and Ptch1 in mutants at different developmental stages and in different tissues. Our results provide a starting point for understanding gene regulation by bifunctional transcription factors during mammalian development. PMID:25458012

  5. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-01

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually conducted on a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which can manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for manipulation of multi-physics field.

  6. Bifunctional nanoarrays for probing the immune response at the single-molecule level

    PubMed Central

    Cai, Haogang; Depoil, David; Palma, Matteo; Sheetz, Michael P.; Dustin, Michael L.; Wind, Shalom J.

    2013-01-01

    Bifunctional nanoarrays were created to simulate the immunological synapse and probe the T-cell immune response at the single-molecule level. Sub-5 nm AuPd nanodot arrays were fabricated using both e-beam and nanoimprint lithography. The nanoarrays were then functionalized by two costimulatory molecules: antibody UCHT1 Fab, which binds to the T-cell receptor (TCR) and activates the immune response, bound to metallic nanodots; and intercellular adhesion molecule-1, which enhances cell adhesion, on the surrounding area. Initial T-cell experiments show successful attachment and activation on the bifunctional nanoarrays. This nanoscale platform for single-molecule control of TCR in living T-cells provides a new approach to explore how its geometric arrangement affects T-cell activation and behavior, with potential applications in immunotherapy. This platform also serves as a general model for single-molecule nanoarrays where more than one molecular species is required. PMID:24353927

  7. Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum.

    PubMed

    Yuan, Shuo-Fu; Wu, Tzu-Hui; Lee, Hsiao-Lin; Hsieh, Han-Yu; Lin, Wen-Ling; Yang, Barbara; Chang, Chih-Kang; Li, Qian; Gao, Jian; Huang, Chun-Hsiang; Ho, Meng-Chiao; Guo, Rey-Ting; Liang, Po-Huang

    2015-02-27

    We expressed an active form of CtCel5E (a bifunctional cellulase/xylanase from Clostridium thermocellum), performed biochemical characterization, and determined its apo- and ligand-bound crystal structures. From the structures, Asn-93, His-168, His-169, Asn-208, Trp-347, and Asn-349 were shown to provide hydrogen-bonding/hydrophobic interactions with both ligands. Compared with the structures of TmCel5A, a bifunctional cellulase/mannanase homolog from Thermotoga maritima, a flexible loop region in CtCel5E is the key for discriminating substrates. Moreover, site-directed mutagenesis data confirmed that His-168 is essential for xylanase activity, and His-169 is more important for xylanase activity, whereas Asn-93, Asn-208, Tyr-270, Trp-347, and Asn-349 are critical for both activities. In contrast, F267A improves enzyme activities.

  8. Biochemical Characterization and Structural Analysis of a Bifunctional Cellulase/Xylanase from Clostridium thermocellum*

    PubMed Central

    Yuan, Shuo-Fu; Wu, Tzu-Hui; Lee, Hsiao-Lin; Hsieh, Han-Yu; Lin, Wen-Ling; Yang, Barbara; Chang, Chih-Kang; Li, Qian; Gao, Jian; Huang, Chun-Hsiang; Ho, Meng-Chiao; Guo, Rey-Ting; Liang, Po-Huang

    2015-01-01

    We expressed an active form of CtCel5E (a bifunctional cellulase/xylanase from Clostridium thermocellum), performed biochemical characterization, and determined its apo- and ligand-bound crystal structures. From the structures, Asn-93, His-168, His-169, Asn-208, Trp-347, and Asn-349 were shown to provide hydrogen-bonding/hydrophobic interactions with both ligands. Compared with the structures of TmCel5A, a bifunctional cellulase/mannanase homolog from Thermotoga maritima, a flexible loop region in CtCel5E is the key for discriminating substrates. Moreover, site-directed mutagenesis data confirmed that His-168 is essential for xylanase activity, and His-169 is more important for xylanase activity, whereas Asn-93, Asn-208, Tyr-270, Trp-347, and Asn-349 are critical for both activities. In contrast, F267A improves enzyme activities. PMID:25575592

  9. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation.

    PubMed

    Gorlin, Yelena; Jaramillo, Thomas F

    2010-10-01

    There is a growing interest in oxygen electrochemistry as conversions between O(2) and H(2)O play an important role in a variety of renewable energy technologies. The goal of this work is to develop active bifunctional catalyst materials for water oxidation and oxygen reduction. Drawing inspiration from a cubane-like CaMn(4)O(x), the biological catalyst found in the oxygen evolving center (OEC) in photosystem II, nanostructured manganese oxide surfaces were investigated for these reactions. Thin films of nanostructured manganese oxide were found to be active for both oxygen reduction and water oxidation, with similar overall oxygen electrode activity to the best known precious metal nanoparticle catalysts: platinum, ruthenium, and iridium. Physical and chemical characterization of the nanostructured Mn oxide bifunctional catalyst reveals an oxidation state of Mn(III), akin to one of the most commonly observed Mn oxidation states found in the OEC. PMID:20839797

  10. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    SciTech Connect

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-06-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K{sub d} values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins.

  11. Improving stability and biocompatibility of alginate/chitosan microcapsule by fabricating bi-functional membrane.

    PubMed

    Zheng, Guoshuang; Liu, Xiudong; Wang, Xiuli; Chen, Li; Xie, Hongguo; Wang, Feng; Zheng, Huizhen; Yu, Weiting; Ma, Xiaojun

    2014-05-01

    Cell encapsulation technology holds promise for the cell-based therapy. But poor mechanical strength and biocompatibility of microcapsule membrane are still obstacles for the clinical applications. A novel strategy is presented to prepare AC₁ C₂ A microcapsules with bi-functional membrane (that is, both desirable biocompatibility and membrane stability) by sequentially complexing chitosans with higher deacetylation degree (C₁) and lower deacetylation degree (C₂) on alginate (A) gel beads. Both in vitro and in vivo evaluation of AC₁C₂ A microcapsules demonstrate higher membrane stability and less cell adhesion, because the introduction of C₂ increases membrane strength and decreases surface roughness. Moreover, diffusion test of AC₁C₂ A microcapsules displays no inward permeation of IgG protein suggesting good immunoisolation function. The results demonstrate that AC₁C₂ A microcapsules with bi-functional membrane could be a promising candidate for microencapsulated cell implantation with cost effective usage of naturally biocompatible polysaccharides.

  12. Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators.

    PubMed

    Ogiwara, Yoshiko; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-04-01

    Many packaged foods utilize synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit iron-promoted oxidation or microbial growth which would result in quality loss. To address consumer demands for all natural products, we have previously developed a non-migratory iron chelating active packaging material by covalent immobilization of polyhydroxamate and demonstrated its efficacy in delaying lipid oxidation. Herein, we demonstrate the ability of this hydroxamate-functionalized iron chelating active packaging to retain iron chelating capacity; even in the presence of competing ions common in food. Both immobilized and soluble hydroxamate chelators retained iron chelating capacity in the presence of calcium, magnesium, and sodium competing ions, although at pH 5.0 the presence of calcium reduced immobilized hydroxamate iron chelation. A strong correlation was found between colorimetric and mass spectral analysis of iron chelation by the chelating packaging material. Such chelating active packaging may support reducing additive use in product formulations, while retaining quality and shelf life.

  13. Phase-Transfer Catalysis via a Proton Sponge: A Bifunctional Role for Biscyclopropenimine.

    PubMed

    Belding, Lee; Stoyanov, Peter; Dudding, Travis

    2016-01-15

    The use of a bis(diisopropylamino)cyclopropenimine-substituted bis-protonated proton sponge as a bifunctional phase-transfer catalyst is reported. Experimental studies and DFT calculations suggest it operates simultaneously as a hydrogen bond donor and a phase-transfer catalyst, facilitating the movement of charged intermediates from the interface to the organic phase via favorable partitioning of hydrophilic/hydrophobic surface areas, resulting in high catalytic activity. PMID:26649566

  14. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries. PMID:27043451

  15. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  16. Scintigraphic monitoring of immunotoxins using radionuclides and heterobifunctional chelators

    SciTech Connect

    Reardan, D.; Bernhard, S.

    1991-10-22

    This patent describes a method for in vivo radioimmunodetection of cytotoxic immunotoxin. It comprises administering internally to a mammal a radio-labeled immunotoxin, wherein a heterobifunctional chelating agent provides a chemical bridge between a radiolabel and a cytotoxic component bound to the antigen-binding component of the immunotoxin, and detecting externally the distribution of the immunotoxin in the mammal.

  17. Chelation of thallium by combining deferasirox and desferrioxamine in rats.

    PubMed

    Saljooghi, Amir Shokooh; Babaie, Maryam; Mendi, Fatemeh Delavar; Zahmati, Maliheh; Saljooghi, Zoheir Shokouh

    2016-01-01

    The hypothesis that two known chelators deferasirox (4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in a new acute rat model. 7-week-old male Wistar rats received chelators: deferasirox (orally), DFO (intraperitoneal; i.p.), or deferasirox + DFO as 75 or 150 mg/kg dose half an hour after a single i.p. administration of 8 mg thallium/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium, and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than deferasirox in enhancing urinary thallium excretion, deferasirox was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the DFO effect on thallium and DFO did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results.

  18. Chelation And Extraction Of Metals For GC-MS Analysis

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    1995-01-01

    Chelation followed by supercritical-fluid extraction enables mass-spectrometric analysis. When fully developed, method implemented in field-portable apparatus for detection and quantification of metals in various matrices without need for elaborate preparation of samples. Used to analyze soil samples for toxic metals.

  19. Evaluation of intakes of transuranics influenced by chelation therapy

    SciTech Connect

    LaBone, T.R.

    1994-02-01

    Once an intake of transuranics occurs, there are only three therapeutic procedures available to the physician for reducing the intake and mitigating the dose: excision of material from wounds, removal of material from the lungs with lavage, and chelation therapy. The only chelation agents approved in the United States for the treatment of occupational intakes of transuranics are the zinc and calcium salts of diethylene-triamine-pentaacetic acid, better known as Zn-DTPA and Ca-DTPA. In the past 35 years, approximately 3000 doses of DTPA have been administrated to over 500 individuals who had intakes of transuranics. The drug is considered to be quiet safe and has few side effects. For the internal dosimetrist, perhaps the most important aspects of chelation therapy is that if enhances the excretion rate of a transuranic and perturbs the shape of the urinary excretion curve. These perturbations last for months and are so great that standard urinary excretion models cannot be used to evaluate the intake. We review here a method for evaluating intakes of transuranics influenced by chelation therapy that has been used with some degree of success at the Savannah River Site for over 20 years.

  20. Chelation therapy in cardiovascular disease: ethylenediaminetetraacetic acid, deferoxamine, and dexrazoxane.

    PubMed

    Elihu, N; Anandasbapathy, S; Frishman, W H

    1998-02-01

    This review was conducted to assess whether there is sufficient evidence for the clinical use of chelation therapy in cardiovascular disease based on original articles and abstracts published in the last 30 years, with emphasis placed on the most recent placebo-controlled studies. Articles postulating the mechanisms of chelation also were included. The majority of the literature focused on three chelators in particular, ethylenediaminetetraacetic acid (EDTA), deferoxamine, and dexrazoxane (ICRF-187). Historically, much has been written on the beneficial effects of EDTA. However, there are few controlled studies, and the mechanism of action of EDTA is poorly understood. Although studies of deferoxamine are more recent, most of the research is limited to animals and ex vivo models. Recently, dexrazoxane was approved, but only for parenteral use for reducing the incidence and severity of cardiomyopathy associated with doxorubicin administration in women with metastatic breast cancer. Given these limitations, it is concluded that more controlled studies are required to determine the efficacy of chelation therapy in cardiovascular disease before it can be used broadly in the clinical setting.

  1. Desferrithiocin: A Search for Clinically Effective Iron Chelators

    PubMed Central

    2015-01-01

    The successful search for orally active iron chelators to treat transfusional iron-overload diseases, e.g., thalassemia, is overviewed. The critical role of iron in nature as a redox engine is first described, as well as how primitive life forms and humans manage the metal. The problems that derive when iron homeostasis in humans is disrupted and the mechanism of the ensuing damage, uncontrolled Fenton chemistry, are discussed. The solution to the problem, chelator-mediated iron removal, is clear. Design options for the assembly of ligands that sequester and decorporate iron are reviewed, along with the shortcomings of the currently available therapeutics. The rationale for choosing desferrithiocin, a natural product iron chelator (a siderophore), as a platform for structure–activity relationship studies in the search for an orally active iron chelator is thoroughly developed. The study provides an excellent example of how to systematically reengineer a pharmacophore in order to overcome toxicological problems while maintaining iron clearing efficacy and has led to three ligands being evaluated in human clinical trials. PMID:25207964

  2. Sirtuin inhibitor sirtinol is an intracellular iron chelator

    PubMed Central

    Gautam, R.; Akam, E. A.; Astashkin, A. V.; Loughrey, J. J.

    2015-01-01

    Sirtinol is a known inhibitor of sirtuin proteins, a family of deacetylases involved in the pathophysiology of aging. Spectroscopic and structural data reveal that this compound is also an iron chelator forming high-spin ferric species in vitro and in cultured leukemia cells. Interactions with the highly regulated iron pool therefore contribute to its overall intracellular agenda. PMID:25715179

  3. MDs remain sceptical as chelation therapy goes mainstream in Saskatchewan

    PubMed Central

    Oliver, M

    1997-01-01

    The College of Physicians and Surgeons of Saskatchewan recently agreed to allow physicians to administer chelation therapy. Supporters, relying on anecdotal evidence, say it works wonders in overcoming heart disease, but many physicians remain profoundly sceptical. In Saskatchewan, the college decision has proved popular with patients but has drawn an angry reaction from doctors. PMID:9307563

  4. Alternate Alternates: A Medley of Alternate Assessments.

    ERIC Educational Resources Information Center

    Burdette, Paula J.; Olsen, Ken

    This paper highlights eight states that have implemented alternate assessments for children with disabilities who cannot participate in their state and district-wide assessment programs. The alternate assessment systems in Delaware, Florida, Georgia, Indiana, Minnesota, North Dakota, Utah, and West Virginia are briefly described, along with their…

  5. Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    PubMed Central

    Bazan, J F; Fletterick, R J; Pilkis, S J

    1989-01-01

    The bifunctional rat liver enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (ATP:D-fructose-6-phosphate 2-phosphotransferase/D-fructose-2,6-bisphosphate 2-phosphohydrolase, EC 2.7.1.105/EC 3.1.3.46) is constructed of two independent catalytic domains. We present evidence that the kinase and bisphosphatase halves of the bifunctional enzyme are, respectively, structurally similar to the glycolytic enzymes 6-phosphofructo-1-kinase and phosphoglycerate mutase. Computer-assisted modeling of the C-terminal bisphosphatase domain reveals a hydrophobic core and active site residue constellation equivalent to the yeast mutase structure; structural differences map to length-variable, surface-located loops. Sequence patterns derived from the structural alignment of mutases and the bisphosphatase further detect a significant similarity to a family of acid phosphatases. The N-terminal kinase domain, in turn, is predicted to form a nucleotide-binding fold that is analogous to a segment of 6-phosphofructo-1-kinase, suggesting that these unrelated enzymes bind fructose 6-phosphate and ATP substrates in a similar geometry. This analysis indicates that the bifunctional enzyme is the likely product of gene fusion of kinase and mutase/phosphatase catalytic units. Images PMID:2557623

  6. Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major.

    PubMed Central

    Beverley, S M; Ellenberger, T E; Cordingley, J S

    1986-01-01

    We have determined the nucleotide sequence of the dihydrofolate reductase-thymidylate synthetase (DHFR-TS) gene of the protozoan parasite Leishmania major (dihydrofolate reductase, EC 1.5.1.3 and thymidylate synthase, EC 2.1.1.45). The DHFR-TS protein is encoded by a single 1560-base-pair open reading frame within genomic DNA, in contrast to vertebrate DHFRs or mouse and phage T4 TSs, which contain intervening sequences. Comparisons of the DHFR-TS sequence with DHFR and TS sequences of other organisms indicate that the order of enzymatic activities within the bifunctional polypeptide chain is DHFR followed by TS, the Leishmania bifunctional DHFR-TS evolved independently and not through a phage T4-related intermediate, and the rate of evolution of both the DHFR and TS domains has not detectably changed despite the acquisition of new functional properties by the bifunctional enzyme. The Leishmania gene is 86% G+C in the third codon position, in contrast to genes of the parasite Plasmodium falciparum, which exhibit an opposite bias toward A+T. The DHFR-TS locus is encoded within a region of DNA amplified in methotrexate-resistant lines, as previously proposed. PMID:3458220

  7. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. PMID:26247625

  8. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    DOE PAGES

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of themore » eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  9. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  10. Characterization of a bifunctional xylanase/endoglucanase from yak rumen microorganisms.

    PubMed

    Chang, Lei; Ding, Mozhu; Bao, Lei; Chen, Yingzhi; Zhou, Jungang; Lu, Hong

    2011-06-01

    A new gene, RuCelA, encoding a bifunctional xylanase/endoglucanase, was cloned from a metagenomic library of yak rumen microorganisms. RuCelA showed activity against xylan and carboxymethylcellulose (CMC), suggesting bifunctional xylanase/endoglucanase activity. The optimal conditions for xylanase and endoglucanase activities were 65°C, pH 7.0 and 50°C, pH 5.0, respectively. In addition, the presence of Co(+) and Co(2+) can greatly improve RuCelA's endoglucanase activity, while inhibits its xylanase activity. Further examination of substrate preference showed a higher activity against barley glucan and lichenin than against xylan and CMC. Using xylan and barley glucan as substrates, RuCelA displayed obvious synergistic effects with β-1,4-xylosidase and β-1,4-glucosidase. Generation of soluble oligosaccharides from lignocellulose is the key step in bioethanol production, and it is greatly notable that RuCelA can produce xylo-oligosaccharides and cello-oligosaccharides in the continuous saccharification of pretreated rice straw, which can be further degraded into fermentable sugars. Therefore, the bifunctional RuCelA distinguishes itself as an ideal candidate for industrial applications.

  11. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Nie, Lihua; Nie, Zhou; Yao, Shouzhuo

    2009-12-15

    In this paper, a bifunctional electrochemical biosensor for highly sensitive detection of small molecule (adenosine) or protein (lysozyme) was developed. Two aptamer units for adenosine and lysozyme were immobilized on the gold electrode by the formation of DNA/DNA duplex. The detection of adenosine or lysozyme could be carried out by virtue of switching structures of aptamers from DNA/DNA duplex to DNA/target complex. The change of the interfacial feature of the electrode was characterized by cyclic voltammertic (CV) response of surface-bound [Ru(NH(3))(6)](3+). On the other hand, DNA functionalized Au nanoparticles (DNA-AuNPs) were used to enhance the sensitivity of the aptasensor because DNA-AuNPs modified interface could load more [Ru(NH(3))(6)](3+) cations. Thus, the assembly of two aptamer-contained DNA strands integrated with the DNA-AuNPs amplification not only improves the sensitivity of the electrochemical aptasensor but also presents a simple and general model for bifunctional aptasensor. The proposed aptasensor has low detection limit (0.02 nM for adenosine and 0.01 microg mL(-1) for lysozyme) and exhibits several advantages such as high sensitivity and bifunctional recognition.

  12. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances.

  13. Design of Ga-DOTA-based bifunctional radiopharmaceuticals: two functional moieties can be conjugated to radiogallium-DOTA without reducing the complex stability.

    PubMed

    Mukai, Takahiro; Suwada, Jun; Sano, Kohei; Okada, Mayumi; Yamamoto, Fumihiko; Maeda, Minoru

    2009-07-01

    From the X-ray crystal structures of Ga-DOTA chelates, we were able to deduce that two free carboxylate groups of the radiogallium-DOTA complex may be utilized for coupling to functional moieties that recognize molecular targets for in vivo imaging without reducing the radiogallium-complex stability. Thus, we designed 2,2'-[4,10-bis(2-{[2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl]amino}-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl]diacetic acid (DOTA-MN2) (7), employing a metronidazole moiety as the recognition site of hypoxic lesions, based on the drug design concept of bifunctional radiopharmaceuticals. Coupling of DOTA-bis(tert-butyl)ester 5 with 1-(2-aminoethyl)-2-methyl-5-nitroimidazole dihydrochloride, followed by deprotection, afforded the required 7 (DOTA-MN2). (67)Ga-labeling was carried out by reaction of DOTA-MN2 with (67)Ga-citrate. When (67)Ga-DOTA-MN2 was incubated in phosphate-buffered saline or mouse plasma, no measurable decomposition occurred over a 24-h period. In biodistribution experiments in NFSa tumor-bearing mice, (67)Ga-DOTA-MN2 displayed not only a significant tumor uptake, but also rapid blood clearance and low accumulations in nontarget tissues, resulting in high target-to-nontarget ratios of radioactivity. These results indicate the potential benefits of the drug design of (67)Ga-DOTA-MN2. The present findings provide helpful information for the development of radiogallium-labeled radiopharmaceuticals for SPECT and PET studies. PMID:19481944

  14. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Chen, Binling; Li, Rong; Ma, Guiping; Gou, Xinglong; Zhu, Yanqiu; Xia, Yongde

    2015-12-01

    Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs. -0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm-2 current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies.Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the

  15. Modular "Click" Preparation of Bifunctional Polymeric Heterometallic Catalysts.

    PubMed

    Wang, Wenlong; Zhao, Liyuan; Lv, Hui; Zhang, Guodong; Xia, Chungu; Hahn, F Ekkehardt; Li, Fuwei

    2016-06-27

    Heterobimetallic molecular complexes or strictly alternating metallated polymers are obtained by a click reaction between mononuclear metal complexes (secondary building units, SBUs) bearing NHCs functionalized with either p-azidophenyl or p-ethynylphenyl wingtips. With a copper-NHC complex as SBU the formation of molecular or polymeric compounds did not require any additives as the copper complex catalyzes the click reaction. Transmetallation from heterobimetallic Cu/Ag derivatives to Cu/Pd derivatives was achieved. The linker between the SBUs (flexible or rigid) influences the catalytic activity of the heterobimetallic compounds. The polymer with alternating copper-NHC and silver-NHC units and a flexible methylene-triazole bridge between them shows the highest activity in the catalytic alkynylation of trifluoromethyl ketones to give fluorinated propargylic alcohols. PMID:27331787

  16. Chelator induced phytoextraction and in situ soil washing of Cu.

    PubMed

    Kos, Bostjan; Lestan, Domen

    2004-11-01

    In a soil column experiment, we investigated the effect of 5 mmol kg(-1) soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg(-1) Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8 +/-1.3 mg kg(-1) Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg(-1) exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53 +/- 0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.

  17. Copper chelators: chemical properties and bio-medical applications.

    PubMed

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  18. EDTA Chelation Therapy, Without Added Vitamin C, Decreases Oxidative DNA Damage and Lipid Peroxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chelation therapy is thought to not only remove contaminating metals, but also to decrease free radical production. However, in standard EDTA chelation therapy high doses of vitamin C with potential prooxidant effects are often added to the chelation solution. We demonstrated previously that the in...

  19. The copper-chelating agent, trientine, suppresses tumor development and angiogenesis in the murine hepatocellular carcinoma cells.

    PubMed

    Yoshii, J; Yoshiji, H; Kuriyama, S; Ikenaka, Y; Noguchi, R; Okuda, H; Tsujinoue, H; Nakatani, T; Kishida, H; Nakae, D; Gomez, D E; De Lorenzo, M S; Tejera, A M; Fukui, H

    2001-12-15

    Angiogenesis is now recognized as a crucial process in tumor development, including hepatocellular carcinoma (HCC). Since HCC is known as a hypervascular tumor, anti-angiogenesis is a promising approach to inhibit the HCC development. Trientine dihydrochloride (trientine) is used in clinical practice as an alternative copper (Cu)-chelating agent for patients with Wilson's disease of penicillamine intolerance. In our study, we examined the effect of Cu-chelating agents on tumor development and angiogenesis in the murine HCC xenograft model. Although both trientine and penicillamine in the drinking water suppressed the tumor development, trientine exerted a more potent inhibitory effect than penicillamine. In combination with a Cu-deficient diet, both trientine and penicillamine almost abolished the HCC development. Trientine treatment resulted in a marked suppression of neovascularization and increase of apoptosis in the tumor, whereas tumor cell proliferation itself was not altered. In vitro studies also exhibited that trientine is not cytotoxic for the tumor cells. On the other hand, it significantly suppressed the endothelial cell proliferation. These results suggested that Cu plays a pivotal role in tumor development and angiogenesis in the murine HCC cells, and Cu-chelators, especially trientine, could inhibit angiogenesis and enhance apoptosis in the tumor with consequent suppression of the tumor growth in vivo. Since trientine is already used in clinical practice without any serious side effects as compared to penicillamine, it may be an effective new strategy for future HCC therapy.

  20. The Influence of Chelating Agent on the Structural and Magnetic Properties of CoFe2O4, Nanoparticles.

    PubMed

    Pedra, P P; Silva Filho, J L; Lima, R J S; Sharma, S K; Moura, K O; Duque, J G S; Meneses, C T

    2016-05-01

    We have studied the influence of chelating agents (glycerin and sucrose) on the structural and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles synthesized via co-precipitation method. The Rietveld refinements from X-ray diffraction patterns confirm that all samples are single phase identified in a cubic crystalline system belonging to the space group Fd-3m. Besides, we have verified that the addition of chelating agents produces a decreasing in the particles average size from 14(2) to 5(1) nm. Magnetization measurements as a function of temperature show a decrease in the blocking temperature (T(B)) to sample obtained with addition of sucrose. A superparamagnetic behavior at room temperature was observed by magnetic measurements as function of field in the sample with 0.020 mol/L of sucrose. The results show that character chelating of sucrose reduces the coalescence effect and magnetic interaction in the CoFe2O4 nanoparticles. These results suggest that sucrose could be an alternative to control the structural and magnetic properties of other oxides nanoparticles. PMID:27483850

  1. Alternative Therapies

    MedlinePlus

    ... Late Effects of Poliomyelitis for Physicians and Survivors © Alternative Therapies Alternative therapies, also called complementary, can support ... of motion, pain, and fatigue are often reported. Energy work includes acupuncture and acupressure, traditional Chinese medicine ...

  2. Organically modified porous hydroxyapatites: A comparison between alkylphosphonate grafting and citrate chelation

    SciTech Connect

    El-Hammari, L.; Marroun, H.; Laghzizil, A.; Saoiabi, A.; Roux, C.; Livage, J.; Coradin, T.

    2008-04-15

    Two alternative methods to prepare organically modified porous hydroxyapatites following a 'one pot' approach were compared. The partial substitution of inorganic phosphates by alkylphosphonates leads to mesoporous materials with high specific surface area (>200 m{sup 2} g{sup -1}). The incorporation of the organic moieties within the hydroxyapatite structure is confirmed by Infra-red and solid-state NMR spectroscopy and depends on the nature of the alkyl chain. However, it induces a significant loss of the material crystallinity. In contrast, the introduction of citrate, a calcium-chelating agent, to the precursor solution does not improve the material specific surface area but allows a better control of the hydroxyapatite structure, both in terms of crystallinity and pore size distribution. - Graphical abstract: Evolution of pore size distribution of hydroxyapatite (HAp) after alkylphosphonate grafting (20% TPOH) or citrate addition (c-HAp) demonstrates the formation of organically modified mesoporous materials.

  3. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    PubMed

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples. PMID:23764441

  4. Comparison of 24-month outcomes in chelated and non-chelated lower-risk patients with myelodysplastic syndromes in a prospective registry.

    PubMed

    Lyons, Roger M; Marek, Billie J; Paley, Carole; Esposito, Jason; Garbo, Lawrence; DiBella, Nicholas; Garcia-Manero, Guillermo

    2014-02-01

    This 5-year, prospective registry enrolled 600 lower-risk MDS patients (pts) with transfusional iron overload. Clinical outcomes were compared between chelated and nonchelated pts. At baseline, cardiovascular comorbidities were more common in non-chelated pts, and MDS therapy was more common in chelated pts. At 24 months, chelation was associated with longer median overall survival (52.2 months vs. 104.4 months; p<.0001) and a trend toward longer leukemia-free survival and fewer cardiac events. No differences in safety were apparent between groups. Limitations of this analysis included, varying time from diagnosis and duration of chelation, and the fact that the decision to chelate may have been influenced by pt clinical status.

  5. Examining the fixation kinetics of chelated and non-chelated copper and the applications to micronutrient management in semiarid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.; Kusi, N. Y. O.

    2016-02-01

    This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semiarid soils of the Southern High Plains, USA, using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system compared to the chelated within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrients over time, highlighting the significance of timing even when chelated micronutrients are used. The strengths of the relationship of change in available Cu with respect to other micronutrients (iron (Fe), manganese (Mn), and zinc (Zn)) were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81), with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated system. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second-order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semiarid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  6. Alternative strategies: a better alternative.

    PubMed

    Doody, Dennis

    2010-05-01

    Alternatives can be defined as being any financial asset other than traditional stocks and bonds. They include marketable alternatives, private capital, and equity real estate. There are two primary reasons for investing in alternatives: the potential for greater return and the opportunity to diversify a portfolio. Although alternatives were challenged in the highly volatile environment that existed in 2008 and early 2009, they generally lived up to expectations.

  7. Complementary and Alternative Therapies in Amyotrophic Lateral Sclerosis.

    PubMed

    Bedlack, Richard S; Joyce, Nanette; Carter, Gregory T; Paganoni, Sabrina; Karam, Chafic

    2015-11-01

    Given the severity of their illness and lack of effective disease-modifying agents, it is not surprising that most patients with amyotrophic lateral sclerosis (ALS) consider trying complementary and alternative therapies. Some of the most commonly considered alternative therapies include special diets, nutritional supplements, cannabis, acupuncture, chelation, and energy healing. This article reviews these in detail. The authors also describe 3 models by which physicians may frame discussions about alternative therapies: paternalism, autonomy, and shared decision making. Finally, the authors review a program called ALSUntangled, which uses shared decision making to review alternative therapies for ALS. PMID:26515629

  8. Complementary and Alternative Therapies in Amyotrophic Lateral Sclerosis.

    PubMed

    Bedlack, Richard S; Joyce, Nanette; Carter, Gregory T; Paganoni, Sabrina; Karam, Chafic

    2015-11-01

    Given the severity of their illness and lack of effective disease-modifying agents, it is not surprising that most patients with amyotrophic lateral sclerosis (ALS) consider trying complementary and alternative therapies. Some of the most commonly considered alternative therapies include special diets, nutritional supplements, cannabis, acupuncture, chelation, and energy healing. This article reviews these in detail. The authors also describe 3 models by which physicians may frame discussions about alternative therapies: paternalism, autonomy, and shared decision making. Finally, the authors review a program called ALSUntangled, which uses shared decision making to review alternative therapies for ALS.

  9. A novel antimycobacterial compound acts as an intracellular iron chelator.

    PubMed

    Dragset, Marte S; Poce, Giovanna; Alfonso, Salvatore; Padilla-Benavides, Teresita; Ioerger, Thomas R; Kaneko, Takushi; Sacchettini, James C; Biava, Mariangela; Parish, Tanya; Argüello, José M; Steigedal, Magnus; Rubin, Eric J

    2015-04-01

    Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound.

  10. A Novel Antimycobacterial Compound Acts as an Intracellular Iron Chelator

    PubMed Central

    Dragset, Marte S.; Poce, Giovanna; Alfonso, Salvatore; Padilla-Benavides, Teresita; Ioerger, Thomas R.; Kaneko, Takushi; Sacchettini, James C.; Biava, Mariangela; Parish, Tanya; Argüello, José M.

    2015-01-01

    Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound. PMID:25645825

  11. Doping of graphene nanomeshes by ion-chelation

    NASA Astrophysics Data System (ADS)

    Maarouf, Ahmed; Nistor, Razvan; Afzali, Ali; Kuroda, Marcelo; Newns, Dennis; Martyna, Glenn

    2013-03-01

    Graphene nanomeshes (GNM's) are formed by the creation of a superlattice of pores in graphene. Depending upon the pore shape, size, superlattice constant and symmetry, GNM's can be semimetallic, or semiconducting with a fractional eV band gap, allowing them to be fruitfully employed in applications that pristine graphene cannot. In this work, first principles calculations are used to study the doping of semiconducting GNM's using a chemically motivated approach. It is shown that ion-chelation leads to a stable doping of the GNM's, and that it occurs within a rigid band doping picture. Such chelated or ``crown'' GNM structures are thus stable, high mobility semiconducting materials which can serve as building blocks for novel graphene-based nanoelectronics applications.

  12. Multidentate terephthalamidate and hydroxypyridonate ligands: towards new orally active chelators.

    PubMed

    Abergel, Rebecca J; Raymond, Kenneth N

    2011-01-01

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using (59)Fe, (238)Pu, and (241)Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity. PMID:21599440

  13. Self-assembled polymeric chelate nanoparticles as potential theranostic agents.

    PubMed

    Škodová, M; Černoch, P; Štěpánek, P; Chánová, E; Kučka, J; Kálalová, Z; Kaňková, D; Hrubý, M

    2012-12-21

    Improvements in cancer diagnostics and therapy have recently attracted the interest of many different branches of science. This study presents one of the new possible approaches in the diagnostics and therapy of cancer by using polymeric chelates as carriers. Graft copolymers with a backbone containing 8-hydroxyquinoline-5-sulfonic acid chelating groups and poly(ethylene oxide) hydrophilic grafts are synthesized and characterized. The polymers assemble and form particles after the addition of a biometal cation, such as iron or copper. The obtained nanoparticles exhibit a hydrodynamic diameter of around 25 nm and a stability of at least several hours, which are counted as essential parameters for biomedical purposes. To prove their biodegradability, a model degradation with deferoxamine is performed and, together with high radiolabeling efficiency with copper-64, their possible use for nuclear medicine purposes is demonstrated.

  14. Removal of cadmium from fish sauce using chelate resin.

    PubMed

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities.

  15. Challenges Associated with Metal Chelation Therapy in Alzheimer's Disease

    PubMed Central

    Hegde, Muralidhar L.; Bharathi, P.; Suram, Anitha; Venugopal, Chitra; Jagannathan, Ramya; Poddar, Pankaj; Srinivas, Pullabhatla; Sambamurti, Kumar; Rao, Kosagisharaf Jagannatha; Scancar, Janez; Messori, Luigi; Zecca, Luigi; Zatta, Paolo

    2010-01-01

    A close association between brain metal dishomeostasis and the onset and/or progression of Alzheimer's disease (AD) has been clearly established in a number of studies, although the underlying biochemical mechanisms remain obscure. This observation renders chelation therapy an attractive pharmacological option for the treatment of this disease. However, a number of requirements must be fulfilled in order to adapt chelation therapy to AD so that the term “metal targeted strategies” seems now more appropriate. Indeed, brain metal redistribution rather than brain metal scavenging and removal is the major goal of this type of intervention. The most recent developments in metal targeted strategies for AD will be discussed using, as useful examples, clioquinol, curcumin, and epigallocatechin, and the future perspectives will also be outlined. PMID:19363258

  16. Lanthanides caged by the organic chelates; structural properties.

    PubMed

    Smentek, Lidia

    2011-04-13

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  17. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    SciTech Connect

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  18. Improved paramagnetic chelate for molecular imaging with MRI

    NASA Astrophysics Data System (ADS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  19. Lanthanides caged by the organic chelates; structural properties

    NASA Astrophysics Data System (ADS)

    Smentek, Lidia

    2011-04-01

    The structure, in particular symmetry, geometry and morphology of organic chelates coordinated with the lanthanide ions are analyzed in the present review. This is the first part of a complete presentation of a theoretical description of the properties of systems, which are widely used in technology, but most of all, in molecular biology and medicine. The discussion is focused on the symmetry and geometry of the cages, since these features play a dominant role in the spectroscopic activity of the lanthanides caged by organic chelates. At the same time, the spectroscopic properties require more formal presentation in the language of Racah algebra, and deserve a separate analysis. In addition to the parent systems of DOTA, DOTP, EDTMP and CDTMP presented here, their modifications by various antennas are analyzed. The conclusions that have a strong impact upon the theory of the energy transfer and the sensitized luminescence of these systems are based on the results of numerical density functional theory calculations.

  20. Pressure-assisted chelation extraction of lead from contaminated soil.

    PubMed

    Hong, P K Andy; Cai, Xiaoxiao; Cha, Zhixiong

    2008-05-01

    Soil contamination by metallic elements including lead occurs frequently. Contaminant metals in soil pose a serious risk to public health and groundwater supplies. Extraction using chelants is seen as a remediation option; however, it is often hampered by access to the contaminants that are shielded by the soil matrix. We have developed a novel extraction technique that utilizes a mildly elevated pressure in consecutive cycles of compression and decompression along with a chelating agent for the soil slurry. Complete extraction of 3300 mg/kg of Pb from soil was achieved by 100 mM of EDTA (ethylenediaminetetraacetic acid) in 10 min using 20 pressure cycles at 150 psi (10 atm). Extraction was studied according to pressure, number of pressure cycles, chelant concentration, solid content, pH, agitation, and use of consecutive washings. Heightened extraction is attributed to fracturing of the soil particles that leads to enhanced contaminant exposure to the chelating agent.

  1. Examining the fixation kinetics of chelated and non-chelated copper micronutrient and the applications to micronutrient management in semi-arid alkaline soils

    NASA Astrophysics Data System (ADS)

    Udeigwe, T. K.; Eichmann, M. B.; Menkiti, M. C.

    2015-10-01

    The relationship between the deficiency of a nutrient in plants and its total concentration in the soil is complex. This study examined and compared the fixation and fixation kinetics of copper (Cu) in chelated (Ethylene diamine tetraacetic acid, EDTA) and non-chelated mixed systems of micronutrients in the semi-arid soils of the Southern High Plains, US using findings from Cu extraction studies and kinetic models. Approximately, 22 % more Cu was fixed in the non-chelated system within the first 14 days with only 7 % difference between the two systems by day 90. Findings suggest a decrease in the effectiveness of chelated micronutrient over time, highlighting the significance of timing even when chelated micronutrients are applied. The strengths of the relationship of change in available Cu with respect to other micronutrients [iron (Fe), manganese (Mn), and zinc (Zn)] were higher in the non-chelated system (R2: 0.68-0.94), compared to the chelated (R2: 0.42-0.81) with slopes of 0.40 (Cu-Fe), 0.31 (Cu-Mn), and 1.04 (Cu-Zn) in the non-chelated system and 0.26 (Cu-Fe), 0.22 (Cu-Mn), and 0.90 (Cu-Zn) in the chelated. Reduction in the amount of available Cu was best described by the power function model (R2 = 0.91, SE = 0.081) in the non-chelated system and second order model (R2 = 0.95, SE = 0.010) in the chelated system. The applications generated from this study could be used as tools for improved micronutrient management and also provide baseline data for future work in other semi-arid/arid alkaline soils of the world. Findings are also more applicable to field settings, an improvement over related previous studies.

  2. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  3. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, John B. L.; Doctor, Richard D.; Wingender, Ronald J.

    1986-01-01

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  4. EFFECT OF TEMPERATURE ON THE SORPTION OF CHELATED RADIONUCLIDES.

    USGS Publications Warehouse

    Maest, Ann S.; Crerar, David A.; Dillon, Edward C.; Trehu, Stephen M.; Rountree, Tamara N.; ,

    1985-01-01

    Temperature effects in the near-field radioactive waste disposal environment can result in changes in the adsorptive capacity and character of the substrate and the chemistry of the reacting fluids. This work examines the effect of temperature on 1) the kinetics of radionuclide sorption onto clays from 25 degree -75 degree C and 2) the degradation and metal-binding ability of two organic complexing agents found in chelated radioactive wastes and natural groundwaters.

  5. Flue gas desulfurization/denitrification using metal-chelate additives

    DOEpatents

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  6. Mineral Levels in Thalassaemia Major Patients Using Different Iron Chelators.

    PubMed

    Genc, Gizem Esra; Ozturk, Zeynep; Gumuslu, Saadet; Kupesiz, Alphan

    2016-03-01

    The goal of the present study was to determine the levels of minerals in chronically transfused thalassaemic patients living in Antalya, Turkey and to determine mineral levels in groups using different iron chelators. Three iron chelators deferoxamine, deferiprone and deferasirox have been used to remove iron from patients' tissues. There were contradictory results in the literature about minerals including selenium, zinc, copper, and magnesium in thalassaemia major patients. Blood samples from the 60 thalassaemia major patients (the deferoxamine group, n = 19; the deferiprone group, n = 20 and the deferasirox group, n = 21) and the controls (n = 20) were collected. Levels of selenium, zinc, copper, magnesium, and iron were measured, and all of them except iron showed no significant difference between the controls and the patients regardless of chelator type. Serum copper levels in the deferasirox group were lower than those in the control and deferoxamine groups, and serum magnesium levels in the deferasirox group were higher than those in the control, deferoxamine and deferiprone groups. Iron levels in the patient groups were higher than those in the control group, and iron levels showed a significant correlation with selenium and magnesium levels. Different values of minerals in thalassaemia major patients may be the result of different dietary intake, chelator type, or regional differences in where patients live. That is why minerals may be measured in thalassaemia major patients at intervals, and deficient minerals should be replaced. Being careful about levels of copper and magnesium in thalassaemia major patients using deferasirox seems to be beneficial.

  7. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson's Disease

    PubMed Central

    Moreau, Caroline; Devedjian, Jean Christophe; Kluza, Jérome; Petrault, Maud; Laloux, Charlotte; Jonneaux, Aurélie; Ryckewaert, Gilles; Garçon, Guillaume; Rouaix, Nathalie; Duhamel, Alain; Jissendi, Patrice; Dujardin, Kathy; Auger, Florent; Ravasi, Laura; Hopes, Lucie; Grolez, Guillaume; Firdaus, Wance; Sablonnière, Bernard; Strubi-Vuillaume, Isabelle; Zahr, Noel; Destée, Alain; Corvol, Jean-Christophe; Pöltl, Dominik; Leist, Marcel; Rose, Christian; Defebvre, Luc; Marchetti, Philippe; Cabantchik, Z. Ioav; Bordet, Régis

    2014-01-01

    Abstract Aims: The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. Results: For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. Innovation: A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. Conclusions: The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD. Antioxid

  8. Regeneration of the heart in diabetes by selective copper chelation.

    PubMed

    Cooper, Garth J S; Phillips, Anthony R J; Choong, Soon Y; Leonard, Bridget L; Crossman, David J; Brunton, Dianne H; Saafi, 'Etuate L; Dissanayake, Ajith M; Cowan, Brett R; Young, Alistair A; Occleshaw, Christopher J; Chan, Yih-Kai; Leahy, Fiona E; Keogh, Geraldine F; Gamble, Gregory D; Allen, Grant R; Pope, Adèle J; Boyd, Peter D W; Poppitt, Sally D; Borg, Thomas K; Doughty, Robert N; Baker, John R

    2004-09-01

    Heart disease is the major cause of death in diabetes, a disorder characterized by chronic hyperglycemia and cardiovascular complications. Although altered systemic regulation of transition metals in diabetes has been the subject of previous investigation, it is not known whether changed transition metal metabolism results in heart disease in common forms of diabetes and whether metal chelation can reverse the condition. We found that administration of the Cu-selective transition metal chelator trientine to rats with streptozotocin-induced diabetes caused increased urinary Cu excretion compared with matched controls. A Cu(II)-trientine complex was demonstrated in the urine of treated rats. In diabetic animals with established heart failure, we show here for the first time that 7 weeks of oral trientine therapy significantly alleviated heart failure without lowering blood glucose, substantially improved cardiomyocyte structure, and reversed elevations in left ventricular collagen and beta(1) integrin. Oral trientine treatment also caused elevated Cu excretion in humans with type 2 diabetes, in whom 6 months of treatment caused elevated left ventricular mass to decline significantly toward normal. These data implicate accumulation of elevated loosely bound Cu in the mechanism of cardiac damage in diabetes and support the use of selective Cu chelation in the treatment of this condition.

  9. Mobilization of iron from cells by hydroxyquinoline-based chelators.

    PubMed

    Mouralian, C; Buss, J L; Stranix, B; Chin, J; Ponka, P

    2005-12-19

    With the aim of identifying an iron (Fe) chelator which is effective at mobilizing intracellular Fe, two novel ligands were synthesized and tested. Hydroxyquinoline is known to possess a high affinity for Fe and was thus chosen as the Fe binding motif for the hexadentate chelators, C1 (2,2'-[ethane-1,2-diylbis(iminomethylene)]diquinolin-8-ol) and C2 (2,2'-[cyclohexane-1,2-diylbis(iminomethylene)]diquinolin-8-ol). Both chelators are lipophilic, with Fe3+ complexes slightly more hydrophilic than the free ligands. C1 and C2 were equally toxic to K562 cells, and partial protection was afforded by supplementing the culture medium with human holotransferrin, suggesting that some of the toxicity of the ligands is due to cellular Fe depletion. Micromolar concentrations of both ligands effectively mobilized 59Fe from reticulocytes and K562 cells. In reticulocytes, 50 microM C1 caused the release of 60% of the cells' initial 59Fe uptake after a 4h incubation. Under the same conditions, C2 revealed a release of 50% of the 59Fe. Overall, both ligands merit in vivo study for oral activity. Their effectiveness at low concentrations makes them candidates for therapeutic use.

  10. Prevention by chelating agents of metal-induced developmental toxicity.

    PubMed

    Domingo, J L

    1995-01-01

    Chelating agents such as calcium disodium ethylenediaminetetraacetate (EDTA), 2,3-dimercaptopropanol (BAL), or D-penicillamine (D-PA) have been widely used for the past 4 decades as antidotes for the treatment of acute and chronic metal poisoning. In recent years, meso-2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercapto-1-propanesulfonate (DMPS) and sodium 4,5-dihydroxybenzene-1,3-disulfonate (Tiron) have also shown to be effective to prevent against toxicity induced by a number of heavy metals. The purpose of the present article was to review the protective activity of various chelating agents against the embryotoxic and teratogenic effects of well-known developmental toxicants (arsenic, cadmium, lead, mercury, uranium, and vanadium). DMSA and DMPS were found to be effective in alleviating arsenate- and arsenite-induced teratogenesis, whereas BAL afforded only some protection against arsenic-induced embryo/fetal toxicity. Also, DMSA, DMPS, and Tiopronin were effective in ameliorating methyl mercury-induced developmental toxicity. Although the embryotoxic and teratogenic effects of vanadate were significantly reduced by Tiron, no significant amelioration of uranium-induced embryotoxicity was observed after treatment with this chelator.

  11. Effectiveness of chelation therapy with time after acute uranium intoxication

    SciTech Connect

    Domingo, J.L.; Ortega, A.; Llobet, J.M.; Corbella, J. )

    1990-01-01

    The effect of increasing the time interval between acute uranium exposure and chelation therapy was studied in male Swiss mice. Gallic acid, 4,5-dihydroxy-1,3- benzenedisulfonic acid (Tiron), diethylenetriaminepentaacetic acid (DTPA), and 5-aminosalicylic acid (5-AS) were administered ip at 0, 0.25, 1, 4, and 24 hr after sc injection of 10 mg/kg of uranyl acetate dihydrate. Chelating agents were given at doses equal to one-fourth of their respective LD50 values. Daily elimination of uranium into urine and feces was determined for 4 days after which time the mice were killed, and the concentration of uranium was measured in kidney, spleen, and bone. The excretion of uranium was especially rapid in the first 24 hr. Treatment with Tiron or gallic acid at 0, 0.25, or 1 hr after uranium exposure significantly increased the total excretion of the metal. In kidney and bone, only administration of Tiron at 0, 0.25, or 1 hr after uranium injection, or gallic acid at 1 hr after uranium exposure significantly reduced tissue uranium concentrations. Treatment at later times (4 to 24 hr) did not increase the total excretion of the metal and did not decrease the tissue uranium concentrations 4 days after uranyl acetate administration. The results show that the length of time before initiating chelation therapy for acute uranium intoxication greatly influences the effectiveness of this therapy.

  12. Elucidating Interactions between DMSO and Chelate-Based Ionic Liquids.

    PubMed

    Chen, Hang; Wang, Xinyu; Yao, Jia; Chen, Kexian; Guo, Yan; Zhang, Pengfei; Li, Haoran

    2015-12-21

    The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate-based ILs are in different microstructure environment in the solution.

  13. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  14. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  15. EDTA chelation reappraisal following new clinical trials and regular use in millions of patients: review of preliminary findings and risk/benefit assessment.

    PubMed

    Born, Tammy; Kontoghiorghe, Christina N; Spyrou, Aspasia; Kolnagou, Annita; Kontoghiorghes, George J

    2013-01-01

    EDTA chelation therapy is regularly used in thousands of patients worldwide. An FDA approval of more than 50 years ago for heavy metal detoxification prompted many physicians to use EDTA as an alternative medicine for many categories of patients. Recently, NIH initiated the so-called Trial to Assess Chelation Therapy (TACT), which has been designed to evaluate whether EDTA and high dose oral vitamins and mineral therapy could offer clinical, quality of life, and economic benefits for patients with a previous myocardial infraction. A 50% reduction of urinary Pb and improvement of systolic blood pressure was observed in 33 cardiovascular patients following 20 iv administrations. In another study involving 15 patients of different categories, EDTA also has been shown to be an effective and nontoxic chelator for the removal of xenobiotic metals such as Pb, Cd, Ni and Al. Administration of iv EDTA on weekly basis appears to be a sufficient and nontoxic protocol for treating patients with suspected overload and toxicity of xenobiotic metals especially Pb and Cd. The causative effect of xenobiotic metals in cancer, cardiovascular, neurodegenerative, renal and other diseases needs further investigation. Similarly, the use of EDTA chelation therapy in other conditions, which are not related to xenobiotic metal toxicity needs further investigation and confirmation of therapeutic use from controlled randomized clinical trials. Metal balance and drug interaction studies are required to clarify the risk/benefit assessment for the long term use of EDTA in patients with excess xenobiotic metal toxicity and in other conditions.

  16. EDTA chelation reappraisal following new clinical trials and regular use in millions of patients: review of preliminary findings and risk/benefit assessment.

    PubMed

    Born, Tammy; Kontoghiorghe, Christina N; Spyrou, Aspasia; Kolnagou, Annita; Kontoghiorghes, George J

    2013-01-01

    EDTA chelation therapy is regularly used in thousands of patients worldwide. An FDA approval of more than 50 years ago for heavy metal detoxification prompted many physicians to use EDTA as an alternative medicine for many categories of patients. Recently, NIH initiated the so-called Trial to Assess Chelation Therapy (TACT), which has been designed to evaluate whether EDTA and high dose oral vitamins and mineral therapy could offer clinical, quality of life, and economic benefits for patients with a previous myocardial infraction. A 50% reduction of urinary Pb and improvement of systolic blood pressure was observed in 33 cardiovascular patients following 20 iv administrations. In another study involving 15 patients of different categories, EDTA also has been shown to be an effective and nontoxic chelator for the removal of xenobiotic metals such as Pb, Cd, Ni and Al. Administration of iv EDTA on weekly basis appears to be a sufficient and nontoxic protocol for treating patients with suspected overload and toxicity of xenobiotic metals especially Pb and Cd. The causative effect of xenobiotic metals in cancer, cardiovascular, neurodegenerative, renal and other diseases needs further investigation. Similarly, the use of EDTA chelation therapy in other conditions, which are not related to xenobiotic metal toxicity needs further investigation and confirmation of therapeutic use from controlled randomized clinical trials. Metal balance and drug interaction studies are required to clarify the risk/benefit assessment for the long term use of EDTA in patients with excess xenobiotic metal toxicity and in other conditions. PMID:22991933

  17. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  18. Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries.

    PubMed

    Liu, Xien; Park, Minjoon; Kim, Min Gyu; Gupta, Shiva; Wu, Gang; Cho, Jaephil

    2015-08-10

    The lack of high-efficient, low-cost, and durable bifunctional electrocatalysts that act simultaneously for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is currently one of the major obstacles to commercializing the electrical rechargeability of zinc-air batteries. A nanocomposite CoO-NiO-NiCo bifunctional electrocatalyst supported by nitrogen-doped multiwall carbon nanotubes (NCNT/CoO-NiO-NiCo) exhibits excellent activity and stability for the ORR/OER in alkaline media. More importantly, real air cathodes made from the bifunctional NCNT/CoO-NiO-NiCo catalysts further demonstrated superior performance to state-of-the-art Pt/C or Pt/C+IrO2 catalysts in primary and rechargeable zinc-air batteries. PMID:26118973

  19. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators.

    PubMed

    Delangle, Pascale; Mintz, Elisabeth

    2012-06-01

    Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic reactions leading to oxidative stress. In this perspective, human copper homeostasis is first described in order to explain the mechanisms promoting copper overload in Wilson's disease. We will see that the liver is the main organ for copper distribution and detoxification in the body. Nowadays this disease is treated life-long by systemic chelation therapy, which is not satisfactory in many cases. Therefore the design of more selective and efficient drugs is of great interest. A strategy to design more specific chelators to treat localized copper accumulation in the liver will then be presented. In particular we will show how bioinorganic chemistry may help in the design of such novel chelators by taking inspiration from the biological copper cell transporters.

  20. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  1. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.

    PubMed

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  2. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  3. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm‑2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm‑2 at 1.64 V.

  4. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    DOE PAGES

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; Jones, Christopher W.

    2015-12-29

    Shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. The materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  5. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  6. Direct transformation of esters into arenes with 1,5-bifunctional organomagnesium reagents.

    PubMed

    Link, Achim; Fischer, Christian; Sparr, Christof

    2015-10-01

    A direct transformation of carboxylic acid esters into arenes with 1,5-bifunctional organomagnesium reagents is described. This efficient and practical method enables the one-step defunctionalization of various carboxylic acid esters to prepare benzene, anthracene, tetracene, and pentacene derivatives. A double nucleophilic addition of the 1,5-organodimagnesium reagent to the ester is followed by an immediate 1,4-elimination reaction that leads to the direct [5+1] formation of a new aromatic ring. PMID:26291060

  7. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation.

  8. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  9. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

    PubMed Central

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo

    2015-01-01

    Summary New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  10. MoO3 nanoparticle anchored graphene as bifunctional agent for water purification

    NASA Astrophysics Data System (ADS)

    Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.

    2016-10-01

    We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

  11. Highly Enantioselective, Intermolecular Hydroamination of Allenyl Esters Catalyzed by Bifunctional Phosphinothioureas

    PubMed Central

    2015-01-01

    Bifunctional phosphinothiourea catalysts have been developed successfully for the highly regio- and enantioselective γ-hydroamination of allenyl and propargyl esters with N-methoxy carbamate nucleophiles to yield α,β-unsaturated γ-amino acid ester products. In the case of propargyl ester substrates, the reaction proceeds through reversible phosphinothiourea-catalyzed isomerization to the corresponding allenyl ester. The high enantioselectivity of the process is attributed to a cooperative conjugate addition of a thiourea-bound carbamate anion to a vinyl phosphonium ion resulting from covalent activation of the allenyl ester substrate. PMID:25496451

  12. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. PMID:26835655

  13. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-01

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way. PMID:27322613

  14. Binaphthyl-based chiral bifunctional organocatalysts for water mediated asymmetric List-Lerner-Barbas aldol reactions.

    PubMed

    Ashokkumar, Veeramanoharan; Chithiraikumar, Chinnadurai; Siva, Ayyanar

    2016-10-14

    Novel binaphthyl-based chiral bifunctional organocatalysts were designed, synthesized and successfully applied to the asymmetric List-Lerner-Barbas aldol reaction in the presence of water. These organocatalysts were found to be effective catalysts for the reactions of symmetrical, unsymmetrical and cyclic ketones with different aldehydes to give the corresponding aldol products with higher yields (up to 98%) and very good ee's up to 99%. The catalytic system leads to higher yields and selectivities than the previously reported well-known proline based organocatalysts. In addition to the effect of solvent, additives, catalyst concentration, temperature and the substrate scope of the reactions were also investigated. PMID:27604169

  15. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition.

    PubMed

    Qi, Xiaoyue; Chen, Long; Zhang, Chaoqun; Xu, Xinyuan; Zhang, Yiding; Bai, Yu; Liu, Huwei

    2016-07-27

    A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe. PMID:27381638

  16. The protection conferred by chelation therapy in post-MI diabetics might be replicated by high-dose zinc supplementation.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2015-05-01

    The recent Trial to Assess Chelation Therapy (TACT) study, enrolling subjects who had previously experienced a myocardial infarction, has provided strong evidence that intravenous chelation therapy can markedly reduce risk for mortality and vascular events in diabetics, whereas no discernible benefit was observed in non-diabetics. It has plausibly been suggested that this reflects a role for transition metal ions--iron or copper--in the genesis of advanced glycation end products, key mediators of diabetic complications that can destabilize plaque. Since phlebotomy therapy fails to prevent vascular events in diabetics, we hypothesize that labile copper may be the chief culprit whose removal by chelation mediated the benefit observed in TACT. If so, strategies less time and labor intensive than chelation therapy might provide comparable benefit. A number of recent studies report that the copper-specific orally-active chelator trientine can reduce risk for range of diabetic complications in rodents; a clinical trial with this agent demonstrated some decrease in left ventricular mass in diabetics with ventricular hypertrophy. However, until this agent becomes less expensive, supplementation with high-dose zinc may represent a more feasible alternative. Zinc opposes the absorption and redox activity of copper via induction of the antioxidant protein metallothionein, which binds copper tightly. A great many studies demonstrate that increased expression of metallothionein decreases risk for tissue damage in diabetic rodents, and in some of these studies metallothionein expression was boosted by supplemental zinc. Zinc supplementation also modestly improves glycemic control in type 2 diabetics, and might reduce risk for diabetes by protecting pancreatic beta cells from oxidative stress. A long term study assessing the impact of supplementing diabetics with high-dose zinc, assessing risk for mortality, vascular events, and diabetic complications, may be warranted. Histidine

  17. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  18. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while

  19. Mobilization and redistribution of lead over the course of calcium disodium ethylenediamine tetraacetate chelation therapy

    SciTech Connect

    Cory-Slechta, D.A.; Weiss, B.; Cox, C.

    1987-12-01

    After its successful application to the treatment of acute Pb poisoning, Ca disodium EDTA came into routine clinical use for diagnosis and treatment of subacute and chronic Pb poisoning. Despite widespread use, few definitive conclusions have emerged about the sources of Pb mobilized by Ca disodium EDTA. Furthermore, the possibility that mobilized Pb may be redistributed has been suggested. The current studies indicate that the standard therapeutic protocol for Ca disodium EDTA has little impact on critical organs such as brain and liver and moreover, that diagnostic Ca disodium EDTA chelation may even increase the concentration of Pb in these tissues. After a 3 to 4 month exposure to Pb acetate in drinking water, different groups of rats received daily i.p. injections of saline (control), 75 or 150 mg/kg of Ca disodium EDTA for either 1, 2, 3, 4 or 5 days and were then sacrificed 24 hr after the final injection. Tissue analyses indicated that Pb was mobilized from bone and kidney and redistributed initially to both brain and liver. Levels in both brain and liver declined with subsequent Ca disodium EDTA injections, but no net loss from either tissue occurred over the 5-day treatment period despite a decline in blood Pb levels and a marked enhancement of urinary Pb excretion. These findings stress the need for further investigation of Ca disodium EDTAs effects and for parallel evaluation of alternate chelating agents, and suggest that a re-evaluation of both the diagnostic and therapeutic roles of Ca disodium EDTA may be advisable.

  20. Alternative Schools.

    ERIC Educational Resources Information Center

    Pritchett, Stanley; Kimsey, Steve

    2002-01-01

    Describes the design of the DeKalb Alternative School in Atlanta, Georgia, located in a renovated shopping center. Purchasing commercial land and renovating the existing building saved the school system time and money. (EV)

  1. Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples

    SciTech Connect

    Siriraks, A.; Kingston, H.M. ); Riviello, J.M. )

    1990-06-01

    The development and evaluation of a new method for the determination of trace transition and rare-earth elements based on the combination of chelation and ion chromatography are described. The new method, chelation ion chromatography (Chelation IC), uses a chelating column to concentrate and separate transition and rare-earth elements from the common alkali and alkaline-earth metals, as well as other matrix components, prior to analysis by ion chromatography. The sample fraction from the chelating column contains only the concentrated analyte ions, thus eliminating interfering matrix components from complex matrices such as seawater and digested biological, botanical, and geological materials. This combination of chelation and ion chromatography provides a technique that makes possible the determination of trace elements in complex matrices that have proven to be difficult or impossible to analyze by ion chromatography or conventional atomic spectroscopy techniques.

  2. EDTA Chelation Therapy to Reduce Cardiovascular Events in Persons with Diabetes.

    PubMed

    Ouyang, Pamela; Gottlieb, Sheldon H; Culotta, Valerie L; Navas-Acien, Ana

    2015-11-01

    The Trial to Assess Chelation Therapy (TACT) was a randomized double-blind placebo-controlled trial enrolling patients age ≥50 years with prior myocardial infarction. TACT used a 2 × 2 factorial design to study ethylene diamine tetraacetic acid (EDTA) chelation and high-dose vitamin supplementation. Chelation provided a modest but significant reduction in cardiovascular endpoints. The benefit was stronger and significant among participants with diabetes but absent in those without diabetes. Mechanisms by which chelation might reduce cardiovascular risk in persons with diabetes include the effects of EDTA chelation on transition and toxic metals. Transition metals, particularly copper and iron, play important roles in oxidative stress pathways. Toxic metals, in particular cadmium and lead, are toxic for the cardiovascular system. This review discusses the epidemiologic evidence and animal and human studies supporting the role of these metals in the development of diabetes and ischemic heart disease and potential ways by which EDTA chelation could confer cardiovascular benefit.

  3. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties

    PubMed Central

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-01-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center–12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible–near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  4. CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties.

    PubMed

    Zhu, Congqing; Yang, Caixia; Wang, Yongheng; Lin, Gan; Yang, Yuhui; Wang, Xiaoyong; Zhu, Jun; Chen, Xiaoyuan; Lu, Xin; Liu, Gang; Xia, Haiping

    2016-08-01

    The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that the planar metallacycle has extended Craig-Möbius aromaticity arising from 12-center-12-electron dπ-pπ π-conjugation. These planar chelates have broad absorption in the ultraviolet-visible-near-infrared region and, thus, notable photothermal performance upon irradiation by an 808-nm laser, indicating that these chelates have potential applications in photothermal therapy. The combination of facile synthesis, high stability, and broad absorption of these complexes could make the polydentate carbon chain a novel building block in coordination chemistry. PMID:27574707

  5. Effects of combined chelation treatment with pyridoxal isonicotinoyl hydrazone analogs and deferoxamine in hypertransfused rats and in iron-loaded rat heart cells.

    PubMed

    Link, Gabriela; Ponka, Prem; Konijn, Abraham M; Breuer, William; Cabantchik, Z Ioav; Hershko, Chaim

    2003-05-15

    Although iron chelation therapy with deferoxamine (DFO) results in improved life expectancy of patients with thalassemia, compliance with parenteral DFO treatment is unsatisfactory, underlining the need for alternative drugs and innovative ways of drug administration. We examined the chelating potential of pyridoxal isonicotinoyl hydrazone (PIH) analogs, alone or in combination with DFO, using hypertransfused rats with labeled hepatocellular iron stores and cultured iron-loaded rat heart cells. Our in vivo studies using 2 representative PIH analogs, 108-o and 109-o, have shown that PIH analogs given orally are 2.6 to 2.8 times more effective in mobilizing hepatocellular iron in rats, on a weight-per-weight basis, than parenteral DFO administered intraperitoneally. The combined effect of DFO and 108-o on hepatocellular iron excretion was additive, and response at a dose range of 25 to 200 mg/kg was linear. In vitro studies in heart cells showed that DFO was more effective in heart cell iron mobilization than all PIH analogs studied. Response to joint chelation with DFO and PIH analogs was similar to an increase in the equivalent molar dose of DFO alone, rather than the sum of the separate effects of the PIH analog and DFO. This finding was most likely the result of iron transfer from PIH analogs to DFO, a conclusion supported directly by iron-shuttle experiments using fluorescent DFO. These findings provide a rationale for the combined, simultaneous use of iron-chelating drugs and may have useful, practical implications for designing novel strategies of iron chelation therapy.

  6. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces.

    PubMed

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  7. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  8. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    PubMed

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution.

  9. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  10. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-05-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT) however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices.

  11. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    PubMed

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution. PMID:24115374

  12. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    PubMed Central

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  13. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR. PMID:26720587

  14. Bifunctional Spin Labeling of Muscle Proteins: Accurate Rotational Dynamics, Orientation, and Distance by EPR.

    PubMed

    Thompson, Andrew R; Binder, Benjamin P; McCaffrey, Jesse E; Svensson, Bengt; Thomas, David D

    2015-01-01

    While EPR allows for the characterization of protein structure and function due to its exquisite sensitivity to spin label dynamics, orientation, and distance, these measurements are often limited in sensitivity due to the use of labels that are attached via flexible monofunctional bonds, incurring additional disorder and nanosecond dynamics. In this chapter, we present methods for using a bifunctional spin label (BSL) to measure muscle protein structure and dynamics. We demonstrate that bifunctional attachment eliminates nanosecond internal rotation of the spin label, thereby allowing the accurate measurement of protein backbone rotational dynamics, including microsecond-to-millisecond motions by saturation transfer EPR. BSL also allows for accurate determination of helix orientation and disorder in mechanically and magnetically aligned systems, due to the label's stereospecific attachment. Similarly, labeling with a pair of BSL greatly enhances the resolution and accuracy of distance measurements measured by double electron-electron resonance (DEER). Finally, when BSL is applied to a protein with high helical content in an assembly with high orientational order (e.g., muscle fiber or membrane), two-probe DEER experiments can be combined with single-probe EPR experiments on an oriented sample in a process we call BEER, which has the potential for ab initio high-resolution structure determination. PMID:26477249

  15. Low prevalence of vancomycin- and bifunctional aminoglycoside-resistant enterococci isolated from poultry farms in Malaysia.

    PubMed

    Chan, Yean Yean; Abd Nasir, Mohd Hafiz B; Yahaya, Mohd Azli B; Salleh, Noor Mohamad Amin B; Md Dan, Azril Deenor B; Musa, Abd Majid B; Ravichandran, M

    2008-02-29

    A total of 225 samples from poultry farms and the surrounding environment were screened for vancomycin-resistant enterococci (VRE) and bifunctional aminoglycoside-resistant enterococci using conventional microbiological tests and a nanoplex polymerase chain reaction (PCR) assay. Three (1.3%) of the samples were found to contain vancomycin-resistant isolates (MIC>256 microg/mL) that had a vanA genotype. The three vanA positive VRE isolates were identified as different species. Only one isolate (Enterococcus faecium F 4/13_54) was sensitive to teicoplanin (MIC<0. 12-0.35 microg/mL); the other two VRE (E. faecalis A 21_35 and E. gallinarum F 5/10_1) were resistant to teicoplanin (MIC 3.6-->16 microg/mL). The vanC genotype was observed in nine (4%) of the samples collected. High-level gentamicin-resistant (HLGR) enterococci (with MIC ranging between 100 and 500 microg/mL) were detected in 44 samples. However, only 40 of these were found to possess the aac(6')-aph(2'') gene. The overall prevalence of VRE among the samples from the poultry farms and environment was 5.3%, but the prevalence of the clinically significant vanA VRE was 1.3%, and the prevalence of bifunctional aminoglycoside-resistant enterococci was slightly higher, at 19.5%.

  16. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium.

    PubMed

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-30

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  17. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.

    PubMed

    He, Ping; Deng, Cong; Liu, Boyu; Zeng, LingBing; Zhao, Wei; Zhang, Yan; Jiang, XuCheng; Guo, XiaoKui; Qin, JinHong

    2013-11-01

    Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.

  18. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium

    NASA Astrophysics Data System (ADS)

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-01

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  19. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  20. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.

    PubMed

    Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk

    2016-01-27

    Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles. PMID:26766495

  1. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices.

    PubMed

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-01-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT); however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices. PMID:27142285

  2. Bifunctional Ligands for Inhibition of Tight-Binding Protein-Protein Interactions.

    PubMed

    Ivan, Taavi; Enkvist, Erki; Viira, Birgit; Manoharan, Ganesh Babu; Raidaru, Gerda; Pflug, Alexander; Alam, Kazi Asraful; Zaccolo, Manuela; Engh, Richard Alan; Uri, Asko

    2016-08-17

    The acknowledged potential of small-molecule therapeutics targeting disease-related protein-protein interactions (PPIs) has promoted active research in this field. The strategy of using small molecule inhibitors (SMIs) to fight strong (tight-binding) PPIs tends to fall short due to the flat and wide interfaces of PPIs. Here we propose a biligand approach for disruption of strong PPIs. The potential of this approach was realized for disruption of the tight-binding (KD = 100 pM) tetrameric holoenzyme of cAMP-dependent protein kinase (PKA). Supported by X-ray analysis of cocrystals, bifunctional inhibitors (ARC-inhibitors) were constructed that simultaneously associated with both the ATP-pocket and the PPI interface area of the catalytic subunit of PKA (PKAc). Bifunctional inhibitor ARC-1411, possessing a KD value of 3 pM toward PKAc, induced the dissociation of the PKA holoenzyme with a low-nanomolar IC50, whereas the ATP-competitive inhibitor H89 bound to the PKA holoenzyme without disruption of the protein tetramer. PMID:27389935

  3. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h. PMID:27064172

  4. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants.

    PubMed

    Panjideh, Hossein; Coelho, Vânia; Dernedde, Jens; Fuchs, Hendrik; Keilholz, Ulrich; Thiel, Eckhard; Deckert, P Markus

    2008-10-01

    Recombinant antibody fusion constructs with heterologous functional domains are a promising approach to new therapeutic targeting strategies. However, expression of such constructs is mostly limited to cost and labor-intensive mammalian expression systems. Here we report on the employment of Pichia pastoris for the expression of heterologous antibody fusion constructs with green fluorescent protein, A33scFv::GFP, or with cytosine deaminase, A33scFv::CDy, their production in a biofermenter and a modified purification strategy. Combined, these approaches improved production yields by about thirty times over established standard protocols, with extracellular secretion of the fusion construct reaching 12.0 mg/l. Bifunctional activity of the fusion proteins was demonstrated by flow cytometry and an in-vitro cytotoxicity assay. With equal amounts of purified protein, the modified purification method lead to higher functional results. Our results demonstrate the suitability of methylotrophic Pichia expression systems and laboratory-scale bioreactors for the production of high quantities of bifunctionally active heterologous single-chain fusion proteins.

  5. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs. PMID:25970133

  6. The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis

    PubMed Central

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg−1 and 20.2 ± 1.8 U mg−1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β-keto acids. PMID:24982594

  7. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  8. Cyclic isoDGR and RGD peptidomimetics containing bifunctional diketopiperazine scaffolds are integrin antagonists.

    PubMed

    Panzeri, Silvia; Zanella, Simone; Arosio, Daniela; Vahdati, Leila; Dal Corso, Alberto; Pignataro, Luca; Paolillo, Mayra; Schinelli, Sergio; Belvisi, Laura; Gennari, Cesare; Piarulli, Umberto

    2015-04-13

    The cyclo[DKP-isoDGR] peptidomimetics 2-5, containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αv β3 and αv β5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3) to submicromolar with αv β3 integrin. The biological activities of ligands cyclo[DKP3-RGD] 1 and cyclo[DKP3-isoDGR] 3, bearing the same bifunctional DKP scaffold and showing similar αV β3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin-mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.

  9. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 μmol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator.

  10. Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization.

    PubMed

    Vlachodimitropoulou Koumoutsea, Evangelia; Garbowski, Maciej; Porter, John

    2015-09-01

    Iron chelators are increasingly combined clinically but the optimal conditions for cellular iron mobilization and mechanisms of interaction are unclear. Speciation plots for iron(III) binding of paired combinations of the licensed iron chelators desferrioxamine (DFO), deferiprone (DFP) and deferasirox (DFX) suggest conditions under which chelators can combine as 'shuttle' and 'sink' molecules but this approach does not consider their relative access and interaction with cellular iron pools. To address this issue, a sensitive ferrozine-based detection system for intracellular iron removal from the human hepatocyte cell line (HuH-7) was developed. Antagonism, synergism or additivity with paired chelator combinations was distinguished using mathematical isobologram analysis over clinically relevant chelator concentrations. All combinations showed synergistic iron mobilization at 8 h with clinically achievable concentrations of sink and shuttle chelators. Greatest synergism was achieved by combining DFP with DFX, where about 60% of mobilized iron was attributable to synergistic interaction. These findings predict that the DFX dose required for a half-maximum effect can be reduced by 3·8-fold when only 1 μmol/l DFP is added. Mechanisms for the synergy are suggested by consideration of the iron-chelate speciation plots together with the size, charge and lipid solubilities for each chelator. Hydroxypyridinones with low lipid solubilities but otherwise similar properties to DFP were used to interrogate the mechanistic interactions of chelator pairs. These studies confirm that synergistic cellular iron mobilization requires one chelator to have the physicochemical properties to enter cells, chelate intracellular iron and subsequently donate iron to a second 'sink' chelator. PMID:26033030

  11. Alkenes as Chelating Groups in Diastereoselective Additions of Organometallics to Ketones

    PubMed Central

    2015-01-01

    Alkenes have been discovered to be chelating groups to Zn(II), enforcing highly stereoselective additions of organozincs to β,γ-unsaturated ketones. 1H NMR studies and DFT calculations provide support for this surprising chelation mode. The results expand the range of coordinating groups for chelation-controlled carbonyl additions from heteroatom Lewis bases to simple C–C double bonds, broadening the 60 year old paradigm. PMID:25328269

  12. Bifunctional staining for ex vivo determination of area at risk in rabbits with reperfused myocardial infarction

    PubMed Central

    Feng, Yuanbo; Ma, Zhan-Long; Chen, Feng; Yu, Jie; Cona, Marlein Miranda; Xie, Yi; Li, Yue; Ni, Yicheng

    2013-01-01

    AIM: To develop a method for studying myocardial area at risk (AAR) in ischemic heart disease in correlation with cardiac magnetic resonance imaging (cMRI). METHODS: Nine rabbits were anesthetized, intubated and subjected to occlusion and reperfusion of the left circumflex coronary artery (LCx) to induce myocardial infarction (MI). ECG-triggered cMRI with delayed enhancement was performed at 3.0 T. After euthanasia, the heart was excised with the LCx re-ligated. Bifunctional staining was performed by perfusing the aorta with a homemade red-iodized-oil (RIO) dye. The heart was then agar-embedded for ex vivo magnetic resonance imaging and sliced into 3 mm-sections. The AAR was defined by RIO-staining and digital radiography (DR). The perfusion density rate (PDR) was derived from DR for the AAR and normal myocardium. The MI was measured by in vivo delayed enhancement (iDE) and ex vivo delayed enhancement (eDE) cMRI. The AAR and MI were compared to validate the bifunctional straining for cardiac imaging research. Linear regression with Bland-Altman agreement, one way-ANOVA with Bonferroni’s multiple comparison, and paired t tests were applied for statistics. RESULTS: All rabbits tolerated well the surgical procedure and subsequent cMRI sessions. The open-chest occlusion and close-chest reperfusion of the LCx, double suture method and bifunctional staining were successfully applied in all animals. The percentage MI volumes globally (n = 6) and by slice (n = 25) were 36.59% ± 13.68% and 32.88% ± 12.38% on iDE, and 35.41% ± 12.25% and 32.40% ± 12.34% on eDE. There were no significant differences for MI determination with excellent linear regression correspondence (rglobal = 0.89; rslice = 0.9) between iDE and eDE. The percentage AAR volumes globally (n = 6) and by slice (n = 25) were 44.82% ± 15.18% and 40.04% ± 13.64% with RIO-staining, and 44.74% ± 15.98% and 40.48% ± 13.26% by DR showing high correlation in linear regression analysis (rglobal = 0.99; rslice

  13. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Ohsuna, Tetsu; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2'-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2'-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  14. Chelation-Induced Polymer Structural Hierarchy/Complexity in Water.

    PubMed

    Han, Jie; Zhou, Kaiyi; Zhu, Xuechao; Yu, Qiuping; Ding, Yi; Lu, Xinhua; Cai, Yuanli

    2016-08-01

    Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein-alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation-induced self-assembly (CCISA) is presented. Hierarchically-ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular-to-supracolloidal stepwise-growth mechanism, and underline amazing prospects to the hierarchically-ordered superstructures of hydrophilic flexible polymers in water.

  15. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  16. Correlation of molecular structure with fluorescence spectra in rare earth chelates. I.

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Degnan, J.; Filipescu, N.; Mcavoy, N.

    1968-01-01

    Rare earth chelates fluorescence spectra correlation with molecular structure, analyzing emission spectrum internal Stark splitting of tetramethylammonium tetrakis /dibenzoylmethido/europate microcrystals

  17. Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes.

    PubMed

    Chen, Jia-Rong; Fu, Liang; Zou, You-Quan; Chang, Ning-Jie; Rong, Jian; Xiao, Wen-Jing

    2011-07-21

    A series of chiral pyrrolidinyl-sulfamide derivatives have been identified as efficient bifunctional organocatalysts for the direct Michael addition of cyclohexanone to a wide range of nitroalkenes. The desired Michael adducts were obtained in high chemical yields and excellent stereoselectivities (up to 99/1 dr and 95% ee).

  18. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries.

    PubMed

    Liu, Qin; Wang, Yaobing; Dai, Liming; Yao, Jiannian

    2016-04-20

    A flexible nanoporous carbon-fiber film for wearable electronics is prepared by a facile and scalable method through pyrolysis of electrospun polyimide. It exhibits excellent bifunctional electrocatalytic activities for oxygen reduction and oxygen evolution. Flexible rechargeable zinc-air batteries based on the carbon-fiber film show high round-trip efficiency and mechanical stability.

  19. Bifunctional ferrocene-based squaramide-phosphine as an organocatalyst for highly enantioselective intramolecular Morita-Baylis-Hillman reaction.

    PubMed

    Zhang, Xiaorui; Ma, Pengfei; Zhang, Dongxu; Lei, Yang; Zhang, Shengyong; Jiang, Ru; Chen, Weiping

    2014-04-21

    This work demonstrates that, in accord with metal catalysis, ferrocene could be an excellent scaffold for organocatalysts. The simple and easily accessible bifunctional ferrocene-based squaramide-phosphine shows high enantioselectivity in the intramolecular Morita-Baylis-Hillman reaction of 7-aryl-7-oxo-5-heptenals, giving a variety of 2-aroyl-2-cyclohexenols in up to 96% ee.

  20. Diversity-oriented synthesis leads to an effective class of bifunctional linchpins uniting anion relay chemistry (ARC) with benzyne reactivity.

    PubMed

    Smith, Amos B; Kim, Won-Suk

    2011-04-26

    In conjunction with the construction of a diversity-oriented synthesis library of 10-membered ring "natural product-like" macrolides, the design, synthesis, and validation of a unique class of bifunctional linchpins, uniting benzyne reactivity initiated by type II anion relay chemistry (ARC) has been achieved, permitting access to diverse [2+2], [3+2], and [4+2] cycloadducts.

  1. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation

    PubMed Central

    Sterner, Reinhard; Merkl, Rainer

    2016-01-01

    Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans. PMID:26824644

  2. Bifunctional-Phosphine-Catalyzed Sequential Annulations of Allenoates and Ketimines: Construction of Functionalized Poly-heterocycle Rings.

    PubMed

    Li, Erqing; Jin, Hongxing; Jia, Penghao; Dong, Xuelin; Huang, You

    2016-09-12

    A highly stereoselective sequential annulation reaction between γ-substituted allenoates and ketimines was reported. By using bifunctional N-acyl aminophosphine catalysts, poly-heterocycle rings were obtained with high stereocontrol in good to excellent yields. The desired products have four contiguous stereogenic centers (one quaternary and three tertiary carbon centers), and only one isomer was obtained in all reactions. PMID:27529614

  3. [Alternative medicine].

    PubMed

    Mitello, L

    2001-01-01

    In a critical situation of world official medicine, we can find different alternatives therapies: natural therapy traditional and complementary, survival sometimes, of antique stiles and conditions of life. New sciences presented for them empiricism to the margin of official science. Doctors and sorcerer do the best to defeat the horrible virus that contribute to build symbols categories of sick. The alternatives put dangerously in game the scientific myth of experiment and exhume, if they got lost, antique remedy, almost preserved like cultural wreck very efficient where the medicine is impotent. Besides alternatives and complementary therapies, that are remedies not recognized conventional from official medicine, there are the homeopathic, phytotherapy, pranotherapy, nutritional therapy, the ayurveda, the yoga, ecc. Italians and internationals research show a composite picture of persons that apply that therapies. Object of this work is to understand and know the way that sick lighten their sufferings and role that have o that can assume the nurses to assist this sick. PMID:12146072

  4. Influence of chelation strength and bacterial uptake of gallium salicylidene acylhydrazide on biofilm formation and virulence of Pseudomonas aeruginosa.

    PubMed

    Hakobyan, Shoghik; Rzhepishevska, Olena; Björn, Erik; Boily, Jean-François; Ramstedt, Madeleine

    2016-07-01

    Development of antibiotic resistance in bacteria causes major challenges for our society and has prompted a great need for new and alternative treatment methods for infection. One promising approach is to target bacterial virulence using for example salicylidene acylhydrazides (hydrazones). Hydrazones coordinate metal ions such as Fe(III) and Ga(III) through a five-membered and a six-membered chelation ring. One suggested mode of action is via restricting bacterial Fe uptake. Thus, it was hypothesized that the chelating strength of these substances could be used to predict their biological activity on bacterial cells. This was investigated by comparing Ga chelation strength of two hydrazone complexes, as well as bacterial Ga uptake, biofilm formation, and virulence in the form of production and secretion of a toxin (ExoS) by Pseudomonas aeruginosa. Equilibrium constants for deprotonation and Ga(III) binding of the hydrazone N'-(5-chloro-2-hydroxy-3-methylbenzylidene)-2,4-dihydroxybenzhydrazide (ME0329), with anti-virulence effect against P. aeruginosa, were determined and compared to bacterial siderophores and the previously described Ga(III) 2-oxo-2-[N-(2,4,6-trihydroxy-benzylidene)-hydrazino]-acetamide (Ga-ME0163) and Ga-citrate complexes. In comparison with these two complexes, it was shown that the uptake of Ga(III) was higher from the Ga-ME0329 complex. The results further show that the Ga-ME0329 complex reduced ExoS expression and secretion to a higher extent than Ga-citrate, Ga-ME0163 or the non-coordinated hydrazone. However, the effect against biofilm formation by P. aeruginosa, by the ME0329 complex, was similar to Ga-citrate and lower than what has been reported for Ga-ME0163.

  5. In Vivo Iron-Chelating Activity and Phenolic Profiles of the Angel's Wings Mushroom, Pleurotus porrigens (Higher Basidiomycetes).

    PubMed

    Khalili, Masoumeh; Ebrahimzadeh, Mohammad Ali; Kosaryan, Mehrnoush

    2015-01-01

    Pleurotus porrigens is an culinary-medicinal mushroom. It is locally called sadafi and is found in the northern regions of Iran, especially in Mazandaran. This mushroom is used to prepare a variety of local and specialty foods. Because of the phenol and flavonoid contents and the strong iron-chelating activity of this mushroom, it was selected for an assay of in vivo iron-chelating activity. Methanolic extract was administered intraperitoneally to iron-overloaded mice at two dosages (200 and 400 mg/kg/24 hours) for a total of 20 days, with a frequency of 5 times a week for 4 successive weeks. The total iron content was determined by atomic absorption spectroscopy. Plasma Fe3+ content was determined using a kit. Liver sections were stained by hematoxylin and eosin and Perls stain. A significant decrease in the plasma concentration of iron was observed in mice treated with extracts (P < 0.001). The animals showed a dramatic decrease in plasma Fe3+ content when compared with the control group (P < 0.001). Also, Perls stain improved the smaller amount of deposited iron in the liver of iron-overloaded mice treated with the extract. Liver sections revealed a marked reduction in the extent of necrotic hepatocytes, fibrous tissues, and pseudo-lobules. A high-performance liquid chromatography method was developed to simultaneously separate 7 phenolic acids in extract. Rutin (1.784 ± 0.052 mg g(-1) of extract) and p-coumaric acid (1.026 ± 0.043 mg g(-1) of extract) were detected as the main flavonoid and phenolic acids in extract, respectively. The extract exhibited satisfactory potency to chelate excessive iron in mice, potentially offering new natural alternatives to treat patients with iron overload. More studies are needed to determine which compounds are responsible for these biological activities.

  6. Using iron chelating agents to enhance dermatological PDT

    NASA Astrophysics Data System (ADS)

    Curnow, Alison; Dogra, Yuktee; Winyard, Paul; Campbell, Sandra

    2009-06-01

    Topical protoporphyrin IX (PPIX) induced photodynamic therapy (PDT) of basal cell carcinoma (BCC) produces good clinical outcomes with excellent cosmesis as long as the disease remains superficial. Efficacy for nodular BCC however appears inferior to standard treatment unless repeat treatments are performed. Enhancement is therefore required and is possible by employing iron chelating agents to temporarily increase PPIX accumulation above the levels normally obtained using aminolevulinic acid (ALA) or the methyl ester of ALA (MAL) alone. In vitro studies investigated the effect of the novel iron chelator, CP94 on necrotic or apoptotic cell death in cultured human skin fibroblasts and epidermal carcinoma cells incubated with MAL. Furthermore, following a dose escalating safety study conducted with ALA in patients, an additional twelve nodular BCCs were recruited for topical treatment with standard MAL-PDT +/- increasing doses of CP94. Six weeks later following clinical assessment, the whole treatment site was excised for histological analysis. CP94 produced greater cell death in vitro when administered in conjunction with MAL than this porphyrin precursor could produce when administered alone. Clinically, PDT treatment using Metvix + CP94 was a simple and safe modification associated with a trend of reduced tumor thickness with increasing CP94 dose.

  7. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.

    PubMed

    Solti, Adám; Müller, Brigitta; Czech, Viktória; Sárvári, Éva; Fodor, Ferenc

    2014-05-01

    Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.

  8. Multivalent chelators for spatially and temporally controlled protein functionalization.

    PubMed

    You, Changjiang; Piehler, Jacob

    2014-05-01

    Site-specific protein modification-e.g. for immobilization or labelling-is a key prerequisite for numerous bioanalytical applications. Although modification by use of short peptide tags is particularly attractive, efficient and bio-orthogonal systems are still lacking. Here, we review the application of multivalent chelators (MCH) for high-affinity yet reversible recognition of oligohistidine (His)-tagged proteins. MCH are based on multiple nitrilotriacetic acid (NTA) moieties grafted on to molecular scaffolds suitable for conjugation to surfaces, probes or other biomolecules. Reversible interaction with the His-tag is mediated via transition metal ions chelated by the NTA moieties. The small size and biochemical compatibility of these recognition units and the possibility of rapid dissociation of the interaction with His-tagged proteins despite sub-nanomolar binding affinity, enable distinct and versatile handling and modification of recombinant proteins. In this review, we briefly introduce the key principles and features of MCH-His-tag interactions and recapitulate the broad spectrum of bioanalytical applications with a focus on quantitative protein interaction analysis on micro or nano-patterned solid surfaces and specific protein labelling in living cells. PMID:24770786

  9. Branched polymeric media: boron-chelating resins from hyperbranched polyethylenimine.

    PubMed

    Mishra, Himanshu; Yu, Changjun; Chen, Dennis P; Goddard, William A; Dalleska, Nathan F; Hoffmann, Michael R; Diallo, Mamadou S

    2012-08-21

    Extraction of boron from aqueous solutions using selective resins is important in a variety of applications including desalination, ultrapure water production, and nuclear power generation. Today's commercial boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, which corresponds to a sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with equilibrium boron concentration of ∼70 mM. In this article, we describe the synthesis and characterization of a new resin that can selectively extract boron from aqueous solutions. We show that branched polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-1,5-D-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. This resin has a sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron concentration of ∼70 mM, which is 66% percent larger than that of standard commercial STY-DVB resins. Our new boron-selective resin also shows excellent regeneration efficiency using a standard acid wash with a 1.0 M HCl solution followed by neutralization with a 0.1 M NaOH solution.

  10. Chelating polymeric beads as potential therapeutics for Wilson's disease.

    PubMed

    Mattová, Jana; Poučková, Pavla; Kučka, Jan; Skodová, Michaela; Vetrík, Miroslav; Stěpánek, Petr; Urbánek, Petr; Petřík, Miloš; Nový, Zbyněk; Hrubý, Martin

    2014-10-01

    Wilson's disease is a genetic disorder caused by a malfunction of ATPase 7B that leads to high accumulation of copper in the organism and consequent toxic effects. We propose a gentle therapy to eliminate the excessive copper content with oral administration of insoluble non-resorbable polymer sorbents containing selective chelating groups for copper(II). Polymeric beads with the chelating agents triethylenetetramine, N,N-di(2-pyridylmethyl)amine, and 8-hydroxyquinoline (8HQB) were investigated. In a preliminary copper uptake experiment, we found that 8HQB significantly reduced copper uptake (using copper-64 as a radiotracer) after oral administration in Wistar rats. Furthermore, we measured organ radioactivity in rats to demonstrate that 8HQB radiolabelled with iodine-125 is not absorbed from the gastrointestinal tract after oral administration. Non-resorbability and the blockade of copper uptake were also confirmed with small animal imaging (PET/CT) in mice. In a long-term experiment with Wistar rats fed a diet containing the polymers, we have found that there were no signs of polymer toxicity and the addition of polymers to the diet led to a significant reduction in the copper contents in the kidneys, brains, and livers of the rats. We have shown that polymers containing specific ligands could potentially be novel therapeutics for Wilson's disease.

  11. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    PubMed

    Straube, Ronny

    2014-05-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but may

  12. Cosmic alternatives?

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  13. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity.

    PubMed

    Ferreira, Miguel F; Gonçalves, Janaina; Mousavi, Bibimaryam; Prata, Maria I M; Rodrigues, Sérgio P J; Calle, Daniel; López-Larrubia, Pilar; Cerdan, Sebastian; Rodrigues, Tiago B; Ferreira, Paula M; Helm, Lothar; Martins, José A; Geraldes, Carlos F G C

    2015-03-01

    The relaxivity displayed by Gd(3+) chelates immobilized onto gold nanoparticles is the result of the complex interplay between the nanoparticle size, the water exchange rate and the chelate structure. In this work we study the effect of the length of ω-thioalkyl linkers, anchoring fast water exchanging Gd(3+) chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd(3+) chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(α-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM(-1) s(-1) (30 MHz, 25 °C), were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles was determined mainly by size. Small nanoparticles (HD = 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD = 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggest that functionalized gold nanoparticles hold great potential for further investigation as MRI contrast agents. This study contributes to a better understanding of the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd(3+) complexes. It is a relevant contribution towards "design rules" for nanostructures functionalized with Gd(3+) chelates as Contrast Agents for MRI and multimodal imaging.

  14. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  15. Alternative Conceptualizations.

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; O'Reilly, Patricia, Ed.

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains five articles devoted to the topic of "Alternative Conceptualizations" of the foundations of education. In "The Concept of Place in the New Sociology of Education," Paul Theobald examines the notion of place in educational theory and practice. Janice Jipson and Nicholas Paley, in…

  16. Magnetostrictive Alternator

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger; Bruder, Geoffrey

    2013-01-01

    This innovation replaces the linear alternator presently used in Stirling engines with a continuous-gradient, impedance-matched, oscillating magnetostrictive transducer that eliminates all moving parts via compression, maintains high efficiency, costs less to manufacture, reduces mass, and eliminates the need for a bearing system. The key components of this new technology are the use of stacked magnetostrictive materials, such as Terfenol-D, under a biased magnetic and stress-induced compression, continuous-gradient impedance-matching material, coils, force-focusing metallic structure, and supports. The acoustic energy from the engine travels through an impedancematching layer that is physically connected to the magnetostrictive mass. Compression bolts keep the structure under compressive strain, allowing for the micron-scale compression of the magnetostrictive material and eliminating the need for bearings. The relatively large millimeter displacement of the pressure side of the impedance-matching material is reduced to micron motion, and undergoes stress amplification at the magnetostrictive interface. The alternating compression and expansion of the magnetostrictive material creates an alternating magnetic field that then induces an electric current in a coil that is wound around the stack. This produces electrical power from the acoustic pressure wave and, if the resonant frequency is tuned to match the engine, can replace the linear alternator that is commonly used.

  17. Alternative Thinking.

    ERIC Educational Resources Information Center

    Herman, Dan

    1999-01-01

    Explains how advances in diesel and alternative fuels has caused schools to reconsider their use for their bus fleets. Reductions in air pollution emissions, cost-savings developments, and the economies experienced from less downtime and maintenance requirements are explored. (GR)

  18. Tailored Gallium(III) chelator NOPO: synthesis, characterization, bioconjugation, and application in preclinical Ga-68-PET imaging.

    PubMed

    Simeček, Jakub; Zemek, Ondřej; Hermann, Petr; Notni, Johannes; Wester, Hans-Jürgen

    2014-11-01

    The bifunctional chelator NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) shows remarkably high Ga(III) complexation efficiency and comprises one carboxylic acid moiety which is not involved into metal ion coordination. An improved synthetic protocol affords NOPO with 45% overall yield. Stepwise protonation constants (log Ka), determined by potentiometry, are 11.96, 5.22, 3.77, and 1.54; the stability constant of the Ga(III) complex is log KGaL = 25.0. Within 5 min, (68)Ga(III) incorporation by NOPO is virtually quantitative at room temperature between pH 3 and 4, and at 95 °C at pH ranging from 0.5 to 7, at NOPO concentrations of 30 μM and 10 μM, respectively. During amide bond formation at the distant carboxylate using the HATU coupling reagent, an intramolecular phosphinic acid ester (phosphilactone) is formed, which is cleaved during (68)Ga complexation or in acidic media, such as trifluoroacetic acid (TFA). Phosphilactone formation can also be suppressed by complexation of Zn(2+) prior to conjugation, the resulting zinc-containing conjugates nevertheless being suitable for direct (68)Ga-labeling. In AR42J (rat pancreatic carcinoma) xenografted CD-1 nude mice, (68)Ga-labeled NOPO-NaI(3)-octreotide conjugate ((68)Ga-NOPO-NOC) showed high and fully blockable tumor uptake (13.9 ± 5% ID/g, 120 min p.i., compared to 0.9 ± 0.4% ID/g with 5 mg/kg of nonlabeled peptide). Uptake in other tissues was generally below 3% ID/g, except appearance of excretion-related activity accumulation in kidneys. NOPO-functionalized compounds tend to be more hydrophilic than the corresponding DOTA- and NODAGA-conjugates, thus promoting fast and extensive renal excretion of (68)Ga-NOPO-radiopharmaceuticals. NOPO-functionalized peptides provide suitable pharmacokinetics in vivo and meet all requirements for efficient (68)Ga-labeling even at room temperature in a kit-like manner.

  19. Inhibitory activity of chelating agent against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethylenediaminetetraacetic acid (EDTA) and ethylenediamine-N, N’-disuccinic acid (EDDS) are chelating agents that can bind minerals that produce water hardness. By sequestering minerals in hard water, chelators reduce water hardness and increase the ability of cleansers to remove dirt and debris dur...

  20. Spectroscopic properties and Judd-Ofelt theory analysis of erbium chelates.

    PubMed

    Wang, Huaishan; Qian, Guodong; Wang, Zhiyu; Wang, Minquan

    2005-11-01

    Erbium chelates including tris(acetylacetonato) erbium(III) monohydrate, tris(acetylacetonato)(1,10-phenanthroline) erbium(III) and tris(trifluoroacetylacetonato)(1,10-phenanthroline) erbium(III) are synthesized. Judd-Ofelt theory is employed on basis of the UV-Vis-NIR absorption spectra of erbium chelates dissolved in methanol. Judd-Ofelt parameters of erbium chelates are determined by a least square fitting and dealt with the chemical structure of erbium chelates. Photoluminescence characteristics of erbium chelates are investigated upon excitation at 488 nm by an Ar(+) laser. The qualitative correlation of Judd-Ofelt parameters with photoluminescence properties for erbium chelates is also discussed. It is found that larger Omega(6) value for erbium chelate is and larger photoluminescence intensity at 1.54 microm is, and Omega(2) value should contribute to the photoluminescence full width at half maximum (FWHM) at 1.54 microm. The changes of Judd-Ofelt parameters result from the introduction of the second ligand phenathroline or the substitution of electron-drawing group CF(3) in beta-diketone for erbium chelates.

  1. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Chelating agents used in the manufacture of paper... for Use Only as Components of Paper and Paperboard § 176.150 Chelating agents used in the manufacture... the manufacture of paper and paperboard, in accordance with the conditions prescribed in paragraphs...

  2. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chelating agents used in the manufacture of paper... Chelating agents used in the manufacture of paper and paperboard. The substances named in paragraph (a) of this section may be safely used in the manufacture of paper and paperboard, in accordance with...

  3. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chelating agents used in the manufacture of paper... Chelating agents used in the manufacture of paper and paperboard. The substances named in paragraph (a) of this section may be safely used in the manufacture of paper and paperboard, in accordance with...

  4. 21 CFR 176.150 - Chelating agents used in the manufacture of paper and paperboard.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chelating agents used in the manufacture of paper... Chelating agents used in the manufacture of paper and paperboard. The substances named in paragraph (a) of this section may be safely used in the manufacture of paper and paperboard, in accordance with...

  5. Differential response of Arabidopsis leaves and roots to cadmium: glutathione-related chelating capacity vs antioxidant capacity.

    PubMed

    Jozefczak, Marijke; Keunen, Els; Schat, Henk; Bliek, Mattijs; Hernández, Luis E; Carleer, Robert; Remans, Tony; Bohler, Sacha; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    This study aims to uncover the spatiotemporal involvement of glutathione (GSH) in two major mechanisms of cadmium (Cd)-induced detoxification (i.e. chelation and antioxidative defence). A kinetic study was conducted on hydroponically grown Arabidopsis thaliana (L. Heyhn) to gain insight into the early events after exposure to Cd. Cadmium detoxification was investigated at different levels, including gene transcripts, enzyme activities and metabolite content. Data indicate a time-dependent response both within roots and between plant organs. Early on in roots, GSH was preferentially allocated to phytochelatin (PC) synthesis destined for Cd chelation. This led to decreased GSH levels, without alternative pathways activated to complement GSH's antioxidative functions. After one day however, multiple antioxidative pathways increased including superoxide dismutase (SOD), ascorbate (AsA) and catalase (CAT) to ensure efficient neutralization of Cd-induced reactive oxygen species (ROS). As a consequence of Cd retention and detoxification in roots, a delayed response occurred in leaves. Together with high leaf thiol contents and possibly signalling responses from the roots, the leaves were protected, allowing them sufficient time to activate their defence mechanisms. PMID:25049163

  6. Development of a new radiolabel (lead-203) and new chelating agents for labeling monoclonal anntibodies for imaging

    SciTech Connect

    Srivastava, S.C.; Mease, R.C.; Meinken, G.E.; Mausner, L.F.; Steplewski, Z.

    1988-01-01

    High liver uptake and slow body clearance presently limit the usefulness of /sup 111/In labeled antibodies for tumor imaging. We have investigated /sup 203/Pb as an alternate and better antibody label. The DTPA and cyclohexyl EDTA (CDTA) conjugates of an anticolon carcinoma antibody, 17-1A were labeled (bicyclic anhydride method) with /sup 203/Pb and /sup 111/In with 60 and 90% labeling yields, respectively. The biodistribution of /sup 203/Pb-17-1A conjugates was compared with the corresponding /sup 111/In-labeled preparations and with /sup 203/Pb-DTPA, /sup 203/Pb-nitrate and nonrelevant antibody controls in normal and human tumor (SW948) xenografted nude mice at 24, and 96 hr. Lead-203-labeled CDTA and DTPA antibody conjugates gave similar in vivo distributions. Even though the lead bound to these chelate-antibody conjugates was more labile in serum and in vivo, compared to indium, it cleared much faster from the liver and the whole body. A new series of chelating agents based on the incorporation of a trans-1,2- diaminocyclohexane moiety into the carbon backbone of polyaminocarboxylates is being synthesized. These are expected to provide stronger complexing ability for lead and produce greater in vivo stability. These ligands are also expected to be superior to EDTA and DTPA for labeling antibodies with other radiometals, including indium. 32 refs., 3 tabs.

  7. Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries.

    PubMed

    Li, Bing; Geng, Dongsheng; Lee, Xinjing Shannon; Ge, Xiaoming; Chai, Jianwei; Wang, Zhijuan; Zhang, Jie; Liu, Zhaolin; Hor, T S Andy; Zong, Yun

    2015-05-25

    We report 2D microporous carbon sheets with high surface area, derived from eggplant via simple carbonization and KOH activation, as low cost yet efficient bifunctional catalysts for high performance rechargeable zinc-air batteries.

  8. Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries.

    PubMed

    Li, Bing; Geng, Dongsheng; Lee, Xinjing Shannon; Ge, Xiaoming; Chai, Jianwei; Wang, Zhijuan; Zhang, Jie; Liu, Zhaolin; Hor, T S Andy; Zong, Yun

    2015-05-25

    We report 2D microporous carbon sheets with high surface area, derived from eggplant via simple carbonization and KOH activation, as low cost yet efficient bifunctional catalysts for high performance rechargeable zinc-air batteries. PMID:25920952

  9. Enhancement of (stereo)selectivity in dynamic kinetic resolution using a core-shell nanozeolite@enzyme as a bi-functional catalyst.

    PubMed

    Wang, Wanlu; Li, Xiang; Wang, Zhoujun; Tang, Yi; Zhang, Yahong

    2014-08-28

    A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.

  10. Oxychlorination-Dehydrochlorination Chemistry on Bifunctional Ceria Catalysts for Intensified Vinyl Chloride Production.

    PubMed

    Scharfe, Matthias; Lira-Parada, Pedro A; Paunović, Vladimir; Moser, Maximilian; Amrute, Amol P; Pérez-Ramírez, Javier

    2016-02-24

    Ceria catalyzes the one-step production of the vinyl chloride monomer (VCM) from ethylene with a high yield because of its bifunctional character: redox centers oxychlorinate ethylene to ethylene dichloride (EDC), which is subsequently dehydrochlorinated to VCM over strong acid sites generated in situ. Nanocrystalline CeO2 and CeO2-ZrO2 lead to a VCM yield of 25 % in a single pass, outperforming the best reported systems and reaching industrially attractive levels. The use of CeO2 intensifies the current two-step process within PVC production encompassing CuCl2 -catalyzed oxychlorination and thermal cracking. In addition, ceria-based materials offer stability advantages with respect to the archetypical CuCl2 -based catalysts.

  11. Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidine-Squaramide-Derived Organocatalysts.

    PubMed

    Roca-López, David; Uria, Uxue; Reyes, Efraim; Carrillo, Luisa; Jørgensen, Karl Anker; Vicario, Jose L; Merino, Pedro

    2016-01-18

    The catalytic modes of action of three squaramide-derived bifunctional organocatalysts have been investigated using DFT methods. The [5+2] cycloaddition between oxidopyrylium ylides and enals was used as the model reaction. Two primary modes were possible for the different catalysts studied. The preference for one mode over the other was due to the possibility of additional favorable π-π interactions between the hydrogen-bond activated pyrylium ylide and an electron-deficient aromatic ring bonded to the squaramide NH group. The model can be extended to other reactions catalyzed by the same catalysts, such as formal [2+2] cycloadditions between nitroalkenes and α,β-unsaturated aldehydes. The computational results were in excellent concurrence with the available experimental reports on the observed total enantioselectivity and differences in diastereoselectivity depending on the substrate and the reaction.

  12. Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs

    SciTech Connect

    Lin, Liqin; Crew, Elizabeth; Yan, Hong; Shan, Shiyao; Skeete, Zakiya; Mott, Derrick; Krentsel, Tatiana; Yin, Jun; Chernova, Natasha A.; Luo, Jin; Engelhard, Mark H.; Wang, Chong M.; Li, Qingbiao; Zhong, Chuan-Jian

    2013-07-27

    The ability to detect and intervene in DNA assembly, disassembly, and enzyme cutting processes in a solution phase requires effective signal transduction and stimulus response. This report demonstrates a novel bifunctional strategy for the creation of this ability using gold- and silver-coated MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) that impart magnetic and surfaceenhanced Raman scattering (SERS) functionalities to these processes. The double-stranded DNA linkage of labeled gold nanoparticles with MZF@Au (or MZF@Ag) produces interparticle "hot-spots" for real-time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, during which the magnetic component provides an effective means for intervention in the solution. The unique combination of the nanoprobes functionalities serves a new paradigm for the design of functional nanoprobes in biomolecular recognition and intervention.

  13. Bifunctional Nanoparticle-SILP Catalysts (NPs@SILP) for the Selective Deoxygenation of Biomass Substrates

    SciTech Connect

    Luska, Kylie L.; Julis, Jennifer; Stavitski, Eli; Zakharov, Dmitri N.; Adams, Alina; Leitner, Walter

    2014-08-27

    We immobilized ruthenium nanoparticles onto an acidic supported ionic liquid phase (RuNPs@SILP) in the development of bifunctional catalysts for the selective deoxygenation of biomass substrates. RuNPs@SILPs possessed high catalytic activities, selectivities and recyclabilities in the hydrogenolytic deoxygenation and ring opening of C8- and C9-substrates derived from furfural or 5-hydroxymethylfurfural and acetone. When we tailor the acidity of the SILP through the ionic liquid loading provided a molecular parameter by which the catalytic activity and selectivity of the RuNPs@SILPs were controlled to provide a flexible catalyst system toward the formation of different classes of value-added products: cyclic ethers, primary alcohols or aliphatic ethers.

  14. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    PubMed

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  15. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    PubMed

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage. PMID:25383783

  16. RNA Secondary Structure Modulates FMRP's Bi-Functional Role in the MicroRNA Pathway.

    PubMed

    Kenny, Phillip; Ceman, Stephanie

    2016-01-01

    MicroRNAs act by post-transcriptionally regulating the gene expression of 30%-60% of mammalian genomes. MicroRNAs are key regulators in all cellular processes, though the mechanism by which the cell activates or represses microRNA-mediated translational regulation is poorly understood. In this review, we discuss the RNA binding protein Fragile X Mental Retardation Protein (FMRP) and its role in microRNA-mediated translational regulation. Historically, FMRP is known to function as a translational suppressor. However, emerging data suggests that FMRP has both an agonistic and antagonistic role in regulating microRNA-mediated translational suppression. This bi-functional role is dependent on FMRP's interaction with the RNA helicase Moloney leukemia virus 10 (MOV10), which modifies the structural landscape of bound mRNA, therefore facilitating or inhibiting its association with the RNA-Induced Silencing Complex. PMID:27338369

  17. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water.

    PubMed

    Schöfberger, Wolfgang; Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A A W; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero; Dey, Abhishek

    2016-02-12

    Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H(+)/4 e(-) process, while oxygen can be fully reduced to water by a 4 e(-)/4 H(+) process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2(-). We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.

  18. Improving battery safety by early detection of internal shorting with a bifunctional separator.

    PubMed

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-10-13

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety.

  19. Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer

    PubMed Central

    2013-01-01

    Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025

  20. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    PubMed Central

    2011-01-01

    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand. PMID:21711615

  1. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  2. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    PubMed Central

    Sui, Tianyi; Song, Baoyu; Wen, Yu-ho; Zhang, Feng

    2016-01-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands. PMID:26936117

  3. Novel 3-nitrotriazole-based amides and carbinols as bifunctional anti-Chagasic agents

    PubMed Central

    Papadopoulou, Maria V.; Bloomer, William D.; Lepesheva, Galina I.; Rosenzweig, Howard S.; Kaiser, Marcel; Aguilera-Venegas, Benjamín; Wilkinson, Shane R.; Chatelain, Eric; Ioset, Jean-Robert

    2015-01-01

    3-Nitro-1H-1,2,4-triazole-based amides with a linear, rigid core and 3-nitrotriazole-based fluconazole analogs were synthesized as dual functioning antitrypanosomal agents. Such compounds are excellent substrates for type I nitroreductase (NTR) located in the mitochondrion of trypanosomatids and, at the same time, act as inhibitors of the sterol 14α-demethylase (T. cruzi CYP51) enzyme. Because combination treatments against parasites are often superior to monotherapy, we believe that this emerging class of bifunctional compounds may introduce a new generation of antitrypanosomal drugs. In the present work, the synthesis and in vitro and in vivo evaluation of such compounds is discussed. PMID:25580906

  4. Improving battery safety by early detection of internal shorting with a bifunctional separator.

    PubMed

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-01-01

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety. PMID:25308055

  5. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors.

  6. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-01

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated. PMID:25187982

  7. Bifunctional colorimetric oligonucleotide probe based on a G-quadruplex DNAzyme molecular beacon.

    PubMed

    Zhang, Libing; Zhu, Jinbo; Li, Tao; Wang, Erkang

    2011-12-01

    A label-free bifunctional colorimetric oligonucleotide probe for DNA and protein detection has been developed on the basis of a novel catalytic molecular beacon consisting of two hairpin structures and a split G-quadruplex DNAzyme in the middle. The two loops of this molecular beacon consist of thrombin aptamer sequence and the complementary sequence of target DNA, which are utilized to sense single-stranded DNA and thrombin. The G-quadruplex DNAzyme can effectively catalyze the H(2)O(2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine sulfate to generate colorimetric signal. Upon addition of the target, the DNA or protein combines with one loop of the hairpin structures, and meanwhile drives the middle G-quadruplex DNAzyme to dissociate. This results in a decrease of catalytic activity, enabling the separate analysis of DNA and thrombin.

  8. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:27478281

  9. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:26773287

  10. Bi-Functional Biobased Packing of the Cassava Starch, Glycerol, Licuri Nanocellulose and Red Propolis

    PubMed Central

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0–1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage. PMID:25383783

  11. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water.

  12. Crosslinking with bifunctional reagents as a means for studying the symmetry of oligomeric proteins.

    PubMed

    Hajdu, J; Bartha, F; Friedrich, P

    1976-09-15

    A method based upon the principle that unlike domains of bonding are reflected in different reactivities and distribution of residues that can be crosslinked, has been elaborated for the determination of symmetry of oligomeric proteins. The derivation of theoretical curves for the prediction of crosslinking patterns of tetramers produced by reaction with a bifunctional reagent and subsequent sodium-dodecylsulphage-gel electrophoretic analysis, is presented. Based upon the theory the symmetry properties of a tetramer, to the extent whether it is an isologous or heterologous association, can be deduced by a simple calculation. Crosslinking patterns obtained with rabbit muscle aldolase and pig muscle lactate dehydrogenase after treatment with a series of diimidoesters of increasing chain length are evaluated and shown to be consistent with the expectations for isologous tetramers. From the patterns obtained with the various reagents the distances between lysyl residues located nearest to each other in different subunits in the two proteins could also be determined.

  13. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. PMID:24891131

  14. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  15. Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug.

    PubMed

    Composto, Gabriella M; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R; Casillas, Robert P; Heindel, Ned D; Joseph, Laurie B; Heck, Diane E

    2016-06-01

    Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4μmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures. PMID:27189522

  16. Robust superamphiphobic coatings based on silica particles bearing bifunctional random copolymers.

    PubMed

    Zhang, Ganwei; Lin, Shudong; Wyman, Ian; Zou, Hailiang; Hu, Jiwen; Liu, Guojun; Wang, Jiandong; Li, Fei; Liu, Feng; Hu, Meilong

    2013-12-26

    Reported herein is the growth of bifunctional random copolymer chains from silica particles through a "grafting from" approach and the use of these copolymer-bearing particles to fabricate superamphiphobic coatings. The silica particles had a diameter of 90 ± 7 nm and were prepared through a modified Stöber process before atom transfer radical polymerization (ATRP) initiators were introduced onto their surfaces. Bifunctional copolymer chains bearing low-surface-free-energy fluorinated units and sol-gel-forming units were then grafted from these silica particles by surface-initiated ATRP. Perfluorooctyl ethyl acrylate (FOEA) and 3-(triisopropyloxy)silylpropyl methacrylate (IPSMA) were respectively used as fluorinated and sol-gel-forming monomers in this reaction. Hydrolyzing the IPSMA units in the presence of an acid catalyst yielded silica particles that were adorned with silanol-bearing copolymer chains. Coatings were prepared by spraying these hydrolyzed silica particles onto glass and cotton substrates. A series of four different copolymer-functionalized silica particles samples bearing copolymers with similar FOEA molar fractions (fF) of ~80% but with different copolymer grafting mass ratios (gm) that ranged between 12.3 wt% and 58.8 wt%, relative to silica, were prepared by varying the polymerization protocols. These copolymer-bearing silica particles with a gm exceeding 34.1 wt% were used to coat glass and cotton substrates, yielding superamphiphobic surfaces. More importantly, these particulate-based coatings were robust and resistant to solvent extraction and NaOH etching thanks to the self-cross-linking of the copolymer chains and their covalent attachment to the substrates.

  17. Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex aeolicus.

    PubMed

    Yu, Zhihao; Lansdon, Eric B; Segel, Irwin H; Fisher, Andrew J

    2007-01-19

    The thermophilic chemolithotroph, Aquifex aeolicus, expresses a gene product that exhibits both ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase activities. These enzymes are usually segregated on two separate proteins in most bacteria, fungi, and plants. The domain arrangement in the Aquifex enzyme is reminiscent of the fungal ATP sulfurylase, which contains a C-terminal domain that is homologous to APS kinase yet displays no kinase activity. Rather, in the fungal enzyme, the motif serves as a sulfurylase regulatory domain that binds the allosteric effector 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the product of true APS kinase. Therefore, the Aquifex enzyme may represent an ancestral homolog of a primitive bifunctional enzyme, from which the fungal ATP sulfurylase may have evolved. In heterotrophic sulfur-assimilating organisms such as fungi, ATP sulfurylase catalyzes the first committed step in sulfate assimilation to produce APS, which is subsequently metabolized to generate all sulfur-containing biomolecules. In contrast, ATP sulfurylase in sulfur chemolithotrophs catalyzes the reverse reaction to produce ATP and sulfate from APS and pyrophosphate. Here, the 2.3 A resolution X-ray crystal structure of Aquifex ATP sulfurylase-APS kinase bifunctional enzyme is presented. The protein dimerizes through its APS kinase domain and contains ADP bound in all four active sites. Comparison of the Aquifex ATP sulfurylase active site with those from sulfate assimilators reveals similar dispositions of the bound nucleotide and nearby residues. This suggests that minor perturbations are responsible for optimizing the kinetic properties for the physiologically relevant direction. The APS kinase active-site lid adopts two distinct conformations, where one conformation is distorted by crystal contacts. Additionally, a disulfide bond is observed in one ATP-binding P-loop of the APS kinase active site. This linkage accounts for the low kinase activity of the

  18. Toward resolving the unsettled role of iron chelation therapy in myelodysplastic syndromes.

    PubMed

    Merkel, Drorit G; Nagler, Arnon

    2014-07-01

    Transfusion dependent low risk myelodysplastic syndromes (MDS) patients, eventually develop iron overload. Iron toxicity, via oxidative stress, can damage cellular components and impact organ function. In thalassemia major patients, iron chelation therapy lowered iron levels with recovery of cardiac and liver functions and significant improvement in survival. Several noncontrolled studies show inferior survival in MDS patients with iron overload, including an increase in transplant-related mortality and infection risk while iron chelation appears to improve survival in both lower risk MDS patients and in stem cell transplant settings. Collated data are presented on the pathophysiological impact of iron overload; measuring techniques and chelating agents' therapy positive impact on hematological status and overall survival are discussed. Although suggested by retrospective analyses, the lack of clear prospective data of the beneficial effects of iron chelation on morbidity and survival, the role of iron chelation therapy in MDS patients remains controversial.

  19. The Design and Synthesis of Highly Branched and Spherically Symmetric Fluorinated Macrocyclic Chelators

    PubMed Central

    Jiang, Zhong-Xing; Yu, Y. Bruce

    2010-01-01

    Two novel, highly fluorinated macrocyclic chelators with highly branched and spherically symmetric fluorocarbon moieties have been designed and efficiently synthesized. This is achieved by conjugating a spherically symmetric fluorocarbon moiety to the macrocyclic chelator DOTA, with or without a flexible oligo-oxyethylene linker between these two parts. As a result of the spherical symmetry, all 27 fluorine atoms in each fluorinated chelator give a sharp singlet 19F NMR signal. The hydrophilicity and the 19F relaxation behavior of fluorinated chelators can be modulated by the insertion of a flexible linker between the fluorocarbon moiety and the macrocyclic linker. These chelators serve as prototypes for 1H-19F dual-nuclei magnetic resonance imaging agents. PMID:20585414

  20. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    NASA Astrophysics Data System (ADS)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  1. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  2. Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan

    SciTech Connect

    Wu, F.C.; Tseng, R.L.; Juang, R.S.

    1999-01-01

    The role of pH in adsorption of Cu(II) from aqueous solutions containing chelating agents on chitosan was emphasized. Four chelating agents including ethylenediaminetetraacetic acid (EDTA), citric acid, tartaric acid, and sodium gluconate were used. It was shown that the adsorption ability of Cu(II) on chitosan from its chelated solutions varied significantly with pH variations. The competition between coordination of Cu(II) with unprotonated chitosan and electrostatic interaction of the Cu(II) chelates with protonated chitosan took place because of the change in solution pH during adsorption. The maximum adsorption capacity was obtained within each optimal pH range determined from titration curves of the chelated solutions. Coordination of Cu(II) with the unprotonated chitosan was found to dominate at pH below such an optimal pH value.

  3. Design and synthesis of zinc-selective chelators for extracellular applications.

    PubMed

    Kawabata, Eri; Kikuchi, Kazuya; Urano, Yasuteru; Kojima, Hirotatsu; Odani, Akira; Nagano, Tetsuo

    2005-01-26

    Zinc (Zn2+) is found in every cell in human bodies. A few millimolar of free Zn2+ exists in the vesicles of presynaptic neurons in the mammalian brain and is released by synaptic activity or depolarization, modulating the function of certain ion channels and receptors. Although various chemical tools for measuring Zn2+ in biological samples, such as fluorescent probes for Zn2+, have been developed, Zn2+-selective chelators have room to be improved. Research on Zn2+ signals in the brain has traditionally employed several chelators, which have several shortcomings for biological applications. Here we report the design, synthesis, and properties of new membrane-impermeable chelators selective for Zn2+ and describe biological applications in hippocampal slices. As a result, our newly designed chelator revealed the first biological implication that presynaptic Zn2+ can be released in the CA1 region. This confirms the utility of these new chelatotrs as extracellular Zn2+ chelators for biological applications.

  4. Sequestration of Zinc Oxide by Fimbrial Designer Chelators

    PubMed Central

    Kjærgaard, Kristian; Sørensen, Jack K.; Schembri, Mark A.; Klemm, Per

    2000-01-01

    Type 1 fimbriae are surface organelles of Escherichia coli. By engineering a structural component of the fimbriae, FimH, to display a random peptide library, we were able to isolate metal-chelating bacteria. A library consisting of 4 × 107 independent clones was screened for binding to ZnO. Sequences responsible for ZnO adherence were identified, and distinct binding motifs were characterized. The sequences selected exhibited various degrees of affinity and specificity towards ZnO. Competitive binding experiments revealed that the sequences recognized only the oxide form of Zn. Interestingly, one of the inserts exhibited significant homology to a specific sequence in a putative zinc-containing helicase, which suggests that searches such as this one may aid in identifying binding motifs in nature. The zinc-binding bacteria might have a use in detoxification of metal-polluted water. PMID:10618196

  5. Comparison of 225actinium chelates: tissue distribution and radiotoxicity.

    PubMed

    Davis, I A; Glowienka, K A; Boll, R A; Deal, K A; Brechbiel, M W; Stabin, M; Bochsler, P N; Mirzadeh, S; Kennel, S J

    1999-07-01

    The biodistribution and tissue toxicity of intravenously administered 225-actinium (225Ac) complexed with acetate, ethylene diamine tetraacetic acid (EDTA), 1, 4, 7, 10, 13-pentaazacyclopentadecane-N, N', N", N"', N"-pentaacetic acid (PEPA), or the "a" isomer of cyclohexyl diethylenetriamine pentaacetic acid (CHX-DTPA), were examined. The percent of injected dose per organ and per gram of tissue for each chelate complex was determined. 225Ac-CHX-DTPA was evaluated further for radiotoxic effects. Mice receiving > or =185 kBq 225Ac-CHX-DTPA suffered 100% morbidity by 5 days and 100% mortality by 8 days postinjection, and all animals evaluated had significant organ damage. The in vivo instability of the 225Ac-CHX-DTPA complex likely allowed accumulation of free 225Ac in organs, which resulted in tissue pathology.

  6. Control of cytoplasmic calcium with photolabile tetracarboxylate 2-nitrobenzhydrol chelators.

    PubMed Central

    Tsien, R Y; Zucker, R S

    1986-01-01

    This paper introduces nitr-2, a new Ca2+ chelator designed to release Ca2+ upon illumination with near UV (300-400 nm) light. Before illumination nitr-2 has Ca2+ dissociation constants of 160 and 630 nM in 0.1 and 0.3 M ionic strength respectively; after photoconversion to a nitrosobenzophenone the values shift to 7 and 18 microM, high enough to liberate substantial amounts of Ca2+ under intracellular conditions. The speed of release is limited by a dark reaction with rate constant 5 s-1. Aplysia central neurons injected with nitr-2 and exposed to UV light exhibit two separate Ca2+-dependent membrane currents: one carried by potassium ions and one a nonspecific cation current. A quantitative estimate of the spatial distribution of intracellular [Ca2+] changes in large cells filled with a high concentration of nitr-2 and exposed to an intense UV flash is offered. PMID:3098316

  7. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    SciTech Connect

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  8. Chelation-Induced Polymer Structural Hierarchy/Complexity in Water.

    PubMed

    Han, Jie; Zhou, Kaiyi; Zhu, Xuechao; Yu, Qiuping; Ding, Yi; Lu, Xinhua; Cai, Yuanli

    2016-08-01

    Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein-alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation-induced self-assembly (CCISA) is presented. Hierarchically-ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular-to-supracolloidal stepwise-growth mechanism, and underline amazing prospects to the hierarchically-ordered superstructures of hydrophilic flexible polymers in water. PMID:27219860

  9. Clinically approved iron chelators influence zebrafish mortality, hatching morphology and cardiac function.

    PubMed

    Hamilton, Jasmine L; Hatef, Azadeh; Imran ul-Haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.

  10. Clinically Approved Iron Chelators Influence Zebrafish Mortality, Hatching Morphology and Cardiac Function

    PubMed Central

    Hamilton, Jasmine L.; Hatef, Azadeh; Imran ul-haq, Muhammad; Nair, Neelima; Unniappan, Suraj; Kizhakkedathu, Jayachandran N.

    2014-01-01

    Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity. PMID:25329065

  11. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.

    PubMed

    Liang, Chenju; Bruell, Clifford J; Marley, Michael C; Sperry, Kenneth L

    2004-06-01

    In situ chemical oxidation (ISCO) is a technique used to remediate contaminated soil and groundwater systems. It has been postulated that sodium persulfate (Na2S2O8) can be activated by transition metal ions such as ferrous ion (Fe2+) to produce a powerful oxidant known as the sulfate free radical (SO4-*) with a redox potential of 2.6 V, which can potentially destroy organic contaminants. In this laboratory study persulfate oxidation of dissolved trichloroethylene (TCE) was investigated in aqueous and soil slurry systems under a variety of experimental conditions. A chelating agent (i.e., citric acid) was used in attempt to manipulate the quantity of ferrous ion in solution by providing an appropriate chelate/Fe2+ molar ratio. In an aqueous system a chelate/Fe2+ molar ratio of 1/5 (e.g., S2O8(2)-/chelate/Fe2+/TCE ratio of 20/2/10/1) was found to be the lowest acceptable ratio to maintain sufficient quantities of Fe2+ activator in solution resulting in nearly complete TCE destruction after only 20 min. The availability of Fe2+ appeared to be controlled by adjusting the molar ratio of chelate/Fe2+. In general, high levels of chelated ferrous ion concentrations resulted in faster TCE degradation and more persulfate decomposition. However, if initial ferrous ion contents are relatively low, sufficient quantities of chelate must be provided to ensure the chelation of a greater percentage of the limited ferrous ion present. Citric acid chelated ferrous ion appeared effective for TCE degradation within soil slurries but required longer reaction times. Additionally, the use of citric acid without the addition of supplemental Fe2+ in soil slurries, where the citric acid apparently extracted native metals from the soil, appeared to be somewhat effective at enhancing persulfate oxidation of TCE over extended reaction times. A comparison of different chelating agents revealed that citric acid was the most effective.

  12. Fluorescent chelates for monitoring metal binding with macromolecules.

    PubMed

    Islam, M; Khanin, M; Sadik, O A

    2003-01-01

    Metals and radionuclides are usually coupled with proteins together with suitable ligands for therapeutic, tumor-imaging, pharmaceuticals, and biocompatibility applications. Several ligands that can strongly coordinate a given nuclide in a specific valency are already known. However, the demand for bifunctionality has limited the applications of these ligands. We hereby report the molecular design of a receptor system based on the linkage of protein to monoazo ligands. By use of basic coordination chemistry, 4-(3-quinolinoazo)hydroxybenzoic acid (QABA) and derivatives were successfully conjugated to ovalbumin, bovine serum albumin, and alkaline phosphatase at a site that was distinct from the metal binding site. The presence of carboxylic acid linkage in the QABA served as a convenient bridge for protein conjugation and may allow the generic application of these ligands for bioconjugate synthesis while ensuring a high in vivo stability. The ligand-protein conjugates were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy, thin layer chromatography, NMR, and surface-enhanced laser desorption ionization time-of-flight mass spectrometry. The conjugate was tested for the ability to recognize nonradioactive Ga(3+) at a physiological pH, and a binding constant of 1 x 10(20) was recorded. Also, the in vitro testing results indicated that the fluorescent conjugates exhibited significant selectivity for gallium compared to Pb(2+), Hg(2+), Zn(2+), Cu(2+), Fe(3+), and Co(2+) while no responses were obtained for alkaline and alkaline earth metals. These attributes could allow these conjugates to be used as a model for imaging sensors and for metal detection. PMID:12523855

  13. Development of ELISA for detection of mercury based on specific monoclonal antibodies against mercury-chelate.

    PubMed

    Zhang, Yi; Li, Xiaobing; Liu, Guowen; Wang, Zhe; Kong, Tao; Tang, Jiajia; Zhag, Peng; Yang, Wei; Li, Dongna; Liu, Lei; Xie, Guanghong; Wang, Jianguo

    2011-12-01

    Immunoassays for heavy metals offer an alternative approach to traditional techniques for detection of mercury. In this study, a mercury-chelate was prepared with 1-(4-aminobenzyl) ethylenediamine-N,N,N',N'-tetraacetic acid (aminobenzyl-EDTA). The resulting complex was linked to keyhole limpet hemocyanin (KLH) or bovine serum albumin via the amino group and used as the immunizing antigen or detection antigen, respectively. BALB/c mice were immunized with KLH-aminobenzyl-EDTA-Hg and spleen cells from BALB/C mice were fused with Sp2/0 cells. One cell line (5F7) produced monoclonal antibodies with preferential selectivity and sensitivity for aminobenzyl-EDTA-Hg. This cell line had an affinity constant of 4.31 × 10(9) L/mol and its cross-reactivity (CR) with other metals was <2%. The antibody was used for competitive indirect ELISA (CI-ELISA) for Hg(2+) measurements. The detection range was 0.087-790.4 μg/L and the lower limit of detection was 0.042 μg/L. The concentrations of mercury in environmental water samples obtained by CI-ELISA correlated well with graphite furnace atomic absorption spectrometry (GFAAS), and the mean recovery was 88.82% to 104.64%. These results indicate that this method could be used for monitoring mercury of water.

  14. Mechanistic basis for overcoming platinum resistance using copper chelating agents.

    PubMed

    Liang, Zheng D; Long, Yan; Tsai, Wen-Bin; Fu, Siqing; Kurzrock, Razelle; Gagea-Iurascu, Mihai; Zhang, Fan; Chen, Helen H W; Hennessy, Bryan T; Mills, Gordon B; Savaraj, Niramol; Kuo, Macus Tien

    2012-11-01

    Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.

  15. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    PubMed Central

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  16. Potentials and drawbacks of chelate-enhanced phytoremediation of soils.

    PubMed

    Römkens, Paul; Bouwman, Lucas; Japenga, Jan; Draaisma, Cathrina

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and lysimeter studies were conducted to study the phytoremedation potential of EDGA and citric acid and to evaluate its effects on microbial activity and leaching of Cd, Zn Cu and Pb. Grass, lupine and yellow mustard were grown on a moderately polluted acid (pH 4.5) sandy soil that contained 2 mg kg(-1) Cd and 200 mg kg(-1) Zn. Citric acid appeared to be degraded microbially within a few days after addition which limited its potential for long-lasting remediation studies. EDGA enhanced metal solubility but plant uptake did not increase accordingly. The metal shoot:root ratio increased upon addition of EDGA but it also reduced the net shoot and root biomass production of both lupine and yellow mustard. Bacterial biomass was higher in both the citric and EDGA treated pots but bacterial activity remained unaffected. The number of microbivorous nematodes was greatly reduced upon addition of EDGA which was most likely related to the reduced biomass production and, to a smaller extent, to the changes in the composition of the available food. Furthermore, EDGA enhanced metal leaching in the lysimeter study which could lead to groundwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation methods, therefore, seems necessary.

  17. Alternative/Complementary Approaches to Treatment of Children with Autism Spectrum Disorders.

    ERIC Educational Resources Information Center

    Levy, Susan E.; Hyman, Susan L.

    2002-01-01

    This article reviews common complementary or alternative medicine (CAM) treatments used to address symptoms of autistic spectrum disorders, including vitamin supplements, medications, antibiotics, antifungals, diet strategies, chelation/mercury detoxification, and nonbiologic treatments. Strategies that professionals may use in assessing the…

  18. Metal chelation therapy in rheumathoid arthritis: a case report. Successful management of rheumathoid arthritis by metal chelation therapy.

    PubMed

    Bamonti, Fabrizia; Fulgenzi, Alessandro; Novembrino, Cristina; Ferrero, Maria Elena

    2011-12-01

    Toxic metals are involved in the pathogenesis of some neurodegenerative and vascular diseases and are known to impair the immune system functions. We report here the case of a patient affected by heavy metal intoxication, who had developed an autoimmune disease. There was evidence of aluminium, cadmium and lead intoxication in a 63-year old Italian woman affected by rheumatoid arthritis (RA). We treated the patient with calcium disodium edetate (EDTA) once a week for a year in order to remove traces of heavy metal intoxication. Oxidative status profile was carried out at the beginning and after 6 months' EDTA chelation. At the end of the treatment, the patient did not show any signs of metal intoxication, RA symptoms and oxidative status improved.

  19. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  20. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.

    PubMed

    Zhang, Jintao; Qu, Liangti; Shi, Gaoquan; Liu, Jiangyong; Chen, Jianfeng; Dai, Liming

    2016-02-01

    The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal-free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn-air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g(-1) ) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells. PMID:26709954