Sample records for big bang theory

  1. The Big Bang Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  2. The Big Bang Theory

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  3. State of the Universe. If Not with a Big Bang, Then What?

    ERIC Educational Resources Information Center

    Peterson, Ivars

    1991-01-01

    The Big Bang Theory and alternatives to the Big Bang Theory as an explanation for the origin of the universe are discussed. The importance of the discovery of redshift, the percentage of hydrogen found in old stars, and the existence of a uniform sea of radiation are explained. (KR)

  4. The big bang

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.

  5. The Whole Shebang: How Science Produced the Big Bang Model.

    ERIC Educational Resources Information Center

    Ferris, Timothy

    2002-01-01

    Offers an account of the accumulation of evidence that has led scientists to have confidence in the big bang theory of the creation of the universe. Discusses the early work of Ptolemy, Copernicus, Kepler, Galileo, and Newton, noting the rise of astrophysics, and highlighting the birth of the big bang model (the cosmic microwave background theory…

  6. Disproof of Big Bang's Foundational Expansion Redshift Assumption Overthrows the Big Bang and Its No-Center Universe and Is Replaced by a Spherically Symmetric Model with Nearby Center with the 2.73 K CMR Explained by Vacuum Gravity and Doppler Effects

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2015-04-01

    Big bang theory holds its central expansion redshift assumption quickly reduced the theorized radiation flash to ~ 1010 K, and then over 13.8 billion years reduced it further to the present 2.73 K CMR. Weinberg claims this 2.73 K value agrees with big bang theory so well that ``...we can be sure that this radiation was indeed left over from a time about a million years after the `big bang.' '' (TF3M, p180, 1993 ed.) Actually his conclusion is all based on big bang's in-flight wavelength expansion being a valid physical process. In fact all his surmising is nothing but science fiction because our disproof of GR-induced in-flight wavelength expansion [1] definitely proves the 2.73 K CMR could never have been the wavelength-expanded relic of any radiation, much less the presumed big bang's. This disproof of big bang's premier prediction is a death blow to the big bang as it is also to the idea that the redshifts in Hubble's redshift relation are expansion shifts; this negates Friedmann's everywhere-the-same, no-center universe concept and proves it does have a nearby Center, a place which can be identified in Psalm 103:19 and in Revelation 20:11 as the location of God's eternal throne. Widely published (Science, Nature, ARNS) evidence of Earth's fiat creation will also be presented. The research is supported by the God of Creation. This paper [1] is in for publication.

  7. Fixing the Big Bang Theory's Lithium Problem

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    How did our universe come into being? The Big Bang theory is a widely accepted and highly successful cosmological model of the universe, but it does introduce one puzzle: the cosmological lithium problem. Have scientists now found a solution?Too Much LithiumIn the Big Bang theory, the universe expanded rapidly from a very high-density and high-temperature state dominated by radiation. This theory has been validated again and again: the discovery of the cosmic microwave background radiation and observations of the large-scale structure of the universe both beautifully support the Big Bang theory, for instance. But one pesky trouble-spot remains: the abundance of lithium.The arrows show the primary reactions involved in Big Bang nucleosynthesis, and their flux ratios, as predicted by the authors model, are given on the right. Synthesizing primordial elements is complicated! [Hou et al. 2017]According to Big Bang nucleosynthesis theory, primordial nucleosynthesis ran wild during the first half hour of the universes existence. This produced most of the universes helium and small amounts of other light nuclides, including deuterium and lithium.But while predictions match the observed primordial deuterium and helium abundances, Big Bang nucleosynthesis theory overpredicts the abundance of primordial lithium by about a factor of three. This inconsistency is known as the cosmological lithium problem and attempts to resolve it using conventional astrophysics and nuclear physics over the past few decades have not been successful.In a recent publicationled by Suqing Hou (Institute of Modern Physics, Chinese Academy of Sciences) and advisorJianjun He (Institute of Modern Physics National Astronomical Observatories, Chinese Academy of Sciences), however, a team of scientists has proposed an elegant solution to this problem.Time and temperature evolution of the abundances of primordial light elements during the beginning of the universe. The authors model (dotted lines) successfully predicts a lower abundance of the beryllium isotope which eventually decays into lithium relative to the classical Maxwell-Boltzmann distribution (solid lines), without changing the predicted abundances of deuterium or helium. [Hou et al. 2017]Questioning StatisticsHou and collaborators questioned a key assumption in Big Bang nucleosynthesis theory: that the nuclei involved in the process are all in thermodynamic equilibrium, and their velocities which determine the thermonuclear reaction rates are described by the classical Maxwell-Boltzmann distribution.But do nuclei still obey this classical distribution in the extremely complex, fast-expanding Big Bang hot plasma? Hou and collaborators propose that the lithium nuclei dont, and that they must instead be described by a slightly modified version of the classical distribution, accounted for using whats known as non-extensive statistics.The authors show that using the modified velocity distributions described by these statistics, they can successfully predict the observed primordial abundances of deuterium, helium, and lithium simultaneously. If this solution to the cosmological lithium problem is correct, the Big Bang theory is now one step closer to fully describing the formation of our universe.CitationS. Q. Hou et al 2017 ApJ 834 165. doi:10.3847/1538-4357/834/2/165

  8. Non-minimally coupled varying constants quantum cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less

  9. Constructing "Nerdiness": Characterisation in "The Big Bang Theory"

    ERIC Educational Resources Information Center

    Bednarek, Monika

    2012-01-01

    This paper analyses the linguistic construction of the televisual character Sheldon--the "main nerd" in the sitcom "The Big Bang Theory" (CBS, 2007-), approaching this construction of character through both computerised and "manual" linguistic analysis. More specifically, a computer analysis of dialogue (using concordances and keyword analysis) in…

  10. The Big Bang and the Search for a Theory of Everything

    NASA Technical Reports Server (NTRS)

    Kogut, Alan

    2010-01-01

    How did the universe begin? Is the gravitational physics that governs the shape and evolution of the cosmos connected in a fundamental way to the sub-atomic physics of particle colliders? Light from the Big Bang still permeates the universe and carries within it faint clues to the physics at the start of space and time. I will describe how current and planned measurements of the cosmic microwave background will observe the Big Bang to provide new insight into a "Theory of Everything" uniting the physics of the very large with the physics of the very small.

  11. The Early Universe and High-Energy Physics.

    ERIC Educational Resources Information Center

    Schramm, David N.

    1983-01-01

    Many properties of new particle field theories can only be tested by comparing their predictions about the physical conditions immediately after the big bang with what can be reconstructed about this event from astronomical data. Facts/questions about big bang, unified field theories, and universe epochs/mass are among the topics discussed. (JN)

  12. Communicating the Nature of Science through "The Big Bang Theory": Evidence from a Focus Group Study

    ERIC Educational Resources Information Center

    Li, Rashel; Orthia, Lindy A.

    2016-01-01

    In this paper, we discuss a little-studied means of communicating about or teaching the nature of science (NOS)--through fiction television. We report some results of focus group research which suggest that the American sitcom "The Big Bang Theory" (2007-present), whose main characters are mostly working scientists, has influenced…

  13. The Big Bang Theory and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Arthury, Luiz Henrique Martins; Peduzzi, Luiz O. Q.

    2015-12-01

    Modern cosmology was constituted, throughout the twentieth century to the present days, as a very productive field of research, resulting in major discoveries that attest to its explanatory power. The Big Bang Theory, the generic and popular name of the standard model of cosmology, is probably the most daring research program of physics and astronomy, trying to recreate the evolution of our observable universe. But contrary to what you might think, its conjectures are of a degree of refinement and corroborative evidence that make it our best explanation for the history of our cosmos. The Big Bang Theory is also an excellent field to discuss issues regarding the scientific activity itself. In this paper we discuss the main elements of this theory with an epistemological look, resulting in a text quite useful to work on educational activities with related goals.

  14. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  15. A Quantum Universe Before the Big Bang(s)?

    NASA Astrophysics Data System (ADS)

    Veneziano, Gabriele

    2017-08-01

    The predictions of general relativity have been verified by now in a variety of different situations, setting strong constraints on any alternative theory of gravity. Nonetheless, there are strong indications that general relativity has to be regarded as an approximation of a more complete theory. Indeed theorists have long been looking for ways to connect general relativity, which describes the cosmos and the infinitely large, to quantum physics, which has been remarkably successful in explaining the infinitely small world of elementary particles. These two worlds, however, come closer and closer to each other as we go back in time all the way up to the big bang. Actually, modern cosmology has changed completely the old big bang paradigm: we now have to talk about (at least) two (big?) bangs. If we know quite something about the one closer to us, at the end of inflation, we are much more ignorant about the one that may have preceded inflation and possibly marked the beginning of time. No one doubts that quantum mechanics plays an essential role in answering these questions: unfortunately a unified theory of gravity and quantum mechanics is still under construction. Finding such a synthesis and confirming it experimentally will no doubt be one of the biggest challenges of this century’s physics.

  16. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  17. Constraints on massive gravity theory from big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambiase, G., E-mail: lambiase@sa.infn.it

    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.

  18. Cool Cosmology: ``WHISPER" better than ``BANG"

    NASA Astrophysics Data System (ADS)

    Carr, Paul

    2007-10-01

    Cosmologist Fred Hoyle coined ``big bang'' as a term of derision for Belgian priest George Lemaitre's prediction that the universe had originated from the expansion of a ``primeval atom'' in space-time. Hoyle referred to Lamaitre's hypothesis sarcastically as ``this big bang idea'' during a program broadcast on March 28, 1949 on the BBC. Hoyle's continuous creation or steady state theory can not explain the microwave background radiation or cosmic whisper discovered by Penzias and Wilson in 1964. The expansion and subsequent cooling of Lemaitre's hot ``primeval atom'' explains the whisper. ``Big bang'' makes no physical sense, as there was no matter (or space) to carry the sound that Hoyle's term implies. The ``big bang'' is a conjecture. New discoveries may be able to predict the observed ``whispering cosmos'' as well as dark matter and the nature of dark energy. The ``whispering universe'' is cooler cosmology than the big bang. Reference: Carr, Paul H. 2006. ``From the 'Music of the Spheres' to the 'Whispering Cosmos.' '' Chapter 3 of Beauty in Science and Spirit. Beech River Books. Center Ossipee, NH, http://www.MirrorOfNature.org.

  19. Introduction to Big Bang nucleosynthesis - Open and closed models, anisotropies

    NASA Astrophysics Data System (ADS)

    Tayler, R. J.

    1982-10-01

    A variety of observations suggest that the universe had a hot dense origin and that the pregalactic composition of the universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early universe.

  20. Quantum Gravity in Cyclic (ekpyrotic) and Multiple (anthropic) Universes with Strings And/or Loops

    NASA Astrophysics Data System (ADS)

    Chung, T. J.

    2008-09-01

    This paper addresses a hypothetical extension of ekpyrotic and anthropic principles, implying cyclic and multiple universes, respectively. Under these hypotheses, from time immemorial (t = -∞), a universe undergoes a big bang from a singularity, initially expanding and eventually contracting to another singularity (big crunch). This is to prepare for the next big bang, repeating these cycles toward eternity (t = +∞), every 30 billion years apart. Infinity in time backward and forward (t = ±∞) is paralleled with infinity in space (Xi = ±∞), allowing multiple universes to prevail, each undergoing big bangs and big crunches similarly as our own universe. It is postulated that either string theory and /or loop quantum gravity might be able to substantiate these hypotheses.

  1. Big Bang Titanic: New Dark Energy (Vacuum Gravity) Cosmic Model Emerges Upon Falsification of The Big Bang By Disproof of Its Central Assumptions

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2011-04-01

    Physicists who identify the big bang with the early universe should have first noted from Hawking's A Brief History of Time, p. 42, that he ties Hubble's law to Doppler shifts from galaxy recession from a nearby center, not to bb's unvalidated and thus problematical expansion redshifts. Our PRL submission LJ12135 describes such a model, but in it Hubble's law is due to Doppler and vacuum gravity effects, the 2.73K CBR is vacuum gravity shifted blackbody cavity radiation from an outer galactic shell, and its (1 + z)-1 dilation and (M,z) relations closely fit high-z SNe Ia data; all this strongly implies our model's vacuum energy is the elusive dark energy. We also find GPS operation's GR effects falsify big bang's in-flight expansion redshift paradigm, and hence the big bang, by showing λ changes occur only at emission. Surprisingly we also discover big bang's CBR prediction is T < 2x10-8 K, not the observed 2.73K. So instead of the 2.73K affirming the big bang as cosmologists claim, it actually disproves it, to which the DAE's response is most enigmatic -- namely, CBR photons expand dλ/dt > 0, while galactic photons shrink dλ/dt < 0. Contrary to a PRL editor's claim, the above results show LJ12135 fits PRL guidelines for papers that replace established theories. For details see alphacosmos.net.

  2. New trends in cosmology

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1978-01-01

    A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.

  3. The cosmic web and microwave background fossilize the first turbulent combustion

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2015-09-01

    The weblike structure of the cosmic microwave background CMB temperature fluctuations are interpreted as fossils of the first turbulent combustion that drives the big bang1,2,3. Modern turbulence theory3 requires that inertial vortex forces cause turbulence to always cascade from small scales to large, contrary to the standard turbulence model where the cascade is reversed. Assuming that the universe begins at Planck length 10-35 m and temperature 1032 K, the mechanism of the big bang is a powerful turbulent combustion instability, where turbulence forms at the Kolmogorov scale and mass-energy is extracted by < -10113 Pa negative stresses from big bang turbulence working against gravity. Prograde accretion of a Planck antiparticle on a spinning particle-antiparticle pair releases 42% of a particle rest mass from the Kerr metric, producing a spinning gas of turbulent Planck particles that cascades to larger scales at smaller temperatures (10-27 m, 1027 K) retaining the Planck density 1097 kg m-3, where quarks form and gluon viscosity fossilizes the turbulence. Viscous stress powers inflation to ~ 10 m and ~ 10100 kg. The CMB shows signatures of both plasma and big bang turbulence. Direct numerical simulations support the new turbulence theory6.

  4. Nuclear and particle physics in the early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.

  5. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  6. From the Big Bang to the Nobel Prize and on to the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the univerre, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the Jarnes Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where rtars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  7. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The history of the universe in a nutshell, from the Big Bang to now. and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA's Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein's biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA's plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  8. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2009-01-01

    The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.

  9. The cosmic web and microwave background fossilize the first turbulent combustion

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris

    2016-10-01

    Collisional fluid mechanics theory predicts a turbulent hot big bang at Planck conditions from large, negative, turbulence stresses below the Fortov-Kerr limit (< -10113 Pa). Big bang turbulence fossilized when quarks formed, extracting the mass energy of the universe by extreme negative viscous stresses of inflation, expanding to length scales larger than the horizon scale ct. Viscous-gravitational structure formation by fragmentation was triggered at big bang fossil vorticity turbulence vortex lines during the plasma epoch, as observed by the Planck space telescope. A cosmic web of protogalaxies, protogalaxyclusters, and protogalaxysuperclusters that formed in turbulent boundary layers of the spinning voids are hereby identified as expanding turbulence fossils that falsify CDMHC cosmology.

  10. Where Are the Logical Errors in the Theory of Big Bang?

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2015-04-01

    The critical analysis of the foundations of the theory of Big Bang is proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is argued that the starting point of the theory of Big Bang contains three fundamental logical errors. The first error is the assumption that a macroscopic object (having qualitative determinacy) can have an arbitrarily small size and can be in the singular state (i.e., in the state that has no qualitative determinacy). This assumption implies that the transition, (macroscopic object having the qualitative determinacy) --> (singular state of matter that has no qualitative determinacy), leads to loss of information contained in the macroscopic object. The second error is the assumption that there are the void and the boundary between matter and void. But if such boundary existed, then it would mean that the void has dimensions and can be measured. The third error is the assumption that the singular state of matter can make a transition into the normal state without the existence of the program of qualitative and quantitative development of the matter, without controlling influence of other (independent) object. However, these assumptions conflict with the practice and, consequently, formal logic, rational dialectics, and cybernetics. Indeed, from the point of view of cybernetics, the transition, (singular state of the Universe) -->(normal state of the Universe),would be possible only in the case if there was the Managed Object that is outside the Universe and have full, complete, and detailed information about the Universe. Thus, the theory of Big Bang is a scientific fiction.

  11. Infinite derivative gravity: non-singular cosmology & blackhole solutions

    NASA Astrophysics Data System (ADS)

    Mazumdar, A.

    Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.

  12. Effects of anisotropy and spatial curvature on the pre-big-bang scenario

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Lidsey, James E.; Tavakol, Reza

    1998-08-01

    A class of exact, anisotropic cosmological solutions to the vacuum Brans-Dicke theory of gravity is considered within the context of the pre-big-bang scenario. Included in this class are the Bianchi type III, V and VIh models and the spatially isotropic, negatively curved Friedmann-Robertson-Walker universe. The effects of large anisotropy and spatial curvature are determined. In contrast with a negatively curved Friedmann-Robertson-Walker model, there exist regions of the parameter space in which the combined effects of curvature and anisotropy prevent the occurrence of inflation. When inflation is possible, the necessary and sufficient conditions for successful pre-big-bang inflation are more stringent than in the isotropic models. The initial state for these models is established and corresponds in general to a gravitational plane wave.

  13. Possible antigravity regions in F(R) theory?

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D.; Sáez-Gómez, Diego

    2014-03-01

    We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.

  14. Elementary Cosmology: From Aristotle's Universe to the Big Bang and Beyond

    NASA Astrophysics Data System (ADS)

    Kolata, James J.

    2015-11-01

    Cosmology is the study of the origin, size, and evolution of the entire universe. Every culture has developed a cosmology, whether it be based on religious, philosophical, or scientific principles. In this book, the evolution of the scientific understanding of the Universe in Western tradition is traced from the early Greek philosophers to the most modern 21st century view. After a brief introduction to the concept of the scientific method, the first part of the book describes the way in which detailed observations of the Universe, first with the naked eye and later with increasingly complex modern instruments, ultimately led to the development of the ``Big Bang'' theory. The second part of the book traces the evolution of the Big Bang including the very recent observation that the expansion of the Universe is itself accelerating with time.

  15. Beyond Einstein: from the Big Bang to black holes

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Diaz, Alphonso V.

    2004-01-01

    How did the Universe begin? Does time have a beginning and an end? Does space have edges? Einstein's theory of relativity replied to these ancient questions with three startling predictions: that the Universe is expanding from a Big Bang; that black holes so distort space and time that time stops at their edges; and that a dark energy could be pulling space apart, sending galaxies forever beyond the edge of the visible Universe. Observations confirm these remarkable predictions, the last finding only four years ago. Yet Einstein's legacy is incomplete. His theory raises - but cannot answer - three profound questions: What powered the Big Bang? What happens to space, time and matter at the edge of a black hole? and, What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's office of space science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches to shared science goals. The program also serves as a potent force with which to enhance science education and science literacy.

  16. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  17. Observable gravitational waves in pre-big bang cosmology: an update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, M., E-mail: gasperini@ba.infn.it

    In the light of the recent results concerning CMB observations and GW detection we address the question of whether it is possible, in a self-consistent inflationary framework, to simultaneously generate a spectrum of scalar metric perturbations in agreement with Planck data and a stochastic background of primordial gravitational radiation compatible with the design sensitivity of aLIGO/Virgo and/or eLISA. We suggest that this is possible in a string cosmology context, for a wide region of the parameter space of the so-called pre-big bang models. We also discuss the associated values of the tensor-to-scalar ratio relevant to the CMB polarization experiments. Wemore » conclude that future, cross-correlated results from CMB observations and GW detectors will be able to confirm or disprove pre-big bang models and—in any case—will impose new significant constraints on the basic string theory/cosmology parameters.« less

  18. Making a Big Bang on the small screen

    NASA Astrophysics Data System (ADS)

    Thomas, Nick

    2010-01-01

    While the quality of some TV sitcoms can leave viewers feeling cheated out of 30 minutes of their lives, audiences and critics are raving about the science-themed US comedy The Big Bang Theory. First shown on the CBS network in 2007, the series focuses on two brilliant postdoc physicists, Leonard and Sheldon, who are totally absorbed by science. Adhering to the stereotype, they also share a fanatical interest in science fiction, video-gaming and comic books, but unfortunately lack the social skills required to connect with their 20-something nonacademic contemporaries.

  19. The case for the relativistic hot big bang cosmology

    NASA Technical Reports Server (NTRS)

    Peebles, P. J. E.; Schramm, D. N.; Kron, R. G.; Turner, E. L.

    1991-01-01

    What has become the standard model in cosmology is described, and some highlights are presented of the now substantial range of evidence that most cosmologists believe convincingly establishes this model, the relativistic hot big bang cosmology. It is shown that this model has yielded a set of interpretations and successful predictions that substantially outnumber the elements used in devising the theory, with no well-established empirical contradictions. Brief speculations are made on how the open puzzles and work in progress might affect future developments in this field.

  20. Big bang nucleosynthesis: An update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.

    An update on the standard model of big bang nucleosynthesis (BBN) is presented. With the value of the baryon-tophoton ratio determined to high precision by WMAP, standard BBN is a parameter-free theory. In this context, the theoretical prediction for the abundances of D, {sup 4}He, and {sup 7}Li is discussed and compared to their observational determination. While concordance for D and {sup 4}He is satisfactory, the prediction for {sup 7}Li exceeds the observational determination by a factor of about four. Possible solutions to this problem are discussed.

  1. Cosmic alternatives?

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  2. The Future of the Universe.

    ERIC Educational Resources Information Center

    Pasachoff, Jay M.

    1979-01-01

    Discusses some of the basic theories in cosmology, such as Hubble's laws and the big-bang theories, and looks at some of the ideas of astronomers and scientists with respect to their evaluation of the future of the universe. (GA)

  3. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  4. FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Abou El Dahab, E.

    2017-07-01

    Inspired by Lifshitz theory for quantum critical phenomena in condensed matter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet. In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations of state on the evolution of various cosmological parameters such as Hubble parameters and scale factor. From the comparison of the general relativity gravity with the HLG with detailed and without with non-detailed balance conditions, remarkable differences are found. Also, a noticeable dependence of singular and non-singular Big Bang on the equations of state is observed. We conclude that HLG explains various epochs in the early universe and might be able to reproduce the entire cosmic history with and without singular Big Bang.

  5. How Cosmology Became a Science.

    ERIC Educational Resources Information Center

    Brush, Stephen G.

    1992-01-01

    Describes the origin of the science of cosmology and the competing theories to explain the beginning of the universe. The big bang theory for the creation of the universe is contrasted with the steady state theory. The author details discoveries that led to the demise of the steady state theory. (PR)

  6. Bouncing cosmologies from quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Sindoni, Lorenzo; Wilson-Ewing, Edward

    2017-02-01

    We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of isotropic group field theory condensate states in the Gross-Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

  7. The evolving Planck mass in classically scale-invariant theories

    NASA Astrophysics Data System (ADS)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  8. A New Viewpoint (The expanding universe, Dark energy and Dark matter)

    NASA Astrophysics Data System (ADS)

    Cwele, Daniel

    2011-10-01

    Just as the relativity paradox once threatened the validity of physics in Albert Einstein's days, the cosmos paradox, the galaxy rotation paradox and the experimental invalidity of the theory of dark matter and dark energy threaten the stability and validity of physics today. These theories and ideas and many others, including the Big Bang theory, all depend almost entirely on the notion of the expanding universe, Edwin Hubble's observations and reports and the observational inconsistencies of modern day theoretical Physics and Astrophysics on related subjects. However, much of the evidence collected in experimental Physics and Astronomy aimed at proving many of these ideas and theories is ambiguous, and can be used to prove other theories, given a different interpretation of its implications. The argument offered here is aimed at providing one such interpretation, attacking the present day theories of dark energy, dark matter and the Big Bang, and proposing a new Cosmological theory based on a modification of Isaac Newton's laws and an expansion on Albert Einstein's theories, without assuming any invalidity or questionability on present day cosmological data and astronomical observations.

  9. `The Wildest Speculation of All': Lemaître and the Primeval-Atom Universe

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître's daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître's genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.

  10. No ``explosion'' in Big Bang cosmology: teaching kids the truth of what cosmologists really know

    NASA Astrophysics Data System (ADS)

    Gangui, Alejandro

    2011-06-01

    Common wisdom says that cosmologists are smart: they have developed a theory that can explain the ``origin of the universe''. Every time an astro-related, heavily funded ``big-science'' project comes to the media, naturally the question arises: will science -through this or that experiment- explain the origin of the cosmos? Can this be done with the LHC, for example? Will this dream machine create other universes? Of course, the very words we employ in cosmology reinforce this misconception: so Big Bang must be associated with an ``explosion'', even if a ``peculiar'' one, as it took place nowhere (there was presumably no space before the beginning) and happened virtually in no time (supposedly, space-time was created on this peculiar -singular- event). Right, the issue sounds confusing. Let us imagine what kids may get out of all this. We have recently presented a series of brief astronomy and cosmology books aimed at helping both kids and their teachers in these and other arcane subjects, all introduced with carefully chosen words and images that young children can understand. In particular, Volume Four deals with the Big Bang and emphasizes the notion of ``evolution'' as opposed to the -wrong- notion of ``origin'' behind the scientific model. We then explain some of the pillars of Big Bang cosmology: the expansion of space that drags away distant galaxies, as seen in the redshift of their emitted light; the build-up of light elements in a cooling bath of radiation, as explained by primordial nucleosynthesis; and the existence and main features of the ubiquitous cosmic microwave background radiation, where theory and observations agree to a highly satisfactory degree. Of course, one cannot attempt to answer the ``origins'' question when it is well known that all theories so far break down close to this origin (if there was actually an origin). It is through observations, analyses, lively discussions and recognition of the basic limitations of current theories and ideas, that we are led to try and reconstruct the past and predict the future evolution of our universe. Just that. Sound science turns out to be much more attractive when we tell the truth of what we really know.

  11. The Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  12. The Role of Antimatter in Big-Bang Cosmology

    ERIC Educational Resources Information Center

    Stecker, Floyd W.

    1974-01-01

    Discusses theories underlying man's conceptions of the universe, including Omnes' repulsive separation mechanism, the turbulence theory of galaxy formation, and the author's idea about gamma ray spectra in cosmological matter-antimatter annihilation. Indicates that the Apollo data provide encouraging evidence by fitting well with his theoretical…

  13. Model of a Negatively Curved Two-Dimensional Space.

    ERIC Educational Resources Information Center

    Eckroth, Charles A.

    1995-01-01

    Describes the construction of models of two-dimensional surfaces with negative curvature that are used to illustrate differences in the triangle sum rule for the various Big Bang Theories of the universe. (JRH)

  14. The new model of the Big Bang and the Universe expansion. A comparison with modern observational data and cosmological theories

    NASA Astrophysics Data System (ADS)

    Kraiko, A. N.; Valiyev, Kh. F.

    2016-10-01

    The new model of the Big Bang and the Universe expansion is constructed. It is based on solutions in classical and in relativistic statements of problem on the dispersion into the void of the gas compressed into a point or in a finite, but for further negligible, volume. If to restrict in relativistic statement gas speed value v by the speed of light (υ =| v |

  15. Cosmic Microwave Background Timeline

    Science.gov Websites

    about 2.3 K 1948: George Gamow, Ralph Alpher, and Robert Herman predict that a Big Bang universe perfect blackbody spectrum and thereby strongly supporting the hot big bang model, the thermal history of anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  16. Hawking's acting roles

    NASA Astrophysics Data System (ADS)

    Castell, Stephen

    2012-06-01

    In the wake of Stephen Hawking's appearance on the TV show The Big Bang Theory, last month's "Quanta" page (May p3), included a request: "If you think Hawking should appear in any other TV shows, then let us know".

  17. Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension.

    PubMed

    Tsoumpekos, Giorgos; Nemetschke, Linda; Knust, Elisabeth

    2018-03-05

    Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth. © 2018 Tsoumpekos et al.

  18. Was the Big Bang hot?

    NASA Technical Reports Server (NTRS)

    Wright, E. L.

    1983-01-01

    Techniques for verifying the spectrum defined by Woody and Richards (WR, 1981), which serves as a base for dust-distorted models of the 3 K background, are discussed. WR detected a sharp deviation from the Planck curve in the 3 K background. The absolute intensity of the background may be determined by the frequency dependence of the dipole anisotropy of the background or the frequency dependence effect in galactic clusters. Both methods involve the Doppler shift; analytical formulae are defined for characterization of the dipole anisotropy. The measurement of the 30-300 GHz spectra of cold galactic dust may reveal the presence of significant amounts of needle-shaped grains, which would in turn support a theory of a cold Big Bang.

  19. Big-Bang-Gate Cosmic Titanic: Why Aren't Physics Journal's Editors Bringing It To The Center of Scientific Attention

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2010-02-01

    Until now science's greatest debacle occurred when Copernicus exposed Ptolemaic cosmologists' 1300 hundred year-long fraud that it must be true because observations fit theory so well, while they ignored the untested state of its central assumption of Earth centered planetary motion. With much hubris modern physicists are confident this could never happen again, that the integrity of physics journals editors suffices to guarantee that a challenge to the reigning cosmological theory -- big bang cosmology -- would immediately be brought to the center of scientific attention for analysis and discussion. In fact a decade ago it was reported [MPLA 2619 (1997); arXiv:gr-gc/9806061] that, like Ptolemaic cosmology before it, big bang's central assumption that GR expansion effects cause in-flight expansion had never been tested and, further, that experimental testing of it using GR operation of the GPS showed it to be false. This result proves it is impossible for the 2.73 K CBR to be fireball relic radiation. These results were expanded in CERN reports EXT-2003-021;022, but have been uniformly rejected by physics journals, one of which accepted a paper similar to CERN EXT-2003-022, only to reject it a few days later with the admission not to publish it because of fearing reaction of the worldwide physics community. For update on my PRL submission see http://www.alphacosmos.net. )

  20. The big-bang-for-your-buck theory.

    PubMed

    Lucas, H C; Weill, P; Cox, S

    1993-01-01

    Do it right, and your investment in information technology can have all sorts of strategic payoffs. Do it wrong, and you'll be paying, dearly, for nothing. Here's a guide to evaluating IT and measuring its impact.

  1. Nobel laureates in fiction: From La fin du monde to The Big Bang Theory.

    PubMed

    Brodesco, Alberto

    2018-05-01

    The history of the Nobel Prize, since its establishment, interlaces with the history of the public image of science. The aim of this article is to illustrate cinematic scientists, portrayed precisely in their moment of maximum glory. The films and television shows upon which the study is based compose a corpus of 189 media texts. The article identifies three main areas that concern the relation between the Nobel Prize and its audiovisual representations: biopics of real Nobel laureates, the presence of real or fictional Nobel laureates in the film or the show plot, and films and TV series that depict the Nobel ceremony. The article then focuses on four texts that deserve a detailed examination: La fin du monde, The Prize, The Simpsons and The Big Bang Theory. The conclusion compares the representation of the Nobel scientist with general changes in the image of the scientist conveyed by cinema and television.

  2. Was the Universe actually radiation dominated prior to nucleosynthesis?

    NASA Astrophysics Data System (ADS)

    Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue

    2017-08-01

    Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.

  3. Quantum nature of the big bang.

    PubMed

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  4. An embedding for the big bang

    NASA Technical Reports Server (NTRS)

    Wesson, Paul S.

    1994-01-01

    A cosmological model is given that has good physical properties for the early and late universe but is a hypersurface in a flat five-dimensional manifold. The big bang can therefore be regarded as an effect of a choice of coordinates in a truncated higher-dimensional geometry. Thus the big bang is in some sense a geometrical illusion.

  5. Unified field theories, the early big bang, and the microwave background paradox

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the paradox of the isotropy of the universal 3K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite preplanckian era.

  6. The Redshifts in Relativity

    ERIC Educational Resources Information Center

    Singh, Satya Pal; Singh, Apoorva; Hareet, Prabhav

    2011-01-01

    The progress of modern cosmology took off in 1917 when A. Einstein published his paper on general theory of relativity extending his work of special theory of relativity (1905). In 1922 Alexander Friedmann constructed a mathematical model for expanding Universe that had a big bang in remote past. The experimental evidences could come in 1929 by…

  7. A philosophy for big-bang cosmology.

    PubMed

    McCrea, W H

    1970-10-03

    According to recent developments in cosmology we seem bound to find a model universe like the observed universe, almost independently of how we suppose it started. Such ideas, if valid, provide fresh justification for the procedures of current cosmological theory.

  8. To Your Health: NLM update transcript - NIH MedlinePlus magazine Winter 2018

    MedlinePlus

    ... who is a star of 'The Big Bang Theory' television show, and the producer/narrator of a ... trials, NIH MedlinePlus magazine reports the current life expectancy of a person with sickle cell disease is ...

  9. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  10. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    NASA Technical Reports Server (NTRS)

    Audouze, J.; Lindley, D.; Silk, J.

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.

  11. Hints of a Fundamental Misconception in Cosmology

    NASA Astrophysics Data System (ADS)

    Prather, Edward E.; Slater, Timothy F.; Offerdahl, Erika G.

    To explore the frequency and range of student ideas regarding the Big Bang, nearly 1,000 students from middle school, secondary school, and college were surveyed and asked if they had heard of the Big Bang and, if so, to describe it. In analyzing their responses, we uncovered an unexpected result that more than half of the students who stated that they had heard of the Big Bang also provided responses that suggest they believe that the Big Bang was a phenomenon that organized pre-existing matter. To further examine this result, a second group of college students was asked specifically to describe what existed or occurred before, during, and after the Big Bang. Nearly 70% gave responses clearly stating that matter existed prior to the Big Bang. These results are interpreted as strongly suggesting that most students are answering these questions by employing an internally consistent element of knowledge or reasoning (often referred to as a phenomenological primitive, or p-prim), consistent with the idea that "you can't make something from nothing." These results inform the debate about the extent to which college students have pre-existing notions that are poised to interfere with instructional efforts about contemporary physics and astronomy topics.

  12. The cosmological lithium problem revisited

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Mukhamedzhanov, A. M.; Shubhchintak

    2016-07-01

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although our attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.

  13. A Big Bang versus a Small Bang Approach: A Case Study of the Expeditionary Combat Support System (ECSS) and the Maintenance, Repair, and Overhaul Initiative (MROi)

    DTIC Science & Technology

    resource planning (ERP) solution called the Expeditionary Combat Support System (ECSS), a big - bang approach. In early 2012, the ECSS program was cancelled...Repair, and Overhaul initiative (MROi), a small- bang approach, to increase enterprise visibility and efficiency across all three Air Logistics

  14. Big Bang Cosmic Titanic: Cause for Concern?

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2013-04-01

    This abstract alerts physicists to a situation that, unless soon addressed, may yet affect PRL integrity. I refer to Stanley Brown's and DAE Robert Caldwell's rejection of PRL submission LJ12135, A Cosmic Titanic: Big Bang Cosmology Unravels Upon Discovery of Serious Flaws in Its Foundational Expansion Redshift Assumption, by their claim that BB is an established theory while ignoring our paper's Titanic, namely, that BB's foundational spacetime expansion redshifts assumption has now been proven to be irrefutably false because it is contradicted by our seminal discovery that GPS operation unequivocally proves that GR effects do not produce in-flight photon wavelength changes demanded by this central assumption. This discovery causes the big bang to collapse as quickly as did Ptolemaic cosmology when Copernicus discovered its foundational assumption was heliocentric, not geocentric. Additional evidence that something is amiss in PRL's treatment of LJ12135 comes from both Brown and EiC Gene Spouse agreeing to meet at my exhibit during last year's Atlanta APS to discuss this cover-up issue. Sprouse kept his commitment; Brown didn't. Question: If Brown could have refuted my claim of a cover-up, why didn't he come to present it before Gene Sprouse? I am appealing LJ12135's rejection.

  15. A probable stellar solution to the cosmological lithium discrepancy.

    PubMed

    Korn, A J; Grundahl, F; Richard, O; Barklem, P S; Mashonkina, L; Collet, R; Piskunov, N; Gustafsson, B

    2006-08-10

    The measurement of the cosmic microwave background has strongly constrained the cosmological parameters of the Universe. When the measured density of baryons (ordinary matter) is combined with standard Big Bang nucleosynthesis calculations, the amounts of hydrogen, helium and lithium produced shortly after the Big Bang can be predicted with unprecedented precision. The predicted primordial lithium abundance is a factor of two to three higher than the value measured in the atmospheres of old stars. With estimated errors of 10 to 25%, this cosmological lithium discrepancy seriously challenges our understanding of stellar physics, Big Bang nucleosynthesis or both. Certain modifications to nucleosynthesis have been proposed, but found experimentally not to be viable. Diffusion theory, however, predicts atmospheric abundances of stars to vary with time, which offers a possible explanation of the discrepancy. Here we report spectroscopic observations of stars in the metal-poor globular cluster NGC 6397 that reveal trends of atmospheric abundance with evolutionary stage for various elements. These element-specific trends are reproduced by stellar-evolution models with diffusion and turbulent mixing. We thus conclude that diffusion is predominantly responsible for the low apparent stellar lithium abundance in the atmospheres of old stars by transporting the lithium deep into the star.

  16. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamenshchik, A. Yu.; Manti, S.

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less

  17. Use of Automated Testing to Facilitate Affordable Design of Military Systems

    DTIC Science & Technology

    2015-04-30

    momentum across the Navy and DoD. This initiative is no new big bang /silver bullet; it simply focuses on lowering the cost and risk of government...University of Minnesota. He has developed several specification languages, software tools for computer-aided software design, and fundamental theory ...review of lessons learned and recommendations for further enhancements are discussed. Overview: The Testing Challenge Infinity Is a Big Place The

  18. Frontiers of Big Bang cosmology and primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kusakabe, Motohiko; Yamazaki, Dai G.

    2012-11-01

    We summarize some current research on the formation and evolution of the universe and overview some of the key questions surrounding the the big bang. There are really only two observational cosmological probes of the physics of the early universe. Of those two, the only probe during the relevant radiation dominated epoch is the yield of light elements during the epoch of big bang nucleosynthesis. The synthesis of light elements occurs in the temperature regime from 108 to 1010 K and times of about 1 to 104 sec into the big bang. The other probe is the spectrum of temperature fluctuations in the CMB which (among other things) contains information of the first quantum fluctuations in the universe, along with details of the distribution and evolution of dark matter, baryonic matter and photons up to the surface of photon last scattering. Here, we emphasize the role of these probes in answering some key questions of the big bang and early universe cosmology.

  19. Scale factor duality for conformal cyclic cosmologies

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.

    2016-11-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  20. Open and Distance Learning Today. Routledge Studies in Distance Education Series.

    ERIC Educational Resources Information Center

    Lockwood, Fred, Ed.

    This book contains the following papers on open and distance learning today: "Preface" (Daniel); "Big Bang Theory in Distance Education" (Hawkridge); "Practical Agenda for Theorists of Distance Education" (Perraton); "Trends, Directions and Needs: A View from Developing Countries" (Koul); "American…

  1. A Universe of Questions.

    ERIC Educational Resources Information Center

    Zeldovich, Yakov

    1992-01-01

    Reprinted from the original Russian manuscript of Yakov Zeldovich, this article chronicles his studies of the universe and his attempts to construct a theory of its evolution. He provides the high school student with compelling cosmological discussions about uniformity, galactic clusters, radiation, evolution, the big bang, and gravitational…

  2. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  3. 7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Barbagallo, M.; Colonna, N.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea, J.; Barros, S.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; García, A. R.; Gawlik, A.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, J. I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The Cosmological Lithium Problem refers to the large discrepancy between the abundance of primordial 7Li predicted by the standard theory of Big Bang Nucleosynthesis and the value inferred from the so-called "Spite plateau" in halo stars. A possible explanation for this longstanding puzzle in Nuclear Astrophysics is related to the incorrect estimation of the destruction rate of 7Be, which is responsible for the production of 95% of primordial Lithium. While charged-particle induced reactions have mostly been ruled out, data on the 7Be(n,α) and 7Be(n,p) reactions are scarce or completely missing, so that a large uncertainty still affects the abundance of 7Li predicted by the standard theory of Big Bang Nucleosynthesis. Both reactions have been measured at the n_TOF facility at CERN, providing for the first time data in a wide neutron energy range.

  4. REVIEWS OF TOPICAL PROBLEMS: The neutrino mass in elementary-particle physics and in big bang cosmology

    NASA Astrophysics Data System (ADS)

    Zel'dovich, Ya B.; Khlopov, M. Yu

    1981-09-01

    Some theoretical aspects of a nonzero value for the neutrino rest mass and its possible implications for physics are discussed. The nature of the neutrino mass is analyzed, as well as the physical consequences that may derive from the existence of new helicity states for the neutrino or from lepton charge nonconservation if the mass is of Dirac or Majorana character, respectively. Massive neutrinos are examined in the context of grand unified theories combining the weak, strong, and electromagnetic interactions. Searches for neutrino-mass effects in β decay and for neutrino oscillations are reviewed. Several astrophysical effects of the neutrino mass are described: solar-neutrino oscillations, the decay of primordial neutrinos, the feasibility of detecting massive primordial neutrinos experimentally. The predictions of big bang theory regarding the neutrino number density in the universe are analyzed, and a discussion is given of the influence neutrino oscillations might have on the neutrino density and on cosmological nucleosynthesis.

  5. The Path of the Blind Watchmaker: A Model of Evolution

    DTIC Science & Technology

    2011-04-06

    computational biology has now reached the point that astronomy reached when it began to look backward in time to the Big Bang. Our goal is look backward in...treatment. We claim that computational biology has now reached the point that astronomy reached when it began to look backward in time to the Big...evolutionary process itself, in fact, created it. When astronomy reached a critical mass of theory, technology, and observational data, astronomers

  6. The cosmological lithium problem revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertulani, C. A., E-mail: carlos.bertulani@tamuc.edu; Department of Physics and Astronomy, Texas A&M University, College Station, TX 75429; Mukhamedzhanov, A. M., E-mail: akram@comp.tamu.edu

    After a brief review of the cosmological lithium problem, we report a few recent attempts to find theoretical solutions by our group at Texas A&M University (Commerce & College Station). We will discuss our studies on the theoretical description of electron screening, the possible existence of parallel universes of dark matter, and the use of non-extensive statistics during the Big Bang nucleosynthesis epoch. Last but not least, we discuss possible solutions within nuclear physics realm. The impact of recent measurements of relevant nuclear reaction cross sections for the Big Bang nucleosynthesis based on indirect methods is also assessed. Although ourmore » attempts may not able to explain the observed discrepancies between theory and observations, they suggest theoretical developments that can be useful also for stellar nucleosynthesis.« less

  7. Contracting for Agile Software Development in the Department of Defense: An Introduction

    DTIC Science & Technology

    2015-08-01

    Requirements are fixed at a more granular level; reviews of the work product happen more frequently and assess each individual increment rather than a “ big bang ...boundaries than “ big - bang ” development. The implementation of incremental or progressive reviews enables just that—any issues identified at the time of the...the contract needs to support the delivery of deployable software at defined increments/intervals, rather than incentivizing “ big - bang ” efforts or

  8. Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum

    NASA Astrophysics Data System (ADS)

    Novikov, Evgeny A.

    2016-05-01

    Mass and electric dipole moment (EDM) of graviton, which is identified as dark matter particle (DMP), are estimated. This change the concept of dark matter and can help to explain the baryon asymmetry of the universe. The calculations are based on quantum modification of the general relativity (Qmoger) with two additional terms in the Einstein equations, which takes into account production/absorption of gravitons. In this theory, there are no Big Bang in the beginning (some local bangs during the evolution of the universe are probable), no critical density of the universe, no dark energy (no need in cosmological constant) and no inflation. The theory (without fitting) is in good quantitative agreement with cosmic data.

  9. Evidence for Evolution as Support for Big Bang

    NASA Astrophysics Data System (ADS)

    Gopal-Krishna

    1997-12-01

    With the exception of ZERO, the concept of BIG BANG is by far the most bizarre creation of the human mind. Three classical pillars of the Big Bang model of the origin of the universe are generally thought to be: (i) The abundances of the light elements; (ii) the microwave back-ground radiation; and (iii) the change with cosmic epoch in the average properties of galaxies (both active and non-active types). Evidence is also mounting for redshift dependence of the intergalactic medium, as discussed elsewhere in this volume in detail. In this contribution, I endeavour to highlight a selection of recent advances pertaining to the third category. The widely different levels of confidence in the claimed observational constraints in the field of cosmology can be guaged from the following excerpts from two leading astrophysicists: "I would bet odds of 10 to 1 on the validity of the general 'hot Big Bang' concept as a description of how our universe has evolved since it was around 1 sec. old" -M. Rees (1995), in 'Perspectives in Astrophysical Cosmology' CUP. "With the much more sensitive observations available today, no astrophysical property shows evidence of evolution, such as was claimed in the 1950s to disprove the Steady State theory" -F. Hoyle (1987), in 'Fifty years in cosmology', B. M. Birla Memorial Lecture, Hyderabad, India. The burgeoning multi-wavelength culture in astronomy has provided a tremendous boost to observational cosmology in recent years. We now proceed to illustrate this with a sequence of examples which reinforce the picture of an evolving universe. Also provided are some relevant details of the data used in these studies so that their scope can be independently judged by the readers.

  10. Limits to the primordial helium abundance in the baryon-inhomogeneous big bang

    NASA Technical Reports Server (NTRS)

    Mathews, G. J.; Schramm, D. N.; Meyer, B. S.

    1993-01-01

    The parameter space for baryon inhomogeneous big bang models is explored with the goal of determining the minimum helium abundance obtainable in such models while still satisfying the other light-element constraints. We find that the constraint of (D + He-3)/H less than 10 exp -4 restricts the primordial helium mass fraction from baryon-inhomogeneous big bang models to be greater than 0.231 even for a scenario which optimizes the effects of the inhomogeneities and destroys the excess lithium production. Thus, this modification to the standard big bang as well as the standard homogeneous big bang model itself would be falsifiable by observation if the primordial He-4 abundance were observed to be less than 0.231. Furthermore, a present upper limit to the observed helium mass fraction of Y(obs)(p) less than 0.24 implies that the maximum baryon-to-photon ratio allowable in the inhomogeneous models corresponds to eta less than 2.3 x 10 exp -9 (omega(b) h-squared less than 0.088) even if all conditions are optimized.

  11. From the Big Bang to the Brain.

    ERIC Educational Resources Information Center

    Boliek, Carol A.; Lohmeier, Heather

    1999-01-01

    Summarizes research findings that challenge long-standing theories of infant cognition and motor development and proposes alternative theoretical models to describe skill acquisition during the first several years of life. Findings are discussed with respect to research in the area of infant speech physiology and production. (Author/CR)

  12. Cosmology and Prehistory: Imagination on the Rise. Spotlight: Montessori Potpourri.

    ERIC Educational Resources Information Center

    Hallenberg, Harvey

    2001-01-01

    Presents the Maori cosmological perspective and the modern theory of evolution. Explains how these two creation stories can coexist. Discusses life on earth during its first 3 billion years, including concepts of singularity, Big Bang, time, space, matter, gravity, stars, planets, seas, and life. (DLH)

  13. The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-01-01

    We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.

  14. COBE looks back to the Big Bang

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    1993-01-01

    An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.

  15. Portfolio Acquisition - How the DoD Can Leverage the Commercial Product Line Model

    DTIC Science & Technology

    2015-04-30

    canceled (Harrison, 2011). A major contributing factor common to these failures is that the programs tried to do too much at once: they used a big - bang ...requirements in a single, big - bang approach. MDAPs take 10 to 15 years from Milestone A to initial operational capability, with many of the largest...2013). The block upgrade model for B-52, F-15, and F-16 proved successful over decades, yet with its big - bang structure the F-35 program is

  16. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  17. Nearby galaxies as pointers to a better theory of cosmic evolution.

    PubMed

    Peebles, P J E; Nusser, Adi

    2010-06-03

    The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding Universe. However, the properties of nearby galaxies that can be observed in greatest detail suggest that a better theory would describe a mechanism by which matter is more rapidly gathered into galaxies and groups of galaxies. This more rapid growth occurs in some theoretical ideas now under discussion.

  18. First direct measurement of the 2H(α,γ)6Li cross section at big bang energies and the primordial lithium problem.

    PubMed

    Anders, M; Trezzi, D; Menegazzo, R; Aliotta, M; Bellini, A; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Davinson, T; Elekes, Z; Erhard, M; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Prati, P; Rossi Alvarez, C; Scott, D A; Somorjai, E; Straniero, O; Szücs, T

    2014-07-25

    Recent observations of (6)Li in metal poor stars suggest a large production of this isotope during big bang nucleosynthesis (BBN). In standard BBN calculations, the (2)H(α,γ)(6)Li reaction dominates (6)Li production. This reaction has never been measured inside the BBN energy region because its cross section drops exponentially at low energy and because the electric dipole transition is strongly suppressed for the isoscalar particles (2)H and α at energies below the Coulomb barrier. Indirect measurements using the Coulomb dissociation of (6)Li only give upper limits owing to the dominance of nuclear breakup processes. Here, we report on the results of the first measurement of the (2)H(α,γ)(6)Li cross section at big bang energies. The experiment was performed deep underground at the LUNA 400 kV accelerator in Gran Sasso, Italy. The primordial (6)Li/(7)Li isotopic abundance ratio has been determined to be (1.5 ± 0.3) × 10(-5), from our experimental data and standard BBN theory. The much higher (6)Li/(7)Li values reported for halo stars will likely require a nonstandard physics explanation, as discussed in the literature.

  19. Primordial alchemy: from the Big Bang to the present universe

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.

  20. Pre-Big Bang Bubbles from the Gravitational Instability of Generic String Vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1998-06-01

    We formulate the basic postulate of pre-big bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the big bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-gib bang scenario.

  1. Beyond Einstein: From the Big Bang to Black Holes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    How did the Universe begin? Does time have a beginning and an end? Does space have edges? The questions are clear and simple. They are as old as human curiosity. But the answers have always seemed beyond the reach of science. Until now. In their attempts to understand how space, time, and matter are connected, Einstein and his successors made three predictions. First, space is expanding from a Big Bang; second, space and time can tie themselves into contorted knots called black holes where time actually comes to a halt; third, space itself contains some kind of energy that is pull- ing the Universe apart. Each of these three predictions seemed so fantastic when it was made that everyone, including Einstein himself, regarded them as unlikely. Incredibly, all three have turned out to be true. Yet Einstein's legacy is one of deep mystery, because his theories are silent on three questions raised by his fantastic predictions: (1) What powered the Big Bang? (2) What happens to space, time, and matter at the edge of a black hole? (3) What is the mysterious dark energy pulling the Universe apart? The answers to these questions-which lie at the crux of where our current theories fail us-will lead to a profound, new understanding of the nature of time and space. To find answers, however, we must venture beyond Einstein. The answers require new theories, such as the inflationary Universe and new insights in high-energy particle theory. Like Einstein s theories, these make fantastic predictions that seem hard to believe: unseen dimensions and entire universes beyond our own. We must find facts to confront and guide these new theories. Powerful new technologies now make this possible. And NASA and its partners are developing an armada of space-based observatories to chart the path to discovery. Here is where the Beyond Einstein story begins. By exploring the three questions that are Einstein s legacy, we begin the next revolution in understanding our Universe. We plot our way forward using clues from observations and from new ideas connecting the worlds of the very small and the very large, from the atom out through the deepest reaches of the cosmos.

  2. Journeys through antigravity?

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Chemissany, Wissam; Kallosh, Renata

    2014-01-01

    A possibility of journeys through antigravity has recently been proposed, with the suggestion that Weyl-invariant extension of scalars coupled to Einstein gravity allows for an unambiguous classical evolution through cosmological singularities in anisotropic spacetimes. We compute the Weyl invariant curvature squared and find that it blows up for the proposed anisotropic solution both at the Big Crunch as well as at the Big Bang. Therefore the cosmological singularities are not resolved by uplifting Einstein theory to a Weyl invariant model.

  3. Evolution: Don't Debate, Educate.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2000-01-01

    Discusses controversy over the teaching of biological evolution and other scientific ideas such as Big Bang theory. Recommends that teachers avoid debating creationists, help students develop a greater understanding and appreciation for science as a way of explaining the natural world, and emphasize inquiry and the nature of science. (Contains 19…

  4. Science 101: What, Exactly, Is the Heisenberg Uncertainty Principle?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2016-01-01

    Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…

  5. Big bang nucleosynthesis: The strong nuclear force meets the weak anthropic principle

    NASA Astrophysics Data System (ADS)

    MacDonald, J.; Mullan, D. J.

    2009-08-01

    Contrary to a common argument that a small increase in the strength of the strong force would lead to destruction of all hydrogen in the big bang due to binding of the diproton and the dineutron with a catastrophic impact on life as we know it, we show that provided the increase in strong force coupling constant is less than about 50% substantial amounts of hydrogen remain. The reason is that an increase in strong force strength leads to tighter binding of the deuteron, permitting nucleosynthesis to occur earlier in the big bang at higher temperature than in the standard big bang. Photodestruction of the less tightly bound diproton and dineutron delays their production to after the bulk of nucleosynthesis is complete. The decay of the diproton can, however, lead to relatively large abundances of deuterium.

  6. The Big Bang, Superstring Theory and the origin of life on the Earth.

    PubMed

    Trevors, J T

    2006-03-01

    This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.

  7. Initial conditions for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  8. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1999-03-01

    We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.

  9. How quantum is the big bang?

    PubMed

    Bojowald, Martin

    2008-06-06

    When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.

  10. Introduction to big bang nucleosynthesis and modern cosmology

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Kusakabe, Motohiko; Kajino, Toshitaka

    Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the testing ground upon which many cosmological models must ultimately rest. It is our only probe of the universe during the important radiation-dominated epoch in the first few minutes of cosmic expansion. This paper reviews the basic equations of space-time, cosmology, and big bang nucleosynthesis. We also summarize the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measurements are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we analyze the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.

  11. Regularization of the big bang singularity with random perturbations

    NASA Astrophysics Data System (ADS)

    Belbruno, Edward; Xue, BingKan

    2018-03-01

    We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.

  12. Asymptotic freedom in the early big-bang and the isotropy of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    The isotropy of the universal 3K background radiation is discussed and a superunified field theory incorporating gravity and possessing asymptotic freedom is suggested to provide a solution to the problem. Thermal equilibrium is established in this context through interactions occurring in a temporally indefinite preplanckian era.

  13. Vacuum low-temperature superconductivity is the essence of superconductivity - Atomic New Theory

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2010-10-01

    The universe when the temperature closest to the Big Bang the temperature should be nuclear. Because, after the big bang, instant formation of atoms, nuclei and electrons between the absolute vacuum, the nucleus can not emit energy. (Radioactive elements, except in fact, radiation Yuan Su limited power emitted) which causes atomic nuclei and external temperature difference are so enormous that a large temperature difference reasons, all external particles became closer to the nucleus, affect the motion of electrons. When the conductor conductivity and thus affect the conductivity, the formation of resistance. Assumption that no particles affect the motion of electrons (except outside the nucleus) to form a potential difference will not change after the vector form, is now talking about the phenomenon of superconductivity, and then to introduce general, the gap between atoms in molecules or between small, valence electron number of high temperature superconducting conductors. This theory of atomic nuclei, but also explain the atomic and hydrogen bombs can remain after an explosion Why can release enormous energy reasons. Can also explain the ``super flow'' phenomenon. natural world. Tel 13241375685

  14. Unsolved Mysteries of Science: A Mind-Expanding Journey through a Universe of Big Bangs, Particle Waves, and Other Perplexing Concepts

    NASA Astrophysics Data System (ADS)

    Malone, John

    2001-08-01

    A LIVELY EXPLORATION OF THE BIGGEST QUESTIONS IN SCIENCE How Did the Universe Begin? The Big Bang has been the accepted theory for decades, but does it explain everything? How Did Life on Earth Get Started? What triggered the cell division that started the evolutionary chain? Did life come from outer space, buried in a chunk of rock? What is Gravity? Newton's apple just got the arguments started, Einstein made things more complicated. Just how does gravity fit in with quantum theory? What Is the Inside of the Earth Like? What exactly is happening beneath our feet, and can we learn enough to help predict earthquakes and volcanic eruptions? How Do We Learn Language? Is language acquisition an inborn biological ability, or does every child have to start from scratch? Is There a Missing Link? The story of human evolution is not complete. In addition to hoaxes such as "Piltdown Man" and extraordinary finds such as "Lucy," many puzzles remain. What, in the end, do we mean by a "missing link"?

  15. Palatini actions and quantum gravity phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es

    2011-10-01

    We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropicmore » cosmologies of this model also avoid the big bang singularity by means of a big bounce.« less

  16. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    ScienceCinema

    Smoot, George [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-05-23

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.

  17. COBE's search for structure in the Big Bang

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)

    1989-01-01

    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.

  18. Revisiting big-bang nucleosynthesis constraints on long-lived decaying particles

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Kohri, Kazunori; Moroi, Takeo; Takaesu, Yoshitaro

    2018-01-01

    We study the effects of long-lived massive particles, which decayed during the big-bang nucleosynthesis (BBN) epoch, on the primordial abundance of light elements. Compared to previous studies, (i) the reaction rates of standard BBN reactions are updated, (ii) the most recent observational data on the light element abundance and cosmological parameters are used, (iii) the effects of the interconversion of energetic nucleons at the time of inelastic scattering with background nuclei are considered, and (iv) the effects of the hadronic shower induced by energetic high-energy antinucleons are included. We compare the theoretical predictions on the primordial abundance of light elements with the latest observational constraints, and we derive upper bounds on the relic abundance of the decaying particle as a function of its lifetime. We also apply our analysis to an unstable gravitino, the superpartner of a graviton in supersymmetric theories, and obtain constraints on the reheating temperature after inflation.

  19. Renaming the Big Bang: A Case Study of Popular Ideas on Cosmology

    NASA Astrophysics Data System (ADS)

    Fienberg, R. T.; Beatty, J. K.; Dinsmoor, D. T.; Ferris, T.; Downs, H.; Sagan, C.

    1993-12-01

    In the August 1993 Sky & Telescope one of us (T. F.) argued that the term "Big Bang" is misleading, trivializing, and inappropriately bellicose to describe the event that gave rise to the physical universe as depicted by the standard cosmological model. We issued a challenge to all interested persons to try to come up with a better name. Although we offered no prize, the challenge aroused widespread interest: over a period of three months some 13,000 entries were submitted from 41 countries. Some came from professional astronomers, but most came from nonscientists -- from kindergartners and octogenarians, prison inmates and physicians, and many others. This outpouring of creative, pedestrian, religious, ingenious, confused, profound, and insightful suggestions offers an unprecedented look at laypeoples' thinking about the origin of the universe. Some of the suggested new names for the theory are highly original and appropriate.

  20. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  1. 77 FR 35625 - Statement of General Policy on the Sequencing of the Compliance Dates for Final Rules Applicable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-14

    ... a ``big bang'' approach where all of the rules to be adopted under Title VII go into effect... `big bang' approach to implementation would be too disruptive to the marketplace--particularly given...

  2. A simple all-time model for the birth, big bang, and death of the universe

    NASA Astrophysics Data System (ADS)

    Fischer, Arthur E.

    We model the standard ΛCDM model of the universe by the spatially flat FLRW line element dsΛCDM2 = -c2dt2 + 8πGρm,0 Λc22/3 sinh 1 23Λct4/3dσ Euclid2 which we extend for all time t ∈ (-∞,∞). Although there is a cosmological singularity at the big bang t = 0, since the spatial part of the metric collapses to zero, nevertheless, this line element is defined for all time t ∈ (-∞,∞), is C∞ for all t≠0, is C1 differentiable at t = 0, and is non-degenerate and solves Friedmann’s equation for all t≠0. Thus, we can use this extended line element to model the universe from its past-asymptotic initial state dS4- at t = -∞, through the big bang at t = 0, and onward to its future-asymptotic final state dS4+ at t = ∞. Since in this model the universe existed before the big bang, we conclude that (1) the universe was not created de novo at the big bang and (2) cosmological singularities such as black holes or the big bang itself need not be an end to spacetime. Our model shows that the universe was asymptotically created de novo out of nothing at t = -∞ from an unstable vacuum negative half de Sitter dsdS4-2 initial state and then dies asymptotically at t = ∞ as the stable positive half de Sitter dsdS4+2 final state. Since the de Sitter states are vacuum matter states, our model shows that the universe was created from nothing at t = -∞ and dies at t = ∞ to nothing.

  3. The Big Bang Theory--Coping with Multi-Religious Beliefs in the Super-Diverse Science Classroom

    ERIC Educational Resources Information Center

    De Carvalho, Roussel

    2013-01-01

    Large urban schools have to cope with a "super-diverse" population with a multireligious background in their classrooms. The job of the science teacher within this environment requires an ultra-sensitive pedagogical approach, and a deeper understanding of students' backgrounds and of scientific epistemology. Teachers must create a safe…

  4. Investigating Student Ideas about Cosmology III: Big Bang Theory, Expansion, Age, and History of the Universe

    ERIC Educational Resources Information Center

    Trouille, Laura E.; Coble, Kim; Cochran, Geraldine L.; Bailey, Janelle M.; Camarillo, Carmen T.; Nickerson, Melissa D.; Cominsky, Lynn R.

    2013-01-01

    We have undertaken a multi-semester study of student ideas in an undergraduate general education astronomy integrated lecture and lab course with a focus on active learning at an urban, minority serving institution. We collected individual interviews ("N" = 15) and course artifacts ("N" approximately 60), such as pre-course…

  5. Asymptotic freedom in the early big bang and the isotropy of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1980-01-01

    It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the problem of the isotropy of the universal 3 K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite pre-Planckian era.

  6. Big Bang Bifurcation Analysis and Allee Effect in Generic Growth Functions

    NASA Astrophysics Data System (ADS)

    Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    2016-06-01

    The main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee’s functions and characterize the corresponding Allee’s effect region and Allee’s bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called “box-within-a-box” fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps.

  7. Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation

    NASA Technical Reports Server (NTRS)

    Olive, Keith A.; Schramm, David N.

    1992-01-01

    The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.

  8. Big bang and the policy prescription: health care meets the market in New Zealand.

    PubMed

    Gauld, R D

    2000-10-01

    This article discusses events that led up to and the aftermath of New Zealand's radical health sector restructuring of 1993. It suggests that "big bang" policy change facilitated the introduction of a set of market-oriented ideas describable as a policy prescription. In general, the new system performed poorly, in keeping with problems of market failure endemic in health care. The system was subsequently restructured, and elements of the 1993 structures were repackaged through a series of incremental changes. Based on the New Zealand experience, big bang produces change but not necessarily a predictive model, and the policy prescription has been oversold.

  9. Astrophysical S-factor for destructive reactions of lithium-7 in big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komatsubara, Tetsuro; Kwon, YoungKwan; Moon, JunYoung

    One of the most prominent success with the Big Bang models is the precise reproduction of mass abundance ratio for {sup 4}He. In spite of the success, abundances of lithium isotopes are still inconsistent between observations and their calculated results, which is known as lithium abundance problem. Since the calculations were based on the experimental reaction data together with theoretical estimations, more precise experimental measurements may improve the knowledge of the Big Bang nucleosynthesis. As one of the destruction process of lithium-7, we have performed measurements for the reaction cross sections of the {sup 7}L({sup 3}He,p){sup 9}Be reaction.

  10. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  11. Cosmological baryon number domain structure from symmetry-breaking in grand unified field theories

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Stecker, F. W.

    1979-01-01

    It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big-bang can lead more naturally to a baryon symmetric cosmology with a domain structure than to a totally baryon asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.

  12. A new view of Baryon symmetric cosmology based on grand unified theories

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1981-01-01

    Within the framework of grand unified theories, it is shown how spontaneous CP violation leads to a domain structure in the universe with the domains evolving into separate regions of matter and antimatter excesses. Subsequent to exponential horizon growth, this can result in a universe of matter galaxies and antimatter galaxies. Various astrophysical data appear to favor this form of big bang cosmology. Future direct tests for cosmologically significant antimatter are discussed.

  13. Cosmological baryon-number domain structure from symmetry breaking in grand unified field theories

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Stecker, F. W.

    1979-01-01

    It is suggested that grand unified field theories with spontaneous symmetry breaking in the very early big bang can lead more naturally to a baryon-symmetric cosmology with a domain structure than to a totally baryon-asymmetric cosmology. The symmetry is broken in a randomized manner in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Arguments in favor of this cosmology and observational tests are discussed.

  14. Supernova bangs as a tool to study big bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blinnikov, S. I., E-mail: Sergei.Blinnikov@itep.ru

    Supernovae and gamma-ray bursts are the most powerful explosions in observed Universe. This educational review tells about supernovae and their applications in cosmology. It is explained how to understand the production of light in the most luminous events with minimum required energy of explosion. These most luminous phenomena can serve as primary cosmological distance indicators. Comparing the observed distance dependence on red shift with theoretical models one can extract information on evolution of the Universe from Big Bang until our epoch.

  15. [Impact of reflux on the kidney].

    PubMed

    Mollard, P; Louis, D; Basset, T

    1984-03-01

    Description of the reflux nephropathy. Pyelonephritis lesions are undoubtedly linked to the vesico-ureteric reflux. The role of the intra-renal reflux ( Hodson ) and the Big Bang Theory ( Ransley ) are discussed as the data from animal experiments. The role of the sterile reflux and of the segmental hypoplasia is relatively less important. The actual management of vesico-ureteric reflux treatment is questioned.

  16. Arizona State's Origins Project Starts with a Big Bang

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2009-01-01

    For 12 hours at Arizona State University, a sold-out crowd of 3,000 people gave a group of famous scientists a pop-star welcome, cheering their remarks and lining up for autographs after a day full of discussion about black holes, string theory, and evolutionary biology. At a time when program cuts and faculty layoffs dominate the headlines of…

  17. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  18. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  19. Big-bang nucleosynthesis and the baryon density of the universe.

    PubMed

    Copi, C J; Schramm, D N; Turner, M S

    1995-01-13

    For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.

  20. Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2017-06-01

    We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.

  1. Electron screening and its effects on big-bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Biao; Bertulani, C. A.; Balantekin, A. B.

    We study the effects of electron screening on nuclear reaction rates occurring during the big-bang nucleosynthesis epoch. The sensitivity of the predicted elemental abundances on electron screening is studied in detail. It is shown that electron screening does not produce noticeable results in the abundances unless the traditional Debye-Hueckel model for the treatment of electron screening in stellar environments is enhanced by several orders of magnitude. This work rules out electron screening as a relevant ingredient to big-bang nucleosynthesis, confirming a previous study [see Itoh et al., Astrophys. J. 488, 507 (1997)] and ruling out exotic possibilities for the treatmentmore » of screening beyond the mean-field theoretical approach.« less

  2. BIG BANG NUCLEOSYNTHESIS WITH A NON-MAXWELLIAN DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertulani, C. A.; Fuqua, J.; Hussein, M. S.

    The abundances of light elements based on the big bang nucleosynthesis model are calculated using the Tsallis non-extensive statistics. The impact of the variation of the non-extensive parameter q from the unity value is compared to observations and to the abundance yields from the standard big bang model. We find large differences between the reaction rates and the abundance of light elements calculated with the extensive and the non-extensive statistics. We found that the observations are consistent with a non-extensive parameter q = 1{sub -} {sub 0.12}{sup +0.05}, indicating that a large deviation from the Boltzmann-Gibbs statistics (q = 1)more » is highly unlikely.« less

  3. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    ScienceCinema

    None

    2017-12-09

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  4. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  5. After the Big Bang: What's Next in Design Education? Time to Relax?

    ERIC Educational Resources Information Center

    Fleischmann, Katja

    2015-01-01

    The article "Big Bang technology: What's next in design education, radical innovation or incremental change?" (Fleischmann, 2013) appeared in the "Journal of Learning Design" Volume 6, Issue 3 in 2013. Two years on, Associate Professor Fleischmann reflects upon her original article within this article. Although it has only been…

  6. EMR implementation: big bang or a phased approach?

    PubMed

    Owens, Kathleen

    2008-01-01

    There are two major strategies to implementing an EMR: the big-bang approach and the phased, or incremental, approach. Each strategy has pros and cons that must be considered. This article discusses these approaches and the risks and benefits of each as well as some training strategies that can be used with either approach.

  7. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    ERIC Educational Resources Information Center

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  8. A Guided Inquiry on Hubble Plots and the Big Bang

    ERIC Educational Resources Information Center

    Forringer, Ted

    2014-01-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the…

  9. Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation

    NASA Astrophysics Data System (ADS)

    Leonel Rocha, J.; Taha, A. K.; Fournier-Prunaret, D.

    2016-02-01

    In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called “box-within-a-box” type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.

  10. From the Big Bang to the Nobel Prize and on to James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2008-01-01

    The Big Bang 13.7 billion years ago started the expansion of our piece of the universe, and portions of it stopped expanding and made stars, galaxies, planets, and people. I summarize the history of the universe, and explain how humans have learned about its size, its expansion, and its constituents. The COBE (Cosmic Background Explorer) mission measured the remnant heat radiation from the Big Bang, showed that its color (spectrum) matches the predictions perfectly, and discovered hot and cold spots in the radiation that reveal the primordial density variations that enabled us to exist. My current project, the James Webb Space Telescope (JWST), is the planned successor to the Hubble Space Telescope, and will extend its scientific discoveries to ever greater distances and ever closer to the Big Bang itself. Its infrared capabilities enable it to see inside dust clouds to study the formation of stars and planets, and it may reveal the atmospheric properties of planets around other stars. Planned for launch in 2013, it is an international project led by NASA along with the European and Canadian Space Agencies.

  11. Does Cosmological Scale Expansion Explain the Universe?

    NASA Astrophysics Data System (ADS)

    Masreliez, C. J.

    2009-12-01

    The idea of the creation of the world has been central in Western civilization since the earliest recorded history some 6000 years ago and it still prevails, supported by religious dogma. If the creation idea is wrong and the universe is eternal we might wonder why science has not yet revealed this fundamental truth. To understand why, we have to review how the Big Bang theory came to be the dominant cosmological paradigm in spite of many clear indications that the theory might be fundamentally flawed.

  12. Big Bang 6Li nucleosynthesis studied deep underground (LUNA collaboration)

    NASA Astrophysics Data System (ADS)

    Trezzi, D.; Anders, M.; Aliotta, M.; Bellini, A.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C. G.; Caciolli, A.; Cavanna, F.; Corvisiero, P.; Costantini, H.; Davinson, T.; Depalo, R.; Elekes, Z.; Erhard, M.; Ferraro, F.; Formicola, A.; Fülop, Zs.; Gervino, G.; Guglielmetti, A.; Gustavino, C.; Gyürky, Gy.; Junker, M.; Lemut, A.; Marta, M.; Mazzocchi, C.; Menegazzo, R.; Mossa, V.; Pantaleo, F.; Prati, P.; Rossi Alvarez, C.; Scott, D. A.; Somorjai, E.; Straniero, O.; Szücs, T.; Takacs, M.

    2017-03-01

    The correct prediction of the abundances of the light nuclides produced during the epoch of Big Bang Nucleosynthesis (BBN) is one of the main topics of modern cosmology. For many of the nuclear reactions that are relevant for this epoch, direct experimental cross section data are available, ushering the so-called "age of precision". The present work addresses an exception to this current status: the 2H(α,γ)6Li reaction that controls 6Li production in the Big Bang. Recent controversial observations of 6Li in metal-poor stars have heightened the interest in understanding primordial 6Li production. If confirmed, these observations would lead to a second cosmological lithium problem, in addition to the well-known 7Li problem. In the present work, the direct experimental cross section data on 2H(α,γ)6Li in the BBN energy range are reported. The measurement has been performed deep underground at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator in the Laboratori Nazionali del Gran Sasso, Italy. The cross section has been directly measured at the energies of interest for Big Bang Nucleosynthesis for the first time, at Ecm = 80, 93, 120, and 133 keV. Based on the new data, the 2H(α,γ)6Li thermonuclear reaction rate has been derived. Our rate is even lower than previously reported, thus increasing the discrepancy between predicted Big Bang 6Li abundance and the amount of primordial 6Li inferred from observations.

  13. Underground Study of Big Bang Nucleosynthesis in the Precision Era of Cosmology

    NASA Astrophysics Data System (ADS)

    Gustavino, Carlo

    2017-03-01

    Big Bang Nucleosinthesis (BBN) theory provides definite predictions for the abundance of light elements produced in the early universe, as far as the knowledge of the relevant nuclear processes of the BBN chain is accurate. At BBN energies (30 ≲ Ecm ≲ 300 MeV) the cross section of many BBN processes is very low because of the Coulomb repulsion between the interacting nuclei. For this reason it is convenient to perform the measurements deep underground. Presently the world's only facility operating underground is LUNA (Laboratory for Undergound Nuclear astrophysics) at LNGS ("Laboratorio Nazionale del Gran Sasso", Italy). In this presentation the BBN measurements of LUNA are briefly reviewed and discussed. It will be shown that the ongoing study of the D(p, γ)3He reaction is of primary importance to derive the baryon density of universe Ωb with high accuracy. Moreover, this study allows to constrain the existence of the so called "dark radiation", composed by undiscovered relativistic species permeating the universe, such as sterile neutrinos.

  14. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  15. The big bang as a higher-dimensional shock wave

    NASA Astrophysics Data System (ADS)

    Wesson, P. S.; Liu, H.; Seahra, S. S.

    2000-06-01

    We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.

  16. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nucleimore » existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe« less

  17. Study on the opinion of university students about the themes of the origin of Universe and evolution of life

    NASA Astrophysics Data System (ADS)

    de Souza, Rogério F.; de Carvalho, Marcelo; Matsuo, Tiemi; Zaia, Dimas A. M.

    2010-04-01

    This paper reports the results of a questionnaire administered to university students, about several questions involving the origin of the Universe and life and biological evolution, as well as questions related to more common scientific themes. As few as between 2.4% (philosophy students) and 14% (geography students) did not accept the theory of evolution, because they believed in creation as described in the Bible. However, between 41.5% (philosophy students) and 71.3% (biology students) did not see any conflict between religion and evolution. About 80% of the students believed that the relationship between lung cancer and smoking is well established by science, but this number falls to 65% for biological evolution and 28.9% for the big bang theory. It should be pointed out that for 24.5% and 7.4% of the students the big bang theory and biological evolution, respectively, are poorly established by science. The students who self-reported being Christian but not Roman Catholic are more conservative in the acceptance of biological evolution and the old age of Earth and the Universe than are other groups of students. Other factors, such as family income and the level of education of parents, appear to influence the students' acceptance of themes related to the origin of the Universe and biological evolution.

  18. Inflation in the standard cosmological model

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  19. Final Scientific/Technical Report-Quantum Field Theories for Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolis, Alberto

    The research funded by this award spanned a wide range of subjects in theoretical cosmology and in field theory. In the first part, the PI and his collaborators applied effective field theory techniques to the study of macroscopic media and of cosmological perturbations. Such an approach—now standard in particle physics—is quite unconventional for theoretical cosmology. They addressed several concrete questions where this formalism proved valuable, both within and outside the cosmological context, concerning for instance macroscopic physical phenomena for fluids, superfluids, and solids, and their relationship to the dynamics of cosmological perturbations. A particularly successful outcome of this line ofmore » research has been the development of “solid inflation”: a cosmological model for primordial inflation where the expansion of the universe is driven by an exotic solid substance. In the second part, the PI and his collaborators investigated more fundamental questions and ideas, for the present universe as well as for the very early one, using quantum field theory as a guide. The questions addressed include: Is the present cosmic acceleration due to a new, ‘dark’ form of energy, or are we instead observing a breakdown of Einstein’s general relativity at cosmological distances? Is the cosmic acceleration accelerating? Is the Big Bang unavoidable? Related to this, is early inflation the only sensible cure for the shortcomings of the standard Big Bang model, and the only possible source for the observed scale-invariant cosmological perturbations?« less

  20. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-02-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  1. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-05-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  2. Geometric scalar theory of gravity beyond spherical symmetry

    NASA Astrophysics Data System (ADS)

    Moschella, U.; Novello, M.

    2017-04-01

    We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.

  3. Whitehead's Multiverse

    NASA Astrophysics Data System (ADS)

    McHenry, Leemon

    2012-09-01

    Alfred North Whitehead advanced a version of multiverse theory in 19291 that bears a remarkable affinity to the revolutionary ideas of current cosmological speculation.2 He postulated his theory for some of the very same reasons as those advanced today by leading cosmologists and physicists such as Martin Rees, Lee Smolin, Stephen Hawking, Max Tegmark and Steven Weinberg, but his theory has largely gone unnoticed. While Whitehead knew nothing of the great advances in big bang theory, expansion, inflation and the unification of physics in post-Hubble cosmology when he wrote Process and Reality in the 1920s, he sought to explain the origin of our universe from its predecessor and to unify the fragmentary theories of physics into a grand theory.

  4. Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.

  5. Explained in 60 Seconds: A collaboration with Symmetry Magazine, a Fermilab/SLAC publication

    NASA Astrophysics Data System (ADS)

    Trodden, M.

    2011-07-01

    The Big Bang refers to the start of the rapid expansion of our Universe. Edwin Hubble discovered this expansion in the 1920s through observations of faraway galaxies, showing that the distances between them are growing as time passes. This stunning discovery is beautifully explained by general relativity — Einstein's theory of gravity — augmented by two new concepts, dark matter and dark energy.

  6. An upper limit on the neutrino rest mass.

    NASA Technical Reports Server (NTRS)

    Cowsik, R.; Mcclelland, J.

    1972-01-01

    It is pointed out that the measurement of the deceleration parameter by Sandage (1972) implies an upper limit of a few tens of electron volts on the sum of the masses of all the possible light, stable particles that interact only weakly. In the discussion of the problem, it is assumed that the universe is expanding from an initially hot and condensed state as envisaged in the 'big-bang' theories.

  7. Gravitational Physics: the birth of a new era

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-11-01

    We live the golden age of cosmology, while the era of gravitational astronomy has finally begun. Still, fundamental puzzles remain. Standard cosmology is formulated within the framework of Einstein's General theory of Relativity. Notwithstanding, General Relativity is not adequate to explain the earliest stages of cosmic existence, and cannot provide an explanation for the Big Bang itself. Modern early universe cosmology is in need of a rigorous underpinning in Quantum Gravity.

  8. Bouncing cosmology from warped extra dimensional scenario

    NASA Astrophysics Data System (ADS)

    Das, Ashmita; Maity, Debaprasad; Paul, Tanmoy; SenGupta, Soumitra

    2017-12-01

    From the perspective of four dimensional effective theory on a two brane warped geometry model, we examine the possibility of "bouncing phenomena"on our visible brane. Our results reveal that the presence of a warped extra dimension lead to a non-singular bounce on the brane scale factor and hence can remove the "big-bang singularity". We also examine the possible parametric regions for which this bouncing is possible.

  9. Grand unification and possible matter-antimatter domain structure in the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1981-01-01

    The theory and basic concepts for the development of a matter-antimatter domain cosmology are outlined within the framework of the grand unified gauge theory paradigm. It is shown how spontaneous CP symmetry breaking leads to such a domain sturcture in the universe. Astrophysical data such as the cosmic gamma-ray background spectrum, cosmic-ray p flux measurements, and galaxy clustering are found to favor this point of view. Future tests of this form of big-bang cosmology are suggested and discussed, including tests using deep underwater cosmic ray neutrino detectors.

  10. What is your Cosmic Connection to the Elements?

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim

    2003-01-01

    This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.

  11. Before the Big Bang? A Novel Resolution of a Profound Cosmological Puzzle

    ScienceCinema

    Penrose, Roger

    2018-01-24

    The second law of thermodynamics says, in effect, that things get more random as time progresses. Thus, we can deduce that the beginning of the universe - the Big Bang - must have been an extraordinarily precisely organized state. What was the nature of this state? How can such a special state have come about? In Penrose's talk, a novel explanation is suggested.

  12. Gamma-rays and the case for baryon symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1-200 MeV range, and a mechanism for galaxy formation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.

  13. Nonsingular, big-bounce cosmology from spinor-torsion coupling

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem

    2012-05-01

    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.

  14. Multiverse Space-Antispace Dual Calabi-Yau `Exciplex-Zitterbewegung' Particle Creation

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.

    Modeling the `creation/emergence' of matter from spacetime is as old as modern cosmology itself and not without controversy within each model such as Static, Steady-state, Big Bang or Multiverse Continuous-State. In this paper we present only a brief primitive introduction to a new form of `Exciplex-Zitterbewegung' dual space-antispace vacuum Particle Creation applicable especially to Big Bang alternatives which are well-known but ignored; Hubble discovered `Redshift' not a Doppler expansion of the universe which remains the currently popular interpretation. Holographic Anthropic Multiverse cosmology provides viable alternatives to all seemingly sacrosanct pillars of the Big Bang. A model for Multiverse Space-Antispace Dual Calabi-Yau `Exciplex-Zitterbewegung' particle creation has only become possible by incorporating the additional degrees of freedom provided by the capacity complex dimensional extended Yang-Mills Kaluza-Klein correspondence provides.

  15. Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    A background-independent quantization of the Universe near its Big Bang singularity is considered using a drastically simplified toy model. Several conceptual issues are addressed. (1) The observable spatial-geometry characteristics of our empty-space expanding Universe is sampled by the time-dependent operator $Q=Q(t)$ of the distance between two space-attached observers (``Alice and Bob''). (2) For any pre-selected guess of the simple, non-covariant time-dependent observable $Q(t)$ one of the Kato's exceptional points (viz., $t=\\tau_{(EP)}$) is postulated {\\em real-valued}. This enables us to treat it as the time of Big Bang. (3) During our ``Eon'' (i.e., at all $t>\\tau_{(EP)}$) the observability status of operator $Q(t)$ is mathematically guaranteed by its self-adjoint nature with respect to an {\\em ad hoc} Hilbert-space metric $\\Theta(t) \

  16. Calixarenes and cations: a time-lapse photography of the big-bang.

    PubMed

    Casnati, Alessandro

    2013-08-07

    The outstanding cation complexation properties emerging from the pioneering studies on calixarene ligands during a five-year period in the early 1980s triggered a big-bang burst of publications on such macrocycles that is still lasting at a distance of more than 30 years. A time-lapse photography of this timeframe is proposed which allows the readers to pinpoint the contributions of the different research groups.

  17. The Big Bang of tissue growth: Apical cell constriction turns into tissue expansion.

    PubMed

    Janody, Florence

    2018-03-05

    How tissue growth is regulated during development and cancer is a fundamental question in biology. In this issue, Tsoumpekos et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705104) and Forest et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705107) identify Big bang (Bbg) as an important growth regulator of the Drosophila melanogaster wing imaginal disc. © 2018 Janody.

  18. Modified gravity in Arnowitt-Deser-Misner formalism

    NASA Astrophysics Data System (ADS)

    Gao, Changjun

    2010-02-01

    Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.

  19. Georges Lemaître and Fred Hoyle: Contrasting Characters in Science and Religion

    NASA Astrophysics Data System (ADS)

    Holder, Rodney D.

    Georges Lemaître was a jocular Roman Catholic priest and Fred Hoyle a bluff Yorkshireman who despised organized religion. Both were giants of twentieth century cosmology but espoused diametrically opposed cosmological models. This paper explores the extent to which ideology, and particularly religion, played a part in the controversies over the big bang and steady-state theories. A particular problem for many cosmologists, including Hoyle, was posed by the idea that the universe had a temporal beginning: an eternal, unchanging universe seemed metaphysically preferable. And Hoyle was highly polemical about religion in his popular writings. In contrast, Lemaître saw no theological import from the big bang, and never entered a debate about its theological implications until, perhaps unexpectedly, he took issue with an address given by the Pope. Hoyle's seminal work on stellar nucleosynthesis led him to speak of a `superintellect monkeying with physics' though this was never identified with the God of classical theism. The work of both Lemaître and Hoyle resonates with more recent debates concerning cosmology.

  20. Alternative explanations of the cosmic microwave background: A historical and an epistemological perspective

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Perović, Slobodan

    2018-05-01

    We historically trace various non-conventional explanations for the origin of the cosmic microwave background and discuss their merit, while analyzing the dynamics of their rejection, as well as the relevant physical and methodological reasons for it. It turns out that there have been many such unorthodox interpretations; not only those developed in the context of theories rejecting the relativistic ("Big Bang") paradigm entirely (e.g., by Alfvén, Hoyle and Narlikar) but also those coming from the camp of original thinkers firmly entrenched in the relativistic milieu (e.g., by Rees, Ellis, Rowan-Robinson, Layzer and Hively). In fact, the orthodox interpretation has only incrementally won out against the alternatives over the course of the three decades of its multi-stage development. While on the whole, none of the alternatives to the hot Big Bang scenario is persuasive today, we discuss the epistemic ramifications of establishing orthodoxy and eliminating alternatives in science, an issue recently discussed by philosophers and historians of science for other areas of physics. Finally, we single out some plausible and possibly fruitful ideas offered by the alternatives.

  1. Recent Progresses in Ab-Initio Studies of Low-Energy Few-Nucleon Reactions of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Marcucci, Laura E.

    2017-03-01

    We review the most recent theoretical studies of nuclear reactions of astrophysical interest involving few-nucleon systems. In particular, we focus on the radiative capture of protons by deuterons in the energy range of interest for Big Bang Nucleosynthesis. Related to this, we will discuss also the most recent calculation of tritium β -decay. Two frameworks will be considered, the conventional and the chiral effective field theory approach.

  2. Eddington's theory of gravity and its progeny.

    PubMed

    Bañados, Máximo; Ferreira, Pedro G

    2010-07-02

    We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.

  3. Helium synthesis, neutrino flavors, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    The problem of the production of helium in big bang cosmology is re-examined in the light of several recent astrophysical observations. These data, and theoretical particle physics considerations, lead to some important inconsistencies in the standard big bang model and suggest that a more complicated picture is needed. Thus, recent constraints on the number of neutrino flavors, as well as constraints on the mean density (openness) of the universe, need not be valid.

  4. Neutrino mixing and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bell, Nicole

    2003-04-01

    We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.

  5. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  6. Big Bang Day: 5 Particles - 3. The Anti-particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existencemore » be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.« less

  7. On the use of big-bang method to generate low-energy structures of atomic clusters modeled with pair potentials of different ranges.

    PubMed

    Marques, J M C; Pais, A A C C; Abreu, P E

    2012-02-05

    The efficiency of the so-called big-bang method for the optimization of atomic clusters is analysed in detail for Morse pair potentials with different ranges; here, we have used Morse potentials with four different ranges, from long- ρ = 3) to short-ranged ρ = 14) interactions. Specifically, we study the efficacy of the method in discovering low-energy structures, including the putative global minimum, as a function of the potential range and the cluster size. A new global minimum structure for long-ranged ρ = 3) Morse potential at the cluster size of n= 240 is reported. The present results are useful to assess the maximum cluster size for each type of interaction where the global minimum can be discovered with a limited number of big-bang trials. Copyright © 2011 Wiley Periodicals, Inc.

  8. Particle physics catalysis of thermal big bang nucleosynthesis.

    PubMed

    Pospelov, Maxim

    2007-06-08

    We point out that the existence of metastable, tau>10(3) s, negatively charged electroweak-scale particles (X-) alters the predictions for lithium and other primordial elemental abundances for A>4 via the formation of bound states with nuclei during big bang nucleosynthesis. In particular, we show that the bound states of X- with helium, formed at temperatures of about T=10(8) K, lead to the catalytic enhancement of 6Li production, which is 8 orders of magnitude more efficient than the standard channel. In particle physics models where subsequent decay of X- does not lead to large nonthermal big bang nucleosynthesis effects, this directly translates to the level of sensitivity to the number density of long-lived X- particles (tau>10(5) s) relative to entropy of nX-/s less, approximately <3x10(-17), which is one of the most stringent probes of electroweak scale remnants known to date.

  9. Globally baryon symmetric cosmology, GUT spontaneous symmetry breaking, and the structure of the universe

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Brown, R. W.

    1979-01-01

    Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.

  10. Brane decay and an initial spacelike singularity.

    PubMed

    Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean

    2006-01-27

    We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.

  11. Constraints on cosmic superstrings from Kaluza-Klein emission.

    PubMed

    Dufaux, Jean-François

    2012-07-06

    Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.

  12. Ancient prototypes of the big bang and the Hot Universe (to the prehistory of some fundamental ideas in cosmology)

    NASA Astrophysics Data System (ADS)

    Eremeeva, A. I.

    Gamov's cosmological (as a matter of fact, cosmophysical!) Hot Universe theory, which shocked the astrophysics by its unusual universality at first, had "predecessors" in the antiquity. In spite of the ancient natural philosophers' poor scientific knowledge, their apprehension of the world as a whole helped them to catch some profound analogies and to express some surprising guesses concerning the process of the birth of the Universe.

  13. Some nuclear physics aspects of BBN

    NASA Astrophysics Data System (ADS)

    Coc, Alain

    2017-09-01

    Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7 Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Nuclear physics solutions to this lithium problem have been investigated by experimental means. Other solutions which were considered involve exotic sources of extra neutrons which inevitably leads to an increase of the deuterium abundance, but this seems now excluded by recent deuterium observations.

  14. Cosmic Background Explorer (COBE) press kit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).

  15. Georges Lemaître: The Priest Who Invented the Big Bang

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique

    This contribution gives a concise survey of Georges Lemaître works and life, shedding some light on less-known aspects. Lemaître is a Belgian catholic priest who gave for the first time in 1927 the explanation of the Hubble law and who proposed in 1931 the "Primeval Atom Hypothesis", considered as the first step towards the Big Bang cosmology. But the scientific work of Lemaître goes far beyond Physical Cosmology. Indeed, he contributed also to the theory of Cosmis Rays, to the Spinor theory, to Analytical mechanics (regularization of 3- Bodies problem), to Numerical Analysis (Fast Fourier Transform), to Computer Science (he introduced and programmed the first computer of Louvain),… Lemaître took part to the "Science and Faith" debate. He defended a position that has some analogy with the NOMA principle, making a sharp distinction between what he called the "two paths to Truth" (a scientific one and a theological one). In particular, he never made a confusion between the theological concept of "creation" and the scientific notion of "natural beginning" (initial singularity). Lemaître was deeply rooted in his faith and sacerdotal vocation. Remaining a secular priest, he belonged to a community of priests called "The Friends of Jesus", characterized by a deep spirituality and special vows (for example the vow of poverty). He had also an apostolic activity amongst Chinese students.

  16. The origin of the Universe by the Big Bang theory applied in the classroom, following the proposal of the school curriculum of the State of São Paulo

    NASA Astrophysics Data System (ADS)

    Oliveira, J. F. dos R.

    2017-07-01

    The purpose of this work is show to a bibliographic study based on the analysis made to the content applied in the first year of High School, through the booklet primer of the educational curriculum of the state of São Paulo, as predicted: "Natural Sciences and their Technologies" (São Paulo, 2010), implemented since 2008 in the public education network. The analysis made compares from the content addressed by the "Student Notebook" versus "Teacher's Notebook", an indispensable tool in the teaching network on the approach of theory of the emergence of the universe. An essential theme for educational knowledge in this cycle, revealing a hypothetical model of the Big Bang, and also curved space and cosmic inflation. Possibly this model may still be a controversial subject for some groups, because it involves belief, religion, science or another perspective of universe. The field of research was carried out in a group of 40 first year students of the High School, at the State School "Professor Rômulo Pero", in the city of São Paulo, supervised by the State Board of Education - Central Region. The completion of this task presents an important tool to be used by the teacher, a Conceptual Map, in order to raise previous knowledge and probing for the established topic, in the teaching of Physics.

  17. Emergent universe with wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Paul, B. C.; Majumdar, A. S.

    2018-03-01

    An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.

  18. Big Bang Circus

    NASA Astrophysics Data System (ADS)

    Ambrosini, C.

    2011-06-01

    Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…

  19. Supply Chain Management Model for Modular or Flexible Optimally Manned Ships

    DTIC Science & Technology

    2014-03-01

    Navy’s New Class of Warships: Big Bucks, Little Bang .” Battleland. Accessed October 3, 2013. http://nation.time.com/2012/10/05/the-navys-new-class-of...warships- big -bucks- little- bang /. Strauch, F. C. n.d. ARROWS Model Evaluation. Project Number N9324-B11-4135, Mechanicsburg, PA: Navy Fleet Material...existing models to determine which one could be suitable for altering to meet the stakeholders’ requirements. Modeling and simulation was used to

  20. The role of antimatter in big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1973-01-01

    Big bang cosmology is discussed with reference to both its strong points and gaps. Characteristics of a spectral component of red shifted gamma-radiation from cosmological matter-antimatter annihilation show a flattening of the gamma-ray spectrum in the vicinity of 1 MeV, an increased gamma-ray flux between 1 and 100 MeV, and a very steep spectrum between 50 and 135 MeV. This data fits well with the theoretical predictions in energy and intensity.

  1. The Big Bang, Genesis, and Knocking on Heaven's Door

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2012-03-01

    Michael Shermer recently upped the ante in the big bang-Genesis controversy by citing Lisa Randall's provocative claim (Science 334, 762 (2011)) that ``it is inconceivable that God could continue to intervene without introducing a material trace of his actions.'' So does Randall's and Shermer's agreement that no such evidence exists disprove God's existence? Not in my view because my 1970s Science, Nature and ARNS publications, and my article in the 1982 AAAS Western Division's Symposium Proceedings, Evolution Confronts Creation, all contain validation of God's existence via discovery of His Fingerprints of Creation and falsification of the big bang and geological evolution. These results came to wide public/scientific attention in my testimony at the 1981 Arkansas creation/evolution trial. There ACLU witness G Brent Dalrymple from the USGS -- and 2005 Medal of Science recipient from President Bush -- admitted I had discovered a tiny mystery (primordial polonium radiohalos) in granite rocks that indicated their almost instant creation. As a follow-up in 1992 and 1995 he sent out SOS letters to the entire AGU membership that the polonium halo evidence for fiat creation still existed and that someone needed to urgently find a naturalistic explanation for them. Is the physics community guilty of a Watergate-type cover-up of this discovery of God's existence and falsification of the big bang? For the answer see www.halos.tv.

  2. Big bounce, slow-roll inflation, and dark energy from conformal gravity

    NASA Astrophysics Data System (ADS)

    Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.

    2017-02-01

    We examine the cosmological sector of a gauge theory of gravity based on the SO(4,2) conformal group of Minkowski space. We allow for conventional matter coupled to the spacetime metric as well as matter coupled to the field that gauges special conformal transformations. An effective vacuum energy appears as an integration constant, and this allows us to recover the late time acceleration of the Universe. Furthermore, gravitational fields sourced by ordinary cosmological matter (i.e. dust and radiation) are significantly weakened in the very early Universe, which has the effect of replacing the big bang with a big bounce. Finally, we find that this bounce is followed by a period of nearly exponential slow roll inflation that can last long enough to explain the large scale homogeneity of the cosmic microwave background.

  3. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  4. Microwave anisotropies in the light of the data from the COBE satellite

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1993-01-01

    The recent measurement of anisotropies in the cosmic microwave background by the Cosmic Background Explorer (COBE) satellite and the recent South Pole experiment offer an excellent opportunity to probe cosmological theories. We test a class of theories in which the universe today is flat and matter dominated, and primordial perturbations are adiabatic parameterized by an index n. In this class of theories the predicted signal in the South Pole experiment depends on n, the Hubble constant, and the baryon density. For n = 1 a large region of this parameter space is ruled out, but there is still a window open which satisfies constraints from COBE, the South Pole experiment, and big bang nucleosynthesis.

  5. The origin of the diffuse background gamma radiation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1974-01-01

    Recent observations provided evidence for diffuse background gamma radiation extending to energies beyond 100 MeV, and evidence of isotropy and implied cosmological origin. Significant features in the spectrum of this background radiation were observed which provide evidence for its origin in nuclear processes in the early stages of big-bang cosmology, and connect these processes with the galaxy formation theory. A test of the theory is in future observations of the background radiation in the 100 MeK to 100 GeV energy range which are made with large orbiting spark-chamber satellite detectors. The theoretical interpretations of present data, their connection with baryon-symmetric cosmology and galaxy formation theory, and the need for future observations are discussed.

  6. Einstein's equations and a cosmology with finite matter

    NASA Astrophysics Data System (ADS)

    Clavelli, L.; Goldstein, Gary R.

    2015-05-01

    We discuss various space-time metrics which are compatible with Einstein's equations and a previously suggested cosmology with a finite total mass.1 In this alternative cosmology, the matter density was postulated to be a spatial delta function at the time of the big bang thereafter diffusing outward with constant total mass. This proposal explores a departure from standard assumptions that the big bang occurred everywhere at once or was just one of an infinite number of previous and later transitions.

  7. BBN constraints on MeV-scale dark sectors. Part I. Sterile decays

    NASA Astrophysics Data System (ADS)

    Hufnagel, Marco; Schmidt-Hoberg, Kai; Wild, Sebastian

    2018-02-01

    We study constraints from Big Bang Nucleosynthesis on inert particles in a dark sector which contribute to the Hubble rate and therefore change the predictions of the primordial nuclear abundances. We pay special attention to the case of MeV-scale particles decaying into dark radiation, which are neither fully relativistic nor non-relativistic during all temperatures relevant to Big Bang Nucleosynthesis. As an application we discuss the implications of our general results for models of self-interacting dark matter with light mediators.

  8. Cosmology and the weak interaction

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.

  9. Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Hannaske, R.; Bemmerer, D.; Beyer, R.; Birgersson, E.; Ferrari, A.; Grosse, E.; Junghans, A. R.; Kempe, M.; Kögler, T.; Kosev, K.; Marta, M.; Massarczyk, R.; Matic, A.; Schilling, K. D.; Schramm, G.; Schwengner, R.; Wagner, A.; Yakorev, D.

    2016-01-01

    The photodissociation of the deuteron is a key reaction in Big Bang nucleosynthesis, but is only sparsely measured in the relevant energy range. To determine the cross section of the d(γ,n)p reaction we used pulsed bremsstrahlung and measured the time-of-flight of the neutrons. In this article, we describe how the efficiency of the neutron detectors was experimentally determined and how the modification of the neutron spectrum by parts of the experimental setup was simulated and corrected.

  10. Trojan Horse Method for neutrons-induced reaction studies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  11. The double copy: gravity from gluons

    NASA Astrophysics Data System (ADS)

    White, C. D.

    2018-04-01

    Three of the four fundamental forces in nature are described by so-called gauge theories, which include the effects of both relativity and quantum mechanics. Gravity, on the other hand, is described by General Relativity, and the lack of a well-behaved quantum theory - believed to be relevant at the centre of black holes, and at the Big Bang itself - remains a notorious unsolved problem. Recently a new correspondence, the double copy, has been discovered between scattering amplitudes (quantities related to the probability for particles to interact) in gravity, and their gauge theory counterparts. This has subsequently been extended to other quantities, providing gauge theory analogues of e.g. black holes. We here review current research on the double copy, and describe some possible applications.

  12. Biography of Professor Hayashi

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2012-09-01

    Biography of Chushiro Hayashi(1920-2010) is described with an emphasis on his early career as a theoretical physicist. In spite of his well-recognized achievements in theoretical astrophysics, such as Hayashi phase, p/n-ratio at Big Bang, stellar evolution and nucleosynthesis and Kyoto Model on the origin of solar system, Hayashi had once wished to devote in study of non-local field theory of particle physics. However, the various changes of situation around Hideki Yukawa(Nobel prize laureate in 1949) had guided him to the study of astrophysics.

  13. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    NASA Astrophysics Data System (ADS)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  14. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  15. Activation measurement of the 3He(alpha,gamma)7Be cross section at low energy.

    PubMed

    Bemmerer, D; Confortola, F; Costantini, H; Formicola, A; Gyürky, Gy; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2006-09-22

    The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.

  16. A large neutral fraction of cosmic hydrogen a billion years after the Big Bang.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-02-26

    The fraction of ionized hydrogen left over from the Big Bang provides evidence for the time of formation of the first stars and quasar black holes in the early Universe; such objects provide the high-energy photons necessary to ionize hydrogen. Spectra of the two most distant known quasars show nearly complete absorption of photons with wavelengths shorter than the Lyman alpha transition of neutral hydrogen, indicating that hydrogen in the intergalactic medium (IGM) had not been completely ionized at a redshift of z approximately 6.3, about one billion years after the Big Bang. Here we show that the IGM surrounding these quasars had a neutral hydrogen fraction of tens of per cent before the quasar activity started, much higher than the previous lower limits of approximately 0.1 per cent. Our results, when combined with the recent inference of a large cumulative optical depth to electron scattering after cosmological recombination therefore suggest the presence of a second peak in the mean ionization history of the Universe.

  17. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    PubMed

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-08

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  18. Kasner solutions, climbing scalars and big-bang singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condeescu, Cezar; Dudas, Emilian, E-mail: cezar.condeescu@roma2.infn.it, E-mail: emilian.dudas@cpht.polytechnique.fr

    We elaborate on a recently discovered phenomenon where a scalar field close to big-bang is forced to climb a steep potential by its dynamics. We analyze the phenomenon in more general terms by writing the leading order equations of motion near the singularity. We formulate the conditions for climbing to exist in the case of several scalars and after inclusion of higher-derivative corrections and we apply our results to some models of moduli stabilization. We analyze an example with steep stabilizing potential and notice again a related critical behavior: for a potential steepness above a critical value, going backwards towardsmore » big-bang, the scalar undergoes wilder oscillations, with the steep potential pushing it back at every passage and not allowing the scalar to escape to infinity. Whereas it was pointed out earlier that there are possible implications of the climbing phase to CMB, we point out here another potential application, to the issue of initial conditions in inflation.« less

  19. Beyond Einstein: From the Big Bang to Black Holes

    NASA Astrophysics Data System (ADS)

    White, N.

    Beyond Einstein is a science-driven program of missions, education and outreach, and technology, to address three questions: What powered the Big Bang? What happens to space, time, and matter at the edge of a Black Hole? What is the mysterious Dark Energy pulling the universe apart? To address the science objectives, Beyond Einstein contains several interlinked elements. The strategic missions Constellation-X and LISA primarily investigate the nature of black holes. Constellation-X is a spectroscopic observatory that uses X-ray emitting atoms as clocks to follow the fate of matter falling into black holes. LISA will be the first space-based gravitational wave observatory uses gravitational waves to measure the dynamic structure of space and time around black holes. Moderate sized probes that are fully competed, peer-reviewed missions (300M-450M) launched every 3-5 years to address the focussed science goals: 1) Determine the nature of the Dark Energy that dominates the universe, 2) Search for the signature of the beginning of the Big Bang in the microwave background and 3) Take a census of Black Holes of all sizes and ages in the universe. The final element is a Technology Program to enable ultimate Vision Missions (after 2015) to directly detect gravitational waves echoing from the beginning of the Big Bang, and to directly image matter near the event horizon of a Black Hole. An associated Education and Public Outreach Program will inspire the next generation of scientists, and support national science standards and benchmarks.

  20. Out of the white hole: a holographic origin for the Big Bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B., E-mail: rpourhasan@perimeterinstitute.ca, E-mail: nafshordi@pitp.ca, E-mail: rbmann@uwaterloo.ca

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a sphericalmore » 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ∼20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.« less

  1. Quark Matter and Nuclear Collisions a Brief History of Strong Interaction Thermodynamics

    NASA Astrophysics Data System (ADS)

    Satz, Helmut

    2012-08-01

    The past 50 years have seen the emergence of a new field of research in physics, the study of matter at extreme temperatures and densities. The theory of strong interactions, quantum chromodynamics (QCD), predicts that in this limit, matter will become a plasma of deconfined quarks and gluons — the medium which made up the early universe in the first 10 microseconds after the Big Bang. High energy nuclear collisions are expected to produce short-lived bubbles of such a medium in the laboratory. I survey the merger of statistical QCD and nuclear collision studies for the analysis of strongly interacting matter in theory and experiment.

  2. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    PubMed

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-01-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  3. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-04-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  4. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-13

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to peoplemore » and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.« less

  5. Big Bang Day : Afternoon Play - Torchwood: Lost Souls

    ScienceCinema

    None

    2017-12-09

    Martha Jones, ex-time traveller and now working as a doctor for a UN task force, has been called to CERN where they're about to activate the Large Hadron Collider. Once activated, the Collider will fire beams of protons together recreating conditions a billionth of a second after the Big Bang - and potentially allowing the human race a greater insight into what the Universe is made of. But so much could go wrong - it could open a gateway to a parallel dimension, or create a black hole - and now voices from the past are calling out to people and scientists have started to disappear... Where have the missing scientists gone? What is the secret of the glowing man? What is lurking in the underground tunnel? And do the dead ever really stay dead? Lost Souls is a spin-off from the award-winning BBC Wales TV production Torchwood. It stars John Barrowman, Freema Agyeman, Eve Myles, Gareth David-Lloyd, Lucy Montgomery (of Titty Bang Bang) and Stephen Critchlow.

  6. Constraining axion dark matter with Big Bang Nucleosynthesis

    DOE PAGES

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela; ...

    2014-08-04

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  7. Primordial lithium and the standard model(s)

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.; Romanelli, Paul; Krauss, Lawrence M.

    1989-01-01

    The results of new theoretical work on surface Li-7 and Li-6 evolution in the oldest halo stars are presented, along with a new and refined analysis of the predicted primordial Li abundance resulting from big-bang nucleosynthesis. This makes it possible to determine the constraints which can be imposed on cosmology using primordial Li and both standard big-bang and stellar-evolution models. This leads to limits on the baryon density today of 0.0044-0.025 (where the Hubble constant is 100h km/sec Mpc) and imposes limitations on alternative nucleosynthesis scenarios.

  8. Constraining antimatter domains in the early universe with big bang nucleosynthesis.

    PubMed

    Kurki-Suonio, H; Sihvola, E

    2000-04-24

    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.

  9. Probing the Big Bang with LEP

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1990-01-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.

  10. Constraining axion dark matter with Big Bang Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Kfir; D'Agnolo, Raffaele Tito; Lisanti, Mariangela

    We show that Big Bang Nucleosynthesis (BBN) significantly constrains axion-like dark matter. The axion acts like an oscillating QCD θ angle that redshifts in the early Universe, increasing the neutron–proton mass difference at neutron freeze-out. An axion-like particle that couples too strongly to QCD results in the underproduction of during BBN and is thus excluded. The BBN bound overlaps with much of the parameter space that would be covered by proposed searches for a time-varying neutron EDM. The QCD axion does not couple strongly enough to affect BBN

  11. The Big Bang and Cosmic Inflation

    NASA Astrophysics Data System (ADS)

    Guth, Alan H.

    2014-03-01

    A summary is given of the key developments of cosmology in the 20th century, from the work of Albert Einstein to the emergence of the generally accepted hot big bang model. The successes of this model are reviewed, but emphasis is placed on the questions that the model leaves unanswered. The remainder of the paper describes the inflationary universe model, which provides plausible answers to a number of these questions. It also offers a possible explanation for the origin of essentially all the matter and energy in the observed universe.

  12. The Hottest, and Most Liquid, Liquid in the Universe

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna

    2012-03-01

    What was the universe like microseconds after the big bang? At very high temperatures, protons and neutrons fall apart --- the quarks that are ordinarily confined within them are freed. Before experiments at the Relativistic Heavy Ion Collider started recreating little droplets of big bang matter, it was thought to be a tenuous gas-like plasma. Now we know from experiments at RHIC and at the Large Hadron Collider that at these extreme temperatures nature serves up hot quark soup --- the hottest liquid in the universe and the liquid that flows with the least dissipation. The only other comparably liquid liquid is the coldest liquid in the universe, namely the fluid made of trapped fermionic atoms at microKelvin rather than TeraKelvin temperatures. These are two examples of strongly coupled fluids without any apparent quasiparticle description, a feature that they share with other phases of matter like the strange metal phase of the cuprate superconductors that aren't conventionally thought of as liquids but that are equally challenging to understand. I will describe how physicists are using RHIC and LHC experiments --- as well as calculations done using dualities between liquids and black holes discovered in string theory --- to discern the properties of hot quark soup. In this domain, string theory is answering questions posed by laboratory experiments. I will describe the opportunities and challenges for coming experiments at RHIC and the LHC, chief among them being understanding how a liquid with no apparent particulate description emerges from quarks and gluons.

  13. Big Bang, inflation, standard Physics… and the potentialities of new Physics and alternative cosmologies. Present statuts of observational and experimental Cosmology. Open questions and potentialities of alternative cosmologies

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2016-11-01

    A year ago, we wrote [1] that the field of Cosmology was undergoing a positive and constructive crisis. The possible development of more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental and observational results was particularly emphasized. Controversies on inflation are not really new, but in any case inflation is not required in pre-Big Bang models and the validity of the standard Big Bang + inflation + ΛCDM pattern has not by now been demonstrated by data. Planck has even explicitly reported the existence of "anomalies". Remembering the far-reaching work of Yoichiro Nambu published in 1959-61, it seems legitimate to underline the need for a cross-disciplinary approach in the presence of deep, unsolved theoretical problems concerning new domains of matter properties and of the physical world. The physics of a possible preonic vacuum and the associated cosmology constitute one of these domains. If the vacuum is made of superluminal preons (superbradyons), and if standard particles are vacuum excitations, how to build a suitable theory to describe the internal structure of such a vacuum at both local and cosmic level? Experimental programs (South Pole, Atacama, AUGER, Telescope Array…) and observational ones (Planck, JEM-EUSO…) devoted to the study of cosmic microwave background radiation (CMB) and of ultra-high energy cosmic rays (UHECR) are crucial to elucidate such theoretical interrogations and guide new phenomenological developments. Together with a brief review of the observational and experimental situation, we also examine the main present theoretical and phenomenological problems and point out the role new physics and alternative cosmologies can potentially play. The need for data analyses less focused a priori on the standard models of Particle Physics and Cosmology is emphasized in this discussion. An example of a new approach to both fields is provided by the pre-Big Bang pattern based on a physical vacuum made of superbradyons with the spinorial space-time (SST) geometry we introduced in 1996-97. In particular, the SST automatically generates a local privileged space direction (PSD) for earch comoving observer and such a signature may have been confirmed by Planck data. Both superluminal preons and the existence of the PSD would have strong cosmological implications. Planck 2016 results will be particularly relevant as a step in the study of present open questions. This paper is dedicated to the memory of Yoichiro Nambu

  14. Towards Limits on Neutrino Mixing Parameters from Nucleosynthesis in the Big Bang and Supernovae

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Young

    1997-11-01

    Astrophysical environments can often provide stricter limits on neutrino mass and mixing parameters than terrestrial experiments. However, before firm limits can be found, there must be confidence in the understanding of the astrophysical environment being used to make these limits. In this dissertation, progress towards limits on neutrino mixing parameters from big bang nucleosynthesis and supernova r-process nucleosynthesis is sought. By way of assessment of current knowledge of neutrino oscillation parameters, we examine the potential for a 'natural' three-neutrino mixing scheme (one without sterile neutrinos) to satisfy available data and astrophysical arguments. A small parameter space currently exists for a natural three-neutrino oscillation solution meeting known constraints. If such a solution is ruled out, and current hints about neutrino oscillations are confirmed, mixing between active and sterile neutrinos will probably be required. Because mixing between active and sterile neutrinos with parameters appropriate for the atmospheric or solar neutrino problems increases the primordial 4He abundance, big bang nucleosynthesis considerations can place limits on such mixing. In the present work the overall consistency of standard big bang nucleosynthesis is discussed in light of recent discordant determinations of the primordial deuterium abundance. Cosmological considerations favor a larger baryon density, which supports the lower reported value of D/H. Studies of limits on active-sterile neutrino mixing derived from big bang nucleosynthesis considerations are here extended to consider the dependance of these constraints on the primordial deuterium abundance. If the neutrino-heated ejecta in the post-core-bounce supernova environment is the site of r-process nucleosynthesis, limits can be placed on mixing between νe, and νsbμ, or νsbτ. Refined limits will require a better understanding of this r-process environment, since current supernova models do not show a completely successful r-process. In this work it is shown that general relativistic effects associated with a more compact supernova core can provide more suitable conditions for the r-process. As a step towards analyzing the effects of neutrino mixing in such a relativistic environment, neutrino oscillations in curved spacetime are studied.

  15. A Guided Inquiry on Hubble Plots and the Big Bang

    NASA Astrophysics Data System (ADS)

    Forringer, Ted

    2014-04-01

    In our science for non-science majors course "21st Century Physics," we investigate modern "Hubble plots" (plots of velocity versus distance for deep space objects) in order to discuss the Big Bang, dark matter, and dark energy. There are two potential challenges that our students face when encountering these topics for the first time. The first challenge is in understanding and interpreting Hubble plots. The second is that some of our students have religious or cultural objections to the concept of a "Big Bang" or a universe that is billions of years old. This paper presents a guided inquiry exercise that was created with the goal of introducing students to Hubble plots and giving them the opportunity to discover for themselves why we believe our universe started with an explosion billions of years ago. The exercise is designed to be completed before the topics are discussed in the classroom. We did the exercise during a one hour and 45 minute "lab" time and it was done in groups of three or four students, but it would also work as an individual take-home assignment.

  16. The onset of star formation 250 million years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Laporte, Nicolas; Mawatari, Ken; Ellis, Richard S.; Inoue, Akio K.; Zackrisson, Erik; Roberts-Borsani, Guido; Zheng, Wei; Tamura, Yoichi; Bauer, Franz E.; Fletcher, Thomas; Harikane, Yuichi; Hatsukade, Bunyo; Hayatsu, Natsuki H.; Matsuda, Yuichi; Matsuo, Hiroshi; Okamoto, Takashi; Ouchi, Masami; Pelló, Roser; Rydberg, Claes-Erik; Shimizu, Ikkoh; Taniguchi, Yoshiaki; Umehata, Hideki; Yoshida, Naoki

    2018-05-01

    A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang1-3. The abundance of star-forming galaxies is known to decline4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD16, a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes.

  17. The Age of Precision Cosmology

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  18. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    PubMed

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  19. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-07-26

    Low-mass stars, {approx} 1-2 solar masses, near the Main Sequence are efficient at producing {sup 3}He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of {sup 3}He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between themore » hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that {sup 3}He production in low-mass stars poses to the Big Bang nucleosynthesis of {sup 3}He.« less

  20. Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2010-01-01

    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which satisfies the dominant energy condition and is time-periodic, thus running through an infinite number of contraction and expansion cycles.

  1. The evolutionary sequence: origin and emergences.

    PubMed

    Fox, S W

    1986-03-01

    The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.

  2. What happened in 1948?

    NASA Astrophysics Data System (ADS)

    Peebles, P. J.

    2014-01-01

    The idea that the universe is filled with the sea of thermal radiation now termed the Cosmic Microwave Background was first discussed in eleven publications in the year 1948 by Alpher, Herman, and Gamow. Precision measurements of this radiation are a central part of the evidence establishing the relativistic hot Big Bang theory of the expanding universe. The eleven 1948 papers offer a fascinating illustration of the exploration of a new line of research, and the confusion that can attend it. That includes a common misunderstanding of the considerations that led to the idea of this thermal radiation.

  3. The evolutionary sequence: origin and emergences

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1986-01-01

    The evolutionary sequence is being reexamined experimentally from a "Big Bang"origin to the protocell and from the emergence of protocell and variety of species to Darwin's mental power (mind) and society (The Descent of Man). A most fundamentally revisionary consequence of experiments is an emphasis on endogenous ordering. This principle, seen vividly in ordered copolymerization of amino acids, has had new impact on the theory of Darwinian evolution and has been found to apply to the entire sequence. Herein, I will discuss some problems of dealing with teaching controversial subjects.

  4. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  5. 201007270004HQ

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather speaks, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Mather was speaking as part of a ceremony with STS-132 astronaut Piers Sellers who returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  6. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, left, and Dr. John Mather are seen with a replica of Mather's Nobel Prize, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned the replica that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe. Photo Credit: (NASA/Paul E. Alers)

  7. Density function theory study of the adsorption and dissociation of carbon monoxide on tungsten nanoparticles.

    PubMed

    Weng, Meng-Hsiung; Ju, Shin-Pon; Chen, Hsin-Tsung; Chen, Hui-Lung; Lu, Jian-Ming; Lin, Ken-Huang; Lin, Jenn-Sen; Hsieh, Jin-Yuan; Yang, Hsi-Wen

    2013-02-01

    The adsorption and dissociation properties of carbon monoxide (CO) molecule on tungsten W(n) (n = 10-15) nanoparticles have been investigated by density-functional theory (DFT) calculations. The lowest-energy structures for W(n) (n = 10-15) nanoparticles are found by the basin-hopping method and big-bang method with the modified tight-binding many-body potential. We calculated the corresponding adsorption energies, C-O bond lengths and dissociation barriers for adsorption of CO on nanoparticles. The electronic properties of CO on nanoparticles are studied by the analysis of density of state and charge density. The characteristic of CO on W(n) nanoparticles are also compared with that of W bulk.

  8. Spacetime emergence of the robertson-walker universe from a matrix model.

    PubMed

    Erdmenger, Johanna; Meyer, René; Park, Jeong-Hyuck

    2007-06-29

    Using a novel, string theory-inspired formalism based on a Hamiltonian constraint, we obtain a conformal mechanical system for the spatially flat four-dimensional Robertson-Walker Universe. Depending on parameter choices, this system describes either a relativistic particle in the Robertson-Walker background or metric fluctuations of the Robertson-Walker geometry. Moreover, we derive a tree-level M theory matrix model in this time-dependent background. Imposing the Hamiltonian constraint forces the spacetime geometry to be fuzzy near the big bang, while the classical Robertson-Walker geometry emerges as the Universe expands. From our approach, we also derive the temperature of the Universe interpolating between the radiation and matter dominated eras.

  9. Institutional Computing: Final Report Quantum Effects on Cosmology: Probing Physics Beyond the Standard Model with Big Bang Nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Mark W.

    The current one-year project allocation (w17 burst) supports the continuation of research performed in the two-year Institutional Computing allocation (w14 bigbangnucleosynthesis). The project has supported development and production runs resulting in several publications[1, 2, 3, 4] in peer-review journals and talks. Most signi cantly, we have recently achieved a signi cant improvement in code performance. This improvement was essential to the prospect of making further progress on this heretofore unsolved multiphysics problem that lies at the intersection of nuclear and particle theory and the kinetic theory of energy transport in a system with internal (quantum) degrees of freedom.

  10. Did God create our universe? Theological reflections on the Big Bang, inflation, and quantum cosmologies.

    PubMed

    Russell, R J

    2001-12-01

    The sciences and the humanities, including theology, form an epistemic hierarchy that ensures both constraint and irreducibility. At the same time, theological methodology is analogous to scientific methodology, though with several important differences. This model of interaction between science and theology can be seen illustrated in a consideration of the relation between contemporary cosmology (Big Bang cosmology, cosmic inflation, and quantum cosmology) and Christian systematic and natural theology. In light of developments in cosmology, the question of origins has become theologically less interesting than that of the cosmic evolution of a contingent universe.

  11. Refined scenario of standard Big Bang nucleosynthesis allowing for nonthermal nuclear reactions in the primordial plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronchev, Victor T.; Nakao, Yasuyuki; Nakamura, Makoto

    The standard scenario of big bang nucleosynthesis (BBN) is generalized to take into account nonthermal nuclear reactions in the primordial plasma. These reactions are naturally triggered in the BBN epoch by fast particles generated in various exoergic processes. It is found that, although such particles can appreciably enhance the rates of some individual reactions, their influence on the whole process of element production is not significant. The nonthermal corrections to element abundances are obtained to be 0.1% ({sup 3}H), -0.03% ({sup 7}Li), and 0.34 %-0.63% (CNO group).

  12. Cosmological BCS mechanism and the big bang singularity

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Biswas, Tirthabir

    2009-07-01

    We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.

  13. Matrix quantum mechanics on S1 /Z2

    NASA Astrophysics Data System (ADS)

    Betzios, P.; Gürsoy, U.; Papadoulaki, O.

    2018-03-01

    We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.

  14. Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine.

    PubMed

    Nagata, Sayaka; Hatakeyama, Kinta; Asami, Maki; Tokashiki, Mariko; Hibino, Hajime; Nishiuchi, Yuji; Kuwasako, Kenji; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo

    2013-11-29

    The renin-angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue. Copyright © 2013. Published by Elsevier Inc.

  15. Relaxation of vacuum energy in q-theory

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.

    2017-08-01

    The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

  16. Anisotropic, nonsingular early universe model leading to a realistic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.

    2009-02-15

    We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent ofmore » the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.« less

  17. From Mars to the Multiverse

    NASA Astrophysics Data System (ADS)

    Martin Rees, Lord

    2017-01-01

    Lord Martin Rees will discuss questions including: What does the long-range future hold? Should we be surprised that the physical laws permitted the emergence of complexity? Is physical reality even more extensive than the domain that our telescopes can probe? Are there many `big bangs'? Powerful instruments have led to astonishing progress in tracing the emergence of atoms, galaxies, stars and planets from a mysterious `beginning' nearly 14 billion years ago. Unmanned spacecraft have visited the other planets of our Solar System (and some of their moons), beaming back pictures of varied and distinctive worlds. An exciting development in the last two decades has been the realization that many other stars are orbited by retinues of planets - some resembling our Earth (and capable of harboring life). Looking further afield, observers can probe galaxies and the massive back holes at their centers and can check models of their evolution by detecting objects all the way back to an epoch only a billion years after the Big Bang. Indeed we can trace pre-galactic history with some confidence back to a nanosecond after the Big Bang. But the key parameters of our expanding universe - the expansion rate, the geometry and the content - were established far earlier still, when the physics is still conjectural but is being constrained, especially by precision measurements of the cosmic microwave background. These advances pose new questions: What does the long-range future hold? Should we be surprised that the physical laws permitted the emergence of complexity? Is physical reality even more extensive than the domain that our telescopes can probe? Are there many `big bangs'? This illustrated lecture will attempt to address such issues.

  18. Hubble Spies Big Bang Frontiers

    NASA Image and Video Library

    2017-12-08

    Observations by the NASA/ESA Hubble Space Telescope have taken advantage of gravitational lensing to reveal the largest sample of the faintest and earliest known galaxies in the universe. Some of these galaxies formed just 600 million years after the big bang and are fainter than any other galaxy yet uncovered by Hubble. The team has determined for the first time with some confidence that these small galaxies were vital to creating the universe that we see today. An international team of astronomers, led by Hakim Atek of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, has discovered over 250 tiny galaxies that existed only 600-900 million years after the big bang— one of the largest samples of dwarf galaxies yet to be discovered at these epochs. The light from these galaxies took over 12 billion years to reach the telescope, allowing the astronomers to look back in time when the universe was still very young. Read more: www.nasa.gov/feature/goddard/hubble-spies-big-bang-frontiers Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. The Origin of the Elements

    ScienceCinema

    Murphy, Edward

    2018-01-23

    The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

  20. A quasi-steady state cosmological model with creation of matter

    NASA Technical Reports Server (NTRS)

    Hoyle, F.; Burbidge, G.; Narlikar, J. V.

    1993-01-01

    A universe is envisioned in which there was a major creation episode when the mean universal density was about 10 to the -27 g/cu cm. Explicit equations are given for the creation of matter; in a cosmological approximation, these equations lead to expressions for the time-dependence of the cosmological scale factor S(t), but do not entail, as big bang cosmology does, that S(t) tend to zero at some finite time t. The equations therefore possess a universality that is absent from big bang cosmology. Creation occurs when certain conservation equations involving the gradient of a scalar field C(i) are satisfied.

  1. The "big bang" implementation: not for the faint of heart.

    PubMed

    Anderson, Linda K; Stafford, Cynthia J

    2002-01-01

    Replacing a hospital's obsolete mainframe computer system with a modern integrated clinical and administrative information system presents multiple challenges. When the new system is activated in one weekend, in "big bang" fashion, the challenges are magnified. Careful planning is essential to ensure that all hospital staff are fully prepared for this transition, knowing this conversion will involve system downtime, procedural changes, and the resulting stress that naturally accompanies change. Implementation concerns include staff preparation and training, process changes, continuity of patient care, and technical and administrative support. This article outlines how the University of Missouri Health Care addressed these operational concerns during this dramatic information system conversion.

  2. Nuclear Receptors, RXR, and the Big Bang.

    PubMed

    Evans, Ronald M; Mangelsdorf, David J

    2014-03-27

    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Gamma rays and the case for baryon symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    The baryon symmetric big-bang cosmologies offer an explanation of the present photon-baryon ratio in the universe, the best present explanation of the diffuse gamma-ray background spectrum in the 1 to 200 MeV range, and a mechanism for galaxy formation. In the context of an open universe model, the value of omega which best fits the present gamma-ray data is omega equals approx. 0.1 which does not conflict with upper limits on Comptonization distortion of the 3K background radiation. In regard to He production, evidence is discussed that nucleosynthesis of He may have taken place after the galaxies were formed.

  4. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    NASA Astrophysics Data System (ADS)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  5. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  6. Galaxies 800 million years after the Big Bang seen with the Atacama Large Millimetre Array

    NASA Astrophysics Data System (ADS)

    Smit, Renske

    2018-01-01

    The identification of galaxies in the first billion years after the Big Bang presents a challenge for even the largest optical telescopes. When the Atacama Large Millimetre Array (ALMA) started science operations in 2011 it presented a tantalising opportunity to identify and characterise these first sources of light in a new window of the electromagnetic spectrum. I will present new sources successfully identified at z=6.8 using ALMA; the first spectroscopic confirmations of typical star-forming galaxies during the Epoch or Reionization using a sub-millimetre telescope. Moreover, these observations reveal the gas kinematics of such distant sources for the first time. The velocity gradient in these galaxies indicate that these galaxies likely have similar dynamical properties as the turbulent, yet rotation-dominated disks that have been observed for Hα emitting galaxies 2 billion years later at cosmic noon. This novel approach for confirming galaxies during Reionization paves the way for larger studies of distant galaxies with spectroscopic redshifts. Particularly important, this opens up opportunities for the measurement of high angular-resolution dynamics in galaxies less than one billion years after the Big Bang.

  7. Nuclear physics and cosmology

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1989-01-01

    Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.

  8. ``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2018-02-01

    The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.

  9. The onset of star formation 250 million years after the Big Bang.

    PubMed

    Hashimoto, Takuya; Laporte, Nicolas; Mawatari, Ken; Ellis, Richard S; Inoue, Akio K; Zackrisson, Erik; Roberts-Borsani, Guido; Zheng, Wei; Tamura, Yoichi; Bauer, Franz E; Fletcher, Thomas; Harikane, Yuichi; Hatsukade, Bunyo; Hayatsu, Natsuki H; Matsuda, Yuichi; Matsuo, Hiroshi; Okamoto, Takashi; Ouchi, Masami; Pelló, Roser; Rydberg, Claes-Erik; Shimizu, Ikkoh; Taniguchi, Yoshiaki; Umehata, Hideki; Yoshida, Naoki

    2018-05-01

    A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang 1-3 . The abundance of star-forming galaxies is known to decline 4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD1 6 , a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes.

  10. Book Review:

    NASA Astrophysics Data System (ADS)

    Barbour, J. B.

    2007-02-01

    These colloquium proceedings will be valuable, the blurb says, for graduate students and researchers in cosmology and theoretical astrophysics. Specifically, the book 'looks at both the strengths and weaknesses of the current big bang model in explaining certain puzzling data' and gives a 'comprehensive coverage of the expanding field of cosmology'. The reality is rather different. Conference proceedings rarely compare in value with a solid monograph or good review articles, and Current Issues in Cosmology is no exception. The colloquium was convened by the two editors, who have both long harboured doubts about the big bang, and was held in Paris in June 2004. The proceedings contain 19 presented papers and relatively brief summary comments by four panel speakers. The questions and answers at the end of each talk and a general discussion at the end were recorded and transcribed but contain little of interest. The nature of the colloquium is indicated by panellist Francesco Bertola's comment: 'While in the 1950s it was possible to speak of rival theories in cosmology, now the big-bang picture has no strong rivals. This is confirmed by the fact that out of 1500 members of the IAU Division VIII (Galaxies and the Universe) only a dozen, although bright people, devote their time to the heterodox views.' This was largely a platform for them to give their views. At least half of the dozen, all the 'usual suspects', were present: Geoffery and Margaret Burbidge, Jayant Narlikar, Halton Arp, Chandra Wickramasinghe and, in spirit only but playing a role somewhat like the ghost of Hamlet's father, the late Fred Hoyle. Doubters presented 12 of the 19 papers. Orthodoxy should certainly be challenged and the sociology of science questioned, but I found two main problems with this book. The papers putting the orthodox view are too short, even perfunctory. The most that a serious graduate student would get out of them is a reference to a far better review article or book on modern cosmology. The doubters' case is threadbare at best, as Alain Blanchard put it rather more politely in his panel contribution. The Burbidges and Halton Arp reiterate the difficulties that these eminent scientists have long had in reconciling certain observations with the standard model. Most workers in the field are aware of their views and find they lack substance, especially Arp's worries about some close coincidences between the observed positions of low-redshift galaxies and high-redshift quasars. Virtually everyone believes that they have no statistical significance. Arp's belief that some quasars have non-cosmological redshifts and are being spewed out of nearby exploding galactic centres raises eyebrows. For me the most worthwhile of the 'rebel' papers is Narlikar's. Its first half is a thought-provoking survey of the many modifications through which the big-bang model has passed. He calls them additions of epicycles and in some cases I think he has a point. But his rival theory seems very far fetched and makes my point about Hamlet's ghost. The steady-state theory just will not die: in 1994, Hoyle, G. Burbidge, and Narlikar published the quasi-steady-state theory (The Astrophysical Journal 410 437) in which the universe expands, not perfectly steadily but 'in mini-creation events at regular intervals and in response the universe oscillates on a short-term period of about 50 Gyr while it also has a steady (exponential) long-term expansion at a characteristic time scale of about 1000 Gyr.' I won't go into details, but this looks like a whopping epicycle on the steady-state model! Wickramasinghe's paper is on iron whiskers, which have now taken over from standard dust as the agents that must transform starlight into the microwave background. In my view the two best papers in the volume are those of the panellists Alain Blanchard (in favour of the standard model though he has difficulties with X-ray clusters) and the observer Michael Disney, who expresses radical doubts about the concordance model and cites a paper of his (astro-ph/0009020) that is entertaining and hard hitting. But is it worth buying 278 pages for the sake of at most 20? I welcomed the opportunity to review this book since I have stuck my neck out even further than Narlikar and Disney, and this journal has even published an article by me in which I question whether the universe is actually expanding (Classical and Quantum Gravity 20 1571). I wanted to see if there were any chinks in the armour of the standard model. I have to say that having read this book, three modern books on cosmology and attended the recent Cosmic Frontiers conference in Durham (UK), I have to agree with Blanchard when he says: 'When I try to find what the weaknesses of the standard big bang are, I get rather more convinced of its robustness!' However, I was glad to see that he does not regard inflation as part of the model, and I do think Disney is right to be sceptical about exaggerated claims for the specific concordance model (rather than the basic big-bang idea). However, what I find immensely impressive is how the one simple idea of the expanding universe has proved so fruitful and successful.

  11. Numerical relativity beyond astrophysics.

    PubMed

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  12. Serendipity: Accidental Discoveries in Science

    NASA Astrophysics Data System (ADS)

    Roberts, Royston M.

    1989-06-01

    Many of the things discovered by accident are important in our everyday lives: Teflon, Velcro, nylon, x-rays, penicillin, safety glass, sugar substitutes, and polyethylene and other plastics. And we owe a debt to accident for some of our deepest scientific knowledge, including Newton's theory of gravitation, the Big Bang theory of Creation, and the discovery of DNA. Even the Rosetta Stone, the Dead Sea Scrolls, and the ruins of Pompeii came to light through chance. This book tells the fascinating stories of these and other discoveries and reveals how the inquisitive human mind turns accident into discovery. Written for the layman, yet scientifically accurate, this illuminating collection of anecdotes portrays invention and discovery as quintessentially human acts, due in part to curiosity, perserverance, and luck.

  13. Numerical relativity beyond astrophysics

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  14. Annihilation physics of exotic galactic dark matter particles

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  15. Superheavy magnetic monopoles and the standard cosmology

    NASA Astrophysics Data System (ADS)

    Turner, M. S.

    1984-10-01

    The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.

  16. last ATV docking OBT

    NASA Image and Video Library

    2014-08-07

    ISS040-E-089629 (7 Aug. 2014) --- In the International Space Station?s Zvezda Service Module, European Space Agency astronaut Alexander Gerst (foreground) and Russian cosmonaut Alexander Skvortsov, both Expedition 40 flight engineers, participate in a training session in preparation for the rendezvous and docking of ESA?s fifth and final Automated Transfer Vehicle (ATV-5). Nicknamed the ?Georges Lemaitre? in honor of the Belgian physicist and astronomer who first proposed the Big Bang theory, ATV-5 will deliver more than seven tons of scientific experiments, food and other supplies when it docks to the aft end of Zvezda on Aug. 12.

  17. Measurement of the reaction 2H(e,e') at 180 degrees close to the deuteron breakup threshold.

    PubMed

    Ryezayeva, N; Arenhövel, H; Burda, O; Byelikov, A; Chernykh, M; Enders, J; Griesshammer, H W; Kalmykov, Y; von Neumann-Cosel, P; Ozel, B; Poltoratska, I; Pysmenetska, I; Rangacharyulu, C; Rathi, S; Richter, A; Schrieder, G; Shevchenko, A; Yevetska, O

    2008-05-02

    Inclusive inelastic electron scattering off the deuteron under 180 degrees has been studied at the S-DALINAC close to the breakup threshold at momentum transfers q=0.27 fm;{-1} and 0.74 fm;{-1} with good energy resolution sufficient to map in detail the spin flip M1 response, which governs the starting reaction pn-->dgamma of big-bang nucleosynthesis over most of the relevant temperature region. Results from potential model calculations and (for q=0.27 fm;{-1}) from pionless nuclear effective field theory are in excellent agreement with the data.

  18. last ATV docking OBT

    NASA Image and Video Library

    2014-08-07

    ISS040-E-089627 (7 Aug. 2014) --- In the International Space Station?s Zvezda Service Module, European Space Agency astronaut Alexander Gerst (foreground) and Russian cosmonaut Alexander Skvortsov, both Expedition 40 flight engineers, participate in a training session in preparation for the rendezvous and docking of ESA?s fifth and final Automated Transfer Vehicle (ATV-5). Nicknamed the ?Georges Lemaitre? in honor of the Belgian physicist and astronomer who first proposed the Big Bang theory, ATV-5 will deliver more than seven tons of scientific experiments, food and other supplies when it docks to the aft end of Zvezda on Aug. 12.

  19. The formation of the first stars and galaxies.

    PubMed

    Bromm, Volker; Yoshida, Naoki; Hernquist, Lars; McKee, Christopher F

    2009-05-07

    Observations made using large ground-based and space-borne telescopes have probed cosmic history from the present day to a time when the Universe was less than one-tenth of its present age. Earlier still lies the remaining frontier, where the first stars, galaxies and massive black holes formed. They fundamentally transformed the early Universe by endowing it with the first sources of light and chemical elements beyond the primordial hydrogen and helium produced in the Big Bang. The interplay of theory and upcoming observations promises to answer the key open questions in this emerging field.

  20. Sterile neutrino dark matter with supersymmetry

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  1. Sociology of Modern Cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  2. Beyond concordance cosmology with magnification of gravitational-wave standard sirens.

    PubMed

    Camera, Stefano; Nishizawa, Atsushi

    2013-04-12

    We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer.

  3. Extragalactic astronomy: The universe beyond our galaxy

    NASA Technical Reports Server (NTRS)

    Jacobs, K. C.

    1976-01-01

    This single-topic brochure is for high school physical science teachers to use in introducing students to extragalactic astronomy. The material is presented in three parts: the fundamental content of extragalactic astronomy; modern discoveries delineated in greater detail; and a summary of the earlier discussions within the structure of the Big-Bang Theory of evolution. Each of the three sections is followed by student exercises (activities, laboratory projects, and questions-and-answers). The unit close with a glossary which explains unfamilar terms used in the text and a collection of teacher aids (literature references and audiovisual materials for utilization in further study).

  4. Quantum Gravity and Cosmology: an intimate interplay

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  5. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, at podium, acknowleges museum director Ret. Gen. John R. "Jack" Dailey, seated left, and NASA astrophycisist Dr. John Mather, center, during a presentation, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  6. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather, at podium, speaks Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington as museum director Gen. John R. "Jack" Dailey, U.S. Marine Corps ret. and STS-132 astronaut Piers Sellers look on. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  7. The Evolution of the Stem Cell Theory for Heart Failure.

    PubMed

    Silvestre, Jean-Sébastien; Menasché, Philippe

    2015-12-01

    Various stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected "big bang" in the stem cell theory, "blasting" the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells.

  8. 33 CFR 165.801 - Annual fireworks displays and other events in the Eighth Coast Guard District requiring safety...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... July Big Bang Fireworks USS LEXINGTON/Corpus Christi, TX All waters contained within a 1,000-ft radius... down river from the Ashland bridge. 24 27 July 4th Big Sandy Superstore Arena/Dawg Dazzle Fireworks...

  9. 33 CFR 165.801 - Annual fireworks displays and other events in the Eighth Coast Guard District requiring safety...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... July Big Bang Fireworks USS LEXINGTON/Corpus Christi, TX All waters contained within a 1,000-ft radius... down river from the Ashland bridge. 24 27 July 4th Big Sandy Superstore Arena/Dawg Dazzle Fireworks...

  10. Complete conformal classification of the Friedmann–Lemaître–Robertson–Walker solutions with a linear equation of state

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Carr, B. J.; Igata, Takahisa

    2018-05-01

    We completely classify Friedmann–Lemaître–Robertson–Walker solutions with spatial curvature and equation of state , according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow , thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for w  >  ‑1/3 and , while there is no big-bang singularity for w  <  ‑1 and . For K  =  0 or  ‑1, ‑1  <  w  <  ‑1/3 and , there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for w  <  ‑1 and , with null geodesics being future complete for but incomplete for w  <  ‑5/3. For w  =  ‑1/3, the expansion speed is constant. For  ‑1  <  w  <  ‑1/3 and K  =  1, the universe contracts from infinity, then bounces and expands back to infinity. For K  =  0, the past boundary consists of timelike infinity and a regular null hypersurface for  ‑5/3  <  w  <  ‑1, while it consists of past timelike and past null infinities for . For w  <  ‑1 and K  =  1, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For w  <  ‑1 and K  =  ‑1, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for , and , respectively. A negative energy density () is possible only for K  =  ‑1. In this case, for w  >  ‑1/3, the universe contracts from infinity, then bounces and expands to infinity; for  ‑1  <  w  <  ‑1/3, it starts from a big-bang singularity and contracts to a big-crunch singularity; for w  <  ‑1, it expands from a regular null hypersurface and contracts to another regular null hypersurface.

  11. On the Origin of Time and the Universe

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje; Tze, Chia-Hsiung

    We present a novel solution to the low entropy and arrow of time puzzles of the initial state of the universe. Our approach derives from the physics of a specific generalization of Matrix theory put forth in earlier work as the basis for a quantum theory of gravity. The particular dynamical state space of this theory, the infinite-dimensional analogue of the Fubini-Study metric over a complex nonlinear Grassmannian, has recently been studied by Michor and Mumford. The geodesic distance between any two points on this space is zero. Here we show that this mathematical result translates to a description of a hot, zero entropy state and an arrow of time after the Big Bang. This is modeled as a far from equilibrium, large fluctuation driven, "freezing by heating" metastable ordered phase transition of a nonlinear dissipative dynamical system.

  12. Heavy element production in inhomogeneous big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Shunji; Fujimoto, Shin-ichirou; Nishimura, Sunao

    2005-12-15

    We present a new astrophysical site of the big bang nucleosynthesis (BBN) that are very peculiar compared with the standard BBN. Some models of the baryogenesis suggest that very high baryon density regions were formed in the early universe. On the other hand, recent observations suggest that heavy elements already exist in high red-shifts and the origin of these elements become a big puzzle. Motivated by these, we investigate BBN in very high baryon density regions. BBN proceeds in proton-rich environment, which is known to be like the p-process. However, by taking very heavy nuclei into account, we find thatmore » BBN proceeds through both the p-process and the r-process simultaneously. P-nuclei such as {sup 92}Mo, {sup 94}Mo, {sup 96}Ru, {sup 98}Ru whose origin is not well known are also synthesized.« less

  13. Taking the Measure of the Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2009-01-01

    The cosmic microwave background (CMB) radiation is the oldest light in the universe - it is literally the remnant heat left over from the Big Bang. This fossil relic has survived largely intact and it provides us with a unique probe of conditions in the early universe, long before any stars or galaxies had formed. NASA has now flown two satellites devoted to studying the CMB: 'COBE' and 'WMAP'. In this lecture I will describe what we have learned from these missions including: evidence for the Big Bang itself; new measurements of the age, shape, and content of the universe; and new evidence that all structure in the universe emerged from microscopic quantum fluctuations in the primordial soup.

  14. Measurements of Radiative Capture Cross Sections at Big Bang Energies

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Fukuda, Mitsunori; Tanaka, Yutaro; Du, Hang; Ohnishi, Kousuke; Yagi, Shoichi; Sugihara, Takanobu; Hori, Taichi; Nakamura, Shoken; Yanagihara, Rikuto; Matsuta, Kensaku; Mihara, Mototsugu; Nishimura, Daiki; Iwakiri, Shuichi; Kambayashi, Shohei; Kunimatsu, Shota; Sakakibara, Hikaru; Yamaoka, Shintaro

    We measured d(p, γ )3He cross sections at ECM = 0.12, 0.19, 0.44, and 0.57 MeV. In this energy region, available experimental values are systematically smaller than the recent calculation, so that additional experiments are desired for understanding the Big Bang Nucleosynthesis. The experiment was performed by bombarding proton beams to the D2 gas target with the 5 MV Van de Graaff accelerator at Osaka University. The experimental d(p, γ )3He cross sections of the present study are systematically larger than previous data. On the other hand, recent theoretical results by Marcucci et al. are in good agreement with present experimental results.

  15. On the initial regime of pre-big bang cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, M., E-mail: gasperini@ba.infn.it

    The production of a background of super-horizon curvature perturbations with the appropriate (red) spectrum needed to trigger the cosmic anisotropies observed on large scales is associated, in the context of pre-big bang inflation, with a phase of growing string coupling. The extension towards the past of such a phase is not limited in time by the dynamical backreaction of the quantum perturbations of the cosmological geometry and of its sources. A viable, slightly red spectrum of scalar perturbations can thus be the output of an asymptotic, perturbative regime which is well compatible with an initial string-vacuum state satisfying the postulatemore » of 'Asymptotic Past Triviality'.« less

  16. GI Stromal Tumors: 15 Years of Lessons From a Rare Cancer.

    PubMed

    Cioffi, Angela; Maki, Robert G

    2015-06-01

    A confluence of factors, most prominently the recognition of GI stromal tumor (GIST) as a specific sarcoma subtype and the availability of imatinib, led to the "Big Bang" of GIST therapy (ie, the successful treatment of the first patient with GIST with imatinib in 2000). The trail blazed by imatinib for chronic myelogenous leukemia and GIST has become a desired route to regulatory approval of an increasing number of oral kinase inhibitors and other novel therapeutics. In this review, the status of GIST management before and after GIST's "Big Bang" and new steps being taken to further improve on therapy are reviewed. © 2015 by American Society of Clinical Oncology.

  17. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.

    PubMed

    Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V

    2008-12-01

    The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

  18. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  19. GLINT. Gravitational-wave laser INterferometry triangle

    NASA Astrophysics Data System (ADS)

    Aria, Shafa; Azevedo, Rui; Burow, Rick; Cahill, Fiachra; Ducheckova, Lada; Holroyd, Alexa; Huarcaya, Victor; Järvelä, Emilia; Koßagk, Martin; Moeckel, Chris; Rodriguez, Ana; Royer, Fabien; Sypniewski, Richard; Vittori, Edoardo; Yttergren, Madeleine

    2017-11-01

    When the universe was roughly one billion years old, supermassive black holes (103-106 solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 < z < 30(˜ 0.1 - 0.3× 109 years after the big bang) in the frequency range 0.01 - 1 Hz. GLINT design strain sensitivity of 5× 10^{-24} 1/√ { {Hz}} will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

  20. The 'big bang' theory of the origin of psychosis and the faculty of language.

    PubMed

    Crow, Timothy J

    2008-07-01

    To achieve a unified concept of the aetiology of psychosis. The nuclear symptoms of "schizophrenia" occur with approximately the same age- and sex-specific incidence in all human populations. No substantive environmental precipitant has been identified, and yet these "illnesses" are associated with deviations in brain structure that are uniform across populations, are established late in development and relate to the capacity for language. No genes have been identified by linkage or association strategies. It is postulated that the variation 1. relates precisely to the genetic mechanism that distinguishes the species Homo sapiens from its precursor. 2. constitutes a class of epigenetic diversity intrinsic to the genetic control of the species characteristic (the "specific mate recognition system" according to the theory of HEH Paterson). 3. reflects the role of the cerebral torque in the neuro-developmental re-organization that enabled the faculty of language. A genetic mechanism involving both the X and the Y chromosomes is suggested by 1) evidence for anomalies of asymmetry of brain structure and function in the sex chromosome aneuploidies, 2) a same sex concordance effect for handedness, 3) sex differences in lateralization, and verbal and spatial ability, and their inter-relationships. These three facts direct attention to the Xq21.3/Yp11.2 homology block that was established by an X to Y duplication 6 million years ago, ie at the time of origin of the hominid lineage. Within this block a gene pair (Protocadherin11X and Y) expressed as two cell surface adhesion molecules at axo-dendritic synapses has been subject to change (16 amino-acid substitutions in the Y, and critically 5 in the X sequence) in the hominid lineage. The X to Y duplication and its subsequent modification (4 deletions and a paracentric inversion) on the Y may have played a central role in hominid speciation with the most recent change (at around 160,000 years) representing the transition to language and modern Homo sapiens (the 'big bang'). The expression of genes within the homologous region is influenced by the extent to which the X and Y chromosomes pair in male meiosis (referred to as MSUC "meiotic suppression of unpaired chromosomes"). This mechanism generates epigenetic diversity relating to the species capacity for language; it is proposed as the basis of the genetic predisposition to psychosis. Language and psychosis have a common origin in the genetic event (the 'big bang') that defined the species.

  1. The Formation of the Solar System: Theories Old and New

    NASA Astrophysics Data System (ADS)

    Woolfson, Michael

    ch. 1. Theories come and theories go -- ch. 2. Measuring atoms and the universe -- ch. 3. Greek offerings -- ch. 4. The shoulders of giants -- ch. 5. A voyage of discovery to the solar system -- ch. 6. The problem to be solved -- ch. 7. The French connection -- ch. 8. American Catherine-Wheels -- ch. 9. British big tides -- ch. 10. Russian could capture-with British help -- ch. 11. German vortices-with a little French help -- ch. 12. McCrea's floccules -- ch. 13. What earlier theories indicate -- ch. 14. Disks around new stars -- ch. 15. Planets around other stars -- ch. 16. Disks around older stars -- ch. 17. What a theory should explain now -- ch. 18. The new Solar Nebula theory: the angular momentum problem -- ch. 19. Making planets top-down -- ch. 20. A bottom-up alternative -- ch. 21. Making planets faster -- ch. 22. Wandering planets -- ch. 23. Back to top-down -- ch. 24. This is the stuff that stars are made of -- ch. 25. Making dense cool clouds -- ch. 26. A star is born -- ch. 27. Close to the maddening crowd -- ch. 28. Close encounters of the stellar kind -- ch. 29. Ever decreasing circles -- ch. 30. How many planetary systems? -- ch. 31. Starting a family -- ch. 32. Tilting-but not as windmills -- ch. 33. The terrestrial planets raise problems! -- ch. 34. A British Bang theory: the earth and Venus -- ch. 35. Behold the wandering moon -- ch. 36. Fleet Mercury and warlike Mars -- ch. 37. Gods of the sea and the nether regions -- ch. 38. Bits and pieces -- ch. 39. Comets-the harbingers of doom! -- ch. 40. Making atoms with a biggish bang -- ch. 41. Is the capture theory valid?

  2. Enhancing Teachers' Awareness About Relations Between Science and Religion. The Debate Between Steady State and Big Bang Theories

    NASA Astrophysics Data System (ADS)

    Bagdonas, Alexandre; Silva, Cibelle Celestino

    2015-11-01

    Educators advocate that science education can help the development of more responsible worldviews when students learn not only scientific concepts, but also about science, or "nature of science". Cosmology can help the formation of worldviews because this topic is embedded in socio-cultural and religious issues. Indeed, during the Cold War period, the cosmological controversy between Big Bang and Steady State theory was tied up with political and religious arguments. The present paper discusses a didactic sequence developed for and applied in a pre-service science teacher-training course on history of science. After studying the historical case, pre-service science teachers discussed how to deal with possible conflicts between scientific views and students' personal worldviews related to religion. The course focused on the study of primary and secondary sources about cosmology and religion written by cosmologists such as Georges Lemaître, Fred Hoyle and the Pope Pius XII. We used didactic strategies such as short seminars given by groups of pre-service teachers, videos, computer simulations, role-play, debates and preparation of written essays. Along the course, most pre-service teachers emphasized differences between science and religion and pointed out that they do not feel prepared to conduct classroom discussions about this topic. Discussing the relations between science and religion using the history of cosmology turned into an effective way to teach not only science concepts but also to stimulate reflections about nature of science. This topic may contribute to increasing students' critical stance on controversial issues, without the need to explicitly defend certain positions, or disapprove students' cultural traditions. Moreover, pre-service teachers practiced didactic strategies to deal with this kind of unusual content.

  3. On the Weyl curvature hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less

  4. Through the big bang: Continuing Einstein's equations beyond a cosmological singularity

    NASA Astrophysics Data System (ADS)

    Koslowski, Tim A.; Mercati, Flavio; Sloan, David

    2018-03-01

    All measurements are comparisons. The only physically accessible degrees of freedom (DOFs) are dimensionless ratios. The objective description of the universe as a whole thus predicts only how these ratios change collectively as one of them is changed. Here we develop a description for classical Bianchi IX cosmology implementing these relational principles. The objective evolution decouples from the volume and its expansion degree of freedom. We use the relational description to investigate both vacuum dominated and quiescent Bianchi IX cosmologies. In the vacuum dominated case the relational dynamical system predicts an infinite amount of change of the relational DOFs, in accordance with the well known chaotic behaviour of Bianchi IX. In the quiescent case the relational dynamical system evolves uniquely though the point where the decoupled scale DOFs predict the big bang/crunch. This is a non-trivial prediction of the relational description; the big bang/crunch is not the end of physics - it is instead a regular point of the relational evolution. Describing our solutions as spacetimes that satisfy Einstein's equations, we find that the relational dynamical system predicts two singular solutions of GR that are connected at the hypersurface of the singularity such that relational DOFs are continuous and the orientation of the spatial frame is inverted.

  5. Re-evaluation of the immunological Big Bang.

    PubMed

    Flajnik, Martin F

    2014-11-03

    Classically the immunological 'Big Bang' of adaptive immunity was believed to have resulted from the insertion of a transposon into an immunoglobulin superfamily gene member, initiating antigen receptor gene rearrangement via the RAG recombinase in an ancestor of jawed vertebrates. However, the discovery of a second, convergent adaptive immune system in jawless fish, focused on the so-called variable lymphocyte receptors (VLRs), was arguably the most exciting finding of the past decade in immunology and has drastically changed the view of immune origins. The recent report of a new lymphocyte lineage in lampreys, defined by the antigen receptor VLRC, suggests that there were three lymphocyte lineages in the common ancestor of jawless and jawed vertebrates that co-opted different antigen receptor supertypes. The transcriptional control of these lineages during development is predicted to be remarkably similar in both the jawless (agnathan) and jawed (gnathostome) vertebrates, suggesting that an early 'division of labor' among lymphocytes was a driving force in the emergence of adaptive immunity. The recent cartilaginous fish genome project suggests that most effector cytokines and chemokines were also present in these fish, and further studies of the lamprey and hagfish genomes will determine just how explosive the Big Bang actually was. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Big bang nucleosynthesis: The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).

  7. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    ScienceCinema

    None

    2017-12-09

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century, a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.

  8. SETI as a part of Big History

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-08-01

    Big History is an emerging academic discipline which examines history scientifically from the Big Bang to the present. It uses a multidisciplinary approach based on combining numerous disciplines from science and the humanities, and explores human existence in the context of this bigger picture. It is taught at some universities. In a series of recent papers ([11] through [15] and [17] through [18]) and in a book [16], we developed a new mathematical model embracing Darwinian Evolution (RNA to Humans, see, in particular, [17] and Human History (Aztecs to USA, see [16]) and then we extrapolated even that into the future up to ten million years (see 18), the minimum time requested for a civilization to expand to the whole Milky Way (Fermi paradox). In this paper, we further extend that model in the past so as to let it start at the Big Bang (13.8 billion years ago) thus merging Big History, Evolution on Earth and SETI (the modern Search for ExtraTerrestrial Intelligence) into a single body of knowledge of a statistical type. Our idea is that the Geometric Brownian Motion (GBM), so far used as the key stochastic process of financial mathematics (Black-Sholes models and related 1997 Nobel Prize in Economics!) may be successfully applied to the whole of Big History. In particular, in this paper we derive

  9. Analysis of the Fisher solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exteriormore » region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.« less

  10. Evolution of the universe

    NASA Astrophysics Data System (ADS)

    Novikov, I. D.

    The underlying principles and discoveries of cosmology are presented in a qualitative form. The General Theory of Relativity is the basis for the science of the structure of the Universe, and Friedmann in 1922-4 demonstrated that the Universe is either expanding or contracting; Hubble in 1929 provided evidence for expansion. The physical processes of the evolution of the Universe to date have been projected to include origins in a superdense, superhot state with violent reactions between elementary particles. The resulting matter fragmented into the stellar systems and agglomerations presently observed. Observational data of the most distant galaxies now covers a range of 10 Gpc. Current studies focus on the missing matter in the Universe and the mean density of matter, the gravitation of vacuum, relict radiation from the Big Bang, the curvature of space-time, and theories for the earliest moments of the Universe, including pancake theories, the synthesis of light elements, and black and white holes.

  11. Reconstruction of a nonminimal coupling theory with scale-invariant power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Taotao, E-mail: qiutt@ntu.edu.tw

    2012-06-01

    A nonminimal coupling single scalar field theory, when transformed from Jordan frame to Einstein frame, can act like a minimal coupling one. Making use of this property, we investigate how a nonminimal coupling theory with scale-invariant power spectrum could be reconstructed from its minimal coupling counterpart, which can be applied in the early universe. Thanks to the coupling to gravity, the equation of state of our universe for a scale-invariant power spectrum can be relaxed, and the relation between the parameters in the action can be obtained. This approach also provides a means to address the Big-Bang puzzles and anisotropymore » problem in the nonminimal coupling model within Jordan frame. Due to the equivalence between the two frames, one may be able to find models that are free of the horizon, flatness, singularity as well as anisotropy problems.« less

  12. Tachyon field in loop quantum cosmology: An example of traversable singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Lifang; Zhu Jianyang

    2009-06-15

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less

  13. Using Supercomputers to Probe the Early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorgi, Elena Edi

    For decades physicists have been trying to decipher the first moments after the Big Bang. Using very large telescopes, for example, scientists scan the skies and look at how fast galaxies move. Satellites study the relic radiation left from the Big Bang, called the cosmic microwave background radiation. And finally, particle colliders, like the Large Hadron Collider at CERN, allow researchers to smash protons together and analyze the debris left behind by such collisions. Physicists at Los Alamos National Laboratory, however, are taking a different approach: they are using computers. In collaboration with colleagues at University of California San Diego,more » the Los Alamos researchers developed a computer code, called BURST, that can simulate conditions during the first few minutes of cosmological evolution.« less

  14. Analysis of BigFoot HDC SymCap experiment N161205 on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Baker, K. L.; Thomas, C. A.; Berzak Hopkins, L. F.; Harte, J. A.; Zimmerman, G. B.; Woods, D. T.; Kritcher, A. L.; Ho, D. D.; Weber, C. R.; Kyrala, G.

    2017-10-01

    Analysis of NIF implosion experiment N161205 provides insight into both hohlraum and capsule performance. This experiment used an undoped High Density Carbon (HDC) ablator driven by a BigFoot x-ray profile in a Au hohlraum. Observations from this experiment include DT fusion yield, bang time, DSR, Tion and time-resolved x-ray emission images around bang time. These observations are all consistent with an x-ray spectrum having significantly reduced Au m-band emission that is present in a standard hohlraum simulation. Attempts to justify the observations using several other simulation modifications will be presented. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  15. Constraining f(T) teleparallel gravity by big bang nucleosynthesis: f(T) cosmology and BBN.

    PubMed

    Capozziello, S; Lambiase, G; Saridakis, E N

    2017-01-01

    We use Big Bang Nucleosynthesis (BBN) observational data on the primordial abundance of light elements to constrain f ( T ) gravity. The three most studied viable f ( T ) models, namely the power law, the exponential and the square-root exponential are considered, and the BBN bounds are adopted in order to extract constraints on their free parameters. For the power-law model, we find that the constraints are in agreement with those obtained using late-time cosmological data. For the exponential and the square-root exponential models, we show that for reliable regions of parameters space they always satisfy the BBN bounds. We conclude that viable f ( T ) models can successfully satisfy the BBN constraints.

  16. Big bang nucleosynthesis and the quark-hadron transition

    NASA Technical Reports Server (NTRS)

    Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.

    1990-01-01

    An examination and brief review is made of the effects of quark-hadron transition induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp e), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).

  17. Detection of pristine gas two billion years after the Big Bang.

    PubMed

    Fumagalli, Michele; O'Meara, John M; Prochaska, J Xavier

    2011-12-02

    In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.

  18. Big Bang nucleosynthesis and the Quark-Hadron transition

    NASA Technical Reports Server (NTRS)

    Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.

    1989-01-01

    An examination and brief review is made of the effects of quark-hadron transistion induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp 3), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).

  19. From the Big Bang to the Nobel Prize and the JWST

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2007-01-01

    I will describe the history of the universe, from the Big Bang to 2013, when the JWST is to be launched to look back towards our beginnings. I will discuss how the COBE results led to the Nobel Prize, how the COBE results have been confirmed and extended, and their implications for future observations. The James Webb Space Telescope will be used to examine every part of our history from the first stars and galaxies to the formation of individual stars and planets and the delivery of life-supporting materials to the Earth. I will describe the plans for the JWST and how observers may use it. With luck, the JWST may produce a Nobel Prize for some discovery we can only guess today.

  20. Big Bang Day: 5 Particles - 5. The Next Particle

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  1. Fire in the Sky--From Big Bang to Big Money: Outdoor Education and Sustainable Development. Part One.

    ERIC Educational Resources Information Center

    Walker, Rod

    1998-01-01

    Within diverse outdoor educational activities, a core experience of connection with the earth balances self, others, and nature with elements of ritual. Most effective when experiential, integrated, and technologically simple, the core experience's educative power lies in awakening awareness of interconnectedness between human and nonhuman life.…

  2. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  3. Astrophysical S-factor of the 32He(α,γ) 733 7Be reaction in the Big-Bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Ghamary, Motahareh; Sadeghi, Hossein; Mohammadi, Saeed

    2018-05-01

    In the present work, we have studied the properties of the 23He(α , γ) 47Be reaction. The direct radiative capture nuclear reactions in the Big-Bang nucleosynthesis mainly, are done in the external areas of inter-nuclear interaction range and play an essential role in nuclear astrophysics. Among of these reactions, the 23He(α , γ) 47Be reaction with Q = 1.586 MeV is the main part of the Big-Bang nucleosynthesis chain reactions. This reaction can be used to understand the physical and chemical properties of the sun as well as can be justified the lake of the observed solar neutrino in the detector of the Earth. Since product neutrino fluxes are predicated in the center of the sun by the decay of 7Be and 8B, and almost are proportional to the astrophysical S-factor for the 23He(α , γ) 47Be reaction, S34. The 23He(α , γ) 47Be reaction is considered the key to solve the solar neutrino puzzle. Finally, we have astrophysical S-factor obtained for the ground S1,3/2-, first excited S1,1/2-and total S34 states by modern nucleon-nucleon two-body local potential models. We have also compared the obtained S-factor with experimental data and other theoretical works.

  4. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  5. New reaction rates for improved primordial D /H calculation and the cosmic evolution of deuterium

    NASA Astrophysics Data System (ADS)

    Coc, Alain; Petitjean, Patrick; Uzan, Jean-Philippe; Vangioni, Elisabeth; Descouvemont, Pierre; Iliadis, Christian; Longland, Richard

    2015-12-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historically strong evidences for the big bang model. Standard BBN is now a parameter-free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background radiation. There is a good agreement between the primordial abundances of 4He, D, 3He, and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D /H , to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we reevaluate the d (p ,γ )3He, d (d ,n ) 3H3, and d (d ,p ) 3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D /H =(2.45 ±0.10 )×10-5 (2 σ ), in agreement with observations.

  6. What is the Universe made of?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Mark

    A team of physicists and astrophysicists at Los Alamos National Laboratory, in collaboration with leading universities around the country, are using the Laboratory’s supercomputers to simulate the Big Bang nucleosynthesis and the early universe to unprecedented precision. These researchers developed a code, called BURST that describes the universe from a time of a few seconds after the Big Bang to several hundred thousand years later. BURST allows physicists to study the microscopic, quantum nature of fundamental particles — like nuclei and the ghostly, weakly interacting neutrinos — by simulating the universe at its largest, cosmological scale. BURST simultaneously describes allmore » the particles present in the early universe as they develop, tracking their evolution, particularly the amounts of light nuclei fused in the cosmic soup.« less

  7. Nuclear constraints on the age of the universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1982-01-01

    A review is made of how one can use nuclear physics to put rather stringent limits on the age of the universe and thus the cosmic distance scale. The age can be estimated to a fair degree of accuracy. No single measurement of the time since the Big Bang gives a specific, unambiguous age. There are several methods that together fix the age with surprising precision. In particular, there are three totally independent techniques for estimating an age and a fourth technique which involves finding consistency of the other three in the framework of the standard Big Bang cosmological model. The three independent methods are: cosmological dynamics, the age of the oldest stars, and radioactive dating. This paper concentrates on the third of the three methods, and the consistency technique.

  8. Scalar field cosmologies with inverted potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisseau, B.; Giacomini, H.; Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Bigmore » Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.« less

  9. Study of the 2H(p,γ)3He reaction in the Big Bang Nucleosynthesis energy range at LUNA

    NASA Astrophysics Data System (ADS)

    Mossa, Viviana

    2018-01-01

    Deuterium is the first nucleus produced in the Universe, whose accumulation marks the beginning of the so called Big Bang Nucleosynthesis (BBN). Its primordial abundance is very sensitive to some cosmological parameters like the baryon density and the number of the neutrino families. Presently the main obstacle to an accurate theoretical deuterium abundance evaluation is due to the poor knowledge of the 2H(p,γ)3He cross section at BBN energies. The aim of the present work is to describe the experimental approach proposed by the LUNA collaboration, whose goal is to measure, with unprecedented precision, the total and the differential cross section of the reaction in the 30 < Ec.m. [keV] < 300 energy range.

  10. Quantum Criticality and Black Holes

    ScienceCinema

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2017-12-09

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  11. Physics of primordial star formation

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki

    2012-09-01

    The study of primordial star formation has a history of nearly sixty years. It is generally thought that primordial stars are one of the key elements in a broad range of topics in astronomy and cosmology, from Galactic chemical evolution to the formation of super-massive blackholes. We review recent progress in the theory of primordial star formation. The standard theory of cosmic structure formation posits that the present-day rich structure of the Universe developed through gravitational amplification of tiny matter density fluctuations left over from the Big Bang. It has become possible to study primordial star formation rigorously within the framework of the standard cosmological model. We first lay out the key physical processes in a primordial gas. Then, we introduce recent developments in computer simulations. Finally, we discuss prospects for future observations of the first generation of stars.

  12. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  13. Austerity and Geometric Structure of Field Theories

    NASA Astrophysics Data System (ADS)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  14. Quantisation of the holographic Ricci dark energy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albarran, Imanol; Bouhmadi-López, Mariam, E-mail: imanol@ubi.pt, E-mail: mbl@ubi.pt

    2015-08-01

    While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not onlymore » avoid future singularities but also the past Big Bang.« less

  15. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.

  16. Using Inertial Fusion Implosions to Measure the T+^{3}He Fusion Cross Section at Nucleosynthesis-Relevant Energies.

    PubMed

    Zylstra, A B; Herrmann, H W; Johnson, M Gatu; Kim, Y H; Frenje, J A; Hale, G; Li, C K; Rubery, M; Paris, M; Bacher, A; Brune, C R; Forrest, C; Glebov, V Yu; Janezic, R; McNabb, D; Nikroo, A; Pino, J; Sangster, T C; Séguin, F H; Seka, W; Sio, H; Stoeckl, C; Petrasso, R D

    2016-07-15

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  17. Using "The Big Bang Theory's" World in Young High-Potentials Education

    NASA Astrophysics Data System (ADS)

    Leitner, J. J.; Taubner, R.-S.; Firneis, M. G.; Hitzenberger, R.

    2014-04-01

    One of the corner stones of the Research Platform: ExoLife, University of Vienna, Austria, is public outreach and education with respect to astrobology, exoplanets, and planetary sciences. Since 2009, several initiatives have been started by the Research Platform to concentrate the interest of students inside and outside the University onto natural sciences. Additionally, there are two special programs - one in adult education and one in training/education of young high-potentials. In these programs, astrobiology (and within this context also planetary sciences) as a very interdisciplinary scientific discipline, which fascinates youngsters and junior scientists, is utilized to direct their thirst for knowledge and their curiosity to natural science topics (see [1, 2]).

  18. Big Bang Day: 5 Particles - 5. The Next Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-08

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if themore » current particle theories are to ring true.« less

  19. Using inertial fusion implosions to measure the T + He 3 fusion cross section at nucleosynthesis-relevant energies

    DOE PAGES

    Zylstra, A. B.; Herrmann, H. W.; Johnson, M. Gatu; ...

    2016-07-11

    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of 6Li in low-metallicity stars. Using high energy-density plasmas we measure the T( 3He,γ) 6Li reaction rate, a candidate for anomalously high 6Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. In conclusion, this is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

  20. Searching for concentric low variance circles in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas

    2015-12-01

    In a recent paper, Gurzadyan & Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies, i.e., they are entirely consistent with the predictions of the standard cosmological model.

  1. CMB constraints on the inflaton couplings and reheating temperature in α-attractor inflation

    NASA Astrophysics Data System (ADS)

    Drewes, Marco; Kang, Jin U.; Mun, Ui Ri

    2017-11-01

    We study reheating in α-attractor models of inflation in which the inflaton couples to other scalars or fermions. We show that the parameter space contains viable regions in which the inflaton couplings to radiation can be determined from the properties of CMB temperature fluctuations, in particular the spectral index. This may be the only way to measure these fundamental microphysical parameters, which shaped the universe by setting the initial temperature of the hot big bang and contain important information about the embedding of a given model of inflation into a more fundamental theory of physics. The method can be applied to other models of single field inflation.

  2. On Gauge Invariant Cosmological Perturbations in UV-modified Hořava Gravity: A Brief Introduction

    NASA Astrophysics Data System (ADS)

    Park, Mu-In

    2018-01-01

    We revisit gauge invariant cosmological perturbations in UV-modified, z = 3 Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. We confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology.

  3. Science and Technology Review, January-February 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Table of contents: accelerators at Livermore; the B-Factory and the Big Bang; assessing exposure to radiation; next generation of computer storage; and a powerful new tool to detect clandestine nuclear tests.

  4. Arrows of time in the bouncing universes of the no-boundary quantum state

    NASA Astrophysics Data System (ADS)

    Hartle, James; Hertog, Thomas

    2012-05-01

    We derive the arrows of time of our universe that follow from the no-boundary theory of its quantum state (NBWF) in a minisuperspace model. Arrows of time are viewed four-dimensionally as properties of the four-dimensional Lorentzian histories of the universe. Probabilities for these histories are predicted by the NBWF. For histories with a regular “bounce” at a minimum radius fluctuations are small at the bounce and grow in the direction of expansion on either side. For recollapsing classical histories with big bang and big crunch singularities the fluctuations are small near one singularity and grow through the expansion and recontraction to the other singularity. The arrow of time defined by the growth in fluctuations thus points in one direction over the whole of a recollapsing spacetime but is bidirectional in a bouncing spacetime. We argue that the electromagnetic, thermodynamic, and psychological arrows of time are aligned with the fluctuation arrow. The implications of a bidirectional arrow of time for causality are discussed.

  5. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-08

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century,more » a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.« less

  6. Smoot Cosmology Group

    Science.gov Websites

    Fuzz, FORBES ASAP article on the Arrow of Time by George Smoot. Lecture Archives: The relic radiation from the big bang begining of the Universe. Antimatter in the Universe (Physics 24 Lecture by George

  7. On the cosmological gravitational waves and cosmological distances

    NASA Astrophysics Data System (ADS)

    Belinski, V. A.; Vereshchagin, G. V.

    2018-03-01

    We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.

  8. Cosmological element production.

    PubMed

    Wagoner, R V

    1967-03-17

    Two recent observations appear to have provided critical information about the past history of the universe. The thermal character of the microwave background radiation suggests that the universe has expanded from a state of high temperature and density, and places constraints on such a big-bang cosmology. The observations of very weak helium lines in the spectra of certain stars in the halo of our galaxy are possibly due to a low primeval abundance of this element. However, the simplest model of a big-bang cosmology leads to much higher helium abundances, such as are observed in the solar system and in many stars. The production of helium can be reduced either by altering the early expansion rate or by introducing degenerate electron neutrinos. Observations of interstellar and intergalactic deuterium and He(4), and possibly even He(3) and Li(7), are needed to test the various models.

  9. Reply to 'Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Shunji; Fujimoto, Shin-ichirou; Hashimoto, Masa-aki

    2007-03-15

    This is a reply to Rauscher [Phys. Rev. D 75, 068301 (2007)]. We studied heavy element production in the high baryon density region in the early universe [Phys. Rev. D 72, 123505 (2005)]. However, it is claimed by Rauscher [Phys. Rev. D 75, 068301 (2007)] that a small scale but high baryon density region contradicts observations for the light element abundance or, in order not to contradict the observations, the high density region must be so small that it cannot affect the present heavy element abundance. In this paper, we study big bang nucleosynthesis in the high baryon density regionmore » and show that in certain parameter spaces it is possible to produce enough of the heavy element without contradiction to cosmic microwave background and light element observations.« less

  10. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.; Paris, Mark W.

    2017-03-01

    We calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energy spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. We analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.

  11. Nuclear constraints on the age of the universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1983-01-01

    A review is made of how one can use nuclear physics to put rather stringent limits on the age of the universe and thus the cosmic distance scale. The age can be estimated to a fair degree of accuracy. No single measurement of the time since the Big Bang gives a specific, unambiguous age. There are several methods that together fix the age with surprising precision. In particular, there are three totally independent techniques for estimating an age and a fourth technique which involves finding consistency of the other three in the framework of the standard Big Bang cosmological model. The three independent methods are: cosmological dynamics, the age of the oldest stars, and radioactive dating. This paper concentrates on the third of the three methods, and the consistency technique. Previously announced in STAR as N83-34868

  12. Big Bang Tumor Growth and Clonal Evolution.

    PubMed

    Sun, Ruping; Hu, Zheng; Curtis, Christina

    2018-05-01

    The advent and application of next-generation sequencing (NGS) technologies to tumor genomes has reinvigorated efforts to understand clonal evolution. Although tumor progression has traditionally been viewed as a gradual stepwise process, recent studies suggest that evolutionary rates in tumors can be variable with periods of punctuated mutational bursts and relative stasis. For example, Big Bang dynamics have been reported, wherein after transformation, growth occurs in the absence of stringent selection, consistent with effectively neutral evolution. Although first noted in colorectal tumors, effective neutrality may be relatively common. Additionally, punctuated evolution resulting from mutational bursts and cataclysmic genomic alterations have been described. In this review, we contrast these findings with the conventional gradualist view of clonal evolution and describe potential clinical and therapeutic implications of different evolutionary modes and tempos. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. STANDARD BIG BANG NUCLEOSYNTHESIS UP TO CNO WITH AN IMPROVED EXTENDED NUCLEAR NETWORK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coc, Alain; Goriely, Stephane; Xu, Yi

    Primordial or big bang nucleosynthesis (BBN) is one of the three strong pieces of evidence for the big bang model together with the expansion of the universe and cosmic microwave background radiation. In this study, we improve the standard BBN calculations taking into account new nuclear physics analyses and enlarge the nuclear network up to sodium. This is, in particular, important to evaluate the primitive value of CNO mass fraction that could affect Population III stellar evolution. For the first time we list the complete network of more than 400 reactions with references to the origin of the rates, includingmore » Almost-Equal-To 270 reaction rates calculated using the TALYS code. Together with the cosmological light elements, we calculate the primordial beryllium, boron, carbon, nitrogen, and oxygen nuclei. We performed a sensitivity study to identify the important reactions for CNO, {sup 9}Be, and boron nucleosynthesis. We re-evaluated those important reaction rates using experimental data and/or theoretical evaluations. The results are compared with precedent calculations: a primordial beryllium abundance increase by a factor of four compared to its previous evaluation, but we note a stability for B/H and for the CNO/H abundance ratio that remains close to its previous value of 0.7 Multiplication-Sign 10{sup -15}. On the other hand, the extension of the nuclear network has not changed the {sup 7}Li value, so its abundance is still 3-4 times greater than its observed spectroscopic value.« less

  14. Laws of nature and the universe: Philosophical implications of modern cosmology

    NASA Astrophysics Data System (ADS)

    Balashov, Yuri V.

    1998-11-01

    Are the laws of nature real? Do they belong to the world or merely reflect the way we speak about it? If they are real, what sort of entity are they? This study contributes to the ongoing discussion of these questions by emphasizing the importance of a cosmological perspective on them. I argue that the evidence coming from modern evolutionary cosmology presents difficulties for certain currently fashionable philosophical accounts of laws, in particular, for the Dretske-Tooley-Armstrong theory. I defend, in light of this evidence, the idea of laws as grounded in irreducible nomic properties of basic objects and examine its cosmological implications and consequences for the philosophy of modality. If the laws of nature are real, they must represent an integral aspect of the universe as a whole. From a cosmological point of view, these two totalities, the laws of nature and the universe, may be related. I begin by showing that a concern about the consequences of such possible relationship was an important factor in the historical rivalry between the steady-state and big bang cosmologies (1948-1965). The cosmological perspective on laws has still more striking implications in the context of the contemporary interplay between big-bang cosmology and high energy physics in the effort to understand the processes at work during the first moments of cosmic evolution. In a sense, the evolution of the physical state of the universe as a whole may have 'carried' with it the evolution of certain nomic properties of matter. I contend that this poses problems for some nomic ontologies, such as the relations-between-universals theory, and favors the view of laws as grounded in causal powers of particulars. I show how the universe of causally powerful basic substances provides a natural framework for an interesting sense of modality characteristic of laws and how this illuminates the notoriously difficult problems of essential properties and natural kinds.

  15. Relaxing the cosmological constant: a proof of concept

    NASA Astrophysics Data System (ADS)

    Alberte, Lasma; Creminelli, Paolo; Khmelnitsky, Andrei; Pirtskhalava, David; Trincherini, Enrico

    2016-12-01

    We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.

  16. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  17. Computational Cosmology: from the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  18. Cosmological moduli and the post-inflationary universe: A critical review

    NASA Astrophysics Data System (ADS)

    Kane, Gordon; Sinha, Kuver; Watson, Scott

    2015-06-01

    We critically review the role of cosmological moduli in determining the post-inflationary history of the universe. Moduli are ubiquitous in string and M-theory constructions of beyond the Standard Model physics, where they parametrize the geometry of the compactification manifold. For those with masses determined by supersymmetry (SUSY) breaking this leads to their eventual decay slightly before Big Bang nucleosynthesis (BBN) (without spoiling its predictions). This results in a matter dominated phase shortly after inflation ends, which can influence baryon and dark matter genesis, as well as observations of the cosmic microwave background (CMB) and the growth of large-scale structure. Given progress within fundamental theory, and guidance from dark matter and collider experiments, nonthermal histories have emerged as a robust and theoretically well-motivated alternative to a strictly thermal one. We review this approach to the early universe and discuss both the theoretical challenges and the observational implications.

  19. Cosmology solved? Maybe

    NASA Astrophysics Data System (ADS)

    Turner, Michael S.

    1999-03-01

    For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!

  20. Particle physics in the very early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

  1. The Universe Comes into Sharper Focus

    NASA Image and Video Library

    2013-03-21

    This graphic illustrates the evolution of satellites designed to measure ancient light leftover from the big bang that created our universe 13.8 billion years ago; NASA COBE Explorer left and WMAP middle, and ESA Planck right.

  2. NovaCare's big bang.

    PubMed

    Speer, T L

    1997-10-05

    The no. 2 rehab provider took a dose of its own medicine--therapy that boosted productivity, slashed costs, and pushed the company into new markets. Now a consensus of analysts sees growth soaring by 20 percent a year.

  3. Principle of Spacetime and Black Hole Equivalence

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2016-06-01

    Modelling the universe without relying on a set of hypothetical entities (HEs) to explain observations and overcome problems and difficulties is essential to developing a physical cosmology. The well-known big bang cosmology, widely accepted as the standard model, stands on two fundamentals, which are Einstein’s general relativity (GR) that describes the effect of matter on spacetime and the cosmological principle (CP) of spacetime isotropy and homogeneity. The field equation of GR along with the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of spacetime derived from CP generates the Friedmann equation (FE) that governs the development and dynamics of the universe. The big bang theory has made impressive successes in explaining the universe, but still has problems and solutions of them rely on an increasing number of HEs such as inflation, dark matter, dark energy, and so on. Recently, the author has developed a new cosmological model called black hole universe, which, instead of making many those hypotheses, only includes a new single postulate (or a new principle) to the cosmology - Principle of Spacetime and Black Hole Equivalence (SBHEP) - to explain all the existing observations of the universe and overcome all the existing problems in conventional cosmologies. This study thoroughly demonstrates how this newly developed black hole universe model, which therefore stands on the three fundamentals (GR, CP, and SBHEP), can fully explain the universe as well as easily conquer the difficulties according to the well-developed physics, thus, neither needing any other hypotheses nor existing any unsolved difficulties. This work was supported by NSF/REU (Grant #: PHY-1263253) at Alabama A & M University.

  4. Big bounce with finite-time singularity: The F(R) gravity description

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.

  5. Big Bang Day: The Making of CERN (Episode 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-06

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  6. Distant galaxy formed stars only 250 million years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard

    2018-05-01

    Little is known about the star-birth activity of the earliest galaxies. Observations of a particularly distant galaxy provide evidence for such activity when the Universe was just 2% of its current age.

  7. Big Bang Day: The Making of CERN (Episode 1)

    ScienceCinema

    None

    2017-12-09

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  8. Distant Galaxies in Goods North

    NASA Image and Video Library

    2014-01-07

    The view is a composite of images taken in visible and near-infrared light by NASA Hubble Space Telescope. Researchers have circled four unusually red objects that appear as they existed just 500 million years after the big bang.

  9. Black Holes: The making of a monster

    NASA Astrophysics Data System (ADS)

    Mayer, Lucio

    2017-04-01

    The biggest black holes in the Universe were in place soon after the Big Bang. Explaining how they formed so rapidly is a daunting challenge, but the latest simulations give clues to how this may have occurred.

  10. Dark/visible parallel universes and Big Bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertulani, C. A.; Frederico, T.; Fuqua, J.

    We develop a model for visible matter-dark matter interaction based on the exchange of a massive gray boson called herein the Mulato. Our model hinges on the assumption that all known particles in the visible matter have their counterparts in the dark matter. We postulate six families of particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds, the visible one and five invisible worlds. A close study of big bang nucleosynthesis (BBN), baryon asymmetries, cosmic microwave background (CMB) bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limitmore » on the mass and width of the new gauge boson. Modification of the statistics underlying the kinetic energy distribution of particles during the BBN is also discussed. The changes in reaction rates during the BBN due to a departure from the Debye-Hueckel electron screening model is also investigated.« less

  11. The Last Big Bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, Austin D.; Meade, Roger Allen

    As one of the very few people in the world to give the “go/no go” decision to detonate a nuclear device, Austin “Mac” McGuire holds a very special place in the history of both the Los Alamos National Laboratory and the world. As Commander of Joint Task Force Unit 8.1.1, on Christmas Island in the spring and summer of 1962, Mac directed the Los Alamos data collection efforts for twelve of the last atmospheric nuclear detonations conducted by the United States. Since data collection was at the heart of nuclear weapon testing, it fell to Mac to make the ultimatemore » decision to detonate each test device. He calls his experience THE LAST BIG BANG, since these tests, part of Operation Dominic, were characterized by the dramatic displays of the heat, light, and sounds unique to atmospheric nuclear detonations – never, perhaps, to be witnessed again.« less

  12. L. V. Al'tshuler, and High Energy Density Research

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Krikorian, Nerses H.; Keeler, R. Norris

    2012-03-01

    Knowledge of high energy densities critical to cosmology and astrophysics was achieved and exchanged among a very few scientists at a time when science was even more constrained by political considerations that it is today. Resources for the early studies necessarily involved atomic weaponry. A history of L. V. Al'tshuler and some others in his science is given in cosmological context. In the beginning of cosmology and the Universe, negative Fortov-Planck1 pressures c7h-1G-2 of 4.6 10115 Pa are overcome by inertial-vortex anti-gravity (dark energy) pressures to achieve a turbulent big bang and the first turbulent combustion with power 1066 watts at the Kolmogorov-Planck scale 10-35 meters. The big bang event ceased when negative- pressure gluon-viscous-forces extracted 10100 kg of mass-energy from the vacuum to produce the observed fossil vorticity turbulence Universe and its inflation with power 10145 watts.

  13. A Big Bang model of human colorectal tumor growth.

    PubMed

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

  14. Big bang nucleosynthesis - The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  15. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.; ...

    2017-03-03

    In this paper, we calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energymore » spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. Finally, we analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.« less

  16. Lepton asymmetry, neutrino spectral distortions, and big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohs, E.; Fuller, George M.; Kishimoto, C. T.

    In this paper, we calculate Boltzmann neutrino energy transport with self-consistently coupled nuclear reactions through the weak-decoupling-nucleosynthesis epoch in an early universe with significant lepton numbers. We find that the presence of lepton asymmetry enhances processes which give rise to nonthermal neutrino spectral distortions. Our results reveal how asymmetries in energy and entropy density uniquely evolve for different transport processes and neutrino flavors. The enhanced distortions in the neutrino spectra alter the expected big bang nucleosynthesis light element abundance yields relative to those in the standard Fermi-Dirac neutrino distribution cases. These yields, sensitive to the shapes of the neutrino energymore » spectra, are also sensitive to the phasing of the growth of distortions and entropy flow with time/scale factor. Finally, we analyze these issues and speculate on new sensitivity limits of deuterium and helium to lepton number.« less

  17. Big bang nucleosynthesis revisited via Trojan Horse method measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzone, R. G.; Spartá, R.; Spitaleri, C.

    Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, α){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations tomore » evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.« less

  18. The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smoot, George

    Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theorymore » of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.« less

  19. The Big Bang as scientific fact.

    PubMed

    Faber, S M

    2001-12-01

    In the year 1900, humanity had barely a notion of our place on the cosmic stage, and no inkling at all of how we got here. The one hundred short years of the twentieth century sufficed to unravel 14 billion years of cosmic history and how those grand events, after 9 billions of years or so, set the stage for the birth of our own home, the Solar System. The key events in this history are not hard to comprehend; they can be sketched in a few brief pages. This precious knowledge is part of our shared heritage as human beings and is fundamental to the future prospects of our species. Without it, we are ignorant of the powerful forces that have shaped our past and that will shape our destiny in the future. Read here the cosmic history of humanity, beginning with the Big Bang.

  20. Foundations of Space and Time

    NASA Astrophysics Data System (ADS)

    Murugan, Jeff; Weltman, Amanda; Ellis, George F. R.

    2012-07-01

    1. The problem with quantum gravity Jeff Murugan, Amanda Weltman and George F. R. Eliis; 2. A dialogue on the nature of gravity Thanu Padmanabhan; 3. Effective theories and modifications of gravity Cliff Burgess; 4. The small scale structure of spacetime Steve Carlip; 5. Ultraviolet divergences in supersymmetric theories Kellog Stelle; 6. Cosmological quantum billiards Axel Kleinschmidt and Hermann Nicolai; 7. Progress in RNS string theory and pure spinors Dimitri Polyakov; 8. Recent trends in superstring phenomenology Massimo Bianchi; 9. Emergent spacetime Robert de Mello Koch and Jeff Murugan; 10. Loop quantum gravity Hanno Sahlmann; 11. Loop quantum gravity and cosmology Martin Bojowald; 12. The microscopic dynamics of quantum space as a group field theory Daniele Oriti; 13. Causal dynamical triangulations and the quest for quantum gravity Jan Ambjørn, J. Jurkiewicz and Renate Loll; 14. Proper time is stochastic time in 2D quantum gravity Jan Ambjorn, Renate Loll, Y. Watabiki, W. Westra and S. Zohren; 15. Logic is to the quantum as geometry is to gravity Rafael Sorkin; 16. Causal sets: discreteness without symmetry breaking Joe Henson; 17. The Big Bang, quantum gravity, and black-hole information loss Roger Penrose; Index.

  1. Material content of the universe - Introductory survey

    NASA Astrophysics Data System (ADS)

    Tayler, R. J.

    1986-12-01

    Matter in the universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.

  2. Searching for concentric low variance circles in the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas, E-mail: adeabreu@sfu.ca, E-mail: dagocont@phas.ubc.ca, E-mail: dscott@phas.ubc.ca

    In a recent paper, Gurzadyan and Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies,more » i.e., they are entirely consistent with the predictions of the standard cosmological model.« less

  3. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  4. Origins of adaptive immunity.

    PubMed

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  5. The quark-hadron transition in cosmology and astrophysics.

    PubMed

    Olive, K A

    1991-03-08

    A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.

  6. Quark mass variations of nuclear forces, BBN, and all that

    NASA Astrophysics Data System (ADS)

    Meissner, Ulf-G.

    2014-03-01

    In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.

  7. "Big Bang" as a result result of the curvature-driven first-order phase transition in the early cold Universe

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.; Pentegov, V. I.

    We suggest that the "Big Bang" may be a result of the first-order phase transition driven by changing scalar curvature of the 4D space-time in the expanding cold Universe, filled with nonlinear scalar field φ and neutral matter with equation of state p = vɛ (where p and ɛ are pressure and energy density of matter). We consider a Lagrangian for scalar field in curved space-time with nonlinearity φ, which along with the quadratic term -ΣR|φ|2 (where Σ is interaction constant and R is scalar curvature) contains a term ΣR(φ +φ+) linear in φ. Due to this term the condition for the extrema of the potential energy of the scalar field is given by a cubic equation. Provided v > 1/3 the scalar curvature R = [κ(3v-1)ɛ - 4Γ (where κ and Γ are Einstein's gravitational and cosmological constants) decreases along with decreasing " in the process of the Universe's expansion, and at some critical value Rc < 0 a first-order phase transition occurs, driven by an "external field" parameter proportional to R. Given certain conditions the critical radius of the early Universe at the point of the first-order phase transition may reach arbitrary large values, so this scenario of unrestricted "inflation" of the Universe may be called "hyperinflation". Beyond the point of phase transition the system is rolling down into the potential minimum releasing the potential energy of scalar field with subsequent powerful heating of the Universe playing the role of "Big Bang".

  8. Standard big bang nucleosynthesis and primordial CNO abundances after Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coc, Alain; Uzan, Jean-Philippe; Vangioni, Elisabeth, E-mail: coc@csnsm.in2p3.fr, E-mail: uzan@iap.fr, E-mail: vangioni@iap.fr

    Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo starsmore » of the Galaxy. According to the importance of this ''lithium problem{sup ,} we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of {sup 6}Li, {sup 9}Be, {sup 11}B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H ≈ (5-30)×10{sup -15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H∼10{sup -13}. This result is important for the study of population III star formation during the dark ages.« less

  9. BOOK REVIEW: Cosmology

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most recent, and comprehensive, is Cosmology, in which the University of Texas physicist and Nobel Laureate, Steven Weinberg provides a concise introduction to modern cosmology. The book is aimed at the level of a final year physics undergraduate, or a first year graduate student. The discussion is self-contained, with numerous derivations. It begins with an overview of the standard cosmological model, and presents a detailed treatment of fluctuation growth. There are sections on gravitational lensing and inflationary cosmology, on microwave background fluctuations and structure growth. There are aspects however where a supplementary book is essential for the physicist being introduced to cosmology. The text is lacking in physical cosmology. The baryon physics of galaxy formation is barely mentioned, apart from a discussion of the Jeans mass. And it ignores one of the greatest contributions to the field by Russian cosmologist Yaakov Zel'dovich, who discovered the only nonspherical solution to the nonlinear evolution of density fluctuations, one that has since dominated our understanding of the large-scale structure of the universe via the cosmic web. But these are minor quibbles about what provides an outstanding introduction to modern cosmology, and one that takes us from the physics fundamentals up to the cosmic frontier. I recommend Cosmology for anyone wishing to enter the field and with a good physics background. It is ideal for the astronomer who may only have a sketchy knowledge of general relativity or particle physics. She will learn about vielbeins and scalar fields, gauge-invariant fluctuation theory and inflation. Steven Weinberg is a leading physicist who has also made important contributions to cosmology. The text provides a rigorous treatment of the standard model of cosmology, and of structure formation. Numerous exercises are provided. It provides an excellent core for a course on cosmology.

  10. Novel Numerical Approaches to Loop Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Diener, Peter

    2015-04-01

    Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.

  11. Hilltop Supernatural Inflation

    NASA Astrophysics Data System (ADS)

    Lin, C.

    In this talk, I will explain how to reduce the spectral index to be n_s = 0.96 for supernatural inflation. I will also show the constraint to the reheating temperature from Big Bang Nucleosynthesis of both thermal and non-thermal gravitino production.

  12. Planetarium Show on Dark Matter

    DOE PAGES

    Barnett, R. Michael

    2016-05-31

    We describe a new planetarium show about Dark Matter entitled “Phantom of the Universe”. When completed in late 2014, it will feature the exciting story of dark matter, from the Big Bang to its anticipated discovery at the Large Hadron Collider.

  13. Distant Galaxy Bursts with Stars

    NASA Image and Video Library

    2011-12-21

    This image from NASA Hubble telescope shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. The galaxy light took 12.9 billion years to reach us.

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Describes a lecture demonstration of a solid state phase transition using a thermodynamic material which changes state at room temperature. Also describes a demonstration on kinetics using a "Big Bang" (trade mark) calcium carbide cannon. Indicates that the cannon is safe to use. (JN)

  15. Big Bang Day: Engineering Solutions

    ScienceCinema

    None

    2017-12-09

    CERN's Large Hadron Collider is the most complicated scientific apparatus ever built. Many of the technologies it uses hadn't even been invented when scientists started building it. Adam Hart-Davis discovers what it takes to build the world's most intricate discovery machine.

  16. Texas Symposium on Relativistic Astrophysics, 11th, Austin, TX, December 12-17, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Evans, D. S. (Editor)

    1984-01-01

    Various papers on relativistic astrophysics are presented. The general subjects addressed include: particle physics and astrophysics, general relativity, large-scale structure, big bang cosmology, new-generation telescopes, pulsars, supernovae, high-energy astrophysics, and active galaxies.

  17. Change of government: one more big bang health care reform in England's National Health Service.

    PubMed

    Hunter, David J

    2011-01-01

    Once again the National Health Service (NHS) in England is undergoing major reform, following the election of a new coalition government keen to reduce the role of the state and cut back on big government. The NHS has been undergoing continuous reform since the 1980s. Yet, despite the significant transaction costs incurred, there is no evidence that the claimed benefits have been achieved. Many of the same problems endure. The reforms follow the direction of change laid down by the last Conservative government in the early 1990s, which the recent Labour government did not overturn despite a commitment to do so. Indeed, under Labour, the NHS was subjected to further market-style changes that have paved the way for the latest round of reform. The article considers the appeal of big bang reform, questions its purpose and value, and critically appraises the nature and extent of the proposed changes in this latest round of reform. It warns that the NHS in its current form may not survive the changes, as they open the way to privatization and a weakening of its public service ethos.

  18. The big bang of hemofiltration: the beginning of a new era in the third millennium for extra-corporeal blood purification!

    PubMed

    Honore', P M; Joannes-Boyau, O; Merson, L; Boer, W; Piette, V; Galloy, A-C; Janvier, G

    2006-07-01

    Since the last decade, hemofiltration and especially high volume hemofiltration has rapidly evolved from a somewhat experimental treatment towards a potentially effective 'adjunctive' therapy in severe septic shock and especially refractory or catecholamine resistant hypodynamic septic shock. Nevertheless, this approach lacks prospective randomized studies (PRT'S) evaluating the critical role of early hemofiltration in sepsis. An important step forward which could be called the 'big bang' in term of hemofiltration was the publication of a PRT in patients with acute renal failure (ARF) (1). Before this study (2), nobody believed that hemofiltration could change the survival rate in intensive care. Since that big bang, many physicians consider that hemofiltration at a certain dose can change the survival rate in intensive care. So the world of hemofiltration in ICU is not a definitive world, it is still in expansion. Indeed, we now have to try to define what will be the exact dose we need in septic acute renal failure. This dose might well be 'higher' than 35 ml/kg/hour in the septic acute renal failure 'group' as suggested by many studies (2-5). At present, it is the issue of continuous dose of high volume hemofiltration that has to be tested in future randomized studies. Since the Vicenza study (2) has shown that 35 ml/kg/h is the best dose in terms of survival, dealing with non septic acute renal failure in ICU, several studies from different groups have shown that, in septic acute renal failure, a higher dose might correlate with better survival. This has also been shown in some way by the study of the 'Vicenza group' but not with a statistically significant value (2). New PRT'S have just started in Europe like the IVOIRE study (hIgh VOlume in Intensive caRE) (6) and the RENAL study. Another large study is looking more basically at dose in non septic acute renal failure in Australasia and is led by the group of Rinaldo Bellomo in Melbourne (7) as well as the ATN study (8) led by Palevsky and colleagues in the USA, also testing the importance of dose in the treatment for ARF. Nevertheless, 'early goal-directed hemofiltration therapy' like early goal directed therapy (9) has to be studied in our critical ill patients. Regarding this issue, fewer studies, mainly retrospective exist, but again the IVOIRE study (6) will address this issue by studying septic patients with acute renal injury according to the Rifle classification (10). So, this review focuses on the early application and on the adequate dose of continuous high volume hemofiltration in septic shock in order to improve not only hemodynamics, but survival in this very severely ill cohort of patients. This could well be called the 'big bang of hemofiltration' as one could never have anticipated that an adequate dose of hemofiltration could markedly influence the survival rate of ICU-septic acute renal failure patients. On top of the use of early and adequate dose of hemofiltration in sepsis, a higher dose could also provide better renal recovery rate and reduce the risk of associate chronic dialysis in these patients. Furthermore, this paper also reviews 'brand' new theories regarding the rationale for hemofiltration in sepsis. Finally, this paper also addresses the so-called negative studies as well anticipated side effects.

  19. Cosmological implications of light element abundances: theory.

    PubMed Central

    Schramm, D N

    1993-01-01

    Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics. Images Fig. 2 PMID:11607387

  20. Cosmological implications of light element abundances: theory.

    PubMed

    Schramm, D N

    1993-06-01

    Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotropic calculation fits the light element abundances ranging from 1H at 76% and 4He at 24% by mass through 2H and 3He at parts in 105 down to 7Li at parts in 1010. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (Nnu) are a positive laboratory test of this standard Big Bang scenario. The possible alternate scenario of quark-hadron-induced inhomogeneities is also discussed. It is shown that when this alternative scenario is made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density (Omegab) remain approximately the same as in the standard homogeneous case, thus adding to the robustness of the standard model and the conclusion that Omegab approximately 0.06. This latter point is the driving force behind the need for nonbaryonic dark matter (assuming total density Omegatotal = 1) and the need for dark baryonic matter, since the density of visible matter Omegavisible < Omegab. The recent Population II B and Be observations are also discussed and shown to be a consequence of cosmic ray spallation processes rather than primordial nucleosynthesis. The light elements and Nnu successfully probe the cosmological model at times as early as 1 sec and a temperature (T) of approximately 10(10) K (approximately 1 MeV). Thus, they provided the first quantitative arguments that led to the connections of cosmology to nuclear and particle physics.

  1. From the Big Bang to the life in the primitive seas. (Spanish Title: Desde la Gran Explosión hasta la vida en los mares primitivos)

    NASA Astrophysics Data System (ADS)

    Esteban, S. B.

    Man has always wondered about the origins of humanity, life, and the world around him. The Earth crust is a vast and natural archive, and its rocks represent the pages of the most documented events in the geological past. These rocks hold large amounts of information about the Earth history, whose age is estimated to be 4,600 million years. Historical Geology seeks to bring together the knowledge of the origin of the Universe as well as the origin of Earth as a member of the Solar System. The Big Bang theory supposes that the Universe began with a huge explosion. In the Earth's history it is possible to differentiate the biological events from the physical ones. The physical events are geographical and environmental transformations. The biological events are related to life on Earth. There are evidences of biological processes back to 3,500 million years ago. At the beginning, the conditions on Earth were catastrophic and unstable. At this stage, the first signs of life were the molecules that started to take energy from the sunlight and the chemical products. It was not a simple accumulation of gradual biological forms, but was accompanied by episodic innovations that allowed increasing complexity and greater use of ecospace. Some of these innovations are shown by certain groups of primitive arthropods adapted to live in oxygen-poor, deep marine environments. These arthropods have been found in 500 million-year-old rocks in northwestern Argentina (provinces of Jujuy and La Rioja), indicating the presence of oxygen-poor seas in that region.

  2. Physics of the Cosmos: Program Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Pham, Bruce Thai; Cardiff, Ann H.

    2016-01-01

    From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? PCOS focuses on that last question. Scientists investigating this broad theme use the universe itself as their laboratory, investigating its fundamental laws and properties. They test Einstein's General Theory of Relativity to see if our current understanding of space-time is borne out by observations. They examine the behavior of the most extreme environments - supermassive black holes, active galactic nuclei, and others - and the farthest reaches of the universe, to expand our understanding. With instruments sensitive across the spectrum, from radio, through infrared (IR), visible light, ultraviolet (UV), to X rays and gamma rays, as well as gravitational waves (GWs), they peer across billions of light-years, observing echoes of events that occurred instants after the Big Bang. The Laser Interferometer Gravitational-Wave Observatory (LIGO) recently recorded the first direct measurement of long-theorized GWs. Another surprising recent discovery is that the universe is expanding at an ever-accelerating rate, the first hint of so-called "dark energy," estimated to account for 75% of mass-energy in the universe. Dark matter, so called because we can only observe its effects on regular matter, accounts for another 20%, leaving only 5% for regular matter and energy. Scientists now also search for special polarization in the cosmic microwave background to support the notion that in the split-second after the Big Bang, the universe inflated faster than the speed of light! The most exciting aspect of this grand enterprise today is that we can finally develop the tools needed for such discoveries.

  3. Reheating and the asymmetric production of matter

    NASA Astrophysics Data System (ADS)

    Adshead, Peter

    The early thermal history of the universe, from the end of inflation until the light elements are produced at big-bang nucleosynthesis, remains one of the most poorly understood periods of our cosmic history. We do not understand how inflation ends, and the connection between the physics that drives inflation and the standard model is poorly constrained. Consequently, the mechanism by which the Universe is reheated from its super-cooled post-inflationary state into a thermalized plasma is unknown. Furthermore, the precise mechanism responsible for the matter-antimatter asymmetry and the detailed particle origin of dark matter are, as yet, unknown. However, it is precisely during this epoch that abundant phenomenology from fundamental physics beyond the standard model is anticipated. The objective of the proposed research is to address this gap in our understanding of the history of the Universe by exploring the connection between the physics that drives the inflationary epoch, and the physics that ignites the hot big-bang. This will be achieved by two detailed studies of the physics of reheating. The first study examines the cosmic history of dark sectors, and addresses the cosmological question of how these sectors are populated in the early universe. The second study examines detailed particle physics models of reheating where the inflaton couples to gauge fields. NASA's strategic objectives in astrophysics are to discover how the universe works and to explore how it began and evolved. The primary goal of this proposal is to address these questions by developing a deeper understanding of the history of the post-inflationary universe through cosmological observations and fundamental theory. Specifically, this proposal will advance NASA's science goal to probe the origin and destiny of our universe, including the nature of black holes, dark energy, dark matter and gravity

  4. Influence of Parallel Dark Matter Sectors on Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Challa, Venkata Sai Sreeharsha

    Big Bang Nucleosynthesis (BBN) is a phenomenological theory that describes the synthesis of light nuclei after a few seconds of the cosmic time in the primordial universe. The twelve nuclear reactions in the first few seconds of the cosmic history are constrained by factors such as baryon to photon ratio, number of neutrino families, and present day element abundances. The belief that the expansion of the universe must be slowed down by gravity, was defeated by the recent observation of an accelerated expansion of the universe. Friedmann equations, which describe the cosmic dynamics, need to be revised considering also the existence of dark matter, another recent astronomical observation. The effects of multiple parallel universes of dark matter (dark sectors) on the accelerated expansion of the universe are studied. Collectively, these additional effects will lead to a new cosmological model. We had developed a numerical code on BBN to address the effects of such dark sectors on the abundances of all the light elements. We have studied the effect of degrees of freedom of dark-matter in the early universe on primordial abundances of light elements. The predicted abundances of light elements are compared with observed constraints to obtain bounds on the number of dark sectors, NDM. Comparison of the obtained results with the observations during the BBN epoch shows that the number of dark matter sectors are only loosely constrained, and the dark matter sectors are colder than the ordinary matter sectors. Also, we verified that the existence of parallel dark matter sectors with colder temperatures does not affect the constraints set by observations on the number of neutrino families, Nnu .

  5. Big bang nucleosynthesis, the CMB, and the origin of matter and space-time

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Gangopadhyay, Mayukh; Sasankan, Nishanth; Ichiki, Kiyotomo; Kajino, Toshitaka

    2018-04-01

    We summarize some applications of big bang nucleosythesis (BBN) and the cosmic microwave background (CMB) to constrain the first moments of the creation of matter in the universe. We review the basic elements of BBN and how it constraints physics of the radiation-dominated epoch. In particular, how the existence of higher dimensions impacts the cosmic expansion through the projection of curvature from the higher dimension in the "dark radiation" term. We summarize current constraints from BBN and the CMB on this brane-world dark radiation term. At the same time, the existence of extra dimensions during the earlier inflation impacts the tensor to scalar ratio and the running spectral index as measured in the CMB. We summarize how the constraints on inflation shift when embedded in higher dimensions. Finally, one expects that the universe was born out of a complicated multiverse landscape near the Planck time. In these moments the energy scale of superstrings was obtainable during the early moments of chaotic inflation. We summarize the quest for cosmological evidence of the birth of space-time out of the string theory landscape. We will explore the possibility that a superstring excitations may have made itself known via a coupling to the field of inflation. This may have left an imprint of "dips" in the power spectrum of temperature fluctuations in the cosmic microwave background. The identification of this particle as a superstring is possible because there may be evidence for different oscillator states of the same superstring that appear on different scales on the sky. It will be shown that from this imprint one can deduce the mass, number of oscillations, and coupling constant for the superstring. Although the evidence is marginal, this may constitute the first observation of a superstring in Nature.

  6. The New Cosmos

    ERIC Educational Resources Information Center

    McCray, Richard A.

    1970-01-01

    Discusses areas of modern astronomy that owe their development largely to nonoptical radiation: radio, infrared, ultraviolet, and x-ray radiation. Indicates new observations favor the big-bang" model of the universe, for it is now established that the earth is expanding at a measurable rate. Annotated bibliography. (LS)

  7. Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Anderson, David; Yunes, Nicolás; Barausse, Enrico

    2016-11-01

    Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farèse, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farèse is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars.

  8. Towards an In-Beam Measurement of the Neutron Lifetime to 1 Second

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan

    2014-03-01

    A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is an essential parameter in the theory of Big Bang Nucleosynthesis. A new measurement of the neutron lifetime using the in-beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. The systematic effects associated with the in-beam method are markedly different than those found in storage experiments utilizing ultracold neutrons. Experimental improvements, specifically recent advances in the determination of absolute neutron fluence, should permit an overall uncertainty of 1 second on the neutron lifetime. The dependence of the primordial mass fraction on the neutron lifetime, technical improvements of the in-beam technique, and the path toward improving the precision of the new measurement will be discussed.

  9. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  10. Propellant-free Spacecraft Relative Maneuvering via Atmospheric Differential Drag

    DTIC Science & Technology

    2015-07-06

    functions is a challenge that varies from problem to problem, and a widely studied theory exists (see [5-7]). In this work, a quadratic Lyapunov...with respect to the duration of the maneuvers. Thus, it is assumed the drag surfaces deploy/retract instantly, generating a bang -off- bang control...It should be noted that the adaptations occur every 10 minutes and that that for a bang -off- bang control the Δt from Equations (10) and (13) is

  11. Space-Time, Relativity, and Cosmology

    NASA Astrophysics Data System (ADS)

    Wudka, Jose

    2006-07-01

    Space-Time, Relativity and Cosmology provides a historical introduction to modern relativistic cosmology and traces its historical roots and evolution from antiquity to Einstein. The topics are presented in a non-mathematical manner, with the emphasis on the ideas that underlie each theory rather than their detailed quantitative consequences. A significant part of the book focuses on the Special and General theories of relativity. The tests and experimental evidence supporting the theories are explained together with their predictions and their confirmation. Other topics include a discussion of modern relativistic cosmology, the consequences of Hubble's observations leading to the Big Bang hypothesis, and an overview of the most exciting research topics in relativistic cosmology. This textbook is intended for introductory undergraduate courses on the foundations of modern physics. It is also accessible to advanced high school students, as well as non-science majors who are concerned with science issues.• Uses a historical perspective to describe the evolution of modern ideas about space and time • The main arguments are described using a completely non-mathematical approach • Ideal for physics undergraduates and high-school students, non-science majors and general readers

  12. Neutrino Masses and Mixings and Astrophysics

    NASA Astrophysics Data System (ADS)

    Fuller, George M.

    1998-10-01

    Here we discuss the implications of light neutrino masses and neutrino flavor/type mixing for dark matter, big bang nucleosynthesis, and models of heavy element nucleosynthesis in super novae. We will also argue the other way and discuss possible constraints on neutrino physics from these astrophysical considerations.

  13. Copper vs. Copper at the Relativistic Heavy Ion Collider (2005)

    ScienceCinema

    Brookhaven Lab - Fulvia Pilat

    2017-12-09

    To investigate a new form of matter not seen since the Big Bang, scientists are using a new experimental probe: collisions between two beams of copper ions. The use of intermediate size nuclei is expected to result in intermediate energy density - not as

  14. Non-singular and cyclic universe from the modified GUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salah, Maha; Hammad, Fayçal; Faizal, Mir

    In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-correctionsmore » to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.« less

  15. Advanced Modeling in Excel: from Water Jets to Big Bang

    NASA Astrophysics Data System (ADS)

    Ignatova, Olga; Chyzhyk, D.; Willis, C.; Kazachkov, A.

    2006-12-01

    An international students’ project is presented focused on application of Open Office and Excel spreadsheets for modeling of projectile-motion type dynamical systems. Variation of the parameters of plotted and animated families of jets flowing at different angles out of the holes in the wall of water-filled reservoir [1,2] revealed unexpected peculiarities of the envelopes, vertices, intersections and landing points of virtual trajectories. Comparison with real-life systems and rigorous calculations were performed to prove predictions of computer experiments. By same technique, the kinematics of fireworks was analyzed. On this basis two-dimensional ‘firework’ computer model of Big Bang was designed and studied, its relevance and limitations checked. 1.R.Ehrlich, Turning the World Inside Out, (Princeton University Press, Princeton, NJ, 1990), pp. 98-100. 2.A.Kazachkov, Yu.Bogdan, N.Makarovsky, N.Nedbailo. A Bucketful of Physics, in R.Pinto, S.Surinach (eds), International Conference Physics Teacher Education Beyond 2000. Selected Contributions (Elsevier Editions, Paris, 2001), pp.563-564. Sponsored by Courtney Willis.

  16. Constraint on slepton intergenerational mixing from big-bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Ohta, Shingo; Sato, Joe

    We find constraint on intergenerational mixing of slepton from big-bang nucleosynthesis (BBN). Today, we know that there exist lepton flavor violation (LFV) from the observation of neutrino oscillation, though there do not exist LFV in the standard model of particle physics (SM). LFV in charged lepton sector (cLFV) have also been expected to exist. From theoretical point of view, the effects of long-lived stau on BBN have been investigated and it is known that the stau can solve the cosmological 7Li problem. However, in the study so far, tau flavor is exactly conserved and it contradict with the existence ofmore » cLFV. In this study, we generalize the flavor to be violated and call the stau as slepton. Even if the violation is tiny, it drastically changes the lifetime and the evolution of relic density of the slepton. Thus we analyze the effects of the long-lived slepton on BBN, and constrain the magnitude of the cLFV.« less

  17. Effects of sterile neutrino and extra-dimension on big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jang, Dukjae; Kusakabe, Motohiko; Cheoun, Myung-Ki

    2018-04-01

    We study effects of the sterile neutrino in the five-dimensional universe on the big bang nucleosynthesis (BBN). Since the five-dimensional universe model leads to an additional term in the Friedmann equation and the energy density of the sterile neutrino increases the total energy density, this model can affect the primordial abundance via changing the cosmic expansion rate. The energy density of the sterile neutrino can be determined by a rate equation for production of the sterile neutrino. We show that not only the mixing angle and the mass of the sterile neutrino, but also a resonant effect in the oscillation between sterile and active neutrinos is important to determine a relic abundance of the sterile neutrino. In this study, we also investigate how the sterile neutrino in extra-dimensional model can affect the BBN, and constrain the parameters related to the above properties of the sterile neutrino by using the observational primordial abundances of light elements.

  18. Cosmological singularity resolution from quantum gravity: The emergent-bouncing universe

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Botta, Gioele; Cianfrani, Francesco; Liberati, Stefano

    2017-08-01

    Alternative scenarios to the big bang singularity have been subject of intense research for several decades by now. Most popular in this sense have been frameworks were such singularity is replaced by a bounce around some minimal cosmological volume or by some early quantum phase. This latter scenario was devised a long time ago and referred as an "emergent universe" (in the sense that our universe emerged from a constant volume quantum phase). We show here that within an improved framework of canonical quantum gravity (the so-called quantum reduced loop gravity) the Friedmann equations for cosmology are modified in such a way to replace the big bang singularity with a short bounce preceded by a metastable quantum phase in which the volume of the universe oscillates between a series of local maxima and minima. We call this hybrid scenario an "emergent-bouncing universe" since after a pure oscillating quantum phase the classical Friedmann spacetime emerges. Perspective developments and possible tests of this scenario are discussed in the end.

  19. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs.

    PubMed

    Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre

    2018-03-05

    During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.

  20. Space Science

    NASA Image and Video Library

    2003-07-10

    NASA's Hubble Space Telescope (HST) precisely measured the mass of the oldest known planet in our Milky Way Galaxy bringing closure to a decade of speculation. Scientists weren't sure if the object was a planet or a brown dwarf. Hubble's analysis shows that the object is 2.5 times the mass of Jupiter, confirming that it is indeed a planet. At an estimated age of 13 billion years, the planet is more than twice the age of Earth's 4.5 billion years. It formed around a young, sun-like star barely 1 million years after our universe's birth in the Big Bang. The ancient planet resides in an unlikely, rough neighborhood. It orbits a peculiar pair of burned-out stars in the crowded core cluster of more than 100,000 stars. Its very existence provides evidence that the first planets formed rapidly, within a billion years of the Big Bang, and leads astronomers to conclude that planets may be very abundant in our galaxy. This artist's concept depicts the planet with a view of a rich star filled sky.

  1. Non-singular and cyclic universe from the modified GUP

    NASA Astrophysics Data System (ADS)

    Salah, Maha; Hammad, Fayçal; Faizal, Mir; Farag Ali, Ahmed

    2017-02-01

    In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-corrections to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.

  2. Cosmological Implications of the Electron-Positron Aether

    NASA Astrophysics Data System (ADS)

    Rothwarf, Allen

    1997-04-01

    An aether is not prohibited on theoretical nor experimental grounds; only a credible physical model for it is lacking.By assuming that the particles and anti-particles created during the "big-bang" origin of the universe have not annihilated one another, but instead, form a bound state plasma, we have a model for a real aether.This aether is dominated by electron-positron pairs at very high density(10**30/cm3),in close analogy with electron-hole droplets formed in laser irradiated semiconductors. The Fermi velocity of this plasma is the speed of light, and the plasma expands at this speed. This gives results for the expanding universe in agreement with the Einstein-deSitter result for a universe dominated by radiation.The speed of light varies with time as do the other fundamental constants.This leads to an alternate explanation for cosmological redshifts. Independent,mini big bangs can occur and account for observed anomalous redshifts. The model can be tested using LIGO apparatus.

  3. Black holes, quantum theory and cosmology

    NASA Astrophysics Data System (ADS)

    Penrose, Roger

    2009-06-01

    Some reasons are given for believing that the rules of quantum (field) theory must be changed when general relativity becomes seriously involved. If full quantum mechanical respect is paid to the principle of equivalence, we find that a superposition of gravitational fields leads to an illegal superposition of different vacua, giving support to a proposal for spontaneous quantum state reduction made earlier by Diósi, and then independently by the author. A different line of attack involves the over-riding role of black holes in the total entropy content of the universe, and in the operation of the 2nd Law of thermodynamics. The author's proposal of conformal cyclic cosmology is reviewed in order to highlight a seeming paradox, according to which the entropy of the universe of the remote future seems to return to the small kind of value that it had at the big bang. The paradox is resolved when we take into account the information loss that, from this perspective, necessarily occurs in Hawking's black-hole evaporation, with the accompanying loss of unitarity.

  4. Anisotropic string cosmological model in Brans–Dicke theory of gravitation with time-dependent deceleration parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com

    We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage ofmore » the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.« less

  5. Modified large number theory with constant G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recami, E.

    1983-03-01

    The inspiring ''numerology'' uncovered by Dirac, Eddington, Weyl, et al. can be explained and derived when it is slightly modified so to connect the ''gravitational world'' (cosmos) with the ''strong world'' (hadron), rather than with the electromagnetic one. The aim of this note is to show the following. In the present approach to the ''Large Number Theory,'' cosmos and hadrons are considered to be (finite) similar systems, so that the ratio R-bar/r-bar of the cosmos typical length R-bar to the hadron typical length r-bar is constant in time (for instance, if both cosmos and hadrons undergo an expansion/contraction cycle: accordingmore » to the ''cyclical big-bang'' hypothesis: then R-bar and r-bar can be chosen to be the maximum radii, or the average radii). As a consequence, then gravitational constant G results to be independent of time. The present note is based on work done in collaboration with P.Caldirola, G. D. Maccarrone, and M. Pavsic.« less

  6. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  7. Geant4 simulations of NIST beam neutron lifetime experiment

    NASA Astrophysics Data System (ADS)

    Valete, Daniel; Crawford, Bret; BL2 Collaboration Collaboration

    2017-09-01

    A free neutron is unstable and its decay is described by the Standard Model as the transformation of a down quark into an up quark through the weak interaction. Precise measurements of the neutron lifetime test the validity of the theory of the weak interaction and provide useful information for the predictions of the theory of Big Bang nucleosynthesis of the primordial helium abundance in the universe and the number of different types of light neutrinos Nν. The predominant experimental methods for determination of the neutron lifetime are commonly called `beam' and `bottle' methods, and the most recent uses of each method do not agree with each other within their stated uncertainties. An improved experiment of the beam technique, which uses magnetic and electric fields to trap and guide the decay protons of a beam of cold neutrons to a detector, is in progress at the National Institute of Standards and Technology, Gaithersburg, MD with a precision goal of 0.1. I acknowledge the support of the Cross-Diciplinary Institute at Gettysburg College.

  8. Ricci time in the Lemaître-Tolman model and the block universe

    NASA Astrophysics Data System (ADS)

    Elmahalawy, Yasser; Hellaby, Charles; Ellis, George F. R.

    2015-10-01

    It is common to think of our universe according to the "block universe" concept, which says that spacetime consists of many "stacked" three-surfaces, labelled by some kind of proper time, . Standard ideas do not distinguish past and future, but Ellis' "evolving block universe" tries to make a fundamental distinction. One proposal for this proper time is the proper time measured along the timelike Ricci eigenlines, starting from the big bang. This work investigates the shape of the "Ricci time" surfaces relative to the the null surfaces. We use the Lemaître-Tolman metric as our inhomogeneous spacetime model, and we find the necessary and sufficient conditions for these constant surfaces, , to be spacelike or timelike. Furthermore, we look at the effect of strong gravity domains by determining the location of timelike S regions relative to apparent horizons. We find that constant Ricci time surfaces are always spacelike near the big bang, while at late times (near the crunch or the extreme far future), they are only timelike under special circumstances. At intermediate times, timelike S regions are common unless the variation of the bang time is restricted. The regions where these surfaces become timelike are often adjacent to apparent horizons, but always outside them, and in particular timelike S regions do not occur inside the horizons of black-hole-like models.

  9. Supergravitational conformal Galileons

    NASA Astrophysics Data System (ADS)

    Deen, Rehan; Ovrut, Burt

    2017-08-01

    The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and "bouncing" cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory, but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios

  10. From Pinholes to Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  11. --No Title--

    Science.gov Websites

    time. It is usually measured in radians per second. Anisotropy- Physical property values that vary when negative charge. When an antimatter particle collides with its normal-matter counterpart, both particles neutrons. Big Bang- The violent cosmic explosion of an incredibly small amount of matter at high

  12. What Happens at the ‘House of Hope’? Discovery CHannel Series | NIH MedlinePlus the Magazine

    MedlinePlus

    ... work. “Big Bang Theory” and “Hidden Figures” actor Jim Parsons narrates the series, which was filmed over ... part in clinical trials,” said NIH Director Francis Collins. “Not only do clinical trials offer sick people ...

  13. Supernovae, an accelerating universe and the cosmological constant

    PubMed Central

    Kirshner, Robert P.

    1999-01-01

    Observations of supernova explosions halfway back to the Big Bang give plausible evidence that the expansion of the universe has been accelerating since that epoch, approximately 8 billion years ago and suggest that energy associated with the vacuum itself may be responsible for the acceleration. PMID:10200242

  14. Jupiter's Big Bang.

    ERIC Educational Resources Information Center

    McDonald, Kim A.

    1994-01-01

    Collision of a comet with Jupiter beginning July 16, 1994 will be observed by astronomers worldwide, with computerized information relayed to a center at the University of Maryland, financed by the National Aeronautics and Space Administration and National Science Foundation. Geologists and paleontologists also hope to learn more about earth's…

  15. Understanding Dark Energy

    NASA Astrophysics Data System (ADS)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum region between Superclusters also plays a role in adding extra repulsive gravity force. Note that cosmologist Stephen Hawking comments on his website that ``There is no reason to rule out negative pressure. This is just tension.''

  16. Origin of matter and space-time in the big bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, G. J.; Kajino, T.; Yamazaki, D.

    We review the case for and against a bulk cosmic motion resulting from the quantum entanglement of our universe with the multiverse beyond our horizon. Within the current theory for the selection of the initial state of the universe from the landscape multiverse there is a generic prediction that pre-inflation quantum entanglement with other universes should give rise to a cosmic bulk flow with a correlation length of order horizon size and a velocity field relative to the expansion frame of the universe. Indeed, the parameters of this motion are are tightly constrained. A robust prediction can be deduced indicatingmore » that there should be an overall motion of of about 800 km/s relative to the background space time as defined by the cosmic microwave background (CMB). This talk will summarize the underlying theoretical motivation for this hypothesis. Of course our motion relative to the background space time (CMB dipole) has been known for decades and is generally attributed to the gravitational pull of the local super cluster. However, this cosmic peculiar velocity field has been recently deduced out to very large distances well beyond that of the local super cluster by using X-ray galaxy clusters as tracers of matter motion. This is achieved via the kinematic component of the Sunyaev-Zeldovich (KSZ) effect produced by Compton scattering of cosmic microwave background photons from the local hot intracluster gas. As such, this method measures peculiar velocity directly in the frame of the cluster. Similar attempts by our group and others have attempted to independently assess this bulk flow via Type la supernova redshifts. In this talk we will review the observation case for and against the existence of this bulk flow based upon the observations and predictions of the theory. If this interpretation is correct it has profound implications in that we may be observing for the first time both the physics that occurred before the big bang and the existence of the multiverse beyond our horizon.« less

  17. Loop quantum cosmology with self-dual variables

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  18. Reviews

    NASA Astrophysics Data System (ADS)

    2002-11-01

    CD-ROM REVIEW (551) Essential Physics BOOK REVIEWS (551) Collins Advanced Science: Physics, 2nd edition Quarks, Leptons and the Big Bang, 2nd edition Do Brilliantly: A2 Physics IGCSE Physics Geophysics in the UK Synoptic Skills in Advanced Physics Flash! The hunt for the biggest explosions in the universe Materials Maths for Advanced Physics

  19. Tracking Back to the Big Bang.

    ERIC Educational Resources Information Center

    Peat, David

    1983-01-01

    Traces some astronomical history and considers how astronomers have arrived at their current knowledge of distance, size, and time as it applies to objects in the night sky. The information is provided as background to a discussion of the Hubble constant and its relationship to the age of the universe. (JN)

  20. Waves in Nature, Lasers to Tsumanis and Beyond

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  1. Waves in Nature, Lasers to Tsumanis and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-01

    Waves are everywhere. Microwaves, laser beams, music, tsunamis. Electromagnetic waves emanating from the Big Bang fill the universe. Learn about the similarities and difference in all of these wavy phenomena with Ed Moses and Rick Sawicki, Lawrence Livermore National Laboratory scientists Series: Science on Saturday [10/2006] [Science] [Show ID: 11541

  2. Big Questions: Missing Antimatter

    ScienceCinema

    Lincoln, Don

    2018-06-08

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  3. Darwin's legacy: why biology is not physics, or why evolution has not become a common sense.

    PubMed

    Singh, Rama S

    2011-10-01

    Cosmology and evolution together have enabled us to look deep into the past and comprehend evolution-from the big bang to the cosmos, from molecules to humans. Here, I compare the nature of theories in biology and physics and ask why physical theories get accepted by the public without necessarily comprehending them but biological theories do not. Darwin's theory of natural selection, utterly simple in its premises but profound in its consequences, is not accepted widely. Organized religions, and creationists in particularly, have been the major critic of evolution, but not all opposition to evolution comes from organized religions. A great many people, between evolutionary biologists on one hand and creationists on the other, many academics included, who may not be logically opposed to evolution nevertheless do not accept it. This is because the process of and the evidence for evolution are invisible to a nonspecialist, or the theory may look too simple to explain complex traits to some, or because people compare evolution against God and find evolutionary explanations threatening to their beliefs. Considering how evolution affects our lives, including health and the environment to give just two examples, a basic course in evolution should become a required component of all our college and university educational systems.

  4. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions.

    PubMed

    Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P

    2000-12-25

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).

  5. Loophole to the universal photon spectrum in electromagnetic cascades and application to the cosmological lithium problem.

    PubMed

    Poulin, Vivian; Serpico, Pasquale Dario

    2015-03-06

    The standard theory of electromagnetic cascades onto a photon background predicts a quasiuniversal shape for the resulting nonthermal photon spectrum. This has been applied to very disparate fields, including nonthermal big bang nucleosynthesis (BBN). However, once the energy of the injected photons falls below the pair-production threshold the spectral shape is much harder, a fact that has been overlooked in past literature. This loophole may have important phenomenological consequences, since it generically alters the BBN bounds on nonthermal relics; for instance, it allows us to reopen the possibility of purely electromagnetic solutions to the so-called "cosmological lithium problem," which were thought to be excluded by other cosmological constraints. We show this with a proof-of-principle example and a simple particle physics model, compared with previous literature.

  6. The early growth of the first black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jarrett L.; Haardt, Francesco

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  7. Ancient Cosmology, superfine structure of the Universe and Anthropological Principle

    NASA Astrophysics Data System (ADS)

    Arakelyan, Hrant; Vardanyan, Susan

    2015-07-01

    The modern cosmology by its spirit, conception of the Big Bang is closer to the ancient cosmology, than to the cosmological paradigm of the XIX century. Repeating the speculations of the ancients, but using at the same time subtle mathematical methods and relying on the steadily accumulating empirical material, the modern theory tends to a quantitative description of nature, in which increasing role are playing the numerical ratios between the physical constants. The detailed analysis of the influence of the numerical values -- of physical quantities on the physical state of the universe revealed amazing relations called fine and hyperfine tuning. In order to explain, why the observable universe comes to be a certain set of interrelated fundamental parameters, in fact a speculative anthropic principle was proposed, which focuses on the fact of the existence of sentient beings.

  8. The early growth of the first black holes

    DOE PAGES

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  9. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  10. Developing state-of-the-art Cosmology courses for undergraduate non-science students

    NASA Astrophysics Data System (ADS)

    Lopez-Aleman, Ramon

    2007-04-01

    All undergraduate students at the University of Puerto Rico, Rio Piedras are required to take a General Studies interdisciplinary science course as a requisite for graduation. We have successfully developed a new course for non-science majors that deal in current topics of interest including Big Bang cosmology, the uses and misuses of anthropic principle as a philosophical guide for scientists, dark energy and accelerated expansion, string theory and quantum gravity, and the current controversy of Intelligent Design vs Evolution by Natural Selection as explanations for the origins of life on Earth, intelligence and free will in sentient beings. The course was designed with help of philosophers, neuroscientists, biologists and physicists to present science as interesting, exciting, and socially useful sets of ``stories'' to people who usually dislike and misunderstand traditional science courses.

  11. A Novel Theory For The Origin And Evolution Of Stars And Planets, Including Earth, Which Asks, 'Was The Earth Once A Small Bright Star?'

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-12-01

    Improved prediction methods for earthquakes and volcanic activity will naturally follow from our theory, based on new concepts of the earth's interior composition, state and activity. In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), neutron stars, giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from modified pieces called particle proliferators, of a dislodged/expanded BH (of category 2 (c-2)) which explodes due to a collision with another expanded BH (or explodes on its own). This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, from brown to blue, and the remains of the particle proliferator as the innermost core is reached. We show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments are suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) c-2 BHs expand and collide to form a small `big bang' (It is postulated that there was a small big bang to form each galaxy, similar to the big bang from a category 1 BH(s) that may have formed our universe. The Great Attractors would be massive c-2 BHs and act on galaxy clusters similar to the massive c-3 BHs at the center of Galaxies acting on stars.). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter inside the galaxies that we catalogue as category-3 BH(s). We conceive that c-3 BHs form gas and dust clouds, inside galaxies, that are the incubators for new stars and planets. The start and development of the planet earth, initially as an emergent piece from the colliding c-2 BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. We present a new cross section of the earth (as a dead star). Although the dimensions of the inner core, outer core, and the mantle (inner and outer) are about the same as presently known, new insight is given to their formation, evolution and composition. We explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the source of the supply of water on earth. We explain various planetary phenomenon including: how/why the earth is growing/expanding (not based on current plate tectonic theory) causing it to retard its rotation; why the oceans are different sizes (the Pacific is about twice the Atlantic); why the masses at the poles are shifting into the Atlantic Ocean (may provide an alternative explanation for the ice ages); why various types of earthquakes occur (a new source is presented), why volcanoes occur (two types are discussed); and improved prediction methods for earthquakes and volcanic eruptions; the making/forming of the mountains from bending and compression buckling, and shear failures of the outer surfaces of the earth's brittle outer skin of the 1st crust (and also from eruptions) due to reduction in curvature of the crust.

  12. Helium-3 in Milky Way Reveals Abundance of Matter in Early Universe

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Astronomers using the National Science Foundation's 140 Foot Radio Telescope in Green Bank, West Virginia, were able to infer the amount of matter created by the Big Bang, and confirmed that it accounts for only a small portion of the effects of gravity observed in the Universe. The scientists were able to make these conclusions by determining the abundance of the rare element helium-3 (helium with only one neutron and two protons in its nucleus) in the Milky Way Galaxy. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "Moments after the Big Bang, protons and neutrons began to combine to form helium-3 and other basic elements," said Robert Rood of the University of Virginia. "By accurately measuring the abundance of this primordial element in our Galaxy today, we were able infer just how much matter was created when the Universe was only a few minutes old." Rood and his colleagues, Thomas Bania from Boston University and Dana Balser from the National Radio Astronomy Observatory (NRAO), report their findings in the January 3 edition of the scientific journal Nature. Rood began searching for helium-3 in the Milky Way Galaxy in 1978. At that time, scientists believed that stars like our Sun synthesized helium-3 in their nuclear furnaces. Surprisingly, Rood's observations indicated that there was far less of this element in the Galaxy than the current models predicted. "If stars were indeed producing helium-3, as scientists believed, then we should have detected this element in much greater concentrations," he said. This unexpected discovery prompted Rood and his colleagues to broaden their search, and to look throughout the Milky Way for signs of stellar production of helium-3. Over the course of two decades, the researchers discovered that regardless of where they looked -- whether in the areas of sparse star formation like the outer edges of the Galaxy, or in areas of intense star formation near center of the Galaxy -- the relative abundance of helium-3 remained constant. By concurrently measuring the amount of hydrogen (also created by the Big Bang) in the same areas, the scientists were able to determine the relative abundance of helium-3. "Since stellar processes appear to have little or no impact on the amount of helium-3 in the Galaxy, we were able to deduce two very important things," said Bania. "First, since our current models predict stellar production of helium-3, then we will need to rethink our understanding of the internal workings of stars like our Sun. Second, since helium-3 has not been created or destroyed in our Galaxy in any appreciable amounts, then what we detected is most likely equal to the abundance of primordial helium-3 created by the Big Bang." The scientists were able to use this discovery to calculate how much "normal" matter was created during the Big Bang. (Normal matter is anything made of baryons, subatomic particles that include neutrons and protons.) The researchers made these calculations by taking what they know of the composition of the Universe today, and essentially running time in reverse. In this case, the ratio of helium-3 to hydrogen gives the ratio of baryons to photons (the density of radiation) just after the Big Bang. By using the rate of expansion of the Universe, given by the Hubble Constant, the scientists could then infer just how much normal matter was produced during the Big Bang. "Our findings for helium-3 in fact support other studies that also constrain the amount of matter in the Universe," said Balser. "Taken together, these studies show that the matter that makes up stars, planets, and the visible Universe can only account for a small fraction of what we observe as the effects of gravity in the Universe." Dark matter, which can be both baryonic (dead stars, rocks, etc.) and non-baryonic, and other as-yet-unidentified forces appear to be the primary sources of the gravity that holds galaxies, and the larger structures of the Universe, together. "The fact that most of the matter in the Universe is non-baryonic, that is to say not made of any particle we've ever seen on Earth, is a very exciting concept," commented Rood. The astronomers conducted their research using measurements at a frequency of 8.665 GHz (3.46 cm), which is emitted naturally by ionized helium-3. The 140 Foot Radio Telescope at the NRAO in Green Bank now is decommissioned after a long and highly productive career. "Though the 140 Foot Telescope enabled us to make remarkable observations," commented Rood, "we anticipate that the new Robert C. Byrd Green Bank Telescope will greatly increase our ability to continue this research." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  13. Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) and Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flatmore » $$\\Lambda$$CDM model with minimal neutrino mass ($$\\sum m_\

  14. The Universe Adventure - Feedback

    Science.gov Websites

    like to hear back from us): How can we contact you? Occupation (high school student, physics teacher , cosmologist, et cetera): What is your occupation? Type: Type of Feedback Organization/Format Content Fundamentals of Cosmology Evidence for the Big Bang Eras of the Cosmos The Final Frontier Glossary Other

  15. A Polarized Universe

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    The CMB polarization was produced as light scattered off a primordial cloud of protons and electrons nearly 14 billion years ago, about 400,000 years after the Big Bang. This marks the moment of recombination, when the universe finally cooled enough to allow electrons to join protons. The CMB is the light that broke through the fog.

  16. Visualizing Cosmological Concepts Using the Analog of a Hot Liquid

    ERIC Educational Resources Information Center

    Yusofi, E.; Mohsenzadeh, M.

    2010-01-01

    We have used the expansion process of hot milk, which has similarities with the cosmic expansion, to facilitate easier and better visualization and teaching of cosmological concepts. Observations of milk are used to illustrate phenomena related to the Planck era, the standard hot big bang model, cosmic inflation, problems with the formation of…

  17. The Higgs boson and cosmology

    PubMed Central

    Shaposhnikov, Mikhail

    2015-01-01

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  18. A Brief Glossary of Commonly Used Astronomical Terms.

    ERIC Educational Resources Information Center

    Harrington, Sherwood

    A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…

  19. Are Schools Getting a Big Enough Bang for Their Education Technology Buck?

    ERIC Educational Resources Information Center

    Boser, Ulrich

    2013-01-01

    Far too often, school leaders fail to consider how technology might dramatically improve teaching and learning, and schools frequently acquire digital devices without discrete learning goals and ultimately use these devices in ways that fail to adequately serve students, schools, or taxpayers. Because of a growing debate concerning spending on…

  20. Ex-Nihilo II: Examination Syllabi and the Sequencing of Cosmology Education

    ERIC Educational Resources Information Center

    Pimbblet, Kevin A.; Newman, John C.

    2003-01-01

    Cosmology education has become an integral part of modern physics courses. Directed by National Curricula, major UK examination boards have developed syllabi that contain explicit statements about the model of the Big Bang and the strong observational evidence that supports it. This work examines the similarities and differences in these…

  1. The Higgs boson and cosmology.

    PubMed

    Shaposhnikov, Mikhail

    2015-01-13

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  2. Fermilab Library

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Big Bang. Featured New eBooks The Black Book of Quantum Chromodynamics This book by Fermilab author at the LHC This book aims to give a broad organizational and strategic understanding of the nature of

  3. A recipe for primordial soup

    NASA Technical Reports Server (NTRS)

    Kolb, E.

    2001-01-01

    If the universe emerged from a state of high temperature and high density, we can study the origin of the universe by recreating those conditions in the laboratory. While we can not reproduce the Big Bang, we can recreate its conditions and study the physical processes responsible for producing the rich and varied universe we observe today.

  4. Navigating Deep Time: Landmarks for Time from the Big Bang to the Present

    ERIC Educational Resources Information Center

    Delgado, Cesar

    2013-01-01

    People make sense of the world by comparing and relating new information to their existing landmarks. Each individual may have different landmarks, developed through idiosyncratic experiences. Identifying specific events that constitute landmarks for a group of learners may help instructors in gauging students' prior knowledge and in planning…

  5. The first three minutes - 1990 version. [of early universe after Big Bang

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    The present state of understanding of what occurred in the universe's first three minutes is reviewed. Emphasis is on the events that lead to potentially observable consequences and that are model-independent or at least generic to broad classes of models. Inflation, phase transitions, dark matter, and nucleosynthesis are summarized.

  6. Big Bang Technology: What's Next in Design Education, Radical Innovation or Incremental Change?

    ERIC Educational Resources Information Center

    Fleischmann, Katja

    2013-01-01

    Since the introduction of digital media, design education has been challenged by the ongoing advancement of technology. Technological change has created unprecedented possibilities for designers to engage in the broadening realm of interactive digital media. The increasing sophistication of interactivity has brought a complexity which needs to be…

  7. Papier-Mache Urns

    ERIC Educational Resources Information Center

    Kleinman, Marla

    2010-01-01

    Even in the best of economic times, most art teachers are subsidizing their artroom budgets with their own money and dumpster diving to provide the kind of art experience their students deserve. Green is in and art teachers have years of experience recycling trash into treasures. This urn project gives art teachers a big bang for their buck. They…

  8. Big Bang and context-driven collapse.

    PubMed

    Robertson-Tessi, Mark; Anderson, Alexander R A

    2015-03-01

    Heterogeneity is the single most important factor driving cancer progression and treatment failure, yet little is understood about how and when this heterogeneity arises. A new study shows that colorectal cancers acquire their dominant mutations early in development and that subsequent mutations, even if they confer greater fitness, are unlikely to sweep through the tumor.

  9. Artist's Concept of Hubble-Discovered Ancient Gas-Giant Planet

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Hubble Space Telescope (HST) precisely measured the mass of the oldest known planet in our Milky Way Galaxy bringing closure to a decade of speculation. Scientists weren't sure if the object was a planet or a brown dwarf. Hubble's analysis shows that the object is 2.5 times the mass of Jupiter, confirming that it is indeed a planet. At an estimated age of 13 billion years, the planet is more than twice the age of Earth's 4.5 billion years. It formed around a young, sun-like star barely 1 million years after our universe's birth in the Big Bang. The ancient planet resides in an unlikely, rough neighborhood. It orbits a peculiar pair of burned-out stars in the crowded core cluster of more than 100,000 stars. Its very existence provides evidence that the first planets formed rapidly, within a billion years of the Big Bang, and leads astronomers to conclude that planets may be very abundant in our galaxy. This artist's concept depicts the planet with a view of a rich star filled sky.

  10. A high abundance of massive galaxies 3-6 billion years after the Big Bang.

    PubMed

    Glazebrook, Karl; Abraham, Roberto G; McCarthy, Patrick J; Savaglio, Sandra; Chen, Hsiao-Wen; Crampton, David; Murowinski, Rick; Jørgensen, Inger; Roth, Kathy; Hook, Isobel; Marzke, Ronald O; Carlberg, R G

    2004-07-08

    Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

  11. Can history improve big bang health reform? Commentary.

    PubMed

    Marchildon, Gregory P

    2018-07-01

    At present, the professional skills of the historian are rarely relied upon when health policies are being formulated. There are numerous reasons for this, one of which is the natural desire of decision-makers to break with the past when enacting big bang policy change. This article identifies the strengths professional historians bring to bear on policy development using the establishment and subsequent reform of universal health coverage as an example. Historians provide pertinent and historically informed context; isolate the forces that have historically allowed for major reform; and separate the truly novel reforms from those attempted or implemented in the past. In addition, the historian's use of primary sources allows potentially new and highly salient facts to guide the framing of the policy problem and its solution. This paper argues that historians are critical for constructing a viable narrative of the establishment and evolution of universal health coverage policies. The lack of this narrative makes it difficult to achieve an accurate assessment of systemic gaps in coverage and access, and the design or redesign of universal health coverage that can successfully close these gaps.

  12. The ripples of "The Big (agricultural) Bang": the spread of early wheat cultivation.

    PubMed

    Abbo, Shahal; Gopher, Avi; Peleg, Zvi; Saranga, Yehoshua; Fahima, Tzion; Salamini, Francesco; Lev-Yadun, Simcha

    2006-08-01

    Demographic expansion and (or) migrations leave their mark in the pattern of DNA polymorphisms of the respective populations. Likewise, the spread of cultural phenomena can be traced by dating archaeological finds and reconstructing their direction and pace. A similar course of events is likely to have taken place following the "Big Bang" of the agricultural spread in the Neolithic Near East from its core area in southeastern Turkey. Thus far, no attempts have been made to track the movement of the founder genetic stocks of the first crop plants from their core area based on the genetic structure of living plants. In this minireview, we re-interpret recent wheat DNA polymorphism data to detect the genetic ripples left by the early wave of advance of Neolithic wheat farming from its core area. This methodology may help to suggest a model charting the spread of the first farming phase prior to the emergence of truly domesticated wheat types (and other such crops), thereby increasing our resolution power in studying this revolutionary period of human cultural, demographic, and social evolution.

  13. The big bang? An eventful year in workers' compensation.

    PubMed

    Guidotti, Tee L

    2006-01-01

    Workers' compensation in the past two years has been dominated by events in California, which have been so fundamental as to merit the term big bang. Passage of Senate Bill 899 has led to a comprehensive program of reform in access to medical care, access to rehabilitation services, temporary and permanent disability, evidence-based management, dispute resolution, and system innovation. Two noteworthy developments thus arose: a new requirement for apportionment by cause in causation analysis, and the adoption of evidence-based criteria for impairment assessment, treatment guidelines, and, soon, utilization review. Elsewhere in the United States, changes were modest, but extensive legislative activity in Texas suggests that Texas will be next to make major changes. In Canada, the Workers' Compensation Board of British Columbia has adopted an ambitious strategic initiative, and there is a Canadawide movement to establish presumption for certain diseases in firefighters. Suggestions for future directions include an increased emphasis on prevention, integration of programs, worker participation, enhancing the expertise of health care professionals, evidence-based management, process evaluation, and opportunities for innovation.

  14. Reviews Book: Nucleus Book: The Wonderful World of Relativity Book: Head Shot Book: Cosmos Close-Up Places to Visit: Physics DemoLab Book: Quarks, Leptons and the Big Bang EBook: Shooting Stars Equipment: Victor 70C USB Digital Multimeter Web Watch

    NASA Astrophysics Data System (ADS)

    2012-09-01

    WE RECOMMEND Nucleus: A Trip into the Heart of Matter A coffee-table book for everyone to dip into and learn from The Wonderful World of Relativity A charming, stand-out introduction to relativity The Physics DemoLab, National University of Singapore A treasure trove of physics for hands-on science experiences Quarks, Leptons and the Big Bang Perfect to polish up on particle physics for older students Victor 70C USB Digital Multimeter Equipment impresses for usability and value WORTH A LOOK Cosmos Close-Up Weighty tour of the galaxy that would make a good display Shooting Stars Encourage students to try astrophotography with this ebook HANDLE WITH CARE Head Shot: The Science Behind the JKF Assassination Exploration of the science behind the crime fails to impress WEB WATCH App-lied science for education: a selection of free Android apps are reviewed and iPhone app options are listed

  15. Big Questions: Missing Antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    2013-08-27

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics.more » In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.« less

  16. Special course for Masters and PhD students: phase transitions, Landau theory, 1D Ising model, the dimension of the space and Cosmology

    NASA Astrophysics Data System (ADS)

    Udodov, Vladimir; Katanov Khakas State Univ Team

    2014-03-01

    Symmetry breaking transitions. The phenomenological (L.D.Landau, USSR, 1937) way to describe phase transitions (PT's). Order parameter and loss of the symmetry. The second derivative of the free energy changes jump wise at the transition, i.e. we have a mathematical singularity and second order PT (TC>0). Extremes of free energy. A point of loss of stability of the symmetrical phase. The eigenfrequency of PT and soft mode behavior. The conditions of applicability of the Landau theory (A.Levanyuk, 1959, V.Ginzburg, 1960). 1D Ising model and exact solution by a transfer matrix method. Critical exponents in the L.Landau PT's theory and for 1D Ising model. Scaling hypothesis (1965) for 1D Ising model with zero critical temperature. The order of PT in 1D Ising model in the framework of the R.Baxter approach. The anthropic principle and the dimension of the space. Why do we have a three-dimensional space? Big bang, the cosmic vacuum, inflation and PT's. Higgs boson and symmetry breaking transitions. Author acknowledges the support of Katanov Khakas State University.

  17. The planned search for free neutron-antineutron transformation using the nnbarX experiment at Fermilab and how it relates to bound neutron oscillations at Super-Kamiokande and elsewhere

    NASA Astrophysics Data System (ADS)

    Banuelos, Eddie

    2012-11-01

    In this presentation we will describe the role of CSUDH and present initial planning results on a new experiment at Fermilab called nnbarX that will use neutrons from a 1 MW cold spallation source near the Fermilab main accelerator ring which is being upgraded. This project will eventually probe theories of grand unification of the fundamental forces, the stability of matter, and how Baryons were created in the early stages of the big bang, at levels of sensitivity to the baryon lifetime that will be 100-10000 higher than what is currently available and will rule out or confirm leading theories of grand unification in which neutrons and other fermions are equally mixed with their antiparticles and can transform to each other in Right-Left symmetric theories such as SO(10). We at CSUDH will be directly collaborating with the University of Tennessee Knoxville, University of Indiana Bloomington, North Carolina State University, Femilab and Los Alamos National Laboratory on detector R & D for nnbarX and will be also working with a few other institutions in the US and in other countries.

  18. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Mark W.; Fuller, George M.; Grohs, Evan Bradley

    Here, we introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We also calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energymore » transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These effects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger effect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially significant for the error budget of helium in upcoming cosmological observations.« less

  19. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Paris, Mark; Fuller, George; Grohs, Evan; Kishimoto, Chad; Vlasenko, Alexey

    2017-09-01

    We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially signi↓cant for the error budget of helium in upcoming cosmological observations.

  20. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    DOE PAGES

    Paris, Mark W.; Fuller, George M.; Grohs, Evan Bradley; ...

    2017-09-13

    Here, we introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We also calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energymore » transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These effects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger effect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially significant for the error budget of helium in upcoming cosmological observations.« less

  1. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we probed the T+3He reaction, possibly relevant to Big Bang nucleosynthesis.

  2. The big bang as a result of the first-order phase transition driven by a change of the scalar curvature in an expanding early Universe: The “hyperinflation” scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I.

    We suggest that the Big Bang could be a result of the first-order phase transition driven by a change in the scalar curvature of the 4D spacetime in an expanding cold Universe filled with a nonlinear scalar field φ and neutral matter with an equation of state p = νε (where p and ε are the pressure and energy density of the matter, respectively). We consider the Lagrangian of a scalar field with nonlinearity φ{sup 4} in a curved spacetime that, along with the term–ξR|φ|{sup 2} quadratic in φ (where ξ is the interaction constant between the scalar and gravitationalmore » fields and R is the scalar curvature), contains the term ξRφ{sub 0}(φ + φ{sup +}) linear in φ, where φ{sub 0} is the vacuum mean of the scalar field amplitude. As a consequence, the condition for the existence of extrema of the scalar-field potential energy is reduced to an equation cubic in φ. Provided that ν > 1/3, the scalar curvature R = [κ(3ν–1)ε–4Λ] (where κ and Λ are Einstein’s gravitational and cosmological constants, respectively) decreases with decreasing ε as the Universe expands, and a first-order phase transition in variable “external field” parameter proportional to R occurs at some critical value R{sub c} < 0. Under certain conditions, the critical radius of the early Universe at the point of the first-order phase transition can reach an arbitrary large value, so that this scenario of unrestricted “inflation” of the Universe may be called “hyperinflation.” After the passage through the phase-transition point, the scalar-field potential energy should be rapidly released, which must lead to strong heating of the Universe, playing the role of the Big Bang.« less

  3. Supergravitational conformal Galileons

    DOE PAGES

    Deen, Rehan; Ovrut, Burt

    2017-08-04

    The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and “bouncing” cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory,more » but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios« less

  4. Supergravitational conformal Galileons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deen, Rehan; Ovrut, Burt

    The worldvolume actions of 3+1 dimensional bosonic branes embedded in a five-dimensional bulk space can lead to important effective field theories, such as the DBI conformal Galileons, and may, when the Null Energy Condition is violated, play an essential role in cosmological theories of the early universe. These include Galileon Genesis and “bouncing” cosmology, where a pre-Big Bang contracting phase bounces smoothly to the presently observed expanding universe. Perhaps the most natural arena for such branes to arise is within the context of superstring and M -theory vacua. Here, not only are branes required for the consistency of the theory,more » but, in many cases, the exact spectrum of particle physics occurs at low energy. However, such theories have the additional constraint that they must be N = 1 supersymmetric. This motivates us to compute the worldvolume actions of N = 1 supersymmetric three-branes, first in flat superspace and then to generalize them to N = 1 supergravitation. In this paper, for simplicity, we begin the process, not within the context of a superstring vacuum but, rather, for the conformal Galileons arising on a co-dimension one brane embedded in a maximally symmetric AdS 5 bulk space. We proceed to N = 1 supersymmetrize the associated worldvolume theory and then generalize the results to N = 1 supergravity, opening the door to possible new cosmological scenarios« less

  5. Magnetized strange quark model with Big Rip singularity in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, S.

    2017-07-01

    Locally rotationally symmetric (LRS) Bianchi type-I magnetized strange quark matter (SQM) cosmological model has been studied based on f(R, T) gravity. The exact solutions of the field equations are derived with linearly time varying deceleration parameter, which is consistent with observational data (from SNIa, BAO and CMB) of standard cosmology. It is observed that the model begins with big bang and ends with a Big Rip. The transition of the deceleration parameter from decelerating phase to accelerating phase with respect to redshift obtained in our model fits with the recent observational data obtained by Farook et al. [Astrophys. J. 835, 26 (2017)]. The well-known Hubble parameter H(z) and distance modulus μ(z) are discussed with redshift.

  6. Harmonizing Physics & Cosmology With Everything Else in the Universe(s)

    NASA Astrophysics Data System (ADS)

    Asija, Pal

    2006-03-01

    This paper postulates a theory of everything including our known finite physical universe within and as sub-set of an infinite virtual invisible universe occupying some of the same space and time. It attempts to harmonize astrophysics with everything else including life. It compares and contrasts properties, similarities, differences and relationships between the two universe(s). A particular attention is paid to the interface between the two and the challenges of building and/or traversing bridges between them. A number of inflection points between the two are identified. The paper also delineates their relationship to big bang, theory of evolution, gravity, dark matter, black holes, time travel, speed of light, theory of relativity and string theory just to name a few. Several new terms are introduced and defined to discuss proper relationship, transition and interface between the body, soul and spirit as well as their relationship to brain and mind. Physical bodies & beings are compared with virtual, meta and ultra bodies and beings and how the ``Virtual Inside'' relates to people, pets, plants and particles and their micro constituents as well as macro sets. The past, present, and potential of the concurrent universe(s) is compared and contrasted along with many myths and misconceptions of the meta physics as well as modern physics.

  7. A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems

    NASA Astrophysics Data System (ADS)

    Singh, A.

    2009-12-01

    A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.

  8. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  9. The meta-analytic big bang.

    PubMed

    Shadish, William R; Lecy, Jesse D

    2015-09-01

    This article looks at the impact of meta-analysis and then explores why meta-analysis was developed at the time and by the scholars it did in the social sciences in the 1970s. For the first problem, impact, it examines the impact of meta-analysis using citation network analysis. The impact is seen in the sciences, arts and humanities, and on such contemporaneous developments as multilevel modeling, medical statistics, qualitative methods, program evaluation, and single-case design. Using a constrained snowball sample of citations, we highlight key articles that are either most highly cited or most central to the systematic review network. Then, the article examines why meta-analysis came to be in the 1970s in the social sciences through the work of Gene Glass, Robert Rosenthal, and Frank Schmidt, each of whom developed similar theories of meta-analysis at about the same time. The article ends by explaining how Simonton's chance configuration theory and Campbell's evolutionary epistemology can illuminate why meta-analysis occurred with these scholars when it did and not in medical sciences. Copyright © 2015 John Wiley & Sons, Ltd.

  10. On Resolutions of Cosmological Singularities in Higher-Spin Gravity

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin; Pando Zayas, Leopoldo; Rombes, Nicholas

    2014-03-01

    Gravity in three dimensions is simpler than in four, due to the lack of gravitational waves, and can be recast as a Chern-Simons theory. In this context, it is straightforward to generalize Einstein's gravity, with or without cosmological constant, by changing the gauge group. Using this, we study the resolution of certain cosmological singularities, and extend the singularity resolution scheme proposed by Krishnan and Roy. We discuss the resolution of a big-bang singularity in the case of gravity coupled to a spin-4 field realized as Chern-Simons theory with gauge group SL (4 , C) . We show the existence of gauge transformations that do not change the holonomy of the Chern-Simons gauge potential and lead to metrics without the initial singularity. We argue that such transformations always exist in the context of gravity coupled to a spin-N field when described by Chern-Simons with gauge group SL (N , C) . This work was supported by the DOE under grant DE-FG02-95ER40899, a research grant from Troy University, and the Honors Summer Fellowship at the University of Michigan.

  11. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenke, Bjoern

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with eachmore » other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.« less

  12. Non-extensive Statistics to the Cosmological Lithium Problem

    NASA Astrophysics Data System (ADS)

    Hou, S. Q.; He, J. J.; Parikh, A.; Kahl, D.; Bertulani, C. A.; Kajino, T.; Mathews, G. J.; Zhao, G.

    2017-01-01

    Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, 3He, 4He, and 7Li produced in the early universe. The primordial abundances of D and 4He inferred from observational data are in good agreement with predictions, however, BBN theory overestimates the primordial 7Li abundance by about a factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated the impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter q, and reduces to the usually assumed Maxwell-Boltzmann distribution for q = 1. We find excellent agreement between predicted and observed primordial abundances of D, 4He, and 7Li for 1.069 ≤ q ≤ 1.082, suggesting a possible new solution to the cosmological lithium problem.

  13. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  14. Supersonic gas streams enhance the formation of massive black holes in the early universe

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki; Kuiper, Rolf

    2017-09-01

    Supermassive black holes existed less than a billion years after the Big Bang. Because black holes can grow at a maximum rate that depends on their current mass, it has been difficult to understand how such massive black holes could have formed so quickly. Hirano et al. developed simulations to show that streaming motions—velocity offsets between the gas and dark matter components—could have produced black holes with tens of thousands of solar masses in the early universe. That's big enough to grow into the supermassive black holes that we observe today.

  15. New Area Law in General Relativity.

    PubMed

    Bousso, Raphael; Engelhardt, Netta

    2015-08-21

    We report a new area law in general relativity. A future holographic screen is a hypersurface foliated by marginally trapped surfaces. We show that their area increases monotonically along the foliation. Future holographic screens can easily be found in collapsing stars and near a big crunch. Past holographic screens exist in any expanding universe and obey a similar theorem, yielding the first rigorous area law in big bang cosmology. Unlike event horizons, these objects can be identified at finite time and without reference to an asymptotic boundary. The Bousso bound is not used, but it naturally suggests a thermodynamic interpretation of our result.

  16. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    PubMed

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  17. Dark matter influence on black objects thermodynamics

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wojnar, Aneta

    2018-05-01

    Physical process version of the first law of black hole thermodynamics in Einstein-Maxwell dark matter gravity was derived. The dark matter sector is mimicked by the additional U(1)-gauge field coupled to the ordinary Maxwell one. By considering any cross section of the black hole event horizon to the future of the bifurcation surface, the equilibrium state version of the first law of black hole mechanics was achieved. The considerations were generalized to the case of Einstein-Yang-Mills dark matter gravity theory. The main conclusion is that the influence of dark matter is crucial in the formation process of black objects. This fact may constitute the explanation of the recent observations of the enormous mass of the super luminous quasars formed in a relatively short time after Big Bang. We also pay attention to the compact binaries thermodynamics, when dark matter sector enters the game.

  18. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration

    2015-10-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  19. Cosmic design from a Buddhist perspective.

    PubMed

    Thuan, T X

    2001-12-01

    The Buddhist view of the origin of the universe is discussed. One of the basic tenets of Buddhism is the concept of interdependence which says that all things exist only in relationship to others, and that nothing can have an independent and autonomous existence. The world is a vast flow of events that are linked together and participate in one another. Thus there can be no First Cause, and no creation ex nihilo of the universe, as in the Big Bang theory. Since the universe has neither beginning nor end, the only universe compatible with Buddhism is a cyclic one. According to Buddhism, the exquisitely precise fine-tuning of the universe for the emergence of life and consciousness as expressed in the "anthropic principle" is not due to a Creative Principle, but to the interdependence of matter with flows of consciousness, the two having co-existed for all times.

  20. Simulating the formation of cosmic structure.

    PubMed

    Frenk, C S

    2002-06-15

    A timely combination of new theoretical ideas and observational discoveries has brought about significant advances in our understanding of cosmic evolution. Computer simulations have played a key role in these developments by providing the means to interpret astronomical data in the context of physical and cosmological theory. In the current paradigm, our Universe has a flat geometry, is undergoing accelerated expansion and is gravitationally dominated by elementary particles that make up cold dark matter. Within this framework, it is possible to simulate in a computer the emergence of galaxies and other structures from small quantum fluctuations imprinted during an epoch of inflationary expansion shortly after the Big Bang. The simulations must take into account the evolution of the dark matter as well as the gaseous processes involved in the formation of stars and other visible components. Although many unresolved questions remain, a coherent picture for the formation of cosmic structure is now beginning to emerge.

Top