Science.gov

Sample records for big bend region

  1. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    SciTech Connect

    Lehman, T.M. )

    1990-04-01

    A marked change in paleosols coincides with Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  2. Results of new petrologic and remote sensing studies in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Benker, Stevan Christian

    The initial section of this manuscript involves the South Rim Formation, a series of 32.2-32 Ma comenditic quartz trachytic-rhyolitic volcanics and associated intrusives, erupted and was emplaced in Big Bend National Park, Texas. Magmatic parameters have only been interpreted for one of the two diverse petrogenetic suites comprising this formation. Here, new mineralogic data for the South Rim Formation rocks are presented. Magmatic parameters interpreted from these data assist in deciphering lithospheric characteristics during the mid-Tertiary. Results indicate low temperatures (< 750 °C), reduced conditions (generally below the FMQ buffer), and low pressures (≤ 100 MPa) associated with South Rim Formation magmatism with slight conditional differences between the two suites. Newly discovered fayalite microphenocrysts allowed determination of oxygen fugacity values (between -0.14 and -0.25 DeltaFMQ over temperature ranges of 680-700 °C), via mineral equilibria based QUILF95 calculations, for Emory Peak Suite. Petrologic information is correlated with structural evidence from Trans-Pecos Texas and adjacent regions to evaluate debated timing of tectonic transition (Laramide compression to Basin and Range extension) and onset of the southern Rio Grande Rift during the mid-Tertiary. The A-type and peralkaline characteristics of the South Rim Formation and other pre-31 Ma magmatism in Trans-Pecos Texas, in addition to evidence implying earlier Rio Grande Rift onset in Colorado and New Mexico, promotes a near-neutral to transtensional setting in Trans-Pecos Texas by 32 Ma. This idea sharply contrasts with interpretations of tectonic compression and arc-related magmatism until 31 Ma as suggested by some authors. However, evidence discussed cannot preclude a pre-36 Ma proposed by other authors. The later section of this manuscript involves research in the Big Bend area using Google Earth. At present there is high interest in using Google Earth in a variety of scientific

  3. Fossil insect evidence for late Quaternary climatic change in the Big Bend region, Chihuahuan Desert, Texas

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.; Van Devender, Thomas R.

    1990-09-01

    A series of 50 packrat midden assemblages from the Big Bend region of the Chihuahuan Desert, ranging in age from >36,000 yr B.P. to recent, yielded abundant, diverse arthropod faunas. The mesic nature of regional Wisconsin age climates is substantiated by the fauna from 30,000-12,000 yr B.P., especially during the middle Wisconsin (30,000-20,000 yr B.P.). Late Wisconsin faunas contained grassland species which are confined today to cooler, moister regions. Following 12,000 yr B.P., most of these temperate species were replaced either by desert species or by more cosmopolitan taxa, marking the climatic shift from late Wisconsin to postglacial time. Insects indicative of more severe aridity are first recorded at about 6000 yr B.P., but some temperate species persisted until about 2500 yr B.P. After this, only desert dwellers are recorded.

  4. Water quality and amphibian health in the Big Bend region of the Rio Grande Basin

    USGS Publications Warehouse

    Sharma, Bibek; Hu, F.; Carr, J.A.; Patino, Reynaldo

    2011-01-01

    Male and female Rio Grande leopard frogs (Rana berlandieri) were collected in May 2005 from the main stem and tributaries of the Rio Grande in the Big Bend region of Texas. Frogs were examined for (1) incidence of testicular ovarian follicles in males; (2) thyroid epithelial cell height, a potential index of exposure to thyroid-disrupting contaminants; and (3) incidence of liver melanomacrophage aggregates, a general index of exposure to contaminants. Standard parameters of surface water quality and concentrations of selected elements, including heavy metals, were determined at each frog collection site. Heavy metals also were measured in whole-frog composite extracts. Water cadmium concentrations in most sites and chloride concentrations in the main stem exceeded federal criteria for freshwater aquatic life. Mercury was detected in frogs from the two collection sites in Terlingua Creek. There was a seventeen percent incidence of testicular ovarian follicles in male frogs. Mean thyroid epithelial cell height was greater in frogs from one of the Terlingua Creek sites (Terlingua Abajo). No differences were observed in the incidence of hepatic macrophage aggregates among sites. In conclusion, although potential cause-effect relationships between indices of habitat quality and amphibian health could not be established, the results of this study raise concerns about the general quality of the aquatic habitat and the potential long-term consequences to the aquatic biota of the Big Bend region. The presence of ovarian follicles in male frogs is noteworthy but further study is necessary to determine whether this phenomenon is natural or anthropogenically induced.

  5. Modeling the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study using CMAQ-MADRID

    NASA Astrophysics Data System (ADS)

    Knipping, E. M.; Kumar, N.; Pun, B.; Wu, S.; Seigneur, C.

    2003-12-01

    A scientifically rigorous treatment of particulate matter within the framework of the Community Multiscale Air Quality (CMAQ) model is provided by CMAQ-MADRID (Model for Aerosol Dynamics, Reaction, Ionization, and Dissolution). CMAQ-MADRID is used to simulate the fate and transport of ambient gases and particulate matter (PM) during the Big Bend Regional Aerosol and Visibility Observational (BRAVO) study. The configuration of CMAQ-MADRID used for this study comprises the Regional Acid Deposition Mechanism v.2 (RADM2) gas-phase chemistry mechanism, a sectional PM solver incorporating the ISORROPIA inorganic thermodynamics module and the AER/EPRI/Caltech (AEC) secondary organic aerosol (SOA) module, and the Carnegie Mellon University (CMU) cloud chemistry module. Boundary conditions for gas- and particle-phase species are prescribed by an outer domain simulated using the Regional Modeling System for Aerosols and Deposition REMSAD (whose domain comprises most of North America). Sulfur dioxide (SO2) and particulate sulfate boundary conditions for the REMSAD domain are provided by the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation Transport (GOCART) model. Concentrations of sulfur dioxide and particulate sulfate at the CMAQ boundary are scaled to observations from monitoring stations of the Clean Air Status and Trends Network (CASTNet) and Interagency Monitoring of Protected Visual Environments (IMPROVE) network. The performance of CMAQ-MADRID is evaluated by comparing predictions with field measurements of the principal components contributing to visibility degradation: salts of ammonium with sulfate and nitrate, organic mass, elemental carbon and "other" particulate matter constituents, e.g. dust, sea salt and metal oxides. Model performance with respect to sulfate predictions, including model performance for its gas-phase precursor, sulfur dioxide, is explored across the thirty-seven stations comprising the BRAVO Network. The performance of CMAQ

  6. Environmental contaminants in prey and tissues of the peregrine falcon in the Big Bend Region, Texas, USA.

    USGS Publications Warehouse

    Mora, M.; Skiles, R.; McKinney, B.; Paredes, M.; Buckler, D.; Papoulias, D.; Klein, D.

    2002-01-01

    Peregrine falcons (Falco peregrinus) have been recorded nesting in Big Bend National Park, Texas, USA and other areas of the Chihuahuan Desert since the early 1900s. From 1993 to 1996, peregrine falcon productivity rates were very low and coincided with periods of low rainfall. However, low productivity also was suspected to be caused by environmental contaminants. To evaluate potential impacts of contaminants on peregrine falcon populations, likely avian and bat prey species were collected during 1994 and 1997 breeding seasons in selected regions of western Texas, primarily in Big Bend National Park. Tissues of three peregrine falcons found injured or dead and feathers of one live fledgling also were analyzed. Overall, mean concentrations of DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], a metabolite of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], were low in all prey species except for northern rough-winged swallows (Stelgidopteryx serripennis, mean = 5.1 microg/g ww). Concentrations of mercury and selenium were elevated in some species, up to 2.5 microg/g dw, and 15 microg/g dw, respectively, which upon consumption could seriously affect reproduction of top predators. DDE levels near 5 microg/g ww were detected in carcass of one peregrine falcon found dead but the cause of death was unknown. Mercury, selenium, and DDE to some extent, may be contributing to low reproductive rates of peregrine falcons in the Big Bend region.

  7. Development of a United States-Mexico Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study.

    PubMed

    Kuhns, Hampden; Knipping, Eladio M; Vukovich, Jeffrey M

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions

  8. Big Bend sees big environmental push

    SciTech Connect

    Blankinship, S.

    2007-10-15

    The 1800 MW Big Bend Power Station is a coal-fired facility in Tampa Bay, Florida, USA owned by Tampa Electric. It has four pulverized coal- fired steam units equipped with FGD scrubbers and electrostatic precipitators. Currently the addition of selective catalytic reduction (SCR) systems is under consideration. The Unit 4 SCR retrofit was completed in June 2007; the remaining three systems are scheduled for completion by 2010. Boiler draft systems will be modified to a balance draft design to accommodate the increased pressure drop of the new systems. 3-D computer models were developed to determine constructability due to the tight clearance at the site. 1 photo.

  9. Sediment Supply Versus Local Hydraulic Controls on Sediment Transport and Storage in the Rio Grande in the Big Bend Region

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Topping, D. J.; Schmidt, J. C.

    2015-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, has a large sediment supply, and a variable hydrology resulting in rapid channel narrowing during years of low mean and peak flow, and channel widening during rare, large-magnitude floods. This dynamic nature makes the Rio Grande a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling channel change. We analyzed a suite of sediment-transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically-based analyses suggest that channel change on the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by sediment supplied to the Rio Grande during flash floods on desert tributaries. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem are the only floods that have the capacity to enlarge the Rio Grande. These floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment-transport analyses show that sand erosion and deposition during long-duration floods are most strongly controlled by the spatial distribution of flow strength as governed by channel slope. However, temporal changes in the grain size and amount of available sand within the channel, as inferred from comprehensive analyses of suspended-sediment concentration and grain size, control the degree of sediment evacuation or accumulation over large spatial scales.

  10. The role of feedback mechanisms in historic channel changes of the lower Rio Grande in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Dean, David J.; Schmidt, John C.

    2011-03-01

    Over the last century, large-scale water development of the upper Rio Grande in the U.S. and Mexico, and of the Rio Conchos in Mexico, has resulted in progressive channel narrowing of the lower Rio Grande in the Big Bend region. We used methods operating at multiple spatial and temporal scales to analyze the rate, magnitude, and processes responsible for channel narrowing. These methods included: hydrologic analysis of historic stream gage data, analysis of notes of measured discharges, historic oblique and aerial photograph analysis, and stratigraphic and dendrogeomorphic analysis of inset floodplain deposits. Our analyses indicate that frequent large floods between 1900 and the mid-1940s acted as a negative feedback mechanism and maintained a wide, sandy, multi-threaded river. Declines in mean and peak flow in the mid-1940s resulted in progressive channel narrowing. Channel narrowing has been temporarily interrupted by occasional large floods that widened the channel, however, channel narrowing has always resumed. After large floods in 1990 and 1991, the active channel width of the lower Rio Grande has narrowed by 36-52%. Narrowing has occurred by the vertical accretion of fine-grained deposits on top of sand and gravel bars, inset within natural levees. Channel narrowing by vertical accretion occurred simultaneously with a rapid invasion of non-native riparian vegetation ( Tamarix spp., Arundo donax) which created a positive feedback and exacerbated the processes of channel narrowing and vertical accretion. In two floodplain trenches, we measured 2.75 and 3.5 m of vertical accretion between 1993 and 2008. In some localities, nearly 90% of bare, active channel bars were converted to vegetated floodplain during the same period. Upward shifts of stage-discharge relations occurred resulting in over-bank flooding at lower discharges, and continued vertical accretion despite a progressive reduction in stream flow. Thus, although the magnitude of the average annual

  11. Big Bend National Park, TX, USA, Mexico

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Sierra del Carmen of Mexico, across the Rio Grande River from Big Bend National Park, TX, (28.5N, 104.0W) is centered in this photo. The Rio Grande River bisects the scene; Mexico to the east, USA to the west. The thousand ft. Boquillas limestone cliff on the Mexican side of the river changes colors from white to pink to lavender at sunset. This severely eroded sedimentary landscape was once an ancient seabed later overlaid with volcanic activity.

  12. From Channel to Floodplain: Geomorphic Transformation of the Rio Grande in the Big Bend Region of Texas, Chihuahua, and Coahuila

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Schmidt, J. C.

    2008-12-01

    Multiple analyses indicate that over the last 17 years on the Rio Grande in Big Bend National Park, a positive feedback mechanism existed between extended base-flows, non-native vegetation invasion, and vertical floodplain accretion which caused rapid channel narrowing and disconnection of the floodplain from the channel. We identified this feedback mechanism using detailed stratigraphic analyses of inset floodplain deposits, dendro-geomorphological analyses of woody vegetation removed from floodplain trenches, hydrologic analyses, and observed shifts in the stage-discharge relation. The active channel width of the Rio Grande has narrowed by 35-50% since 1991. Narrowing has occurred by vertical accretion of fine-grained deposits on top of alternate bars of sand, gravel, and cobbles. These vertically accreting deposits are inset within natural levees. In two long floodplain trenches, we measured 2.75 and 3.5m of vertical accretion, all of which occurred during the past 17 years. In some localities, nearly 90% of bare, active channel bars were converted to vegetated floodplain during the same period. Channel narrowing by vertical accretion coincided with a rapid invasion of non-native riparian vegetation (Tamarix spp., Arundo donax) which increased bank roughness and created a positive feedback of decreased channel capacity, an upward shift of the stage-discharge relation, overbank flooding at lower discharges, and continued vertical accretion. Thus, although peak flows were reduced by 48% and the percent exceedance of both the two-year flood and long- term mean annual flow declined during the past 17 years, overbank flooding continued. These changes reflect a shift in the geomorphic character of the Rio Grande from a wide river with transient channel margins and in-stream geomorphic features to a simple channel with steep, definable, vegetated banks and few bare active geomorphic surfaces.

  13. Mid-Tertiary magmatism in western Big Bend National Park, Texas, U.S.A.: Evolution of basaltic source regions and generation of peralkaline rhyolite

    NASA Astrophysics Data System (ADS)

    Parker, Don F.; Ren, Minghua; Adams, David T.; Tsai, Heng; Long, Leon E.

    2012-07-01

    Tertiary magmatism in the Big Bend region of southwestern Texas spanned 47 to 17 Ma and included representatives of all three phases (Early, Main and Late) of the Trans-Pecos magmatic province. Early phase magmatism was manifested in the Alamo Creek Basalt, an alkalic lava series ranging from basalt to benmoreite, and silicic alkalic intrusions of the Christmas Mountains. Main phase magmatism in the late Eocene/early Oligocene produced Bee Mountain Basalt, a lava series ranging from hawaiite and potassic trachybasalt to latite, widespread trachytic lavas of Tule Mountain Trachyte and silicic rocks associated with the Pine Mountain Caldera in the Chisos Mountains. Late main phase magmatism produced trachyte lava and numerous dome complexes of peralkaline Burro Mesa Rhyolite (~ 29 Ma) in western Big Bend National Park. Late stage basaltic magmatism is sparsely represented by a few lavas in the Big Bend Park area, the adjacent Black Gap area and, most notably, in the nearby Bofecillos Mountains, where alkalic basaltic rocks were emplaced as lava and dikes concurrent with active normal faulting. Trace element modeling, Nd isotope ratios and calculated depths of segregation for estimated ancestral basaltic magmas suggest that Alamo Creek basalts (ɛNdt ~ 6.15 to 2.33) were derived from depths (~ 120 to 90 km) near the lithosphere/asthenosphere boundary at temperatures of ~ 1600 to1560 °C, whereas primitive Bee Mountain basalts (ɛNdt ~ 0.285 to - 1.20) may have been segregated at shallower depths (~ 80 to 50 km) and lower temperatures (~ 1520 to 1430 °C) within the continental lithosphere. Nb/La versus Ba/La plots suggest that all were derived from OIB-modified continental lithosphere. Late stage basaltic rocks from the Bofecillos Mountains may indicate a return to source depths and temperatures similar to those calculated for Alamo Creek Basalt primitive magmas. We suggest that a zone of melting ascended into the continental lithosphere during main-phase activity and

  14. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  15. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  16. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  17. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  18. 36 CFR 7.41 - Big Bend National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...

  19. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA.

    PubMed

    Gray, John E; Theodorakos, Peter M; Fey, David L; Krabbenhoft, David P

    2015-02-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8-11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03-0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9-14 ng/L) were generally higher than those found in springs and wells (0.05-3.1 ng/L), baseline streams (1.1-9.7 ng/L), and sources of drinking water (0.63-9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690-82,000 ng/m(3)) were highly elevated compared to soil gas collected from baseline sites (1.2-77 ng/m(3)). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9-64 ng/m(3)) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air within a few meters of the

  20. Mercury concentrations and distribution in soil, water, mine waste leachates, and air in and around mercury mines in the Big Bend region, Texas, USA

    USGS Publications Warehouse

    Gray, John E.; Theodorakos, Peter M.; Fey, David L.; Krabbenhoft, David P.

    2015-01-01

    Samples of soil, water, mine waste leachates, soil gas, and air were collected from areas mined for mercury (Hg) and baseline sites in the Big Bend area, Texas, to evaluate potential Hg contamination in the region. Soil samples collected within 300 m of an inactive Hg mine contained elevated Hg concentrations (3.8–11 µg/g), which were considerably higher than Hg in soil collected from baseline sites (0.03–0.05 µg/g) distal (as much as 24 km) from mines. Only three soil samples collected within 300 m of the mine exceeded the probable effect concentration for Hg of 1.06 µg/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of Hg in mine water runoff (7.9–14 ng/L) were generally higher than those found in springs and wells (0.05–3.1 ng/L), baseline streams (1.1–9.7 ng/L), and sources of drinking water (0.63–9.1 ng/L) collected in the Big Bend region. Concentrations of Hg in all water samples collected in this study were considerably below the 2,000 ng/L drinking water Hg guideline and the 770 ng/L guideline recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic wildlife from chronic effects of Hg. Concentrations of Hg in water leachates obtained from leaching of mine wastes varied widely from <0.001 to 760 µg of Hg in leachate/g of sample leached, but only one leachate exceeded the USEPA Hg industrial soil screening level of 31 µg/g. Concentrations of Hg in soil gas collected at mined sites (690–82,000 ng/m3) were highly elevated compared to soil gas collected from baseline sites (1.2–77 ng/m3). However, air collected from mined areas at a height of 2 m above the ground surface contained concentrations of Hg (4.9–64 ng/m3) that were considerably lower than Hg in soil gas from the mined areas. Although concentrations of Hg emitted from mine-contaminated soils and mine wastes were elevated, persistent wind in southwest Texas disperses Hg in the air

  1. Geologic map of Big Bend National Park, Texas

    USGS Publications Warehouse

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  2. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: insights on geomorphic controls and post-flood geomorphic response

    USGS Publications Warehouse

    Dean, David J.; Schmidt, John C.

    2013-01-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic

  3. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California

    USGS Publications Warehouse

    Fitzenz, D.D.; Miller, S.A.

    2004-01-01

    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  4. Preliminary survey of the mayflies (Ephemeroptera) and caddisflies (Trichoptera) of Big Bend Ranch State Park and Big Bend National Park

    PubMed Central

    Baumgardner, David E.; Bowles, David E.

    2005-01-01

    The mayfly (Insecta: Ephemeroptera) and caddisfly (Insecta: Trichoptera) fauna of Big Bend National Park and Big Bend Ranch State Park are reported based upon numerous records. For mayflies, sixteen species representing four families and twelve genera are reported. By comparison, thirty-five species of caddisflies were collected during this study representing seventeen genera and nine families. Although the Rio Grande supports the greatest diversity of mayflies (n=9) and caddisflies (n=14), numerous spring-fed creeks throughout the park also support a wide variety of species. A general lack of data on the distribution and abundance of invertebrates in Big Bend National and State Park is discussed, along with the importance of continuing this type of research. PMID:17119610

  5. Thrust-induced collapse of mountains-an example from the "Big Bend" region of the San Andreas Fault, western transverse ranges, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2005-01-01

    Mount Pinos and Frazier Mountain are two prominent mountains just south of the San Andreas fault in the western Transverse Ranges of southern California, a region that has undergone rapid Quaternary contraction and uplift. Both mountains are underlain, at least in part, by thrusts that place granitic and gneissic rocks over sedimentary rocks as young as Pliocene. Broad profiles and nearly flat summits of each mountain have previously been interpreted as relicts of a raised erosion surface. However, several features bring this interpretation into question. First, lag or stream gravels do not mantle the summit surfaces. Second, extensive landslide deposits, mostly pre?Holocene and deeply incised, mantle the flanks of both mountains. Third, a pervasive fracture and crushed?rock network pervades the crystalline rocks underlying both mountains. The orientation of the fractures, prominent in roadcuts on Mount Pinos, is essentially random. 'Hill?and?saddle' morphology characterizes ridges radiating from the summits, especially on Mount Pinos; outcrops are sparse on the hills and are nonexistent in the saddles, suggesting fractures are concentrated in the saddles. Latest movement on the thrusts underlying the two mountain massifs is probably early Quaternary, during which the mountains were uplifted to considerably higher (although unknown) elevations than at present. A model proposes that during thrusting, ground accelerations in the hanging wall, particularly near thrust tips, were high enough to pervasively fracture the hanging?wall rocks, thereby weakening them and producing essentially an assemblage of loose blocks. Movement over flexures in the fault surface accentuated fracturing. The lowered shear stresses necessary for failure, coupled with deep dissection and ongoing seismic activity, reduced gravitational potential by spreading the mountain massifs, triggering flanking landslides and producing broad, flat?topped mountains. This study developed from mapping in

  6. Further assessment of environmental contaminants in avian prey of the peregrine falcon in big bend National Park, Texas

    USGS Publications Warehouse

    Mora, M.A.; Skiles, R.S.; Paredes, M.

    2007-01-01

    A small resident population of peregrine falcons (Falco peregrinus anatum) in the Big Bend region of Texas has suffered reproductive failures since 1990. To continue our assessment of the effects of environmental contaminants on the peregrine falcon, we collected representative avian prey species during 2001 at Mariscal Canyon, Big Bend National Park. The avian carcasses were analyzed for inorganic and organochlorine contaminants. Concentrations of Se and Hg were present at high levels (up to 11 and 2.2 ??g/g dry weight, respectively) in some avian prey and could be implicated in reproductive failures of the peregrine falcon in Big Bend National Park. All other inorganic elements were below concentrations known to affect reproduction or to be associated with other deleterious effects in birds. Of all the organochlorines analyzed, only DDE and total PCBs were present above detection limits in all species, although at low concentrations. Our study provides further support to the hypothesis that contaminants in potential avian prey of the peregrine falcon in the Big Bend region are implicated in the productivity failures observed in this species since 1990.

  7. Viscoelastic coupling model of the San Andreas fault along the big bend, southern California

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1997-01-01

    The big bend segment of the San Andreas fault is the 300-km-long segment in southern California that strikes about N65??W, roughly 25?? counterclockwise from the local tangent to the small circle about the Pacific-North America pole of rotation. The broad distribution of deformation of trilateration networks along this segment implies a locking depth of at least 25 km as interpreted by the conventional model of strain accumulation (continuous slip on the fault below the locking depth at the rate of relative plate motion), whereas the observed seismicity and laboratory data on fault strength suggest that the locking depth should be no greater than 10 to 15 km. The discrepancy is explained by the viscoelastic coupling model which accounts for the viscoelastic response of the lower crust. Thus the broad distribution of deformation observed across the big bend segment can be largely associated with the San Andreas fault itself, not subsidiary faults distributed throughout the region. The Working Group on California Earthquake Probabilities [1995] in using geodetic data to estimate the seismic risk in southern California has assumed that strain accumulated off the San Andreas fault is released by earthquakes located off the San Andreas fault. Thus they count the San Andreas contribution to total seismic moment accumulation more than once, leading to an overestimate of the seismicity for magnitude 6 and greater earthquakes in their Type C zones.

  8. Geologic map of the Chisos Mountains, Big Bend National Park, Texas

    USGS Publications Warehouse

    Bohannon, Robert G.

    2011-01-01

    The Chisos Mountains form some of the highest ground in Texas, second only to Guadalupe Peak near the New Mexico border. The northern half of the range is mostly above 5,500 feet with Emory Peak the high point at 7,825 feet. The mountains are centrally located in Big Bend National Park between Panther Junction and Punta de la Sierra. Big Bend National Park lies near the diffuse border between the Great Plains Province to the northeast and the Sonoran section of the Basin-and-Range structural province to the west and southwest. These geologically unique regions are distinguished from one another by large differences in their landscape and by the amount and style of internal structural deformation. The Great Plains Province is characterized by flat-lying or gently dipping sedimentary strata, low topographic relief, shallow stream valleys, and by a general lack of faulting. Very little active deposition is occurring on the plains, except in the bottoms of active stream valleys. In southwestern Texas the plains stand at average elevations of 2,000 to 3,300 feet and slope gently east toward the Mississippi River and the Gulf of Mexico. The Great Plains have remained relatively unchanged for the last 65 million years, except that they have been uplifted to their present height from lower elevations probably in the last 5 million years. The Basin-and-Range province is characterized by linear parallel mountain ranges, deep sediment-filled valleys, and high structural and topographic relief. The eastern part of the province is at a slightly higher average elevation than the plains. The province is known for its complex patterns of Cenozoic faulting. Today it bears little resemblance to the way it was during the Paleocene when the entire Trans-Pecos region was a simple lowland that was near or slightly below sea level.

  9. Development of Competency-Based Articulated Automotive Program. Big Bend Community College and Area High Schools. Final Report.

    ERIC Educational Resources Information Center

    Buche, Fred; Cox, Charles

    A competency-based automotive mechanics curriculum was developed at Big Bend Community College (Washington) in order to provide the basis for an advanced placement procedure for high school graduates and experienced adults through a competency assessment. In order to create the curriculum, Big Bend Community College automotive mechanics…

  10. Stable isotope and trace element studies of black bear hair, Big Bend ecosystem, Texas and Mexico

    USGS Publications Warehouse

    Shanks, W.C. Pat; Hellgren, Eric C.; Stricker, Craig A.; Gemery-Hill, Pamela A.; Onorato, David P.

    2008-01-01

    Hair from black bears (Ursus americanus), collected from four areas in the Big Bend ecosystem, has been analyzed for stable isotopes of carbon, nitrogen, and sulfur to determine major food sources and for trace metals to infer possible effects of environmental contaminants. Results indicate that black bears are largely vegetarian, feeding on desert plants, nuts, and berries. Mercury concentrations in bear hair are below safe level standards (

  11. Results of High Velocity Tests at Tampa Electric Company`s Big Bend 4 FGD System.

    SciTech Connect

    DeKraker, D.P.

    1997-10-15

    Test were conducted at the Big Bend Station to determine the feasibility of scrubbing gas from an additional boiler in the existing FGD system. Testing was accomplished by increasing the gas flow from the D absorber tower and measuring the performance of this module. Key performance aspects evaluated during the testing include mist eliminator performance, SO2 removal efficiency, oxidation of absorbed SO2, and limestone utilization.

  12. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California

    USGS Publications Warehouse

    Kellogg, K.S.; Minor, S.A.

    2005-01-01

    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  13. Historic topographic sheets to satellite imagery—A methodology for evaluating coastal change in Florida's Big Bend tidal marsh

    USGS Publications Warehouse

    Raabe, Ellen A.; Streck, Amy E.; Stumpf, Richard P.

    2004-01-01

    This open-file report details the methodology used to rectify, digitize, and mosaic nineteen 19th century topographic sheets on the marsh-dominated Big Bend Gulf coast of Florida. Historic charts of tidal marshes in Florida's Big Bend were prepared in a digital grid-based format for comparison with modern features derived from 1995 satellite imagery. The chart-by-chart rectification process produced a map accuracy of ± 8 m. An effort was made to evaluate secondary map features, such as tree islands, but changes during the intervening years exceed standard surveying errors and rendered the analysis ineffective. A map, at 1:300,000 comparing historic and modern features, is provided to illustrate major changes along the coastline. Shoreline erosion is exceeded by the inland migration of the intertidal zone onto adjoining coastal forest lands. While statements of mapping accuracy are provided in the text, graphic representation of changes in the intertidal zone may be inexact at any given location. Thus caution is advised for site-specific applications. Maps and digital files provided should be used to visualize overall trends and regional anomalies, and not used to critically assess features at a particular location. Final product includes mosaic of historic coastal features and comparison to modern features.

  14. Crustal velocity field near the big bend of California's San Andreas fault

    USGS Publications Warehouse

    Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.

    1996-01-01

    We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.

  15. Integrated Geologic, Geochemical, and Geophysical Studies of Big Bend National Park, Texas

    USGS Publications Warehouse

    Gray, John E.; Finn, Carol A.; Morgan, Lisa A.; Page, William R.; Shanks, Wayne C.

    2007-01-01

    Introduction Big Bend National Park (BBNP), Texas, covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mi (190-km) stretch of the Rio Grande at the United States border with Mexico. The U.S. Geological Survey (USGS) began a 5-year project in 2003 with the objective of studying a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP. This fact sheet describes results of some of the research by USGS scientists working in BBNP.

  16. Vertical landscraping, a big regionalism for Dubai.

    PubMed

    Wilson, Matthew

    2010-01-01

    Dubai's ecologic and economic complications are exacerbated by six years of accelerated expansion, a fixed top-down approach to urbanism and the construction of iconic single-phase mega-projects. With recent construction delays, project cancellations and growing landscape issues, Dubai's tower typologies have been unresponsive to changing environmental, socio-cultural and economic patterns (BBC, 2009; Gillet, 2009; Lewis, 2009). In this essay, a theory of "Big Regionalism" guides an argument for an economically and ecologically linked tower typology called the Condenser. This phased "box-to-tower" typology is part of a greater Landscape Urbanist strategy called Vertical Landscraping. Within this strategy, the Condenser's role is to densify the city, facilitating the creation of ecologic voids that order the urban region. Delineating "Big Regional" principles, the Condenser provides a time-based, global-local urban growth approach that weaves Bigness into a series of urban-regional, economic and ecological relationships, builds upon the environmental performance of the city's regional architecture and planning, promotes a continuity of Dubai's urban history, and responds to its landscape issues while condensing development. These speculations permit consideration of the overlooked opportunities embedded within Dubai's mega-projects and their long-term impact on the urban morphology.

  17. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  18. Large-scale habitat associations of four desert anurans in Big Bend National Park, Texas

    USGS Publications Warehouse

    Dayton, Gage H.; Jung, R.E.; Droege, S.

    2004-01-01

    We used night driving to examine large scale habitat associations of four common desert anurans in Big Bend National Park, Texas. We examined association of soil types and vegetation communities with abundance of Couch's Spadefoots (Scaphiopus couchii), Red-spotted Toads (Bufo punctatus), Texas Toads (Bufo speciosus), and Western Green Toads (Bufo debilis). All four species were disproportionately associated with frequently inundated soils that are relatively high in clay content. Bufo punctatus was associated with rocky soil types more frequently than the other three species. Association between all four species and vegetation types was disproportionate in relation to availability. Bufo debilis and Bufo punctatus were associated with creosote and mixed scrub vegetation. Bufo speciosus and Scaphiopus couchii were associated with mesquite scrub vegetation. Bufo debilis, Scaphiopus couchii, and B. speciosus were more tightly associated with specific habitat types, whereas B. punctatus exhibited a broader distribution across the habitat categories. Examining associations between large-scale habitat categories and species abundance is an important first step in understanding factors that influence species distributions and presence-absence across the landscape.

  19. EPA Regional Administrator Highlights the Benefits of Reducing Food Waste in South Bend

    EPA Pesticide Factsheets

    (SOUTH BEND, IND. - November 5, 2015) U.S. Environmental Protection Agency Regional Administrator Susan Hedman joined South Bend Mayor Pete Buttigieg today at Ivy Tech Community College's culinary school to highlight the benefits of diverting food waste fr

  20. Evaluation of canoe surveys for anurans along the Rio Grande in Big Bend National Park, Texas

    USGS Publications Warehouse

    Jung, R.E.; Bonine, K.E.; Rosenshield, M.L.; de la Reza, A.; Raimondo, S.; Droege, S.

    2002-01-01

    Surveys for amphibians along large rivers pose monitoring and sampling problems. We used canoes at night to spotlight and listen for anurans along four stretches of the Rio Grande in Big Bend National Park, Texas, in 1998 and 1999. We explored temporal and spatial variation in amphibian counts and species richness and assessed relationships between amphibian counts and environmental variables, as well as amphibian-habitat associations along the banks of the Rio Grande. We documented seven anuran species, but Rio Grande leopard frogs (Rana berlandieri) accounted for 96% of the visual counts. Chorus surveys along the river detected similar or fewer numbers of species, but orders of magnitude fewer individuals compared to visual surveys. The number of species varied on average by 37% across monthly and nightly surveys. We found similar average coefficients of variation in counts of Rio Grande leopard frogs on monthly and nightly bases (CVs = 42-44%), suggesting that canoe surveys are a fairly precise technique for counts of this species. Numbers of Rio Grande leopard frogs observed were influenced by river gage levels and air and water temperatures, suggesting that surveys should be conducted under certain environmental conditions to maximize counts and maintain consistency. We found significant differences in species richness and bullfrog (Rana catesbeiana) counts among the four river stretches. Four rare anuran species were found along certain stretches but not others, which could represent either sampling error or unmeasured environmental or habitat differences among the river stretches. We found a greater association of Rio Grande leopard frogs with mud banks compared to rock or cliff (canyon) areas and with seepwillow and open areas compared to giant reed and other vegetation types. Canoe surveys appear to be a useful survey technique for anurans along the Rio Grande and may work for other large river systems as well.

  1. Stratigraphic, sedimentologic, and dendrogeomorphic analyses of rapid floodplain formation along the Rio Grande in Big Bend National Park, Texas

    USGS Publications Warehouse

    Dean, D.J.; Scott, M.L.; Shafroth, P.B.; Schmidt, J.C.

    2011-01-01

    The channel of the lower Rio Grande in the Big Bend region rapidly narrows during years of low mean and peak flow. We conducted stratigraphic, sedimentologic, and dendrogeomorphic analyses within two long floodplain trenches to precisely reconstruct the timing and processes of recent floodplain formation. We show that the channel of the Rio Grande narrowed through the oblique and vertical accretion of inset floodplains following channel-widening floods in 1978 and 1990-1991. Vertical accretion occurred at high rates, ranging from 16 to 35 cm/yr. Dendrogeomorphic analyses show that the onset of channel narrowing occurred during low-flow years when channel bars obliquely and vertically accreted fine sediment. This initial stage of accretion occurred by both bedload and suspended-load deposition within the active channel. Vegetation became established on top of these fine-grained deposits during years of low peak flow and stabilized these developing surfaces. Subsequent deposition by moderate floods (between 1.5 and 7 yr recurrence intervals) caused additional accretion at rapid rates. Suspended-sediment deposition was dominant in the upper deposits, resulting in the formation of natural levees at the channel margins and the deposition of horizontally bedded, fining-upward deposits in the floodplain trough. Overall, channel narrowing and floodplain formation occurred through an evolution from active-channel to floodplain depositional processes. High-resolution dendrogeomorphic analyses provide the ability to specifically correlate the flow record to the onset of narrowing, the establishment of riparian vegetation, the formation of natural levees, and ultimately, the conversion of portions of the active channel to floodplains. ?? 2011 Geological Society of America.

  2. Volcanic and magmatic evolution of a small trachytic vent complex, north Burro Mesa, Big Bend National Park, Texas

    USGS Publications Warehouse

    Morgan, Lisa A.; Shanks, Pat

    2009-01-01

    Volcanic rocks exposed on the northern end of Burro Mesa in Big Bend National Park portray the evolution of an Oligocene central volcanic vent complex that produced two generations of welded block and ash deposits associated with 1) initial dome collapse and 2) subsequent central spine collapse. Peripheral to the vent complex, isolated breccia deposit exposures overlie ignimbrites, tephras, and lavas. These blocks are a few meters to several hundred meters long and 30 m high and consist of monolithic angular and welded trachytic lava clasts in finer-grained matrix. Rheomorphic structures in the breccia deposit show ductile deformation and suggest it formed while above the glass transition temperature.

  3. Plant dieback under exceptional drought driven by elevation, not by plant traits, in Big Bend National Park, Texas, USA

    PubMed Central

    Waring, Elizabeth F.

    2014-01-01

    In 2011, Big Bend National Park, Texas, USA, experienced the most severe single year drought in its recorded history, resulting in significant plant mortality. We used this event to test how perennial plant response to drought varied across elevation, plant growth form and leaf traits. In October 2010 and October 2011, we measured plant cover by species at six evenly-spaced elevations ranging from Chihuahuan desert (666 m) to oak forest in the Chisos mountains (1,920 m). We asked the following questions: what was the relationship between elevation and stem dieback and did susceptibility to drought differ among functional groups or by leaf traits? In 2010, pre-drought, we measured leaf mass per area (LMA) on each species. In 2011, the percent of canopy dieback for each individual was visually estimated. Living canopy cover decreased significantly after the drought of 2011 and dieback decreased with elevation. There was no relationship between LMA and dieback within elevations. The negative relationship between proportional dieback and elevation was consistent in shrub and succulent species, which were the most common growth forms across elevations, indicating that dieback was largely driven by elevation and not by species traits. Growth form turnover did not influence canopy dieback; differences in canopy cover and proportional dieback among elevations were driven primarily by differences in drought severity. These results indicate that the 2011 drought in Big Bend National Park had a large effect on communities at all elevations with average dieback for all woody plants ranging from 8% dieback at the highest elevation to 83% dieback at lowest elevations. PMID:25083346

  4. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false South Bend-Elkhart (Indiana)-Benton... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region. The South Bend-Elkhart (Indiana)-Benton...

  5. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false South Bend-Elkhart (Indiana)-Benton... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region. The South Bend-Elkhart (Indiana)-Benton...

  6. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false South Bend-Elkhart (Indiana)-Benton... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region. The South Bend-Elkhart (Indiana)-Benton...

  7. Constructing a near-continuous suspended-sediment budget using acoustic instrumentation on the Rio Grande in Big Bend National Park, USA

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Topping, D. J.; Griffiths, R. E.; Sabol, T. A.; Schmidt, J. C.; Bennett, J. B.

    2013-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, is in disequilibrium. The river in this reach rapidly narrows during low-flow years, and widens during rare, large magnitude floods. One management strategy to improve in-channel habitat for the native ecosystem is to limit the rate and magnitude of channel narrowing during low-flow years through water releases from re-operated upstream dams. The proposed purpose of these dam re-operations is to maximize fine-sediment transport downstream, thereby limiting fine-sediment deposition and channel narrowing. This management strategy requires extensive knowledge of the quantity of fine-sediment supplied to the river channel, the predominant source areas of the supplied sediment, and the suspended-sediment transport dynamics over a range of flow magnitudes and durations. To address these issues, a near-continuous suspended-sediment monitoring program consisting of two suspended-sediment gages was established at two sites in Big Bend National Park, Texas. Suspended-sediment gages consist of two single-frequency sideways-looking acoustic-Doppler profilers that collect data at 15-minute intervals. Acoustic attenuation is used to calculate silt-and-clay concentration, and acoustic backscatter adjusted for silt-and-clay concentration is used to calculate sand concentration in two size classes. Acoustic attenuation and backscatter are calibrated using standard depth-integrated samples and cross-section-calibrated automatic pump samples. Two types of floods affect the sediment budgets of the Rio Grande in Big Bend National Park, long-duration releases from upstream dams and short-duration flash floods originating in tributaries upstream or between the gages. Initial analyses of suspended-sediment dynamics during long-duration dam releases show that dam releases have the potential to export fine sediment from the national park reach. Dam releases transported approximately 8% of the total silt

  8. Near-continuous suspended sediment monitoring of the Rio Grande using multi-frequency acoustic instrumentation in Big Bend National Park, USA

    NASA Astrophysics Data System (ADS)

    Dean, D. J.; Topping, D. J.; Schmidt, J. C.; Sabol, T. A.; Griffiths, R. E.

    2011-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, is in disequilibrium. The river in this reach rapidly narrows during low-flow years, and widens during rare, large magnitude floods. One management strategy to improve in-channel habitat for the native ecosystem is to limit the rate and magnitude of channel narrowing during low-flow years through water releases from re-operated upstream dams. The proposed purpose of these dam re-operations is to maximize fine-sediment transport downstream, thereby limiting fine-sediment deposition within the channel and channel narrowing. A suspended-sediment monitoring program consisting of two suspended-sediment gages was established in November 2010 at two sites in Big Bend National Park (BBNP), Texas, to inform these management efforts. Suspended-sediment gages consist of two single-frequency sideways-looking acoustic-Doppler profilers that collect data at 15-minute intervals. Acoustic attenuation is used to calculate silt-and-clay concentration, and acoustic backscatter is used to calculate sand concentration in two size classes. Acoustic attenuation and backscatter are calibrated to velocity-weighted suspended silt-and-clay and sand concentrations in the cross sections near the acoustic instrumentation by using standard depth-integrating samplers deployed according to the Equal-Width-Increment (EWI) method. During flood periods, when depth-integrated samples cannot be collected, automatic pump samplers collect suspended-sediment samples to augment the EWI dataset. Initial analyses indicate that steady, long-duration dam releases are able to transport a consistent load of silt and clay through the study reach in BBNP. However, when tributary flash floods are superimposed on dam releases, the large influx of silt and clay from these tributary floods is not transported through the study reach, even though discharge remains high. When tributary flash floods occur during low-flow periods on

  9. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    USGS Publications Warehouse

    Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  10. Sedimentology and depositional history of Neogene gravel deposits in lower Tornillo Creek area of Big Bend National Park, Texas

    SciTech Connect

    Thurwachter, J.E.

    1984-04-01

    Neogene gravel deposits in the lower Tornillo Creek area of Big Bend National Park, Texas, record the filling of a small structural basin formed during Basin and Range tectonism. Four lithofacies are recognized in the Late Miocene La Noria member (informal name): (1) a medial braided-stream lithofacies consisting of upward-fining packages of cross-bedded gravel, sandstone, and siltstone; (2) a distal braided-stream lithofacies consisting of poorly-defined upward-fining packages of fine gravel, sandstone, and mudstone; (3) a calcrete-rich gravel and sandstone lithofacies representing strike-valley and alluvial-fan deposition, and (4) and ephemeral lake-plain lithofacies consisting of massive and burrowed mudstones with sheet-like sandstone interbeds. Upward-fining packages in the braided-stream lithofacies represent the lateral migration and avulsion of the stream tract across the basin; together with the strike-valley and alluvial-fan deposits, these record the initial stages of basin filling. Provenance studies show that much of this sediment was derived from northern Mexico. Overlying ephemeral-lake deposits record the structural tilting and closing of the downstream (north) end of the basin. Gravels and minor sandstones of the Pleistocene Estufa member (informal name) represent basinward progradation of alluvial fans. Deposition of the Estufa member resulted from: (1) Quaternary tectonic activity in the Chisos Mountains area; (2) lowering of local base level by post-Miocene development of the Rio Grande drainage through the area; and (3) Pleistocene pluvial-period climatic changes. Subsequent Quaternary faulting has caused minor deformation of the deposits.

  11. Eruptive vents for the Burro Mesa Rhyolite, Big Bend National Park, Trans-Pecos Texas

    SciTech Connect

    Holt, G.S.; Parker, D.F. . Dept. of Geology)

    1993-02-01

    Detailed mapping of field relations and flow direction of the Burro Mesa Rhyolite (BMR) have identified vent localities at Burro Mesa, Kit Mountain, Cerro Castellan, Trap Mountain, and Goat Mountain, and the suggest the presence of additional, as yet unlocated, centers of eruption. This work confirms recent interpretations that BMR rocks were not erupted from the Pine Canyon caldera, but were instead erupted from isolated feeder localities in the Burro Mesa-Cerro Castellan area. At the Burro Mesa locality, the BMR contains a lower sparsely-porphyritic lava, a central porphyritic ash-flow tuff, and an upper abundantly-porphyritic lava. At all other mapped localities, only sparsely-porphyritic lava and Wasp Springs Flow Breccia (WSFB) are present. Two vents at Burro Mesa represent sources for separate BMR flows, as well as WSFB, which consists of numerous surge deposits with interbedded ash-flow tuff. Flow directional data suggests a third unlocated vent for abundantly-porphyritic lava in the SE region of Burro Mesa. Flow direction data also suggest that the SW end of Kit Mountain was a source for sparsely-porphyritic lava. A feeder dike at Cerro Castellan cuts up through the WSFB, flaring near the top into a volcanic dome of sparsely-porphyritic lava at the top of the mountain. This cross-cutting relationship was present at most vent localities. Mapping and flow direction data of BMR from vents and other localities suggest that the BMR consists of a discontinuous belt of individual domes, which trend in a southwesterly direction from Burro Mesa to Cerro Castellan.

  12. Aeromagnetic mapping of the structure of Pine Canyon caldera and Chisos Mountains intrusion, Big Bend National Park, Texas

    USGS Publications Warehouse

    Drenth, B.J.; Finn, C.A.

    2007-01-01

    Analysis of aeromagnetic and gravity data reveals new details of the structure, igneous geology, and temporal evolution of the prominent, enigmatic ca.32 Ma Pine Canyon caldera and the Chisos Mountains (Big Bend National Park, Texas). The main caldera-filling Pine Canyon Rhyolite, the oldest member of the South Rim Formation, is reversely magnetized, allowing it to be used as a key marker bed for determining caldera fill thickness. Modeling of gravity and magnetic anomalies indicates that the Pine Canyon Rhyolite is probably thicker in the northeastern part of the caldera. Lineaments in the magnetic data suggest the presence of buried faults beneath the caldera that may have led to increased downdrop in the northeast versus the southwest, allowing a thicker section of caldera fill to accumulate there. The Pine Canyon caldera has been interpreted as a downsag caldera because it lacks surficial faulting, so these inferred faults are the first mapped features there that could be responsible for caldera collapse. The caldera boundary correlates well with the margins of a gravity low. General features of the caldera match well with basic models of downsag calderas, meaning that the Pine Canyon caldera may be a classic example of downsagging, of which few well-described examples exist, in terms of a geophysical signature. The source of a long-wavelength magnetic high over the Chisos Mountains is interpreted as a previously unknown broad intrusion, the long axis of which trends parallel to a major crustal boundary related to the Ouachita orogeny or an even earlier Precambrian margin. This feature represents the largest intrusion (28-34 km diameter, 1-4 km thick, 700-3000 km3 in volume) in an area where relatively small laccoliths are ubiquitous. The intrusion most likely represents a long-lived (>1 m.y.) reservoir replenished by small batches of magma of varying composition, as reflected in the variation of eruptive products from the Pine Canyon and Sierra Quemada

  13. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    SciTech Connect

    Shiheido, Hirokazu Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  14. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3.

  15. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics

    USGS Publications Warehouse

    Sophocleous, M.

    1992-01-01

    The results of a 6 year recharge study in the Great Bend Prairie of central Kansas are statistically analyzed to regionalize the limited number of site-specific but year-round measurements. Emphasis is placed on easily measured parameters and field-measured data. The results of the statistical analysis reveal that a typical recharge event in central Kansas lasts 5-7 days, out of which 3 or 4 days are precipitation days with total precipitation of ??? 83 mm. The maximum soil-profile water storage and the maximum groundwater level resulting from the recharge event exhibit the lowest coefficients of variation, whereas the amount of recharge exhibits the highest coefficient of variation. The yearly recharge in the Great Bend Prairie ranged from 0 to 177 mm with a mean of 56 mm. Most of the recharge events occur during the months of April, May, and June, which coincide with the months of highest precipitation in the region. A multiple regression analysis revealed that the most influential variables affecting recharge are, in order of decreasing importance, total annual precipitation average maximum soil-profile water storage during the spring months, average shallowest depth to water table during the same period, and spring rainfall rate. Classification methods, whereby relatively homogeneous hydrologic-unit areas based on the four recharge-affecting variables are identified, were combined with a Geographic Information Systems (ARC/INFO) overlay analysis to derive an area-wide map of differing recharge regions. This recharge zonation is in excellent agreement with the field-site recharge values. The resulting area-weighted average annual recharge for the region is 36 mm. ?? 1992.

  16. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation.

    PubMed

    Saksouk, Nehmé; Barth, Teresa K; Ziegler-Birling, Celine; Olova, Nelly; Nowak, Agnieszka; Rey, Elodie; Mateos-Langerak, Julio; Urbach, Serge; Reik, Wolf; Torres-Padilla, Maria-Elena; Imhof, Axel; Déjardin, Jérome; Simboeck, Elisabeth

    2014-11-20

    Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin.

  17. Thermochronology of mid-Cretaceous dioritic granulites adjacent "Big Bend" in Australia-Pacific plate boundary, northern South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sagar, M.; Seward, D.; Heizler, M. T.; Palin, J. M.; Toy, V. G.; Tulloch, A. J.

    2012-12-01

    The Western Fiordland Orthogneiss (WFO), situated south-east of the Australian-Pacific plate boundary (Alpine Fault), southern South Island, New Zealand is the largest suite of plutonic rocks intruded into the Pacific margin of Gondwana during the final stages of arc plutonism preceding break-up of the supercontinent in the Late Cretaceous. Dextral motion of c. 480 km along the Alpine Fault during the Cenozoic has offset originally contiguous Pacific Gondwana margin rocks in northern and southern South Island. The Glenroy Complex in northern South Island, west of the Alpine Fault is dominated by two-pyroxene+hornblende granulite facies monzodioritic gneisses. U-Pb zircon geochronological and geochemical data indicate the Glenroy Complex was emplaced between 128-122 Ma and is a correlative of the WFO. The Glenroy Complex forms the lower-most block bounded by an east-dipping set of imbricate thrusts that developed during the late Cenozoic to the west of the largest S-shaped restraining bend ("Big Bend") in the Alpine Fault. New 40Ar/39Ar and fission-track thermochronological data, combined with previous geological field-mapping, demonstrate that the Glenroy Complex cooled rapidly (c. 30° C/Ma) after emplacement and granulite facies metamorphism (c. 850°C) at c. 120 Ma, through c. 550 °C by c. 110-100 Ma. The average cooling rate during the Late Cretaceous-Cenozoic was relatively slow, and initial exposure in the late Early Miocene (c. 16 Ma) was followed by reburial to c. 3-4 km (c. 80-100 °C) before final exhumation post-Pliocene. This thermal history is similar to the WFO, which cooled rapidly through c. 350 °C during mid-Cretaceous continental extension, followed by slow cooling during the Late Cretaceous and Cenozoic until development of the Australian-Pacific boundary through New Zealand facilitated rapid, exhumation-related cooling from c. 240 °C at c. 20 Ma and final exhumation post-10 Ma (Davids, 1999). However, the Glenroy Complex cooled at a faster

  18. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton... (Michigan) Interstate Air Quality Control Region consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial area of...

  19. 40 CFR 81.73 - South Bend-Elkhart (Indiana)-Benton Harbor (Michigan) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.73 South Bend-Elkhart (Indiana)-Benton... (Michigan) Interstate Air Quality Control Region consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial area of...

  20. Earthquake Shakes ``Big Bend'' Region of North America-Caribbean Boundary Zone

    NASA Astrophysics Data System (ADS)

    Mann, Paul; Calais, Eric; Huerfano, Victor

    2004-02-01

    At 12:45 pm on 22 September, a M6.5 earthquake severely shook the northern Dominican Republic on the island of Hispaniola. The earthquake caused extensive damage to buildings in the major cities of Puerto Plata and Santiago, along with landslides in outlying areas. The main shock was followed by a large aftershock of M5.1 1 hr and 45 min later. Unfortunately, one person died due to collapse of a building during the main shock, two elderly people died of heart attacks, and one person jumped out of a building and later died of injuries. Fortunately, two partially collapsed school buildings and several office buildings in Puerto Plata that were severely damaged were unoccupied at the time of the early morning main shock. Aftershocks ranging up to nearly M5 continued for over a month, alarming local inhabitants. The M6.5 earthquake is the strongest shock to affect the northern Dominican Republic since a series of thrust events ranging from M6.1-8.1 occurred offshore and northeast of the Dominican Republic between 1943 and 1953 [Dolan and Wald, 1998]. This article summarizes the tectonic setting of the recent earthquake, its focal mechanism and inferred fault plane, damage, and ongoing research.

  1. Status of fish communities in the Rio Grande, Big Bend National Park, Texas - comparison before and after Spring 2003 period of low flow

    USGS Publications Warehouse

    Moring, J. Bruce

    2005-01-01

    During 2003–04 the U.S. Geological Survey, in cooperation with the National Park Service, re-evaluated the status of fish communities in three reaches of the Rio Grande in Big Bend National Park that originally were evaluated when the three reaches were established for study in 1999. The objective was to determine whether there were measurable differences between 1999 and 2003–04 (referred to as 2004) fish community status that likely are attributable to a rare 58-day period of low flow (less than 1 cubic meter per second) in spring 2003 at the Johnson Ranch gaging station on the Rio Grande in Big Bend National Park. The total number of fish species collected at all three sites (Boquillas, Johnson Ranch, and Santa Elena) in 1999 was greater than in 2004. The number of fish species collected at the Boquillas site in 1999 (10) was twice that collected in 2004; the number of species collected at the Johnson Ranch site in 1999 (nine) was almost twice that collected in 2004 (five). In contrast, the numbers at the Santa Elena site were nearly the same, 15 species in 1999, 14 in 2004. Percent community similarity for the Boquillas site is 8.04, for the Johnson Ranch site, 6.65, and for the Santa Elena site, 47.6, which indicates considerably more similarity between the 1999 and 2004 fish communities at the Santa Elena site than for the Boquillas and Johnson Ranch sites. At the Boquillas and Johnson Ranch sites, the fish communities shifted from small minnow (Cyprinidae) dominated in 1999 to largely gar (Lepisosteidae) and catfish (Ictaluridae) dominated in 2004. In contrast, no such shift occurred at the Santa Elena site between 1999 and 2004. Differences in flow conditions between the two downstream sites and the Santa Elena site might account for the dissimilar findings. The findings of the study provide some evidence that the spring 2003 period of low flow affected fish communities, but the findings are not definitive as other factors such as increased salinity

  2. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth

    2013-01-01

    To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the

  3. The Bending Vibrations of the C_3-ISOTOPOLOGUES in the 1.9 Terahertz Region

    NASA Astrophysics Data System (ADS)

    Breier, A.; Büchling, Thomas; Lutter, Volker; Schnierer, Rico; Fuchs, Guido W.; Giesen, Thomas

    2016-06-01

    Short carbon chains are fundamental for the chemistry of stellar and interstellar ambiences. The linear carbon chain molecule C_3 has been found in various interstellar and circumstellar environments, encompassing diffuse interstellar clouds, star forming regions, shells of late type stars, as well as cometary tails. Due to the lack of a permanent dipole moment C_3 can only be detected by electronic transitions in the visible spectral range or by vibrational bands in the mid-and far-infrared region. We performed experiments where C_3 was produced via laser-ablation of a graphite rod with a 3 bar He purge and a subsequent adiabatic expansion into a vaccum resulting in a supersonic jet. We report laboratory measurements of the lowest bending mode transitions of six 13C-isotopologues of the linear C_3 molecule. Fifty-eight transitions have been measured between 1.8-1.9 THz with an accuracy of better than 1 MHz. Molecular parameters have been derived to give accurate line frequency positions of all 13C isotopologues to ease their future interstellar detection. A dedicated observation for singly substituted 13CCC is projected within the SOFIA airborne observatory mission.

  4. Holocene sedimentation and coastal wetlands response to rising sea level at the Aucilla river mouth, a low energy coast in the Big Bend area of Florida

    USGS Publications Warehouse

    Garrett, Connie; Hertler, Heidi; Hoenstine, Ronald; Highley, Brad

    1993-01-01

    The shallow dip of the Florida carbonate platform results in low wave energy on Florida ???Big Bend??? coasts. Therefore sedimentation is dominated by river-and tidal-hydrodynamics near the Aucilla River mouth. Where present, Holocene sediments are thin and unconformably overlie Oligocene-aged Suwannee Limestone. The oldest unlithified sediments include reworked carbonate rubble with clay and wood fragments (seven thousand years old or less, based on wood radio-carbon dating). Although this basal sequence is observed in most areas, the sediments that overlie it vary. Sediment sequences from the outer littoral to submarine environments include organic-rich sands, oyster biotherm remains, and cleaner sands with organic-filled burrows. Inner littoral (salt-marsh) sequences generally consist of sandy, fining-upwards sequences in which dry weights of fine-grained clastics and organic components increase up-sequence at similar rates. Offshore sediments preserve greatly attenuated fluvial and salt-marsh facies, if these facies are preserved at all. With sea-level rise, erosion can result from insufficient sediment supply and down-cutting by tidal currents (Dolotov, 1992; and Dalrymple et al., 1992). Dolotov (1992) attributes displacement of original coastal stratigraphy to insufficient sediments for beach profile maintenance, while Dalrymple et al. (1992) attribute erosional truncation (ravinement) or complete removal of portions of typical estuarine sequences to headward migration of tidal channels.

  5. Baseline assessment of instream and riparian-zone biological resources on the Rio Grande in and near Big Bend National Park, Texas

    USGS Publications Warehouse

    Moring, James Bruce

    2002-01-01

    Five study sites, and a sampling reach within each site, were established on the Rio Grande in and near Big Bend National Park in 1999 to provide the National Park Service with data and information on the status of stream habitat, fish communities, and benthic macroinvertebrates. Differences in stream-habitat conditions and riparian vegetation reflect differences in surface geology among the five sampling reaches. In the most upstream reach, Colorado Canyon, where igneous rock predominates, streambed material is larger; and riparian vegetation is less diverse and not as dense as in the four other, mostly limestone reaches. Eighteen species of fish and a total of 474 individuals were collected among the five reaches; 348 of the 474 were minnows. The most fish species (15) were collected at the Santa Elena reach and the fewest species (9) at the Colorado Canyon and Johnson Ranch reaches. The fish community at Colorado Canyon was least like the fish communities at the four other reaches. Fish trophic structure reflected fish-community structure among the five reaches. Invertivores made up at least 60 percent of the trophic structure at all reaches except Colorado Canyon. Piscivores dominated the trophic structure at Colorado Canyon. At the four other reaches, piscivores were the smallest trophic group. Eighty percent of the benthic macroinvertebrate taxa collected were aquatic insects. Two species of blackfly were the most frequently collected invertebrate taxon. Net-spinning caddisflies were common at all reaches except Santa Elena. The aquatic-insect community at the Boquillas reach was least similar to the aquatic-insect community at the other reaches.

  6. Analysis of residual stress and hardness in regions of pre-manufactured and manual bends in fixation plates for maxillary advancement.

    PubMed

    Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes

    2015-12-01

    The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.

  7. Structure of the mid-region of tropomyosin: Bending and binding sites for actin

    PubMed Central

    Brown, Jerry H.; Zhou, Zhaocai; Reshetnikova, Ludmilla; Robinson, Howard; Yammani, Rama D.; Tobacman, Larry S.; Cohen, Carolyn

    2005-01-01

    Tropomyosin is a two-chain α-helical coiled coil whose periodic interactions with the F-actin helix are critical for thin filament stabilization and the regulation of muscle contraction. Here we deduce the mechanical and chemical basis of these interactions from the 2.3-Å-resolution crystal structure of the middle three of tropomyosin's seven periods. Geometrically specific bends of the coiled coil, produced by clusters of core alanines, and variable bends about gaps in the core, produced by isolated alanines, occur along the molecule. The crystal packing is notable in signifying that the functionally important fifth period includes an especially favorable protein-binding site, comprising an unusual apolar patch on the surface together with surrounding charged residues. Based on these and other results, we have constructed a specific model of the thin filament, with the N-terminal halves of each period (i.e., the so-called “α zones”) of tropomyosin axially aligned with subdomain 3 of each monomer in F-actin. PMID:16365313

  8. Structure of the Mid-Region Tropomyosin: Bending and Binding Sites for Actin

    SciTech Connect

    Brown,J.; Zhou, Z.; Reshetnikova, L.; Robinson, H.; Yammani, R.; Tobacman, L.; Cohen, C.

    2005-01-01

    Tropomyosin is a two-chain {alpha}-helical coiled coil whose periodic interactions with the F-actin helix are critical for thin filament stabilization and the regulation of muscle contraction. Here we deduce the mechanical and chemical basis of these interactions from the 2.3-Angstrom-resolution crystal structure of the middle three of tropomyosin's seven periods. Geometrically specific bends of the coiled coil, produced by clusters of core alanines, and variable bends about gaps in the core, produced by isolated alanines, occur along the molecule. The crystal packing is notable in signifying that the functionally important fifth period includes an especially favorable protein-binding site, comprising an unusual apolar patch on the surface together with surrounding charged residues. Based on these and other results, we have constructed a specific model of the thin filament, with the N-terminal halves of each period (i.e., the so-called '{alpha} zones') of tropomyosin axially aligned with subdomain 3 of each monomer in F-actin.

  9. Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.

    1990-02-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.

  10. Effects of turn region treatments on pressure loss through sharp 180-degree bends

    NASA Astrophysics Data System (ADS)

    Plevich, C. W.; Metzger, D. E.

    An experimental study was conducted to evaluate the effect of geometric turn region inserts on pressure losses for flow through sharp 180-degree channel turns typical of internal cooling passages in gas turbine engine airfoils. The experiments were conducted in a rectangular cross-sectioned channel with 90-degree transverse rib roughening in both inlet and outlet legs, starting with completely smooth turn regions and progressing through various modifications including corner fillets, radial ribs, and turning vanes. The results show that modifications to the turn region geometry, particularly the inclusion of a single semi-circular turning vane, significantly reduce the pressure losses associated with coolant flows through sharp 180-degree turns and therefore can result in increased coolant flow for a given coolant supply pressure.

  11. Efficient swimmers use bending kinematics to generate low pressure regions for suction-based swimming thrust

    NASA Astrophysics Data System (ADS)

    Colin, Sean; Gemmell, Brad; Costello, John; Morgan, Jennifer; Dabiri, John

    2015-11-01

    A longstanding tenet in the conceptualization of animal swimming is that locomotion occurs by pushing against the surrounding water. Implicit in this perspective is the assumption that swimming involves lateral body accelerations that generate locally elevated pressures in the fluid, in order to achieve the expected downstream push of the surrounding water against the ambient pressure. Here we show that to the contrary, efficient swimming animals primarily pull themselves through the water by creating localized regions of low pressure via waves of body surface rotation that generate vortices. These effects are observed using laser diagnostics applied to normal and spinally-transected lampreys. The results suggest rethinking evolutionary adaptations observed in swimming animals as well as the mechanistic basis for bio-inspired underwater vehicles. NSF CBET (1510929).

  12. Broadband Array for Regional Tectonics (BART) Research in Big Beijing Area

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Wang, B.

    2002-12-01

    North China is always known for its high seismic activity and destructive damage caused by intra-plate earthquakes. Especially around the Capital Circle, with dramatically increasing trend of urbanization, the shadow of potential seismic risk - even a moderate earthquake may cause great social losses, urges a detailed study of the regional structure and active source under this area. On Oct 1 2001, a digital seismic network was set up and operated to monitor earthquakes in the Capital Circle Region (E38.5~41.0, N114.0 ~120.0), namely Big Beijing. The network contains 107 seismic stations with continuous records, including 43 broadband seismometers, 59 short-period seismometers and 5 very-broadband seismometers. Four data acquisition centers are located at Beijing, Tianjin and Shijiazhuang, which receive DDN signals from 75 stations and satellite signals from the other 32 stations. Based on this new built seismic network, a research of Broadband Array for Regional Tectonics (BART) is carried on from March this year. The primary scientific goals of BART are: to investigate the crustal and upper mantle structure under Big Beijing area; to construct a detailed 3-D model of the lithospheric structure in the study area; to relocate earthquakes using the new constructed detailed model; with the combined data of relocated earthquakes, high-resolution crustal structures, tectonics and other geophysical data, to delineate the major active tectonics and other active source and try to interpret the mechanism of intra-plate earthquake in North China. From 23 to 24, April, 6 shots with chemical charges of 2000 ­C 2500kg were conducted near Beijing, with 3 of them along the famous Zhangjiakou ­C Bohai Sea seismic belt. The distance between every 2 shots are less than 60km. In addition to 107 settled stations, 196 portable short-period seismometers were deployed in the area for these shots, and 96 of them formed a combined array of aperture of 30-40 km within the network, and

  13. Using "big data" to optimally model hydrology and water quality across expansive regions

    USGS Publications Warehouse

    Roehl, E.A.; Cook, J.B.; Conrads, P.A.

    2009-01-01

    This paper describes a new divide and conquer approach that leverages big environmental data, utilizing all available categorical and time-series data without subjectivity, to empirically model hydrologic and water-quality behaviors across expansive regions. The approach decomposes large, intractable problems into smaller ones that are optimally solved; decomposes complex signals into behavioral components that are easier to model with "sub- models"; and employs a sequence of numerically optimizing algorithms that include time-series clustering, nonlinear, multivariate sensitivity analysis and predictive modeling using multi-layer perceptron artificial neural networks, and classification for selecting the best sub-models to make predictions at new sites. This approach has many advantages over traditional modeling approaches, including being faster and less expensive, more comprehensive in its use of available data, and more accurate in representing a system's physical processes. This paper describes the application of the approach to model groundwater levels in Florida, stream temperatures across Western Oregon and Wisconsin, and water depths in the Florida Everglades. ?? 2009 ASCE.

  14. Utilizing ERTS-A imagery for tectonic analysis through study of Big Horn Mountains region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. MSS scene 1085-17294 of the Big Horn region has been subjected to detailed structural analysis. Band 7 is particularly good for revealing structural and drainage patterns because of enhance topographic detail and the subdued vegetational contrasts. Considerable stereo coverage through sidelap with adjoining scenes adds to the effectiveness of the study and has been used on both positive transparencies and enlarged prints. Negative prints of Band 7 positive transparencies have proven to be much more useful than positive prints because the higher resolution of the positive transparencies can be maintained. The Bighorn Mountains are crisscrossed by a number of prominent topographic linears, most of which can be correlated with known fault and shear zones in the Precambrian crystalline core. Many of these do not appear to continue into the flanking sedimentary rocks and a few that do (Tensleep, Tongue River lineaments) are very difficult to trace farther out into the basins. The Tongue River lineament, long a source of speculation and uncertainty as to its existence, appears as a very prominent discontinuity in the imagery.

  15. Addition of positively charged tripeptide to N-terminus of the Fos basic region leucine zipper domain: implications on DNA bending, affinity, and specificity.

    PubMed

    Mahmoudi, T; Sarkar, B

    1999-09-01

    GKH-Fos(139-211)/Jun(248-334) (GKH: glycine-lysine-histidine) is a modified Fos/Jun heterodimer designed to contain a metal binding motif in the form of a GKH tripeptide at the amino terminus of Fos bZIP domain dimerized with the Jun basic region leucine zipper (bZIP) domain. We examined the effect of the addition of positively charged GKH motif to the N-terminus of Fos(139-211) on the DNA binding characteristics of the Fos(139-211)/Jun(248-334) heterodimer. Binding studies indicate that while the nonspecific DNA binding affinity of the GKH modified heterodimer increases 4-fold, it specifically binds the activating protein-1 (AP-1) site 6-fold less tightly than the control unmodified counterpart. Furthermore, helical phasing analysis indicates that GKH-Fos(139-211)/Jun(248-334) and control Fos(139-211)/Jun(248-334) both bend the DNA at the AP-1 site toward the minor groove. However, due to the presence of the positively charged GKH motif on Fos, the degree of the induced bend by GKH- Fos(139-211)/Jun(248-334) is greater than that induced by the unmodified Fos/Jun heterodimer. Our results suggest that the unfavorable energetic cost of the increased DNA bending by GKH-Fos(139-211)/Jun(248-334) results in a decrease in both specificity and affinity of binding of the heterodimer to the AP-1 site. These findings may have important implications in protein design as well in our understanding of DNA bending and factors responsible for the functional specificity of different members of the bZIP family of transcription factors.

  16. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region.

    PubMed

    Franke, Peter R; Tabor, Daniel P; Moradi, Christopher P; Douberly, Gary E; Agarwal, Jay; Schaefer, Henry F; Sibert, Edwin L

    2016-12-14

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH3(CH2)3ONO] and i-butyl nitrite [(CH3)2CHCH2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm(-1). The CH stretching modes observed above 3000 cm(-1) are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm(-1), the spectra of n- and i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using "dressed" Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CHn bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH2/CH3 group. Spectral simulations using the local mode approach are in excellent agreement with experiment.

  17. Infrared laser spectroscopy of the n-propyl and i-propyl radicals: Stretch-bend Fermi coupling in the alkyl CH stretch region

    NASA Astrophysics Data System (ADS)

    Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.; Douberly, Gary E.; Agarwal, Jay; Schaefer, Henry F.; Sibert, Edwin L.

    2016-12-01

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH3(CH2)3ONO] and i-butyl nitrite [(CH3)2CHCH2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm-1. The CH stretching modes observed above 3000 cm-1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm-1, the spectra of n- and i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using "dressed" Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CHn bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH2/CH3 group. Spectral simulations using the local mode approach are in excellent agreement with experiment.

  18. Validity and reliability of a system to measure passive tissue characteristics of the lumbar region during trunk lateral bending in people with and people without low back pain.

    PubMed

    Gombatto, Sara P; Klaesner, Joseph W; Norton, Barbara J; Minor, Scott D; Van Dillen, Linda R

    2008-01-01

    The current study examined the validity and reliability of a new system that was developed to measure lumbar region passive stiffness and end range of motion during a trunk lateral bending movement in vivo. Variables measured included force, end range lumbar region motion, torque, lumbar region stiffness, and passive elastic energy. Validity of the force measurements was examined using standard weights. Validity of lumbar region angle measurements was examined using an instrumented trunk with an electrogoniometer. Reliability of the measurements between trials within a session was examined in a sample of 50 people (25 men, 25 women; mean +/- standard deviation age = 30.7 +/- 8.9 yr); 31 people reported a history of chronic or recurrent low back pain (LBP) and 19 reported no prior history of LBP. The end range lumbar region motion and force measurements demonstrated an excellent linear relationship with the criterion standard measures. Average error between the criterion standard and observed measurements was minimal for all measurements. For reliability testing, the majority of intraclass correlation coefficient values were >0.75. The validity and reliability of the current system are sufficient to examine lumbar region stiffness and end range of motion in people with and people without LBP.

  19. Infrared Laser Spectroscopy of the n-PROPYL and i-PROPYL Radicals in Helium Droplets: Significant Bend-Stretch Coupling Revealed in the CH Stretch Region

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Douberly, Gary E.; Tabor, Daniel P.; Sibert, Edwin

    2016-06-01

    The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite (CH3(CH2)3ONO) and i-butyl nitrite (CH3CH(CH3)CH2ONO) precursors, respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the C-H stretching region. In addition to three vibrations of n-propyl previously measured in an Ar matrix, we observe many unreported bands between 2800 and 3150 wn, which we attribute to propyl radicals. The C-H stretching modes observed above 2960 wn for both radicals are in excellent agreement with anharmonic frequencies computed using VPT2. Between 2800 and 2960 wn, however, the spectra of n-propyl and i-propyl radicals become quite congested and difficult to assign due to the presence of multiple anharmonic resonances. Computations employing a local mode Hamiltonian reveal the origin of the spectral congestion to be strong coupling between the high frequency C-H stretching modes and the lower frequency bending/scissoring motions. The only significant local coupling is between stretches and bends on the same CH2/CH3 group.

  20. Ro-vibrational spectrum of H2O-Ne in the ν2 H2O bending region: A combined ab initio and experimental investigation

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Hou, Dan; Thomas, Javix; Li, Hui; Xu, Yunjie

    2016-12-01

    High resolution ro-vibrational transitions of the H2O-Ne complex in the ν2 bending region of H2O at 6 μm have been measured using a rapid scan infrared spectrometer based on an external cavity quantum cascade laser and an astigmatic multipass optical cell. To aid the spectral assignment, a four-dimension potential energy surface of H2O-Ne which depends on the intramolecular bending coordinate of the H2O monomer and the three intermolecular vibrational coordinates has been constructed and the rovibrational transitions have been calculated. Three ortho and two para H2O-20Ne bands have been identified from the experimental spectra. Some weaker transitions belonging to H2O-22Ne have also been identified experimentally. Spectroscopic fits have been performed for both the experimental and theoretical transition frequencies using a simple pseudo-diatomic Hamiltonian including both Coriolis coupling and Fermi resonance terms. The experimental and theoretical spectroscopic constants thus obtained have been compared. Further improvements needed in the potential energy surface and the related spectral simulation have been discussed.

  1. Health assessment for Big D Campground, Kingsville, Ohio, Region 5. CERCLIS No. OHD980611735. Preliminary report

    SciTech Connect

    Not Available

    1989-03-15

    The Big 'D' Campground Site is listed on the National Priorities List. The site was used as a landfill for waste products. Preliminary on-site sampling results have not been reported. Physical hazards were not reported. Based on available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances. Area residents, on-site employees, and campers may be exposed to waste materials via all the above-mentioned pathways.

  2. Big Data: Big Confusion? Big Challenges?

    DTIC Science & Technology

    2015-05-01

    12th Annual Acquisition Research Symposium 12th Annual Acquisition Research Symposium Big Data: Big Confusion? Big Challenges? Mary Maureen...currently valid OMB control number. 1. REPORT DATE MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Big ...Data: Big Confusion? Big Challenges? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  3. Quality of water and sediment in streams affected by historical mining, and quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    USGS Publications Warehouse

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  4. The Technological Impact of the E-Rate Program on a School District of the Texas Coastal Bend Region

    ERIC Educational Resources Information Center

    Vazquez-Cruz, Juan Diego

    2012-01-01

    The purpose of the study was to examine the impact of the E-Rate program on students, teachers, administrators, and the technology environment of a public school district in the Texas Gulf Coast Region. The study was conducted through a mixed methods design, utilizing both quantitative and qualitative data collection; the research design was a…

  5. Reversal bending fatigue testing

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  6. Comparing α-cellulose δ13C and δ18O to regional climate at Big Thicket National Preserve, Texas

    NASA Astrophysics Data System (ADS)

    Lewis, D. B.; Finkelstein, D. B.; Mora, C. I.; Grissino-Mayer, H. D.; Perfect, E.

    2009-12-01

    Few studies have investigated the relationship between tree-ring δ13C, δ18O, and regional climate in the southeastern U.S. In other regions, tree ring δ13C and δ18O have proven useful for analyzing temporal changes in precipitation, temperature, drought, and relative humidity. The purpose of this study was to characterize the relationships of regional climate with seasonally-resolved tree-ring cellulose δ13C and δ18O records from longleaf pine (Pinus palustris Mill.) trees at Big Thicket National Preserve (BTNP), Texas. BTNP is a semi-tropical area along the southeastern Texas Gulf Coast with a MAP of 1300 mm. Increment cores were collected from living trees in the Big Sandy Creek Unit (BSC) of BTNP, and four trees were randomly selected for isotopic analysis. The latewood (LW) portions of annual rings were removed in small slivers using a scalpel, and α-cellulose was extracted for a 26-year period (1982-2007). The δ13C series were compared to δ18O series from the same tree, and correlations ranged from 0.64 (BSC 005) to 0.18 (BSC 010). Single tree LW δ13C and δ18O chronologies were compared to regional climate records (Region 8, Upper Coast). Three of the four LW δ18O series were significantly correlated to fall (August-October) precipitation and the Palmer z-index, a measure of short-term (monthly) drought. BSC 010 δ18O exhibited no relationship with either climate parameter. Two of the δ13C series were correlated to fall precipitation and z-index. BSC 010 and BSC 015 were not significantly correlated. Averaging the four individual LW δ18O series into a single chronology resulted in significant correlations with fall precipitation (r = -0.60, p = 0.002) and z-index (r = -0.58, p = 0.002). Both relationships were slightly improved by removing BSC 010 from the chronology. The average δ13C chronology was also correlated to fall precipitation (r = -0.59, p = 0.001) and z-index (r = -0.57, p = 0.003). Neither isotope chronology was correlated to

  7. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    USGS Publications Warehouse

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  8. Biodiversity, biosphere reserves, and the Big Apple: a study of the New York Metropolitan Region.

    PubMed

    Solecki, William D; Rosenzweig, Cynthia

    2004-06-01

    The objectives of this article were to assess the dimensions of biodiversity-urban society interactions within the New York Metropolitan Region, a 31-county area with a population of 21.5 million, and to explore pathways to reconcile dysfunctional relationships between these two ever-entwined systems. The article builds on the premise that urban biodiversity exists at a crucial nexus of ecological and societal interactions, linking local, regional, and global scales, and that urban ecologies are projected to become even more dynamic in the future, particularly as a result of global climate change. The pathway proposed to reconcile the biodiversity-urban society relationships is the incorporation of biosphere reserve strategies into regional environmental planning efforts focused on the New York/New Jersey Harbor/Estuary specifically and on the greater New York Metropolitan Region in general. The concepts of the "ecological footprint" and vulnerability to global environmental change are used to analyze the current interactions between biodiversity and urban society, and to evaluate the efficacy of adopting biosphere reserve strategies in the region. New York has long been at the forefront of American environmentalism and landscape planning. Coupled with this history is a still small but growing interest in regional environmental planning efforts (e.g., the U.S. EPA Harbor Estuary Program) and green infrastructure (e.g., the 2002 Humane Metropolis Conference organized by the Ecological Cities Project). The research presented here aims to contribute to these nascent activities. As a megacity, New York may serve as a model for other major cities of the world.

  9. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.

    PubMed

    Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes

  10. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae

    PubMed Central

    Sakai, Sharleen T.; Arsznov, Bradley M.; Hristova, Ani E.; Yoon, Elise J.; Lundrigan, Barbara L.

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes

  11. Perspective: big oil, rural poverty, and environmental degradation in the Niger Delta region of Nigeria.

    PubMed

    Aaron, K K

    2005-05-01

    The Niger Delta region of Nigeria is richly endowed with both renewable and non-renewable natural resources. It contains 20 billion of Africa's proven 66 billion barrels of oil reserves and more than 3 trillion cubic meters of gas reserves. Oil and gas resources of the Niger Delta account for over 85% of the nation's gross domestic product (GDP), over 95% of the national budget, and over 80% of the nation's wealth. Paradoxically, the Niger Delta remains the poorest region, due largely to the ecologically unfriendly exploitation of oil and gas and state policies that expropriate the indigenous peoples of the Niger Delta of their rights to these natural resources. The ecological devastation occasioned by the activities of oil transnational corporations (TNCs) have rendered farming and fishing useless, previously the main occupations of these rural people. The people of the Niger Delta are deprived of their share of the wealth on which the entire nation depends; they "benefit" only from compensation for incidents of oil pollution. At the same time, occurrences of oil spills in the Niger Delta region have increased. In this article, it is argued that the ecologically unfriendly activities of oil TNCs, and the state's petroleum development policies, lead to poverty in the Niger Delta, and poverty in turn leads to environmental degradation. It is the dynamics of this interconnectedness that we wish to explore.

  12. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  13. [Trends in mental health of residents in a big agricultural-industrial region].

    PubMed

    Treshutin, V A; Goldobina, O A; Shchepin, V O

    2003-01-01

    The dynamics of mental health of the population of the Altai Territory evaluated within a ten-year study (1991-2000) revealed pronounced negative processes with the most essential ones being in the children and teenagers category. The complicated social-and-economic transformations conducted in Russian society during the last decade of the past century, which entailed the misadjusted response in a majority of population, exerted an unfavorable influence on the mental health condition. The authors suggested a system of measures and arrangements targeted at neutralizing the detected negative trends in the population mental health; the above system can be successfully used in any country's region.

  14. Southeast Regional Clearinghouse(SERCH)Mini-grants:Big Impacts on Future Explorers

    NASA Astrophysics Data System (ADS)

    Runyon, C.; Guimond, K.

    2004-12-01

    SERCH is one of seven regional Broker/Facilitator programs funded by NASA's Space Science Mission Directorate. Our purpose is to promote space science awareness and to enhance interest in science, math, and technology through the use of NASA's mission data, information, and educational products. We work closely with educators and NASA-funded scientists in 14 states (AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, PR, SC/VI, TN, and VA) throughout the southeastern U.S. to share what NASA is doing in space science. Every year SERCH dedicates money from its budget to support education/outreach initiatives that increase the awareness and understanding of the four major scientific themes, or forums from NASA's space science program: 1) Sun-Earth Connection, 2) Solar System Exploration, 3) Structure and Evolution of the Universe, and 4) Astronomical Search for Origins and Planetary Systems. SERCH is particularly interested in proposals for education/outreach efforts that establish strong and lasting partnerships between the space science and education communities and that support the NASA's education mission. We encourage innovative, inter-disciplinary teams involving both scientists and educators to apply. These peer-reviewed grants are awarded for a period of one year in amounts usually ranging from 5,000 to 10,000. Three examples of highly successful previous grant awards include: 1) Teaching Astronomy and Space Science in Kentucky (KY): Designed to improve knowledge of science core concepts and teaching skills in astronomy and space science and increased expertise in achieving current Kentucky academic expectations; 2) Development of Multi-media Space Science Education/Tutorial Modules (MD): The objective is the production of three "turn-key" internet-based multi-media student tutorial modules to enable the mostly part-time professors/instructors teaching introductory astronomy in community colleges to add exciting and cutting-edge topics to their existing astronomy courses

  15. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  16. Discovering Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Johnson, Ann

    2008-01-01

    Gee's Bend is a small community near Selma, Alabama where cotton plantations filled the land before the Civil War. After the war, the freed slaves of the plantations worked as tenant farmers and founded an African-American community. In 2002, the women of this community brought international attention and acclaim to Gee's Bend through the art of…

  17. Recombination and Evolution of Duplicate Control Regions in the Mitochondrial Genome of the Asian Big-Headed Turtle, Platysternon megacephalum

    PubMed Central

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum. PMID

  18. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  19. New models for Paleoproterozoic orogenesis in the Cheyenne belt region: Evidence from the geology and U-Pb geochronology of the Big Creek Gneiss, southeastern Wyoming

    USGS Publications Warehouse

    Jones, D.S.; Snoke, A.W.; Premo, W.R.; Chamberlain, K.R.

    2010-01-01

    The disputed age of the deep crust of the Colorado Province is central to hypotheses for Paleoproterozoic crustal growth in the region. We studied the high-grade Big Creek Gneiss, southeastern Wyoming, as a potential exposure of pre-1780 Ma basement rocks. New geologic mapping and U-Pb geochronological data indicate that the Big Creek Gneiss exposes a deeper, but coeval, level of the Green Mountain arc relative to the predominantly supracrustal section to the west. The Big Creek Gneiss is composed of: supracrustal rocks; a ca. 1780 Ma Green Mountain arc-correlative, bimodal intrusive suite; a ca. 1763 Ma extensional(?) bimodal intrusive suite; and widespread ca. 1630 Ma pegmatitic leucogranite. The mafic member of the younger bimodal suite is documented here for the first time. U-Pb zircon ages from migmatite leucosomes indicate penetrative deformation of the Big Creek Gneiss at ca. 1750 Ma. We find that the postarc intrusive suite is mantle-involved, implying a second period of crustal growth. Shortening postdates arc magmatism by ~20 m.y., implying that termination of arc magmatism and accretion were separate events. Finally, criteria previously used to constrain the polarity of subduction for the Green Mountain arc are not reliable. We propose two competing models: (1) southward-dipping Green Mountain arc subduction (present coordinates), with slab breakoff-related magmatism following arc accretion; or (2) northward-dipping subduction, with extensional postarc magmatism. In both models, high-temperature deformation coincides with accretion along the Cheyenne belt, and extensional magmatism is an important component of crustal growth. We prefer the northward-dipping subduction model because it can be better integrated with regional tectonic events and published isotopic compositions of the igneous rocks. ?? 2010 Geological Society of America.

  20. Dispersion suppressors with bending

    SciTech Connect

    Garren, A.

    1985-10-01

    Dispersion suppressors of two main types are usually used. In one the cell quadrupole focussing structure is the same as in normal cells but some of the dipoles are replaced by drifts. In the other, the quadrupole strengths and/or spacings are different from those of the normal cells, but the bending is about the same as it is in the cells. In SSC designs to date, dispersion suppressors of the former type have been used, consisting of two cells with bending equivalent to one. In this note a suppressor design with normal bending and altered focussing is presented. The advantage of this scheme is that circumference is reduced. The disadvantages are that additional special quadrupoles must be provided (however, they need not be adjustable), and the maximum beta values within them are about 30% higher than the cell maxima.

  1. How Big Is Too Big?

    ERIC Educational Resources Information Center

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  2. [Analysis of chemical speciation of heavy metals in L07-11 profile sediments of "Big Ear" Region of Lop Nor Lake].

    PubMed

    Zhu, Xin-ping; Zhang, Liang-hui; Jiang, Ping-an; Jia, Hong-tao; Zheng, Chun-xia; Fan, Shun-hui

    2014-12-01

    As playa is the typical characteristic in "Big Ear" Region of Lop Nor Lake, it is significant for enriching playa heavy metal earth environmental chemical data by analyzing species distribution of heavy metal among this district. In this thesis, heavy metal Cd, Pb, Ni, Cu in L07-11 Profile Sediments of "Big Ears" Region of Lop Nor Lake are considered as research objects. Tessier sequential extraction and Graphite furnace atomic absorption method (GF-990) are used to discuss and analyze five forms of Cd, Pb, Ni, Cu among sediments. The results show that the content of Cd, Pb, Ni and Cu is in the range from 1.10~2.54, 9.18~20.02, 9.88~17.15, 4.43~21.11 mg · kg(-1), respectively. The value of organic matter range from 8.71-54.72 g · kg(-1). The order of the bioavailable state in heavy metals is Cd>Pb>Cu>Ni. Pb and Cd mainly exist in exchangeable form including water-soluble, and that Ni is in residual form, and that Cu is mostly in Fe-Mn oxide bound iron-manganese oxides or in residual form. Among surface sediments, effective content of heavy metal is more than 80%. Except Cu, the content of heavy metal Cd, Pb, Ni in exchangeable form is more than 60%. Heavy metal Cd and Pb has higher secondary release potential. The content of heavy metal and organic material has some correlation.

  3. Single molecule FRET shows uniformity in TBP-induced DNA bending and heterogeneity in bending kinetics†

    PubMed Central

    Blair, Rebecca H.; Goodrich, James A.; Kugel, Jennifer F.

    2012-01-01

    TATA binding protein (TBP) is a key component of the eukaryotic RNA polymerase II (Pol II) transcription machinery that binds to TATA boxes located in the core promoter regions of many genes. Structural and biochemical studies have shown that when TBP binds DNA, it sharply bends the DNA. We used single-molecule FRET (smFRET) to study DNA bending by human TBP on consensus and mutant TATA boxes in the absence and presence of TFIIA. We found that the state of the bent DNA within populations of TBP/DNA complexes is homogeneous; partially bent intermediates were not observed. In contrast to previous ensemble studies, TBP was found to bend a mutant TATA box to the same extent as the consensus TATA box. Moreover, in the presence of TFIIA the extent of DNA bending was not significantly changed, although TFIIA did increase the fraction of DNA molecules bound by TBP. Analysis of the kinetics of DNA bending and unbending revealed that on the consensus TATA box two kinetically distinct populations of TBP/DNA complexes exist, however, the bent state of the DNA is the same in the two populations. Our smFRET studies reveal that human TBP bends DNA in a largely uniform manner under a variety of different conditions, which was unexpected given previous ensemble biochemical studies. Our new observations lead to us to revise the model for the mechanism of DNA binding by TBP and for how DNA bending is affected by TATA sequence and TFIIA. PMID:22934924

  4. The Big Sky Model: A Regional Collaboration for Participatory Research on Environmental Health in the Rural West.

    PubMed

    Ward, Tony J; Vanek, Diana; Marra, Nancy; Holian, Andrij; Adams, Earle; Jones, David; Knuth, Randy

    2008-01-01

    The case for inquiry-based, hands-on, meaningful science education continues to gain credence as an effective and appropriate pedagogical approach (Karukstis 2005; NSF 2000). An innovative community-based framework for science learning, hereinafter referred to as the Big Sky Model, successfully addresses these educational aims, guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools.

  5. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  6. Superfund Record of Decision (EPA Region 5): Big D Campground, Kingsville, OH. (First Remedial Action), September 1989. Final report

    SciTech Connect

    Not Available

    1989-09-29

    The Big D Campground site is in Kingsville, Ashtabula County, Ohio. The site consists of a 1.2-acre landfill created out of a former sand and gravel quarry. From 1964 to 1976 the site owner accepted approximately 28,000 cubic yards of hazardous materials for disposal which included up to 5,000 drums containing solvents, caustics, and oily substances. A 1986 remedial investigation identified the landfill as the primary source of contamination in soil outside the landfill and ground water underlying the landfill. Ground water contamination is of significant concern because it is migrating towards the drinking water supply wells of nearby residences and Conneaut Creek which is adjacent to and south of the site. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE and TCE, other organics, and metals including chromium and lead. The selected remedial action for this site includes removing and incinerating up to 5,000 buried drums, bulk wastes, and up to 30,000 cubic yards of contaminated soil followed by onsite disposal of nonhazardous ash residue; pumping and treatment of 40,000,000 to 60,000,000 gallons of ground water.

  7. Carbon Burnout Project at Tampa Electric's Big Bend Station

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  8. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  9. Big Dreams

    ERIC Educational Resources Information Center

    Benson, Michael T.

    2015-01-01

    The Keen Johnson Building is symbolic of Eastern Kentucky University's historic role as a School of Opportunity. It is a place that has inspired generations of students, many from disadvantaged backgrounds, to dream big dreams. The construction of the Keen Johnson Building was inspired by a desire to create a student union facility that would not…

  10. Big bluestem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big Bluestem (Andropogon gerardii) is a warm season grass native to North America, accounting for 40% of the herbaceous biomass of the tall grass prairie, and a candidate for bioenergy feedstock production. The goal of this study was to measure among and within population genetic variation of natura...

  11. Bending the Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's rings appear strangely warped in this view of the rings seen through the upper Saturn atmosphere.

    The atmosphere acts like a lens in refracting (bending) the light reflected from the rings. As the rings pass behind the overexposed limb (edge) of Saturn as seen from Cassini, the ring structure appears to curve downward due to the bending of the light as it passes through the upper atmosphere.

    This image was obtained using a near-infrared filter. The filter samples a wavelength where methane gas does not absorb light, thus making the far-off rings visible through the upper atmosphere.

    By comparing this image to similar ones taken using filters where methane gas does absorb, scientists can estimate the vertical profile of haze and the abundance of methane in Saturn's high atmosphere.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2005, through a filter sensitive to wavelengths of infrared light centered at 938 nanometers and at a distance of approximately 197,000 kilometers (123,000 miles) from Saturn. The image scale is 820 meters (2,680 feet) per pixel.

  12. Light bending in radiation background

    SciTech Connect

    Kim, Jin Young; Lee, Taekoon E-mail: tlee@kunsan.ac.kr

    2014-01-01

    We consider the velocity shift of light in presence of radiation emitted by a black body. Within geometric optics formalism we calculate the bending angle of a light ray when there is a gradient in the energy density. We model the bending for two simplified cases. The bending angle is proportional to the inverse square power of the impact parameter (∝1/b{sup 2}) when the dilution of energy density is spherically symmetric. The bending angle is inversely proportional to the impact parameter (∝1/b) when the energy density dilutes cylindrically. Assuming that a neutron star is an isothermal black body, we estimate the order of magnitude for such bending angle and compare it with the bending angle by magnetic field.

  13. ["Big data"--the progress of hygiene science and practice: evaluation of child and adolescent health in Russian regions].

    PubMed

    Gudinova, Zh V; Zhernakova, G N; Gegechkori, I V; Tol'kova, E N; Vas'kovskaia, Iu S

    2014-01-01

    Theee has been analyzed information of Federal statistics agency for the period from 2007 to 2011 about the distribution of children in health groups, child morbidity and disability in view of all Russian regions. Indices are juxtaposed together in the course of the use of an author's technique "percentile-profile" that gives an evident imagination of the place of the each region according to the each index in the general assembly of Russian regions, about the quality of information on both children's health, and dispensary work and availability of the medico-social care for children (in determination of disability). In the course of the cluster analysis there were selected leading tendencies in the sphere of children's health on Russian territory.

  14. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  15. Phase trombones with bending

    SciTech Connect

    Courant, E.D.; Garren, A.

    1985-10-01

    The phase shifting trombones considered up to now for SSC application consisted of sets of evenly spaced quadrupoles separated by drift spaces. One such trombone was placed between a dispersion suppressor and a crossing insertion, so that the trombone had zero dispersion. With such trombones, it is possible to change {beta}{sup *} at constant tune, or to change the tunes by several units without altering the cell phase advances in the arcs. An objection to the above type of phase trombone is that it adds to the circumference, since no bending is included. This objection may or may not be valid depending on the potential usefulness of the drift spaces in them. In this note the authors show an alternative trombone design in which dipoles are included between the quadrupoles as in the normal arc cells. Since these trombones have dispersion, they are placed at the ends of the arcs, to be followed in turn by the dispersion suppressors and crossing insertions.

  16. Differences in the volume of services and in prices drive big variations in Medicaid spending among US states and regions.

    PubMed

    Gilmer, Todd P; Kronick, Richard G

    2011-07-01

    It is well known that Medicaid spending per beneficiary varies widely across states. However, less is known about the cause of this variation, or about whether increased spending is associated with better outcomes. In this article we describe and analyze sources of interstate variation in Medicaid spending over several years. We find substantial variations both in the volume of services and in prices. Overall, per capita spending in the ten highest-spending states was $1,650 above the average national per capita spending, of which $1,186, or 72 percent, was due to the volume of services delivered. Spending in the ten lowest-spending states was $1,161 below the national average, of which $672, or 58 percent, was due to volume. In the mid-Atlantic region, increased price and volume resulted in the most expensive care among regions, whereas reduced price and volume in the South Central region resulted in the least expensive care among regions. Understanding these variations in greater detail should help improve the quality and efficiency of care-a task that will become more important as Medicaid is greatly expanded under the Affordable Care Act of 2010.

  17. Beam bending via plasmonic lenses.

    PubMed

    Zhao, Yanhui; Lin, Sz-Chin Steven; Nawaz, Ahmad Ahsan; Kiraly, Brian; Hao, Qingzhen; Liu, Yanjun; Huang, Tony Jun

    2010-10-25

    We have designed and characterized three different types of plasmonic lenses that cannot only focus, but can also bend electromagnetic (EM) waves. The bending effect is achieved by constructing an asymmetric phase front caused by varying phase retardations in EM waves as they pass through a plasmonic lens. With an incident wave normal to the lens surface, light bends up to 8° off the axial direction. The optical wave propagation was numerically investigated using the finite-difference time-domain (FDTD) method. Simulation results show that the proposed plasmonic lenses allow effective beam bending under both normal and tilted incidence. With their relatively large bending range and capability to perform in the far field, the plamsonic lenses described in this article could be valuable in applications such as photonic communication and plasmonic circuits.

  18. Oceanic Plate Bending Along the Manila Trench

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Lin, J.; Zhan, W.

    2014-12-01

    We quantify along-trench variations in plate flexural bending along the Manila trench in the South China Sea. A 3-D interpreted flexural deformation surface of the subducting South China Sea Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 21 across-trench profile sections along the Manila trench and then calculated five best-fitting tectonic and plate parameters that control the flexural bending for each of the across-trench profile sections. Results of analysis revealed significant along-trench variations: The trench relief of the Manila trench varies from 0.8 to 2.2 km, trench-axis vertical loading (-V0) from -0.4x1012 to 1.21x1012 N/m, and axial bending moment (-M0) from 0.005x1017 to 0.6x1017 N. The effective elastic plate thickness seaward of the Manila outer-rise region (TeM) ranges from 30 to 40 km, while that trench-ward of the outer-rise (Tem) ranges from 11 to 30 km. This corresponds to a reduction in Te of 26-63% for the Manila trench. The transition from TeM to Tem occurs at a breaking distance of 50-120 km from the Manila trench axis. The axial vertical loading, bending moment, and the effective elastic thickness of the Manila trench are much smaller than the Mariana trench (Zhang et al., 2014). The contrast in the flexural bending between the Mariana and Manila trenches might be related to the difference in the ages of the subducting plates and other tectonic variables. Zhang, F., Lin, J., Zhan, W., 2014. Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sci. Lett. 401, 206-214. doi: 10.1016/j.epsl.2014.05.032

  19. Sheet Bending using Soft Tools

    NASA Astrophysics Data System (ADS)

    Sinke, J.

    2011-05-01

    Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most

  20. Passive, achromatic, nearly isochronous bending system

    DOEpatents

    Douglas, David R.; Yunn, Byung C.

    2004-05-18

    A particle beam bending system having a geometry that applies active bending only beyond the chord of the orbit for any momentum component. Using this bending configuration, all momentum components emerge dispersed in position only; all trajectories are parallel by construction. Combining a pair of such bends with reflective symmetry produces a bend cell that is, by construction, achromatic to all orders. By the particular choice of 45.degree. individual bends, a pair of such achromats can be used as the basis of a 180.degree. recirculation arc. Other rational fractions of a full 180.degree. bend serve equally well (e.g., 2 bends/cell.times.90.degree./bend.times.1 cell /arc; 2 bends/cell.times.30.degree./bend.times.3 cells/arc, etc), as do combinations of multiple bending numerologies (e.g., 2 bends/cell.times.22.5.degree./bend.times.2 cells+2 bends/cell.times.45.degree./bend.times.1 cell). By the choice of entry pole face rotation of the first magnet and exit pole face rotation of the second magnet (with a value to be determined from the particular beam stability requirements imposed by the choice of bending angle and beam properties to be used in any particular application), desirable focusing properties can be introduced and beam stability can be insured.

  1. A soft stretchable bending sensor and data glove applications.

    PubMed

    Shen, Zhong; Yi, Juan; Li, Xiaodong; Lo, Mark Hin Pei; Chen, Michael Z Q; Hu, Yong; Wang, Zheng

    2016-01-01

    Soft sensors are required to accommodate the flexible and deformable natures of the human body in wearable device applications. They are also suitable for integration with soft robotic devices to monitor the performance status and provide references for feedback control. However, the choices for bending sensors are still highly limited. In this paper, a soft bending sensor is presented. By careful design with a blend of sensitive and insensitive regions, the sensor could be stretchable while being insensitive to stretching. An analytical study was presented on how to design the sensor with the named bending/stretching feature. This feature enables the sensor to be implemented in measuring human motions where a large amount of skin stretch is involved. Two sensor gloves were designed and fabricated based on the proposed soft bending sensor, aiming for different application scenarios. Both the sensor and the gloves were evaluated using a dedicated evaluation platform with experimental results compared against each other.

  2. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  3. Bending rules for animal propulsion.

    PubMed

    Lucas, Kelsey N; Johnson, Nathan; Beaulieu, Wesley T; Cathcart, Eric; Tirrell, Gregory; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Costello, John H

    2014-01-01

    Animal propulsors such as wings and fins bend during motion and these bending patterns are believed to contribute to the high efficiency of animal movements compared with those of man-made designs. However, efforts to implement flexible designs have been met with contradictory performance results. Consequently, there is no clear understanding of the role played by propulsor flexibility or, more fundamentally, how flexible propulsors should be designed for optimal performance. Here we demonstrate that during steady-state motion by a wide range of animals, from fruit flies to humpback whales, operating in either air or water, natural propulsors bend in similar ways within a highly predictable range of characteristic motions. By providing empirical design criteria derived from natural propulsors that have convergently arrived at a limited design space, these results provide a new framework from which to understand and design flexible propulsors.

  4. Self-bending symmetric cusp beams

    SciTech Connect

    Gong, Lei; Liu, Wei-Wei; Lu, Yao; Li, Yin-Mei; Ren, Yu-Xuan

    2015-12-07

    A type of self-bending symmetric cusp beams with four accelerating intensity maxima is theoretically and experimentally presented. Distinguished from the reported regular polygon beams, the symmetric cusp beams simultaneously exhibit peculiar features of natural autofocusing and self-acceleration during propagation. Further, such beams take the shape of a fine longitudinal needle-like structure at the focal region and possess the strong ability of self-healing over obstacles. All these intriguing properties were verified experimentally. Particularly, the spatial profile of the reconstructed beam exhibits spatially sculpted optical structure with four siamesed curved arms. Thus, we anticipate that the structured beam will benefit optical guiding and optofluidics in surprising ways.

  5. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  6. Bending Rules in Graphene Kirigami

    NASA Astrophysics Data System (ADS)

    Grosso, Bastien F.; Mele, E. J.

    2015-11-01

    The three-dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are studied by combining large-scale atomistic simulations with continuum elastic modeling. Lattice segments are selectively removed from a graphene sheet, and the structure is allowed to close by relaxing in the third dimension. The surface relaxation is limited by a nonzero bending modulus which produces a smoothly modulated landscape instead of the ridge-and-plateau motif found in macroscopic lattice kirigami. The resulting surface shapes and their interactions are well described by a new set of microscopic kirigami rules that resolve the competition between bending and stretching energies.

  7. Bending Rules in Graphene Kirigami.

    PubMed

    Grosso, Bastien F; Mele, E J

    2015-11-06

    The three-dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are studied by combining large-scale atomistic simulations with continuum elastic modeling. Lattice segments are selectively removed from a graphene sheet, and the structure is allowed to close by relaxing in the third dimension. The surface relaxation is limited by a nonzero bending modulus which produces a smoothly modulated landscape instead of the ridge-and-plateau motif found in macroscopic lattice kirigami. The resulting surface shapes and their interactions are well described by a new set of microscopic kirigami rules that resolve the competition between bending and stretching energies.

  8. Business and Science - Big Data, Big Picture

    NASA Astrophysics Data System (ADS)

    Rosati, A.

    2013-12-01

    Data Science is more than the creation, manipulation, and transformation of data. It is more than Big Data. The business world seems to have a hold on the term 'data science' and, for now, they define what it means. But business is very different than science. In this talk, I address how large datasets, Big Data, and data science are conceptually different in business and science worlds. I focus on the types of questions each realm asks, the data needed, and the consequences of findings. Gone are the days of datasets being created or collected to serve only one purpose or project. The trick with data reuse is to become familiar enough with a dataset to be able to combine it with other data and extract accurate results. As a Data Curator for the Advanced Cooperative Arctic Data and Information Service (ACADIS), my specialty is communication. Our team enables Arctic sciences by ensuring datasets are well documented and can be understood by reusers. Previously, I served as a data community liaison for the North American Regional Climate Change Assessment Program (NARCCAP). Again, my specialty was communicating complex instructions and ideas to a broad audience of data users. Before entering the science world, I was an entrepreneur. I have a bachelor's degree in economics and a master's degree in environmental social science. I am currently pursuing a Ph.D. in Geography. Because my background has embraced both the business and science worlds, I would like to share my perspectives on data, data reuse, data documentation, and the presentation or communication of findings. My experiences show that each can inform and support the other.

  9. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  10. A four-dimensional potential energy surface and predicted infrared spectra for the Ne-D2O van der Waals complex in the ν2 bending region of D2O molecule

    NASA Astrophysics Data System (ADS)

    He, Shanshan; Chen, Dong; Li, Ya; Feng, Eryin; Huang, Wuying

    2016-11-01

    In this paper, a four-dimensional potential energy surface (PES) for the Ne-D2O complex is constructed theoretically. The calculations are carried out at CCSD(T) level with large basis sets augmented with mid-bond functions. The PES includes explicit dependence on the ν2 symmetric bending coordinate Q2 of the D2O molecule. Two vibrationally averaged potentials in the ground and first excited bending states are obtained respectively. Using these two potentials we calculate the bound states of the complexes. The theoretical rovibrational transition frequencies for three bands: П(111,ν2 = 1)←Σ000, Σ(111,ν2 = 1)←Σ000 and n = 1, Σ(000,ν2 = 1)←Σ000 are predicted and generally in good agreement with the experimental observed values.

  11. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  12. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  13. Bending loss of terahertz pipe waveguides.

    PubMed

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  14. Acoustic characteristics of circular bends in pipes

    NASA Astrophysics Data System (ADS)

    Firth, D.; Fahy, F. J.

    1984-11-01

    The acoustic properties of circular bends in pipework systems are investigated by calculation of the mode shapes and propagation constants of the acoustic modes of the bend, the torus modes, and by evaluation of the transmission and reflection coefficients at a bend in an otherwise infinite straight pipe. The coefficients for the first three cylinder and torus modes are plotted against frequency for the case of a plane wave incident upon a 90° bend. The pipe walls are assumed to be rigid.

  15. FFAG lattice without opposite bends

    NASA Astrophysics Data System (ADS)

    Trbojevic, Dejan; Courant, Ernest D.; Garren, Al

    2000-08-01

    A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).

  16. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...

  17. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...

  18. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  19. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  20. Chinchilla "big" and "little" gastrins.

    PubMed

    Shinomura, Y; Eng, J; Yalow, R S

    1987-02-27

    Gastrin heptadecapeptides (gastrins I and II which differ in the presence of sulfate on the tyrosine of the latter) have been purified and sequenced from several mammalian species including pig, dog, cat, sheep, cow, human and rat. A 34 amino acid precursor ("big" gastrin), generally accounting for only 5% of total gastrin immunoreactivity, has been purified and sequenced only from the pig, human, dog and goat. Recently we have demonstrated that guinea pig (GP) "little" gastrin is a hexadecapeptide due to a deletion of a glutamic acid in the region 6-9 from its NH2-terminus and that GP "big" gastrin is a 33 amino acid peptide. The chinchilla, like the GP, is a New World hystricomorph. This report describes the extraction and purification of "little" and "big" gastrins from 31 chinchilla antra. Chinchilla "little" gastrin is a hexadecapeptide with a sequence identical to that of the GP and its "big" gastrin is a 33 amino acid peptide with the following sequence: (See text)

  1. Ovalization of Tubes Under Bending and Compression

    NASA Technical Reports Server (NTRS)

    Demer, L J; Kavanaugh, E S

    1944-01-01

    An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)

  2. Protein-induced bending and DNA cyclization.

    PubMed

    Kahn, J D; Crothers, D M

    1992-07-15

    We have applied T4 ligase-mediated DNA cyclization kinetics to protein-induced bending in DNA. The presence and direction of a static bend can be inferred from J factors for cyclization of 150- to 160-base-pair minicircles, which include a catabolite activator protein binding site phased against a sequence-directed bend. We demonstrate a quasi-thermodynamic linkage between cyclization and protein binding; we find that properly phased DNAs bind catabolite activator protein approximately 200-fold more tightly as circles than as linear molecules. The results unambiguously distinguish DNA bends from isotropically flexible sites and can explain cooperative binding by proteins that need not contact each other.

  3. Bending Gold Nanorods with Light.

    PubMed

    Babynina, Anastasia; Fedoruk, Michael; Kühler, Paul; Meledin, Alexander; Döblinger, Markus; Lohmüller, Theobald

    2016-10-12

    V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bent, one-by-one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.

  4. Peeling, sliding, pulling and bending

    NASA Astrophysics Data System (ADS)

    Lister, John; Peng, Gunnar

    2015-11-01

    The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.

  5. Peeling, sliding, pulling and bending

    NASA Astrophysics Data System (ADS)

    Lister, John; Peng, Gunnar

    2016-11-01

    The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.

  6. The big deal about big data.

    PubMed

    Moore, Keith D; Eyestone, Katherine; Coddington, Dean C

    2013-08-01

    Big data is a concept that is being widely applied in the retail industries as a means to understand customers' purchasing habits and preferences for followup promotional activity. It is characterized by vast amounts of diverse and rapidly multiplying data that are available at or near real-time. Conversations with executives of leading healthcare organizations provide a barometer for understanding where the industry stands in its adoption of big data as a means to meet the critical information requirements of value-based health care.

  7. Dual of big bang and big crunch

    SciTech Connect

    Bak, Dongsu

    2007-01-15

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory.

  8. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  9. Big data for health.

    PubMed

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled.

  10. HYDRODYNAMICS AND SEDIMENT TRANSPORT IN LOWER MISSISSIPPI RIVER MEANDER BENDS (LOUISIANA): IMPLICATIONS FOR LARGE SEDIMENT DIVERSIONS

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; McCorquodale, A.; Meselhe, E. A.

    2009-12-01

    Field data collection and numerical modeling is being conducted in the lower Mississippi River in the region of a meander bend at Myrtle Grove, LA (river km 96 above Head of Passes) in support of a proposed large water and sediment diversion (1,130-2,830 cms) for coastal wetland restoration. Field studies in October 2008, April and May 2009, at discharges ranging from 11,000-21,000 cms, examined the role of bend dynamics on sediment transport through this reach relative to control sites further downriver and USGS monitoring stations upriver. Suspended loads and grain size character measured by ADCP (velocities and backscatter), isokinetic point sampler (P-63), and optical sensors (LISST, OBS, transmissometer) indicate that during the rising-to-high discharge phase, sand lifting off from the downstream edge of the lateral bar upriver of the bend augments that carried from further upriver, and is entrained in the upper 10-25m of the water column. This excess suspended sand is advected around the bend before concentrations are reduced to background levels over the lateral bar downstream of the bend. Bedload transport rates measured by repeat swath bathymetric mapping of migrating dunes are comparable upstream of the bend, downstream, and in the control sites. However, no bedforms are observed in the bend thalweg (up to 60 m deep) supporting the dominance of suspended sand transport in the bend. Both 1D (HEC-RAS and HEC6-T) and 3D (Flow3D) numerical hydrodynamic and sediment transport modeling is underway to simulate this process and the large-scale eddy present in the bend that generates upriver transport along the inside of the meander bend at all observed discharges. Our preliminary results suggest that the outside of meander bends might be an appropriate site for sediment diversions that draw near-surface water from this sediment-rich layer.

  11. Big data, big knowledge: big data for personalized healthcare.

    PubMed

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority.

  12. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result in a bend surface free of cracks, as determined by a method of inspection specified in the...

  13. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result in a bend surface free of cracks, as determined by a method of inspection specified in the...

  14. Restorying the Self: Bending toward Textual Justice

    ERIC Educational Resources Information Center

    Thomas, Ebony Elizabeth; Stornaiuolo, Amy

    2016-01-01

    In this essay, Ebony Elizabeth Thomas and Amy Stornaiuolo explore new trends in reader response for a digital age, particularly the phenomenon of bending texts using social media. They argue that bending is one form of "restorying," a process by which people reshape narratives to represent a diversity of perspectives and experiences that…

  15. a Study on Performance Evaluation of Thermoelectric Cooling System Using Piezoelectric Bending Actuator

    NASA Astrophysics Data System (ADS)

    Yoon, Hee-Sung; Yang, Ho-Dong; Oh, Yool-Kwon

    This study investigated the performance of thermoelectric cooling system using the piezoelectric bending actuator. The temperatures in the cooling region of thermoelectric cooling system were measured with and without operation of piezoelectric bending actuator at the frequencies of 90 Hz and 120 Hz. The cooling coefficients were calculated by the temperature measurement results, and the thermo-flow phenomenon in the cooling region was visualized under the same condition. The coefficient of performance of the thermoelectric cooling system was improved by the piezoelectric bending actuator when the results of temperature measurement and thermo-flow visualization were compared, because that the vibration from the piezoelectric bending actuator generated compulsive convection and the cold air in the cooling region was actively circulated by the compulsive convection.

  16. Bending of light in conformal Weyl gravity

    SciTech Connect

    Sultana, Joseph; Kazanas, Demosthenes

    2010-06-15

    We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term {gamma}r in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.

  17. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  18. Big Data in industry

    NASA Astrophysics Data System (ADS)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  19. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  20. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  1. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  2. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  3. 49 CFR 192.315 - Wrinkle bends in steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel... wrinkle bend on steel pipe must comply with the following: (1) The bend must not have any sharp kinks....

  4. The Big Bang Theory

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  5. The Big Bang Theory

    SciTech Connect

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  6. Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Sayir, Haluk

    1995-01-01

    The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.

  7. Thinking big thoughts

    NASA Astrophysics Data System (ADS)

    Vedral, Vlatko

    2016-08-01

    The short synopsis of The Big Picture by Sean Carroll is that it explores the question of whether science can explain everything in the world, and analyses the emerging reality that such an explanation entails.

  8. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  9. Big data need big theory too.

    PubMed

    Coveney, Peter V; Dougherty, Edward R; Highfield, Roger R

    2016-11-13

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their 'depth' and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote 'blind' big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  10. Big data need big theory too

    PubMed Central

    Dougherty, Edward R.; Highfield, Roger R.

    2016-01-01

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their ‘depth’ and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote ‘blind’ big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698035

  11. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution. [Big Sioux River Basin, SOuth Dakota

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J. L.

    1979-01-01

    The author has identified the following significant results. Evidence of a heat sink produced by perched water tables was detected with HCMM night thermal data. The region of shallow water was not visible on HCMM visible or day IR imagery. The results are consistant with previous aircraft investigations.

  12. The oroclinal bend in the South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Mortimer, N.

    2014-07-01

    Most of the South Island of New Zealand lies within an Eocene-Recent continental shear zone related to Pacific-Australia plate motion. Macroscopic finite strain in this shear zone has, in the past, been tracked through the deformation of the Dun Mountain Ophiolite Belt. This paper identifies additional sub-vertical basement strain markers including: Buller-Takaka Terrane boundary, Darran Suite and Jurassic volcanic belt within the Median Batholith, Taieri-Wakatipu-Goulter Synform axial trace, Esk Head Melange and bedding form surfaces within the Buller, Takaka and Torlesse terranes. An analysis of the oroclinal bend over the entire Zealandia continent shows that it is a composite feature involving pre- as well as post-Eocene bending of basement structures. Satisfactory paleogeographic reconstructions of Zealandia cannot be made without the use of substantial regional scale, non-rigid intracontinental deformation.

  13. Geomorpho-tectonic evolution of the Jamaican restraining bend

    NASA Astrophysics Data System (ADS)

    Domínguez-González, Leomaris; Andreani, Louis; Stanek, Klaus P.; Gloaguen, Richard

    2015-01-01

    This work applies recent advances in tectonic geomorphology in order to understand the geomorphic evolution of the Jamaican restraining bend located along the Caribbean-Gonâve-North American plate boundary. We propose a classification of landscapes according to their erosional stages. The approach is mainly based on the combination of two DEM-based geomorphic indices: the hypsometric integral which highlights elevated surfaces, and the surface roughness which increases when the relief is incised by the drainage network. River longitudinal profiles were also analyzed as the drainage network responds quickly to base-level change triggered by external forcing such as tectonics. Anomalies in river profiles (knickpoints and convex segments) were mapped using stream length-gradient (SL) and normalized steepness (ksn) indices. The results provide new insights for understanding the complex evolution of the Jamaican restraining bend. Three main morphotectonic regions were identified in Jamaica: (1) the Blue Mountain-Wagwater unit located at the eastern tip of the island, (2) the Jamaican highlands plateau which covers most of the northern and central areas and (3) the tilted block province located along the southern part of Jamaica. Each region has a specific morphological signature which marks a different stage in the Late Miocene to present evolution of the Jamaican restraining bend. The evolution of the bend is mainly associated with the western propagation of major E-trending strike-slip faults and NW-trending thrusts. In the western and central parts of Jamaica the present-day motion between the Caribbean plate and the Gonâve microplate is broadly distributed along several structures, while in the easternmost part of the island this motion seems to be almost completely accommodated along the Blue Mountain range and the Plantain-Garden Fault.

  14. Initial Ares I Bending Filter Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Bedrossian, Nazareth; Hall, Robert; Norris, H. Lee; Hall, Charles; Jackson, Mark

    2007-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output will be required to ensure control system stability and adequate performance. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The filter design methodology was based on a numerical constrained optimization approach to maximize stability margins while meeting performance requirements. The resulting bending filter designs achieved stability by adding lag to the first structural frequency and hence phase stabilizing the first Ares-I flex mode. To minimize rigid body performance impacts, a priority was placed via constraints in the optimization algorithm to minimize bandwidth decrease with the addition of the bending filters. The bending filters provided here have been demonstrated to provide a stable first stage control system in both the frequency domain and the MSFC MAVERIC time domain simulation.

  15. Bending instability in electrospinning of nanofibers

    NASA Astrophysics Data System (ADS)

    Yarin, A. L.; Koombhongse, S.; Reneker, D. H.

    2001-03-01

    A localized approximation was developed to calculate the bending electric force acting on an electrified polymer jet, which is a key element of the electrospinning process for manufacturing of nanofibers. Using this force, a far reaching analogy between the electrically driven bending instability and the aerodynamically driven instability was established. Continuous, quasi-one-dimensional, partial differential equations were derived and used to predict the growth rate of small electrically driven bending perturbations of a liquid column. A discretized form of these equations, that accounts for solvent evaporation and polymer solidification, was used to calculate the jet paths during the course of nonlinear bending instability leading to formation of large loops and resulting in nanofibers. The results of the calculations are compared to the experimental data acquired in the present work. Agreement of theory and experiment is discussed.

  16. Thermal static bending of deployable interlocked booms

    NASA Technical Reports Server (NTRS)

    Staugaitis, C. L.; Predmore, R. E.

    1973-01-01

    Metal ribbons processed with a heat-forming treatment are enabled to form tubelike structures when deployed from a roll. Deployable booms of this have been utilized for gravity-gradient stabilization on the RAE, ATS, and Nimbus D satellites. An experimental thermal-mechanics test apparatus was developed to measure the thermal static bending and twist of booms up to 3 meters long. The apparatus was calibrated by using the correlation between calculated and observed thermal bending of a seamless tube. Thermal static bending values of 16 interlocked deployable booms were observed to be within a factor of 2.5 of the values calculated from seamless-tube theory. Out-of-Sun-plane thermal bending was caused by complex heat transfer across the interlocked seam. Significant thermal static twisting was not observed.

  17. Bending artificial muscle from nylon filaments

    NASA Astrophysics Data System (ADS)

    Mirvakili, Seyed M.; Hunter, Ian W.

    2016-04-01

    Highly oriented nylon and polyethylene fibers shrink in length and expand in diameter when heated. Using this property, in this work, for the first time we are introducing a type of bending artificial muscle from nylon filaments such as fishing line. Reversible radius of curvature of 0.23 mm-1 was achieved with maximum reversible bending amplitude of 115 mm for the nylon bending actuator. Peak force of up to 2040 mN was measured with a catch-state force of up to 40% of the active force. A 3 dB roll-off frequency of around 0.7 Hz was observed in the frequency response of the bending actuator in water.

  18. Minimal Bending Energies of Bilayer Polyhedra

    NASA Astrophysics Data System (ADS)

    Haselwandter, Christoph A.; Phillips, Rob

    2010-11-01

    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra.

  19. Tool bending in New Caledonian crows

    PubMed Central

    Sugasawa, Shoko; van der Wal, Jessica E. M.; Klump, Barbara C.; St Clair, James J. H.

    2016-01-01

    ‘Betty’ the New Caledonian crow astonished the world when she ‘spontaneously’ bent straight pieces of garden wire into hooked foraging tools. Recent field experiments have revealed that tool bending is part of the species' natural behavioural repertoire, providing important context for interpreting Betty's iconic wire-bending feat. More generally, this discovery provides a compelling illustration of how natural history observations can inform laboratory-based research into the cognitive capacities of non-human animals. PMID:27853622

  20. A transparent bending-insensitive pressure sensor.

    PubMed

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  1. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  2. Feature guided waves (FGW) in fiber reinforced composite plates with 90° transverse bends

    NASA Astrophysics Data System (ADS)

    Yu, Xudong; Ratassepp, Madis; Fan, Zheng; Manogharan, Prabhakaran; Rajagopal, Prabhu

    2016-02-01

    Fiber reinforced composite materials have been increasingly used in high performance structures such as aircraft and large wind turbine blades. 90◦ composite bends are common in reinforcing structural elements, which are prone to defects such as delamination, crack, fatigue, etc. Current techniques are based on local inspection which makes the whole bend area scanning time consuming and tedious. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of 90◦ composite laminated bends. In this study, the behavior of the bend-guided wave in the anisotropic composite material is investigated through modal studies by applying the Semi-Analytical Finite Element (SAFE) method, also 3D Finite Element (FE) simulations are performed to visualize the results and to obtain cross validation. To understand the influence of the anisotropy, three-dimensional dispersion surfaces of the guided modes in flat laminated plates are obtained, showing the dependence of the phase velocity with the frequency and the fiber orientation. S H0-like and S 0-like bend-guided modes are identified with energy concentrated in the bend region, limiting energy radiation into adjacent plates and thus achieving increased inspection length. Finally, parametric studies are carried out to further investigate the properties of these two bend-guided modes, demonstrating the variation of the group velocity, the energy concentration, and the attenuation with the frequency.

  3. Molecular dynamics simulation of DNA base-pair opening by sharp bending

    NASA Astrophysics Data System (ADS)

    Cong, Peiwen; Dai, Liang; van der Maarel, Johan R. C.; Yan, Jie

    2013-03-01

    Many biological processes require sharp bending of DNA. According to worm-like chain model, the bending energy dominates the free energy cost of those processes containing DNA loops shorter than 40 nm, such as DNA wrapping around histones, Lac repressor looping and virus DNA packaging. However, several recent experimental observations suggest that the WLC model s not applicable under tight bending conditions. In full atom molecular dynamics simulations, a double stranded, 20 base-pairs DNA fragment is forced to bend by an external spring. It is found that one or two AT-rich regions are disrupted for sufficiently small end-to-end distance. The disrupted DNA base-pairs separate and usually stack with the neighbouring base-pairs to form a defect. It is shown that these defects are more bendable than the bending rigidity of the duplex in the regular B-form. The simulation suggests a curvature dependent, non-harmonic bending elasticity of the DNA backbone is necessary to describe the DNA conformation under tight bending conditions.

  4. Analysis of Surface Roughening in AA6111 Automotive Sheet Under Pure Bending

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Zhao, P. Z.; Jin, H.; Wu, P. D.; Lloyd, D. J.

    2016-02-01

    The finite element method is used to numerically simulate the topographic development in an aluminum sheet, AA6111, under pure bending. The measured electron backscatter diffraction data are directly incorporated into the finite element model, and the constitutive response at an integration point is described by the single crystal plasticity theory. The effects of strain-rate sensitivity, work hardening, and imposed initial surface roughness on surface roughening are studied. It is found that the grains in top surface layers of the sheet play a big role in controlling the outer surface roughness due to the strain gradient across sheet thickness in bending, while the grain size and texture of the surface layers have a direct impact on finishing surface qualities.

  5. Big data bioinformatics.

    PubMed

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia.

  6. Big data in biomedicine.

    PubMed

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science.

  7. Big Questions: Missing Antimatter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  8. Big Questions: Missing Antimatter

    SciTech Connect

    Lincoln, Don

    2013-08-27

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  9. Metal atom dynamics in superbulky metallocenes: a comparison of (Cp(BIG))2Sn and (Cp(BIG))2Eu.

    PubMed

    Harder, Sjoerd; Naglav, Dominik; Schwerdtfeger, Peter; Nowik, Israel; Herber, Rolfe H

    2014-02-17

    Cp(BIG)2Sn (Cp(BIG) = (4-n-Bu-C6H4)5cyclopentadienyl), prepared by reaction of 2 equiv of Cp(BIG)Na with SnCl2, crystallized isomorphous to other known metallocenes with this ligand (Ca, Sr, Ba, Sm, Eu, Yb). Similarly, it shows perfect linearity, C-H···C(π) bonding between the Cp(BIG) rings and out-of-plane bending of the aryl substituents toward the metal. Whereas all other Cp(BIG)2M complexes show large disorder in the metal position, the Sn atom in Cp(BIG)2Sn is perfectly ordered. In contrast, (119)Sn and (151)Eu Mößbauer investigations on the corresponding Cp(BIG)2M metallocenes show that Sn(II) is more dynamic and loosely bound than Eu(II). The large displacement factors in the group 2 and especially in the lanthanide(II) metallocenes Cp(BIG)2M can be explained by static metal disorder in a plane parallel to the Cp(BIG) rings. Despite parallel Cp(BIG) rings, these metallocenes have a nonlinear Cpcenter-M-Cpcenter geometry. This is explained by an ionic model in which metal atoms are polarized by the negatively charged Cp rings. The extent of nonlinearity is in line with trends found in M(2+) ion polarizabilities. The range of known calculated dipole polarizabilities at the Douglas-Kroll CCSD(T) level was extended with values (atomic units) for Sn(2+) 15.35, Sm(2+)(4f(6) (7)F) 9.82, Eu(2+)(4f(7) (8)S) 8.99, and Yb(2+)(4f(14) (1)S) 6.55. This polarizability model cannot be applied to predominantly covalently bound Cp(BIG)2Sn, which shows a perfectly ordered structure. The bent geometry of Cp*2Sn should therefore not be explained by metal polarizability but is due to van der Waals Cp*···Cp* attraction and (to some extent) to a small p-character component in the Sn lone pair.

  10. Coherent thermoelectric transport in single, double, and U-bend structures

    SciTech Connect

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2015-02-14

    Coherent, i.e., ballistic, thermoelectric transport in electron waveguide structures containing right-angle bends in single, double, and U-bend configurations is investigated. A theory based on Green's functions is used to derive the transmission function (and from that the transport coefficients) and allows for the inclusion of realistic models of spatially distributed imperfections. The results for the single and double-bend structures are presented in more detail than elsewhere in the literature. In the U-bend structure, sharp resonances in the stop-band region of the transmission function lead to large-magnitude peaks in the thermopower and consequently a large thermoelectric figure of merit (of order ten in some instances). These properties are still readily apparent even in the presence of moderate edge roughness or Anderson disorder.

  11. Channel width dependence of electrical characteristics of a-Si:H TFTs under bending stresses

    NASA Astrophysics Data System (ADS)

    Oh, Hyungon; Cho, Kyoungah; Kim, Sangsig

    2017-04-01

    In this study, we investigate the electrical characteristics of bendable a-Si:H thin-film transistors (TFTs) with various channel widths as a function of bending stress. Compared with a narrower channel TFT, a wider channel TFT exhibits a stable performance even at a bending strain of 1.3%. Our stress and strain distribution analysis reveals an inverse relationship between the channel width and the channel stress. As the channel width widens from 8 to 50 μm, the stress experienced by the middle channel region decreases from 545 to 277 MPa. Moreover, a 50 μm-channel-width TFT operates stably even after a 15 000 bending cycle while the 8 μm-channel-width TFT fails to operate after a 2000 bending cycle.

  12. Variations in oceanic plate bending along the Mariana trench

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Jian; Zhan, Wenhuan

    2014-09-01

    We quantify along-trench variations in plate flexural bending along the Mariana trench in the western Pacific Ocean. A 3-D interpreted flexural deformation surface of the subducting Pacific Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 75 across-trench profile sections and calculated five best-fitting tectonic and plate parameters that control the flexural bending. Results of analysis revealed significant along-trench variations: the trench relief varies from 0.9 to 5.7 km, trench-axis vertical loading (-V0) from -0.73×1012 to 3.17×1012 N/m, and axial bending moment (-M0) from 0.1×1017 to 2.7×1017 N. The effective elastic plate thickness seaward of the outer-rise region (TeM) ranges from 45 to 52 km, while that trench-ward of the outer-rise (Tem) ranges from 19 to 40 km. This corresponds to a reduction in Te of 21-61%. The transition from TeM to Tem occurs at a breaking distance of 60-125 km from the trench axis, which is near the outer-rise and corresponds to the onset of observed pervasive normal faults. The Challenger Deep area is associated with the greatest trench relief and axial vertical loading, while areas with seamounts at the trench axis are often associated with more subtle trench relief, smaller axial vertical loading, and greater topographic bulge at the outer-rise.

  13. Bend-insensitive optical fibers for FTTH applications

    NASA Astrophysics Data System (ADS)

    Li, Ming-Jun

    2009-01-01

    This paper reviews recent development in bend-insensitive fibers for fiber-to-the-home (FTTH) applications. First, requirements for bend-insensitive fibers are discussed. Then different design approaches for reducing fiber bending loss are described and compared. A new bend-insensitive fiber using the nano-engineered ring design is presented in detail.

  14. Comment on 'Heavy element production in inhomogeneous big bang nucleosynthesis'

    SciTech Connect

    Rauscher, Thomas

    2007-03-15

    The work of Matsuura et al. [Phys. Rev. D 72, 123505 (2005)] claims that heavy nuclei could have been produced in a combined p- and r-process in very high baryon density regions of an inhomogeneous big bang. However, they do not account for observational constraints and previous studies which show that such high baryon density regions did not significantly contribute to big bang abundances.

  15. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  16. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  17. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The…

  18. The big bang

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.

  19. A Sobering Big Idea

    ERIC Educational Resources Information Center

    Wineburg, Sam

    2006-01-01

    Since Susan Adler, Alberta Dougan, and Jesus Garcia like "big ideas," the author offers one to ponder: young people in this country can not read with comprehension. The saddest thing about this crisis is that it is no secret. The 2001 results of the National Assessment of Educational Progress (NAEP) for reading, published in every major…

  20. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  1. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  2. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  3. FLUCTUATING MOTOR FORCES BEND GROWING MICROTUBULES

    PubMed Central

    Shekhar, Nandini; Neelam, Srujana; Wu, Jun; Ladd, Anthony JC; Dickinson, Richard B.; Lele, Tanmay P.

    2013-01-01

    Despite their rigidity, microtubules in living cells bend significantly during polymerization resulting in greater curvature than can be explained by thermal forces alone. However, the source of the non-thermal forces that bend growing microtubules remains obscure. We analyzed the motion of microtubule tips in NIH-3T3 fibroblasts expressing EGFP-EB1, a fluorescent +TIP protein that specifically binds to the growing ends of microtubules. We found that dynein inhibition significantly reduced the deviation of the growing tip from its initial trajectory. Inhibiting myosin modestly reduced tip fluctuations, while simultaneous myosin and dynein inhibition caused no further decrease in fluctuations compared to dynein inhibition alone. Our results can be interpreted with a model in which dynein linkages play a key role in generating and transmitting fluctuating forces that bend growing microtubules. PMID:24039637

  4. Bending sound in graphene: Origin and manifestation

    NASA Astrophysics Data System (ADS)

    Adamyan, V. M.; Bondarev, V. N.; Zavalniuk, V. V.

    2016-11-01

    It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  5. Band bending in conjugated polymer layers.

    PubMed

    Lange, Ilja; Blakesley, James C; Frisch, Johannes; Vollmer, Antje; Koch, Norbert; Neher, Dieter

    2011-05-27

    We use the Kelvin probe method to study the energy-level alignment of four conjugated polymers deposited on various electrodes. Band bending is observed in all polymers when the substrate work function exceeds critical values. Through modeling, we show that the band bending is explained by charge transfer from the electrodes into a small density of states that extends several hundred meV into the band gap. The energetic spread of these states is correlated with charge-carrier mobilities, suggesting that the same states also govern charge transport in the bulk of these polymers.

  6. Minimal Bending Energies of Bilayer Polyhedra

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra. PMID:21231425

  7. Robotic Arm Comprising Two Bending Segments

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.

    2010-01-01

    The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to

  8. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    ERIC Educational Resources Information Center

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own…

  9. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    NASA Astrophysics Data System (ADS)

    Takayasu, Makoto; Chiesa, Luisa

    2015-12-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour.

  10. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments.

    PubMed

    Berg-Johansen, Britta; Liebenberg, Ellen C; Li, Alfred; Macias, Brandon R; Hargens, Alan R; Lotz, Jeffrey C

    2016-01-01

    Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (μCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts.

  11. Monitoring the Bending Stiffness of DNA

    NASA Astrophysics Data System (ADS)

    Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden

    2007-03-01

    In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.

  12. Plastic properties of matrix composites in bending

    NASA Astrophysics Data System (ADS)

    Novikov, V. V.; Papkovskaya, O. B.

    1997-11-01

    Using the methods of integrated cross-sections and elastic solutions, we solve an elastico-plastic problem of bending of a Kirchhoff inhomogeneous square plate. The elastico-plastic properties and the effective yield stress of the inhomogeneous plate are calculated on an electronic computer. The computational results form the basis for a qualitative analysis and for the conclusions made.

  13. Interdisciplinary Invitations: Exploring Gee's Bend Quilts

    ERIC Educational Resources Information Center

    Mitchell, Rebecca; Whitin, Phyllis; Whitin, David

    2012-01-01

    Engaging with the quilts of Gee's Bend offers a rich opportunity for students in grades four through eight to develop appreciation for pattern, rhythm, and innovation while learning about history, entrepreneurship, and political activism. By easily accessing print, film, and Internet resources teachers can include these vibrant quilts and…

  14. Probing the elastic limit of DNA bending.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼ 60 bp to ∼ 100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.

  15. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  16. Age of the Hawaiian-Emperor bend

    USGS Publications Warehouse

    Dalrymple, G.B.; Clague, D.A.

    1976-01-01

    40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko??ko Seamounts, the new data indicate that the best age for the bend is 42.0 ?? 1.4 m.y. Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain. 40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with 40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of 39Ar from nonretentive montmorillonite clays that have also lost 40Ar. ?? 1976.

  17. Bending rate damping in elastic systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Wang, Y.; Fabiano, R. H.

    1989-01-01

    Preliminary results of an investigation of the bending rate damping model for elastic structures are presented. A model for which the internal damping term is physically plausible and which can accomodate cantilevered boundary conditions is discussed. The model formulation and mathematical foundations are given, and numerical results are discussed.

  18. DARPA's Big Mechanism program

    NASA Astrophysics Data System (ADS)

    Cohen, Paul R.

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  19. A holographic big bang?

    NASA Astrophysics Data System (ADS)

    Afshordi, N.; Mann, R. B.; Pourhasan, R.

    2015-11-01

    We present a cosmological model in which the Universe emerges out of the collapse of a five-dimensional (5D) star as a spherical three-brane. The initial singularity of the big bang becomes hidden behind a causal horizon. Near scale-invariant primordial curvature perturbations can be induced on the brane via a thermal atmosphere that is in equilibrium with the brane, circumventing the need for a separate inflationary process and providing an important test of the model.

  20. The Next Big Idea

    PubMed Central

    2013-01-01

    Abstract George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed. PMID:23786296

  1. DARPA's Big Mechanism program.

    PubMed

    Cohen, Paul R

    2015-07-16

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  2. Big3. Editorial

    PubMed Central

    Lehmann, Christoph U.; Séroussi, Brigitte; Jaulent, Marie-Christine

    2014-01-01

    Summary Objectives To provide an editorial introduction into the 2014 IMIA Yearbook of Medical Informatics with an overview of the content, the new publishing scheme, and upcoming 25th anniversary. Methods A brief overview of the 2014 special topic, Big Data - Smart Health Strategies, and an outline of the novel publishing model is provided in conjunction with a call for proposals to celebrate the 25th anniversary of the Yearbook. Results ‘Big Data’ has become the latest buzzword in informatics and promise new approaches and interventions that can improve health, well-being, and quality of life. This edition of the Yearbook acknowledges the fact that we just started to explore the opportunities that ‘Big Data’ will bring. However, it will become apparent to the reader that its pervasive nature has invaded all aspects of biomedical informatics – some to a higher degree than others. It was our goal to provide a comprehensive view at the state of ‘Big Data’ today, explore its strengths and weaknesses, as well as its risks, discuss emerging trends, tools, and applications, and stimulate the development of the field through the aggregation of excellent survey papers and working group contributions to the topic. Conclusions For the first time in history will the IMIA Yearbook be published in an open access online format allowing a broader readership especially in resource poor countries. For the first time, thanks to the online format, will the IMIA Yearbook be published twice in the year, with two different tracks of papers. We anticipate that the important role of the IMIA yearbook will further increase with these changes just in time for its 25th anniversary in 2016. PMID:24853037

  3. Bending effects on lasing action of semiconductor nanowires.

    PubMed

    Yang, Weisong; Ma, Yaoguang; Wang, Yipei; Meng, Chao; Wu, Xiaoqin; Ye, Yu; Dai, Lun; Tong, Limin; Liu, Xu; Yang, Qing

    2013-01-28

    High flexibility has been one of advantages for one-dimensional semiconductor nanowires (NWs) in wide application of nanoscale integrated circuits. We investigate the bending effects on lasing action of CdSe NWs. Threshold increases and differential efficiency decreases gradually when we decrease the bending radius step by step. Red shift and mode reduction in the output spectra are also observed. The bending loss of laser oscillation is considerably larger than that of photoluminescence (PL), and both show the exponential relationship with the bending radius. Diameter and mode dependent bending losses are investigated. Furthermore, the polarizations of output can be modulated linearly by bending the NWs into different angles continuously.

  4. Experimental Characterization of Stretch-Bending Formability of AHSS Sheets

    NASA Astrophysics Data System (ADS)

    Kitting, Daniela; Ofenheimer, Aldo; Pauli, Heinrich; Till, Edwin T.

    2011-05-01

    Deformation conditions of combined stretching and bending are known to enhance material formability compared to forming conditions without bending (e.g. in-plane stretching). These phenomena can be observed for most conventional steel grades but is even more pronounced for Advanced High Strength Steel (AHSS) sheets. Consequently, there is an urgent need in industry to quantify the phenomena of enhanced material formability due to bending effects. In this work new stretch-bend test setups are presented which can be used in addition to the conventional Angular Stretch Bend Test to systematically investigate the influence of various stretch-bending deformation conditions on the formability of AHSS sheets.

  5. Disaggregating asthma: Big investigation versus big data.

    PubMed

    Belgrave, Danielle; Henderson, John; Simpson, Angela; Buchan, Iain; Bishop, Christopher; Custovic, Adnan

    2017-02-01

    We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational tools for data analysis is that the process of data mining can become uncoupled from the scientific process of clinical interpretation, understanding the provenance of the data, and external validation. Although advances in computational methods can be valuable for using unexpected structure in data to generate hypotheses, there remains a need for testing hypotheses and interpreting results with scientific rigor. We argue for combining data- and hypothesis-driven methods in a careful synergy, and the importance of carefully characterized birth and patient cohorts with genetic, phenotypic, biological, and molecular data in this process cannot be overemphasized. The main challenge on the road ahead is to harness bigger health care data in ways that produce meaningful clinical interpretation and to translate this into better diagnoses and properly personalized prevention and treatment plans. There is a pressing need for cross-disciplinary research with an integrative approach to data science, whereby basic scientists, clinicians, data analysts, and epidemiologists work together to understand the heterogeneity of asthma.

  6. Background seismicity rate at subduction zones linked to slab-bending-related hydration

    NASA Astrophysics Data System (ADS)

    Nishikawa, Tomoaki; Ide, Satoshi

    2015-09-01

    Tectonic properties strongly control variations in seismicity among subduction zones. In particular, fluid distribution in subduction zones influences earthquake occurrence, and it varies among subduction zones due to variations in fluid sources such as hydrated oceanic plates. However, the relationship between variations in fluid distribution and variations in seismicity among subduction zones is unclear. Here we divide Earth's subduction zones into 111 regions and estimate background seismicity rates using the epidemic type aftershock sequence model. We demonstrate that background seismicity rate correlates to the amount of bending of the incoming oceanic plate, which in turn is related to the hydration of oceanic plates via slab-bending-related faults. Regions with large bending may have high-seismicity rates because a strongly hydrated oceanic plate causes high pore fluid pressure and reduces the strength of the plate interface. We suggest that variations in fluid distribution can also cause variations in seismicity in subduction zones.

  7. Faunal communities and habitat characteristics of the Big Bend seagrass meadows, 2009-2010.

    EPA Science Inventory

    Seagrass meadows are important habitats that serve as nursery, feeding, and sheltering grounds for many marine species. In addition to the ecosystem functions and services they provide, seagrass habitats and associated fauna are commonly observed to have naturally high levels of...

  8. Spatial distribution and risk assessment of Johnsongrass (sorghum halepense) in Big Bend National Park, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used Landsat 7 ETM+ imagery to illustrate how remotely sensed data can model predicted Johnsongrass habitat. We used spectral reflectance values for three seasons of data across 5 years (fall 1999, summer and fall 2000, spring and fall 2001, spring 2002, and spring 2003) to capture Johnsongrass v...

  9. An infrared study of the bending region of acetylene

    NASA Astrophysics Data System (ADS)

    Hillman, J. J.; Jennings, D. E.; Halsey, G. W.; Nadler, Shachar; Blass, W. E.

    1991-04-01

    Acetylene spectra observed with instrumental resolutions of 0.0025 and 0.005 cm-1 were obtained at The National Optical Astronomy Observatory, Tucson, Arizona using the FTS spectrometer at the National Solar Observatory McMath telescope facility. These resolutions are factors of 6 and 3 times, respectively, that of the best prior study in the literature. The higher resolution allowed the assignment of many more low-J Q-branch transitions. The range of optical densities available in this study also allowed the extension of observed and assigned transitions to significantly higher J-values than reported in prior studies. Availability of improved standard lines resulted in high quality transition wavenumbers which are accurate to approximately +/-0.0001 cm-1. Using proven combination difference techniques and analysis software, this study produces the best available molecular parameters for the ν4 and ν5 states of acetylene. In addition, because acetylene has no permanent dipole moment, this study extends the precision of available ground state parameters B0 and D0 and produces for the first time an estimator of H0. In addition to H0 values for both isotopic species treated, we have obtained for the first time a value for H5 for the dominant isotopmer. The value of H5 for the 13C12CH2 was not determined and thus thought to be significantly smaller than H5 for 12C2H2. This study also obtains l-doubling parameters for both degenerate fundamental states in the lesser isotopmer for the first time as well as H4 for both isotopmers and B4 and D4 for the lesser isotopmer. NASA/ASEE Summer Faculty Fellow, NASA/Goddard Space Flight Center, 1986, 1987 (during which periods a portion of this work was completed).

  10. Gas-liquid two phase flow through a vertical 90 elbow bend

    SciTech Connect

    Spedding, P.L.; Benard, E.

    2007-07-15

    Pressure drop data are reported for two phase air-water flow through a vertical to horizontal 90 elbow bend set in 0.026 m i.d. pipe. The pressure drop in the vertical inlet tangent showed some significant differences to that found for straight vertical pipe. This was caused by the elbow bend partially choking the inflow resulting in a build-up of pressure and liquid in the vertical inlet riser and differences in the structure of the flow regimes when compared to the straight vertical pipe. The horizontal outlet tangent by contrast gave data in general agreement with literature even to exhibiting a drag reduction region at low liquid rates and gas velocities between 1 and 2 m s{sup -1}. The elbow bend pressure drop was best correlated in terms of l{sub e}/d determined using the actual pressure loss in the inlet vertical riser. The data showed a general increase with fluid rates that tapered off at high fluid rates and exhibited a negative pressure region at low rates. The latter was attributed to the flow being smoothly accommodated by the bend when it passed from slug flow in the riser to smooth stratified flow in the outlet tangent. A general correlation was presented for the elbow bend pressure drop in terms of total Reynolds numbers. A modified Lockhart-Martinelli model gave prediction of the data. (author)

  11. Interaction of low-frequency axisymmetric ultrasonic guided waves with bends in pipes of arbitrary bend angle and general bend radius.

    PubMed

    Verma, Bhupesh; Mishra, Tarun Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-03-01

    The use of ultrasonic guided waves for the inspection of pipes with elbow and U-type bends has received much attention in recent years, but studies for more general bend angles which may also occur commonly, for example in cross-country pipes, are limited. Here, we address this topic considering a general bend angle φ, a more general mean bend radius R in terms of the wavelength of the mode studied and pipe thickness b. We use 3D Finite Element (FE) simulation to understand the propagation of fundamental axisymmetric L(0,2) mode across bends of different angles φ. The effect of the ratio of the mean bend radius to the wavelength of the mode studied, on the transmission and reflection of incident wave is also considered. The studies show that as the bend angle is reduced, a progressively larger extent of mode-conversion affects the transmission and velocity characteristics of the L(0,2) mode. However the overall message on the potential of guided waves for inspection and monitoring of bent pipes remains positive, as bends seem to impact mode transmission only to the extent of 20% even at low bend angles. The conclusions seem to be valid for different typical pipe thicknesses b and bend radii. The modeling approach is validated by experiments and discussed in light of physics of guided waves.

  12. Research on relation between bending stress and characteristic frequency of H-shaped beam by free vibration deflection

    SciTech Connect

    Yoshida, Tsutomu; Watanabe, Takeshi

    2014-05-27

    In order to investigate a relation between a bending stress and a characteristic frequency of a beam, 4-point loading which had constant moment region was conducted to a beam with H shape configuration experimentally and numerically. H-shaped beam has many characteristic deformation modes. Axial tensile stress in the beam made its characteristic frequency higher, and compressive stress lower. In the experiment, some characteristic frequencies got higher by a bending stress, and the others stayed in a small frequency fluctuation. The distinction is anticipated as a capability to measure a bending stress of a beam by its characteristic frequencies.

  13. Human T cells expressing BEND3 on their surface represent a novel subpopulation that preferentially produces IL-6 and IL-8.

    PubMed

    Shiheido, Hirokazu; Kitagori, Koji; Sasaki, Chiyomi; Kobayashi, Shio; Aoyama, Takane; Urata, Kozue; Oku, Takuma; Hirayama, Yoshitaka; Yoshitomi, Hiroyuki; Hikida, Masaki; Yoshifuji, Hajime; Mimori, Tsuneyo; Watanabe, Takeshi; Shimizu, Jun

    2014-06-01

    BEN domain-containing protein 3 (BEND3) has no transmembrane region, is localized in the cytoplasm, and is involved in chromatin function and transcription. We here identified a novel subpopulation of human T cells that expressed BEND3 on their cell surface (BEND3(+) T cells). BEND3(+) T cells consisted of approximately 3% of T cells in the peripheral blood, were present in both CD4(+) and CD8(+) T cells, and were also observed in cord blood. The stimulation of BEND3(+) T cells through the TCR/CD3 complex led to the production of various kinds of cytokines; however, the levels of IL-6 and IL-8 produced by BEND3(+) T cells were higher than those by BEND3(-) T cells. The proportion of BEND3(+) T cells was also increased in some patients with inflammatory diseases. Taken together, these results indicate that BEND3(+) T cells are a new subpopulation of T cells in terms of their cytokine profile. Further analyses on BEND3(+) T cells may be of importance and useful in understanding human T cell immunology.

  14. Environmental Analysis of the Air Bending Process

    NASA Astrophysics Data System (ADS)

    Kellens, Karel; Dewulf, Wim; Duflou, Joost R.

    2011-05-01

    This paper presents the results of a data collection effort, allowing to assess the overall environmental impact of the air bending process using the CO2PE!-Methodology. First the different modes of the air bending process are investigated, including both productive and non-productive modes. In particular consumption of electric power is recorded for the different modes. Subsequently, time studies allow determining the importance of productive and nonproductive modes of the involved process. The study demonstrates that the influence of standby losses can be substantial. In addition to life cycle analysis, in depth process analysis also provides insight in achievable environmental impact reducing measures towards machine tool builders and eco-design recommendations for product developers. The energy consumption of three different machine tool architectures are analysed and compared within this paper.

  15. Holey fibers for low bend loss

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi

    2013-12-01

    Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.

  16. Effect of confinements: Bending in Paramecium

    NASA Astrophysics Data System (ADS)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  17. Monitoring thermoplastic composites under cyclic bending tests

    NASA Astrophysics Data System (ADS)

    Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro

    2016-05-01

    This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.

  18. Development of Bend Sensor for Catheter Tip

    NASA Astrophysics Data System (ADS)

    Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo

    Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.

  19. Vortex breakdown in simple pipe bends

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Shin, Sangwoo; Stone, Howard

    2016-11-01

    Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.

  20. Monoclinal bending of strata over laccolithic intrusions

    USGS Publications Warehouse

    Koch, F.G.; Johnson, A.M.; Pollard, D.D.

    1981-01-01

    Sedimentary strata on top of some laccolithic intrusions are nearly horizontal and little deformed, but are bent into steeply dipping monoclinal flexures over the peripheries of these intrusions. This form of bending is not explained by previous theories of laccolithic intrusion, which predict either horizontal undeformed strata over the center and faulted strata around the periphery, or strata bent continuously into a dome. However, a slight generalization of these theories accomodates the observed form and contains the previous forms as special cases. A critical assumption is that the strength of contacts within a multilayered overburden is overcome locally by layer-parallel shear. If this strength is less than the strength of the layers themselves, then layers over the center remain bonded together and display negligible bending, whereas layers over the periphery slip over one another and are readily bent into a monoclinal flexure. ?? 1981.

  1. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  2. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  3. DNA Bending Stiffness on Small Length Scales

    NASA Astrophysics Data System (ADS)

    Yuan, Chongli; Chen, Huimin; Lou, Xiong Wen; Archer, Lynden A.

    2008-01-01

    Bending properties of short (15 90 bp), double-stranded DNA fragments are quantified using fluorescence resonance energy transfer and small angle x-ray scattering. Results from both types of measurements indicate that short double-stranded DNA fragments exhibit surprisingly high flexibility. These observations are discussed in terms of base-pair-level length fluctuations originating from dynamic features of Watson-Crick base pairs.

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  5. Forming and Bending of Metal Foams

    NASA Astrophysics Data System (ADS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-06-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.

  6. Laser beam bending of metallic foils

    NASA Astrophysics Data System (ADS)

    Geiger, Manfred; Meyer-Pittroff, Frank

    2002-02-01

    The increasing miniaturization, especially in mass production of electronic and mechatronic devices demands for new technologies for forming, handling and assembly of micro components. Contactless laser beam forming without application of any exterior forces may be such a means. Potential applications for laser forming of micro parts can be found where the introduction of exterior forces or bending moments into the component causes a problem due to its small geometric dimensions, where further handling after the forming process may damage the component or, where a forming step is not required until after the assembly. Contactless laser forming may serve as a solution for high precision manipulation of functional electronic or optical devices or for tuning forces as in relays-springs. Desired changes in position may be in the sub-micrometer range. Due to its extremely short pulse duration, the excimer laser is suited for applying a temperature gradient over the cross section of even very thin metals plates, thus leading to their bending. However, beside thermal mechanisms also non- thermal mechanical effects are responsible for laser beam bending of very thin metal plates by excimer laser irradiation, when irradiating with fluences above the ablation threshold.

  7. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  8. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  9. "Big Events" and Networks.

    PubMed

    Friedman, Samuel; Rossi, Diana; Flom, Peter L

    2006-01-01

    Some, but not all, "big events" such as wars, revolutions, socioeconomic transitions, economic collapses, and ecological disasters in recent years seem to lead to large-scale HIV outbreaks (Friedman et al, in press; Hankins et al 2002). This was true of transitions in the USSR, South Africa and Indonesia, for example, but not those in the Philippines or (so far) in Argentina. It has been hypothesized that whether or not HIV outbreaks occur is shaped in part by the nature and extent of changes in the numbers of voluntary or involuntary risk-takers, which itself may be related to the growth of roles such as sex-sellers or drug sellers; the riskiness of the behaviors engaged in by risk-takers; and changes in sexual and injection networks and other "mixing patterns" variables. Each of these potential causal processes, in turn, is shaped by the nature of pre-existing social networks and the patterns and content of normative regulation and communication that happen within these social networks-and on how these social networks and their characteristics are changed by the "big event" in question. We will present ideas about what research is needed to help understand these events and to help guide both indigenous community-based efforts to prevent HIV outbreaks and also to guide those who organize external intervention efforts and aid.

  10. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0... Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant... (RCOL) application for UniStar's Calvert Cliffs Nuclear Power Plant, Unit 3 (CCNPP3). The......

  11. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County, Pennsylvania. The BBNPP COL application incorporates by...

  12. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    NASA Astrophysics Data System (ADS)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  13. Tunable waveguide bends with graphene-based anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-02-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  14. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  15. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  16. Characterization of bending loss in hollow flexible terahertz waveguides.

    PubMed

    Doradla, Pallavi; Joseph, Cecil S; Kumar, Jayant; Giles, Robert H

    2012-08-13

    Attenuation characteristics of hollow, flexible, metal and metal/dielectric coated polycarbonate waveguides were investigated using an optically pumped far infrared (FIR) laser at 215 µm. The bending loss of silver coated polycarbonate waveguides were measured as a function of various bending angles, bending radii, and bore diameters. Minimal propagation losses of 1.77, 0.96 dB/m were achieved by coupling the lowest loss TE11 mode into the silver or gold coated waveguide, and HE11 mode into the silver/polystyrene coated waveguides respectively. The maximal bending loss was found to be less than 1 dB/m for waveguides of 2 to 4.1 mm bore diameters, with a 6.4 cm bend radius, and up to 150° bending angle. The investigation shows the preservation of single laser mode in smaller bore waveguides even at greater bending angles.

  17. A study on springback of bending linear flow split profiles

    NASA Astrophysics Data System (ADS)

    Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.

    2016-11-01

    The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.

  18. The Rise of Big Data in Neurorehabilitation.

    PubMed

    Faroqi-Shah, Yasmeen

    2016-02-01

    In some fields, Big Data has been instrumental in analyzing, predicting, and influencing human behavior. However, Big Data approaches have so far been less central in speech-language pathology. This article introduces the concept of Big Data and provides examples of Big Data initiatives pertaining to adult neurorehabilitation. It also discusses the potential theoretical and clinical contributions that Big Data can make. The article also recognizes some impediments in building and using Big Data for scientific and clinical inquiry.

  19. Cricket antennae shorten when bending (Acheta domesticus L.)

    PubMed Central

    Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W.

    2014-01-01

    Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to “unfold” and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head. PMID:25018734

  20. Evolving efficiency of restraining bends within wet kaolin analog experiments

    NASA Astrophysics Data System (ADS)

    Hatem, Alexandra E.; Cooke, Michele L.; Madden, Elizabeth H.

    2015-03-01

    Restraining bends along strike-slip fault systems evolve by both propagation of new faults and abandonment of fault segments. Scaled analog modeling using wet kaolin allows for qualitative and quantitative observations of this evolution. To explore how bend geometry affects evolution, we model bends with a variety of initial angles, θ, from θ = 0° for a straight fault to θ = 30°. High-angle restraining bends (θ ≥ 20°) overcome initial inefficiencies by abandoning unfavorably oriented restraining segments and propagating multiple new, inwardly dipping, oblique-slip faults that are well oriented to accommodate convergence within the bend. Restraining bends with 0° < θ ≤ 15° maintain activity along the restraining bend segment and grow a single new oblique slip fault on one side of the bend. In all restraining bends, the first new fault propagates at ~5 mm of accumulated convergence. Particle Image Velocimetry analysis provides a complete velocity field throughout the experiments. From these data, we quantify the strike-slip efficiency of the system as the percentage of applied plate-parallel velocity accommodated as slip in the direction of plate motion along faults within the restraining bend. Bends with small θ initially have higher strike-slip efficiency compared to bends with large θ. Although they have different fault geometries, all systems with a 5 cm bend width reach a steady strike-slip efficiency of 80% after 50 mm of applied plate displacement. These experimental restraining bends resemble crustal faults in their asymmetric fault growth, asymmetric topographic gradient, and strike-slip efficiency.

  1. Cricket antennae shorten when bending (Acheta domesticus L.).

    PubMed

    Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W

    2014-01-01

    Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to "unfold" and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head.

  2. Experiment to Evaluate the Feasibility of Utilizing Skylab-EREP Remote Sensing Data for Tectonic Analysis Through a Study of the Big Horn Mountain Region, Wyoming, South Dakota and Wyoming

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator); Caldwell, J.; Lehman, D.; Palmer, S.; Pan, K. L.; Swenson, A.

    1976-01-01

    The author has identified the following significant results. S190B imagery was the best single product from which fairly detailed structural and some lithologic mapping could be accomplished in the Big Horn basin, the Owl Creek Mountains, and the northern Big Horn Mountains. The Nye-Bowler lineament could not be extended east of its presently mapped location although a linear (fault or monocline) was noted that may be part of the lineament, but north of postulated extensions. Much more structure was discernible in the Big Horn basin than could be seen on LANDSAT-1 imagery; RB-57 color IR photography, in turn, revealed additional folds and faults. A number of linears, several of which could be identified as faults and one a monocline, cut obliquely the east-west trending Owl Creek uplift. The heavy forest cover of the Black Hills makes direct lithologic delineation impossible. However, drainage and linear overlays revealed differences in pattern between the areas of exposed Precambrian crystalline core and the flanking Paleozoic rocks. S192 data, even precision corrected segments, were not of much use.

  3. The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle

    PubMed Central

    Mandle, Richard J.; Archbold, Craig T.; Sarju, Julia P.; Andrews, Jessica L.; Goodby, John W.

    2016-01-01

    We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D 1H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models. PMID:27819300

  4. COMPARISON OF DOUBLE BEND AND TRIPLE BEND ACHROMATIC LATTICE STRUCTURES AND NSLS-II.

    SciTech Connect

    KRAMER, S.L.; KRINSKY, S.; BENGTSSON, J.

    2006-06-26

    The Double Bend Achromatic (DBA) and the Triple Bend Achromatic (TBA) lattice have been studied rather extensively for use for the NSLS-II storage ring. The advantage of the TBA compared to the DBA in terms of emittance per period is well known. However, the DBA has the advantage of greater number of ID straight sections for the users and maybe easier to tune the dispersive section for reduced chromatic sextupole strength. We present a comparison of these lattices based on optimization of the non-linear driving terms using high order achromatic cancellation of driving terms of the nonlinear lattice.

  5. BIG DATA AND STATISTICS

    PubMed Central

    Rossell, David

    2016-01-01

    Big Data brings unprecedented power to address scientific, economic and societal issues, but also amplifies the possibility of certain pitfalls. These include using purely data-driven approaches that disregard understanding the phenomenon under study, aiming at a dynamically moving target, ignoring critical data collection issues, summarizing or preprocessing the data inadequately and mistaking noise for signal. We review some success stories and illustrate how statistical principles can help obtain more reliable information from data. We also touch upon current challenges that require active methodological research, such as strategies for efficient computation, integration of heterogeneous data, extending the underlying theory to increasingly complex questions and, perhaps most importantly, training a new generation of scientists to develop and deploy these strategies. PMID:27722040

  6. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population.

  7. The Last Big Bang

    SciTech Connect

    McGuire, Austin D.; Meade, Roger Allen

    2016-09-13

    As one of the very few people in the world to give the “go/no go” decision to detonate a nuclear device, Austin “Mac” McGuire holds a very special place in the history of both the Los Alamos National Laboratory and the world. As Commander of Joint Task Force Unit 8.1.1, on Christmas Island in the spring and summer of 1962, Mac directed the Los Alamos data collection efforts for twelve of the last atmospheric nuclear detonations conducted by the United States. Since data collection was at the heart of nuclear weapon testing, it fell to Mac to make the ultimate decision to detonate each test device. He calls his experience THE LAST BIG BANG, since these tests, part of Operation Dominic, were characterized by the dramatic displays of the heat, light, and sounds unique to atmospheric nuclear detonations – never, perhaps, to be witnessed again.

  8. Wind-Tunnel Investigation of the Effect of Angle of Attack and Flapping-Hinge Offset on Periodic Bending Moments and Flapping of a Small Rotor

    NASA Technical Reports Server (NTRS)

    McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.

    1959-01-01

    A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  10. Investigation of load effect on macro-bend losses for an SMS fiber structure with a small bend radius

    NASA Astrophysics Data System (ADS)

    Rahmah, Fitri; Sekartedjo, Sekartedjo; Hatta, Agus Muhamad

    2016-11-01

    Modelling of load effect on macro-bend losses for a singlemode-multimode-singlemode (SMS) fiber structure with small bend radius is presented. Load effect on macro-bend losses for the SMS fiber structure placed between two high-density polyethylene (HDPE) boards are investigated theoretically and experimentally. A model on macro-bend losses for SMS fiber structure is constructed by using the light transmission formula in a straight SMS fiber structure and taking into account the effective number of guided modes due to the macrobending. In the experimental, a mandrel with a diameter of 0.8 mm is used to induce the bend. When the loads are applied on the system, the mandrel will affect the bend losses for the SMS fiber structure. It is shown numerically and experimentally that the bend-loss of SMS fiber structure strongly depends on the applied loads and the multimode fiber (MMF) lengths.

  11. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  12. Big bang and big crunch in matrix string theory

    SciTech Connect

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-04-15

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.

  13. Thermoelastic bending of locally heated orthotropic shells

    NASA Astrophysics Data System (ADS)

    Shevchenko, V. P.; Gol'tsev, A. S.

    2007-03-01

    The thermoelastic bending of locally heated orthotropic shells is studied using the classical theory of thermoelasticity of thin shallow orthotropic shells and the method of fundamental solutions. Linear distribution of temperature over thickness and the Newton's law of cooling are assumed. Numerical analysis is carried out for orthotropic shells of arbitrary Gaussian curvature made of a strongly anisotropic material. The behavior of thermal forces and moments near the zone of local heating is studied for two areas of thermal effect: along a coordinate axis and along a circle of unit radius. Generalized conclusions are drawn

  14. Broadband light bending with plasmonic nanoantennas.

    PubMed

    Ni, Xingjie; Emani, Naresh K; Kildishev, Alexander V; Boltasseva, Alexandra; Shalaev, Vladimir M

    2012-01-27

    The precise manipulation of a propagating wave using phase control is a fundamental building block of optical systems. The wavefront of a light beam propagating across an interface can be modified arbitrarily by introducing abrupt phase changes. We experimentally demonstrated unparalleled wavefront control in a broadband optical wavelength range from 1.0 to 1.9 micrometers. This is accomplished by using an extremely thin plasmonic layer (~λ/50) consisting of an optical nanoantenna array that provides subwavelength phase manipulation on light propagating across the interface. Anomalous light-bending phenomena, including negative angles of refraction and reflection, are observed in the operational wavelength range.

  15. Light-bending tests of Lorentz invariance

    SciTech Connect

    Tso, Rhondale; Bailey, Quentin G.

    2011-10-15

    Classical light-bending is investigated for weak gravitational fields in the presence of hypothetical local Lorentz violation. Using an effective field theory framework that describes general deviations from local Lorentz invariance, we derive a modified deflection angle for light passing near a massive body. The results include anisotropic effects not present for spherical sources in General Relativity as well as Weak Equivalence Principle violation. We develop an expression for the relative deflection of two distant stars that can be used to analyze data in past and future solar-system observations. The measurement sensitivities of such tests to coefficients for Lorentz violation are discussed.

  16. Mixed-Mode-Bending Delamination Apparatus

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Reeder, James R.

    1991-01-01

    Mixed-mode-bending delamination apparatus generates two types of delamination stress simultaneously in specimen from single externally applied point load. In technique, indivial mode I and mode II contributions to delamination in specimen analyzed by use of simple beam-theory equations, eliminating need for time-consuming, difficult numerical analysis. Allows wider range of mode I/mode II ratios than possible with many other methods. Mixed-mode delamination testing of interest in all fields utilizing composite materials, used mostly in aerospace field, but also used in automobiles, lightweight armored military vehicles, boats, and sporting equipment. Useful in general lumber, plywood, and adhesive industries, as well.

  17. Bending of light in quantum gravity.

    PubMed

    Bjerrum-Bohr, N E J; Donoghue, John F; Holstein, Barry R; Planté, Ludovic; Vanhove, Pierre

    2015-02-13

    We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or photons from an external massive scalar field. These results allow a semiclassical computation of the bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications of this computation, in particular, the violation of some classical formulations of the equivalence principle.

  18. Great Bend tornadoes of August 30, 1974

    NASA Technical Reports Server (NTRS)

    Umenhofer, T. A.; Fujita, T. T.; Dundas, R.

    1977-01-01

    Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.

  19. Anomalous bending effect in photonic crystal fibers.

    PubMed

    Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A

    2008-04-14

    An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.

  20. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  1. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  2. Big Bang of Massenergy and Negative Big Bang of Spacetime

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2017-01-01

    There is a balance between Big Bang of Massenergy and Negative Big Bang of Spacetime in the universe. Also some scientists considered there is an anti-Big Bang who could produce the antimatter. And the paper supposes there is a structure balance between Einstein field equation and negative Einstein field equation, a balance between massenergy structure and spacetime structure, a balance between an energy of nucleus of the stellar matter and a dark energy of nucleus of the dark matter-dark energy, and a balance between the particle and the wave-a balance system between massenergy (particle) and spacetime (wave). It should explain of the problems of the Big Bang. http://meetings.aps.org/Meeting/APR16/Session/M13.8

  3. Acquisition Reform: Three Big Ideas

    DTIC Science & Technology

    2015-05-19

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Three Acq Reform Big Ideas 5 /19/2015 2 (1) Competing Capability Needs Among Services...to sponsor and users • Not required to be an acquisition expert • Tenure not as important Summary: 3 Big Ideas 5 /19/2015 19 (1) Competing...Acquisition Reform Three Big Ideas The provocative views expressed here are not those of the Department of Defense, DAU, or perhaps even the

  4. Big Data and Ambulatory Care

    PubMed Central

    Thorpe, Jane Hyatt; Gray, Elizabeth Alexandra

    2015-01-01

    Big data is heralded as having the potential to revolutionize health care by making large amounts of data available to support care delivery, population health, and patient engagement. Critics argue that big data's transformative potential is inhibited by privacy requirements that restrict health information exchange. However, there are a variety of permissible activities involving use and disclosure of patient information that support care delivery and management. This article presents an overview of the legal framework governing health information, dispels misconceptions about privacy regulations, and highlights how ambulatory care providers in particular can maximize the utility of big data to improve care. PMID:25401945

  5. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  6. Homogeneous and isotropic big rips?

    SciTech Connect

    Giovannini, Massimo

    2005-10-15

    We investigate the way big rips are approached in a fully inhomogeneous description of the space-time geometry. If the pressure and energy densities are connected by a (supernegative) barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is approached. This behavior is contrasted with the usual big-bang singularities. A similar analysis is performed in the case of sudden (quiescent) singularities and it is argued that the spatial gradients may well be non-negligible in the vicinity of pressure singularities.

  7. Laser bending of pre-stressed thin-walled nickel micro-tubes

    NASA Astrophysics Data System (ADS)

    Che Jamil, M. S.; Imam Fauzi, E. R.; Juinn, C. S.; Sheikh, M. A.

    2015-10-01

    Laser forming is an innovative technique of producing bending, spatial forming and alignment of both metallic and non-metallic parts by introducing thermal stresses into a work piece with a laser beam. It involves a complex interaction of process parameters to mechanical and thermal characteristics of materials. This paper presents a comprehensive experimental and numerical study of laser bending process of thin-walled micro-tubes. The effect of input parameters, namely laser power, pulse length and pre-stress constraint, on the process and the final product characteristics are investigated. Results of the analysis show that the bending angle of the tube increases considerably when a constraint is imposed at the tube's free end during the heating period. The introduction of compressive pre-stresses (from mechanical bending) in the irradiated region increases the final deformation which varies almost linearly with the amount of pre-stress. Due to high thermal conductivity and thin-walled structure of the tube, the heat dissipates quickly from the irradiated region to its surrounding material. Therefore, a combination of short pulse duration and high power is preferable to generate a higher thermal gradient and induce plastic strain. Design of experiment and regression analysis are implemented to develop an empirical model based on simulation results. Sensitivity analysis is also performed to determine the influence of independent variables on output response. It is evident that initial displacement and pulse length have a stronger positive effect on the output response as compared to laser power.

  8. Effect of bending stiffness and confinement on a polymer chain under tension

    NASA Astrophysics Data System (ADS)

    Poier, Peter; Likos, Christos N.; Matthews, Richard

    2014-03-01

    Type II topoisomerase are enzymes that (un)knot DNA. There is experimental evidence that a certain type II topoisomerase preferentially cleaves adenine (A) and thymine (T) rich regions of the DNA. It is believed that AT-rich sequences are more flexible than random ones. This raises the question of whether the flexibility of the preferred cleavage sites of topoisomerase II could play an important role in the regulation of knotting. With this motivation we study the effect of the bending stiffness and confinement on the free-energy cost of a knot in a polymer chain under tension. For the polymer chain we use a coarse-grained model. Via thermodynamic-integration we calculate the change of the free-energy cost of a knot due to modifications of the bending stiffness. The free-energy cost exhibits a minimum at a non-zero value for the bending stiffness. Our simulations suggest that this minimum is related to a suppression of the bending at the points where the strands of the polymer cross in the knotted region. We study how the minimum of the free-energy cost is affected by changing the knot type and introducing a two dimensional confinement for the polymer chain. The results of this work might be of importance for the localization of knots in DNA.

  9. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  10. Compliance measurements of chevron notched four point bend specimen

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.

    1994-01-01

    The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.

  11. BEND3 mediates transcriptional repression and heterochromatin organization.

    PubMed

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.

  12. BEND3 mediates transcriptional repression and heterochromatin organization

    PubMed Central

    Khan, Abid; Prasanth, Supriya G

    2015-01-01

    Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization. PMID:26507581

  13. The mechanics of gravitropic bending in leafy dicot stems

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Mueller, W. J.; Blotter, P. T.; Harris, C. S.; White, R. G.; Gillespie, L. S.; Sliwinski, J. E.

    1982-01-01

    The mechanism of the gravitropic bending in stems of the cocklebur and castor bean are investigated. The results of these experiments demonstrate the quick stopping of growth and the increased tensions on the upper layer of a horizontal stem. It is suggested that bending apparently occurs as the resistance of the upper surface layers is extended to the inner cells below. A model of stem bending is developed which can explain the asymmetry of the stem-cell response.

  14. Transient Pinning and Pulling: A Mechanism for Bending Microtubules

    PubMed Central

    Kent, Ian A.; Rane, Parag S.; Dickinson, Richard B.; Ladd, Anthony J. C.; Lele, Tanmay P.

    2016-01-01

    Microtubules have a persistence length of the order of millimeters in vitro, but inside cells they bend over length scales of microns. It has been proposed that polymerization forces bend microtubules in the vicinity of the cell boundary or other obstacles, yet bends develop even when microtubules are polymerizing freely, unaffected by obstacles and cell boundaries. How these bends are formed remains unclear. By tracking the motions of microtubules marked by photobleaching, we found that in LLC-PK1 epithelial cells local bends develop primarily by plus-end directed transport of portions of the microtubule contour towards stationary locations (termed pinning points) along the length of the microtubule. The pinning points were transient in nature, and their eventual release allowed the bends to relax. The directionality of the transport as well as the overall incidence of local bends decreased when dynein was inhibited, while myosin inhibition had no observable effect. This suggests that dynein generates a tangential force that bends microtubules against stationary pinning points. Simulations of microtubule motion and polymerization accounting for filament mechanics and dynein forces predict the development of bends of size and shape similar to those observed in cells. Furthermore, simulations show that dynein-generated bends at a pinning point near the plus end can cause a persistent rotation of the tip consistent with the observation that bend formation near the tip can change the direction of microtubule growth. Collectively, these results suggest a simple physical mechanism for the bending of growing microtubules by dynein forces accumulating at pinning points. PMID:26974838

  15. Big Data and Perioperative Nursing.

    PubMed

    Westra, Bonnie L; Peterson, Jessica J

    2016-10-01

    Big data are large volumes of digital data that can be collected from disparate sources and are challenging to analyze. These data are often described with the five "Vs": volume, velocity, variety, veracity, and value. Perioperative nurses contribute to big data through documentation in the electronic health record during routine surgical care, and these data have implications for clinical decision making, administrative decisions, quality improvement, and big data science. This article explores methods to improve the quality of perioperative nursing data and provides examples of how these data can be combined with broader nursing data for quality improvement. We also discuss a national action plan for nursing knowledge and big data science and how perioperative nurses can engage in collaborative actions to transform health care. Standardized perioperative nursing data has the potential to affect care far beyond the original patient.

  16. The BigBOSS Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  17. Big Spherules near 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This frame from the microscopic imager on NASA's Mars Exploration Rover Opportunity shows spherules up to about 5 millimeters (one-fifth of an inch) in diameter. The camera took this image during the 924th Martian day, or sol, of Opportunity's Mars-surface mission (Aug. 30, 2006), when the rover was about 200 meters (650 feet) north of 'Victoria Crater.'

    Opportunity discovered spherules like these, nicknamed 'blueberries,' at its landing site in 'Eagle Crater,' and investigations determined them to be iron-rich concretions that formed inside deposits soaked with groundwater. However, such concretions were much smaller or absent at the ground surface along much of the rover's trek of more than 5 kilometers (3 miles) southward to Victoria. The big ones showed up again when Opportunity got to the ring, or annulus, of material excavated and thrown outward by the impact that created Victoria Crater. Researchers hypothesize that some layer beneath the surface in Victoria's vicinity was once soaked with water long enough to form the concretions, that the crater-forming impact dispersed some material from that layer, and that Opportunity might encounter that layer in place if the rover drives down into the crater.

  18. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Vickie Williams, V

    2008-01-30

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for

  19. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  20. High-efficiency beam bending using graded photonic crystals.

    PubMed

    Oner, B B; Turduev, M; Kurt, H

    2013-05-15

    We explore beam-bending properties of graded index (GRIN) waveguide with hyperbolic secant profile. The transmission efficiency and bandwidth features are extracted for GRIN photonic crystal (PC) media composed of dielectric rods. Light guiding performance of the GRIN PC medium is analyzed for 90° and 180° waveguide bends. The finite-difference time-domain method is deployed to investigate the performance of the designed GRIN waveguides. By the help of proposed photonic configuration, bending of light is achieved with a high efficiency within a broad bandwidth, which promotes the use of GRIN PC structures for efficient light-bending purposes.

  1. Hot bending with a fiber coupled solid state laser

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Schumi, T.; Schuöcker, D.

    2010-09-01

    For bending of brittle materials it is necessary to heat up the forming zone. This can be done with a fiber coupled solid state laser, whose beam is evenly distributed on the bending line with a beam splitter installed in the lower tool (die) of a bending press. With polarization optics the laser beam is divided there into partial beams that are evenly distributed on the bending line with lenses and prisms. A setup for a bending length of 200mm heated by a fiber-coupled 3kW Nd:YAG-laser shows the feasibility of the concept. Successful operation was shown for the Mg-alloy AZ31, which breaks during forming at room temperature, but can be well formed at temperatures in the range of 200-300°C. Other materials benefiting from this method are Ti-alloys, high-strength-Al-alloys, and high-strength-steels. Typical heating times are in the range of up to 5s and much of the heat input is generated during the bending operation where the laser continues to work. Laser Assisted Bending with a fiber coupled solid state laser is a straightforward way to perform the bending of brittle materials in a process as simple as cold bending.

  2. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    NASA Astrophysics Data System (ADS)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2016-12-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  3. Bending-induced extension in two-dimensional crystals

    NASA Astrophysics Data System (ADS)

    Pan, Douxing; Li, Yao; Wang, Tzu-Chiang; Guo, Wanlin

    2017-02-01

    We find by ab initio simulations that significant overall tensile strain can be induced by pure bending in a wide range of two-dimensional crystals perpendicular to the bending moment, just like an accordion being bent to open. This bending-induced tensile strain increases in a power law with bent curvature and can be over 20% in monolayered black phosphorus and transition metal dichalcogenides at a moderate curvature of 2 nm^{-1} but more than an order weaker in graphene and hexagon boron nitride. This accordion effect is found to be a quantum mechanical effect raised by the asymmetric response of chemical bonds and electron density to the bending curvature.

  4. Electrostatic effects in DNA bending by GCN4 mutants.

    PubMed

    Strauss-Soukup, J K; Maher, L J

    1998-01-27

    DNA architecture has been shown to be important for cellular processes such as activation of transcription, recombination, and replication. Many proteins reconfigure the shape of duplex DNA upon binding. Previous experiments have shown that some members of the eukaryotic bZIP family of DNA binding proteins appear to bend DNA, while others do not. We are exploring the role of electrostatic effects in DNA bending by bZIP proteins. The yeast bZIP transcription factor GCN4 does not induce DNA bending in vitro. Previously we substituted basic residues for three neutral amino acids in GCN4 to produce a GCN4 derivative that bends DNA by approximately 15 degrees. This result is consistent with a model of induced DNA bending wherein excess positive charge in proximity to one face of the double helix neutralizes local phosphate diester anions resulting in a laterally-asymmetric charge distribution along the DNA. Such an unbalanced charge distribution can result in collapse of the DNA toward the neutralized surface. We now present a more comprehensive analysis of electrostatic effects in DNA bending by GCN4 derivatives. It is shown that the direction and extent of DNA bending by these derivatives are a linear function of the charges of the amino acids adjacent to the basic domain of the protein. This relation holds over the charge range +6 (16 degrees bend toward the minor groove) to -6 (25 degrees bend toward the major groove).

  5. Modified Numerical Simulation Model of Blood Flow in Bend

    PubMed Central

    Liu, X; Zhou, X; Hao, X; Sang, X

    2015-01-01

    ABSTRACT The numerical simulation model of blood flow in bend is studied in this paper. The curvature modification is conducted for the blood flow model in bend to obtain the modified blood flow model in bend. The modified model is verified by U tube. By comparing the simulation results with the experimental results obtained by measuring the flow data in U tube, it was found that the modified blood flow model in bend can effectively improve the prediction accuracy of blood flow data affected by the curvature effect. PMID:27398727

  6. SRI CAT Section 1 bending magnet beamline description

    SciTech Connect

    Srajer, G.; Rodricks, B.; Assoufid, L.; Mills, D.M.

    1994-03-10

    This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule.

  7. Challenges of Big Data Analysis.

    PubMed

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-06-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions.

  8. Challenges of Big Data Analysis

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-01-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions. PMID:25419469

  9. Powering Big Data for Nursing Through Partnership.

    PubMed

    Harper, Ellen M; Parkerson, Sara

    2015-01-01

    The Big Data Principles Workgroup (Workgroup) was established with support of the Healthcare Information and Management Systems Society. Building on the Triple Aim challenge, the Workgroup sought to identify Big Data principles, barriers, and challenges to nurse-sensitive data inclusion into Big Data sets. The product of this pioneering partnership Workgroup was the "Guiding Principles for Big Data in Nursing-Using Big Data to Improve the Quality of Care and Outcomes."

  10. Bending equation for a quasianisotropic plate

    NASA Astrophysics Data System (ADS)

    Shachnev, V. A.

    2010-10-01

    In the framework of the linear theory of elasticity, an exact bending equation is obtained for the median plane of a plate whose material is a monoclinic system with the axis of symmetry perpendicular to the plate plane. As an example, the equation of the median plane of an isotropic plate is considered; the operator of this equation coincides with the operator of Sophie Germain's approximate equation. As the plate thickness tends to zero, the right-hand side of the equation is asymptotically equivalent to the right-hand side of the approximate equation. In addition, equations relating the median plane transverse stresses and the total stresses in the plate boundary planes to the median plane deflexions are obtained.

  11. Bending of Light in Ellis Wormhole Geometry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amrita; Potapov, Alexander A.

    A recent work by Dey and Sen derived the approximate light deflection angle α by an Ellis wormhole in terms of proper radial distance ℓ that covers the entire spacetime. On the other hand, Bodenner and Will calculated the expressions for light bending in Schwarzschild geometry using various coordinates and showed that they all reduce to a single formula when re-expressed in the coordinate independent language of "circumferential radius" rC identified with the standard radial coordinate rS. We shall argue that the coordinate invariant language for two-way wormholes should be ℓ rather than rS. Hence here we find the exact deflection α in Ellis wormhole geometry first in terms of ℓ and then in terms of rS. We confirm the latter expression using three different methods. We argue that the practical measurement scheme does not necessarily single out either ℓ or rS. Some errors in the literature are corrected.

  12. Separation of blood in microchannel bends

    NASA Astrophysics Data System (ADS)

    Blattert, Christoph; Jurischka, Reinhold; Schoth, Andreas; Kerth, Paul; Menz, Wolfgang

    2004-01-01

    Biological applications of micro assay devices require integrated on-chip microfluidics for separation of plasma or serum from blood. This is achieved by a new blood separation technique based on a microchannel bend structure developed within the collaborative Micro-Tele-BioChip (μTBC) project co-funded by the German Ministry For Education and Research (BMBF). Different prototype polymer chips have been manufactured with an UV-LIGA process and hot embossing technology. The separation efficiency of these chips has been determined by experimental measurements using human whole blood. Results show different separation efficiencies for cells and plasma depending on microchannel geometry and blood sample characteristics and suggest an alternative blood separation method as compared to existing micro separation technologies.

  13. Separation of blood in microchannel bends

    NASA Astrophysics Data System (ADS)

    Blattert, Christoph; Jurischka, Reinhold; Schoth, Andreas; Kerth, Paul; Menz, Wolfgang

    2003-12-01

    Biological applications of micro assay devices require integrated on-chip microfluidics for separation of plasma or serum from blood. This is achieved by a new blood separation technique based on a microchannel bend structure developed within the collaborative Micro-Tele-BioChip (μTBC) project co-funded by the German Ministry For Education and Research (BMBF). Different prototype polymer chips have been manufactured with an UV-LIGA process and hot embossing technology. The separation efficiency of these chips has been determined by experimental measurements using human whole blood. Results show different separation efficiencies for cells and plasma depending on microchannel geometry and blood sample characteristics and suggest an alternative blood separation method as compared to existing micro separation technologies.

  14. Bend-insensitive fiber based vibration sensor

    NASA Astrophysics Data System (ADS)

    Xu, Yanping; Lu, Ping; Baset, Farhana; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2014-05-01

    We report two novel fiber-optic vibration sensors based on standard telecom bend-insensitive fiber (BIF). A tapered BIF forming a fiber Mach-Zehnder interferometer could measure continuous and damped vibration from 1 Hz up to 500 kHz. An enclosed microcantilever is fabricated inside the BIF by chemical etching and fusion spliced with a readout singlemode fiber that exhibits a frequency range from 5 Hz to 10 kHz with high signal-to-noise ratio (SNR) up to 68 dB. The unique double cladding structure of the BIF ensures both sensors with advantages of compactness, high resistance to the external disturbance and stronger mechanical strength.

  15. Accessibility of the pre-big-bang models to LIGO

    SciTech Connect

    Mandic, Vuk; Buonanno, Alessandra

    2006-03-15

    The recent search for a stochastic background of gravitational waves with LIGO interferometers has produced a new upper bound on the amplitude of this background in the 100 Hz region. We investigate the implications of the current and future LIGO results on pre-big-bang models of the early Universe, determining the exclusion regions in the parameter space of the minimal pre-big-bang scenario. Although the current LIGO reach is still weaker than the indirect bound from big bang nucleosynthesis, future runs by LIGO, in the coming year, and by Advanced LIGO ({approx}2009) should further constrain the parameter space, and in some parts surpass the Big Bang nucleosynthesis bound. It will be more difficult to constrain the parameter space in nonminimal pre-big bang models, which are characterized by multiple cosmological phases in the yet not well understood stringy phase, and where the higher-order curvature and/or quantum-loop corrections in the string effective action should be included.

  16. Light bending in f(T) gravity

    NASA Astrophysics Data System (ADS)

    Ruggiero, Matteo Luca

    2016-05-01

    In the framework of f(T) gravity, we focus on a weak-field and spherically symmetric solution for the Lagrangian f(T) = T + αT2, where α is a small constant which parametrizes the departure from general relativity (GR). In particular, we study the propagation of light and obtain the correction to the general relativistic bending angle. Moreover, we discuss the impact of this correction on some gravitational lensing observables, and evaluate the possibility of constraining the theory parameter α by means of observations. In particular, on taking into account the astrometric accuracy in the Solar System, we obtain that |α|≤ 1.85 × 105m2; this bound is looser than those deriving from the analysis of Solar System dynamics, e.g. |α|≤ 5 × 10-1m2 [L. Iorio, N. Radicella and M. L. Ruggiero, J. Cosmol. Astropart. Phys. 1508 (2015) 021, arXiv:1505.06996 [gr-qc].], |α|≤ 1.8 × 104m2 [L. Iorio and E. N. Saridakis, Mon. Not. R. Astron. Soc. 427 (2012) 1555, arXiv:1203.5781 [gr-qc].] or |α|≤ 1.2 × 102m2 [Y. Xie and X. M. Deng, Mon. Not. R. Astron. Soc. 433 (2013) 3584, arXiv:1312.4103 [gr-qc].]. However, we suggest that, since the effect only depends on the impact parameter, better constraints could be obtained by studying light bending from planetary objects.

  17. Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals.

    PubMed

    Shamid, Shaikh M; Dhakal, Subas; Selinger, Jonathan V

    2013-05-01

    We develop a Landau theory for bend flexoelectricity in liquid crystals of bent-core molecules. In the nematic phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature toward the nematic to polar phase transition. At this critical point, there is a second-order transition from high-temperature uniform nematic phase to low-temperature nonuniform polar phase composed of twist-bend or splay-bend deformations. To test the predictions of Landau theory, we perform Monte Carlo simulations to find the director and polarization configurations as functions of temperature, applied electric field, and interaction parameters.

  18. Coupled-Mode Flutter of Bending-Bending Type in Highly-Flexible Uniform Airfoils

    NASA Astrophysics Data System (ADS)

    Pourazarm, Pariya; Modarres-Sadeghi, Yahya

    2016-11-01

    We study the behavior of a highly flexible uniform airfoil placed in wind both numerically and experimentally. It is shown that for a non-rotating highly-flexible cantilevered airfoil, placed at very small angles of attack (less than 1 degree), the airfoil loses its stability by buckling. For slightly higher angles of attack (more than 1 degree) a coupled-mode flutter in which the first and the second flapwise modes coalesce toward a flutter mode is observed, and thus the observed flutter has a bending-bending nature. The flutter onset and frequency found experimentally matched the numerical predictions. If the same airfoil is forced to rotate about its fixed end, the static deflection decreases and the observed couple-mode flutter becomes of flapwise-torsional type, same as what has already been observed for flutter of rotating wind turbine blades. The support provided by the National Science Foundation, CBET-1437988, is greatly acknowledged.

  19. How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust.

    PubMed

    Gemmell, Brad J; Fogerson, Stephanie M; Costello, John H; Morgan, Jennifer R; Dabiri, John O; Colin, Sean P

    2016-12-15

    Swimming animals commonly bend their bodies to generate thrust. For undulating animals such as eels and lampreys, their bodies bend in the form of waves that travel from head to tail. These kinematics accelerate the flow of adjacent fluids, which alters the pressure field in a manner that generates thrust. We used a comparative approach to evaluate the cause-and-effect relationships in this process by quantifying the hydrodynamic effects of body kinematics at the body-fluid interface of the lamprey, Petromyzon marinus, during steady-state swimming. We compared the kinematics and hydrodynamics of healthy control lampreys to lampreys whose spinal cord had been transected mid-body, resulting in passive kinematics along the posterior half of their body. Using high-speed particle image velocimetry (PIV) and a method for quantifying pressure fields, we detail how the active bending kinematics of the control lampreys were crucial for setting up strong negative pressure fields (relative to ambient fields) that generated high-thrust regions at the bends as they traveled all along the body. The passive kinematics of the transected lamprey were only able to generate significant thrust at the tail, relying on positive pressure fields. These different pressure and thrust scenarios are due to differences in how active versus passive body waves generated and controlled vorticity. This demonstrates why it is more effective for undulating lampreys to pull, rather than push, themselves through the fluid.

  20. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  1. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  2. Investigating Seed Longevity of Big Sagebrush (Artemisia tridentata)

    USGS Publications Warehouse

    Wijayratne, Upekala C.; Pyke, David A.

    2009-01-01

    The Intermountain West is dominated by big sagebrush communities (Artemisia tridentata subspecies) that provide habitat and forage for wildlife, prevent erosion, and are economically important to recreation and livestock industries. The two most prominent subspecies of big sagebrush in this region are Wyoming big sagebrush (A. t. ssp. wyomingensis) and mountain big sagebrush (A. t. ssp. vaseyana). Increased understanding of seed bank dynamics will assist with sustainable management and persistence of sagebrush communities. For example, mountain big sagebrush may be subjected to shorter fire return intervals and prescribed fire is a tool used often to rejuvenate stands and reduce tree (Juniperus sp. or Pinus sp.) encroachment into these communities. A persistent seed bank for mountain big sagebrush would be advantageous under these circumstances. Laboratory germination trials indicate that seed dormancy in big sagebrush may be habitat-specific, with collections from colder sites being more dormant. Our objective was to investigate seed longevity of both subspecies by evaluating viability of seeds in the field with a seed retrieval experiment and sampling for seeds in situ. We chose six study sites for each subspecies. These sites were dispersed across eastern Oregon, southern Idaho, northwestern Utah, and eastern Nevada. Ninety-six polyester mesh bags, each containing 100 seeds of a subspecies, were placed at each site during November 2006. Seed bags were placed in three locations: (1) at the soil surface above litter, (2) on the soil surface beneath litter, and (3) 3 cm below the soil surface to determine whether dormancy is affected by continued darkness or environmental conditions. Subsets of seeds were examined in April and November in both 2007 and 2008 to determine seed viability dynamics. Seed bank samples were taken at each site, separated into litter and soil fractions, and assessed for number of germinable seeds in a greenhouse. Community composition data

  3. BENDING SHOP & OVEN. United Engineering Co., Alameda, California. Plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BENDING SHOP & OVEN. United Engineering Co., Alameda, California. Plan, two elevations, sections, and details. Alben Froberg, Architect, Oakland, California. Sheet no. 1 of 1. Various scales. December 15, 1941. pencil on tracing paper - United Engineering Company Shipyard, Bending Shop & Oven, 2900 Main Street, Alameda, Alameda County, CA

  4. Studies reveal effects of pipe bends on fluid flow cavitation

    NASA Technical Reports Server (NTRS)

    Stonemetz, R. E.

    1966-01-01

    Incipient cavitation in liquids flowing in pipes curved in one plane are affected by the pipe bend radii and pipe diameters, but little by pipe bend angles ranging from 60 to 120 degrees. Critical cavitation indices decrease with higher Reynolds number and pressure ratio. Bulk liquid temperature increase lowers the mean critical velocity at which cavitation occurs.

  5. Flexible DNA bending in HU-DNA cocrystal structures.

    PubMed

    Swinger, Kerren K; Lemberg, Kathryn M; Zhang, Ying; Rice, Phoebe A

    2003-07-15

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.

  6. View north of tube bending shop in boilermakers department located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of tube bending shop in boilermakers department located in southeast corner of the structural shop building (building 57). The computer controlled tube bender can be programmed to bend boiler tubing to nearly any required configuration - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  7. Reconnaissance Observations of Newly Identified Active Faults and Their Relationship to Evolution of the Mount McKinley Restraining Bend, Denali National Park, Alaska

    NASA Astrophysics Data System (ADS)

    Bemis, S. P.; Benowitz, J.

    2012-12-01

    The processes of restraining bend formation and evolution along strike-slip faults remain poorly understood. Although connections between exhumation, fault displacement, and structural geometry are difficult to establish, long-lived active faults contribute to rock uplift, partition strain, and provide insight into the crustal stresses that result from the complex geometry of a restraining bend. The highest topography in North America, Mount McKinley (also known as Denali), is closely associated with an ~17 degree bend in the Denali fault and the region exhibits structural, geomorphic, and thermochronologic constraints on the late Cenozoic evolution of the Mount McKinley restraining bend. As a component of our investigation into the initiation and growth of this restraining bend, we are mapping the bedrock and surficial geology along the north side of the restraining bend to document evidence for Quaternary-active faults. Previous workers only document one active fault, the East Fork fault, north of the Denali fault. The lack of active faults is surprising due to the high rate of regional seismicity. Our initial studies recognize several previously undocumented faults that offset late Pleistocene glacial moraines and fluvial/alluvial surfaces, indicating active deformation is more widely spread than previously recognized and illustrating distinct patterns of strain accommodation. The East Fork fault and nearby structures occur east of the apex of the restraining bend and are sub-vertical with characteristically south-side-down displacements. Faults occurring adjacent to, and west of, the restraining bend apex are all south-side-up thrust faults and appear to have accommodated a significant component of the modern topographic development on the north side of the Denali fault. Future work will target the structural geometry and slip rates of these faults in order to determine how this restraining bend has evolved to the present configuration, and these results will

  8. Lithospheric bending at subduction zones based on depth soundings and satellite gravity

    NASA Technical Reports Server (NTRS)

    Levitt, Daniel A.; Sandwell, David T.

    1995-01-01

    A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.

  9. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  10. Bending properties of nickel electrodes for nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries which fail prematurely by electrical shorting. This is believed to be a result of a blistering problem in the nickel electrodes. This study investigates the bending properties of nickel electrodes in an attempt to correlate the bending properties with the propensity of the electrode to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. Effects of specimen curvature and position within the electrode on the bending strength were studied and within-electrode and batch-to-batch variation were addressed. Two color imaging techniques were employed which allowed differentiation of phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hydroxide surface loading on each electrode, relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  11. Complex optimization for big computational and experimental neutron datasets

    NASA Astrophysics Data System (ADS)

    Bao, Feng; Archibald, Richard; Niedziela, Jennifer; Bansal, Dipanshu; Delaire, Olivier

    2016-12-01

    We present a framework to use high performance computing to determine accurate solutions to the inverse optimization problem of big experimental data against computational models. We demonstrate how image processing, mathematical regularization, and hierarchical modeling can be used to solve complex optimization problems on big data. We also demonstrate how both model and data information can be used to further increase solution accuracy of optimization by providing confidence regions for the processing and regularization algorithms. We use the framework in conjunction with the software package SIMPHONIES to analyze results from neutron scattering experiments on silicon single crystals, and refine first principles calculations to better describe the experimental data.

  12. Considerations on Geospatial Big Data

    NASA Astrophysics Data System (ADS)

    LIU, Zhen; GUO, Huadong; WANG, Changlin

    2016-11-01

    Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.

  13. Big data for bipolar disorder.

    PubMed

    Monteith, Scott; Glenn, Tasha; Geddes, John; Whybrow, Peter C; Bauer, Michael

    2016-12-01

    The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, population health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many technical challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active participation of psychiatrists is needed throughout the analytical process.

  14. GEOSS: Addressing Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  15. [Big data in official statistics].

    PubMed

    Zwick, Markus

    2015-08-01

    The concept of "big data" stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany.

  16. Priming the Pump for Big Data at Sentara Healthcare.

    PubMed

    Kern, Howard P; Reagin, Michael J; Reese, Bertram S

    2016-01-01

    Today's healthcare organizations are facing significant demands with respect to managing population health, demonstrating value, and accepting risk for clinical outcomes across the continuum of care. The patient's environment outside the walls of the hospital and physician's office-and outside the electronic health record (EHR)-has a substantial impact on clinical care outcomes. The use of big data is key to understanding factors that affect the patient's health status and enhancing clinicians' ability to anticipate how the patient will respond to various therapies. Big data is essential to delivering sustainable, highquality, value-based healthcare, as well as to the success of new models of care such as clinically integrated networks (CINs) and accountable care organizations.Sentara Healthcare, based in Norfolk, Virginia, has been an early adopter of the technologies that have readied us for our big data journey: EHRs, telehealth-supported electronic intensive care units, and telehealth primary care support through MDLIVE. Although we would not say Sentara is at the cutting edge of the big data trend, it certainly is among the fast followers. Use of big data in healthcare is still at an early stage compared with other industries. Tools for data analytics are maturing, but traditional challenges such as heightened data security and limited human resources remain the primary focus for regional health systems to improve care and reduce costs. Sentara primarily makes actionable use of big data in our CIN, Sentara Quality Care Network, and at our health plan, Optima Health. Big data projects can be expensive, and justifying the expense organizationally has often been easier in times of crisis. We have developed an analytics strategic plan separate from but aligned with corporate system goals to ensure optimal investment and management of this essential asset.

  17. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  18. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Navidi, Fatemeh; Beard, Daniel A.; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  19. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  20. Multiwavelength astronomy and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    Two major characteristics of modern astronomy are multiwavelength (MW) studies (fromγ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed at various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomers deal with big numbers. Surveys are the main source for discovery of astronomical objects and accumulation of observational data for further analysis, interpretation, and achieving scientific results. We review the main characteristics of astronomical surveys, compare photographic and digital eras of astronomical studies (including the development of wide-field observations), describe the present state of MW surveys, and discuss the Big Data in astronomy and related topics of Virtual Observatories and Computational Astrophysics. The review includes many numbers and data that can be compared to have a possibly overall understanding on the Universe, cosmic numbers and their relationship to modern computational facilities.

  1. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  2. Is the Hawaiian-Emperor Bend Coeval for all Pacific Seamount Trails?

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Staudigel, H.

    2004-12-01

    By far the largest number of hotspots can be found in the South Pacific Thermal and Isotopic Anomaly (SOPITA). Its Cretaceous counterpart is preserved in a large range of seamounts and guyots found in the West Pacific Seamount Province (WPSP). The seamounts in these regions display very distinct and long-lived isotopic signatures (Staudigel et al., 1991; Koppers et al., 2003) that can be used to combine source region chemistry and seamount geochronology to map out mantle melting anomalies over geological time. These mappings may resolve many important questions regarding the stationary character, continuity and longevity of the hotspots in the South Pacific mantle. Most importantly, it may also answer the question whether the Hawaiian-Emperor Bend (HEB) is coeval for all Pacific Seamount trails at 47 Ma? Fixed hotspots should be expressed in volcanic trails on the lithospheric plates revealing absolute rates of motion from their age progressions and the direction of motion based on their azimuths. By definition, bends in these hotspot trails thus should give an indication of changing plate motion happening simultaneously across individual lithospheric plates. Based on the morphology of seamounts in the Pacific, the Hawaiian-Emperor, Louisville, Gilbert Ridge and Tokelau seamount trails may be identified as the only hotspot trails to exhibit a clear HEB-type bend (Kroenke et al. 2004). Of these, the Louisville seamount trail only displays a faint bend that may be coeval with the sharp 60 degree bend in the Hawaiian-Emperor trail (Koppers et al. 2004) at 47 Ma. However, new 40Ar/39Ar analyses indicate that the HEB-type bends in the Gilberts Ridge and Tokelau seamount trails are asynchronous around 67 Ma and 57 Ma, respectively. We argue, therefore, that plate motion alone cannot explain these age systematics, but that both hotspot motion and changing lithospheric stress regimes may play an important role in their creation. The simple and elegant hotspot model that

  3. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  4. Large Deformation Dynamic Bending of Composite Beams

    NASA Technical Reports Server (NTRS)

    Derian, E. J.; Hyer, M. W.

    1986-01-01

    Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.

  5. Bending fluidic actuator for smart structures

    NASA Astrophysics Data System (ADS)

    Che-Ming Chang, Benjamin; Berring, John; Venkataram, Manu; Menon, Carlo; Parameswaran, M.

    2011-03-01

    This paper presents a novel silicone-based, millimeter-scale, bending fluidic actuator (BFA). Its unique parallel micro-channel design enables, for the first time, operation at low working pressure while at the same time having a very limited thickness expansion during pressurization. It also enables the actuator to have the highest ratios of angular displacement over length and torque over volume among previously proposed BFAs. In this work, this parallel micro-channel design is implemented by embedding the BFA with an innovative single winding conduit, which yields a simple, single-component configuration suitable for low-cost production and reliable performance. The BFA design can be easily scaled down to smaller dimensions and can be adapted to applications in restricted space, particularly minimally invasive surgery. In this work, the actuator is manufactured in TC-silicone through poly(methyl methacrylate) molds obtained by using laser cutting technology. Repeated angular displacement measurements on multiple prototypes having different stiffness are carried out. The experimental results are compared with an analytical model, which accurately predicts the performance of the device.

  6. DNA bending induced by cruciform formation.

    PubMed

    Gough, G W; Lilley, D M

    Cruciform structures in DNA are of considerable interest, both as extreme examples of sequence-dependent structural heterogeneity and as models for four-way junctions such as the Holliday junction of homologous genetic recombination. Cruciforms are of lower thermodynamic stability than regular duplex DNA, and have been observed only in negatively supercoiled molecules, where the unfavourable free energy of formation is offset by the topological relaxation of the torsionally stressed molecule. From an experimental viewpoint this can be a disadvantage, as cruciform structures can be studied only in relatively large supercoiled DNA circles, and are destabilized when a break is introduced at any point. We therefore set out to construct a pseudo-cruciform junction--by generating hereroduplex formation between two inverted repeat sequences. Stereochemically, this should closely resemble a true cruciform but remain stable in a linear DNA fragment. We have now created such a junction and find that it has the expected sensitivities to endonucleases. These DNA fragments exhibit extremely anomalous gel electrophoretic mobility, the extent of which depends on the relative position of the pseudo-cruciform along the length of the molecule. Our results are very similar to those obtained by Wu and Crothers using kinetoplast DNA, and we conclude that the pseudo-cruciform junction introduces a bend in the linear DNA molecule.

  7. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  8. 2014 land cover land use horseshoe bend

    USGS Publications Warehouse

    Hanson, Jenny L.; Hoy, Erin E.; Robinson, Larry R.

    2016-01-01

    This collection of conservation areas consists of the floodplain of the combined streams of the Iowa River and the Cedar River. The study area begins just southeast of Wapello, IA, and continues southeast until the Horseshoe Bend Division, Port Louisa NWR. The area is currently managed to maintain meadow or grassland habitat which requires intensive management due to vegetative succession. In addition, this floodplain area contains a high proportion of managed lands and private lands in the Wetland Reserve Program and is a high priority area for cooperative conservation actions. This project provides a late-summer baseline vegetation inventory to assess future management actions in an adaptive process. Changes in levees, in addition to increased water flows and flood events due to climate change and land use practices, make restoration of floodplain processes more complex. Predictive models could help determine more efficient and effective restoration and management techniques. Successful GIS tools developed for this project would be applicable to other floodplain refuges and conservation areas.

  9. Bending strength of delaminated aerospace composites.

    PubMed

    Kinawy, Moustafa; Butler, Richard; Hunt, Giles W

    2012-04-28

    Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.

  10. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  11. [Big Data- challenges and risks].

    PubMed

    Krauß, Manuela; Tóth, Tamás; Hanika, Heinrich; Kozlovszky, Miklós; Dinya, Elek

    2015-12-06

    The term "Big Data" is commonly used to describe the growing mass of information being created recently. New conclusions can be drawn and new services can be developed by the connection, processing and analysis of these information. This affects all aspects of life, including health and medicine. The authors review the application areas of Big Data, and present examples from health and other areas. However, there are several preconditions of the effective use of the opportunities: proper infrastructure, well defined regulatory environment with particular emphasis on data protection and privacy. These issues and the current actions for solution are also presented.

  12. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    NASA Astrophysics Data System (ADS)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  13. Buffers affect the bending rigidity of model lipid membranes.

    PubMed

    Bouvrais, Hélène; Duelund, Lars; Ipsen, John H

    2014-01-14

    In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules.

  14. Damage Analysis of Rectangular Section Composite Beam under Pure Bending

    NASA Astrophysics Data System (ADS)

    Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining

    2013-02-01

    Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.

  15. Cast-stone sectors for lining bends in pipework

    SciTech Connect

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  16. Optimum design of ninety degree bends

    NASA Technical Reports Server (NTRS)

    Modi, Vijay; Cabuk, Hayri; Huan, Jian-Chun; Quadracci, Richard

    1992-01-01

    An algorithm for the optimum design of an internal flow component to obtain the maximum pressure rise is presented. Maximum pressure rise in a duct with simultaneous turning and diffusion is shown to be related to the control of flow separation on the passage walls. Such a flow is usually associated with downstream conditions that are desirable in turbomachinery and propulsion applications to ensure low loss and stable performance. The algorithm requires the solution of an 'adjoint' problem in addition to the 'direct' equations governing the flow in a body, which in the present analysis are assumed to be the laminar Navier-Stokes equations. The theoretical framework and computational algorithms presented in this study are for the steady Navier-Stokes equations. A procedure is developed for the numerical solution of the adjoint equations. This procedure is coupled with a direct solver in a design iteration loop, that provides a new shape with a higher pressure rise. This procedure is first validated for the design of optimum plane diffusers in two-dimensional flow. The direct Navier-Stokes and the 'adjoint' equations are solved using a finite volume formulation for spatial discretization in an artificial compressibility framework. A simplified version of the above approach is then utilized to design ninety degree diffusing bends. Calculations were carried out for a mean radius ratio at inlet of 2.5 and Reynolds numbers varying from 100 to 500. While at this stage laminar flows is assumed, it is shown that a similar approach can be conceived for turbulent flows.

  17. True Randomness from Big Data

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Periklis A.; Woodruff, David P.; Yang, Guang

    2016-09-01

    Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.

  18. Big Opportunities in Small Science

    ERIC Educational Resources Information Center

    Dewey, T. Gregory

    2007-01-01

    A transformation is occurring that will have a major impact on how academic science is done and how scientists are trained. That transformation--driven by declining federal funds, as well as by the rising cost of technology and the need for costly, labor-intensive interdisciplinary approaches--is from small science to big science. It is…

  19. Big6 Turbotools and Synthesis

    ERIC Educational Resources Information Center

    Tooley, Melinda

    2005-01-01

    The different tools that are helpful during the Synthesis stage, their role in boosting students abilities in Synthesis and the way in which it can be customized to meet the needs of each group of students are discussed. Big6 TurboTools offers several tools to help complete the task. In Synthesis stage, these same tools along with Turbo Report and…

  20. Big Explosives Experimental Facility - BEEF

    SciTech Connect

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  1. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2016-07-12

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  2. 1976 Big Thompson flood, Colorado

    USGS Publications Warehouse

    Jarrett, R. D.; Vandas, S.J.

    2006-01-01

    In the early evening of July 31, 1976, a large stationary thunderstorm released as much as 7.5 inches of rainfall in about an hour (about 12 inches in a few hours) in the upper reaches of the Big Thompson River drainage. This large amount of rainfall in such a short period of time produced a flash flood that caught residents and tourists by surprise. The immense volume of water that churned down the narrow Big Thompson Canyon scoured the river channel and destroyed everything in its path, including 418 homes, 52 businesses, numerous bridges, paved and unpaved roads, power and telephone lines, and many other structures. The tragedy claimed the lives of 144 people. Scores of other people narrowly escaped with their lives. The Big Thompson flood ranks among the deadliest of Colorado's recorded floods. It is one of several destructive floods in the United States that has shown the necessity of conducting research to determine the causes and effects of floods. The U.S. Geological Survey (USGS) conducts research and operates a Nationwide streamgage network to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson Flood. Such research and streamgage information are part of an ongoing USGS effort to reduce flood hazards and to increase public awareness.

  3. The Case for "Big History."

    ERIC Educational Resources Information Center

    Christian, David

    1991-01-01

    Urges an approach to the teaching of history that takes the largest possible perspective, crossing time as well as space. Discusses the problems and advantages of such an approach. Describes a course on "big" history that begins with time, creation myths, and astronomy, and moves on to paleontology and evolution. (DK)

  4. The International Big History Association

    ERIC Educational Resources Information Center

    Duffy, Michael; Duffy, D'Neil

    2013-01-01

    IBHA, the International Big History Association, was organized in 2010 and "promotes the unified, interdisciplinary study and teaching of history of the Cosmos, Earth, Life, and Humanity." This is the vision that Montessori embraced long before the discoveries of modern science fleshed out the story of the evolving universe. "Big…

  5. China: Big Changes Coming Soon

    ERIC Educational Resources Information Center

    Rowen, Henry S.

    2011-01-01

    Big changes are ahead for China, probably abrupt ones. The economy has grown so rapidly for many years, over 30 years at an average of nine percent a year, that its size makes it a major player in trade and finance and increasingly in political and military matters. This growth is not only of great importance internationally, it is already having…

  6. True Randomness from Big Data

    PubMed Central

    Papakonstantinou, Periklis A.; Woodruff, David P.; Yang, Guang

    2016-01-01

    Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests. PMID:27666514

  7. True Randomness from Big Data.

    PubMed

    Papakonstantinou, Periklis A; Woodruff, David P; Yang, Guang

    2016-09-26

    Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.

  8. Localized bending and heating at Enceladus' south pole

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2015-10-01

    Since the discovery in 2005 of geysers at the southpole of Enceladus, this midsize moon of Saturn has become famous as the most active icy world in the solar system and as a potential harbor for microbial life. All data gathered during flybys by the Cassini probe point to the existence of a subsurface ocean maintained by tidal heating in the icy crust. This explanation, however, is in conflict with geophysical models which only account for a tenth of the heat output. Such models are based on an approach designed for larger satellites, for which elastic effects are weaker and lateral inhomogeneities are less prominent. By contrast, lateral variations of interior structure are probably the key to understand Enceladus' geological activity. We will test the hypothesis that tidal dissipation is greatly enhanced by local bending of a thinner crust in the south polar region. More generally, we plan to develop a new and faster method to compute tidal dis-sipation in small bodies with lateral heterogeneities,consisting in modeling the crust as a two-dimensional spherical shell with variable thickness or rigidity and with depth-dependent rheology.

  9. Microstructural and textural evolution of AZ61 magnesium alloy sheet during bidirectional cyclic bending

    SciTech Connect

    Huo, Qinghuan; Yang, Xuyue Ma, Jijun; Sun, Huan; Qin, Jia; Jiang, Yupei

    2013-05-15

    In this work, the microstructural and textural evolution in the sheets of AZ61 magnesium alloy was studied by means of bidirectional cyclic bending for 8 passes at 623 K. The bended samples were examined by optical microscopy and electron backscatter diffraction analysis. The results showed that a gradient structure with fine grains about 3 μm in the regions near two surfaces and, in contrast, coarse grains in the middle of the sheet were formed. The evident grain refinement was attributed to twin-assisted dynamic recrystallization and continuous dynamic recrystallization induced by kink bands. The texture intensity was clearly reduced, resulting in a negative gradient distribution, with the texture intensity decreases from the center of the sheet to two surfaces. The weakened texture greatly facilitated the reduction of the yield strength. A higher fracture elongation and a slightly improved ultimate tensile strength were achieved concurrently. - Highlights: • The AZ61 Mg alloy is deformed at 623 K by bidirectional cyclic bending. • A symmetric gradient distribution of fine grains along the thickness is formed. • The basal texture in the regions near two surfaces is weakened significantly.

  10. The BigBoss Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

    2012-06-07

    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.

  11. A SWOT Analysis of Big Data

    ERIC Educational Resources Information Center

    Ahmadi, Mohammad; Dileepan, Parthasarati; Wheatley, Kathleen K.

    2016-01-01

    This is the decade of data analytics and big data, but not everyone agrees with the definition of big data. Some researchers see it as the future of data analysis, while others consider it as hype and foresee its demise in the near future. No matter how it is defined, big data for the time being is having its glory moment. The most important…

  12. Big Data: Implications for Health System Pharmacy.

    PubMed

    Stokes, Laura B; Rogers, Joseph W; Hertig, John B; Weber, Robert J

    2016-07-01

    Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services.

  13. Big sagebrush seed bank densities following wildfires

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...

  14. Big Sagebrush Seed Bank Densities Following Wildfires

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big sagebrush (Artemisia sp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires wildfires and big sagebrush seed is generally sho...

  15. Judging Big Deals: Challenges, Outcomes, and Advice

    ERIC Educational Resources Information Center

    Glasser, Sarah

    2013-01-01

    This article reports the results of an analysis of five Big Deal electronic journal packages to which Hofstra University's Axinn Library subscribes. COUNTER usage reports were used to judge the value of each Big Deal. Limitations of usage statistics are also discussed. In the end, the author concludes that four of the five Big Deals are good deals…

  16. A survey of big data research

    PubMed Central

    Fang, Hua; Zhang, Zhaoyang; Wang, Chanpaul Jin; Daneshmand, Mahmoud; Wang, Chonggang; Wang, Honggang

    2015-01-01

    Big data create values for business and research, but pose significant challenges in terms of networking, storage, management, analytics and ethics. Multidisciplinary collaborations from engineers, computer scientists, statisticians and social scientists are needed to tackle, discover and understand big data. This survey presents an overview of big data initiatives, technologies and research in industries and academia, and discusses challenges and potential solutions. PMID:26504265

  17. Influence of Stacking Sequence on the Impact and Postimpact Bending Behavior of Hybrid Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Özen, M.

    2017-01-01

    A new hybrid sandwich structure was developed by using carbon, e-glass, and s-glass fabrics as reinforcement materials, an epoxy resin as the matrix material for face sheets, and a PVC foam as the core material. Six different configurations were prepared. Sandwich composites plates with different stacking sequences were subjected to low-speed impacts will energies of 7.5, 15, and 22.5 J. Their impact response is analyzed and reported in terms of the peak load as a function of impact energy. After impact tests, 3-point bending tests were conducted to determine the bending behavior of the sandwich composites after impacts in terms of their flexural strength. The results obtained showed that the use of carbon fabrics in the face sheets increased the peak loads for all the impact energies considered. The presence of carbon fibers in skin regions increased the flexural strength of the composites, but e-glass fibers decreased this strength.

  18. Bending Free Energy from Simulation: Correspondence of Planar and Inverse Hexagonal Lipid Phases

    PubMed Central

    Sodt, Alexander J.; Pastor, Richard W.

    2013-01-01

    Simulations of two distinct systems, one a planar bilayer, the other the inverse hexagonal phase, indicate consistent mechanical properties and curvature preferences, with single DOPE leaflets having a spontaneous curvature, R0 = −26 Å (experimentally ∼–29.2 Å) and DOPC leaflets preferring to be approximately flat (R0= –65 Å, experimentally ∼–87.3 Å). Additionally, a well-defined pivotal plane, where a DOPE leaflet bends at constant area, has been determined to be near the glycerol region of the lipid, consistent with the experimentally predicted plane. By examining the curvature frustration of both high and low curvature, the transferability of experimentally determined bending constants is supported. The techniques herein can be applied to predict the effect of biologically active molecules on the mechanical properties of lipid bilayers under well-controlled conditions. PMID:23708360

  19. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect

    Rui Li

    2006-01-04

    The curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. In this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of a particle in the electron distribution is derived from the Hamiltonian of the particle in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions.

  20. Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

    SciTech Connect

    Womack, R.L.; Addison, J.A.

    1996-12-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

  1. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  2. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets.

    PubMed

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-23

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 microm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO(2) trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C(33) value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  3. Thickness-dependent bending modulus of hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Chun; Bando, Yoshio; Zhi, Chunyi; Huang, Yang; Golberg, Dmitri

    2009-09-01

    Bending modulus of exfoliation-made single-crystalline hexagonal boron nitride nanosheets (BNNSs) with thicknesses of 25-300 nm and sizes of 1.2-3.0 µm were measured using three-point bending tests in an atomic force microscope. BNNSs suspended on an SiO2 trench were clamped by a metal film via microfabrication based on electron beam lithography. Calculated by the plate theory of a doubly clamped plate under a concentrated load, the bending modulus of BNNSs was found to increase with the decrease of sheet thickness and approach the theoretical C33 value of a hexagonal BN single crystal in thinner sheets (thickness<50 nm). The thickness-dependent bending modulus was suggested to be due to the layer distribution of stacking faults which were also thought to be responsible for the layer-by-layer BNNS exfoliation.

  4. Bending of multiwalled carbon nanotubes over gold lines

    NASA Astrophysics Data System (ADS)

    Walkeajärvi, T.; Lievonen, J.; Ahlskog, M.; Åström, J.; Koshio, A.; Yudasaka, M.; Iijima, S.

    2005-11-01

    We have investigated an experimentally moderate bending of multiwalled carbon nanotubes (MWNTs) in the perpendicular direction from flat substrates. The tubes were in the diameter range of 3-13nm and deposited over lithographically fabricated gold lines whose height determined the total bending. In our model for the bending profile we take into account the van der Waals attraction between the substrate and the MWNT and the opposing elastic bending force. With reasonable parameters for the competing forces we obtain an agreement between the model and the experimental data for the critical distance between two adjacent lines when the van der Waals attraction can no longer prevent elastic forces from straightening the tube to a suspended position between the lines. However, for the smallest nanotubes a simple classical model is clearly insufficient.

  5. Plastic optical fibre sensor for spine bending monitoring

    NASA Astrophysics Data System (ADS)

    Zawawi, M. A.; O'Keeffe, S.; Lewis, E.

    2013-06-01

    This paper presents a study on the application of plastic optical fibre for spine bending monitoring based on an intensity modulation. The bending angle is measured as the angle between the emitting and receiving fibres is changed. The measured light attenuation is compared with a theoretical evaluation and the differences between these values are discussed. It was found that the light attenuation for the light intensity agreed well (margin of error < 15%) with the theoretical value for the range between 180° (representing no bend) and 200° and it was significantly increased for the bending angle beyond that value due to the effect of fibre gap increment which resulted in a less reliable experimental estimation.

  6. VIEW OF NORTHWEST BEND IN BIRCH CIRCLE. VIEW FACING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NORTHWEST BEND IN BIRCH CIRCLE. VIEW FACING WEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  7. Magnetostrictive bending micro-actuator using iron gallium-alloy

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki; Higuchi, Toshiro

    2007-04-01

    We investigate a micro bending actuator based on unimorph, lamination of Galfenol (Iron-gallium alloy) and non-magnetic material. Galfenol C-shape yoke bonded with stainless plates (lamination) is wound coils, and is composed close magnetic loop with connected an iron plate. The magnetostriction in longitude direction is constrained by the stainless, thus, the laminations yield bending deformation with the current flowing. The advantage of the actuator is simple, compact and ease of assembling including winding coil, and high tolerance against bending, tensile and impact. We machined the yoke from a plate of 1mm thickness of polycrystalline Galfenol (Fe 81.4Ga 18.6 Research grade) using ultra high precision cutting technique. The prototype, thickness of 1mm and length of 10mm, was observed the displacement 13μm and 1st resonance at 1.6 kHz, and the high bending (tensile) tolerance withstanding suspended weight of 500g.

  8. The Stabilizing Effect of Bending-Under-Tension

    SciTech Connect

    Emmens, W. C.; Boogaard, A. H. van den

    2011-05-04

    A well know effect is that work hardening can stabilize tension processes, as can be shown by the so-called maximum force condition. It is not well known that bending-under-tension can have a similar effect, namely that it can create a situation where the tension force increases with elongation therefore stabilizing the process. This happens in situations where the bending is so severe that the fibers at the inner side are in compression. This mechanism is explained. In cases where the bending radius is constant, for example determined by a tool, the created stable elongation is proportional to the thickness of the material. In cases where the radius is not constant but results from an equilibrium between pulling force and bending moment the situation is more complex. The situations are analyzed by a simple model and successfully verified with experimental results.

  9. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1996-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting. This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study, the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Bend strength was found to increase with the amount of surface loading.

  10. Research on wood bending in a macrosonic field

    NASA Technical Reports Server (NTRS)

    Filipovici, J.; Mihai, D.; Mihai, S.; Dragan, O.; Ciovica, S.

    1974-01-01

    Woodworking often requires the wood to be bent into different shapes. In view of the fact that macrosonic waves compress and expand the medium through which they are being propagated we assumed that wood subjected to the action of these waves during the bending process would have enhanced plasticity as a result of the loosening-up that takes place in it, as well as of the reduction in effort. To this effect, the bending of wood plasticized in a macrosonic field was studied. This bending took place under good conditions, and structural analyses conducted with the aid of an electron microscope proved initial premises to be corrent. Applied on an industrial scale, this procedure would contribute to improving the technology of wood bending as well as to eliminating factory spoilage.

  11. 9. NORTH SIDE, FROM A BOAT. THE TWO BENDING SHOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NORTH SIDE, FROM A BOAT. THE TWO BENDING SHOP AND OVEN BUILDINGS ARE VISIBLE AT THE RIGHT. - United Engineering Company Shipyard, Engineering Building, 2900 Main Street, Alameda, Alameda County, CA

  12. Analysis of bend insensitive liquid core optical fiber for broadband network and fiber-to-the-home applications

    NASA Astrophysics Data System (ADS)

    Palodiya, Vikram; Raghuwanshi, Sanjeev Kumar

    2016-02-01

    In this paper, we analyze the guided properties of liquid core optical fibers for fiber-to-thehome application. Fiber to the Home is advance technology to give unlimited bandwidth and high speed broadband network for communication. Fiber to the Home technology refers to the installation and use of bend insensitive optical fiber cables. The liquid core optical fiber has a simple core and cladding structure. This fiber achieves high relative refractive index difference among the core and cladding is proving to be bending insensitive. The single mode condition and the group velocity dispersion, mode field diameter and the bending loss of single mode fiber are studied theoretically. Compare with traditional silica optical fiber. Liquid core optical fiber has much smaller bending loss of than traditional silica fibers. Liquid core optical fiber shows unique properties, such as more confided guided mode, low bending loss and large non linear parameters in the visible and infrared region. This type of fiber used in fiber -to-the-home applications, Broadband network and also for sensing applications.

  13. Bending strength studies on hot-pressed silicon carbide

    NASA Technical Reports Server (NTRS)

    Kriegesmann, J.

    1984-01-01

    The 4-point bending strength of 4 grades of hot-pressed SiC was determined at different temperatures. With a transgranular mode of fracture the values for bending strength are retained up to high temperatures. For intergranular fracture the decrease of strength is governed by subcritical crack growth. The intergranular fracture is caused by a high content of silicate glassy phase at the grain boundaries of hot-pressed SiC.

  14. Bending effect on fiber acousto-optic mode coupling.

    PubMed

    Zhao, Jianhui; Liu, Xiaoming; Wang, Yan; Luo, Ye

    2005-08-20

    The acousto-optic effect in a bent fiber is studied experimentally and numerically by using the scalar finite-element method. The resulting transmission spectra show that new mode-coupling peaks appear due to the breaking of the mode spatial symmetry. The strength of new peaks increases as the fiber-bending curvature increases with a redshift or blueshift in wavelength, strongly depending on the orientation of fiber bending with respect to the acoustic-wave vibration direction.

  15. Theory of bending waves with applications to disk galaxies

    SciTech Connect

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  16. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    ScienceCinema

    None

    2016-07-12

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  17. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  18. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    SciTech Connect

    2009-10-13

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  19. Solution of a braneworld big crunch/big bang cosmology

    SciTech Connect

    McFadden, Paul L.; Turok, Neil; Steinhardt, Paul J.

    2007-11-15

    We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-dimensional description fails at the first nontrivial order in (V/c){sup 2}. At this order, there is nontrivial mixing of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the boundary branes move from the narrowly separated limit described by Kaluza-Klein theory to the well-separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological significance of the result and compute other quantities of interest in five-dimensional cosmological scenarios.

  20. Ecological dynamics of wetlands at Lisbon Bottom, Big Muddy National Fish and Wildlife Refuge, Missouri

    USGS Publications Warehouse

    Chapman, Duane C.; Ehrhardt, Ellen A.; Fairchild, James F.; Jacobson, Robert B.; Poulton, Barry C.; Sappington, Linda C.; Kelly, Brian P.; Mabee, William R.

    2002-01-01

    The study documented the interaction between hydrology and the biological dynamics within a single spring season at Lisbon Bottom in 1999. The study goal was to provide information necessary for resource managers to develop management strategies for this and other units of the Big Muddy National Fish and Wildlife Refuge. Researchers studied the hydrology, limnology, and biological dynamics of zooplankton, macroinvertebrates, fish and waterbird communities. Lisbon Bottom is one of several parcels of 1993 flood-damaged land that was purchased from willing sellers by the U.S. Fish and Wildlife Service as part of the Big Muddy National Fish and Wildlife Refuge. Lisbon Bottom is a loop bend in the river near Glasgow in Howard County, Missouri between approximately river mile (RM) 213 to RM 219. Flooding at Lisbon in 1993 and 1995 breeched local levees and created a diverse wetland complex.

  1. ACHRO: A program to help design achromatic bends

    SciTech Connect

    Rusthoi, D.

    1993-01-01

    ACHRO is a very simple 2000-line. FORTRAN code that provides help for the designer of the achromatic bend. Given a beam momentum, the program calculates the required drift lengths and dipole parameters which it will apply to any one of several different types of achromats. The types of achromats that the code helps to design include the Enge dual-270,'' the Brown 2-dipole, the Leboutet 3-dipole, and the Enge 4-dipole, as well as the periodic systems which can be designed to any order in symmetric, nonsymmetric and stair-step varieties. Given the dimensions into which a bend must fit, ACHRO will calculate the geometrical parameters in an X-Y plane for a single or multiple achromat, and for achromatic S-bend'' configurations where possible. ACHRO makes it very easy to optimize a bend with respect to drift lengths and magnet parameters by allowing the user to change parameter values and see the resulting calculation. Used in conjunction with a beam-transport code, ACHRO makes it possible for a designer to consider various types of achromatic bends in the same beamline layout in order to compare important bend characteristics such as dispersion, Isochronicity, sensitivity, geometric and chromatic aberrations, aperture requirements, space for diagnostics, etc., all of which are largely a function of the geometry and the type of achromat selected.

  2. Bending of Light in Modified Gravity at Large Distances

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-01-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler type acceleration proposed by Grumiller. We consider the static, spherically symmetric metric with cosmological constant and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak. to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis, using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r(sub 0) of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r(sub 0). This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric

  3. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).

  4. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  5. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  6. What determines the bending strength of compact bone?

    PubMed

    Currey, J D

    1999-09-01

    The bending strength of a wide variety of bony types is shown to be nearly linearly proportional to Young's modulus of elasticity/100. A somewhat closer and more satisfactory fit is obtained if account is taken of the variation of yield strain with Young's modulus. This finding strongly suggests that bending strength is determined by the yield strain. The yield stress in tension, which might be expected to predict the bending strength, underestimates the true bending strength by approximately 40 %. This may be explained by two phenomena. (1) The post-yield deformation of the bone material allows a greater bending moment to be exerted after the yield point has been reached, thereby increasing the strength as calculated from beam formulae. (2) Loading in bending results in a much smaller proportion of the volume of the specimens being raised to high stresses than is the case in tension, and this reduces the likelihood of a weak part of the specimen being loaded to failure.

  7. Differential geometry based model for eddy current inspection of U-bend sections in steam generator tubes

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saptarshi; Rosell, Anders; Udpa, Lalita; Udpa, Satish; Tamburrino, Antonello

    2017-02-01

    The modeling of U-Bend segment in steam generator tubes for predicting eddy current probe signals from cracks, wear and pitting in this region poses challenges and is non-trivial. Meshing the geometry in the cartesian coordinate system might require a large number of elements to model the U-bend region. Also, since the lift-off distance between the probe and tube wall is usually very small, a very fine mesh is required near the probe region to accurately describe the eddy current field. This paper presents a U-bend model using differential geometry principles that exploit the result that Maxwell's equations are covariant with respect to changes of coordinates and independent of metrics. The equations remain unaltered in their form, regardless of the choice of the coordinates system, provided the field quantities are represented in the proper covariant and contravariant form. The complex shapes are mapped into simple straight sections, while small lift-off is mapped to larger values, thus reducing the intrinsic dimension of the mesh and stiffness matrix. In this contribution, the numerical implementation of the above approach will be discussed with regard to field and current distributions within the U-bend tube wall. For the sake of simplicity, a two dimensional test case will be considered. The approach is evaluated in terms of efficiency and accuracy by comparing the results with that obtained using a conventional FE model in cartesian coordinates.

  8. Reworking of structural inheritance at strike-slip restraining-bends: templates from sandbox analogue models

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio

    2016-04-01

    Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the

  9. Finite element simulation of laser tube bending: Effect of scanning schemes on bending angle, distortions and stress distribution

    NASA Astrophysics Data System (ADS)

    Safdar, Shakeel; Li, Lin; Sheikh, M. A.; Zhu Liu

    2007-09-01

    Laser forming has received considerable attention in recent years. Within laser forming, tube bending is an important industrial activity, with applications in critical engineering systems like micro-machines, heat exchangers, hydraulic systems, boilers, etc. Laser tube bending utilizes the thermal stresses generated during laser scanning to achieve the desired bends. The parameters to control the process are usually laser power, beam diameter, scanning velocity and number of scans. Recently axial scanning has been used for tube bending instead of commonly used circumferential scans. However the comparison between the scanning schemes has involved dissimilar laser beam geometries with circular beam used for circumferential scanning and a rectangular beam for the axial scan. Thermal stresses generated during laser scanning are strongly dependent upon laser beam geometry and scanning direction and hence it is difficult to isolate the contribution made by these two variables. It has recently been established at the Corrosion and Protection Centre, University of Manchester, that corrosion properties of material during laser forming are affected by the number of laser passes. Depending on the material, the corrosion behaviour is either adversely or favourably affected by number of passes. Thus it is of great importance to know how different scanning schemes would affect laser tube bending. Moreover, any scanning scheme which results in greater bending angle would eliminate the need for higher number of passes, making the process faster. However, it is not only the bending angle which is critical, distortions in other planes are also extremely important. Depending on the use of the final product, unwanted distortions may be the final selection criteria. This paper investigates the effect of scanning direction on laser tube bending. Finite-element modelling has been used for the study of the process with some results also validated by experiments.

  10. Gila Bend AAF, Gila Bend, Arizona, Revised Uniform Summary of Surface Weather Observations (RUSSWO).

    DTIC Science & Technology

    1975-12-23

    following summaries are included for this statin : PART A WEATHER CONDITIONS PART E DAILY MAX, MIN, & MEAN TEMP ATMOSPHERIC PHENOMENA EXTREME MAX & MIN...CONDITIONS 03148 GILA BEND AAF ARILFINA b9-70,72-75 APR STATIN STATION NAME YEARS PERCENTAGE FREQUENCY O1 UCCURRENCF OF WEATH4ER CUNDITIONS FRUM HOURLY...00.0 000 00.0 O 0.000.0 00.0 .00~ 0 00. 00.0r oooou .00.0 00.,0 00.0) 9ou h 9908--99,90010 00o.o .00 .00.3 00.010* .00.0 10 1ioio~ co - 00.0 Poll.001

  11. Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Kaza, K. R. V.

    1976-01-01

    The nonlinear curvature expressions for a twisted rotor blade or a beam undergoing transverse bending in two planes, torsion, and extension were developed. The curvature expressions were obtained using simple geometric considerations. The expressions were first developed in a general manner using the geometrical nonlinear theory of elasticity. These general nonlinear expressions were then systematically reduced to four levels of approximation by imposing various simplifying assumptions, and in each of these levels the second degree nonlinear expressions were given. The assumptions were carefully stated and their implications with respect to the nonlinear theory of elasticity as applied to beams were pointed out. The transformation matrices between the deformed and undeformed blade-fixed coordinates, which were needed in the development of the curvature expressions, were also given for three of the levels of approximation. The present curvature expressions and transformation matrices were compared with corresponding expressions existing in the literature.

  12. Big data and ophthalmic research.

    PubMed

    Clark, Antony; Ng, Jonathon Q; Morlet, Nigel; Semmens, James B

    2016-01-01

    Large population-based health administrative databases, clinical registries, and data linkage systems are a rapidly expanding resource for health research. Ophthalmic research has benefited from the use of these databases in expanding the breadth of knowledge in areas such as disease surveillance, disease etiology, health services utilization, and health outcomes. Furthermore, the quantity of data available for research has increased exponentially in recent times, particularly as e-health initiatives come online in health systems across the globe. We review some big data concepts, the databases and data linkage systems used in eye research-including their advantages and limitations, the types of studies previously undertaken, and the future direction for big data in eye research.

  13. 77 FR 66865 - Record of Decision for the Oil and Gas Management Plan, Big South Fork National River and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... National Park Service Record of Decision for the Oil and Gas Management Plan, Big South Fork National River... (ROD) for the Oil and Gas Management Plan (Plan) for Big South Fork National River and Recreation Area and Obed Wild and Scenic River. On September 5, 2012, the Southeast Regional Director, approved...

  14. 78 FR 20544 - Proposed Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    .... TTB-2013-0003. A link to that docket is posted on the TTB Web site at http://www.ttb.gov/wine/wine... Web site refers to Big Valley as a winegrape growing region and notes that ``Big Valley growers were... bed deposits that eventually formed the deep, nutrient-rich soil desired by vineyard owners. The...

  15. Statistical Inference: The Big Picture.

    PubMed

    Kass, Robert E

    2011-02-01

    Statistics has moved beyond the frequentist-Bayesian controversies of the past. Where does this leave our ability to interpret results? I suggest that a philosophy compatible with statistical practice, labelled here statistical pragmatism, serves as a foundation for inference. Statistical pragmatism is inclusive and emphasizes the assumptions that connect statistical models with observed data. I argue that introductory courses often mis-characterize the process of statistical inference and I propose an alternative "big picture" depiction.

  16. District Bets Big on Standards

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2013-01-01

    The big clock in Dowan McNair-Lee's 8th grade classroom in the Stuart-Hobson Middle School is silent, but she can hear the minutes ticking away nonetheless. On this day, like any other, the clock is a constant reminder of how little time she has to prepare her students--for spring tests, and for high school and all that lies beyond it. The…

  17. Genesis of the big bang

    NASA Astrophysics Data System (ADS)

    Alpher, Ralph A.; Herman, Robert

    The authors of this volume have been intimately connected with the conception of the big bang model since 1947. Following the late George Gamov's ideas in 1942 and more particularly in 1946 that the early universe was an appropriate site for the synthesis of the elements, they became deeply involved in the question of cosmic nucleosynthesis and particularly the synthesis of the light elements. In the course of this work they developed a general relativistic model of the expanding universe with physics folded in, which led in a progressive, logical sequence to our prediction of the existence of a present cosmic background radiation some seventeen years before the observation of such radiation was reported by Penzias and Wilson. In addition, they carried out with James W. Follin, Jr., a detailed study of the physics of what was then considered to be the very early universe, starting a few seconds after the big bang, which still provides a methodology for studies of light element nucleosynthesis. Because of their involvement, they bring a personal perspective to the subject. They present a picture of what is now believed to be the state of knowledge about the evolution of the expanding universe and delineate the story of the development of the big bang model as they have seen and lived it from their own unique vantage point.

  18. Big data: the management revolution.

    PubMed

    McAfee, Andrew; Brynjolfsson, Erik

    2012-10-01

    Big data, the authors write, is far more powerful than the analytics of the past. Executives can measure and therefore manage more precisely than ever before. They can make better predictions and smarter decisions. They can target more-effective interventions in areas that so far have been dominated by gut and intuition rather than by data and rigor. The differences between big data and analytics are a matter of volume, velocity, and variety: More data now cross the internet every second than were stored in the entire internet 20 years ago. Nearly real-time information makes it possible for a company to be much more agile than its competitors. And that information can come from social networks, images, sensors, the web, or other unstructured sources. The managerial challenges, however, are very real. Senior decision makers have to learn to ask the right questions and embrace evidence-based decision making. Organizations must hire scientists who can find patterns in very large data sets and translate them into useful business information. IT departments have to work hard to integrate all the relevant internal and external sources of data. The authors offer two success stories to illustrate how companies are using big data: PASSUR Aerospace enables airlines to match their actual and estimated arrival times. Sears Holdings directly analyzes its incoming store data to make promotions much more precise and faster.

  19. EHR Big Data Deep Phenotyping

    PubMed Central

    Lenert, L.; Lopez-Campos, G.

    2014-01-01

    Summary Objectives Given the quickening speed of discovery of variant disease drivers from combined patient genotype and phenotype data, the objective is to provide methodology using big data technology to support the definition of deep phenotypes in medical records. Methods As the vast stores of genomic information increase with next generation sequencing, the importance of deep phenotyping increases. The growth of genomic data and adoption of Electronic Health Records (EHR) in medicine provides a unique opportunity to integrate phenotype and genotype data into medical records. The method by which collections of clinical findings and other health related data are leveraged to form meaningful phenotypes is an active area of research. Longitudinal data stored in EHRs provide a wealth of information that can be used to construct phenotypes of patients. We focus on a practical problem around data integration for deep phenotype identification within EHR data. The use of big data approaches are described that enable scalable markup of EHR events that can be used for semantic and temporal similarity analysis to support the identification of phenotype and genotype relationships. Conclusions Stead and colleagues’ 2005 concept of using light standards to increase the productivity of software systems by riding on the wave of hardware/processing power is described as a harbinger for designing future healthcare systems. The big data solution, using flexible markup, provides a route to improved utilization of processing power for organizing patient records in genotype and phenotype research. PMID:25123744

  20. Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends

    USGS Publications Warehouse

    Dinehart, R.L.; Burau, J.R.

    2005-01-01

    [1] Cross-stream velocity was measured in a large river bend at high spatial resolution over three separate survey episodes. A suite of methods for resolving cross-stream velocity distributions was tested on data collected using acoustic Doppler current profilers (ADCP) in the sand-bedded Sacramento River, California. The bend was surveyed with repeated ADCP crossings at eight cross sections during a rising limb of high discharge in February 2004 and twice on recession in March 2004. By translating and interpolating repeated ADCP crossings to planar grids, velocity ensembles at similar positions along irregular boat paths could be averaged. The averaging minimized turbulent fluctuations in streamwise velocities over 1 m/s, enabling the resolution of weaker cross-stream velocities (???15-30 cm/s). Secondary-flow influence on suspended sediment was inferred from a lateral region of acoustic backscatter intensity aligned with outward flow over the point bar. A near-bed decrease in backscatter intensity across the pool corresponded with inward cross-stream flow. These suspension indicators were used to orient averaged velocity grids for unambiguously defining the cross-stream velocity magnitudes. Additional field investigations could test whether the correlation between cross-stream velocity and backscatter intensity patterns results from helical recirculation of suspended sediment to the inside of the bend. These river measurements, consistent with classic and recent laboratory studies, show that ADCP surveys can provide refined views of secondary flow and sediment movement in large rivers.

  1. Binding of DNA-bending non-histone proteins destabilizes regular 30-nm chromatin structure

    PubMed Central

    Bajpai, Gaurav; Jain, Ishutesh; Inamdar, Mandar M.; Das, Dibyendu; Padinhateeri, Ranjith

    2017-01-01

    Why most of the in vivo experiments do not find the 30-nm chromatin fiber, well studied in vitro, is a puzzle. Two basic physical inputs that are crucial for understanding the structure of the 30-nm fiber are the stiffness of the linker DNA and the relative orientations of the DNA entering/exiting nucleosomes. Based on these inputs we simulate chromatin structure and show that the presence of non-histone proteins, which bind and locally bend linker DNA, destroys any regular higher order structures (e.g., zig-zag). Accounting for the bending geometry of proteins like nhp6 and HMG-B, our theory predicts phase-diagram for the chromatin structure as a function of DNA-bending non-histone protein density and mean linker DNA length. For a wide range of linker lengths, we show that as we vary one parameter, that is, the fraction of bent linker region due to non-histone proteins, the steady-state structure will show a transition from zig-zag to an irregular structure—a structure that is reminiscent of what is observed in experiments recently. Our theory can explain the recent in vivo observation of irregular chromatin having co-existence of finite fraction of the next-neighbor (i + 2) and neighbor (i + 1) nucleosome interactions. PMID:28135276

  2. Elastic bending and active tilting of myosin heads during muscle contraction.

    PubMed

    Dobbie, I; Linari, M; Piazzesi, G; Reconditi, M; Koubassova, N; Ferenczi, M A; Lombardi, V; Irving, M

    1998-11-26

    Muscle contraction is driven by a change in shape of the myosin head region that links the actin and myosin filaments. Tilting of the light-chain domain of the head with respect to its actin-bound catalytic domain is thought to be coupled to the ATPase cycle. Here, using X-ray diffraction and mechanical data from isolated muscle fibres, we characterize an elastic bending of the heads that is independent of the presence of ATP. Together, the tilting and bending motions can explain force generation in isometric muscle, when filament sliding is prevented. The elastic strain in the head is 2.0-2.7 nm under these conditions, contributing 40-50% of the compliance of the muscle sarcomere. We present an atomic model for changes in head conformation that accurately reproduces the changes in the X-ray diffraction pattern seen when rapid length changes are applied to muscle fibres both in active contraction and in the absence of ATP. The model predictions are relatively independent of which parts of the head are assumed to bend or tilt, but depend critically on the measured values of filament sliding and elastic strain.

  3. Reducing stem bending increases the height growth of tall pines.

    PubMed

    Meng, Shawn X; Lieffers, Victor J; Reid, Douglas E B; Rudnicki, Mark; Silins, Uldis; Jin, Ming

    2006-01-01

    The hypothesis was tested that upper limits to height growth in trees are the result of the increasing bending moment of trees as they grow in height. The increasing bending moment of tall trees demands increased radial growth at the expense of height growth to maintain mechanical stability. In this study, the bending moment of large lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) was reduced by tethering trees at 10 m height to counter the wind load. Average bending moment of tethered trees was reduced to 38% of control trees. Six years of tethering resulted in a 40% increase in height growth relative to the period before tethering. By contrast, control trees showed decreased height growth in the period after tethering treatment. Average radial growth along the bole, relative to height growth, was reduced in tethered trees. This strongly suggests that mechanical constraints play a crucial role in limiting the height growth of tall trees. Analysis of bending moment and basal area increment at both 10 m and 1.3 m showed that the amount of wood added to the stem was closely related to the bending moment produced at these heights, in both control and tethered trees. The tethering treatment also resulted in an increase in the proportion of latewood at the tethering height, relative to 1.3 m height. For untethered control trees, the ratio of bending stresses at 10 m versus 1.3 m height was close to 1 in both 1998 and 2003, suggesting a uniform stress distribution along the outer surface of the bole.

  4. Disk heating and bending instability in galaxies with counterrotation

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey; Bertin, Giuseppe

    2017-01-01

    With the help of high-resolution long-slit and integral-field spectroscopy observations, the number of confirmed cases of galaxies with counterrotation is increasing rapidly. The evolution of such counterrotating galaxies remains far from being well understood. In this paper we study the dynamics of counterrotating collisionless stellar disks by means of N-body simulations. We show that, in the presence of counterrotation, an otherwise gravitationally stable disk can naturally generate bending waves accompanied by strong disk heating across the disk plane, that is in the vertical direction. Such a conclusion is found to hold even for dynamically warm systems with typical values of the initial vertical-to-radial velocity dispersion ratio σz/σR ≈ 0.5, for which the role of pressure anisotropy should be unimportant. We note that, during evolution, the σz/σR ratio tends to rise up to values close to unity in the case of locally Jeans-stable disks, whereas in disks that are initially Jeans-unstable it may reach even higher values, especially in the innermost regions. This unusual behavior of the σz/σR ratio in galaxies with counterrotation appears not to have been noticed earlier. Our investigations of systems made of two counterrotating components with different mass-ratios suggest that even apparently normal disk galaxies (i.e., with a minor counterrotating component so as to escape detection in current observations) might be subject to significant disk heating especially in the vertical direction.

  5. Model for photoinduced bending of slender molecular crystals.

    PubMed

    Nath, Naba K; Pejov, Ljupčo; Nichols, Shane M; Hu, Chunhua; Saleh, Na'il; Kahr, Bart; Naumov, Panče

    2014-02-19

    The growing realization that photoinduced bending of slender photoreactive single crystals is surprisingly common has inspired researchers to control crystal motility for actuation. However, new mechanically responsive crystals are reported at a greater rate than their quantitative photophysical characterization; a quantitative identification of measurable parameters and molecular-scale factors that determine the mechanical response has yet to be established. Herein, a simple mathematical description of the quasi-static and time-dependent photoinduced bending of macroscopic single crystals is provided. This kinetic model goes beyond the approximate treatment of a bending crystal as a simple composite bilayer. It includes alternative pathways for excited-state decay and provides a more accurate description of the bending by accounting for the spatial gradient in the product/reactant ratio. A new crystal form (space group P21/n) of the photoresponsive azo-dye Disperse Red 1 (DR1) is analyzed within the constraints of the aforementioned model. The crystal bending kinetics depends on intrinsic factors (crystal size) and external factors (excitation time, direction, and intensity).

  6. How do spin waves pass through a bend?

    PubMed Central

    Xing, Xiangjun; Yu, Yongli; Li, Shuwei; Huang, Xiaohong

    2013-01-01

    Spin-wave devices hold great promise to be used in future information processing. Manipulation of spin-wave propagation inside the submicrometer waveguides is at the core of promoting the practical application of these devices. Just as in today's silicon-based chips, bending of the building blocks cannot be avoided in real spin-wave circuits. Here, we examine spin-wave transport in bended magnonic waveguides at the submicron scale using micromagnetic simulations. It is seen that the impact of the bend is relevant to the frequency of the passing spin wave. At the lowest frequencies, the spin wave continuously follows the waveguide in the propagation process. At the higher frequencies, however the bend acts as a mode converter for the passing spin wave, causing zigzag-like propagation path formed in the waveguide behind the bend. Additionally, we demonstrate a logic-NOT gate based on such a waveguide, which could be combined to perform logic-NAND operation. PMID:24129823

  7. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    PubMed Central

    Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-01-01

    Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598

  8. Turning big bang into big bounce. I. Classical dynamics

    SciTech Connect

    Dzierzak, Piotr; Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz

    2009-11-15

    The big bounce (BB) transition within a flat Friedmann-Robertson-Walker model is analyzed in the setting of loop geometry underlying the loop cosmology. We solve the constraint of the theory at the classical level to identify physical phase space and find the Lie algebra of the Dirac observables. We express energy density of matter and geometrical functions in terms of the observables. It is the modification of classical theory by the loop geometry that is responsible for BB. The classical energy scale specific to BB depends on a parameter that should be fixed either by cosmological data or determined theoretically at quantum level, otherwise the energy scale stays unknown.

  9. Bending and buckling of viscoplastic threads

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Balmforth, Neil

    2012-11-01

    We use a slender body theory to describe the dynamics of a thin viscoplastic thread undergoing extrusion, such as occurs when squeezing toothpaste from a tube. The theory adopts the Bingham model for a yield stress fluid, together with an asymptotic approximation for the stress and strain-rate profiles across the narrow width of the thread, which imply that the thread must either be rigid or fully yielded across its entire width. A compact description of the resultant longitudinal stress and moment acting on the thread allows these yielded and unyielded regions to be identified for given external forces. The theory is applied to extrusion flows; the yield stress prevents any deformation until a critical length of extrusion is reached, after which the dynamically evolving yielded regions mediate a distinctive drooping of a horizontal beam, or a catastrophic collapse of an upright beam.

  10. Velocity and Scour Prediction in River Bends

    DTIC Science & Technology

    1993-03-01

    these secondary currents which are responsible for the accelaration of near bank primary velocities in the outer bank region. Consequently, the...different forces acting on bed-material particles to produce an equilibrium bed topography. All flow models start with the equations of motion for fluid flow...forces directed inwards and outwards on each bed particle are balanced (Allen, 1970; Bridge,1977). This means that particles of different sizes travel

  11. Electrohydrodynamic Behaviors in the Multiwalled Carbon Nanotubes Doped Optically Compensated Bend Polymer-Dispersed Nematic Liquid Crystal Cell

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ning; Wu, Jin-Jei; Ke, Hung-Lin

    2008-11-01

    We fabricated three optically compensated bend (OCB) polymer-dispersed nematic liquid crystal (PDLC) cells doped with a minute amount of multiwalled carbon nanotubes (MWCNTs) and observed the eletrohydrodynamic (EHD) behaviors of LCs in these three MWCNT-doped OCB PDLC cells at 5 or 12 V AC voltage with a frequency of 1 kHz or 60 Hz, respectively. Using the polarizing microscope, we discovered many kinds of domain patterns, including the fingerprint-like domain pattern, the uniform domain pattern, the bean-like domain pattern, the irregular big spot domain pattern, the hexagonal short period lattice domain pattern, and the rectangular period lattice domain pattern. This suggests that some domain patterns differ from the Kapustin-William's domain pattern while others were somewhat similar to the Kapustin-William's domain pattern.

  12. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  13. Effect of bend separation distance on the mass transfer in back-to-back pipe bends arranged in a 180° configuration

    NASA Astrophysics Data System (ADS)

    Chen, X.; Le, T.; Ewing, D.; Ching, C. Y.

    2016-12-01

    The mass transfer to turbulent flow through back-to-back pipe bends arranged in a 180° configuration with different lengths of pipe between the bends was measured using a dissolving gypsum test section in water. The measurements were performed for bends with a radius of curvature of 1.5 times the pipe diameter ( D) at a Reynolds numbers of 70,000 and Schmidt number of 1280. The maximum mass transfer in the bends decreased from approximately 1.8 times the mass transfer in the upstream pipe when there was no separation distance between the bends to 1.7 times when there was a 1 D or 5 D length of pipe between the bends. The location of the maximum mass transfer was on the inner sidewall downstream of the second bend when there was no separation distance between the bends. This location changed to the inner wall at the beginning of the second bend when there was a 1 D long pipe between the bends, and to the inner sidewall at the end of the first bend when there was a 5 D long pipe between the bends.

  14. Contact and Bending Durability Calculation for Spiral-Bevel Gears

    NASA Technical Reports Server (NTRS)

    Vijayakar, Sandeep

    2016-01-01

    The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.

  15. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light.

  16. Real-time resilient focusing through a bending multimode fiber.

    PubMed

    Caravaca-Aguirre, Antonio M; Niv, Eyal; Conkey, Donald B; Piestun, Rafael

    2013-05-20

    Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micro-mirror device controlled by a field programmable gate array. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

  17. Experimentation and numerical modeling of forging induced bending (FIB) process

    NASA Astrophysics Data System (ADS)

    Naseem, S.; van den Boogaard, A. H.

    2016-10-01

    Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.

  18. Flood characteristics of the Buffalo River at Tyler Bend, Arkansas

    USGS Publications Warehouse

    Neely, Braxtel L.

    1987-01-01

    The Buffalo River is located in the Ozark Mountains in north-central Arkansas. Tyler Bend is on the Buffalo River about 1.5 miles upstream from U.S. Highway 65. The National Park Service is developing several recreational park sites along this scenic river. The magnitude, frequency, duration and velocities of floods are primary factors needed for establishing guidelines for developing facilities and managing park sites. The Park Service plans to develop park facilities at Tyler Bend and needs flood information at this site. This report provides information on the 100-, 75-, 50-, 30-, 20-, 10-, and 5-year floods on the Buffalo River at Tyler Bend. It was prepared by the U.S. Geological Survey in cooperation with the National Park Service and is based on data collected during the December 1982 flood, gaging station data for the Buffalo River near St. Joe, Arkansas and a Statewide flood-frequency report. (Lantz-PTT)

  19. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    DOE PAGES

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; ...

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design processmore » for an engineered 90° bend PnC waveguide from inception to experimental demonstration.« less

  20. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  1. Analytical model for a polymer optical fiber under dynamic bending

    NASA Astrophysics Data System (ADS)

    Leal Junior, Arnaldo G.; Frizera, Anselmo; Pontes, Maria José

    2017-08-01

    Advantages such as sensibility in bending, high fracture toughness, and high sensibility in strain enable the application of polymer optical fibers as sensors for strain, temperature, level, and for angle measurements. In order to enhance the sensor design, this paper presents an analytical model for a side polished polymer optical fiber under dynamic bending. Differently from analytical models that use only the geometrical optics approach with no correction for the stress-optical effects, here the refractive index is corrected at every bending angle to consider the stress-optical effects observed polymer optical fibers. Furthermore, the viscoelastic response of the polymer is also considered. The model is validated in quasi-static and dynamic tests for a polymer optical fiber curvature sensor. Results show good agreement between the model and the experiments.

  2. Single crystal plasticity with bend-twist modes

    NASA Astrophysics Data System (ADS)

    Elkhodary, Khalil I.; Bakr, Mohamed A.

    2015-06-01

    In this work a formulation is proposed and computationally implemented for rate dependent single crystal plasticity, which incorporates plastic bend-twist modes that arise from dislocation density based poly-slip mechanisms. The formulation makes use of higher order continuum theory and may be viewed as a generalized micromechanics model. The formulation is then linked to the burgers and Nye tensors, showing how their material rates are derivable from a newly proposed third-rank tensor Λp, which incorporates a crystallographic description of bend-twist plasticity through selectable slip-system level constitutive laws. A simple three-dimensional explicit finite element implementation is outlined and employed in three simulations: (a) bi-crystal bending; (b) tension on a notched single crystal; and (c) the large compression of a microstructure to induce the plastic buckling of secondary phases. All simulation are transient, for computational expediency. The results shed light on the physics resulting from dynamic inhomogeneous plastic deformation.

  3. Demonstration of acoustic waveguiding and tight bending in phononic crystals

    SciTech Connect

    Ghasemi Baboly, M.; Raza, A.; Brady, J.; Reinke, C. M.; Leseman, Z. C.; El-Kady, I.

    2016-10-31

    The systematic design, fabrication, and characterization of an isolated, single-mode, 90° bend phononic crystal (PnC) waveguide are presented. A PnC consisting of a 2D square array of circular air holes in an aluminum substrate is used, and waveguides are created by introducing a line defect in the PnC lattice. A high transmission coefficient is observed (–1 dB) for the straight sections of the waveguide, and an overall 2.3 dB transmission loss is observed (a transmission coefficient of 76%) for the 90° bend. Further optimization of the structure may yield higher transmission efficiencies. Lastly, this manuscript shows the complete design process for an engineered 90° bend PnC waveguide from inception to experimental demonstration.

  4. Slow-light total-internal-reflection switch with bending angle of 30 deg.

    PubMed

    Fuchida, Ayumi; Matsutani, Akihiro; Koyama, Fumio

    2011-07-15

    Slowing light in a Bragg reflector waveguide is used to miniaturize optical waveguide switches. We can realize a giant equivalent refractive index change induced by carrier injection near a cutoff wavelength due to its large waveguide dispersion. We fabricate and characterize a reflection-type slow-light switch. Input light is reflected at the off state due to an equivalent index difference between an oxide aperture and an oxide region, while it passes through at the on state, since the equivalent index difference is compensated using carrier injection. We obtained a large bending angle of 30° with total internal reflection of slow light.

  5. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    SciTech Connect

    Kortright, J.B.; Rice, M.; Hussain, Z.

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  6. Big data: an introduction for librarians.

    PubMed

    Hoy, Matthew B

    2014-01-01

    Modern life produces data at an astounding rate and shows no signs of slowing. This has lead to new advances in data storage and analysis and the concept of "big data," that is, massive data sets that can yield surprising insights when analyzed. This column will briefly describe what big data is and why it is important. It will also briefly explore the possibilities and problems of big data and the implications it has for librarians. A list of big data projects and resources is also included.

  7. Medical big data: promise and challenges.

    PubMed

    Lee, Choong Ho; Yoon, Hyung-Jin

    2017-03-01

    The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

  8. Traffic information computing platform for big data

    SciTech Connect

    Duan, Zongtao Li, Ying Zheng, Xibin Liu, Yan Dai, Jiting Kang, Jun

    2014-10-06

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  9. Medical big data: promise and challenges

    PubMed Central

    Lee, Choong Ho; Yoon, Hyung-Jin

    2017-01-01

    The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology. PMID:28392994

  10. Strong bending of purple membranes in the M-state.

    PubMed

    Porschke, Dietmar

    2003-08-15

    Structure changes of purple membranes during the photocycle were analysed in solution by measurements of the electric dichroism. The D96N-mutant was used to characterize the M-state at neutral pH. The transition from the resting state to 61% photo-stationary M-state is associated with a strong reduction of the dichroism decay time constant by a factor of approximately 2. Because the change of the time constant is independent of the bacteriorhodopsin concentration, the effect is not attributed to light-induced dissociation but to light-induced bending of purple membranes. After termination of light-activation the dichroism decay of the resting state is restored with a time constant close to that of the M-state decay, which is more than two orders of magnitude slower than proton transfer to the bulk. Thus, bending is not due to asymmetric protonation but to the structure of the M-state. A very similar reduction of decay time constants at a corresponding degree of light-activation was found for wild-type bacteriorhodopsin at pH-values 7.8-9.3, where the lifetime of the M-state is extended. Light-induced bending is also reflected in changes of the stationary dichroism, whereas the overall permanent dipole moment remains almost constant, suggesting compensation of changes in molecular and global contributions. Bead model simulations indicate that disks of approximately 1 microm diameter are bent at a degree of photo-activation of 61% to a radius of approximately 0.25 microm, assuming a cylindrical bending modus. The large light-induced bending effect is consistent with light-induced opening of the protein on the cytoplasmic side of the membrane detected by electron crystallography, which is amplified due to coupling of monomers in the membrane. Bending may function as a mechanical signal.

  11. Bending of light in modified gravity at large distances

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Kazanas, Demosthenes

    2012-04-01

    We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.

  12. The LHC's Next Big Mystery

    NASA Astrophysics Data System (ADS)

    Lincoln, Don

    2015-03-01

    When the sun rose over America on July 4, 2012, the world of science had radically changed. The Higgs boson had been discovered. Mind you, the press releases were more cautious than that, with "a new particle consistent with being the Higgs boson" being the carefully constructed phrase of the day. But, make no mistake, champagne corks were popped and backs were slapped. The data had spoken and a party was in order. Even if the observation turned out to be something other than the Higgs boson, the first big discovery from data taken at the Large Hadron Collider had been made.

  13. The faces of Big Science.

    PubMed

    Schatz, Gottfried

    2014-06-01

    Fifty years ago, academic science was a calling with few regulations or financial rewards. Today, it is a huge enterprise confronted by a plethora of bureaucratic and political controls. This change was not triggered by specific events or decisions but reflects the explosive 'knee' in the exponential growth that science has sustained during the past three-and-a-half centuries. Coming to terms with the demands and benefits of 'Big Science' is a major challenge for today's scientific generation. Since its foundation 50 years ago, the European Molecular Biology Organization (EMBO) has been of invaluable help in meeting this challenge.

  14. Big bang nucleosynthesis: An update

    SciTech Connect

    Olive, Keith A.

    2013-07-23

    An update on the standard model of big bang nucleosynthesis (BBN) is presented. With the value of the baryon-tophoton ratio determined to high precision by WMAP, standard BBN is a parameter-free theory. In this context, the theoretical prediction for the abundances of D, {sup 4}He, and {sup 7}Li is discussed and compared to their observational determination. While concordance for D and {sup 4}He is satisfactory, the prediction for {sup 7}Li exceeds the observational determination by a factor of about four. Possible solutions to this problem are discussed.

  15. How protein-making machine bends without breaking

    SciTech Connect

    2011-01-01

    Scientists from several institutions including the U.S. Department of Energy's Lawrence Berkeley National Laboratory. They derived atomic-scale resolution structures of the cell's protein-making machine, the ribosome, at key stages of its job. The ability to bend but not break comes from this hinge within transfer RNA, which allows it to bend as much as 70 degrees when it passes through the ribosome during protein synthesis. The structures, developed primarily at Berkeley Lab's Advanced Light Source, reveal that the ribosome's ability to rotate an incredible amount without falling apart is due to the never-before-seen springiness of molecular widgets that hold it together.

  16. Bending of solitons in weak and slowly varying inhomogeneous plasma

    SciTech Connect

    Mukherjee, Abhik Janaki, M. S. Kundu, Anjan

    2015-12-15

    The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.

  17. Note: Bending compliances of generalized symmetric notch flexure hinges.

    PubMed

    Lobontiu, Nicolae

    2012-01-01

    The bending compliances of generalized notch flexure hinges with transverse or transverse-and-axial symmetry are studied in two particular reference frames. For an end-point reference frame, the cross compliance and the rotary compliance are proportional. When the reference frame is placed at the flexure's midpoint, the cross compliance is zero. The translatory and rotary compliances of only half the flexure hinge are sufficient to calculate the overall compliances of a transverse-symmetry flexure configuration. Similarly, the overall bending compliances of a flexure hinge with transverse-and-axial symmetry require prior calculation of the translatory and rotary compliances of a quarter flexure solely.

  18. Origin of bending in uncoated microcantilever - Surface topography?

    SciTech Connect

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S. Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.

    2014-01-27

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.

  19. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  20. Transient coherent synchrotron radiation in magnetic bending systems

    SciTech Connect

    Li, R.; Bohn, L; Bisognano, J.J.

    1996-08-01

    Transient evolution of the power radiated coherently by a charged- particle bunch orbiting between two infinite, parallel conducting plates is calculated. The plates comprise an idealized vacuum pipe in a bending magnet. The bunch moves on a trajectory such that it suddenly diverts from a straight-line path to a circular orbit and begins radiating. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. The effect of the radiation field on beam emittance in a magnetic bending system is also quantified. 18 refs., 1 fig.

  1. Comparative Validity of Brief to Medium-Length Big Five and Big Six Personality Questionnaires

    ERIC Educational Resources Information Center

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-01-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are…

  2. Big Bend Dam/Lake Sharpe Master Plan, Missouri River, South Dakota: Update of Design Memorandum MB-90

    DTIC Science & Technology

    2003-10-01

    be Monitored at Lake Sharpe Deepwater Parameter Near Surface Near Bottom Tailwater Total Suspended Solids X X X Total Kjeldahl Nitrogen X X X...Transparency (Secchi Depth) X X Turbidity X X Profile4 X5 X5 X6 1 One complete pesticide scan in May or June and “Rapid Assay ” for atrazine, alachlor

  3. Untapped Potential: Fulfilling the Promise of Big Brothers Big Sisters and the Bigs and Littles They Represent

    ERIC Educational Resources Information Center

    Bridgeland, John M.; Moore, Laura A.

    2010-01-01

    American children represent a great untapped potential in our country. For many young people, choices are limited and the goal of a productive adulthood is a remote one. This report paints a picture of who these children are, shares their insights and reflections about the barriers they face, and offers ways forward for Big Brothers Big Sisters as…

  4. Big Challenges and Big Opportunities: The Power of "Big Ideas" to Change Curriculum and the Culture of Teacher Planning

    ERIC Educational Resources Information Center

    Hurst, Chris

    2014-01-01

    Mathematical knowledge of pre-service teachers is currently "under the microscope" and the subject of research. This paper proposes a different approach to teacher content knowledge based on the "big ideas" of mathematics and the connections that exist within and between them. It is suggested that these "big ideas"…

  5. Polychlorinated biphenyls in selected sites in Pasig River and Laguna Lake in the Philippines before and after a big flood event investigated under the UNU East Asia Regional POPs monitoring project.

    PubMed

    Santiago, Evangeline C; Rivas, Fritzi

    2012-08-01

    This paper reports the results of the 2009 United Nations University (UNU) East Asia Regional Monitoring of the Coastal Hydrosphere Project implemented in the Philippines. The monitoring activity focused on the concentrations of 16 specific congeners of Polychlorinated Biphenyls in selected sites in Pasig River and Laguna Lake for two sampling periods in August and in November, 2009. The results show that the total concentrations of PCBs detected in the sampling sites in August increased during the November sampling from 0.9-12.2 to 6.1-32 ng/L in Pasig River and from 0.1-0.9 to 2.9-10.8 ng/L in Laguna Lake. The increase in PCB concentrations on second sampling is attributed to the increase in contaminated sediments in the river sites and to the overflow of contaminated water in the lake sites; both of which could have been caused by the flooding event that occurred in September 2009.

  6. Astronomical surveys and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ -rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ -ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC) in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS), and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  7. The BigBOSS spectrograph

    NASA Astrophysics Data System (ADS)

    Jelinsky, Patrick; Bebek, Chris; Besuner, Robert; Carton, Pierre-Henri; Edelstein, Jerry; Lampton, Michael; Levi, Michael E.; Poppett, Claire; Prieto, Eric; Schlegel, David; Sholl, Michael

    2012-09-01

    BigBOSS is a proposed ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a 14,000 square degree galaxy and quasi-stellar object redshift survey. It consists of a 5,000- fiber-positioner focal plane feeding the spectrographs. The optical fibers are separated into ten 500 fiber slit heads at the entrance of ten identical spectrographs in a thermally insulated room. Each of the ten spectrographs has a spectral resolution (λ/Δλ) between 1500 and 4000 over a wavelength range from 360 - 980 nm. Each spectrograph uses two dichroic beam splitters to separate the spectrograph into three arms. It uses volume phase holographic (VPH) gratings for high efficiency and compactness. Each arm uses a 4096x4096 15 μm pixel charge coupled device (CCD) for the detector. We describe the requirements and current design of the BigBOSS spectrograph. Design trades (e.g. refractive versus reflective) and manufacturability are also discussed.

  8. Big data in oncologic imaging.

    PubMed

    Regge, Daniele; Mazzetti, Simone; Giannini, Valentina; Bracco, Christian; Stasi, Michele

    2016-09-13

    Cancer is a complex disease and unfortunately understanding how the components of the cancer system work does not help understand the behavior of the system as a whole. In the words of the Greek philosopher Aristotle "the whole is greater than the sum of parts." To date, thanks to improved information technology infrastructures, it is possible to store data from each single cancer patient, including clinical data, medical images, laboratory tests, and pathological and genomic information. Indeed, medical archive storage constitutes approximately one-third of total global storage demand and a large part of the data are in the form of medical images. The opportunity is now to draw insight on the whole to the benefit of each individual patient. In the oncologic patient, big data analysis is at the beginning but several useful applications can be envisaged including development of imaging biomarkers to predict disease outcome, assessing the risk of X-ray dose exposure or of renal damage following the administration of contrast agents, and tracking and optimizing patient workflow. The aim of this review is to present current evidence of how big data derived from medical images may impact on the diagnostic pathway of the oncologic patient.

  9. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels.

    PubMed

    Bavi, Omid; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef

    2016-01-01

    The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature.

  10. The Combined Effect of Hydrophobic Mismatch and Bilayer Local Bending on the Regulation of Mechanosensitive Ion Channels

    PubMed Central

    Bavi, Omid; Vossoughi, Manouchehr; Naghdabadi, Reza; Jamali, Yousef

    2016-01-01

    The hydrophobic mismatch between the lipid bilayer and integral membrane proteins has well-defined effect on mechanosensitive (MS) ion channels. Also, membrane local bending is suggested to modulate MS channel activity. Although a number of studies have already shown the significance of each individual factor, the combined effect of these physical factors on MS channel activity have not been investigated. Here using finite element simulation, we study the combined effect of hydrophobic mismatch and local bending on the archetypal mechanosensitive channel MscL. First we show how the local curvature direction impacts on MS channel modulation. In the case of MscL, we show inward (cytoplasmic) bending can more effectively gate the channel compared to outward bending. Then we indicate that in response to a specific local curvature, MscL inserted in a bilayer with the same hydrophobic length is more expanded in the constriction pore region compared to when there is a protein-lipid hydrophobic mismatch. Interestingly in the presence of a negative mismatch (thicker lipids), MscL constriction pore is more expanded than in the presence of positive mismatch (thinner lipids) in response to an identical membrane curvature. These results were confirmed by a parametric energetic calculation provided for MscL gating. These findings have several biophysical consequences for understanding the function of MS channels in response to two major physical stimuli in mechanobiology, namely hydrophobic mismatch and local membrane curvature. PMID:26958847

  11. Approximate land-surface subsidence in Fort Bend County, Texas, 1943-87 and 1973-87

    USGS Publications Warehouse

    Gabrysch, R.K.; Coplin, L.S.

    1998-01-01

    Land-surface subsidence resulting from the lowering of water levels that accompany ground-water development in areas of the Texas Gulf Coast has been described in numerous reports, newspapers, and magazines since the 1950s. Gabrysch and Bonnet (1975), Gabrysch (1984), and Gabrysch and Coplin (1990) presented subsidence maps of the Houston-Galveston region, including Fort Bend County, for a number of time periods. Most of the subsidence has been in the Houston area. This report, prepared in cooperation with the Fort Bend Subsidence District and the Harris-Galveston Coastal Subsidence District, presents contour maps of land-surface subsidence in Fort Bend County that occurred during 1943-87 and 1973-87.Fort Bend County is underlain by a thick section of unconsolidated lenticular deposits of sand and clay. The deposits include the principal aquifers in the county – the Evangeline aquifer and the overlying Chicot aquifer. Within these aquifers, the interbedded sands and clays are saturated with water almost to the land surface. The sand layers generally are connected laterally, but the clays retard the vertical movement of water, creating confined (artesian) conditions within the aquifer. The sands are fine to medium grained, and the combined layers yield large quantities of water. The clays are principally montmorillonite, the most compressible of the clay minerals.

  12. Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity

    NASA Astrophysics Data System (ADS)

    Li, Lun; Li, Aibing; Murphy, Michael A.; Fu, Yuanyuan V.

    2016-09-01

    Three-dimensional shear wave velocity and radial anisotropy models of the crust and upper mantle beneath the NE Tibetan plateau are constructed from new measurements of Love wave dispersions (20-77s) and previously obtained Rayleigh wave dispersions (20-87s) using a two-plane-wave method. The mid-lower crust is characterized with positive anisotropy (VSH > VSV) with large strength beneath the Qinling and Qilian Mountains and small values beneath the Anyemaqen Mountain. The large positive anisotropy can be explained by horizontal alignment of anisotropic minerals in the mid-lower crust due to crustal flow. The mantle lithosphere above 90 km is largely isotropic while weak positive anisotropy appears beneath 90 km, which probably marks the lithosphere-asthenosphere boundary (LAB). A low shear wave velocity anomaly and relatively negative radial anisotropy are imaged in the entire lithosphere beneath the restraining bend in the eastern Kunlun fault, consistent with a weak lithosphere experiencing vertical thickening under horizontal compression. The asthenosphere at the restraining bend is characterized by significant low velocity and positive radial anisotropy, reflecting that the asthenosphere here is probably hotter, has more melts, and deforms more easily than the surrounding region. We propose that the lithosphere at the restraining bend was vertically thickened and subsequently delaminated locally, and induced asthenosphere upwelling. This model explains the observations of velocity and anisotropy anomalies in the lithosphere and asthenosphere as well as geological observations of rapid rock uplift at the restraining bend of the Kunlun fault.

  13. Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory

    NASA Astrophysics Data System (ADS)

    Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.

    2015-12-01

    In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.

  14. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  15. 5. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Big Creek Road, old bridge on Walnut Bottom Road, deck view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  16. 4. Big Creek Road, old bridge on Walnut Bottom Road, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Big Creek Road, old bridge on Walnut Bottom Road, elevation view. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  17. Big sagebrush transplanting success in crested wheatgrass stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of formerly big sagebrush (Artemisia tridentate ssp. wyomingensis)/bunchgrass communities to annual grass dominance, primarily cheatgrass (Bromus tectorum), in Wyoming big sagebrush ecosystems has sparked the increasing demand to establish big sagebrush on disturbed rangelands. The e...

  18. Old Big Oak Flat Road at intersection with New Tioga ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Old Big Oak Flat Road at intersection with New Tioga Road. Note gate for road to Tamarack Campground - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  19. View of Old Big Oak Flat Road in Talus Slope. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Old Big Oak Flat Road in Talus Slope. Bridal Veil Falls at center distance. Looking east - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  20. Damage type and strain mode associations in human compact bone bending fatigue.

    PubMed

    Boyce, T M; Fyhrie, D P; Glotkowski, M C; Radin, E L; Schaffler, M B

    1998-05-01

    When compact bone is subjected to fatigue loading, it develops matrix microdamage, which reduces the tissue's ability to resist fracture. The relative influence of different strain modes on damage and strength in compact bone has not been characterized, to our knowledge. In this study, the nonuniform strain field produced by four-point bending was used to introduce fatigue damage into tibial bending beam specimens from men 40-49 years old. The specimens were then bulk-stained with basic fuchsin to mark damage surfaces and were examined histologically and with confocal microscopy to describe damage morphologies and position relative to tension and compression-strained regions of the specimen. Histomorphometric methods were used to quantify the amounts of different types of bone microdamage. Three major types were observed. In regions subjected to tensile strains, the bone had focal regions of diffusely increased basic fuchsin staining (i.e., diffuse microdamage). Confocal microscopy of these regions showed them to be composed of extensive networks of fine, ultrastructural-level cracks. In compressive strain regions, the tissue developed linear microcracks in interstitial areas similar to those originally described by Frost. Fine, tearing-type (wispy-appearing) cracks were observed near and in the plane of the neutral axis. The paths of these fine cracks were not influenced by microstructural boundaries. Other minor damage morphologies (sector-stained osteons, delamination of regions of lamellae, and intraosteonal cracking) were observed, but their distribution was unrelated to local strain field. Thus. in fatigue of human compact bone, the principal mechanisms of matrix failure (i.e., linear microcrack, diffuse damage foci, and tearing-type damage) are strongly dependent on local strain type.

  1. Photoacoustic elastic bending in thin film—Substrate system

    SciTech Connect

    Todorović, D. M.; Rabasović, M. D.; Markushev, D. D.

    2013-12-07

    Theoretical model for optically excited two-layer elastic plate, which includes plasmaelastic, thermoelastic, and thermodiffusion mechanisms, is given in order to study the dependence of the photoacoustic (PA) elastic bending signal on the optical, thermal, and elastic properties of thin film—substrate system. Thin film-semiconductor sample (in our case Silicon) is modeled by simultaneous analysis of the plasma, thermal, and elastic wave equations. Multireflection effects in thin film are included in theoretical model and analyzed. Relations for the amplitude and phase of electronic and thermal elastic bending in the optically excited two-layer mechanically-supported circular plate are derived. Theoretical analysis of the thermodiffusion, plasmaelastic, and thermoelastic effects in a sample-gas-microphone photoacoustic detection configuration is given. Two normalization procedures of the photoacoustic elastic bending signal in function of the modulation frequency of the optical excitation are established. Given theoretical model can be used for various photoacoustic detection configurations, for example, in the study of optical, thermal, and elastic properties of the dielectric-semiconductor or metal-semiconductor structure, etc., Theoretical analysis shows that it is possible to develop new noncontact and nondestructive experimental method—PA elastic bending method for thin film study, with possibility to obtain the optical, thermal, and elastic parameters of the film thinner than 1 μm.

  2. 10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. MOVABLE BED SEDIMENTATION MODELS. DOGTOOTH BEND MODEL (MODEL SCALE: 1' = 400' HORIZONTAL, 1' = 100' VERTICAL), AND GREENVILLE BRIDGE MODEL (MODEL SCALE: 1' = 360' HORIZONTAL, 1' = 100' VERTICAL). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  3. Teaching Cultural Geography with "Bend It like Beckham"

    ERIC Educational Resources Information Center

    Algeo, Katie

    2007-01-01

    The British film "Bend It Like Beckham" (2002) is pedagogically useful in the cultural geography classroom for engaging students with core concepts, such as ethnicity, migration, acculturation, and assimilation, and with more advanced modes of analysis, such as the social construction of identity. Although the film depicts a particular…

  4. "A shape bend in the road, showing how the horses ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "A shape bend in the road, showing how the horses are hitched in 'blocking.' The remainder of the team has been hitched to the block and tackle." San Joaquin Light and Power Magazine, Vol. I, No. 12, December 1913, p. 553 - Tule River Hydroelectric Complex, CA Highway 190 at North Fork of Middle Fork of Tule River, Springville, Tulare County, CA

  5. Springback Analysis of U-bending with Bottoming

    NASA Astrophysics Data System (ADS)

    Ogawa, Takayuki; Yoshida, Fusahito

    2011-08-01

    The effect of bottoming on the reduction of springback was investigated by performing U-shaped bending experiments and corresponding 3D FE simulation on 590 MPa level high strength steel sheet. From experiments using three punch-die sets, each have different gaps between punch and die (0, 5 and 10% less than the sheet thickness) at punch corner, it was clarified that springback decreases with increasing bottoming load to some extent but a certain amount of springback remains even under a higher load. From 3D FE simulation of the bottoming on U-shaped bending, it was found that bending stresses at punch R-corner are much reduced by bottoming, but these stresses around the end of R-corner cannot be eliminated. This is a reason why complete elimination of springback by bottoming on U-bending is so difficult. Therefore, it would be recommended in actual press forming operations to apply a certain amount of bottoming load, but it should not be too large, for reduction of springback. Another important conclusion, found in the present study, is that an appropriate choice of material model is essential for accurate FE simulation of bottoming. Furthermore, deformation of punch/die slightly affects the springback. The best combination is the use of Yoshida-Uemori kinematic hardening law for material model and 3D deformable solid model for tools.

  6. Effect of train carbody's parameters on vertical bending stiffness performance

    NASA Astrophysics Data System (ADS)

    Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune

    2016-10-01

    Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.

  7. A Second Look at Brian Simon's "Bending the Rules"

    ERIC Educational Resources Information Center

    Cox, Sue

    2016-01-01

    In this article the author revisits an important book: Brian Simon's "Bending the Rules: the Baker reform of education." Written by a key figure in the history of the journal FORUM as well as in the history of education, Simon's book documented the features of the Education Reform Bill of 1987 (the precursor to the Education Reform Act…

  8. Bend-twist coupling potential of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Berggreen, C.

    2014-06-01

    In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling into a blade on such important blade structural properties as bending and torsional stiffness is demonstrated.

  9. Tension bending ratcheting tests of 304 stainless steel

    SciTech Connect

    Larson, L.D.; Jones, D.P.; Rapp, D.G.

    1996-12-31

    This paper discusses results of an experimental program conducted to investigate the strain ratcheting behavior of 304 stainless steel under various combinations of applied membrane load and displacement controlled cyclic bending strain. Tests were performed on uniaxial specimens at temperatures of 70 F (21 C) and 550 F (288 C). Bending strain, ratchet strain and axial displacement of the specimens were monitored throughout the tests. Membrane stress to monotonic yield stress ratios of 2/3, 1/2, and 1/3 were tested with pseudo-elastic bending stress to yield stress ratios ranging from 1.4 to 10.7. Test output was in the form of plots of cumulative axial membrane strain versus cycles up to the point of shakedown, i.e., the point at which no additional progressive strain was observed. Shakedown was demonstrated in the 500 F tests but not the room temperature tests. The 550 F results are shown in terms of shakedown membrane strain versus equivalent bending stress ratio for each of the tested membrane stress ratios. The cyclic and monotonic stress-strain curves for the test materials are presented to enable the use of various models for predicting the ratcheting and shakedown behavior. The results may be used to develop improved ratcheting and shakedown rules permitting a relaxation of the traditional ratcheting rules in the ASME Boiler and Pressure Vessel Code.

  10. Extrinsic Michelson interferometric fibre optic sensor with bend insensitive downlead

    NASA Astrophysics Data System (ADS)

    Hand, D. P.; Carolan, T. A.; Barton, J. S.; Jones, J. D. C.

    1993-04-01

    A novel optical arrangement is described for an interferometric optical fibre sensor of the extrinsic type. Based on a Michelson interferometer, it combines a bend insensitive downlead with the availability of antiphase outputs without insertion loss, and provides isolation of the source.

  11. VIEW OF BEND IN CEDAR DRIVE WITH 603 CEDAR DRIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BEND IN CEDAR DRIVE WITH 603 CEDAR DRIVE ON RIGHT. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  12. Tune shifts due to systematic errors in bend magnets

    SciTech Connect

    Douglas, D.

    1983-12-01

    The presence of systematic error multipoles in bend magnets, persistent currents at low magnet excitation, and saturation effects at high magnet excitation may all lead to tune shifts which could prove detrimental to the operation of the SSC. It is the purpose of this note to report estimates of the magnitude of these tune shifts and the corrector strengths required to circumvent them.

  13. 2. VIEW OF CENTRAL BEND OF LOWER DIAGONAL NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF CENTRAL BEND OF LOWER DIAGONAL NO. 1 DRAIN, LOOKING 2932 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  14. Bending strength model for internal spur gear teeth

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, K. L.; Coe, H. H.

    1995-01-01

    Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.

  15. On the extent of mantle hydration caused by plate bending

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2017-01-01

    When bent at subduction zones, oceanic plates are damaged by normal faulting, and this bending-related faulting is widely believed to cause deep mantle hydration, down to ∼20-30 km deep. The buoyancy of water (or equivalently, confining pressure), however, makes it difficult to bring water down even if faulting is deep. Extension associated with plate bending generates negative dynamic pressure, but the magnitude of such dynamic pressure is shown to be insufficient to overcome confining pressure. Seismic velocity anomalies that have been used to infer the extent of mantle hydration are reviewed, and it is suggested that small crack-like porosities, which can be produced by thermal cracking and further enhanced by bending-related faulting, is sufficient to explain such velocity anomalies. The presence of such porosities, however, does not necessarily lead to the substantial hydration of oceanic plates because of confining pressure. Whereas the depth extent of bending-generated porosities is uncertain, the theory of thermal cracking can be used to place a lower bound on the amount of water contained in the slab mantle (0.03-0.07 wt% H2O), and this lower bound is suggested to be more than sufficient to explain the lower-plane earthquakes of the double seismic zone by dehydration embrittlement.

  16. Stress analysis of a secondary-bending specimen

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Heller, M.

    1993-11-01

    This note describes a two-dimensional finite-element elastic analysis of a uniaxially-loaded bolted secondary-bending specimen which was conducted to provide information relevant to a recent ARL fatigue testing program. Three different approaches were employed to model the bolt/plate interface and the results are compared with thermoelastic stress measurements.

  17. Influence of fiber bending and strain on the modal content

    NASA Astrophysics Data System (ADS)

    Schulze, Christian; Flamm, Daniel; Duparré, Michael; Schröter, Siegmund

    2012-02-01

    Today multimode optical fibers are used to transport and generate high brilliant beams of considerable power. External perturbation of the fiber, e.g., induced by bending or strain, will influence the guided light, i.e., change modal content and beam properties. We present a detailed experimental investigation of fiber bending and strain induced changes of the modal content, based on the Correlation Filter Method that performs a modal decomposition with computer-generated holograms. Using this technique the modal amplitudes and phases can be monitored in real-time, i.e., currently with up to 30 Hz, such that variations in the modal composition can be observed instantaneously. The fast measurement rate can be used for adjustment purposes, e.g., to evaluate quantitatively the change of beam quality with varying bending diameter. We have applied our method to different kinds of multimode fibers such as step-index, photonic crystal and multicore fibers, whereas the results for a step-index and a multicore large mode area fiber are exemplarily presented, including the impact of bending on the beam quality.

  18. An embedding for the big bang

    NASA Technical Reports Server (NTRS)

    Wesson, Paul S.

    1994-01-01

    A cosmological model is given that has good physical properties for the early and late universe but is a hypersurface in a flat five-dimensional manifold. The big bang can therefore be regarded as an effect of a choice of coordinates in a truncated higher-dimensional geometry. Thus the big bang is in some sense a geometrical illusion.

  19. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  20. Structuring the Curriculum around Big Ideas

    ERIC Educational Resources Information Center

    Alleman, Janet; Knighton, Barbara; Brophy, Jere

    2010-01-01

    This article provides an inside look at Barbara Knighton's classroom teaching. She uses big ideas to guide her planning and instruction and gives other teachers suggestions for adopting the big idea approach and ways for making the approach easier. This article also represents a "small slice" of a dozen years of collaborative research,…