Sample records for big crunch singularity

  1. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamenshchik, A. Yu.; Manti, S.

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less

  2. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  3. Quantum Gravity in Cyclic (ekpyrotic) and Multiple (anthropic) Universes with Strings And/or Loops

    NASA Astrophysics Data System (ADS)

    Chung, T. J.

    2008-09-01

    This paper addresses a hypothetical extension of ekpyrotic and anthropic principles, implying cyclic and multiple universes, respectively. Under these hypotheses, from time immemorial (t = -∞), a universe undergoes a big bang from a singularity, initially expanding and eventually contracting to another singularity (big crunch). This is to prepare for the next big bang, repeating these cycles toward eternity (t = +∞), every 30 billion years apart. Infinity in time backward and forward (t = ±∞) is paralleled with infinity in space (Xi = ±∞), allowing multiple universes to prevail, each undergoing big bangs and big crunches similarly as our own universe. It is postulated that either string theory and /or loop quantum gravity might be able to substantiate these hypotheses.

  4. Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2010-01-01

    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which satisfies the dominant energy condition and is time-periodic, thus running through an infinite number of contraction and expansion cycles.

  5. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  6. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  7. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  8. Journeys through antigravity?

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Chemissany, Wissam; Kallosh, Renata

    2014-01-01

    A possibility of journeys through antigravity has recently been proposed, with the suggestion that Weyl-invariant extension of scalars coupled to Einstein gravity allows for an unambiguous classical evolution through cosmological singularities in anisotropic spacetimes. We compute the Weyl invariant curvature squared and find that it blows up for the proposed anisotropic solution both at the Big Crunch as well as at the Big Bang. Therefore the cosmological singularities are not resolved by uplifting Einstein theory to a Weyl invariant model.

  9. Through the big bang: Continuing Einstein's equations beyond a cosmological singularity

    NASA Astrophysics Data System (ADS)

    Koslowski, Tim A.; Mercati, Flavio; Sloan, David

    2018-03-01

    All measurements are comparisons. The only physically accessible degrees of freedom (DOFs) are dimensionless ratios. The objective description of the universe as a whole thus predicts only how these ratios change collectively as one of them is changed. Here we develop a description for classical Bianchi IX cosmology implementing these relational principles. The objective evolution decouples from the volume and its expansion degree of freedom. We use the relational description to investigate both vacuum dominated and quiescent Bianchi IX cosmologies. In the vacuum dominated case the relational dynamical system predicts an infinite amount of change of the relational DOFs, in accordance with the well known chaotic behaviour of Bianchi IX. In the quiescent case the relational dynamical system evolves uniquely though the point where the decoupled scale DOFs predict the big bang/crunch. This is a non-trivial prediction of the relational description; the big bang/crunch is not the end of physics - it is instead a regular point of the relational evolution. Describing our solutions as spacetimes that satisfy Einstein's equations, we find that the relational dynamical system predicts two singular solutions of GR that are connected at the hypersurface of the singularity such that relational DOFs are continuous and the orientation of the spatial frame is inverted.

  10. Possible antigravity regions in F(R) theory?

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D.; Sáez-Gómez, Diego

    2014-03-01

    We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.

  11. Bouncing cosmologies from quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Sindoni, Lorenzo; Wilson-Ewing, Edward

    2017-02-01

    We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of isotropic group field theory condensate states in the Gross-Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

  12. Past incompleteness of a bouncing multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilenkin, Alexander; Zhang, Jun, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    2014-06-01

    According to classical GR, Anti-de Sitter (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by nonsingular bounces. This may have important implications for the beginning of the multiverse. Geodesics in cosmological spacetimes are known to be past-incomplete, as long as the average expansion rate along the geodesic is positive, but it is not clear that the latter condition is satisfied if the geodesic repeatedly passes through crunching AdS bubbles. We investigate this issue in a simple multiverse model, where the spacetime consistsmore » of a patchwork of FRW regions. The conclusion is that the spacetime is still past-incomplete, even in the presence of AdS bounces.« less

  13. Spacetime Singularities in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Minassian, Eric A.

    2000-04-01

    Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.

  14. Interuniversal entanglement in a cyclic multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, Salvador; Balcerzak, Adam; Dąbrowski, Mariusz P.; Krämer, Manuel

    2017-04-01

    We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermodynamics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.

  15. Watchers of the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2013-05-01

    An unresolved question in inflationary cosmology is the assignment of probabilities to different types of events that can occur in the eternally inflating multiverse. We explore the possibility that the resolution of this ''measure problem'' may rely on non-standard dynamics in regions of high curvature. In particular, ''big crunch'' singularities at the future boundary of bubbles with negative vacuum energy density may lead to bounces, where contraction is replaced by inflationary expansion driven by different vacua in the landscape. Similarly, singularities inside of black holes might be gateways to other inflating vacua. This would drastically affect the global structure ofmore » the inflating multiverse. We consider a measure based on a probe geodesic which undergoes an infinite number of passages through crunches. This can be thought of as the world-line of an eternal ''watcher{sup ,} collecting data in an orderly fashion. We compare this to previous approaches to the measure problem. The watcher's measure is independent of initial conditions and does not suffer from ambiguities associated with the choice of a cut-off surface. Another potential benefit from passing through crunches is that the observations collected by the watcher may easily depart from ergodicity, in very generic landscapes. This may significantly alleviate the problem of Boltzmann Brain dominance.« less

  16. Arrows of time in the bouncing universes of the no-boundary quantum state

    NASA Astrophysics Data System (ADS)

    Hartle, James; Hertog, Thomas

    2012-05-01

    We derive the arrows of time of our universe that follow from the no-boundary theory of its quantum state (NBWF) in a minisuperspace model. Arrows of time are viewed four-dimensionally as properties of the four-dimensional Lorentzian histories of the universe. Probabilities for these histories are predicted by the NBWF. For histories with a regular “bounce” at a minimum radius fluctuations are small at the bounce and grow in the direction of expansion on either side. For recollapsing classical histories with big bang and big crunch singularities the fluctuations are small near one singularity and grow through the expansion and recontraction to the other singularity. The arrow of time defined by the growth in fluctuations thus points in one direction over the whole of a recollapsing spacetime but is bidirectional in a bouncing spacetime. We argue that the electromagnetic, thermodynamic, and psychological arrows of time are aligned with the fluctuation arrow. The implications of a bidirectional arrow of time for causality are discussed.

  17. Analysis of the Fisher solution

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-01

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the “scalar charge” Σ. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,Σ) maps the exterior region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its “big bang” and “big crunch.” The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are “dual to the horizon.”

  18. Analysis of the Fisher solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2010-01-15

    We study the d-dimensional Fisher solution which represents a static, spherically symmetric, asymptotically flat spacetime with a massless scalar field. The solution has two parameters, the mass M and the 'scalar charge' {Sigma}. The Fisher solution has a naked curvature singularity which divides the spacetime manifold into two disconnected parts. The part which is asymptotically flat we call the Fisher spacetime, and another part we call the Fisher universe. The d-dimensional Schwarzschild-Tangherlini solution and the Fisher solution belong to the same theory and are dual to each other. The duality transformation acting in the parameter space (M,{Sigma}) maps the exteriormore » region of the Schwarzschild-Tangherlini black hole into the Fisher spacetime which has a naked timelike singularity, and interior region of the black hole into the Fisher universe, which is an anisotropic expanding-contracting universe and which has two spacelike singularities representing its 'big bang' and 'big crunch'. The big bang singularity and the singularity of the Fisher spacetime are radially weak in the sense that a 1-dimensional object moving along a timelike radial geodesic can arrive to the singularities intact. At the vicinity of the singularity the Fisher spacetime of nonzero mass has a region where its Misner-Sharp energy is negative. The Fisher universe has a marginally trapped surface corresponding to the state of its maximal expansion in the angular directions. These results and derived relations between geometric quantities of the Fisher spacetime, the Fisher universe, and the Schwarzschild-Tangherlini black hole may suggest that the massless scalar field transforms the black hole event horizon into the naked radially weak disjoint singularities of the Fisher spacetime and the Fisher universe which are 'dual to the horizon'.« less

  19. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  20. Complete conformal classification of the Friedmann–Lemaître–Robertson–Walker solutions with a linear equation of state

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Carr, B. J.; Igata, Takahisa

    2018-05-01

    We completely classify Friedmann–Lemaître–Robertson–Walker solutions with spatial curvature and equation of state , according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow , thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for w  >  ‑1/3 and , while there is no big-bang singularity for w  <  ‑1 and . For K  =  0 or  ‑1, ‑1  <  w  <  ‑1/3 and , there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for w  <  ‑1 and , with null geodesics being future complete for but incomplete for w  <  ‑5/3. For w  =  ‑1/3, the expansion speed is constant. For  ‑1  <  w  <  ‑1/3 and K  =  1, the universe contracts from infinity, then bounces and expands back to infinity. For K  =  0, the past boundary consists of timelike infinity and a regular null hypersurface for  ‑5/3  <  w  <  ‑1, while it consists of past timelike and past null infinities for . For w  <  ‑1 and K  =  1, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For w  <  ‑1 and K  =  ‑1, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for , and , respectively. A negative energy density () is possible only for K  =  ‑1. In this case, for w  >  ‑1/3, the universe contracts from infinity, then bounces and expands to infinity; for  ‑1  <  w  <  ‑1/3, it starts from a big-bang singularity and contracts to a big-crunch singularity; for w  <  ‑1, it expands from a regular null hypersurface and contracts to another regular null hypersurface.

  1. Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe

    NASA Astrophysics Data System (ADS)

    Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand

    2017-11-01

    This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.

  2. Scalar field cosmologies with inverted potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisseau, B.; Giacomini, H.; Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Bigmore » Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.« less

  3. Non-singular bounce transitions in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    2013-11-01

    According to classical GR, negative-energy (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by non-singular bounces. Here we explore possible dynamics of such bounces using a simple modification of the Friedmann equation, which ensures that the scale factor bounces when the matter density reaches some critical value ρ{sub c}. This is combined with a simple scalar field 'landscape', where the energy barriers between different vacua are small compared to ρ{sub c}. We find that the bounce typically results in a transition tomore » another vacuum, with a scalar field displacement Δφ ∼ 1 in Planck units. If the new vacuum is AdS, we have another bounce, and so on, until the field finally transits to a positive-energy (de Sitter) vacuum. We also consider perturbations about the homogeneous solution and discuss some of their amplification mechanisms (e.g., tachyonic instability and parametric resonance). For a generic potential, these mechanisms are much less efficient than in models of slow-roll inflation. But the amplification may still be strong enough to cause the bubble to fragment into a mosaic of different vacua.« less

  4. Matrix quantum mechanics on S1 /Z2

    NASA Astrophysics Data System (ADS)

    Betzios, P.; Gürsoy, U.; Papadoulaki, O.

    2018-03-01

    We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.

  5. Multicentered black holes with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Klemm, Dietmar

    2014-01-01

    We present a recipe that allows us to construct multicentered black holes embedded in an arbitrary Friedmann-Lemaître-Robertson-Walker (FLRW) universe. These solutions are completely determined by a function satisfying the conformal Laplace equation on the spatial slices E3, S3, or H3. Since anti-de Sitter (AdS) space can be written in FLRW coordinates, this includes as a special case multicentered black holes in AdS, in the sense that, far away from the black holes, the energy density and the pressure approach the values given by a negative cosmological constant. We study in some detail the physical properties of the single-centered asymptotically AdS case, which does not coincide with the usual Reissner-Nordström-AdS black hole, but is highly dynamical. In particular, we determine the curvature singularities and trapping horizons of this solution, compute the surface gravity of the trapping horizons, and show that the generalized first law of black hole dynamics proposed by Hayward holds in this case. It turns out that the spurious big bang/big crunch singularities that appear when one writes AdS in FLRW form become real in the presence of these dynamical black holes. This implies that actually only one point of the usual conformal boundary of AdS survives in the solutions that we construct. Finally, a generalization to arbitrary dimension is also presented.

  6. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    NASA Astrophysics Data System (ADS)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  7. Phase portraits of general f(T) cosmology

    NASA Astrophysics Data System (ADS)

    Awad, A.; El Hanafy, W.; Nashed, G. G. L.; Saridakis, Emmanuel N.

    2018-02-01

    We use dynamical system methods to explore the general behaviour of f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T) cosmology. We utilize the phase space portraits and we show that f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T) models offering a complete picture. Moreover, we present a new model of f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ confidence level.

  8. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  9. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  10. Chaotic universe model.

    PubMed

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  11. Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less

  12. Does thermodynamics require a new expansion after the Big Crunch of our cosmos

    NASA Astrophysics Data System (ADS)

    Recami, E.; Tonin-Zanchin, V.

    Recently, a unifield geometrical approach to gravitational and strong interactions was proposed, based on the methods of General Relativity. According to it, hadrons can be regarded as black-hole type solutions of new field equations describing two tensorial metric-fields (the ordinary gravitational, and the strong one). By extending the Bekenstein-Hawking thermodynamics to those strong black-holes (SBH), it is shown: (1) that SBH thermodynamics seems to require a new expansion of our cosmos after its Big Crunch (this thermodynamical indication being rather unique, up to now, in showing that a recontraction of our cosmos has to be followed by a new creation); and (2) that a collapsing star with mass 2M sub(sun) less than = M less than 15M(sun), once overtaken the neutron-star phase, must re-explode reaching a diameter of at least a few light-days, thus failing to reach the black-hole state.

  13. The Friedmann-Lemaître-Robertson-Walker Big Bang Singularities are Well Behaved

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-01-01

    We show that the Big Bang singularity of the Friedmann-Lemaître-Robertson-Walker model does not raise major problems to General Relativity. We prove a theorem showing that the Einstein equation can be written in a non-singular form, which allows the extension of the spacetime before the Big Bang. The physical interpretation of the fields used is discussed. These results follow from our research on singular semi-Riemannian geometry and singular General Relativity.

  14. Big bounce with finite-time singularity: The F(R) gravity description

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.

  15. Loop quantum cosmology with self-dual variables

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  16. The "Big Apple" Beats the Athletic Facilities Crunch.

    ERIC Educational Resources Information Center

    Glading, John

    1980-01-01

    New York City public schools gained flexible and safe athletic fields when they covered old fields with synthetic turf. Students, coaches, and communities are using this durable new resource and discovering recreational potentials never before possible in an urban environment. (CJ)

  17. Nonequilibrium dynamics of the O( N ) model on dS3 and AdS crunches

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2018-03-01

    We study the nonperturbative quantum evolution of the interacting O( N ) vector model at large- N , formulated on a spatial two-sphere, with time dependent couplings which diverge at finite time. This model - the so-called "E-frame" theory, is related via a conformal transformation to the interacting O( N ) model in three dimensional global de Sitter spacetime with time independent couplings. We show that with a purely quartic, relevant deformation the quantum evolution of the E-frame model is regular even when the classical theory is rendered singular at the end of time by the diverging coupling. Time evolution drives the E-frame theory to the large- N Wilson-Fisher fixed point when the classical coupling diverges. We study the quantum evolution numerically for a variety of initial conditions and demonstrate the finiteness of the energy at the classical "end of time". With an additional (time dependent) mass deformation, quantum backreaction lowers the mass, with a putative smooth time evolution only possible in the limit of infinite quartic coupling. We discuss the relevance of these results for the resolution of crunch singularities in AdS geometries dual to E-frame theories with a classical gravity dual.

  18. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  19. Do we live in the universe successively dominated by matter and antimatter?

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2011-08-01

    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of matter into antimatter may look as a Big Bang. Our mechanism prevents a singularity; a new cycle might start with an initial size more than 30 orders of magnitude greater than the Planck length, suggesting that there is no need for inflationary scenario in Cosmology. In addition, there is no need to invoke CP violation for explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous universe was dominated by antimatter.

  20. Quantum transitions through cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddlemore » points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.« less

  1. Quantum transitions through cosmological singularities

    NASA Astrophysics Data System (ADS)

    Bramberger, Sebastian F.; Hertog, Thomas; Lehners, Jean-Luc; Vreys, Yannick

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  2. Future singularity avoidance in phantom dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    2012-07-01

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less

  3. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  4. On the Weyl curvature hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less

  5. Classical stability of sudden and big rip singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, John D.; Lip, Sean Z. W.

    2009-08-15

    We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.

  6. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  7. Tachyon field in loop quantum cosmology: An example of traversable singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Lifang; Zhu Jianyang

    2009-06-15

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less

  8. The Big Crunch: A Hybrid Solution to Earth and Space Science Instruction for Elementary Education Majors

    ERIC Educational Resources Information Center

    Cervato, Cinzia; Kerton, Charles; Peer, Andrea; Hassall, Lesya; Schmidt, Allan

    2013-01-01

    We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the…

  9. New Area Law in General Relativity.

    PubMed

    Bousso, Raphael; Engelhardt, Netta

    2015-08-21

    We report a new area law in general relativity. A future holographic screen is a hypersurface foliated by marginally trapped surfaces. We show that their area increases monotonically along the foliation. Future holographic screens can easily be found in collapsing stars and near a big crunch. Past holographic screens exist in any expanding universe and obey a similar theorem, yielding the first rigorous area law in big bang cosmology. Unlike event horizons, these objects can be identified at finite time and without reference to an asymptotic boundary. The Bousso bound is not used, but it naturally suggests a thermodynamic interpretation of our result.

  10. Non-minimally coupled varying constants quantum cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less

  11. Infinite derivative gravity: non-singular cosmology & blackhole solutions

    NASA Astrophysics Data System (ADS)

    Mazumdar, A.

    Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.

  12. Holographic dark energy with linearly varying deceleration parameter and escaping big rip singularity of the Bianchi type-V universe

    NASA Astrophysics Data System (ADS)

    Sarkar, Sanjay

    2014-08-01

    The present work deals with the accretion of two minimally interacting fluids: dark matter and a hypothetical isotropic fluid as the holographic dark energy components onto black hole and wormhole in a spatially homogeneous and anisotropic Bianchi type-V universe. To obtain an exact solution of the Einstein's field equations, we use the assumption of linearly varying deceleration parameter. Solution describes effectively the actual acceleration and indicates a big rip type future singularity of the universe. We have studied the evolution of the mass of black hole and the wormhole embedded in this anisotropic universe in order to reproduce a stable universe protected against future-time singularity. It is observed that the accretion of these dark components leads to a gradual decrease and increase of black hole and wormhole mass respectively. Finally, we have found that contrary to our previous case (Sarkar in Astrophys. Space. Sci. 341:651, 2014a), the big rip singularity of the universe with a divergent Hubble parameter of this dark energy model may be avoided by a big trip.

  13. Criticality and big brake singularities in the tachyonic evolutions of closed Friedmann universes with cold dark matter

    NASA Astrophysics Data System (ADS)

    Horváth, Zsolt; Keresztes, Zoltán; Kamenshchik, Alexander Yu.; Gergely, László Á.

    2015-05-01

    The evolution of a closed Friedmann universe filled by a tachyon scalar field with a trigonometric potential and cold dark matter (CDM) is investigated. A subset of the evolutions consistent to 1 σ confidence level with the Union 2.1 supernova data set is identified. The evolutions of the tachyon field are classified. Some of them evolve into a de Sitter attractor, while others proceed through a pseudotachyonic regime into a sudden future singularity. Critical evolutions leading to big brake singularities in the presence of CDM are found and a new type of cosmological evolution characterized by singularity avoidance in the pseudotachyon regime is presented.

  14. ``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2018-02-01

    The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.

  15. Cosmological singularities and bounce in Cartan-Einstein theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less

  16. Cosmological singularities and bounce in Cartan-Einstein theory

    NASA Astrophysics Data System (ADS)

    Lucat, Stefano; Prokopec, Tomislav

    2017-10-01

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).

  17. FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Abou El Dahab, E.

    2017-07-01

    Inspired by Lifshitz theory for quantum critical phenomena in condensed matter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet. In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations of state on the evolution of various cosmological parameters such as Hubble parameters and scale factor. From the comparison of the general relativity gravity with the HLG with detailed and without with non-detailed balance conditions, remarkable differences are found. Also, a noticeable dependence of singular and non-singular Big Bang on the equations of state is observed. We conclude that HLG explains various epochs in the early universe and might be able to reproduce the entire cosmic history with and without singular Big Bang.

  18. Out of the white hole: a holographic origin for the Big Bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B., E-mail: rpourhasan@perimeterinstitute.ca, E-mail: nafshordi@pitp.ca, E-mail: rbmann@uwaterloo.ca

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a sphericalmore » 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ∼20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.« less

  19. Proposal for grid computing for nuclear applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.

    2014-02-12

    The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.

  20. Regularization of the big bang singularity with random perturbations

    NASA Astrophysics Data System (ADS)

    Belbruno, Edward; Xue, BingKan

    2018-03-01

    We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.

  1. Cosmological singularity resolution from quantum gravity: The emergent-bouncing universe

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Botta, Gioele; Cianfrani, Francesco; Liberati, Stefano

    2017-08-01

    Alternative scenarios to the big bang singularity have been subject of intense research for several decades by now. Most popular in this sense have been frameworks were such singularity is replaced by a bounce around some minimal cosmological volume or by some early quantum phase. This latter scenario was devised a long time ago and referred as an "emergent universe" (in the sense that our universe emerged from a constant volume quantum phase). We show here that within an improved framework of canonical quantum gravity (the so-called quantum reduced loop gravity) the Friedmann equations for cosmology are modified in such a way to replace the big bang singularity with a short bounce preceded by a metastable quantum phase in which the volume of the universe oscillates between a series of local maxima and minima. We call this hybrid scenario an "emergent-bouncing universe" since after a pure oscillating quantum phase the classical Friedmann spacetime emerges. Perspective developments and possible tests of this scenario are discussed in the end.

  2. Where Are the Logical Errors in the Theory of Big Bang?

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2015-04-01

    The critical analysis of the foundations of the theory of Big Bang is proposed. The unity of formal logic and of rational dialectics is methodological basis of the analysis. It is argued that the starting point of the theory of Big Bang contains three fundamental logical errors. The first error is the assumption that a macroscopic object (having qualitative determinacy) can have an arbitrarily small size and can be in the singular state (i.e., in the state that has no qualitative determinacy). This assumption implies that the transition, (macroscopic object having the qualitative determinacy) --> (singular state of matter that has no qualitative determinacy), leads to loss of information contained in the macroscopic object. The second error is the assumption that there are the void and the boundary between matter and void. But if such boundary existed, then it would mean that the void has dimensions and can be measured. The third error is the assumption that the singular state of matter can make a transition into the normal state without the existence of the program of qualitative and quantitative development of the matter, without controlling influence of other (independent) object. However, these assumptions conflict with the practice and, consequently, formal logic, rational dialectics, and cybernetics. Indeed, from the point of view of cybernetics, the transition, (singular state of the Universe) -->(normal state of the Universe),would be possible only in the case if there was the Managed Object that is outside the Universe and have full, complete, and detailed information about the Universe. Thus, the theory of Big Bang is a scientific fiction.

  3. Tachyon cosmology, supernovae data, and the big brake singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keresztes, Z.; Gergely, L. A.; Gorini, V.

    2009-04-15

    We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard {lambda}CDM model.

  4. Cosmological BCS mechanism and the big bang singularity

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Biswas, Tirthabir

    2009-07-01

    We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.

  5. Making advanced analytics work for you.

    PubMed

    Barton, Dominic; Court, David

    2012-10-01

    Senior leaders who write off the move toward big data as a lot of big talk are making, well, a big mistake. So argue McKinsey's Barton and Court, who worked with dozens of companies to figure out how to translate advanced analytics into nuts-and-bolts practices that affect daily operations on the front lines. The authors offer a useful guide for leaders and managers who want to take a deliberative approach to big data-but who also want to get started now. First, companies must identify the right data for their business, seek to acquire the information creatively from diverse sources, and secure the necessary IT support. Second, they need to build analytics models that are tightly focused on improving performance, making the models only as complex as business goals demand. Third, and most important, companies must transform their capabilities and culture so that the analytical results can be implemented from the C-suite to the front lines. That means developing simple tools that everyone in the organization can understand and teaching people why the data really matter. Embracing big data is as much about changing mind-sets as it is about crunching numbers. Executed with the right care and flexibility, this cultural shift could have payoffs that are, well, bigger than you expect.

  6. The little sibling of the big rip singularity

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Martín-Moruno, Prado; Ouali, Taoufik; Tavakoli, Yaser

    2015-07-01

    In this paper, we present a new cosmological event, which we named the little sibling of the big rip. This event is much smoother than the big rip singularity. When the little sibling of the big rip is reached, the Hubble rate and the scale factor blow up, but the cosmic derivative of the Hubble rate does not. This abrupt event takes place at an infinite cosmic time where the scalar curvature explodes. We show that a doomsday à la little sibling of the big rip is compatible with an accelerating universe, indeed at present it would mimic perfectly a ΛCDM scenario. It turns out that, even though the event seems to be harmless as it takes place in the infinite future, the bound structures in the universe would be unavoidably destroyed on a finite cosmic time from now. The model can be motivated by considering that the weak energy condition should not be strongly violated in our universe, and it could give us some hints about the status of recently formulated nonlinear energy conditions.

  7. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  8. CRUNCH_PARALLEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, Dana E.; Steefel, Carl I.

    The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.

  9. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    NASA Astrophysics Data System (ADS)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  10. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  11. Gendered Time-Crunch and Work Factors in Denmark

    ERIC Educational Resources Information Center

    Deding, Mette; Lausten, Mette

    2011-01-01

    Being crunched for time is an important aspect of life quality. Although Denmark is a country known for gender-equality, on average mothers are more time-crunched than fathers. We show this using a representative sample of Danish dual-earner couples with at least one child aged 0-10 years. We analyze the determinants of time-crunch in relation to…

  12. Communication networks beyond the capacity crunch.

    PubMed

    Ellis, A D; Mac Suibhne, N; Saad, D; Payne, D N

    2016-03-06

    This issue of Philosophical Transactions of the Royal Society, Part A represents a summary of the recent discussion meeting 'Communication networks beyond the capacity crunch'. The purpose of the meeting was to establish the nature of the capacity crunch, estimate the time scales associated with it and to begin to find solutions to enable continued growth in a post-crunch era. The meeting confirmed that, in addition to a capacity shortage within a single optical fibre, many other 'crunches' are foreseen in the field of communications, both societal and technical. Technical crunches identified included the nonlinear Shannon limit, wireless spectrum, distribution of 5G signals (front haul and back haul), while societal influences included net neutrality, creative content generation and distribution and latency, and finally energy and cost. The meeting concluded with the observation that these many crunches are genuine and may influence our future use of technology, but encouragingly noted that research and business practice are already moving to alleviate many of the negative consequences. © 2016 The Authors.

  13. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1999-03-01

    We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.

  14. 22. CRUNCH BOARD #2 HANGAR BAY FRAME 100 STARBOARD SIDETERM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. CRUNCH BOARD #2 HANGAR BAY FRAME 100 STARBOARD SIDE-TERM CRUNCH REFERS TO HANGAR DECK MISHAPS WHICH RESULTED IN DAMAGE TO AIRCRAFT. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  15. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  16. Cosmological solutions and finite time singularities in Finslerian geometry

    NASA Astrophysics Data System (ADS)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  17. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  18. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  19. Kasner solutions, climbing scalars and big-bang singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condeescu, Cezar; Dudas, Emilian, E-mail: cezar.condeescu@roma2.infn.it, E-mail: emilian.dudas@cpht.polytechnique.fr

    We elaborate on a recently discovered phenomenon where a scalar field close to big-bang is forced to climb a steep potential by its dynamics. We analyze the phenomenon in more general terms by writing the leading order equations of motion near the singularity. We formulate the conditions for climbing to exist in the case of several scalars and after inclusion of higher-derivative corrections and we apply our results to some models of moduli stabilization. We analyze an example with steep stabilizing potential and notice again a related critical behavior: for a potential steepness above a critical value, going backwards towardsmore » big-bang, the scalar undergoes wilder oscillations, with the steep potential pushing it back at every passage and not allowing the scalar to escape to infinity. Whereas it was pointed out earlier that there are possible implications of the climbing phase to CMB, we point out here another potential application, to the issue of initial conditions in inflation.« less

  20. Dissipative universe-inflation with soft singularity

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Timoshkin, Alexander V.

    We investigate the early-time accelerated universe after the Big Bang. We pay attention to the dissipative properties of the inflationary universe in the presence of a soft type singularity, making use of the parameters of the generalized equation of state of the fluid. Flat Friedmann-Robertson-Walker metric is being used. We consider cosmological models leading to the so-called type IV singular inflation. Our obtained theoretical results are compared with observational data from the Planck satellite. The theoretical predictions for the spectral index turn out to be in agreement with the data, while for the scalar-to-tensor ratio, there are minor deviations.

  1. Bouncing cosmology from warped extra dimensional scenario

    NASA Astrophysics Data System (ADS)

    Das, Ashmita; Maity, Debaprasad; Paul, Tanmoy; SenGupta, Soumitra

    2017-12-01

    From the perspective of four dimensional effective theory on a two brane warped geometry model, we examine the possibility of "bouncing phenomena"on our visible brane. Our results reveal that the presence of a warped extra dimension lead to a non-singular bounce on the brane scale factor and hence can remove the "big-bang singularity". We also examine the possible parametric regions for which this bouncing is possible.

  2. Quantum nature of the big bang.

    PubMed

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  3. The presence of a phantom field in a Randall–Sundrum scenario

    NASA Astrophysics Data System (ADS)

    Acuña-Cárdenas, Rubén O.; Astorga-Moreno, J. A.; García-Aspeitia, Miguel A.; López-Domínguez, J. C.

    2018-02-01

    The presence of phantom dark energy in brane world cosmology generates important new effects, causing a premature big rip singularity when we increase the presence of extra dimensions and considerably competing with the other components of our Universe. This article first considers only a field with the characteristic equation ω<-1 and then the explicit form of the scalar field with a potential with a maximum (with the aim of avoiding a big rip singularity). In both cases we study the dynamics robustly through dynamical analysis theory, considering in detail parameters such as the deceleration q and the vector field associated to the dynamical system. Results are discussed with the purpose of treating the cosmology with a phantom field as dark energy in a Randall–Sundrum scenario.

  4. 2 + 1 dimensional de Sitter universe emerging from the gauge structure of a nonlinear quantum system.

    PubMed

    Kam, Chon-Fai; Liu, Ren-Bao

    2017-08-29

    Berry phases and gauge structures are fundamental quantum phenomena. In linear quantum mechanics the gauge field in parameter space presents monopole singularities where the energy levels become degenerate. In nonlinear quantum mechanics, which is an effective theory of interacting quantum systems, there can be phase transitions and hence critical surfaces in the parameter space. We find that these critical surfaces result in a new type of gauge field singularity, namely, a conic singularity that resembles the big bang of a 2 + 1 dimensional de Sitter universe, with the fundamental frequency of Bogoliubov excitations acting as the cosmic scale, and mode softening at the critical surface, where the fundamental frequency vanishes, causing a causal singularity. Such conic singularity may be observed in various systems such as Bose-Einstein condensates and molecular magnets. This finding offers a new approach to quantum simulation of fundamental physics.

  5. Generalized teleparallel cosmology and initial singularity crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less

  6. How quantum is the big bang?

    PubMed

    Bojowald, Martin

    2008-06-06

    When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.

  7. [Fingers, toes and thumbs, correct digital nomenclature based on early Hebrew texts].

    PubMed

    Leibner, Efraim D; London, Eli; Elishoov, Ofer

    2005-08-01

    There is some dissonance as to the correct Hebrew terms for the digits of the extremities. Terms in common use include 'Etzba, 'Bohen' and 'Agudal'. While most agree that 'Etzba' in the singular represents the index finger, there is debate about the plural (Etzba'ot), whether it represents 'fingers' (upper extremity only) or 'digits' (upper and lower). The meaning of 'Bohen' is disputed as well, with proponents existing for it to represent: 'Toe', 'Big Toe' or 'Big Digit'. 'Agudal' is in the same predicament, with uses as 'Thumb' or 'Big Digit'. We undertook a computerized search of the Bible for these words and their derivatives in order to establish their correct use. The term 'Etzba' and its derivatives appeared numerous times in the scriptures both in singular and in plural. 'Bohen' appeared somewhat less, however, all appearances were in conjunction, viz" 'Bohen' of the hand" or " 'Bohen' of the foot". 'Agudal' was not found in our computerized search. According to the early Hebrew texts 'Etzba' in singular usually represents the index finger. However, the plural form 'Etzba'ot', corresponds to the term 'digits' and may be used both for fingers and toes. 'Bohen' is a term representing the large digit of all extremities, i.e. both 'Thumb' and 'Hallux'. Likewise, the term 'Agudal', while not appearing in the scriptures, appears in later contexts in early Hebrew texts, and also represents both the thumb and the hallux.

  8. Swiss ball abdominal crunch with added elastic resistance is an effective alternative to training machines.

    PubMed

    Sundstrup, Emil; Jakobsen, Markus D; Andersen, Christoffer H; Jay, Kenneth; Andersen, Lars L

    2012-08-01

    Swiss ball training is recommended as a low intensity modality to improve joint position, posture, balance, and neural feedback. However, proper training intensity is difficult to obtain during Swiss ball exercises whereas strengthening exercises on machines usually are performed to induce high level of muscle activation. To compare muscle activation as measured by electromyography (EMG) of global core and thigh muscles during abdominal crunches performed on Swiss ball with elastic resistance or on an isotonic training machine when normalized for training intensity. 42 untrained individuals (18 men and 24 women) aged 28-67 years participated in the study. EMG activity was measured in 13 muscles during 3 repetitions with a 10 RM load during both abdominal crunches on training ball with elastic resistance and in the same movement utilizing a training machine (seated crunch, Technogym, Cesena, Italy). The order of performance of the exercises was randomized, and EMG amplitude was normalized to maximum voluntary isometric contraction (MVIC) EMG. When comparing between muscles, normalized EMG was highest in the rectus abdominis (P<0.01) and the external obliques (P<0.01). However, crunches on Swiss ball with elastic resistance showed higher activity of the rectus abdominis than crunches performed on the machine (104±3.8 vs 84±3.8% nEMG respectively, P<0.0001). By contrast, crunches performed on Swiss ball induced lower activity of the rectus femoris than crunches in training machine (27±3.7 vs 65±3.8% nEMG respectively, P<0.0001) Further, gender, age and musculoskeletal pain did not significantly influence the findings. Crunches on a Swiss ball with added elastic resistance induces high rectus abdominis activity accompanied by low hip flexor activity which could be beneficial for individuals with low back pain. In opposition, the lower rectus abdominis activity and higher rectus femoris activity observed in machine warrant caution for individuals with lumbar pain. Importantly, both men and women, younger and elderly, and individuals with and without pain benefitted equally from the exercises.

  9. How Automation Can Help Alleviate the Budget Crunch in Public Health Research.

    PubMed

    Muennig, Peter A

    2015-09-01

    In an era of severe funding constraints for public health research, more efficient means of conducting research will be needed if scientific progress is to continue. At present major funders, such as the National Institutes of Health, do not provide specific instructions to grant authors or to reviewers regarding the cost efficiency of the research that they conduct. Doing so could potentially allow more research to be funded within current budgetary constraints and reduce waste. I describe how a blinded randomized trial was conducted for $ 275,000 by completely automating the consent and data collection processes. The study used the participants' own computer equipment, relied on big data for outcomes, and outsourced some costly tasks, potentially saving $1 million in research costs.

  10. $1. 9 million OKd for Michigan shale project. [Antrim shale deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreiling, J.

    Dow Chemical Co. has received a $1.9 million Energy Research and Development Administration grant to begin developing ''in-situ'' technology to extract gas and oil from Michigan's vast Antrim shale deposits. Dow estimates that the deposits contain at least 2.5 trillion barrels of crude oil and it is speculated that 10 percent of it is recoverable. Michigan Gov. William G. Milliken says ''Success in this high-risk, unconventional but potentially big-payoff project could substantially ease the energy crunch in Michigan and the nation.'' Michigan imports 95 percent of its fuel. The $1.9 million will get work started and foreshadows a $13 millionmore » contract that will support Dow's research in fracturing and ignition.« less

  11. Communication networks beyond the capacity crunch

    PubMed Central

    Ellis, A. D.; Suibhne, N. Mac; Saad, D.; Payne, D. N.

    2016-01-01

    This issue of Philosophical Transactions of the Royal Society, Part A represents a summary of the recent discussion meeting ‘Communication networks beyond the capacity crunch’. The purpose of the meeting was to establish the nature of the capacity crunch, estimate the time scales associated with it and to begin to find solutions to enable continued growth in a post-crunch era. The meeting confirmed that, in addition to a capacity shortage within a single optical fibre, many other ‘crunches’ are foreseen in the field of communications, both societal and technical. Technical crunches identified included the nonlinear Shannon limit, wireless spectrum, distribution of 5G signals (front haul and back haul), while societal influences included net neutrality, creative content generation and distribution and latency, and finally energy and cost. The meeting concluded with the observation that these many crunches are genuine and may influence our future use of technology, but encouragingly noted that research and business practice are already moving to alleviate many of the negative consequences. PMID:26809575

  12. TLBO based Voltage Stable Environment Friendly Economic Dispatch Considering Real and Reactive Power Constraints

    NASA Astrophysics Data System (ADS)

    Verma, H. K.; Mafidar, P.

    2013-09-01

    In view of growing concern towards environment, power system engineers are forced to generate quality green energy. Hence the economic dispatch (ED) aims at the power generation to meet the load demand at minimum fuel cost with environmental and voltage constraints along with essential constraints on real and reactive power. The emission control which reduces the negative impact on environment is achieved by including the additional constraints in ED problem. Presently, the power system mostly operates near its stability limits, therefore with increased demand the system faces voltage problem. The bus voltages are brought within limit in the present work by placement of static var compensator (SVC) at weak bus which is identified from bus participation factor. The optimal size of SVC is determined by univariate search method. This paper presents the use of Teaching Learning based Optimization (TLBO) algorithm for voltage stable environment friendly ED problem with real and reactive power constraints. The computational effectiveness of TLBO is established through test results over particle swarm optimization (PSO) and Big Bang-Big Crunch (BB-BC) algorithms for the ED problem.

  13. Entropy and cosmology.

    NASA Astrophysics Data System (ADS)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own temperature and thus, by itself; reverse entropy. The vast encompassing gravitational forces that the universe has at its disposal, forces that dominate the phase of contraction, provide the compacting, compressive mechanism that regenerates heat in an expanded, cooled universe and decreases entropy. And this phenomenon takes place without diminishing or depleting the finite amount of mass/energy with which the universe began. The fact that the universe can reverse the entropic process leads to possibilities previously ignored when assessing which of the three models (open, closed, of flat) most probably represents the future of the universe. After analyzing the models, the conclusion reached here is that the open model is only an expanded version of the closed model and therefore is not open, and the closed model will never collapse to a big crunch and, therefore, is not closed. Which leaves a modified model, oscillating forever between limited phases of expansion and contraction (a universe in "dynamic equilibrium") as the only feasible choice.

  14. Singular cosmological evolution using canonical and ghost scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of amore » Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.« less

  15. Quantisation of the holographic Ricci dark energy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albarran, Imanol; Bouhmadi-López, Mariam, E-mail: imanol@ubi.pt, E-mail: mbl@ubi.pt

    2015-08-01

    While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not onlymore » avoid future singularities but also the past Big Bang.« less

  16. A simple all-time model for the birth, big bang, and death of the universe

    NASA Astrophysics Data System (ADS)

    Fischer, Arthur E.

    We model the standard ΛCDM model of the universe by the spatially flat FLRW line element dsΛCDM2 = -c2dt2 + 8πGρm,0 Λc22/3 sinh 1 23Λct4/3dσ Euclid2 which we extend for all time t ∈ (-∞,∞). Although there is a cosmological singularity at the big bang t = 0, since the spatial part of the metric collapses to zero, nevertheless, this line element is defined for all time t ∈ (-∞,∞), is C∞ for all t≠0, is C1 differentiable at t = 0, and is non-degenerate and solves Friedmann’s equation for all t≠0. Thus, we can use this extended line element to model the universe from its past-asymptotic initial state dS4- at t = -∞, through the big bang at t = 0, and onward to its future-asymptotic final state dS4+ at t = ∞. Since in this model the universe existed before the big bang, we conclude that (1) the universe was not created de novo at the big bang and (2) cosmological singularities such as black holes or the big bang itself need not be an end to spacetime. Our model shows that the universe was asymptotically created de novo out of nothing at t = -∞ from an unstable vacuum negative half de Sitter dsdS4-2 initial state and then dies asymptotically at t = ∞ as the stable positive half de Sitter dsdS4+2 final state. Since the de Sitter states are vacuum matter states, our model shows that the universe was created from nothing at t = -∞ and dies at t = ∞ to nothing.

  17. How Automation Can Help Alleviate the Budget Crunch in Public Health Research

    PubMed Central

    2015-01-01

    In an era of severe funding constraints for public health research, more efficient means of conducting research will be needed if scientific progress is to continue. At present major funders, such as the National Institutes of Health, do not provide specific instructions to grant authors or to reviewers regarding the cost efficiency of the research that they conduct. Doing so could potentially allow more research to be funded within current budgetary constraints and reduce waste. I describe how a blinded randomized trial was conducted for $275 000 by completely automating the consent and data collection processes. The study used the participants’ own computer equipment, relied on big data for outcomes, and outsourced some costly tasks, potentially saving $1 million in research costs. PMID:26180952

  18. How unitary cosmology generalizes thermodynamics and solves the inflationary entropy problem

    NASA Astrophysics Data System (ADS)

    Tegmark, Max

    2012-06-01

    We analyze cosmology assuming unitary quantum mechanics, using a tripartite partition into system, observer, and environment degrees of freedom. This generalizes the second law of thermodynamics to “The system’s entropy cannot decrease unless it interacts with the observer, and it cannot increase unless it interacts with the environment.” The former follows from the quantum Bayes theorem we derive. We show that because of the long-range entanglement created by cosmological inflation, the cosmic entropy decreases exponentially rather than linearly with the number of bits of information observed, so that a given observer can reduce entropy by much more than the amount of information her brain can store. Indeed, we argue that as long as inflation has occurred in a non-negligible fraction of the volume, almost all sentient observers will find themselves in a post-inflationary low-entropy Hubble volume, and we humans have no reason to be surprised that we do so as well, which solves the so-called inflationary entropy problem. An arguably worse problem for unitary cosmology involves gamma-ray-burst constraints on the “big snap,” a fourth cosmic doomsday scenario alongside the “big crunch,” “big chill,” and “big rip,” where an increasingly granular nature of expanding space modifies our life-supporting laws of physics. Our tripartite framework also clarifies when the popular quantum gravity approximation Gμν≈8πG⟨Tμν⟩ is valid, and how problems with recent attempts to explain dark energy as gravitational backreaction from superhorizon scale fluctuations can be understood as a failure of this approximation.

  19. An exposition on Friedmann cosmology with negative energy densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemiroff, Robert J.; Joshi, Ravi; Patla, Bijunath R., E-mail: nemiroff@mtu.edu, E-mail: rjoshimtu@gmail.com, E-mail: bijunath.patla@nist.gov

    2015-06-01

    How would negative energy density affect a classic Friedmann cosmology? Although never measured and possibly unphysical, certain realizations of quantum field theories leaves the door open for such a possibility. In this paper we analyze the evolution of a universe comprising varying amounts of negative energy forms. Negative energy components have negative normalized energy densities, Ω < 0. They include negative phantom energy with an equation of state parameter w < −1, negative cosmological constant: w=−1, negative domain walls: w = −2/3, negative cosmic strings: w=−1/3, negative mass: w = 0, negative radiation: w = 1/3 and negative ultralight: w > 1/3. Assuming that such energy forms generate pressure like perfect fluids,more » the attractive or repulsive nature of negative energy components are reviewed. The Friedmann equation is satisfied only when negative energy forms are coupled to a greater magnitude of positive energy forms or positive curvature. We show that the solutions exhibit cyclic evolution with bounces and turnovers.The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed. The end states are dubbed ''big crunch,' '' big void,' or ''big rip' and further qualified as ''warped',''curved', or ''flat',''hot' versus ''cold', ''accelerating' versus ''decelerating' versus ''coasting'. A universe that ends by contracting to zero energy density is termed ''big poof.' Which contracting universes ''bounce' in expansion and which expanding universes ''turnover' into contraction are also reviewed.« less

  20. Towards the quantization of Eddington-inspired-Born-Infeld theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-López, Mariam; Chen, Che-Yu, E-mail: mbl@ubi.pt, E-mail: b97202056@gmail.com

    2016-11-01

    The quantum effects close to the classical big rip singularity within the Eddington-inspired-Born-Infeld theory (EiBI) are investigated through quantum geometrodynamics. It is the first time that this approach is applied to a modified theory constructed upon Palatini formalism. The Wheeler-DeWitt (WDW) equation is obtained and solved based on an alternative action proposed in ref. [1], under two different factor ordering choices. This action is dynamically equivalent to the original EiBI action while it is free of square root of the spacetime curvature. We consider a homogeneous, isotropic and spatially flat universe, which is assumed to be dominated by a phantommore » perfect fluid whose equation of state is a constant. We obtain exact solutions of the WDW equation based on some specific conditions. In more general cases, we propose a qualitative argument with the help of a Wentzel-Kramers-Brillouin (WKB) approximation to get further solutions. Besides, we also construct an effective WDW equation by simply promoting the classical Friedmann equations. We find that for all the approaches considered, the DeWitt condition hinting singularity avoidance is satisfied. Therefore the big rip singularity is expected to be avoided through the quantum approach within the EiBI theory.« less

  1. The quantum realm of the ''Little Sibling'' of the Big Rip singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albarran, Imanol; Bouhmadi-López, Mariam; Cabral, Francisco

    We analyse the quantum behaviour of the ''Little Sibling'' of the Big Rip singularity (LSBR) [1]. The quantisation is carried within the geometrodynamical approach given by the Wheeler-DeWitt (WDW) equation. The classical model is based on a Friedmann-Lemaître-Robertson-Walker Universe filled by a perfect fluid that can be mapped to a scalar field with phantom character. We analyse the WDW equation in two setups. In the first step, we consider the scale factor as the single degree of freedom, which from a classical perspective parametrises both the geometry and the matter content given by the perfect fluid. We then solve themore » WDW equation within a WKB approximation, for two factor ordering choices. On the second approach, we consider the WDW equation with two degrees of freedom: the scale factor and a scalar field. We solve the WDW equation, with the Laplace-Beltrami factor-ordering, using a Born-Oppenheimer approximation. In both approaches, we impose the DeWitt (DW) condition as a potential criterion for singularity avoidance. We conclude that in all the cases analysed the DW condition can be verified, which might be an indication that the LSBR can be avoided or smoothed in the quantum approach.« less

  2. On Resolutions of Cosmological Singularities in Higher-Spin Gravity

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin; Pando Zayas, Leopoldo; Rombes, Nicholas

    2014-03-01

    Gravity in three dimensions is simpler than in four, due to the lack of gravitational waves, and can be recast as a Chern-Simons theory. In this context, it is straightforward to generalize Einstein's gravity, with or without cosmological constant, by changing the gauge group. Using this, we study the resolution of certain cosmological singularities, and extend the singularity resolution scheme proposed by Krishnan and Roy. We discuss the resolution of a big-bang singularity in the case of gravity coupled to a spin-4 field realized as Chern-Simons theory with gauge group SL (4 , C) . We show the existence of gauge transformations that do not change the holonomy of the Chern-Simons gauge potential and lead to metrics without the initial singularity. We argue that such transformations always exist in the context of gravity coupled to a spin-N field when described by Chern-Simons with gauge group SL (N , C) . This work was supported by the DOE under grant DE-FG02-95ER40899, a research grant from Troy University, and the Honors Summer Fellowship at the University of Michigan.

  3. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  4. Non-singular and cyclic universe from the modified GUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salah, Maha; Hammad, Fayçal; Faizal, Mir

    In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-correctionsmore » to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.« less

  5. Non-singular and cyclic universe from the modified GUP

    NASA Astrophysics Data System (ADS)

    Salah, Maha; Hammad, Fayçal; Faizal, Mir; Farag Ali, Ahmed

    2017-02-01

    In this paper, we investigate the effects of a new version of the generalized uncertainty principle (modified GUP) on the dynamics of the Universe. As the modified GUP will modify the relation between the entropy and area of the apparent horizon, it will also deform the Friedmann equations within Jacobson's approach. We explicitly find these deformed Friedmann equations governing the modified GUP-corrected dynamics of such a Universe. It is shown that the modified GUP-deformed Jacobson's approach implies an upper bound for the density of such a Universe. The Big Bang singularity can therefore also be avoided using the modified GUP-corrections to horizons' thermodynamics. In fact, we are able to analyze the pre Big Bang state of the Universe. Furthermore, the equations imply that the expansion of the Universe will come to a halt and then will immediately be followed by a contracting phase. When the equations are extrapolated beyond the maximum rate of contraction, a cyclic Universe scenario emerges.

  6. Modified gravity in Arnowitt-Deser-Misner formalism

    NASA Astrophysics Data System (ADS)

    Gao, Changjun

    2010-02-01

    Motivated by Hořava-Lifshitz gravity theory, we propose and investigate two kinds of modified gravity theories, the f(R) kind and the K-essence kind, in the Arnowitt-Deser-Misner (ADM) formalism. The f(R) kind includes one ultraviolet (UV) term and one infrared (IR) term together with the Einstein-Hilbert action. We find that these two terms naturally present the ultraviolet and infrared modifications to the Friedmann equation. The UV and IR modifications can avoid the past Big-Bang singularity and the future Big-Rip singularity, respectively. Furthermore, the IR modification can naturally account for the current acceleration of the Universe. The Lagrangian of K-essence kind modified gravity is made up of the three-dimensional Ricci scalar and an arbitrary function of the extrinsic curvature term. We find the cosmic acceleration can also be naturally interpreted without invoking any kind of dark energy. The static, spherically symmetry and vacuum solutions of both theories are Schwarzschild or Schwarzschild-de Sitter solution. Thus these modified gravity theories are viable for solar system tests.

  7. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    PubMed

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-01-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  8. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-04-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  9. Cosmology and Prehistory: Imagination on the Rise. Spotlight: Montessori Potpourri.

    ERIC Educational Resources Information Center

    Hallenberg, Harvey

    2001-01-01

    Presents the Maori cosmological perspective and the modern theory of evolution. Explains how these two creation stories can coexist. Discusses life on earth during its first 3 billion years, including concepts of singularity, Big Bang, time, space, matter, gravity, stars, planets, seas, and life. (DLH)

  10. Solar System Number-Crunching.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1997-01-01

    Defines terrestrial and Jovian planets and provides directions to obtain planetary data from the National Space Science Data Center Web sites. Provides "number-crunching" activities for the terrestrial planets using Texas Instruments TI-83 graphing calculators: computing volumetric mean radius and volume, density, ellipticity, speed,…

  11. Future singularities and teleparallelism in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Haro, Jaume de; Odintsov, Sergei D., E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: jaime.haro@upc.edu, E-mail: odintsov@ieec.uab.es

    2013-02-01

    We demonstrate how holonomy corrections in loop quantum cosmology (LQC) prevent the Big Rip singularity by introducing a quadratic modification in terms of the energy density ρ in the Friedmann equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) space-time in a consistent and useful way. In addition, we investigate whether other kind of singularities like Type II,III and IV singularities survive or are avoided in LQC when the universe is filled by a barotropic fluid with the state equation P = −ρ−f(ρ), where P is the pressure and f(ρ) a function of ρ. It is shown that the Little Rip cosmology does notmore » happen in LQC. Nevertheless, the occurrence of the Pseudo-Rip cosmology, in which the phantom universe approaches the de Sitter one asymptotically, is established, and the corresponding example is presented. It is interesting that the disintegration of bound structures in the Pseudo-Rip cosmology in LQC always takes more time than that in Einstein cosmology. Our investigation on future singularities is generalized to that in modified teleparallel gravity, where LQC and Brane Cosmology in the Randall-Sundrum scenario are the best examples. It is remarkable that F(T) gravity may lead to all the kinds of future singularities including Little Rip.« less

  12. Magnetized strange quark model with Big Rip singularity in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, S.

    2017-07-01

    Locally rotationally symmetric (LRS) Bianchi type-I magnetized strange quark matter (SQM) cosmological model has been studied based on f(R, T) gravity. The exact solutions of the field equations are derived with linearly time varying deceleration parameter, which is consistent with observational data (from SNIa, BAO and CMB) of standard cosmology. It is observed that the model begins with big bang and ends with a Big Rip. The transition of the deceleration parameter from decelerating phase to accelerating phase with respect to redshift obtained in our model fits with the recent observational data obtained by Farook et al. [Astrophys. J. 835, 26 (2017)]. The well-known Hubble parameter H(z) and distance modulus μ(z) are discussed with redshift.

  13. Cosmological singularities in Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Woolgar, Eric

    2014-12-01

    We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.

  14. Multi-segment trunk models used to investigate the crunch factor in golf and their relationship with selected swing and launch parameters.

    PubMed

    Joyce, Christopher; Chivers, Paola; Sato, Kimitake; Burnett, Angus

    2016-10-01

    The use of multi-segment trunk models to investigate the crunch factor in golf may be warranted. The first aim of the study was to investigate the relationship between the trunk and lower trunk for crunch factor-related variables (trunk lateral bending and trunk axial rotation velocity). The second aim was to determine the level of association between crunch factor-related variables with swing (clubhead velocity) and launch (launch angle). Thirty-five high-level amateur male golfers (Mean ± SD: age = 23.8 ± 2.1 years, registered golfing handicap = 5 ± 1.9) without low back pain had kinematic data collected from their golf swing using a 10-camera motion analysis system operating at 500 Hz. Clubhead velocity and launch angle were collected using a validated real-time launch monitor. A positive relationship was found between the trunk and lower trunk for axial rotation velocity (r(35) = .47, P < .01). Cross-correlation analysis revealed a strong coupling relationship for the crunch factor (R(2) = 0.98) between the trunk and lower trunk. Using generalised linear model analysis, it was evident that faster clubhead velocities and lower launch angles of the golf ball were related to reduced lateral bending of the lower trunk.

  15. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less

  16. Assuming Multiple Roles: The Time Crunch.

    ERIC Educational Resources Information Center

    McKitric, Eloise J.

    Women's increased labor force participation and continued responsibility for most household work and child care have resulted in "time crunch." This strain results from assuming multiple roles within a fixed time period. The existence of an egalitarian family has been assumed by family researchers and writers but has never been verified. Time…

  17. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  18. Assessing parents' receptiveness to a vegetable-focussed in-school nutrition intervention.

    PubMed

    Jongenelis, Michelle I; Pettigrew, Simone; Pratt, Iain S; Wright, Shannon; Myers, Gael

    2017-10-01

    Crunch&Sip is an Australian school-based initiative designed to increase the consumption of fruit, vegetables, and water among primary school children. To address the significant deficiencies in children's vegetable intake, the present study aimed to examine the responsiveness of parents (the main providers of food for Crunch&Sip) to a modified version of the program that focuses primarily on vegetable consumption. A total of 329 Western Australian parents completed an online questionnaire examining their support for a vegetable focus for Crunch&Sip and any perceived barriers, motivators, and facilitators. Most (80%) parents were supportive of a shift to a vegetable focus for Crunch&Sip. Belief in the effectiveness of Crunch&Sip at improving children's attitudes towards vegetables and increasing children's vegetable consumption was found to be significantly associated with levels of support. The most commonly nominated motivator was to improve their children's eating habits and the main facilitator was the perceived ability of teachers and peers to influence children's food consumption behaviours. Identified potential barriers included the difficulties associated with providing a variety of vegetables, maintaining freshness, and the preparation time required. The primary suggested strategy to overcome these barriers was for schools to conduct education sessions to provide information about vegetable provision options. The results suggest that parents can be supportive of school-based nutrition programs that specifically encourage the consumption of vegetables but they may require guidance to reduce the identified barriers related to vegetable provision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Anisotropic, nonsingular early universe model leading to a realistic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.

    2009-02-15

    We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent ofmore » the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.« less

  20. Do sewn up singularities falsify the Palatini cosmology?

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej; Wojnar, Aneta

    2016-10-01

    We investigate further (cf. Borowiec et al. JCAP 1601(01):040, 2016) the Starobinsky cosmological model R+γ R^2 in the Palatini formalism with a Chaplygin gas and baryonic matter as a source in the context of singularities. The dynamics reduces to the 2D sewn dynamical system of a Newtonian type (a piece-wise-smooth dynamical system). We demonstrate that the presence of a sewn up freeze singularity (glued freeze type singularities) for the positive γ is, in this case, a generic feature of the early evolution of the universe. It is demonstrated that γ equal zero is a bifurcation parameter and the dynamics qualitatively changes as the γ sign is changing. On the other side for the case of negative γ instead of the big bang the sudden bounce singularity of a finite scale factor does appear and there is a generic class of bouncing solutions. While the Ω _{γ } > 0 is favored by data only very small values of Ω _{γ } parameter are allowed if we require agreement with the Λ CDM model. From the statistical analysis of astronomical observations, we deduce that the case of only very small negative values of Ω _γ cannot be rejected. Therefore, observation data favor the universe without the ghost states (f'(hat{R})>0) and tachyons (f''(hat{R})>0).

  1. Shifting Centres: Pedagogical Relations in the Era of Big Data

    ERIC Educational Resources Information Center

    McWilliam, Erica

    2016-01-01

    This paper presents a cautious argument for re-thinking both the nature and the centrality of the one-to-one teacher/student relationship in contemporary pedagogy. A case is made that learning in and for our times requires us to broaden our understanding of pedagogical relations beyond the singularity of the teacher/student binary and to promote…

  2. Magnetic Bianchi type II string cosmological model in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai

    2014-07-01

    The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

  3. Conditions for defocusing around more general metrics in infinite derivative gravity

    NASA Astrophysics Data System (ADS)

    Edholm, James

    2018-04-01

    Infinite derivative gravity is able to resolve the big bang curvature singularity present in general relativity by using a simplifying ansatz. We show that it can also avoid the Hawking-Penrose singularity, by allowing defocusing of null rays through the Raychaudhuri equation. This occurs not only in the minimal case where we ignore the matter contribution but also in the case where matter plays a key role. We investigate the conditions for defocusing for the general case where this ansatz applies and also for more specific metrics, including a general Friedmann-Robertson-Walker metric and three specific choices of the scale factor which produce a bouncing Friedmann-Robertson-Walker universe.

  4. Inflationary cosmology with Chaplygin gas in Palatini formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowiec, Andrzej; Wojnar, Aneta; Stachowski, Aleksander

    2016-01-01

    We present a simple generalisation of the ΛCDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified gravity with quadratic Starobinsky term and generalized Chaplygin gas as a matter source providing, besides a current accelerated expansion, the epoch of endogenous inflation driven by type III freeze singularity. It follows from our statistical analysis that astronomical data favors negative value of the parameter coupling quadratic term into Einstein-Hilbert Lagrangian and as a consequence the bounce instead of initialmore » Big-Bang singularity is preferred.« less

  5. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.

  6. Nonsingular, big-bounce cosmology from spinor-torsion coupling

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem

    2012-05-01

    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.

  7. Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    A background-independent quantization of the Universe near its Big Bang singularity is considered using a drastically simplified toy model. Several conceptual issues are addressed. (1) The observable spatial-geometry characteristics of our empty-space expanding Universe is sampled by the time-dependent operator $Q=Q(t)$ of the distance between two space-attached observers (``Alice and Bob''). (2) For any pre-selected guess of the simple, non-covariant time-dependent observable $Q(t)$ one of the Kato's exceptional points (viz., $t=\\tau_{(EP)}$) is postulated {\\em real-valued}. This enables us to treat it as the time of Big Bang. (3) During our ``Eon'' (i.e., at all $t>\\tau_{(EP)}$) the observability status of operator $Q(t)$ is mathematically guaranteed by its self-adjoint nature with respect to an {\\em ad hoc} Hilbert-space metric $\\Theta(t) \

  8. Pre-Big Bang Bubbles from the Gravitational Instability of Generic String Vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1998-06-01

    We formulate the basic postulate of pre-big bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the big bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-gib bang scenario.

  9. Inflation and late-time acceleration from a double-well potential with cosmological constant

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Elizalde, Emilio

    2016-06-01

    A model of a universe without big bang singularity is presented, which displays an early inflationary period ending just before a phase transition to a kination epoch. The model produces enough heavy particles so as to reheat the universe at temperatures in the MeV regime. After the reheating, it smoothly matches the standard Λ CDM scenario.

  10. Quantum propagation across cosmological singularities

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  11. Advocates of College-Savings Plans Hope to Cash In on Credit Crunch

    ERIC Educational Resources Information Center

    Kelderman, Eric

    2008-01-01

    This article reports that advocates of state-sponsored college-savings plans seek to use the current credit crunch as a wake-up call for parents and policy makers to shift away from the growing use of loans by families to cover college costs. In the long run, savings are the best way for most families to avoid the burdensome costs of private…

  12. Ricci time in the Lemaître-Tolman model and the block universe

    NASA Astrophysics Data System (ADS)

    Elmahalawy, Yasser; Hellaby, Charles; Ellis, George F. R.

    2015-10-01

    It is common to think of our universe according to the "block universe" concept, which says that spacetime consists of many "stacked" three-surfaces, labelled by some kind of proper time, . Standard ideas do not distinguish past and future, but Ellis' "evolving block universe" tries to make a fundamental distinction. One proposal for this proper time is the proper time measured along the timelike Ricci eigenlines, starting from the big bang. This work investigates the shape of the "Ricci time" surfaces relative to the the null surfaces. We use the Lemaître-Tolman metric as our inhomogeneous spacetime model, and we find the necessary and sufficient conditions for these constant surfaces, , to be spacelike or timelike. Furthermore, we look at the effect of strong gravity domains by determining the location of timelike S regions relative to apparent horizons. We find that constant Ricci time surfaces are always spacelike near the big bang, while at late times (near the crunch or the extreme far future), they are only timelike under special circumstances. At intermediate times, timelike S regions are common unless the variation of the bang time is restricted. The regions where these surfaces become timelike are often adjacent to apparent horizons, but always outside them, and in particular timelike S regions do not occur inside the horizons of black-hole-like models.

  13. Aeroelastic Tailoring Study of N+2 Low Boom Supersonic Commerical Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2015-01-01

    The Lockheed Martin N+2 Low - boom Supersonic Commercial Transport (LSCT) aircraft was optimized in this study through the use of a multidisciplinary design optimization tool developed at the National Aeronautics and S pace Administration Armstrong Flight Research Center. A total of 111 design variables we re used in the first optimization run. Total structural weight was the objective function in this optimization run. Design requirements for strength, buckling, and flutter we re selected as constraint functions during the first optimization run. The MSC Nastran code was used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses we re based on ZAERO code, and landing and ground control loads were computed using an in - house code. The w eight penalty to satisfy all the design requirement s during the first optimization run was 31,367 lb, a 9.4% increase from the baseline configuration. The second optimization run was prepared and based on the big-bang big-crunch algorithm. Six composite ply angles for the second and fourth composite layers were selected as discrete design variables for the second optimization run. Composite ply angle changes can't improve the weight configuration of the N+2 LSCT aircraft. However, this second optimization run can create more tolerance for the active and near active strength constraint values for future weight optimization runs.

  14. Hydrogen-like spectrum of spontaneously created brane universes with de-Sitter ground state

    NASA Astrophysics Data System (ADS)

    Davidson, Aharon

    2018-05-01

    Unification of Randall-Sundrum and Regge-Teitelboim brane cosmologies gives birth to a serendipitous Higgs-deSitter interplay. A localized Dvali-Gabadadze-Porrati scalar field, governed by a particular (analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe universes dominated by a residual dark energy combined with damped matter oscillations, an infinite tower of excited levels undergo a Big Crunch.

  15. A Poll about Children and Weight: Crunch Time during the American Work and School Week--3 P.M. to Bed. Summary

    ERIC Educational Resources Information Center

    Robert Wood Johnson Foundation, 2013

    2013-01-01

    Childhood obesity is a major public health challenge today, with complex roots interwoven into nearly every facet of American life. This poll addresses one narrow slice of this web: the challenges that families face during the "crunch time" of the work and school week, between 3 p.m. and the time children go to bed. Compared to the school day,…

  16. A Poll about Children and Weight: Crunch Time during the American Work and School Week--3 P.M. to Bed

    ERIC Educational Resources Information Center

    Robert Wood Johnson Foundation, 2013

    2013-01-01

    Childhood obesity is a major public health challenge today, with complex roots interwoven into nearly every facet of American life. This poll addresses one narrow slice of this web: the challenges that families face during the "crunch time" of the work and school week, between 3 pm and the time children go to bed. Compared to the school day, this…

  17. Classical and quantum cosmology of the little rip abrupt event

    NASA Astrophysics Data System (ADS)

    Albarran, Imanol; Bouhmadi-López, Mariam; Kiefer, Claus; Marto, João; Vargas Moniz, Paulo

    2016-09-01

    We analyze from a classical and quantum point of view the behavior of the Universe close to a little rip, which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip implies the destruction of all bounded structures in the Universe and is thus an event where quantum effects could be important. We present here a new phantom scalar field model for the little rip. The quantum analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little sibling of the big rip.

  18. The Immediate Effects on Inter-rectus Distance of Abdominal Crunch and Drawing-in Exercises During Pregnancy and the Postpartum Period.

    PubMed

    Mota, Patrícia; Pascoal, Augusto Gil; Carita, Ana Isabel; Bø, Kari

    2015-10-01

    Longitudinal descriptive exploratory study. To evaluate in primigravid women the immediate effect of drawing-in and abdominal crunch exercises on inter-rectus distance (IRD), measured at 4 time points during pregnancy and in the postpartum period. There is scant knowledge of the effect of different abdominal exercises on IRD in pregnant and postpartum women. The study included 84 primiparous participants. Ultrasound images were recorded with a 12-MHz linear transducer, at rest and during abdominal drawing-in and abdominal crunch exercises, at 3 locations on the linea alba. The IRD was measured at 4 time points: gestational weeks 35 to 41, 6 to 8 weeks postpartum, 12 to 14 weeks postpartum, and 24 to 26 weeks postpartum. Separate 2-way, repeated-measures analyses of variance (ANOVAs) were performed for each exercise (drawing-in and abdominal crunch) and each measurement location to evaluate the immediate effects of exercises on IRD at each of the 4 time points. Similarly, 2-way ANOVAs were used to contrast the effects of the 2 exercises on IRD. Performing the drawing-in exercise caused a significant change in width of the IRD at 2 cm below the umbilicus, narrowing the IRD by a mean of 3.8 mm (95% confidence interval [CI]: 1.2, 6.4 mm) at gestational weeks 35 to 41, and widening the IRD by 3.0 mm (95% CI: 1.4, 4.6 mm) at 6 to 8 weeks postpartum, by 1.8 mm (95% CI: 0.6, 3.1 mm) at 12 to 14 weeks postpartum, and by 2.5 mm (95% CI: 1.4, 3.6 mm) at 24 to 26 weeks postpartum (P<.01). Performing the abdominal crunch exercise led to a significant narrowing of the IRD (P<.01) in all 3 locations at all 4 time points, with the exception of 2 cm below the umbilicus at postpartum weeks 24 to 26. The average amount of narrowing varied from 1.6 to 20.9 mm, based on time and location. Overall, there was a contrasting effect of the 2 exercises, with the abdominal crunch exercise consistently producing a significant narrowing of the IRD. In contrast, the drawing-in exercise generally led to a small widening of the IRD.

  19. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    PubMed

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.

  20. Electromyographic analysis of traditional and nontraditional abdominal exercises: implications for rehabilitation and training.

    PubMed

    Escamilla, Rafael F; Babb, Eric; DeWitt, Ryan; Jew, Patrick; Kelleher, Patrick; Burnham, Toni; Busch, Juliann; D'Anna, Kristen; Mowbray, Ryan; Imamura, Rodney T

    2006-05-01

    Performing nontraditional abdominal exercises with devices such as abdominal straps, the Power Wheel, and the Ab Revolutionizer has been suggested as a way to activate abdominal and extraneous (nonabdominal) musculature as effectively as more traditional abdominal exercises, such as the crunch and bent-knee sit-up. The purpose of this study was to test the effectiveness of traditional and nontraditional abdominal exercises in activating abdominal and extraneous musculature. Twenty-one men and women who were healthy and between 23 and 43 years of age were recruited for this study. Surface electromyography (EMG) was used to assess muscle activity from the upper and lower rectus abdominis, external and internal oblique, rectus femoris, latissimus dorsi, and lumbar paraspinal muscles while each exercise was performed. The EMG data were normalized to maximum voluntary muscle contractions. Differences in muscle activity were assessed by a 1-way, repeated-measures analysis of variance. Upper and lower rectus abdominis, internal oblique, and latissimus dorsi muscle EMG activity were highest for the Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees. External oblique muscle EMG activity was highest for the Power Wheel (pike, knee-up, and roll-out) and hanging knee-up with straps. Rectus femoris muscle EMG activity was highest for the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up. Lumbar paraspinal muscle EMG activity was low and similar among exercises. The Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees not only were the most effective exercises in activating abdominal musculature but also were the most effective in activating extraneous musculature. The relatively high rectus femoris muscle activity obtained with the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up may be problematic for some people with low back problems.

  1. Towards realistic singularity-free cosmological models

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    1996-02-01

    We present an explicit general family of inhomogeneous cosmological models. The family contains an arbitrary function of comoving time (interpretable as the cosmological scale factor) and four arbitrary parameters. In general, it is a solution of Einstein's field equations for a fluid with anisotropic pressures, but it also includes a big subfamily of perfect-fluid metrics. The most interesting feature of this family is that it contains both all the diagonal separable singularity-free cosmological models recently found and all the Friedmann-Lemaître-Robertson-Walker standard models. This property allows one to speculate on the construction of some interesting models in which the Universe has been FLRW-like from some time on (for instance, since the nucleeosynthesis time), but it also went through primordial singularity-free inhomogeneous epochs (in fact, there are quite natural possibilities in which these primordial epochs are inflationary) without ever violating energy conditions or other physical properties. Nevertheless, the physical processes leading to the isotropization and homogenization of the Universe are not fixed nor indicated by the models themselves. The interesting properties of the general model are studied in some detail. ¢ 1996 The American Physical Society.

  2. Palatini actions and quantum gravity phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es

    2011-10-01

    We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropicmore » cosmologies of this model also avoid the big bang singularity by means of a big bounce.« less

  3. Local properties and global structure of McVittie spacetimes with non-flat Friedmann-Lemaître-Robertson-Walker backgrounds

    NASA Astrophysics Data System (ADS)

    Nolan, Brien C.

    2017-11-01

    McVittie spacetimes embed the vacuum Schwarzschild(-(anti) de Sitter) spacetime in an isotropic, Friedmann-Lemaître-Robertson-Walker (FLRW) background universe. The global structure of such spacetimes is well understood when the FLRW background is spatially flat. In this paper, we study the global structure of McVittie spacetimes with spatially non-flat FLRW backgrounds. We derive some basic results on the metric, curvature and matter content of these spacetimes and provide a representation of the metric that makes the study of their global properties possible. In the closed case, we find that at each instant of time, the spacetime is confined to a region bounded by a (positive) minimum and a maximum area radius, and is bounded either to the future or to the past by a scalar curvature singularity. This allowed region only exists when the background scale factor is above a certain minimum, and so is bounded away from the Big Bang singularity, as in the flat case. In the open case, the situation is different, and we focus mainly on this case. In K<0 McVittie spacetimes, radial null geodesics originate in finite affine time in the past at a boundary formed by the union of the Big Bang singularity of the FLRW background and a hypersurface (of varying causal character) which is non-singular in the sense of scalar curvature. Furthermore, in the case of eternally expanding open universes with Λ≥slant0 , we prove that black holes are ubiquitous: ingoing radial null geodesics extend in finite affine time to a hypersurface that forms the boundary of the region from which photons can escape to future null infinity. We determine the structure of the conformal diagrams that can arise in the open case. Finally, we revisit the black hole interpretation of McVittie spacetimes in the spatially flat case, and show that this interpretation holds also in the case of a vanishing cosmological constant, contrary to a previous claim of ours.

  4. An Industrial Perspective of CAM/ROB Fuzzy Integrated Postprocessing Implementation for Redundant Robotic Workcells Applicability for Big Volume Prototyping

    NASA Astrophysics Data System (ADS)

    Andrés, J.; Gracia, L.; Tornero, J.; García, J. A.; González, F.

    2009-11-01

    The implementation of a postprocessor for the NX™ platform (Siemens Corp.) is described in this paper. It is focused on a milling redundant robotic milling workcell consisting of one KUKA KR 15/2 manipulator (6 rotary joints, KRC2 controller) mounted on a linear axis and synchronized with a rotary table (i.e., two additional joints). For carrying out a milling task, a choice among a set of possible configurations is required, taking into account the ability to avoid singular configurations by using both additional joints. Usually, experience and knowledge of the workman allow an efficient control in these cases, but being it a tedious job. Similarly to this expert knowledge, a stand-alone fuzzy controller has been programmed with Matlab's Fuzzy Logic Toolbox (The MathWorks, Inc.). Two C++ programs complement the translation of the toolpath tracking (expressed in the Cartesian space) from the NX™-CAM module into KRL (KUKA Robot Language). In order to avoid singularities or joint limits, the location of the robot and the workpiece during the execution of the task is fit after an inverse kinematics position analysis and a fuzzy inference (i.e., fuzzy criterion in the Joint Space). Additionally, the applicability of robot arms for the manufacture of big volume prototypes with this technique is proven by means of one case studied. It consists of a big orographic model to simulate floodways, return flows and retention storage of a reservoir in the Mijares river (Puebla de Arenoso, Spain). This article deals with the problem for a constant tool orientation milling process and sets the technological basis for future research at five axis milling operations.

  5. A Fast SVD-Hidden-nodes based Extreme Learning Machine for Large-Scale Data Analytics.

    PubMed

    Deng, Wan-Yu; Bai, Zuo; Huang, Guang-Bin; Zheng, Qing-Hua

    2016-05-01

    Big dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers. In this paper, we propose an Extreme Learning Machine (ELM) approach for large-scale data analytic. In contrast to existing approaches, we embed hidden nodes that are designed using singular value decomposition (SVD) into the classical ELM. These SVD nodes in the hidden layer are shown to capture the underlying characteristics of the Big dimensional data well, exhibiting excellent generalization performances. The drawback of using SVD on the entire dataset, however, is the high computational complexity involved. To address this, a fast divide and conquer approximation scheme is introduced to maintain computational tractability on high volume data. The resultant algorithm proposed is labeled here as Fast Singular Value Decomposition-Hidden-nodes based Extreme Learning Machine or FSVD-H-ELM in short. In FSVD-H-ELM, instead of identifying the SVD hidden nodes directly from the entire dataset, SVD hidden nodes are derived from multiple random subsets of data sampled from the original dataset. Comprehensive experiments and comparisons are conducted to assess the FSVD-H-ELM against other state-of-the-art algorithms. The results obtained demonstrated the superior generalization performance and efficiency of the FSVD-H-ELM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimal Golomb Ruler Sequences Generation for Optical WDM Systems: A Novel Parallel Hybrid Multi-objective Bat Algorithm

    NASA Astrophysics Data System (ADS)

    Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena

    2017-02-01

    In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.

  7. New trends in cosmology

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1978-01-01

    A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.

  8. The most important "factor" in producing clubhead speed in golf.

    PubMed

    Joyce, Christopher

    2017-10-01

    Substantial experiential research into x-factor, and to a lesser extent crunch-factor has been undertaken with the aim of increasing clubhead speed. However, a direct comparison of the golf swing kinematics associated with each 'factor' has not, and possible differences when using a driver compared to an iron. Fifteen low handicap male golfers who displayed a modern swing had their golf swing kinematic data measured when hitting their own driver and five-iron, using a 10-camera motion analysis system operating at 250Hz. Clubhead speed was collected using a validated launch monitor. No between-club differences in x-factor and crunch-factor existed. Correlation analyses revealed within-club segment (trunk and lower trunk) interaction was different for the driver, compared to the five-iron, and that a greater number of kinematic variables associated with x-factor, compared to crunch-factor were shown to be correlated with faster clubhead speeds. This was further explained in the five-iron regression model, where a significant amount of variance in clubhead speed was associated with increased lower trunk x-factor stretch, and reduced trunk lateral bending. Given that greens in regulation was shown to be the strongest correlated variable with PGA Tour earnings (1990-2004), the findings suggests a link to player performance for approach shots. These findings support other empiric research into the importance of x-factor as well as anecdotal evidence on how crunch-factor can negatively affect clubhead speed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A rapid local singularity analysis algorithm with applications

    NASA Astrophysics Data System (ADS)

    Chen, Zhijun; Cheng, Qiuming; Agterberg, Frits

    2015-04-01

    The local singularity model developed by Cheng is fast gaining popularity in characterizing mineralization and detecting anomalies of geochemical, geophysical and remote sensing data. However in one of the conventional algorithms involving the moving average values with different scales is time-consuming especially while analyzing a large dataset. Summed area table (SAT), also called as integral image, is a fast algorithm used within the Viola-Jones object detection framework in computer vision area. Historically, the principle of SAT is well-known in the study of multi-dimensional probability distribution functions, namely in computing 2D (or ND) probabilities (area under the probability distribution) from the respective cumulative distribution functions. We introduce SAT and it's variation Rotated Summed Area Table in the isotropic, anisotropic or directional local singularity mapping in this study. Once computed using SAT, any one of the rectangular sum can be computed at any scale or location in constant time. The area for any rectangular region in the image can be computed by using only 4 array accesses in constant time independently of the size of the region; effectively reducing the time complexity from O(n) to O(1). New programs using Python, Julia, matlab and C++ are implemented respectively to satisfy different applications, especially to the big data analysis. Several large geochemical and remote sensing datasets are tested. A wide variety of scale changes (linear spacing or log spacing) for non-iterative or iterative approach are adopted to calculate the singularity index values and compare the results. The results indicate that the local singularity analysis with SAT is more robust and superior to traditional approach in identifying anomalies.

  10. Bridging the knowledge gap between Big Data producers and consumers

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Worley, S. J.

    2015-12-01

    Most weather data is produced, disseminated and consumed by expert users in large national operational centers or laboratories. Data 'ages' off their systems in days or weeks. While archives exist, would-be users often lack the credentials necessary to obtain an account to access or search its contents. Moreover, operational centers and many national archives lack the mandate and the resources to serve non-expert users. The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, was created over 40 years ago to collect data for NCAR's internal Big Science projects such as the NCEP/NCAR Reanalysis Project. Over time, the data holdings have grown to 1.8+ Petabytes spanning 600+ datasets. The user base has also grown; in 2014, we served 1.1 Petabytes of data to over 11,000 unique users. The RDA works with national centers, such as NCEP, ECMWF and JMA to make their data available to worldwide audiences and mutually support data access at the production source. We have become not just an open-access data center, but also a data education center. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages prepared by the DS, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. The RDA has stepped in to fill the gap between data producers and users.

  11. Brane decay and an initial spacelike singularity.

    PubMed

    Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean

    2006-01-27

    We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.

  12. Big Science, Team Science, and Open Science for Neuroscience.

    PubMed

    Koch, Christof; Jones, Allan

    2016-11-02

    The Allen Institute for Brain Science is a non-profit private institution dedicated to basic brain science with an internal organization more commonly found in large physics projects-large teams generating complete, accurate and permanent resources for the mouse and human brain. It can also be viewed as an experiment in the sociology of neuroscience. We here describe some of the singular differences to more academic, PI-focused institutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Industry Use Cases and the Underlying Content Analytics Technology used in Big Data and Predictive Analytics (Briefing Charts)

    DTIC Science & Technology

    2015-05-01

    high-demand degrees and skills, essential concepts and methodologies, and required programming languages and product knowledge Benefits • Gained...According to ·finance report I’BM Corp. ’s EPS increased by according corporation Increase 10.1% preposition noun( singular ) noun( sing ,ular...used for other languages too (e.g. French, Spanish, etc.) Need to identify phrasal expressions by scanning minimum number of tokens I Need to

  14. (Quasi)-convexification of Barta's (multi-extrema) bounding theorem: Inf_x\\big(\\ssty\\frac{H\\Phi(x)}{\\Phi(x)} \\big) \\le E_gr \\le Sup_x \\big(\\ssty\\frac{H\\Phi(x)}{\\Phi(x)} \\big)

    NASA Astrophysics Data System (ADS)

    Handy, C. R.

    2006-03-01

    There has been renewed interest in the exploitation of Barta's configuration space theorem (BCST) (Barta 1937 C. R. Acad. Sci. Paris 204 472) which bounds the ground-state energy, Inf_x\\big({{H\\Phi(x)}\\over {\\Phi(x)}} \\big ) \\leq E_gr \\leq Sup_x \\big({{H\\Phi(x)}\\over {\\Phi(x)}}\\big) , by using any Φ lying within the space of positive, bounded, and sufficiently smooth functions, {\\cal C} . Mouchet's (Mouchet 2005 J. Phys. A: Math. Gen. 38 1039) BCST analysis is based on gradient optimization (GO). However, it overlooks significant difficulties: (i) appearance of multi-extrema; (ii) inefficiency of GO for stiff (singular perturbation/strong coupling) problems; (iii) the nonexistence of a systematic procedure for arbitrarily improving the bounds within {\\cal C} . These deficiencies can be corrected by transforming BCST into a moments' representation equivalent, and exploiting a generalization of the eigenvalue moment method (EMM), within the context of the well-known generalized eigenvalue problem (GEP), as developed here. EMM is an alternative eigenenergy bounding, variational procedure, overlooked by Mouchet, which also exploits the positivity of the desired physical solution. Furthermore, it is applicable to Hermitian and non-Hermitian systems with complex-number quantization parameters (Handy and Bessis 1985 Phys. Rev. Lett. 55 931, Handy et al 1988 Phys. Rev. Lett. 60 253, Handy 2001 J. Phys. A: Math. Gen. 34 5065, Handy et al 2002 J. Phys. A: Math. Gen. 35 6359). Our analysis exploits various quasi-convexity/concavity theorems common to the GEP representation. We outline the general theory, and present some illustrative examples.

  15. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-10-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height ( GeV)4) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  16. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling effortsmore » that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct graduate students (OSU and UW) as well as DOE staff from the NETL lab in Albany on the use of Crunch Flow for geochemical applications.« less

  17. Physical interpretation of antigravity

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; James, Albin

    2016-02-01

    Geodesic incompleteness is a problem in both general relativity and string theory. The Weyl-invariant Standard Model coupled to general relativity (SM +GR ), and a similar treatment of string theory, are improved theories that are geodesically complete. A notable prediction of this approach is that there must be antigravity regions of spacetime connected to gravity regions through gravitational singularities such as those that occur in black holes and cosmological bang/crunch. Antigravity regions introduce apparent problems of ghosts that raise several questions of physical interpretation. It was shown that unitarity is not violated, but there may be an instability associated with negative kinetic energies in the antigravity regions. In this paper we show that the apparent problems can be resolved with the interpretation of the theory from the perspective of observers strictly in the gravity region. Such observers cannot experience the negative kinetic energy in antigravity directly, but can only detect in and out signals that interact with the antigravity region. This is no different from a spacetime black box for which the information about its interior is encoded in scattering amplitudes for in/out states at its exterior. Through examples we show that negative kinetic energy in antigravity presents no problems of principles but is an interesting topic for physical investigations of fundamental significance.

  18. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems Laboratory (CISL) YouTube channel.

  19. The Big Bang, Superstring Theory and the origin of life on the Earth.

    PubMed

    Trevors, J T

    2006-03-01

    This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.

  20. The role of energy conditions in f(R) cosmology

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; Nojiri, S.; Odintsov, S. D.

    2018-06-01

    Energy conditions can play an important role in defining the cosmological evolution. Specifically acceleration/deceleration of cosmic fluid, as well as the emergence of Big Rip singularities, can be related to the constraints imposed by the energy conditions. Here we discuss this issue for f (R) gravity considering also conformal transformations. Cosmological solutions and equations of state can be classified according to energy conditions. The qualitative change of some energy conditions when transformation from the Jordan frame to the Einstein frame done is also observed.

  1. Initial conditions for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  2. Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe

    NASA Astrophysics Data System (ADS)

    Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore

    2016-07-01

    We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.

  3. [Algorithms, machine intelligence, big data : general considerations].

    PubMed

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.

  4. Follow on Researches for X-56A Aircraft at NASA Dryden Flight Research Center (Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2012-01-01

    A lot of composite materials are used for the modern aircraft to reduce its weight. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of X-56A aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes is based on the flutter analysis of X-56A aircraft. It should be noted that for all three Mach number cases rigid body modes and mode numbers seven and nine are participated 89.1 92.4 % of the first flutter mode. Modal participation of the rigid body mode and mode numbers seven and nine for the second flutter mode are 94.6 96.4%. Rigid body mode and the first two anti-symmetric modes, eighth and tenth modes, are participated 93.2 94.6% of the third flutter mode. Therefore, rigid body modes and the first four flexible modes of X-56A aircraft are the primary modes during the model tuning procedure. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is to obtain in this study. The structural dynamics finite element model of X-56A aircraft is improved using the parallelized big-bang big-crunch algorithm together with a hybrid optimization technique.

  5. Antipodal correlation on the meron wormhole and a bang-crunch universe

    NASA Astrophysics Data System (ADS)

    Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga

    2018-06-01

    We present a covariant Euclidean wormhole solution to Einstein Yang-Mills system and study scalar perturbations analytically. The fluctuation operator has a positive definite spectrum. We compute the Euclidean Green's function, which displays maximal antipodal correlation on the smallest three sphere at the center of the throat. Upon analytic continuation, it corresponds to the Feynman propagator on a compact bang-crunch universe. We present the connection matrix that relates past and future modes. We thoroughly discuss the physical implications of the antipodal map in both the Euclidean and Lorentzian geometries and give arguments on how to assign a physical probability to such solutions.

  6. On the formalism of dark energy accretion onto black- and worm-holes

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado

    2008-01-01

    In this work a general formalism for the accretion of dark energy onto astronomical objects, black holes and wormholes, is considered. It is shown that in models with four dimensions or more, any singularity with a divergence in the Hubble parameter may be avoided by a big trip, if it is assumed that there is no coupling between the bulk and this accreting object. If this is not the case in more than four dimensions, the evolution of the cosmological object depends on the particular model.

  7. Epidemiology’s 350th Anniversary: 1662–2012

    PubMed Central

    Morabia, Alfredo

    2013-01-01

    Between 1600 and 1700, sudden, profound, and multifarious changes occurred in philosophy, science, medicine, politics, and society. In an extremely convulsed century, these profound and convergent upheavals produced the equivalent of a cultural big bang, which opened a new domain of knowledge acquisition based on population thinking and group comparisons. In 1662, when John Graunt applied—for the first time—the new approach to the analysis of causes of death in London, he gave epidemiology a singular date of birth. This was exactly 350 years ago. PMID:23377087

  8. C-field cosmological models: revisited

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar; Tawfiq Ali, Ahmad; Ray, Saibal; Rahaman, Farook; Hossain Sardar, Iftikar

    2016-12-01

    We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing C-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially showing that some of our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters. We note that the model in a unique way represents both the features of the accelerating as well as decelerating universe depending on the parameters and thus seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other agent or theory in allowing cyclicity.

  9. Can a man-made universe be achieved by quantum tunneling without an initial singularity?

    NASA Technical Reports Server (NTRS)

    Guth, Alan H.; Haller, K. (Editor); Caldi, D. B. (Editor); Islam, M. M. (Editor); Mallett, R. L. (Editor); Mannheim, P. D. (Editor); Swanson, M. S. (Editor)

    1991-01-01

    Essentially all modern particle theories suggest the possible existence of a false vacuum state; a metastable state with an energy density that cannot be lowered except by means of a very slow phase transition. Inflationary cosmology makes use of such a state to drive the expansion of the big bang, allowing the entire observed universe to evolve from a very small initial mass. A sphere of false vacuum in the present universe, if larger than a certain critical mass, could inflate to form a new universe which would rapidly detach from its parent. A false vacuum bubble of this size, however, cannot be produced classically unless an initial singularity is present from the outset. The possibility is explored that a bubble of subcritical size, which classically would evolve to a maximum size and collapse, might instead tunnel through a barrier to produce a new universe. The tunneling rate using semiclassical quantum gravity is estimated, and some interesting ambiguities in the formulas are discovered.

  10. Winding solutions for the two-particle system in ? gravity

    NASA Astrophysics Data System (ADS)

    Welling, M.

    1998-03-01

    We use a computer to follow the evolution of two gravitating particles in a (2 + 1)-dimensional closed universe. In a closed universe there is enough energy to produce a Gott-pair, i.e. a pair of particles with tachyonic centre of mass, from regular initial data. We study such a pair and find that they can wind around each other with ever increasing momentum. As was shown by 't Hooft, the universe must crunch before any closed timelike curve can be traversed. We study the two-particle system and quantize it, long before this crunch happens, in the high-momentum limit. We find that both the relevant configuration variable and its conjugate momentum become discretized.

  11. Austerity and Geometric Structure of Field Theories

    NASA Astrophysics Data System (ADS)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  12. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, Aakash A.

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  13. Excitation of a nonlinear plasma ion wake by intense energy sources with applications to the crunch-in regime

    DOE PAGES

    Sahai, Aakash A.

    2017-08-23

    We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less

  14. Geometric scalar theory of gravity beyond spherical symmetry

    NASA Astrophysics Data System (ADS)

    Moschella, U.; Novello, M.

    2017-04-01

    We construct several exact solutions for a recently proposed geometric scalar theory of gravity. We focus on a class of axisymmetric geometries and a big-bang-like geometry and discuss their Lorentzian character. The axisymmetric solutions are parametrized by an integer angular momentum l . The l =0 (spherical) case gives rise to the Schwarzschild geometry. The other solutions have naked singular surfaces. While not a priori obvious, all the solutions that we present here are globally Lorentzian. The Lorentzian signature appears to be a robust property of the disformal geometries solving the vacuum geometric scalar theory of gravity equations.

  15. Quantum Gravity and Cosmology: an intimate interplay

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  16. Approximations of quantum-graph vertex couplings by singularly scaled potentials

    NASA Astrophysics Data System (ADS)

    Exner, Pavel; Manko, Stepan S.

    2013-08-01

    We investigate the limit properties of a family of Schrödinger operators of the form H_\\varepsilon = -\\frac{{d}^2}{{d}x^2}+ \\frac{\\lambda (\\varepsilon )}{\\varepsilon ^2}Q \\big (\\frac{x}{\\varepsilon }\\big ) acting on n-edge star graphs with the Kirchhoff interface conditions at the vertex. Here the real-valued potential Q has compact support and λ( · ) is analytic around ε = 0 with λ(0) = 1. We show that if the operator has a zero-energy resonance of order m for ε = 1 and λ(1) = 1, in the limit ε → 0 one obtains the Laplacian with a vertex coupling depending on 1+\\frac{1}{2} m(2n-m+1) parameters. We prove the norm-resolvent convergence as well as the convergence of the corresponding on-shell scattering matrices. The obtained vertex couplings are of scale-invariant type provided λ‧(0) = 0; otherwise the scattering matrix depends on energy and the scaled potential becomes asymptotically opaque in the low-energy limit.

  17. Potential in-class strategies to increase children's vegetable consumption.

    PubMed

    Sharp, Gemma; Pettigrew, Simone; Wright, Shannon; Pratt, Iain S; Blane, Sally; Biagioni, Nicole

    2017-06-01

    The Crunch&Sip programme is a school-based nutrition initiative designed to increase the fruit, vegetable and water intakes of primary-school children. In recognition of the notable deficits in children's vegetable consumption, the present study explored the receptivity of school staff to a realignment of the Crunch&Sip programme to feature a primary focus on vegetable consumption. This involved investigating school staff members' perceptions of relevant barriers, motivators and facilitators. A multi-method approach was adopted that involved four focus groups and a survey (administered in paper and online formats) containing a mixture of open- and closed-ended items. Western Australia. Staff from Western Australian schools participated in the focus groups (n 37) and survey (n 620). School staff were strongly supportive of modifying the Crunch&Sip programme to focus primarily on children's vegetable consumption and this was generally considered to be a feasible change to implement. Possible barriers identified included children's taste preferences and a perceived lack of parental support. Suggested strategies to overcome these barriers were education sessions for parents and children, teachers modelling vegetable consumption for their students and integrating vegetable-related topics into the school curriculum. School staff are likely to support the introduction of school-based nutrition programmes that specifically encourage the consumption of vegetables. Potential barriers may be overcome through strategies to engage parents and children.

  18. `The Wildest Speculation of All': Lemaître and the Primeval-Atom Universe

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître's daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître's genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.

  19. Library Facilities and the Money Crunch

    ERIC Educational Resources Information Center

    Gores, Harold B.; Weinstock, Ruth

    1971-01-01

    Academic libraries, enjoying their status as "the heart of the college," have been receiving fatter and fatter portions of institutional budgets. With the "new depression," they will now be hard hit. (Author)

  20. Schools Find Answers to the Energy Crunch.

    ERIC Educational Resources Information Center

    Wall, Roger

    1981-01-01

    Highlights two schools that have reduced their energy usage, one through such methods as weatherization and solar water collectors, and the other through switching from burning oil to burning wood pellets. (JM)

  1. Building non-commutative spacetimes at the Planck length for Friedmann flat cosmologies

    NASA Astrophysics Data System (ADS)

    Tomassini, Luca; Viaggiu, Stefano

    2014-09-01

    We propose physically motivated spacetime uncertainty relations (STUR) for flat Friedmann-Lemaître cosmologies. We show that the physical features of these STUR crucially depend on whether a particle horizon is present or not. In particular, when this is the case we deduce the existence of a maximal value for the Hubble rate (or equivalently for the matter density), thus providing an indication that quantum effects may rule out a pointlike big bang singularity. Finally, we construct a concrete realization of the corresponding quantum Friedmann spacetime in terms of operators on a Hilbert space. In loving memory of Francesco Saverio de Blasi, mathematician and friend.

  2. The Cosmologic continuum from physics to consciousness.

    PubMed

    Torday, John S; Miller, William B

    2018-04-13

    Reduction of developmental biology to self-referential cell-cell communication offers a portal for understanding fundamental mechanisms of physiology as derived from physics through quantum mechanics. It is argued that self-referential organization is implicit to the Big Bang and its further expression is a recoil reaction to that Singularity. When such a frame is considered, in combination with experimental evidence for the importance of epigenetic inheritance, the unicellular state can be reappraised as the primary object of selection. This framework provides a significant shift in understanding the relationship between physics and biology, providing novel insights to the nature and origin of consciousness. Copyright © 2018. Published by Elsevier Ltd.

  3. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  4. The Dual-Time Physics of the Universe

    NASA Astrophysics Data System (ADS)

    Suh, Paul

    2008-04-01

    Novel physics founded on a dual and commensurate space-time universe explicates the nature of dark matter and energy [see APS 2007 Spring Meeting]. Its governing principles also illuminate how the dark matter and energy become unobservable, why the dark energy still suffuses the universe while the observable energy had long faded into the cosmic microwave background, how the black hole singularity is circumvented, why the supernovae shone brighter eight billion years ago, what energy had powered the big-bang inflationary expansion, how the expansion of the universe began to accelerate about five billion years go, and other formidable cosmological puzzles. This paper is available on request to pksuh@msn.com.

  5. Phantom solution in a non-linear Israel-Stewart theory

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Cruz, Norman; Lepe, Samuel

    2017-06-01

    In this paper we present a phantom solution with a big rip singularity in a non-linear regime of the Israel-Stewart formalism. In this framework it is possible to extend this causal formalism in order to describe accelerated expansion, where assumption of near equilibrium is no longer valid. We assume a flat universe filled with a single viscous fluid ruled by a barotropic EoS, p = ωρ, which can represent a late time accelerated phase of the cosmic evolution. The solution allows to cross the phantom divide without evoking an exotic matter fluid and the effective EoS parameter is always lesser than -1 and constant in time.

  6. Crunching Numbers: What Cancer Screening Statistics Really Tell Us

    Cancer.gov

    Cancer screening studies have shown that more screening does not necessarily translate into fewer cancer deaths. This article explains how to interpret the statistics used to describe the results of screening studies.

  7. Introducing time-dependent molecular fields: a new derivation of the wave equations

    NASA Astrophysics Data System (ADS)

    Baer, Michael

    2018-02-01

    This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.

  8. Crossing the phantom divide with dissipative normal matter in the Israel-Stewart formalism

    NASA Astrophysics Data System (ADS)

    Cruz, Norman; Lepe, Samuel

    2017-04-01

    A phantom solution in the framework of the causal Israel-Stewart (IS) formalism is discussed. We assume a late time behavior of the cosmic evolution by considering only one dominant matter fluid with viscosity. In the model it is assumed a bulk viscosity of the form ξ =ξ0ρ 1 / 2, where ρ is the energy density of the fluid. We evaluate and discuss the behavior of the thermodynamical parameters associated to this solution, like the temperature, rate of entropy, entropy, relaxation time, effective pressure and effective EoS. A discussion about the assumption of near equilibrium of the formalism and the accelerated expansion of the solution is presented. The solution allows to cross the phantom divide without evoking an exotic matter fluid and the effective EoS parameter is always lesser than -1 and time independent. A future singularity (big rip) occurs, but different from the Type I (big rip) solution classified in S. Nojiri, S.D. Odintsov and S. Tsujikawa (2005) [2], if we consider other thermodynamics parameters like, for example, the effective pressure in the presence of viscosity or the relaxation time.

  9. Laughing: a demanding exercise for trunk muscles.

    PubMed

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  10. Inhomogeneous anisotropic cosmology

    DOE PAGES

    Kleban, Matthew; Senatore, Leonardo

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  11. Inhomogeneous anisotropic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleban, Matthew; Senatore, Leonardo

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  12. Inhomogeneous anisotropic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  13. Topological defects in alternative theories to cosmic inflation and string cosmology

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon H. S.

    The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.

  14. Energy Crunch is Stimulant for Coal Research

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Presents views of the first International Coal Research Conference, involving problems facing reconversion to a coal-based energy economy, organization and funding of coal research units, development of new techniques for mining and using coal; and transportation of coal products to users. (CC)

  15. Are Today's Economics Crunching Counselor Services?

    ERIC Educational Resources Information Center

    Shay, Mel J.

    1981-01-01

    In the current economy, available resources for staffing of counselor positions are unlikely to expand in real dollars. Educators and their clients who feel that counseling services should be expanded need to express their opinions in the public forum where allocations are decided. (Author/WD)

  16. Problems and Projects from Astronomy.

    ERIC Educational Resources Information Center

    Mills, H. R.

    1991-01-01

    Describes activities to stimulate school astronomy programs. Topics include: counting stars; the Earth's centripetal force; defining astronomical time; three types of sundials; perceptions of star brightness; sunspots and solar radiation; stellar spectroscopy; number-crunching and the molecular structure of the atmosphere; the Earth-Moon common…

  17. Multi-Axis Space Inertia Test Facility inside the Altitude Wind Tunnel

    NASA Image and Video Library

    1960-04-21

    The Multi-Axis Space Test Inertial Facility (MASTIF) in the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Although the Mercury astronaut training and mission planning were handled by the Space Task Group at Langley Research Center, NASA Lewis played an important role in the program, beginning with the Big Joe launch. Big Joe was a singular attempt early in the program to use a full-scale Atlas booster and simulate the reentry of a mockup Mercury capsule without actually placing it in orbit. A unique three-axis gimbal rig was built inside Lewis’ Altitude Wind Tunnel to test Big Joe’s attitude controls. The control system was vital since the capsule would burn up on reentry if it were not positioned correctly. The mission was intended to assess the performance of the Atlas booster, the reliability of the capsule’s attitude control system and beryllium heat shield, and the capsule recovery process. The September 9, 1959 launch was a success for the control system and heatshield. Only a problem with the Atlas booster kept the mission from being a perfect success. The MASTIF was modified in late 1959 to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control.

  18. Avoiding the Energy Crunch.

    ERIC Educational Resources Information Center

    Rowland, Dave

    2001-01-01

    Explores strategies for upgrading facility energy equipment that can cut energy costs and help substantially cover the costs of capital asset improvements. Discusses use of performance contracts to help schools leverage their operating budgets. Highlights how energy savings helped one school district finance $9.4 million in retrofits. (GR)

  19. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  20. Numerical relativity beyond astrophysics.

    PubMed

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  1. Numerical relativity beyond astrophysics

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  2. Evolution and dynamics of a matter creation model

    NASA Astrophysics Data System (ADS)

    Pan, S.; de Haro, J.; Paliathanasis, A.; Slagter, R. J.

    2016-08-01

    In a flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, we consider the expansion of the universe powered by the gravitationally induced `adiabatic' matter creation. To demonstrate how matter creation works well with the expanding universe, we have considered a general creation rate and analysed this rate in the framework of dynamical analysis. The dynamical analysis hints the presence of a non-singular universe (without the big bang singularity) with two successive accelerated phases, one at the very early phase of the universe (I.e. inflation), and the other one describes the current accelerating universe, where this early, late accelerated phases are associated with an unstable fixed point (I.e. repeller) and a stable fixed point (attractor), respectively. We have described this phenomena by analytic solutions of the Hubble function and the scale factor of the FLRW universe. Using Jacobi last multiplier method, we have found a Lagrangian for this matter creation rate describing this scenario of the universe. To match with our early physics results, we introduce an equivalent dynamics driven by a single scalar field, discuss the associated observable parameters and compare them with the latest Planck data sets. Finally, introducing the teleparallel modified gravity, we have established an equivalent gravitational theory in the framework of matter creation.

  3. Department-Generated Microcomputer Software.

    ERIC Educational Resources Information Center

    Mantei, Erwin J.

    1986-01-01

    Explains how self-produced software can be used to perform rapid number analysis or number-crunching duties in geology classes. Reviews programs in mineralogy and petrology and identifies areas in geology where computers can be used effectively. Discusses the advantages and benefits of integrating department-generated software into a geology…

  4. The Nutrition Crunch: A World View

    ERIC Educational Resources Information Center

    Spurgeon, David

    1973-01-01

    Discusses the problem of providing sufficient protein to increasing populations, especially in underdeveloped countries. Focuses on the impact of the Green Revolution, genetics in improving protein yields, the expansion of fisheries, protein wastage in rearing animals and processing food, and the potential of microorganisms as a food source. (JR)

  5. Blog Overload

    ERIC Educational Resources Information Center

    Dawson, Kara M.

    2007-01-01

    The most effective blogs provide important and cutting-edge information (e.g., Tech Crunch), communicate deeply personal experiences through narrative (e.g., the Cancer Blog), or write to a specific audience (e.g., chemistry teachers). Most people with successful blogs are deeply committed to posting, for personal reasons, such as a passion for…

  6. Echo Boom Impact

    ERIC Educational Resources Information Center

    Dordai, Phillipe; Rizzo, Joseph

    2006-01-01

    Like their baby-boomer parents, the echo-boom generation is reshaping the college and university landscape. At 80 million strong, this group of children and young adults born between 1980 and 1995 now is flooding the college and university system, spurring a college building boom. According to Campus Space Crunch, a Hillier Architecture survey of…

  7. Feeling the Crunch: Education Policy and Economic Crisis

    ERIC Educational Resources Information Center

    Stevenson, Howard

    2009-01-01

    The global capitalist crisis is impacting dramatically across nation states and their economies. Although a complete collapse of the system appears to have been avoided by decisions to take co-ordinated interventionist action to shore up short term demand, governments have generally rejected the more radical actions required to address the…

  8. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2014-06-16

    CFD analysis. Coupled simulations will be run at PSU on the COCOA -4 cluster, a high performance computing cluster. The CRUNCH CFD software has...been installed on the COCOA -4 servers and initial software tests are being conducted. Initial efforts will use the Generic Frigate Shape SFS-2 to

  9. The Quantitative Crunch: The Impact of Bibliometric Research Quality Assessment Exercises on Academic Development at Small Conferences

    ERIC Educational Resources Information Center

    Henderson, Michael; Shurville, Simon; Fernstrom, Ken

    2009-01-01

    Purpose: Small and specialist inter-disciplinary conferences, particularly those relating to technology enhanced learning such as International Conference on Information and Communications Technology in Education, provide valuable opportunities for academics and academic-related/professional staff to report upon their research and development…

  10. Energy Crunch: Facilitating Students' Understanding of Eco-Efficiency

    ERIC Educational Resources Information Center

    Szolosi, Andrew

    2014-01-01

    Recreation administrators have had to evolve their approach to managing areas and facilities as both financial and environmental resources have become more limited. One way that administrators have attempted to meet such challenges is through strategies that are more environmentally sustainable. The following article addresses the importance of…

  11. Coordination Is Key: Transporting Special-Needs Students

    ERIC Educational Resources Information Center

    Lawrence, Peter

    2013-01-01

    Transporting students with special needs can be a costly proposition. However, school business officials can help mitigate those costs by focusing on four specific areas: relationships, information sharing, safety, and time lines. Although these areas may seem a bit far removed from the numbers we love to crunch, they do affect your…

  12. Competing With Ronald McDonald, Cap'n Crunch and the Pepsi Generation.

    ERIC Educational Resources Information Center

    Kamholtz, J. Dennis; Wood, Bill

    1982-01-01

    A new approach to elementary health education involves the use of a series of health-related games. The games address a variety of issues including nutrition, substance abuse, and dental health education. The story "Floss is the Boss" is used as an example. (JN)

  13. The Time-Crunch Paradox

    ERIC Educational Resources Information Center

    Gimenez-Nadal, Jose Ignacio; Sevilla-Sanz, Almudena

    2011-01-01

    Previous research has shown little difference in the average leisure time of men and women. This finding is a challenge to the "second shift" argument, which suggests that increases in female labor market hours have not been compensated by equal decreases in household labor. This paper presents time-use and leisure satisfaction data for…

  14. Funding the Mission

    ERIC Educational Resources Information Center

    Stuart, Reginald

    2011-01-01

    From Louisiana to West Virginia to North Carolina--and many states in between--a growing number of historically Black colleges and universities (HBCUs) are coming off the sidelines and finally getting into the major fundraising game. In the face of a cash crunch, the colleges are rushing to launch serious capital and planned giving campaigns.…

  15. Cooperative Mission Concepts Using Biomorphic Explorers

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Miralles, C.; Martin, T.; Kahn, R.; Zurek, R.

    2000-01-01

    Inspired by the immense variety of naturally curious explorers (insects, animals, and birds), their wellintegrated biological sensor-processor suites, efficiently packaged in compact but highly dexterous forms, and their complex, intriguing, cooperative behavior, this paper focuses on "Biomorphic Explorers", their defination/classification, their designs, and presents planetary exploration scenarios based on the designs. Judicious blend of bio-inspired concepts and recent advances in micro-air vehicles, microsensors, microinstruments, MEMS, and microprocessors clearly suggests that the time of small, dedicated, low cost explorers that capture some of the key features of biological systems has arrived. Just as even small insects like ants, termites, honey bees etc working cooperatively in colonies can achieve big tasks, the biomorphic explorers hold the potential for obtaining science in-accessible by current large singular exploration platforms.

  16. Considering Complex Objectives and Scarce Resources in Information Systems' Analysis.

    ERIC Educational Resources Information Center

    Crowther, Warren

    The low efficacy of many of the library and large-scale information systems that have been implemented in the developing countries has been disappointing, and their appropriateness is often questioned in the governmental and educational institutions of more industrialized countries beset by budget-crunching and a very dynamic transformation of…

  17. Crunching Knowledge: The Coming Environment for the Information Specialist.

    ERIC Educational Resources Information Center

    Nelson, Milo

    The adjustment of librarians to technological change has been difficult because they have been too close observers of the present at the expense of daydreaming about society's likely future. The brisk pace of business, industry, and Wall Street has been accelerated even more by developments in information technology and computer communications. A…

  18. Web Sites that Compare Loans Gain Users, Lose Lenders

    ERIC Educational Resources Information Center

    Norton, Ingrid

    2008-01-01

    Web sites that allow borrowers to compare student loans proliferated in the wake of last year's scandals that exposed conflicts of interest in the lending industry. Now the credit crunch is shifting demand for loan-comparison sites again, providing both new challenges and opportunities. More financial-aid officers are also pointing their students…

  19. Attitude Change and Sex Discrimination: The Crunch Hypothesis.

    ERIC Educational Resources Information Center

    Leppaluoto, Jean R.

    In the past, women have been discriminated against in higher education because of discriminatory attitudes that have led to unfair procedures in student admissions and faculty and staff employment. Most women in the academic world have found through experience that attitude change comes after behavioral changes have taken place. Thus, they have…

  20. Economic "Revelations" and the Metaphors of the Meltdown: An Educational Deconstruction

    ERIC Educational Resources Information Center

    Stronach, Ian; Clarke, John; Frankham, Jo

    2014-01-01

    This article subjects contemporary informed discourse on the Credit Crunch/Great Recession/Long Recession to educational analysis and deconstruction. Such pro-capitalist but not uncritical discourse is well represented by the UK "Financial Times", whose columns between 2008 and 2012 comprise most of our data. We argue that the metaphors…

  1. 10 Ways to Find More Time

    ERIC Educational Resources Information Center

    Hitch, Chris

    2008-01-01

    There are two ways to avoid time-crunch panic attacks: work smarter and delegate wisely. In this article, the author provides a list of some strategies and tactics he has used to help more than 500 school executives in North Carolina work smarter, delegate more effectively and become more effective instructional leaders. These strategies fall into…

  2. Organizing Your Parents for Effective Advocacy

    ERIC Educational Resources Information Center

    Elpus, Kenneth

    2008-01-01

    In today's world of restrictive school budgets and increasing property taxes, it is an unfortunate reality that many school districts will be faced with a budget crunch crisis that unenlightened school boards may try to solve by cutting or eliminating funds for music. At the crisis stage, it is often only the effective advocacy of an organized…

  3. Beyond a Chocolate Crunch Bar: A Teacher Examines Her Philosophy of Teaching Reading.

    ERIC Educational Resources Information Center

    Meehan, Pat

    1998-01-01

    Shares the reflections of a classroom teacher as she thinks about her own experience as a schoolchild and reflects on her history as a teacher of literacy. Talks about changes in her teaching practice that provoke inquiry and self-examination both in herself and in her students. (SR)

  4. Better Crunching: Recommendations for Multivariate Data Analysis Approaches for Program Impact Evaluations

    ERIC Educational Resources Information Center

    Braverman, Marc T.

    2016-01-01

    Extension program evaluations often present opportunities to analyze data in multiple ways. This article suggests that program evaluations can involve more sophisticated data analysis approaches than are often used. On the basis of a hypothetical program scenario and corresponding data set, two approaches to testing for evidence of program impact…

  5. Save Energy Dollars with DOE Operations and Maintenance Guide

    ERIC Educational Resources Information Center

    Appel, Margo

    2010-01-01

    At budget-crunching time, school administrators and business officials sometimes find themselves trimming the district's budget for teachers, textbooks, and technology in order to cover ballooning energy costs. Nearly one-third of the energy consumed in the average U.S. school is wasted. The country's least efficient schools use four times more…

  6. Driving Efficiency in Higher Education

    ERIC Educational Resources Information Center

    Walz, Dru Anne

    2003-01-01

    For many industries, the economic crunch of the past few years has brought about an increased focus on controlling expenses, gaining process efficiencies and finding a competitive advantage in an overcrowded market. While community colleges are not immune to these challenges, they are limited in how they are able to respond. Unlike other areas of…

  7. Jung and the Soul of Education (at the "Crunch")

    ERIC Educational Resources Information Center

    Rowland, Susan

    2012-01-01

    C. G. Jung offers education a unique perspective of the dilemma of collective social demands versus individual needs. Indeed, so radical and profound is his vision of the learning psyche as collectively embedded, that it addresses the current crisis over the demand for utilitarian higher education. Hence post-Jungian educationalists can develop…

  8. Taking the "i21" Initiative

    ERIC Educational Resources Information Center

    LaFee, Scott

    2010-01-01

    Students now routinely use computers to search the Internet, write reports, design presentations, crunch numbers, and make spreadsheets. The thing is, much of what they know and understand about computers and technology is most likely stuff they didn't learn in school. In this article, the author discusses how a San Diego school district is…

  9. Quantitative Data Analysis--In the Graduate Curriculum

    ERIC Educational Resources Information Center

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  10. For Athletics, a Billion-Dollar Goal Line

    ERIC Educational Resources Information Center

    Wolverton, Brad

    2009-01-01

    The nation's biggest athletics departments are quietly trying to raise hundreds of millions of dollars for separate sports endowments, heating up the competition for donors and raising questions about institutional priorities during the economic crunch. At least eight programs hope to bring in more than $100-million each to defray the rising costs…

  11. As Campuses Crumble, Budgets Are Crunched

    ERIC Educational Resources Information Center

    Carlson, Scott

    2008-01-01

    Colleges have always struggled with deferred maintenance, but several factors might make that struggle especially challenging in the future. Colleges grew rapidly in the postwar years and have a generation of 1960s or 1970s buildings that need major repair or replacement. In the past 10 years, colleges went through another building boom, adding to…

  12. Daily Behavior Report Cards as Evidence-Based Practice for Teachers

    ERIC Educational Resources Information Center

    Vannest, Kimberly J.; Burke, Mack D.; Sauber, Stephanie B.; Davis, John L.; Davis, Cole R.

    2011-01-01

    Easy-to-use progress-monitoring and intervention techniques are attractive because most teachers are crunched for time and teacher instructional time is often consumed with paperwork, especially for progress monitoring and discipline. Some studies indicate up to 50% of a special educator's time may be spent on paperwork. Methods that serve a dual…

  13. What's in It for Us?

    ERIC Educational Resources Information Center

    Waters, John K.

    2010-01-01

    Numbers crunching isn't what it used to be. What might once have been the task of a minimalist keypunch is now an elaborate operation presided over by dedicated business intelligence (BI) systems. No one knows this better than the enterprise. Companies of all sizes must translate their mountains of raw data into meaningful insights and actionable…

  14. To boost or to CRUNCH? Effect of effortful encoding on episodic memory in older adults is dependent on executive functioning

    PubMed Central

    Fu, Li; Maes, Joseph H. R.; Kessels, Roy P. C.; Daselaar, Sander M.

    2017-01-01

    It is essential to develop effective interventions aimed at ameliorating age-related cognitive decline. Previous studies found that effortful encoding benefits episodic memory in older adults. However, to date it is unclear whether this benefit is different for individuals with strong versus weak executive functioning (EF). Fifty-one older adults were recruited and divided into low (N = 26) and high (N = 25) functioning groups, based on their EF capacity. All participants performed a semantic and a perceptual incidental encoding task. Each encoding task was performed under four difficulty levels to establish different effort levels. Encoding was followed by a recognition task. Results showed that the high EF group benefitted from increased effort in both tasks. However, the low EF group only showed a beneficial effect under low levels of effort. Results are consistent with the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) and suggest that future research directed at developing efficient memory strategies to reduce negative cognitive aging effects should take individual cognitive differences among older adults into account, such as differences in EF. PMID:28328979

  15. An ancient revisits cosmology.

    PubMed Central

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  16. An Ancient Revisits Cosmology

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1993-06-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.

  17. A Private College Builds on Its Confidence

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2008-01-01

    Despite a shaky economy, Quinnipiac University is currently developing a new campus called York Hill to eventually include residence halls for 2,000 students, a mammoth parking garage, and a $40-million student center. The university has also just acquired an office park a few miles away in North Haven that the space-crunched institution plans to…

  18. Number Crunching: A Sheep's Tale

    ERIC Educational Resources Information Center

    Sam, Chris Lam

    2005-01-01

    In this article, the author talks about an allegorical tale which he has written as a message for teachers of mathematics. The story is about Gordon, who led a flock of small sheep. Gordon was a mathematics genius; however, his flock criticized his teaching of numbers and his boring lectures. His furry-god-farmer advised him to share his…

  19. Autism in Your Classroom: A General Educator's Guide to Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fein, Deborah; Dunn, Michelle A.

    2007-01-01

    Children with autism spectrum disorders are increasingly being educated in inclusive general education classrooms. For optimal results, teachers need to know as much as possible about autism and the teaching methods and modifications that work best for these students. This is a huge undertaking for time-crunched general education teachers, many of…

  20. Who Has the Time? The Relationship between Household Labor Time and Sexual Frequency

    ERIC Educational Resources Information Center

    Gager, Constance T.; Yabiku, Scott T.

    2010-01-01

    Motivated by the trend of women spending more time in paid labor and the general speedup of everyday life, the authors explore whether the resulting time crunch affects sexual frequency among married couples. Although prior research has examined the associations between relationship quality and household labor time, few have examined a dimension…

  1. Research Says/Evaluating and Improving: Not the Same Thing

    ERIC Educational Resources Information Center

    Goodwin, Bryan; Hein, Heather

    2016-01-01

    In 2013, a team of experts funded by the Bill and Melinda Gates Foundation wrapped up a three year, $45 million project to identify Measures of Effective Teaching (MET)--an effort to determine whether it's possible to put numbers on something as complex as teaching. After reviewing 20,000 classroom videos, crunching data from thousands of student…

  2. Riding out the Storm: Graduates, Enterprise and Careers in Turbulent Economic Times

    ERIC Educational Resources Information Center

    Rae, David

    2008-01-01

    Purpose: The purpose of this paper is to explore the possible implications for graduate employability of the economic changes which are affecting the UK in the wake of the "credit crunch". It explores the changing economic context and its implications both for HEIs and for graduates starting their careers. Design/methodology/approach:…

  3. State Colleges Seeking More Out-of-State, International Students amid Fiscal Crunch

    ERIC Educational Resources Information Center

    Hu, Helen

    2011-01-01

    Faced with budget cuts, some cash-strapped state universities are stepping up their recruitment of higher paying out-of-state undergraduates, a move that critics say is unfair to the states' residents and could affect in-state minority applicants. The University of California system and the University of Washington in Seattle have openly declared…

  4. Crunch Seen on Ed. Issues after Election

    ERIC Educational Resources Information Center

    Klein, Alyson

    2012-01-01

    From the White House to Capitol Hill, the winners in this week's elections won't have much time to savor their victories. Even as federal policymakers sort out the political landscape, the remainder of 2012 and the early months of 2013 are likely to be dominated by divisive, unresolved issues with broad consequences for K-12 and higher…

  5. Borrowers' Uncertainty Has Colleges in Quandary

    ERIC Educational Resources Information Center

    Gose, Ben

    2008-01-01

    The crunch in the student-loan market, a weak U.S. economy, and declining home values are all conspiring to make this an unpredictable year for college enrollment. Some middle-income families have found it cheaper in recent years to borrow against their home equity to help pay for college, rather than take out private student loans. However, this…

  6. Public Higher-Education Systems Face Painful Choices as Three Northeastern States Confront Massive Deficits.

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    1989-01-01

    Massachusetts, Connecticut, and New York face giant deficits in their state budgets. The financial impact of the 1986 federal tax reform law was underestimated by colleges and income estimates were overly optimistic for 1988 and 1989. Unpopular, new taxes are seen as the way to solve the budget crunch. (MLW)

  7. Macroscopic theory of dark sector

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).

  8. Psyche=singularity: A comparison of Carl Jung's transpersonal psychology and Leonard Susskind's holographic string theory

    NASA Astrophysics Data System (ADS)

    Desmond, Timothy

    In this dissertation I discern what Carl Jung calls the mandala image of the ultimate archetype of unity underlying and structuring cosmos and psyche by pointing out parallels between his transpersonal psychology and Stanford physicist Leonard Susskind's string theory. Despite his atheistic, materialistically reductionist interpretation of it, I demonstrate how Susskind's string theory of holographic information conservation at the event horizons of black holes, and the cosmic horizon of the universe, corroborates the following four topics about which Jung wrote: (1) his near-death experience of the cosmic horizon after a heart attack in 1944; ( 2) his equation relating psychic energy to mass, "Psyche=highest intensity in the smallest space" (1997, 162), which I translate into the equation, Psyche=Singularity; (3) his theory that the mandala, a circle or sphere with a central point, is the symbolic image of the ultimate archetype of unity through the union of opposites, which structures both cosmos and psyche, and which rises spontaneously from the collective unconscious to compensate a conscious mind torn by irreconcilable demands (1989, 334-335, 396-397); and (4) his theory of synchronicity. I argue that Susskind's inside-out black hole model of our Big Bang universe forms a geometrically perfect mandala: a central Singularity encompassed by a two-dimensional sphere which serves as a universal memory bank. Moreover, in precise fulfillment of Jung's theory, Susskind used that mandala to reconcile the notoriously incommensurable paradigms of general relativity and quantum mechanics, providing in the process a mathematically plausible explanation for Jung's near-death experience of his past, present, and future life simultaneously at the cosmic horizon. Finally, Susskind's theory also provides a plausible cosmological model to explain Jung's theory of synchronicity--meaningful coincidences may be tied together by strings at the cosmic horizon, from which they radiate inward as the holographic "movie" of our three-dimensional world.

  9. Natural inflation from polymer quantization

    NASA Astrophysics Data System (ADS)

    Ali, Masooma; Seahra, Sanjeev S.

    2017-11-01

    We study the polymer quantization of a homogeneous massive scalar field in the early Universe using a prescription inequivalent to those previously appearing in the literature. Specifically, we assume a Hilbert space for which the scalar field momentum is well defined but its amplitude is not. This is closer in spirit to the quantization scheme of loop quantum gravity, in which no unique configuration operator exists. We show that in the semiclassical approximation, the main effect of this polymer quantization scheme is to compactify the phase space of chaotic inflation in the field amplitude direction. This gives rise to an effective scalar potential closely resembling that of hybrid natural inflation. Unlike polymer schemes in which the scalar field amplitude is well defined, the semiclassical dynamics involves a past cosmological singularity; i.e., this approach does not mitigate the big bang.

  10. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  11. Relaxation of vacuum energy in q-theory

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.

    2017-08-01

    The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

  12. Stringy Toda cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaloper, N.

    We discuss a particular stringy modular cosmology with two axion fields in seven space-time dimensions, decomposable as a time and two flat three-spaces. The effective equations of motion for the problem are those of the SU(3) Toda molecule and, hence, are integrable. We write down the solutions, and show that all of them are singular. They can be thought of as a generalization of the pre-big-bang cosmology with excited internal degrees of freedom, and still suffering from the graceful exit problem. Some of the solutions, however, show a rather unexpected property: some of their spatial sections shrink to a pointmore » in spite of winding modes wrapped around them. We also comment how more general, anisotropic solutions, with fewer Killing symmetries, can be obtained with the help of STU dualities. {copyright} {ital 1997} {ital The American Physical Society}« less

  13. Materiales en Marcha para el Esfuerzo Bilingue-Bicultural (Materials on the March for the Promotion of Bilingualism/Biculturalism), July 1973.

    ERIC Educational Resources Information Center

    San Diego City Schools, CA.

    This newsletter is designed to promote the needs and aims of bilingual-bicultural education. This issue contains the following articles: (1) Santillana's "Redondel," (2) Secondary Biographies, (3) The Culture Crunch, and (4) Editor's Notes. Included is a list of suggested U.S. distributors of educational materials in Spanish and Portuguese. (SK)

  14. Congress Prepares for Student-Loan Crisis, while Declaring It Unlikely

    ERIC Educational Resources Information Center

    Field, Kelly

    2008-01-01

    Several months into a credit crunch that has led at least 20 lenders to leave the guaranteed loan program or suspend their lending operations, lawmakers have begun to respond with a sense of urgency, even as they seek to reassure students and parents that a crisis is unlikely and that federal student loans will still be available this fall. In the…

  15. Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications

    DOE R&D Accomplishments Database

    Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.

    1997-12-16

    The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.

  16. No ``explosion'' in Big Bang cosmology: teaching kids the truth of what cosmologists really know

    NASA Astrophysics Data System (ADS)

    Gangui, Alejandro

    2011-06-01

    Common wisdom says that cosmologists are smart: they have developed a theory that can explain the ``origin of the universe''. Every time an astro-related, heavily funded ``big-science'' project comes to the media, naturally the question arises: will science -through this or that experiment- explain the origin of the cosmos? Can this be done with the LHC, for example? Will this dream machine create other universes? Of course, the very words we employ in cosmology reinforce this misconception: so Big Bang must be associated with an ``explosion'', even if a ``peculiar'' one, as it took place nowhere (there was presumably no space before the beginning) and happened virtually in no time (supposedly, space-time was created on this peculiar -singular- event). Right, the issue sounds confusing. Let us imagine what kids may get out of all this. We have recently presented a series of brief astronomy and cosmology books aimed at helping both kids and their teachers in these and other arcane subjects, all introduced with carefully chosen words and images that young children can understand. In particular, Volume Four deals with the Big Bang and emphasizes the notion of ``evolution'' as opposed to the -wrong- notion of ``origin'' behind the scientific model. We then explain some of the pillars of Big Bang cosmology: the expansion of space that drags away distant galaxies, as seen in the redshift of their emitted light; the build-up of light elements in a cooling bath of radiation, as explained by primordial nucleosynthesis; and the existence and main features of the ubiquitous cosmic microwave background radiation, where theory and observations agree to a highly satisfactory degree. Of course, one cannot attempt to answer the ``origins'' question when it is well known that all theories so far break down close to this origin (if there was actually an origin). It is through observations, analyses, lively discussions and recognition of the basic limitations of current theories and ideas, that we are led to try and reconstruct the past and predict the future evolution of our universe. Just that. Sound science turns out to be much more attractive when we tell the truth of what we really know.

  17. Georges Lemaître: The Priest Who Invented the Big Bang

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique

    This contribution gives a concise survey of Georges Lemaître works and life, shedding some light on less-known aspects. Lemaître is a Belgian catholic priest who gave for the first time in 1927 the explanation of the Hubble law and who proposed in 1931 the "Primeval Atom Hypothesis", considered as the first step towards the Big Bang cosmology. But the scientific work of Lemaître goes far beyond Physical Cosmology. Indeed, he contributed also to the theory of Cosmis Rays, to the Spinor theory, to Analytical mechanics (regularization of 3- Bodies problem), to Numerical Analysis (Fast Fourier Transform), to Computer Science (he introduced and programmed the first computer of Louvain),… Lemaître took part to the "Science and Faith" debate. He defended a position that has some analogy with the NOMA principle, making a sharp distinction between what he called the "two paths to Truth" (a scientific one and a theological one). In particular, he never made a confusion between the theological concept of "creation" and the scientific notion of "natural beginning" (initial singularity). Lemaître was deeply rooted in his faith and sacerdotal vocation. Remaining a secular priest, he belonged to a community of priests called "The Friends of Jesus", characterized by a deep spirituality and special vows (for example the vow of poverty). He had also an apostolic activity amongst Chinese students.

  18. Emergent universe with wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Paul, B. C.; Majumdar, A. S.

    2018-03-01

    An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.

  19. Please Move Inactive Files Off the /projects File System | High-Performance

    Science.gov Websites

    Computing | NREL Please Move Inactive Files Off the /projects File System Please Move Inactive Files Off the /projects File System January 11, 2018 The /projects file system is a shared resource . This year this has created a space crunch - the file system is now about 90% full and we need your help

  20. Balancing Act: How College Students Manage Technology While in the Library during Crunch Time. Project Information Literacy Research Report

    ERIC Educational Resources Information Center

    Head, Alison J.; Eisenberg, Michael B.

    2011-01-01

    The paper presents findings from 560 interviews with undergraduates on 10 campuses distributed across the US, as part of Project Information Literacy (PIL). Overall, the findings suggest that students use a "less is more" approach to manage and control all of the IT devices and information systems available to them while they are in the…

  1. Is There a Student "Disconnect?" First-Year Hybrid Class Teachers' Observations and Recommendations for Improving Student Engagement in Information Systems Classes

    ERIC Educational Resources Information Center

    Parris, Joan B.; Beaver, Jana P.; Nickels, David W.; Crabtree, John D.

    2011-01-01

    Research shows that during times of economic downturn in the United States, education funding suffers. One method that higher education administrators are choosing to ease the economic crunch is to offer hybrid classes that blend one regular face-to-face class meeting with online and outside class components. The challenge of managing large…

  2. Automation of Survey Data Processing, Documentation and Dissemination: An Application to Large-Scale Self-Reported Educational Survey.

    ERIC Educational Resources Information Center

    Shim, Eunjae; Shim, Minsuk K.; Felner, Robert D.

    Automation of the survey process has proved successful in many industries, yet it is still underused in educational research. This is largely due to the facts (1) that number crunching is usually carried out using software that was developed before information technology existed, and (2) that the educational research is to a great extent trapped…

  3. Phantom of the Hartle–Hawking instanton: Connecting inflation with dark energy

    DOE PAGES

    Chen, Pisin; Qiu, Taotao; Yeom, Dong -han

    2016-02-20

    If the Hartle–Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity.more » This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Lastly, our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.« less

  4. Fuzzy Euclidean wormholes in de Sitter space

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han

    2017-07-01

    We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.

  5. Planck's constant and the three waves (TWs) of Einstein's covariant ether

    NASA Astrophysics Data System (ADS)

    Kostro, L.

    1985-11-01

    The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.

  6. Reconstruction of a nonminimal coupling theory with scale-invariant power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Taotao, E-mail: qiutt@ntu.edu.tw

    2012-06-01

    A nonminimal coupling single scalar field theory, when transformed from Jordan frame to Einstein frame, can act like a minimal coupling one. Making use of this property, we investigate how a nonminimal coupling theory with scale-invariant power spectrum could be reconstructed from its minimal coupling counterpart, which can be applied in the early universe. Thanks to the coupling to gravity, the equation of state of our universe for a scale-invariant power spectrum can be relaxed, and the relation between the parameters in the action can be obtained. This approach also provides a means to address the Big-Bang puzzles and anisotropymore » problem in the nonminimal coupling model within Jordan frame. Due to the equivalence between the two frames, one may be able to find models that are free of the horizon, flatness, singularity as well as anisotropy problems.« less

  7. Fuzzy Euclidean wormholes in de Sitter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r04244003@ntu.edu.tw, E-mail: innocent.yeom@gmail.com

    We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universemore » from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.« less

  8. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  9. Computational Cosmology: from the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  10. Fuzzy Euclidean wormholes in de Sitter space

    DOE PAGES

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han

    2017-07-03

    Here, we investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. Furthermore, we prefer wormholes for some parameters, rather than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing andmore » an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.« less

  11. [Towards universal nomenclature for urgent surgical care].

    PubMed

    Liakhovs'kyĭ, V I; Dem'ianiuk, D H; Kravtsiv, M I; Borkunov, A L; Sapun, L V

    2013-06-01

    In a modern professional literature the diseases, which undoubtedly threaten the patient's health and life, are called an urgent, special, emergent, fixed-date, etc. Not rare these terms are used simultaneously. Such a plurality of names of a quite dangerous state causes sometimes in these conditions uncertainty to seek help of a specialists and loss of a time. Modern dictionaries of a foreign languages words, of a foreign languages words in Ukrainian language, medical, big explanatory dictionary of a modern Ukrainian language definitely explains, that these terms are synonyms. All of them mean unconditional, timing. And every expression may be used in this context. The above mentioned suggestions and thoughts do not promote a secure fixing in the citizens consciousness the undoubtedness, the disease consequences danger, a threat to health and life. To deposit this in their awareness it is possible not by amorphous depiction, but using a singular, brief, firm term - an urgent.

  12. Phantom of the Hartle-Hawking instanton: connecting inflation with dark energy

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Qiu, Taotao; Yeom, Dong-han

    2016-02-01

    If the Hartle-Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity. This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.

  13. Aquinas and Contemporary Cosmology: Creation and Beginnings

    NASA Astrophysics Data System (ADS)

    Carroll, William E.

    Discussions in the Middle Ages about creation and the temporal beginning of the world involved sophisticated analyses in theology, metaphysics, and natural philosophy. Mediaeval insights on this subject, especially Thomas Aquinas' defense of the intelligibility of an eternal, created universe, can help to clarify reflections about the philosophical and theological implications of contemporary cosmological theories: from the "singularity" of the Big Bang, to "quantum tunneling from nothing," to multiverse scenarios. Thomas' insights help us to see the value of Georges Lemaître's insistence that his cosmological reflections must be kept separate from an analysis of creation. This essay will look at different senses of "beginning" and examine the claim that creation, in its fundamental meaning, tells us nothing about whether there is a temporal beginning to the universe. Multiverse models, like that recently proposed by Stephen Hawking and Leonard Mlodinow, may challenge certain views of a Grand Designer, but not of a Creator.

  14. Fuzzy Euclidean wormholes in de Sitter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han

    Here, we investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. Furthermore, we prefer wormholes for some parameters, rather than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing andmore » an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.« less

  15. Unitary evolution of the quantum Universe with a Brown-Kuchař dust

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2015-12-01

    We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.

  16. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-02-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  17. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-05-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  18. The Semantics of Plurals: A Defense of Singularism

    ERIC Educational Resources Information Center

    Florio, Salvatore

    2010-01-01

    In this dissertation, I defend "semantic singularism", which is the view that syntactically plural terms, such as "they" or "Russell and Whitehead", are semantically singular. A semantically singular term is a term that denotes a single entity. Semantic singularism is to be distinguished from "syntactic singularism", according to which…

  19. Lectures on gravitation

    NASA Astrophysics Data System (ADS)

    Das, Ashok

    1. Basics of geometry and relativity. 1.1. Two dimensional geometry. 1.2. Inertial and gravitational masses. 1.3. Relativity -- 2. Relativistic dynamics. 2.1. Relativistic point particle. 2.2. Current and charge densities. 2.3. Maxwell's equations in the presence of sources. 2.4. Motion of a charged particle in EM field. 2.5. Energy-momentum tensor. 2.6. Angular momentum -- 3. Principle of general covariance. 3.1. Principle of equivalence. 3.2. Principle of general covariance. 3.3. Tensor densities -- 4. Affine connection and covariant derivative. 4.1. Parallel transport of a vector. 4.2. Christoffel symbol. 4.3. Covariant derivative of contravariant tensors. 4.4. Metric compatibility. 4.5. Covariant derivative of covariant and mixed tensors. 4.6. Electromagnetic analogy. 4.7. Gradient, divergence and curl -- 5. Geodesic equation. 5.1. Covariant differentiation along a curve. 5.2. Curvature from derivatives. 5.3. Parallel transport along a closed curve. 5.4. Geodesic equation. 5.5. Derivation of geodesic equation from a Lagrangian -- 6. Applications of the geodesic equation. 6.1. Geodesic as representing gravitational effect. 6.2. Rotating coordinate system and the Coriolis force. 6.3. Gravitational red shift. 6.4. Twin paradox and general covariance. 6.5. Other equations in the presence of gravitation -- 7. Curvature tensor and Einstein's equation. 7.1. Curvilinear coordinates versus gravitational field. 7.2. Definition of an inertial coordinate frame. 7.3. Geodesic deviation. 7.4. Properties of the curvature tensor. 7.5. Einstein's equation. 7.6. Cosmological constant. 7.7. Initial value problem. 7.8. Einstein's equation from an action -- 8. Schwarzschild solution. 8.1. Line element. 8.2. Connection. 8.3. Solution of the Einstein equation. 8.4. Properties of the Schwarzschild solution. 8.5. Isotropic coordinates -- 9. Tests of general relativity. 9.1. Radar echo experiment. 9.2. Motion of a particle in a Schwarzschild background. 9.3. Motion of light rays in a Schwarzschild background. 9.4. Perihelion advance of Mercury -- 10. Black holes. 10.1. Singularities of the metric. 10.2. Singularities of the Schwarzschild metric. 10.3. Black holes -- 11. Cosmological models and the big bang theory. 11.1. Homogeneity and isotropy. 11.2. Different models of the universe. 11.3. Hubble's law. 11.4. Evolution equation. 11.5. Big bang theory and blackbody radiation.

  20. The effect of movement and load on the dynamic coupling of abdominal electromyography.

    PubMed

    King, Adam C

    2018-05-14

    This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Singularities in Optimal Structural Design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  2. Singularities in optimal structural design

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1992-01-01

    Singularity conditions that arise during structural optimization can seriously degrade the performance of the optimizer. The singularities are intrinsic to the formulation of the structural optimization problem and are not associated with the method of analysis. Certain conditions that give rise to singularities have been identified in earlier papers, encompassing the entire structure. Further examination revealed more complex sets of conditions in which singularities occur. Some of these singularities are local in nature, being associated with only a segment of the structure. Moreover, the likelihood that one of these local singularities may arise during an optimization procedure can be much greater than that of the global singularity identified earlier. Examples are provided of these additional forms of singularities. A framework is also given in which these singularities can be recognized. In particular, the singularities can be identified by examination of the stress displacement relations along with the compatibility conditions and/or the displacement stress relations derived in the integrated force method of structural analysis.

  3. Naked singularity resolution in cylindrical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Yasunari; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502; Nakao, Ken-ichi

    In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the nakedmore » singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.« less

  4. Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment.

    PubMed

    Pang, Xiaoyan; Gbur, Greg; Visser, Taco D

    2015-12-28

    It is now well-established that a variety of singularities can be characterized and observed in optical wavefields. It is also known that these phase singularities, polarization singularities and coherence singularities are physically related, but the exact nature of their relationship is still somewhat unclear. We show how a Young-type three-pinhole interference experiment can be used to create a continuous cycle of transformations between classes of singularities, often accompanied by topological reactions in which different singularities are created and annihilated. This arrangement serves to clarify the relationships between the different singularity types, and provides a simple tool for further exploration.

  5. Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity

    NASA Astrophysics Data System (ADS)

    Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.

    2013-07-01

    An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.

  6. On important precursor of singular optics (tutorial)

    NASA Astrophysics Data System (ADS)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  7. Evolution of singularities in a partially coherent vortex beam.

    PubMed

    van Dijk, Thomas; Visser, Taco D

    2009-04-01

    We study the evolution of phase singularities and coherence singularities in a Laguerre-Gauss beam that is rendered partially coherent by letting it pass through a spatial light modulator. The original beam has an on-axis minumum of intensity--a phase singularity--that transforms into a maximum of the far-field intensity. In contrast, although the original beam has no coherence singularities, such singularities are found to develop as the beam propagates. This disappearance of one kind of singularity and the gradual appearance of another is illustrated with numerical examples.

  8. Naked singularity, firewall, and Hawking radiation.

    PubMed

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  9. Stability analysis and future singularity of the m{sup 2} R □{sup -2} R model of non-local gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, Yves; Mitsou, Ermis, E-mail: yves.dirian@unige.ch, E-mail: ermis.mitsou@unige.ch

    2014-10-01

    We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ∼ m{sup 2} R □{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flatmore » space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.« less

  10. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-06

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.

  11. Vortices in rotating superfluid 3He

    PubMed Central

    Lounasmaa, Olli V.; Thuneberg, Erkki

    1999-01-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, H.E.

    The predictions of a special Metal Progress round table spanning the next 20 years in materials and process engineering in North America are given. Subjects discussed include the energy crunch, impact of computer technology, new roles for testing and inspection, happenings in non ferrous technology, materials substitution, composites and non metallics, people aspects of technology, materials availability, powder metallurgy changes, casting, welding and joining, heat treatments, carbon and alloy steels, new and improved materials, forming, coatings and conservation, and metal production. (FS)

  13. NASA's Pleiades Supercomputer Crunches Data For Groundbreaking Analysis and Visualizations

    NASA Image and Video Library

    2016-11-23

    The Pleiades supercomputer at NASA's Ames Research Center, recently named the 13th fastest computer in the world, provides scientists and researchers high-fidelity numerical modeling of complex systems and processes. By using detailed analyses and visualizations of large-scale data, Pleiades is helping to advance human knowledge and technology, from designing the next generation of aircraft and spacecraft to understanding the Earth's climate and the mysteries of our galaxy.

  14. Doing more with less: while hospitals are feeling the financial crunch, smart CIOs are finding ways to improve processes and save money.

    PubMed

    Gamble, Kate Huvane

    2009-02-01

    Outsourcing tasks like help desk support and PC roll-outs can enable organizations to save on costs while developing skills internally. CIOs are finding that some vendors are willing to negotiate contracts to retain business during tough financial times. Although funds may be tight, CIOs need to be part of the solution by pushing clinical transformation and performance improvement.

  15. The Fundamental Issues Study within the British BMD Review

    DTIC Science & Technology

    1998-02-01

    also be considered. Nevertheless, how formidable a challenge is posed by the ascent release of submunitions is acknowledged by Richard Garwin on the...Arguably, the crunch came in February 1987 when Richard Perle, visiting London as US Assistant Secretary for Defense, extolled a strong SDI as the...resignation of Richard Perle. That year was also to see the departure from political office in the Pentagon of four other SDI stalwarts: Frank

  16. Global Skills Crunch: A Case of Dog Eat Dog? Presented to the Wellington Exchange--Evolving Higher Education Agendas, December 4, 2008. Conference Paper

    ERIC Educational Resources Information Center

    Karmel, Tom

    2009-01-01

    This paper was presented to a meeting of the Wellington Exchange, an international group of higher education officials, in December 2008. One of the topics of the meeting was around the issue of possible skills shortages emerging as a result of demographic trends, with the ageing of the population of developed countries. The paper argues that this…

  17. Probability-Based Inference in Cognitive Diagnosis

    DTIC Science & Technology

    1994-02-01

    of variables in the student model. In Siegler’s study , this corresponds to determining how a child with a given set of strategies at her disposal...programs are commercially available to carry out the number-crunching aspect. We used Andersen, Jensen, Olesen, and Jensen’s (1989) HUGIN program and Noetic ... studying how they are typically acquired (e.g., in mechanics, Clement, 1982; in ratio and proportional reasoning, Karplus, Pulos, & Stage, 1983), and

  18. Resolution of quantum singularities

    NASA Astrophysics Data System (ADS)

    Konkowski, Deborah; Helliwell, Thomas

    2017-01-01

    A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.

  19. The geometry of singularities and the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Stoica, O. C.

    2015-07-01

    The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.

  20. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers.

    PubMed

    Sochat, Vanessa V; Prybol, Cameron J; Kurtzer, Gregory M

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub's primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers.

  1. Enhancing reproducibility in scientific computing: Metrics and registry for Singularity containers

    PubMed Central

    Prybol, Cameron J.; Kurtzer, Gregory M.

    2017-01-01

    Here we present Singularity Hub, a framework to build and deploy Singularity containers for mobility of compute, and the singularity-python software with novel metrics for assessing reproducibility of such containers. Singularity containers make it possible for scientists and developers to package reproducible software, and Singularity Hub adds automation to this workflow by building, capturing metadata for, visualizing, and serving containers programmatically. Our novel metrics, based on custom filters of content hashes of container contents, allow for comparison of an entire container, including operating system, custom software, and metadata. First we will review Singularity Hub’s primary use cases and how the infrastructure has been designed to support modern, common workflows. Next, we conduct three analyses to demonstrate build consistency, reproducibility metric and performance and interpretability, and potential for discovery. This is the first effort to demonstrate a rigorous assessment of measurable similarity between containers and operating systems. We provide these capabilities within Singularity Hub, as well as the source software singularity-python that provides the underlying functionality. Singularity Hub is available at https://singularity-hub.org, and we are excited to provide it as an openly available platform for building, and deploying scientific containers. PMID:29186161

  2. Singularity in structural optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Guptill, J. D.; Berke, L.

    1993-01-01

    The conditions under which global and local singularities may arise in structural optimization are examined. Examples of these singularities are presented, and a framework is given within which the singularities can be recognized. It is shown, in particular, that singularities can be identified through the analysis of stress-displacement relations together with compatibility conditions or the displacement-stress relations derived by the integrated force method of structural analysis. Methods of eliminating the effects of singularities are suggested and illustrated numerically.

  3. An Improved Transformation and Optimized Sampling Scheme for the Numerical Evaluation of Singular and Near-Singular Potentials

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.

    2007-01-01

    Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.

  4. Topological dynamics of optical singularities in speckle-fields induced by photorefractive scattering in a LiNbO{sub 3} : Fe crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasil'ev, Vasilii I; Soskin, M S

    2013-02-28

    A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less

  5. Can accretion disk properties observationally distinguish black holes from naked singularities?

    NASA Astrophysics Data System (ADS)

    Kovács, Z.; Harko, T.

    2010-12-01

    Naked singularities are hypothetical astrophysical objects, characterized by a gravitational singularity without an event horizon. Penrose has proposed a conjecture, according to which there exists a cosmic censor who forbids the occurrence of naked singularities. Distinguishing between astrophysical black holes and naked singularities is a major challenge for present day observational astronomy. In the context of stationary and axially symmetrical geometries, a possibility of differentiating naked singularities from black holes is through the comparative study of thin accretion disks properties around rotating naked singularities and Kerr-type black holes, respectively. In the present paper, we consider accretion disks around axially-symmetric rotating naked singularities, obtained as solutions of the field equations in the Einstein-massless scalar field theory. A first major difference between rotating naked singularities and Kerr black holes is in the frame dragging effect, the angular velocity of a rotating naked singularity being inversely proportional to its spin parameter. Because of the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution and equilibrium radiation spectrum) are different for these two classes of compact objects, consequently giving clear observational signatures that could discriminate between black holes and naked singularities. For specific values of the spin parameter and of the scalar charge, the energy flux from the disk around a rotating naked singularity can exceed by several orders of magnitude the flux from the disk of a Kerr black hole. In addition to this, it is also shown that the conversion efficiency of the accreting mass into radiation by rotating naked singularities is always higher than the conversion efficiency for black holes, i.e., naked singularities provide a much more efficient mechanism for converting mass into radiation than black holes. Thus, these observational signatures may provide the necessary tools from clearly distinguishing rotating naked singularities from Kerr-type black holes.

  6. Are Singularities Integral to General Theory of Relativity?

    NASA Astrophysics Data System (ADS)

    Krori, K.; Dutta, S.

    2011-11-01

    Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.

  7. On the dynamic singularities in the control of free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, E.; Dubowsky, S.

    1989-01-01

    It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.

  8. Sixth Fleet Combat Stores Ship Resupply Model

    DTIC Science & Technology

    1989-03-01

    Jumbo Block BR 0.25 288 0.98 0021 Fruit Chewies PG 0.25 360 1.08 0022 Nestles Crunch BR 0.25 360 0.78 0023 Kit Kat BR 0.25 432 1.55 0131 Cashews EA...2.33 12 0.27 0132 Mixed Peanuts EA 1.28 12 0.27 0133 Peanuts EA 0.78 12 0.27 0134 Spanish Nuts EA 0.78 12 0.36 0151 Baked Beans CN 0.28 24 0.40 0152

  9. KSC-04pd0611

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- Like a dinosaur crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  10. KSC-04PD-0611

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Like a dinosaur crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  11. Developing an effective succession plan for your practice: why should I care? Seven strategies to prosper in today's new economy.

    PubMed

    Maley, Catherine

    2010-02-01

    The recession of 2008-2009 dramatically changed the landscape of the aesthetic enhancement industry. Patients were no longer spending freely on cosmetic procedures as they once were, and aesthetic physicians felt the crunch-some a little and others a lot. This article reviews sound advice and strategies for what an aesthetic physician can do to survive and even flourish in today's new economy. Thieme Medical Publishers.

  12. A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.

    2015-12-01

    A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.

  13. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  14. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization.

    PubMed

    Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian

    2015-05-04

    We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.

  15. The effect of spherical aberration on the phase singularities of focused dark-hollow Gaussian beams

    NASA Astrophysics Data System (ADS)

    Luo, Yamei; Lü, Baida

    2009-06-01

    The phase singularities of focused dark-hollow Gaussian beams in the presence of spherical aberration are studied. It is shown that the evolution behavior of phase singularities of focused dark-hollow Gaussian beams in the focal region depends not only on the truncation parameter and beam order, but also on the spherical aberration. The spherical aberration leads to an asymmetric spatial distribution of singularities outside the focal plane and to a shift of singularities near the focal plane. The reorganization process of singularities and spatial distribution of singularities are additionally dependent on the sign of the spherical aberration. The results are illustrated by numerical examples.

  16. Unidirectional spectral singularities.

    PubMed

    Ramezani, Hamidreza; Li, Hao-Kun; Wang, Yuan; Zhang, Xiang

    2014-12-31

    We propose a class of spectral singularities emerging from the coincidence of two independent singularities with highly directional responses. These spectral singularities result from resonance trapping induced by the interplay between parity-time symmetry and Fano resonances. At these singularities, while the system is reciprocal in terms of a finite transmission, a simultaneous infinite reflection from one side and zero reflection from the opposite side can be realized.

  17. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  18. Multilinear Graph Embedding: Representation and Regularization for Images.

    PubMed

    Chen, Yi-Lei; Hsu, Chiou-Ting

    2014-02-01

    Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.

  19. Nonsingular bouncing cosmology: Consistency of the effective description

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt

    2016-05-01

    We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the scale of strong coupling and demonstrate that the ghost-condensate bounce remains trustworthy throughout, and that all perturbation modes within the regime of validity of the effective description remain under control. For this purpose we require the perturbed action up to third order in perturbations, which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the contracting phase, but are only converted into curvature perturbations after the bounce.

  20. The Nature and Origin of Time-Asymmetric Spacetime Structures

    NASA Astrophysics Data System (ADS)

    Zeh, H. Dieter

    Time-asymmetric spacetime structures, in particular those representing black holes and the expansion of the universe, are intimately related to other arrows of time, such as the second law and the retardation of radiation. The nature of the quantum arrow, often attributed to a collapse of the wave function, is essential, in particular, for understanding the much discussed black hole information loss paradox. This paradox assumes a new form and can possibly be avoided in a consistent causal treatment that may be able to avoid horizons and singularities. The master arrow that would combine all arrows of time does not have to be identified with a direction of the formal time parameter that serves to formulate the dynamics as a succession of global states (a trajectory in configuration or Hilbert space). It may even change direction with respect to a fundamental physical clock such as the cosmic expansion parameter if this was formally extended either into a future contraction era or to negative pre-big-bang values.

  1. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  2. Spinor Field Nonlinearity and Space-Time Geometry

    NASA Astrophysics Data System (ADS)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.

  3. Feeling the crunch: EPA strives to reinvent itself

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairley, P.

    1995-11-01

    EPA`s Leadership and the Republican majority in Congress agree that environmental protection must become cheaper and smarter. Both say the nation needs a new style of regulation in which EPA and industry work as partners and a new system of regulation in which EPA sets standards for environmental performance and then helps industry achieve compliance. The things they passionately disagree on, however, are how to reach that system from today`s command and control regulation and how quickly change can be achieved.

  4. KSC-04PD-0606

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Looking like a prehistoric monster crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  5. KSC-04PD-0605

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Looking like a prehistoric monster crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  6. KSC-04PD-0609

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Looking like a prehistoric monster crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  7. Policing Toward a De-Clawed Jihad: Antiterrorism Intelligence Techniques for Law Enforcement

    DTIC Science & Technology

    2006-12-01

    particularly young Muslim adults who prefer the Internet as their primary news source over traditional print and broadcast media.35 Al-Qa’eda boasts a...first-hand knowledge and helped me give this thesis some real-world perspective. And whenever I’d feel the crunch, I’d reflect on Chuck Daenzer’s...Qa’eda hackers might disrupt an electronic commerce system or launch a denial of service attack, temporarily disabling part of a network, but such an

  8. Computer Algorithms and Architectures for Three-Dimensional Eddy-Current Nondestructive Evaluation. Volume 3. Chapters 6-11

    DTIC Science & Technology

    1989-01-20

    addressable memory can be loaded or off- loaded as the number crunching continues. Modem VLSI processors can often process data faster than today’s...Available DSP Chips Texas Instruments was one of the first serious manufacturers of DSP chips. With the Texas Instruments TMS310 DSP chip, modem , voice...Can handle double presicion data types. Texas Instruments TMS32010 T’s first-generation DSP design: a fixed-point DSP that has found its way into modem

  9. KSC-04pd0609

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- Looking like a prehistoric monster crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  10. KSC-04pd0606

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- Looking like a prehistoric monster crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  11. KSC-04pd0605

    NASA Image and Video Library

    2004-03-24

    KENNEDY SPACE CENTER, FLA. -- Looking like a prehistoric monster crunching on its prey, the Caterpillar excavator and 48-inch shear attachment tear down Launch Umbilical Tower No. 1 (LUT-1) stored in the Industrial Area of KSC. The LUT-1 was part of the launch system used for Apollo-Saturn V, launching Apollo 8, Apollo 11, Skylab manned missions and the Apollo-Soyuz Test Project. The shear is one used in the deconstruction of the Twin Towers in New York City after 9/11.

  12. Singularity analysis: theory and further developments

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming

    2015-04-01

    Since the concept of singularity and local singularity analysis method (LSA) were originally proposed by the author for characterizing the nonlinear property of hydrothermal mineralization processes, the local singularity analysis technique has been successfully applied for identification of geochemical and geophysical anomalies related to various types of mineral deposits. It has also been shown that the singularity is the generic property of singular geo-processes which result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. In the current paper we introduce several new developments about singularity analysis. First is a new concept of 'fractal density' which describes the singularity of complex phenomena of fractal nature. While the ordinary density possesses a unit of ratio of mass and volume (e.g. g/cm3, kg/m3) or ratio of energy over volume or time (e.g. J/cm3, w/L3, w/s), the fractal density has a unit of ratio of mass over fractal set or energy over fractal set (e.g. g/cmα, kg/mα, J/ mα, w/Lα, where α can be a non-integer). For the matter with fractal density (a non-integer α), the ordinary density of the phenomena (mass or energy) no longer exists and depicts singularity. We demonstrate that most of extreme geo-processes occurred in the earth crust originated from cascade earth dynamics (mental convection, plate tectonics, orogeny and weathering etc) may cause fractal density of mass accumulation or energy release. The examples to be used to demonstrate the concepts of fractal density and singularity are earthquakes, floods, volcanos, hurricanes, heat flow over oceanic ridge, hydrothermal mineralization in orogenic belt, and anomalies in regolith over mine caused by ore and toxic elements vertical migration. Other developments of singularity theory and methodologies including singular Kriging and singularity weights of evidence model for information integration will also be introduced.

  13. A Generalized Method of Image Analysis from an Intercorrelation Matrix which May Be Singular.

    ERIC Educational Resources Information Center

    Yanai, Haruo; Mukherjee, Bishwa Nath

    1987-01-01

    This generalized image analysis method is applicable to singular and non-singular correlation matrices (CMs). Using the orthogonal projector and a weaker generalized inverse matrix, image and anti-image covariance matrices can be derived from a singular CM. (SLD)

  14. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.

    PubMed

    Li, Lifeng

    2012-04-01

    I extend a previous work [J. Opt. Soc. Am. A, 738 (2011)] on field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings to the case of arbitrary metallic wedge angles. Simple criteria are given that allow one knowing the lossless permittivities and the arbitrary wedge angles to determine if the electric field at the edges is nonsingular, can be regularly singular, or can be irregularly singular without calculating the singularity exponent. Furthermore, the knowledge of the singularity type enables one to predict immediately if a numerical method that uses Fourier expansions of the transverse electric field components at the edges will converge or not without making any numerical tests. All conclusions of the previous work about the general relationships between field singularities, Fourier representation of singular fields, and convergence of numerical methods for modeling lossless metal-dielectric gratings have been reconfirmed.

  15. Elasticity solutions for a class of composite laminate problems with stress singularities

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.

  16. f(T) teleparallel gravity and cosmology.

    PubMed

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable for quantization ventures and cosmological applications.

  17. Integrable Scalar Cosmologies I. Foundations and links with String Theory

    NASA Astrophysics Data System (ADS)

    Fré, P.; Sagnotti, A.; Sorin, A. S.

    2013-12-01

    We build a number of integrable one-scalar spatially flat cosmologies, which play a natural role in inflationary scenarios, examine their behavior in several cases and draw from them some general lessons on this type of systems, whose potentials involve combinations of exponential functions, and on similar non-integrable ones. These include the impossibility for the scalar to emerge from the initial singularity descending along asymptotically exponential potentials with logarithmic slopes exceeding a critical value (“climbing phenomenon”) and the inevitable collapse in a Big Crunch whenever the scalar tries to settle at negative extrema of the potential. We also elaborate on the links between these types of potentials and “brane supersymmetry breaking”, a mechanism that ties together string scale and scale of supersymmetry breaking in a class of orientifold models. Our Universe is highly isotropic and homogeneous at large scales, while its current state of acceleration is well accounted for by a small positive cosmological constant; Our Universe is spatially flat, which brings to the forefront metrics of the form ds2=e dt2-a2(t) dxṡdx. Special “gauge functions” B(t) can result in simpler expressions for the scale factor a(t), which becomes a quantity of utmost interest for Theoretical Physics; Vacuum energy accounts for about 70% of the present contents of the Universe, dark matter of unknown origin for another 24%, so that only 6% is left for conventional baryonic matter in the form of luminous stars and galaxies. The climbing phenomenon, whereby the scalar field cannot emerge from the initial singularity climbing down potentials that are asymptotically exponential with logarithmic slopes exceeding a critical value. Or, if you will, the impossibility for scalar fields to overcome, in a contracting phase, the attractive force of such potential ends. The physical meaning of this phenomenon was first elucidated in [18] in the simple exponential potential, although the corresponding solutions have a long history [19,20]. Possible imprints on the low-ℓ tail of the CMB power spectrum were then discussed in [21], while an analysis of the mechanism near the initial singularity was recently presented in [22]; The eventual collapse in a Big Crunch of systems of this type whenever the scalar tends to settle at a negative extremum of the potential V(ϕ). This was expected: it reflects the fact that AdS has no spatially flat metrics, or that negative extrema are non-admissible fixed points for the corresponding dynamical systems. The fields hi associated with the Cartan generators of the Lie algebra of G, whose number equals the rank r of the coset and whose kinetic terms, determined by the invariant metric of G/H, are canonical up to an overall constant; The axions bI associated with the roots of the Lie algebra of G, whose kinetic terms depend instead on both the Cartan fields hi and the bI. Can the integrable models that we have identified be realized within conventional gauged Supergravity, and for what choices of fluxes? This proviso is important, since some of the simplest potentials in our list do appear, albeit in versions where SUSY is non-linearly realized. Can integrable potentials provide interesting insights on inflationary scenarios behind the slow-roll regime, in addition to those encoded by the single-exponential potential, the simplest member of the set, that already revealed the existence of the climbing phenomenon? How much can one learn from integrable potentials about Cosmology with similar non-integrable potentials? The first question is perhaps the most difficult one, but it is also particularly interesting since a proper understanding of the issue will encode low-energy manifestations of non-perturbative string effects present in these contexts even with supersymmetry broken at high scales. It will be dealt with in detail elsewhere [27].The second question has encouraging answers. There are indeed two classes of handily integrable models where an early climbing phase leaves way to inflation during the ensuing descent (models (2) and (9) in Table 1). This setting can leave interesting imprints on the low-ℓ portion of the CMB power spectrum [21] that are qualitatively along the lines of WMAP and PLANCK data and is close to BSB orientifold models, although not quite identical to them. Model (6) in Table 1 is perhaps the most interesting of all the examples that we are presenting, since it can even combine, in a rather elegant and relatively handy fashion, an early climbing phase with tens of e-folds of slow-roll inflation and with a graceful exit to an eventual phase of decelerated expansion.Finally, the extensive literature on two-dimensional dynamical systems implies a positive answer to the third question. It turns out, in fact, that the dynamical system counterparts of our cosmological equations experience behaviors that are largely determined by the nature of their fixed points, and more specifically by the eigenvalues of their linear approximations in the vicinity of them. As a result, when an integrable potential has the same type of fixed points as a physically interesting non-integrable one, its exact solutions are expected to provide trustable clues on the actual physical system. This result is very appealing, despite the absence of general estimates of the error, and will be illustrated further in [27] comparing analytical and numerical solutions for interesting families of potential wells that include the physically relevant case of the STU model [28].Summarizing, we have constructed a wide list of one-field integrable cosmologies and we have examined in detail the properties of their most significant solutions, arriving in this fashion at a qualitative grasp of the general case. We have also addressed the question of whether the integrable models provide valuable approximations of similar non-integrable models, and in this respect we have obtained encouraging results that find a rationale in the ascertained behavior of corresponding two-dimensional dynamical systems.The structure of the paper is as follows. In Section 2 we derive an effective dynamical model that encompasses the possible d-dimensional Friedman-Lemaitre-Robertson-Walker (FLRW) spatially flat cosmologies driven by a scalar field ϕ with canonical kinetic term and self interaction produced by a potential function V(ϕ). In Section 3 we describe the methods used to build integrable dynamical systems and identify nine different families of one-scalar cosmologies that are integrable for suitable choices of the gauge function B(t) of Eq. (1.1). In Section 4 we analyze the generic properties of dynamical systems in two variables, we describe the general classification of their fixed points and we illustrate the corresponding behavior of the solutions of Section 3. We then discuss in detail the exact solutions of several particularly significant systems identified in Section 3 and illustrate a number of instructive lessons that can be drawn from them. In Section 5.1 we describe the gross features of 26 additional sporadic potentials and elaborate on the qualitative behavior of their solutions, on the basis of the key lessons drawn from the simpler examples of Section 4. We also elaborate briefly on the links with other integrable systems. In Section 6 we illustrate how exponential potentials accompany in String Theory a mechanism for supersymmetry breaking brought about by classically stable vacuum configurations of D branes and orientifolds with broken supersymmetry and discuss their behavior in lower dimensions. Under some assumptions that are spelled out in Section 6, we also describe the types of exponential potentials that can emerge, in four dimensions, from various types of branes present in String Theory. Insofar as possible, we work in a generic number of dimensions, but with critical superstrings in our mind, so that in most of the paper 4⩽d⩽10. Finally Section 7 contains our conclusions, an assessment of our current views on the role of integrability in cosmological models emerging from a Fundamental Theory and some anticipations of results that are going to appear elsewhere [27,29].

  18. New singularities in unexpected places

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Graham, Alexander A. H.

    2015-09-01

    Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe.

  19. Singular spectrum and singular entropy used in signal processing of NC table

    NASA Astrophysics Data System (ADS)

    Wang, Linhong; He, Yiwen

    2011-12-01

    NC (numerical control) table is a complex dynamic system. The dynamic characteristics caused by backlash, friction and elastic deformation among each component are so complex that they have become the bottleneck of enhancing the positioning accuracy, tracking accuracy and dynamic behavior of NC table. This paper collects vibration acceleration signals from NC table, analyzes the signals with SVD (singular value decomposition) method, acquires the singular spectrum and calculates the singular entropy of the signals. The signal characteristics and their regulations of NC table are revealed via the characteristic quantities such as singular spectrum, singular entropy etc. The steep degrees of singular spectrums can be used to discriminate complex degrees of signals. The results show that the signals in direction of driving axes are the simplest and the signals in perpendicular direction are the most complex. The singular entropy values can be used to study the indetermination of signals. The results show that the signals of NC table are not simple signal nor white noise, the entropy values in direction of driving axe are lower, the entropy values increase along with the increment of driving speed and the entropy values at the abnormal working conditions such as resonance or creeping etc decrease obviously.

  20. Continuations of the nonlinear Schrödinger equation beyond the singularity

    NASA Astrophysics Data System (ADS)

    Fibich, G.; Klein, M.

    2011-07-01

    We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.

  1. Dynamical singularities for complex initial conditions and the motion at a real separatrix.

    PubMed

    Shnerb, Tamar; Kay, K G

    2006-04-01

    This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.

  2. Topological resolution of gauge theory singularities

    NASA Astrophysics Data System (ADS)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-01

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric SU(2) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  3. A Big Five Personality Typology in Adolescents with Congenital Heart Disease: Prospective Associations with Psychosocial Functioning and Perceived Health.

    PubMed

    Rassart, Jessica; Luyckx, Koen; Goossens, Eva; Oris, Leen; Apers, Silke; Moons, Philip

    2016-06-01

    This study aimed (1) to identify different personality types in adolescents with congenital heart disease (CHD), and (2) to relate these personality types to psychosocial functioning and several domains of perceived health, both concurrently and prospectively. Hence, this study aimed to expand previous research by adopting a person-centered approach to personality through focusing on personality types rather than singular traits. Adolescents with CHD were selected from the database of pediatric and congenital cardiology of the University Hospitals Leuven. A total of 366 adolescents (15-20 years old) with CHD participated at time 1. These adolescents completed questionnaires on the Big Five personality traits, depressive symptoms, loneliness, and generic and disease-specific domains of health. Nine months later, 313 patients again completed questionnaires. Cluster analysis at time 1 revealed three personality types: resilients (37 %), undercontrollers (34 %), and overcontrollers (29 %), closely resembling typologies obtained in previous community samples. Resilients, under-, and overcontrollers did not differ in terms of disease complexity, but differed on depressive symptoms, loneliness, and generic and disease-specific domains of perceived health at both time-points. Overall, resilients showed the most favorable outcomes and overcontrollers the poorest, with undercontrollers scoring in-between. Personality assessment can help clinicians in identifying adolescents at risk for physical and psychosocial difficulties later in time. In this study, both over- and undercontrollers were identified as high-risk groups. Our findings show that both personality traits and types should be taken into account to obtain a detailed view on the associations between personality and health.

  4. 7 CFR 46.1 - Words in singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Words in singular form. 46.1 Section 46.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Words in singular form. Words in this part in the singular form shall be deemed to import the plural...

  5. 7 CFR 61.1 - Words in singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Words in singular form. 61.1 Section 61.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Words in singular form. Words used in the regulations in this subpart in the singular form shall be...

  6. Treatment of singularities in a middle-crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.

  7. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  8. Cusp singularities in f(R) gravity: pros and cons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Yeom, Dong-han

    We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvaturemore » singularity that can be interpreted by a firewall.« less

  9. Propagation of the Lissajous singularity dipole emergent from non-paraxial polychromatic beams

    NASA Astrophysics Data System (ADS)

    Haitao, Chen; Gao, Zenghui; Wang, Wanqing

    2017-06-01

    The propagation of the Lissajous singularity dipole (LSD) emergent from the non-paraxial polychromatic beams is studied. It is found that the handedness reversal of Lissajous singularities, the change in the shape of Lissajous figures, as well as the creation and annihilation of the LSD may take place by varying the propagation distance, off-axis parameter, wavelength, or amplitude factor. Comparing with the LSD emergent from paraxial polychromatic beams, the output field of non-paraxial polychromatic beams is more complicated, which results in some richer dynamic behaviors of Lissajous singularities, such as more Lissajous singularities and no vanishing of a single Lissajous singularity at the plane z>0.

  10. Entangled singularity patterns of photons in Ince-Gauss modes

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.

  11. Quantum healing of spacetime singularities: A review

    NASA Astrophysics Data System (ADS)

    Konkowski, D. A.; Helliwell, T. M.

    2018-02-01

    Singularities are commonplace in general relativistic spacetimes. It is natural to hope that they might be “healed” (or resolved) by the inclusion of quantum mechanics, either in the theory itself (quantum gravity) or, more modestly, in the description of the spacetime geodesic paths used to define them. We focus here on the latter, mainly using a procedure proposed by Horowitz and Marolf to test whether singularities in broad classes of spacetimes can be resolved by replacing geodesic paths with quantum wave packets. We list the spacetime singularities that various authors have studied in this context, and distinguish those which are healed quantum mechanically (QM) from those which remain singular. Finally, we mention some alternative approaches to healing singularities.

  12. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  13. Topological resolution of gauge theory singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit themore » singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.« less

  14. Genericity Distinctions and the Interpretation of Determiners in Second Language Acquisition

    ERIC Educational Resources Information Center

    Ionin, Tania; Montrul, Silvina; Kim, Ji-Hye; Philippov, Vadim

    2011-01-01

    English uses three types of generic NPs: bare plurals ("Lions are dangerous"), definite singulars ("The lion is dangerous"), and indefinite singulars ("A lion is dangerous"). These three NP types are not interchangeable: definite singulars and bare plurals can have generic reference at the NP-level, while indefinite singulars are compatible only…

  15. 7 CFR 900.36 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.36 Section 900.36 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Marketing Orders § 900.36 Words in the singular form. Words in this subpart in the singular form shall be...

  16. 7 CFR 900.100 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.100 Section 900.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  17. 7 CFR 900.1 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.1 Section 900.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  18. 7 CFR 900.50 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.50 Section 900.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Words in the singular form. Words in this subpart in the singular form shall be deemed to import the...

  19. 7 CFR 900.20 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.20 Section 900.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... § 900.20 Words in the singular form. Words in this subpart in the singular form shall be deemed to...

  20. 7 CFR 1200.50 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.50 Section 1200.50 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING....50 Words in the singular form. Words in this subpart in the singular form shall be deemed to import...

  1. Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1993-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  2. Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1992-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  3. {lambda} elements for one-dimensional singular problems with known strength of singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.K.; Surana, K.S.

    1996-10-01

    This paper presents a new and general procedure for designing special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is know. The {lambda} elements presented here are of type C{sup 0}. These elements also provide inter-element C{sup 0} continuity with p-version elements. The {lambda} elements do not require a precise knowledge of the extent of singular zone, i.e., their use may be extended beyond the singular zone. When {lambda} elements are used at the singularity, a singular problem behaves like a smooth problem thereby eliminating the need for h, p-adaptive processes all together.more » One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Least squares approach (or least squares finite element formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical results presented for radially inward flow with inner radius r{sub i} = 0.1, 0.01, 0.001, 0.0001, 0.00001, and Deborah number of 2 (De = 2) demonstrate the accuracy, faster convergence of the iterative solution procedure, faster convergence rate of the error functional and mesh independent characteristics of the {lambda} elements regardless of the severity of the singularity.« less

  4. Tangled nonlinear driven chain reactions of all optical singularities

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  5. The crunch factor's role in golf-related low back pain.

    PubMed

    Cole, Michael H; Grimshaw, Paul N

    2014-05-01

    The golf swing exposes the spine to complex torsional, compressive, and shearing loads that increase a player's risk of injury. The crunch factor (CF) has been described as a measure to evaluate the risk of low back injuries in golfers and is based on the notion that lateral flexion and axial trunk rotation jointly contribute to spinal degeneration. However, few studies have evaluated the appropriateness of this measure in golfers with low back pain (LBP). To objectively examine the usefulness of the CF as a measure for assessing the risk of low back injury in golfers. Field-based research using a cross-sectional design. This research used three-dimensional motion analysis to assess the golf swings of 12 golfers with LBP and 15 asymptomatic controls. Three-dimensional kinematics were derived using Vicon Motus, and the CF was calculated as the instantaneous product of axial trunk rotation velocity and lateral trunk flexion angle. Maximum CFs and their timings were not significantly different between the symptomatic and asymptomatic groups. Furthermore, for those golfers who produced higher CFs (irrespective of the group), the increased magnitude could not be attributed to an increased axial angular trunk velocity or lateral flexion angle, but rather to a concomitant increase in both of these variables. The findings suggested that although the fundamental concepts that underpin the CF seem sensible, this measure does not appear to be sensitive enough to distinguish golfers with LBP from the asymptomatic players. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Spectral singularities and Bragg scattering in complex crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, S.

    2010-02-15

    Spectral singularities that spoil the completeness of Bloch-Floquet states may occur in non-Hermitian Hamiltonians with complex periodic potentials. Here an equivalence is established between spectral singularities in complex crystals and secularities that arise in Bragg diffraction patterns. Signatures of spectral singularities in a scattering process with wave packets are elucidated for a PT-symmetric complex crystal.

  7. On the splash and splat singularities for the one-phase inhomogeneous Muskat Problem

    NASA Astrophysics Data System (ADS)

    Córdoba, Diego; Pernas-Castaño, Tania

    2017-10-01

    In this paper, we study finite time splash and splat singularities formation for the interface of one fluid in a porous media with two different permeabilities. We prove that the smoothness of the interface breaks down in finite time into a splash singularity but this is not going to happen into a splat singularity.

  8. Singularity embedding method in potential flow calculations

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Huynh, H.

    1982-01-01

    The so-called H-type mesh is used in a finite-element (or finite-volume) calculation of the potential flow past an airfoil. Due to coordinate singularity at the leading edge, a special singular trial function is used for the elements neighboring the leading edge. The results using the special singular elements are compared to those using the regular elements. It is found that the unreasonable pressure distribution obtained by the latter is removed by the embedding of the singular element. Suggestions to extend the present method to transonic cases are given.

  9. Naked singularities are not singular in distorted gravity

    NASA Astrophysics Data System (ADS)

    Garattini, Remo; Majumder, Barun

    2014-07-01

    We compute the Zero Point Energy (ZPE) induced by a naked singularity with the help of a reformulation of the Wheele-DeWitt equation. A variational approach is used for the calculation with Gaussian Trial Wave Functionals. The one loop contribution of the graviton to the ZPE is extracted keeping under control the UltraViolet divergences by means of a distorted gravitational field. Two examples of distortion are taken under consideration: Gravity's Rainbow and Noncommutative Geometry. Surprisingly, we find that the ZPE is no more singular when we approach the singularity.

  10. Contracting singular horseshoe

    NASA Astrophysics Data System (ADS)

    Morales, C. A.; San Martín, B.

    2017-11-01

    We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.

  11. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  12. Probing the degenerate states of V-point singularities.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, Paramasivam

    2017-09-15

    V-points are polarization singularities in spatially varying linearly polarized optical fields and are characterized by the Poincare-Hopf index η. Each V-point singularity is a superposition of two oppositely signed orbital angular momentum states in two orthogonal spin angular momentum states. Hence, a V-point singularity has zero net angular momentum. V-points with given |η| have the same (amplitude) intensity distribution but have four degenerate polarization distributions. Each of these four degenerate states also produce identical diffraction patterns. Hence to distinguish these degenerate states experimentally, we present in this Letter a method involving a combination of polarization transformation and diffraction. This method also shows the possibility of using polarization singularities in place of phase singularities in optical communication and quantum information processing.

  13. Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region

    NASA Astrophysics Data System (ADS)

    Liu, Pusheng; Lü, Baida

    2007-04-01

    By using the vectorial Debye diffraction theory, phase singularities of high numerical aperture (NA) dark-hollow Gaussian beams in the focal region are studied. The dependence of phase singularities on the truncation parameter δ and semi-aperture angle α (or equally, NA) is illustrated numerically. A comparison of phase singularities of high NA dark-hollow Gaussian beams with those of scalar paraxial Gaussian beams and high NA Gaussian beams is made. For high NA dark-hollow Gaussian beams the beam order n additionally affects the spatial distribution of phase singularities, and there exist phase singularities outside the focal plane, which may be created or annihilated by variation of the semi-aperture angle in a certain region.

  14. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  15. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  16. Managing focal fields of vector beams with multiple polarization singularities.

    PubMed

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  17. Singular perturbation and time scale approaches in discrete control systems

    NASA Technical Reports Server (NTRS)

    Naidu, D. S.; Price, D. B.

    1988-01-01

    After considering a singularly perturbed discrete control system, a singular perturbation approach is used to obtain outer and correction subsystems. A time scale approach is then applied via block diagonalization transformations to decouple the system into slow and fast subsystems. To a zeroth-order approximation, the singular perturbation and time-scale approaches are found to yield equivalent results.

  18. Overcoming Robot-Arm Joint Singularities

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Houck, J. A.

    1986-01-01

    Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.

  19. 7 CFR 900.80 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Words in the singular form. 900.80 Section 900.80....C. 608b(b) and 7 U.S.C. 608e Covering Fruits, Vegetables, and Nuts § 900.80 Words in the singular form. Words in this subpart in the singular form shall be deemed to import the plural, and vice versa...

  20. The mechanics of delamination in fiber-reinforced composite materials. Part 1: Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.

  1. Singular trajectories: space-time domain topology of developing speckle fields

    NASA Astrophysics Data System (ADS)

    Vasil'ev, Vasiliy; Soskin, Marat S.

    2010-02-01

    It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.

  2. New classification methods on singularity of mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Jianguo; Han, Jianyou

    2010-07-01

    Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.

  3. Steering Law Design for Redundant Single Gimbal Control Moment Gyro Systems. M.S. Thesis - Massachusetts Inst. of Technology.

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth Sarkis

    1987-01-01

    The correspondence between robotic manipulators and single gimbal Control Moment Gyro (CMG) systems was exploited to aid in the understanding and design of single gimbal CMG Steering laws. A test for null motion near a singular CMG configuration was derived which is able to distinguish between escapable and unescapable singular states. Detailed analysis of the Jacobian matrix null-space was performed and results were used to develop and test a variety of single gimbal CMG steering laws. Computer simulations showed that all existing singularity avoidance methods are unable to avoid Elliptic internal singularities. A new null motion algorithm using the Moore-Penrose pseudoinverse, however, was shown by simulation to avoid Elliptic type singularities under certain conditions. The SR-inverse, with appropriate null motion was proposed as a general approach to singularity avoidance, because of its ability to avoid singularities through limited introduction of torque error. Simulation results confirmed the superior performance of this method compared to the other available and proposed pseudoinverse-based Steering laws.

  4. Three dimensional canonical singularity and five dimensional N = 1 SCFT

    NASA Astrophysics Data System (ADS)

    Xie, Dan; Yau, Shing-Tung

    2017-06-01

    We conjecture that every three dimensional canonical singularity defines a five dimensional N = 1 SCFT. Flavor symmetry can be found from singularity structure: non-abelian flavor symmetry is read from the singularity type over one dimensional singular locus. The dimension of Coulomb branch is given by the number of compact crepant divisors from a crepant resolution of singularity. The detailed structure of Coulomb branch is described as follows: a) a chamber of Coulomb branch is described by a crepant resolution, and this chamber is given by its Nef cone and the prepotential is computed from triple intersection numbers; b) Crepant resolution is not unique and different resolutions are related by flops; Nef cones from crepant resolutions form a fan which is claimed to be the full Coulomb branch.

  5. Sharp bounds for singular values of fractional integral operators

    NASA Astrophysics Data System (ADS)

    Burman, Prabir

    2007-03-01

    From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].

  6. Diffraction of V-point singularities through triangular apertures.

    PubMed

    Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P

    2017-05-01

    In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.

  7. Issues and Methods Concerning the Evaluation of Hypersingular and Near-Hypersingular Integrals in BEM Formulations

    NASA Technical Reports Server (NTRS)

    Fink, P. W.; Khayat, M. A.; Wilton, D. R.

    2005-01-01

    It is known that higher order modeling of the sources and the geometry in Boundary Element Modeling (BEM) formulations is essential to highly efficient computational electromagnetics. However, in order to achieve the benefits of hIgher order basis and geometry modeling, the singular and near-singular terms arising in BEM formulations must be integrated accurately. In particular, the accurate integration of near-singular terms, which occur when observation points are near but not on source regions of the scattering object, has been considered one of the remaining limitations on the computational efficiency of integral equation methods. The method of singularity subtraction has been used extensively for the evaluation of singular and near-singular terms. Piecewise integration of the source terms in this manner, while manageable for bases of constant and linear orders, becomes unwieldy and prone to error for bases of higher order. Furthermore, we find that the singularity subtraction method is not conducive to object-oriented programming practices, particularly in the context of multiple operators. To extend the capabilities, accuracy, and maintainability of general-purpose codes, the subtraction method is being replaced in favor of the purely numerical quadrature schemes. These schemes employ singularity cancellation methods in which a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. An example of the sin,oularity cancellation approach is the Duffy method, which has two major drawbacks: 1) In the resulting integrand, it produces an angular variation about the singular point that becomes nearly-singular for observation points close to an edge of the parent element, and 2) it appears not to work well when applied to nearly-singular integrals. Recently, the authors have introduced the transformation u(x(prime))= sinh (exp -1) x(prime)/Square root of ((y prime (exp 2))+ z(exp 2) for integrating functions of the form I = Integral of (lambda(r(prime))((e(exp -jkR))/(4 pi R) d D where A (r (prime)) is a vector or scalar basis function and R = Square root of( (x(prime)(exp2) + (y(prime)(exp2) + z(exp 2)) is the distance between source and observation points. This scheme has all of the advantages of the Duffy method while avoiding the disadvantages listed above. In this presentation we will survey similar approaches for handling singular and near-singular terms for kernels with 1/R(exp 2) type behavior, addressing potential pitfalls and offering techniques to efficiently handle special cases.

  8. Existing generating assets squeezed as new project starts slow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.B.; Tiffany, E.D.

    Most forecasting reports concentrate on political or regulatory events to predict future industry trends. Frequently overlooked are the more empirical performance trends of the principal power generation technologies. Solomon and Associates queried its many power plant performance databases and crunched some numbers to identify those trends. Areas of investigation included reliability, utilization (net output factor and net capacity factor) and cost (operating costs). An in-depth analysis for North America and Europe is presented in this article, by region and by regeneration technology. 4 figs., 2 tabs.

  9. mpiGraph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Adam

    2007-05-22

    MpiGraph consists of an MPI application called mpiGraph written in C to measure message bandwidth and an associated crunch_mpiGraph script written in Perl to process the application output into an HTMO report. The mpiGraph application is designed to inspect the health and scalability of a high-performance interconnect while under heavy load. This is useful to detect hardware and software problems in a system, such as slow nodes, links, switches, or contention in switch routing. It is also useful to characterize how interconnect performance changes with different settings or how one interconnect type compares to another.

  10. A crunch on thermocompression flip chip bonding

    NASA Astrophysics Data System (ADS)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Mahmed, Norsuria; Retnasamy, Vithyacharan

    2017-09-01

    This study discussed the evolution and important findings, critical technical challenges, solutions and bonding equipment of flip chip thermo compression bonding (TCB). The bonding force, temperature and time were the key bonding parameters that need to be tweaked based on the researches done by others. TCB technology worked well with both pre-applied underfill and flux (still under development). Lower throughput coupled with higher processing costs was example of challenges in the TCB technology. The paper is concluded with a brief description of the current equipment used in thermo compression process.

  11. The money issue.

    PubMed

    Carpenter, Dave; Haugh, Richard

    2003-06-01

    Volume is rising at a healthy pact. Technology is improving patient care. Many organizations have, out of necessity, strengthened business fundamentals, controlled costs and refined their focus. Yet not-for-profit hospitals are squeezed by a cash crunch that has balance sheets under pressure and credit downgrades outpacing upgrades--the result of shrinking investment income, rising pension obligations, low government reimbursement and other threats to operational stability. N&HN looks at the challenges, including recent fallout from the most pressing issues, how some systems have responded, and the pros and cons of borrowing now.

  12. Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.

    2015-09-01

    Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.

  13. Naked shell singularities on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seahra, Sanjeev S.

    By utilizing nonstandard slicings of 5-dimensional Schwarzschild and Schwarzschild-AdS manifolds based on isotropic coordinates, we generate static and spherically-symmetric braneworld spacetimes containing shell-like naked null singularities. For planar slicings, we find that the brane-matter sourcing the solution is a perfect fluid with an exotic equation of state and a pressure singularity where the brane crosses the bulk horizon. From a relativistic point of view, such a singularity is required to maintain matter infinitesimally above the surface of a black hole. From the point of view of the AdS/CFT conjecture, the singular horizon can be seen as one possible quantum correctionmore » to a classical black hole geometry. Various generalizations of planar slicings are also considered for a Ricci-flat bulk, and we find that singular horizons and exotic matter distributions are common features.« less

  14. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  15. New method for detecting singularities in experimental incompressible flows

    NASA Astrophysics Data System (ADS)

    Kuzzay, Denis; Saw, Ewe-Wei; Martins, Fabio J. W. A.; Faranda, Davide; Foucaut, Jean-Marc; Daviaud, François; Dubrulle, Bérengère

    2017-06-01

    We introduce two new criteria based on the work of Duchon and Robert (2000 Nonlinearity 13 249) and Eyink (2006 Phys. Rev. E 74 066302), which allow for the local detection of Navier-Stokes singularities in experimental flows. We discuss the difference between non-dissipative or dissipative Euler quasi-singularities and genuine Navier-Stokes dissipative singularites, and classify them with respect to their Hölder exponent h. We show that our criteria allow us to detect areas in a flow where the velocity field is no more regular than Hölder continuous with some Hölder exponent h ≤slant 1/2 . We illustrate our discussion using classical tomographic particle image velocimetry (TPIV) measurements obtained inside a high Reynolds number flow generated in the boundary layer of a wind tunnel. Our study shows that, in order to detect singularities or quasi-singularities, one does not need to have access to the whole velocity field inside a volume, but can instead look for them from stereoscopic PIV data on a plane. We also provide a discussion about the link between areas detected by our criteria and areas corresponding to large vorticity. We argue that this link might provide either a clue about the genesis of these quasi-singularities or a way to discriminate dissipative Euler quasi-singularities and genuine Navier-Stokes singularities.

  16. The mechanics of delamination in fiber-reinforced composite materials. I - Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221

  17. Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Ralph M., E-mail: rkaufman@math.purdue.edu; Khlebnikov, Sergei, E-mail: skhleb@physics.purdue.edu; Wehefritz-Kaufmann, Birgit, E-mail: ebkaufma@math.purdue.edu

    2012-11-15

    Motivated by the Double Gyroid nanowire network we develop methods to detect Dirac points and classify level crossings, aka. singularities in the spectrum of a family of Hamiltonians. The approach we use is singularity theory. Using this language, we obtain a characterization of Dirac points and also show that the branching behavior of the level crossings is given by an unfolding of A{sub n} type singularities. Which type of singularity occurs can be read off a characteristic region inside the miniversal unfolding of an A{sub k} singularity. We then apply these methods in the setting of families of graph Hamiltonians,more » such as those for wire networks. In the particular case of the Double Gyroid we analytically classify its singularities and show that it has Dirac points. This indicates that nanowire systems of this type should have very special physical properties. - Highlights: Black-Right-Pointing-Pointer New method for analytically finding Dirac points. Black-Right-Pointing-Pointer Novel relation of level crossings to singularity theory. Black-Right-Pointing-Pointer More precise version of the von-Neumann-Wigner theorem for arbitrary smooth families of Hamiltonians of fixed size. Black-Right-Pointing-Pointer Analytical proof of the existence of Dirac points for the Gyroid wire network.« less

  18. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  19. Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies.

    PubMed

    Mostafazadeh, Ali

    2009-06-05

    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.

  20. Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshemkov, Andrey A

    2010-10-06

    A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.

  1. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    NASA Technical Reports Server (NTRS)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  2. Constellation of phase singularities in a speckle-like pattern for optical vortex metrology applied to biological kinematic analysis.

    PubMed

    Wang, Wei; Qiao, Yu; Ishijima, Reika; Yokozeki, Tomoaki; Honda, Daigo; Matsuda, Akihiro; Hanson, Steen G; Takeda, Mitsuo

    2008-09-01

    A novel technique for biological kinematic analysis is proposed that makes use of the pseudophase singularities in a complex signal generated from a speckle-like pattern. In addition to the information about the locations and the anisotropic core structures of the pseudophase singularities, we also detect the spatial structures of a cluster of phase singularities, which serves as a unique constellation characterizing the mutual position relation between the individual pseudophase singularities. Experimental results of in vivo measurements for a swimming fish along with its kinematic analysis are presented, which demonstrate the validity of the proposed technique.

  3. Spectral Singularities of Complex Scattering Potentials and Infinite Reflection and Transmission Coefficients at Real Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2009-06-05

    Spectral singularities are spectral points that spoil the completeness of the eigenfunctions of certain non-Hermitian Hamiltonian operators. We identify spectral singularities of complex scattering potentials with the real energies at which the reflection and transmission coefficients tend to infinity, i.e., they correspond to resonances having a zero width. We show that a waveguide modeled using such a potential operates like a resonator at the frequencies of spectral singularities. As a concrete example, we explore the spectral singularities of an imaginary PT-symmetric barrier potential and demonstrate the above resonance phenomenon for a certain electromagnetic waveguide.

  4. Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karabin, M. E., Jr.

    1977-01-01

    Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.

  5. An Efficient and Robust Singular Value Method for Star Pattern Recognition and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.

    2003-01-01

    A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.

  6. Selecting appropriate singular values of transmission matrix to improve precision of incident wavefront retrieval

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zhang, Xicheng; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Du, Jinglei

    2018-06-01

    A method of selecting appropriate singular values of the transmission matrix to improve the precision of incident wavefront retrieval in focusing light through scattering media is proposed. The optimal singular values selected by this method can reduce the degree of ill-conditionedness of the transmission matrix effectively, which indicates that the incident wavefront retrieved from the optimal set of singular values is more accurate than the incident wavefront retrieved from other sets of singular values. The validity of this method is verified by numerical simulation and actual measurements of the incident wavefront of coherent light through ground glass.

  7. Singular spectrum analysis of sleep EEG in insomnia.

    PubMed

    Aydın, Serap; Saraoǧlu, Hamdi Melih; Kara, Sadık

    2011-08-01

    In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.

  8. The strong energy condition and the S-brane singularity problem

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    2003-06-01

    Recently it has been argued that, because tachyonic matter satisfies the Strong Energy Condition [SEC], there is little hope of avoiding the singularities which plague S-Brane spacetimes. Meanwhile, however, Townsend and Wohlfarth have suggested an ingenious way of circumventing the SEC in such situations, and other suggestions for actually violating it in the S-Brane context have recently been proposed. Of course, the natural context for discussions of [effective or actual] violations of the SEC is the theory of asymptotically deSitter spacetimes, which tend to be less singular than ordinary FRW spacetimes. However, while violating or circumventing the SEC is necessary if singularities are to be avoided, it is not at all clear that it is sufficient. That is, we can ask: would an asymptotically deSitter S-brane spacetime be non-singular? We show that this is difficult to achieve; this result is in the spirit of the recently proved "S-brane singularity theorem". Essentially our results suggest that circumventing or violating the SEC may not suffice to solve the S-Brane singularity problem, though we do propose two ways of avoiding this conclusion.

  9. Dynamic Singularity Spectrum Distribution of Sea Clutter

    NASA Astrophysics Data System (ADS)

    Xiong, Gang; Yu, Wenxian; Zhang, Shuning

    2015-12-01

    The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.

  10. A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems

    NASA Astrophysics Data System (ADS)

    Singh, A.

    2009-12-01

    A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.

  11. Magnetogenesis in matter—Ekpyrotic bouncing cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koley, Ratna; Samtani, Sidhartha, E-mail: ratna.physics@presiuniv.ac.in, E-mail: samtanisidhartha@gmail.com

    In the recent past there have been many attempts to associate the generation of primordial magnetic seed fields with the inflationary era, but with limited success. We thus take a different approach by using a model for nonsingular bouncing cosmology. A coupling of the electromagnetic Lagrangian F {sub μν} F {sup μν} with a non background scalar field has been considered for the breaking of conformal invariance. We have shown that non singular bouncing cosmology supports magnetogenesis evading the long standing back reaction and strong coupling problems which have plagued inflationary magnetogenesis. In this model, we have achieved a scalemore » invariant power spectrum for the parameter range compatible with observed CMB anisotropies. The desired strength of the magnetic field has also been obtained that goes in accordance with present observations. It is also important to note that no BKL instability arises within this parameter range. The energy scales for different stages of evolution of the bouncing model are so chosen that they solve certain problems of standard Big Bang cosmology as well.« less

  12. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    PubMed

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  13. Perturbative instability of inflationary cosmology from quantum potentials

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Diab, A.; Abou El Dahab, E.

    2017-09-01

    It was argued that the Raychaudhuri equation with a quantum correction term seems to avoid the Big Bang singularity and to characterize an everlasting Universe (Ali and Das in Phys Lett B 741:276, 2015). Critical comments on both conclusions and on the correctness of the key expressions of this work were discussed in literature (Lashin in Mod Phys Lett 31:1650044, 2016). In the present work, we have analyzed the perturbative (in)stability conditions in the inflationary era of the early Universe. We conclude that both unstable and stable modes are incompatible with the corresponding ones obtained in the standard FLRW Universe. We have shown that unstable modes do exist at small (an)isotropic perturbation and for different equations of state. Inequalities for both unstable and stable solutions with the standard FLRW space were derived. They reveal that in the FLRW flat Universe both perturbative instability and stability are likely. While negative stability modes have been obtained for radiation- and matter-dominated eras, merely, instability modes exist in case of a finite cosmological constant and also if the vacuum energy dominates the cosmic background geometry.

  14. 2-COLOR Pupil Imaging Method to Detect Stellar Oscillations

    NASA Astrophysics Data System (ADS)

    Costantino, Sigismondi; Alessandro, Cacciani; Mauro, Dolci; Stuart, Jeffries; Eric, Fossat; Ludovico, Cesario; Paolo, Rapex; Luca, Bertello; Ferenc, Varadi; Wolfgang, Finsterle

    Stellar intensity oscillations from the ground are strongly affected by atmospheric noise. For solar-type stars even Antarctic scintillation noise is still overwhelming. We proposed and tested a differential method that images on the same CCD detector two-color pupils of the telescope in order to compensate for intensity sky fluctuations guiding and saturation problems. SOHO data reveal that our method has an efficiency of 70% respect to the absolute amplitude variations. Using two instruments at Dome C and South Pole we can further minimize atmospheric color noise with cross-spectrum methods. This way we also decrease the likelihood of gaps in the data string due to bad weather. Observationally while waiting for the South Pole/Dome-C sites we are carrying on tests from available telescopes and Big Bear Mt. Wilson Teramo Milano. On the data analysis side we use the Random Lag Singular Cross-Spectrum Analysis which eliminates noise from the observed signal better than traditional Fourier transform. This method is also well-suited for extracting common oscillatory components from two or more observations including their relative phases as we are planning to do

  15. Singularity computations. [finite element methods for elastoplastic flow

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1978-01-01

    Direct descriptions of the structure of a singularity would describe the radial and angular distributions of the field quantities as explicitly as practicable along with some measure of the intensity of the singularity. This paper discusses such an approach based on recent development of numerical methods for elastoplastic flow. Attention is restricted to problems where one variable or set of variables is finite at the origin of the singularity but a second set is not.

  16. Transmutation of planar media singularities in a conformal cloak.

    PubMed

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  17. Computing singularities of perturbation series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvaal, Simen; Jarlebring, Elias; Michiels, Wim

    2011-03-15

    Many properties of current ab initio approaches to the quantum many-body problem, both perturbational and otherwise, are related to the singularity structure of the Rayleigh-Schroedinger perturbation series. A numerical procedure is presented that in principle computes the complete set of singularities, including the dominant singularity which limits the radius of convergence. The method approximates the singularities as eigenvalues of a certain generalized eigenvalue equation which is solved using iterative techniques. It relies on computation of the action of the Hamiltonian matrix on a vector and does not rely on the terms in the perturbation series. The method can be usefulmore » for studying perturbation series of typical systems of moderate size, for fundamental development of resummation schemes, and for understanding the structure of singularities for typical systems. Some illustrative model problems are studied, including a helium-like model with {delta}-function interactions for which Moeller-Plesset perturbation theory is considered and the radius of convergence found.« less

  18. Tailoring Eigenmodes at Spectral Singularities in Graphene-based PT Systems.

    PubMed

    Zhang, Weixuan; Wu, Tong; Zhang, Xiangdong

    2017-09-12

    The spectral singularity existing in PT-synthetic plasmonic system has been widely investigated. Only lasing-mode can be excited resulting from the passive characteristic of metallic materials. Here, we investigated the spectral singularity in the hybrid structure composed of the photoexcited graphene and one-dimensional PT-diffractive grating. In this system, both lasing- and absorption-modes can be excited with the surface conductivity of photoexcited graphene being loss and gain, respectively. Remarkably, the spectral singularity will disappear with the optically pumped graphene to be lossless. In particular, we find that spectral singularities can exhibit symmetry-modes, when the loss and gain of the grating is unbalanced. Meanwhile, by tuning the loss (gain) of graphene and non-PT diffraction grating, lasing- and absorption-modes can also be excited. We hope that tunable optical modes at spectral singularities can have some applications in designing novel surface-enhanced spectroscopies and plasmon lasers.

  19. Stress singularities at the vertex of a cylindrically anisotropic wedge

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Boduroglu, H.

    1980-01-01

    The plane elasticity problem for a cylindrically anisotropic solid is formulated. The form of the solution for an infinite wedge shaped domain with various homogeneous boundary conditions is derived and the nature of the stress singularity at the vertex of the wedge is studied. The characteristic equations giving the stress singularity and the angular distribution of the stresses around the vertex of the wedge are obtained for three standard homogeneous boundary conditions. The numerical examples show that the singular behavior of the stresses around the vertex of an anisotropic wedge may be significantly different from that of the isotropic material. Some of the results which may be of practical importance are that for a half plane the stress state at r = 0 may be singular and for a crack the power of stress singularity may be greater or less than 1/2.

  20. Stanley Corrsin Award Talk: The role of singularities in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eggers, Jens

    2017-11-01

    If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.

  1. Particle creation by naked singularities in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro

    Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recastmore » in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.« less

  2. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  3. Using a high-dimensional graph of semantic space to model relationships among words

    PubMed Central

    Jackson, Alice F.; Bolger, Donald J.

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525

  4. Using a high-dimensional graph of semantic space to model relationships among words.

    PubMed

    Jackson, Alice F; Bolger, Donald J

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).

  5. A Positive Cosmological Constant as Centrifugal Force in an Expanding Kantian Model of the Universe

    NASA Astrophysics Data System (ADS)

    Sternglass, E. J.

    1998-05-01

    Recent redshift measurements of distant Type Ia supernovae appear to indicate that cosmic expansion has speeded up since these distant stars exploded, rather than slowing down under the action of gravity. These results suggest the existence of a repulsive force as originally assumed by Einstein through the introduction of the lambda constant. Such a repulsive force arises naturally as centrifugal force in the evolution of a hierarchically organized cosmological model involving a series of rotating structures of increasing size as originally suggested by Kant in the 18th century when combined with the idea of Lemaitre, according to which the universe and the observed systems arose in the course of repeated divisions by two of a primeval atom. As described in the AIP Conference Proceedings 254,105 (1992), if this atom is assumed to be a highly relativistic form of positronium or "quarkonium" at the Planck density one avoids an initial singularity and requires no other particles. The division process takes place in 27 stages of 10 divisions each beginning with a lower mass excited state of the original Lemaitre atom that forms a central cluster in which a quarter of the particles are initially retained. One then arrives at a model in which all structures are laid down in the form of massive "cold dark matter" during a period of exponential growth or inflation before the Big Bang, leading to an ultimately stable, closed "flat" universe of finite mass that explains the masses, sizes, rotational and expansion velocities and thus the Hubble constants of the various systems as well as the age of the universe since the Big Bang in good agreement with observations, using only e, mo, c and h.

  6. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya

    2014-06-01

    We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  7. A Fourier dimensionality reduction model for big data interferometric imaging

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves

    2017-06-01

    Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.

  8. The Production of FRW Universe and Decay to Particles in Multiverse

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj

    2017-09-01

    In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.

  9. Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.

    2017-03-01

    The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.

  10. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    PubMed

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  11. Applying process mapping and analysis as a quality improvement strategy to increase the adoption of fruit, vegetable, and water breaks in Australian primary schools.

    PubMed

    Biggs, Janice S; Farrell, Louise; Lawrence, Glenda; Johnson, Julie K

    2014-03-01

    Over the past decade, public health policy in Australia has prioritized the prevention and control of obesity and invested in programs that promote healthy eating-related behaviors, which includes increasing fruit and vegetable consumption in children. This article reports on a study that used process mapping and analysis as a quality improvement strategy to improve the delivery of a nutrition primary prevention program delivered in primary schools in New South Wales, Australia. Crunch&Sip® has been delivered since 2008. To date, adoption is low with only 25% of schools implementing the program. We investigated the cause of low adoption and propose actions to increase school participation. We conducted semistructured interviews with key stakeholders and analyzed the process of delivering Crunch&Sip to schools. Interviews and process mapping and analysis identified a number of barriers to schools adopting the program. The analyses identified the need to simplify and streamline the process of delivering the program to schools and introduce monitoring and feedback loops to track ongoing participation. The combination of stakeholder interviews and process mapping and analysis provided important practical solutions to improving program delivery and also contributed to building an understanding of factors that help and hinder program adoption. The insight provided by this analysis helped identify usable routine measures of adoption, which were an improvement over those used in the existing program plan. This study contributed toward improving the quality and efficiency of delivering a health promoting program to work toward achieving healthy eating behaviors in children.

  12. Redundant single gimbal control moment gyroscope singularity analysis

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek

    1990-01-01

    The robotic manipulator is proposed as the mechanical analog to single gimbal control moment gyroscope systems, and it is shown that both systems share similar difficulties with singular configurations. This analogy is used to group gimbal angles corresponding to any momentum state into different families. The singularity problem associated with these systems is examined in detail. In particular, a method is presented to test for the possibility of nontorque-producing gimbal motion at a singular configuration, as well as to determine the admissible motions in the case when this is possible. Sufficient conditions are derived for instances where the singular system can be reconfigured into a nonsingular state by these nontorque-producing motions.

  13. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle

    PubMed Central

    Brzezicki, Samuel J.

    2017-01-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function. PMID:28690412

  14. Analytical solutions for two-dimensional Stokes flow singularities in a no-slip wedge of arbitrary angle.

    PubMed

    Crowdy, Darren G; Brzezicki, Samuel J

    2017-06-01

    An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.

  15. Looking for a bulk point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  16. Looking for a bulk point

    DOE PAGES

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-03

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  17. Steering law design for redundant single-gimbal control moment gyroscopes. [for spacecraft attitude control

    NASA Technical Reports Server (NTRS)

    Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek

    1990-01-01

    Two steering laws are presented for single-gimbal control moment gyroscopes. An approach using the Moore-Penrose pseudoinverse with a nondirectional null-motion algorithm is shown by example to avoid internal singularities for unidirectional torque commands, for which existing algorithms fail. Because this is still a tangent-based approach, however, singularity avoidance cannot be guaranteed. The singularity robust inverse is introduced as an alternative to the pseudoinverse for computing torque-producing gimbal rates near singular states. This approach, coupled with the nondirectional null algorithm, is shown by example to provide better steering law performance by allowing torque errors to be produced in the vicinity of singular states.

  18. Observer-dependent sign inversions of polarization singularities.

    PubMed

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  19. w-cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Jambrina, L.

    2010-12-15

    In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.

  20. Optical spectral singularities as threshold resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-04-15

    Spectral singularities are among generic mathematical features of complex scattering potentials. Physically they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and other parameters of the system are selected properly. We explore a concrete realization of spectral singularities for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at threshold gain.

  1. Segmentation of singularity maps in the context of soil porosity

    NASA Astrophysics Data System (ADS)

    Martin-Sotoca, Juan J.; Saa-Requejo, Antonio; Grau, Juan; Tarquis, Ana M.

    2016-04-01

    Geochemical exploration have found with increasingly interests and benefits of using fractal (power-law) models to characterize geochemical distribution, including concentration-area (C-A) model (Cheng et al., 1994; Cheng, 2012) and concentration-volume (C-V) model (Afzal et al., 2011) just to name a few examples. These methods are based on the singularity maps of a measure that at each point define areas with self-similar properties that are shown in power-law relationships in Concentration-Area plots (C-A method). The C-A method together with the singularity map ("Singularity-CA" method) define thresholds that can be applied to segment the map. Recently, the "Singularity-CA" method has been applied to binarize 2D grayscale Computed Tomography (CT) soil images (Martin-Sotoca et al, 2015). Unlike image segmentation based on global thresholding methods, the "Singularity-CA" method allows to quantify the local scaling property of the grayscale value map in the space domain and determinate the intensity of local singularities. It can be used as a high-pass-filter technique to enhance high frequency patterns usually regarded as anomalies when applied to maps. In this work we will put special attention on how to select the singularity thresholds in the C-A plot to segment the image. We will compare two methods: 1) cross point of linear regressions and 2) Wavelets Transform Modulus Maxima (WTMM) singularity function detection. REFERENCES Cheng, Q., Agterberg, F. P. and Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109-130. Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P. and Rashidnejad Omran, N. (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration, 108, 220-232. Martín-Sotoca, J. J., Tarquis, A. M., Saa-Requejo, A. and Grau, J. B. (2015). Pore detection in Computed Tomography (CT) soil images through singularity map analysis. Oral Presentation in PedoFract VIII Congress (June, La Coruña - Spain).

  2. Singularity-free dislocation dynamics with strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr

    2014-08-01

    The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.

  3. The double universal joint wrist on a manipulator: Solution of inverse position kinematics and singularity analysis

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., III

    1992-01-01

    This paper presents three methods to solve the inverse position kinematics position problem of the double universal joint attached to a manipulator: (1) an analytical solution for two specific cases; (2) an approximate closed form solution based on ignoring the wrist offset; and (3) an iterative method which repeats closed form position and orientation calculations until the solution is achieved. Several manipulators are used to demonstrate the solution methods: cartesian, cylindrical, spherical, and an anthropomorphic articulated arm, based on the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is presented for the double universal joint wrist attached to the above manipulator arms. While the double universal joint wrist standing alone is singularity-free in orientation, the singularity analysis indicates the presence of coupled position/orientation singularities of the spherical and articulated manipulators with the wrist. The cartesian and cylindrical manipulators with the double universal joint wrist were found to be singularity-free. The methods of this paper can be implemented in a real-time controller for manipulators with the double universal joint wrist. Such mechanically dextrous systems could be used in telerobotic and industrial applications, but further work is required to avoid the singularities.

  4. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less

  5. Multivalued classical mechanics arising from singularity loops in complex time

    NASA Astrophysics Data System (ADS)

    Koch, Werner; Tannor, David J.

    2018-02-01

    Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.

  6. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    NASA Astrophysics Data System (ADS)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  7. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.

    PubMed

    Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari

    2005-05-01

    We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

  8. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  9. MUFACT: An Algorithm for Multiple Factor Analyses of Singular and Nonsingular Data with Orthogonal and Oblique Transformation Solutions

    ERIC Educational Resources Information Center

    Hofmann, Richard J.

    1978-01-01

    A general factor analysis computer algorithm is briefly discussed. The algorithm is highly transportable with minimum limitations on the number of observations. Both singular and non-singular data can be analyzed. (Author/JKS)

  10. Simulation of generation and dynamics of polarization singularities with circular Airy beams.

    PubMed

    Ye, Dong; Peng, Xinyu; Zhou, Muchun; Xin, Yu; Song, Minmin

    2017-11-01

    The generation and dynamics of polarization singularities have been underresearched for years, while the focusing property of the topological configuration has not been explored much. In this paper, we simulated the generation of low-order polarization singularities with a circular Airy beam and explored the focusing property of the synthetic light field during propagation due to the autofocusing of the component. Our work researched the focusing properties of the polarization singularity configuration, which may help to develop its application prospect.

  11. Wave-front singularities for two-dimensional anisotropic elastic waves.

    NASA Technical Reports Server (NTRS)

    Payton, R. G.

    1972-01-01

    Wavefront singularities for the displacement functions, associated with the radiation of linear elastic waves from a point source embedded in a finitely strained two-dimensional elastic solid, are examined in detail. It is found that generally the singularities are of order d to the -1/2 power, where d measures distance away from the front. However, in certain exceptional cases singularities of order d to the -n power, where n = 1/4, 2/3, 3/4, may be encountered.

  12. Nonlinear spectral singularities for confined nonlinearities.

    PubMed

    Mostafazadeh, Ali

    2013-06-28

    We introduce a notion of spectral singularity that applies for a general class of nonlinear Schrödinger operators involving a confined nonlinearity. The presence of the nonlinearity does not break the parity-reflection symmetry of spectral singularities but makes them amplitude dependent. Nonlinear spectral singularities are, therefore, associated with a resonance effect that produces amplified waves with a specific amplitude-wavelength profile. We explore the consequences of this phenomenon for a complex δ-function potential that is subject to a general confined nonlinearity.

  13. Computation of Incompressible Potential Flow over an Airfoil Using a High Order Aerodynamic Panel Method Based on Circular Arc Panels.

    DTIC Science & Technology

    1982-08-01

    Vortex Sheet Figure 4 - Properties of Singularity Sheets they may be used to model different types of flow. Transfer of boundary... Vortex Sheet Equivalence Singularity Behavior Using Green’s theorem it is clear that the problem of potential flow over a body can be modeled using ...that source, doublet, or vortex singularities can be used to model potential flow problems, and that the doublet and vortex singularities are

  14. Teleman localization of Hochschild homology in a singular setting

    NASA Astrophysics Data System (ADS)

    Brasselet, J.-P.; Legrand, A.

    2009-09-01

    The aim of this paper is to generalize the Hochschild-Kostant-Rosenberg theorem to the case of singular varieties, more precisely, to manifolds with boundary and to varieties with isolated singularities. In these situations, we define suitable algebras of functions and study the localization of the corresponding Hochschild homology. The tool we use is the Teleman localization process. In the case of isolated singularities, the closed Hochschild homology corresponds to the intersection complex which relates the objects defined here to intersection homology.

  15. Naked singularities in higher dimensional Vaidya space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S. G.; Dadhich, Naresh

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension.

  16. All orders results for self-crossing Wilson loops mimicking double parton scattering

    DOE PAGES

    Dixon, Lance J.; Esterlis, Ilya

    2016-07-21

    Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limitmore » to high loop order in planar N = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. Furthermore, we also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.« less

  17. All orders results for self-crossing Wilson loops mimicking double parton scattering

    NASA Astrophysics Data System (ADS)

    Dixon, Lance J.; Esterlis, Ilya

    2016-07-01

    Loop-level scattering amplitudes for massless particles have singularities in regions where tree amplitudes are perfectly smooth. For example, a 2 → 4 gluon scattering process has a singularity in which each incoming gluon splits into a pair of gluons, followed by a pair of 2 → 2 collisions between the gluon pairs. This singularity mimics double parton scattering because it occurs when the transverse momentum of a pair of outgoing gluons vanishes. The singularity is logarithmic at fixed order in perturbation theory. We exploit the duality between scattering amplitudes and polygonal Wilson loops to study six-point amplitudes in this limit to high loop order in planar {N} = 4 super-Yang-Mills theory. The singular configuration corresponds to the limit in which a hexagonal Wilson loop develops a self-crossing. The singular terms are governed by an evolution equation, in which the hexagon mixes into a pair of boxes; the mixing back is suppressed in the planar (large N c) limit. Because the kinematic dependence of the box Wilson loops is dictated by (dual) conformal invariance, the complete kinematic dependence of the singular terms for the self-crossing hexagon on the one nonsingular variable is determined to all loop orders. The complete logarithmic dependence on the singular variable can be obtained through nine loops, up to a couple of constants, using a correspondence with the multi-Regge limit. As a byproduct, we obtain a simple formula for the leading logs to all loop orders. We also show that, although the MHV six-gluon amplitude is singular, remarkably, the transcendental functions entering the non-MHV amplitude are finite in the same limit, at least through four loops.

  18. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  19. Object detection with a multistatic array using singular value decomposition

    DOEpatents

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  20. Flight-determined stability analysis of multiple-input-multiple-output control systems

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    1992-01-01

    Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron command-feedback gain by +/- 20 percent. Minimum eigenvalues of the return difference matrix which bound the singular values are also presented. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.

  1. Flight-determined stability analysis of multiple-input-multiple-output control systems

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    1992-01-01

    Singular value analysis can give conservative stability margin results. Applying structure to the uncertainty can reduce this conservatism. This paper presents flight-determined stability margins for the X-29A lateral-directional, multiloop control system. These margins are compared with the predicted unscaled singular values and scaled structured singular values. The algorithm was further evaluated with flight data by changing the roll-rate-to-aileron-command-feedback gain by +/- 20 percent. Also presented are the minimum eigenvalues of the return difference matrix which bound the singular values. Extracting multiloop singular values from flight data and analyzing the feedback gain variations validates this technique as a measure of robustness. This analysis can be used for near-real-time flight monitoring and safety testing.

  2. A robust watermarking scheme using lifting wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anuj; Verma, Deval; Verma, Vivek Singh

    2017-01-01

    The present paper proposes a robust image watermarking scheme using lifting wavelet transform (LWT) and singular value decomposition (SVD). Second level LWT is applied on host/cover image to decompose into different subbands. SVD is used to obtain singular values of watermark image and then these singular values are updated with the singular values of LH2 subband. The algorithm is tested on a number of benchmark images and it is found that the present algorithm is robust against different geometric and image processing operations. A comparison of the proposed scheme is performed with other existing schemes and observed that the present scheme is better not only in terms of robustness but also in terms of imperceptibility.

  3. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities.

    PubMed

    Xin, Yun; Cheng, Zhibo

    2017-01-01

    In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ -Laplacian singular Liénard equation with attractive and repulsive singularities.

  4. Locality and Unitarity of Scattering Amplitudes from Singularities and Gauge Invariance

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, Nima; Rodina, Laurentiu; Trnka, Jaroslav

    2018-06-01

    We conjecture that the leading two-derivative tree-level amplitudes for gluons and gravitons can be derived from gauge invariance together with mild assumptions on their singularity structure. Assuming locality (that the singularities are associated with the poles of cubic graphs), we prove that gauge invariance in just n -1 particles together with minimal power counting uniquely fixes the amplitude. Unitarity in the form of factorization then follows from locality and gauge invariance. We also give evidence for a stronger conjecture: assuming only that singularities occur when the sum of a subset of external momenta go on shell, we show in nontrivial examples that gauge invariance and power counting demand a graph structure for singularities. Thus, both locality and unitarity emerge from singularities and gauge invariance. Similar statements hold for theories of Goldstone bosons like the nonlinear sigma model and Dirac-Born-Infeld by replacing the condition of gauge invariance with an appropriate degree of vanishing in soft limits.

  5. Singularity Analysis: a powerful image processing tool in remote sensing of the oceans

    NASA Astrophysics Data System (ADS)

    Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Portabella, M.

    2012-04-01

    The study of fully developed turbulence has given rise to the development of new methods to describe real data of scalars submitted to the action of a turbulent flow. The application of this brand of methodologies (known as Microcanonical Multifractal Formalism, MMF) on remote sensing ocean maps open new ways to exploit those data for oceanographic purposes. The main technique in MMF is that of Singularity Analysis (SA). By means of SA a singularity exponents is assigned to each point of a given image. The singularity exponent of a given point is a dimensionless measure of the regularity or irregularity of the scalar at that point. Singularity exponents arrange in singularity lines, which accurately track the flow streamlines from any scalar, as we have verified with remote sensing and simulated data. Applications of SA include quality assessment of different products, the estimation of surface velocities, the development of fusion techniques for different types of scalars, comparison with measures of ocean mixing, and improvement in assimilation schemes.

  6. Nonnormal operators in physics, a singular-vectors approach: illustration in polarization optics.

    PubMed

    Tudor, Tiberiu

    2016-04-20

    The singular-vectors analysis of a general nonnormal operator defined on a finite-dimensional complex vector space is given in the frame of a pure operatorial ("nonmatrix," "coordinate-free") approach, performed in a Dirac language. The general results are applied in the field of polarization optics, where the nonnormal operators are widespread as operators of various polarization devices. Two nonnormal polarization devices representative for the class of nonnormal and even pathological operators-the standard two-layer elliptical ideal polarizer (singular operator) and the three-layer ambidextrous ideal polarizer (singular and defective operator)-are analyzed in detail. It is pointed out that the unitary polar component of the operator exists and preserves, in such pathological case too, its role of converting the input singular basis of the operator in its output singular basis. It is shown that for any nonnormal ideal polarizer a complementary one exists, so that the tandem of their operators uniquely determines their (common) unitary polar component.

  7. Short-time quantum dynamics of sharp boundaries potentials

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Marchewka, Avi

    2015-02-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  8. Boundary singularities produced by the motion of soap films.

    PubMed

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  9. Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes).

    PubMed

    Cachera, Marie; Le Loc'h, François

    2017-08-01

    The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.

  10. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  11. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  12. Classification of almost toric singularities of Lagrangian foliations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izosimov, Anton M

    2011-07-31

    The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.

  13. Experimental observation of the effect of generic singularities in polychromatic dark hollow beams.

    PubMed

    Yadav, Bharat Kumar; Joshi, Stuti; Kandpal, Hem Chandra

    2014-08-15

    This Letter presents the essence of our recent experimental study on generic singularities carrying spatially partially coherent, polychromatic dark hollow beams (PDHBs). To the best of our knowledge, this is the first experimental demonstration of generic singularities-induced wavefront tearing in focused polychromatic beams.

  14. Sign-singular measures - Fast magnetic dynamos, and high-Reynolds-number fluid turbulence

    NASA Astrophysics Data System (ADS)

    Ott, Edward; Du, Yunson; Sreenivasan, K. R.; Juneja, A.; Suri, A. K.

    1992-11-01

    It is shown that sign-singular measures with nontrivial cancellation exponents occur in dynamos and fluid turbulence. A cancellation exponent is introduced to characterize such measures quantitatively. Examples from kinematic magnetic dynamos and fluid turbulence are used to illlustrate this kind of singular behavior.

  15. Degenerate SDEs with singular drift and applications to Heisenberg groups

    NASA Astrophysics Data System (ADS)

    Huang, Xing; Wang, Feng-Yu

    2018-09-01

    By using the ultracontractivity of a reference diffusion semigroup, Krylov's estimate is established for a class of degenerate SDEs with singular drifts, which leads to existence and pathwise uniqueness by means of Zvonkin's transformation. The main result is applied to singular SDEs on generalized Heisenberg groups.

  16. Dalitz plot distributions in presence of triangle singularities

    DOE PAGES

    Szczepaniak, Adam P.

    2016-03-25

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  17. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  18. Dalitz plot distributions in presence of triangle singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  19. Signature of phase singularities in diffusive regimes in disordered waveguide lattices: interplay and qualitative analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath

    2018-05-01

    Co-existence and interplay between mesoscopic light dynamics with singular optics in spatially random but temporally coherent disordered waveguide lattices is reported. Two CW light beams of 1.55 micron operating wavelength are launched as inputs to 1D waveguide lattices with controllable weak disorder in refractive index profile. Direct observation of phase singularities in the speckle pattern along the length is numerically demonstrated. Quantitative analysis of onset of such singular behavior and diffusive wave propagation is analyzed for the first time.

  20. Method of mechanical quadratures for solving singular integral equations of various types

    NASA Astrophysics Data System (ADS)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  1. Boundary Approximation Methods for Sloving Elliptic Problems on Unbounded Domains

    NASA Astrophysics Data System (ADS)

    Li, Zi-Cai; Mathon, Rudolf

    1990-08-01

    Boundary approximation methods with partial solutions are presented for solving a complicated problem on an unbounded domain, with both a crack singularity and a corner singularity. Also an analysis of partial solutions near the singular points is provided. These methods are easy to apply, have good stability properties, and lead to highly accurate solutions. Hence, boundary approximation methods with partial solutions are recommended for the treatment of elliptic problems on unbounded domains provided that piecewise solution expansions, in particular, asymptotic solutions near the singularities and infinity, can be found.

  2. Holographic signatures of cosmological singularities.

    PubMed

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  3. Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabov, Pavel E; Kharlamov, Mikhail P

    2012-02-28

    The problem of motion of the Kovalevskaya top in a double force field is investigated (the integrable case of A.G. Reyman and M.A. Semenov-Tian-Shansky without a gyrostatic momentum). It is a completely integrable Hamiltonian system with three degrees of freedom not reducible to a family of systems with two degrees of freedom. The critical set of the integral map is studied. The critical subsystems and bifurcation diagrams are described. The classification of all nondegenerate critical points is given. The set of these points consists of equilibria (nondegenerate singularities of rank 0), of singular periodic motions (nondegenerate singularities of rank 1),more » and also of critical two-frequency motions (nondegenerate singularities of rank 2). Bibliography: 32 titles.« less

  4. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    NASA Astrophysics Data System (ADS)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  5. Singular reduction of resonant Hamiltonians

    NASA Astrophysics Data System (ADS)

    Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2018-06-01

    We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

  6. Classification of subsurface objects using singular values derived from signal frames

    DOEpatents

    Chambers, David H; Paglieroni, David W

    2014-05-06

    The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.

  7. Nonlinear Spectral Singularity and Laser Output Intensity for the TE and TM Modes

    NASA Astrophysics Data System (ADS)

    Ghaemidizicheh, Hamed; Mostafazadeh, Ali

    The nonlinear spectral singularity arising from a Kerr nonlinearity is explored in. This reference studies the effect of nonlinearity in Lasing condition and shows that Kerr nonlinearity with spectral singularity for a normally incident wave provides an explanation of lasing at gain coefficient g. Lasing occurs when it exceeds threshold gain g0. For oblique waves, Ref. looks at the behavior of threshold gain coefficient g0 which is given by the condition that there is a linear spectral singularity. We investigated imposing the condition of the existence of nonlinear spectral singularity in the TE / TM modes of a mirrorless slab of gain materials and studied the θ-dependence of intensity. Supported by TUBITAK Project No: 114F357 and by the Turkish Academy of Science (TUBA).

  8. Symmetry breaking and singularity structure in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  9. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    PubMed

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2018-07-01

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  10. Hybrid method based on singular value decomposition and embedded zero tree wavelet technique for ECG signal compression.

    PubMed

    Kumar, Ranjeet; Kumar, A; Singh, G K

    2016-06-01

    In the field of biomedical, it becomes necessary to reduce data quantity due to the limitation of storage in real-time ambulatory system and telemedicine system. Research has been underway since very beginning for the development of an efficient and simple technique for longer term benefits. This paper, presents an algorithm based on singular value decomposition (SVD), and embedded zero tree wavelet (EZW) techniques for ECG signal compression which deals with the huge data of ambulatory system. The proposed method utilizes the low rank matrix for initial compression on two dimensional (2-D) ECG data array using SVD, and then EZW is initiated for final compression. Initially, 2-D array construction has key issue for the proposed technique in pre-processing. Here, three different beat segmentation approaches have been exploited for 2-D array construction using segmented beat alignment with exploitation of beat correlation. The proposed algorithm has been tested on MIT-BIH arrhythmia record, and it was found that it is very efficient in compression of different types of ECG signal with lower signal distortion based on different fidelity assessments. The evaluation results illustrate that the proposed algorithm has achieved the compression ratio of 24.25:1 with excellent quality of signal reconstruction in terms of percentage-root-mean square difference (PRD) as 1.89% for ECG signal Rec. 100 and consumes only 162bps data instead of 3960bps uncompressed data. The proposed method is efficient and flexible with different types of ECG signal for compression, and controls quality of reconstruction. Simulated results are clearly illustrate the proposed method can play a big role to save the memory space of health data centres as well as save the bandwidth in telemedicine based healthcare systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Variational Integration for Ideal Magnetohydrodynamics and Formation of Current Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao

    Coronal heating has been a long-standing conundrum in solar physics. Parker's conjecture that spontaneous current singularities lead to nanoflares that heat the corona has been controversial. In ideal magnetohydrodynamics (MHD), can genuine current singularities emerge from a smooth 3D line-tied magnetic field? To numerically resolve this issue, the schemes employed must preserve magnetic topology exactly to avoid artificial reconnection in the presence of (nearly) singular current densities. Structure-preserving numerical methods are favorable for mitigating numerical dissipation, and variational integration is a powerful machinery for deriving them. However, successful applications of variational integration to ideal MHD have been scarce. In thismore » thesis, we develop variational integrators for ideal MHD in Lagrangian labeling by discretizing Newcomb's Lagrangian on a moving mesh using discretized exterior calculus. With the built-in frozen-in equation, the schemes are free of artificial reconnection, hence optimal for studying current singularity formation. Using this method, we first study a fundamental prototype problem in 2D, the Hahm-Kulsrud-Taylor (HKT) problem. It considers the effect of boundary perturbations on a 2D plasma magnetized by a sheared field, and its linear solution is singular. We find that with increasing resolution, the nonlinear solution converges to one with a current singularity. The same signature of current singularity is also identified in other 2D cases with more complex magnetic topologies, such as the coalescence instability of magnetic islands. We then extend the HKT problem to 3D line-tied geometry, which models the solar corona by anchoring the field lines in the boundaries. The effect of such geometry is crucial in the controversy over Parker's conjecture. The linear solution, which is singular in 2D, is found to be smooth. However, with finite amplitude, it can become pathological above a critical system length. The nonlinear solution turns out smooth for short systems. Nonetheless, the scaling of peak current density vs. system length suggests that the nonlinear solution may become singular at a finite length. With the results in hand, we cannot confirm or rule out this possibility conclusively, since we cannot obtain solutions with system lengths near the extrapolated critical value.« less

  12. Treatment of charge singularities in implicit solvent models.

    PubMed

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-21

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  13. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  14. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1989-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  15. Boundary singularities produced by the motion of soap films

    PubMed Central

    Goldstein, Raymond E.; McTavish, James; Moffatt, H. Keith; Pesci, Adriana I.

    2014-01-01

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a “neck-pinching” boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck’s geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures. PMID:24843162

  16. Treatment of charge singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-01

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  17. Interlaminar stress singularities at a straight free edge in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.

    1980-01-01

    A quasi three dimensional finite element analysis was used to analyze the edge stress problem in four-ply, composite laminates. Convergence studies were made to explore the existence of stress singularities near the free edge. The existence of stress singularities at the intersection of the interface and the free edge is confirmed.

  18. Correlation singularities in partially coherent electromagnetic beams.

    PubMed

    Raghunathan, Shreyas B; Schouten, Hugo F; Visser, Taco D

    2012-10-15

    We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for both interference experiments and correlation of intensity fluctuation measurements performed with such beams.

  19. Twisting singular solutions of Betheʼs equations

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Wang, Chunguang

    2014-12-01

    The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.

  20. 7 CFR 1200.1 - Words in the singular form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Words in the singular form. 1200.1 Section 1200.1 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Governing Proceedings To Formulate and Amend an Order § 1200.1 Words in the singular form. Words in this...

Top