Science.gov

Sample records for big rock point reactor

  1. 78 FR 58570 - Environmental Assessment; Entergy Nuclear Operations, Inc., Big Rock Point

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... COMMISSION Environmental Assessment; Entergy Nuclear Operations, Inc., Big Rock Point AGENCY: Nuclear... Nuclear Operations, Inc. (ENO) (the applicant or the licensee), for the Big Rock Point (BRP) Independent... for Production and Utilization Facilities,'' for the Big Rock Point (BRP) Independent Spent Fuel...

  2. Big Bang Day : Physics Rocks

    ScienceCinema

    None

    2016-07-12

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  3. Big Bang Day : Physics Rocks

    SciTech Connect

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  4. Turning points in reactor design

    SciTech Connect

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  5. Morning Water on the Big Round Rock in the Sky

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.

    2015-12-01

    There is a little bit of water on the Big Round Rock in the sky. The Rock turns slowly and so it has morning and day and night. The little bit of water sticks to the rocks on the Rock at night, when it is very cold and the water makes ice. When the Sun puts light on it, the water gets hot and goes up in the air. Really, the water is the air. The wind moves the water back the way it came, so the water goes to where the ground is cold and then it sticks to the very cold ground again. Then, the turning Rock slowly carries it back to the morning and it goes over and over like that. This keeps all of the Big Rock's water close to the morning, even though the Big Rock turns all the time. A box on the ground on the Big Rock that is three feet long on each side could catch enough water each month for one drink of water, but a box that is way big could catch a lot more water. We know that the water is there because we can find very little tiny rocks that hit the tiny water bits. Where there is more water, there are not so many of the little tiny rocks and where there is less water, there are more of the little tiny rocks.

  6. 76 FR 29647 - Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound, Morehead City, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound... establishing a temporary Safety Zone for the ``Big Rock Blue Marlin Air Show,'' an aerial demonstration to be... published a notice of proposed rulemaking (NPRM) entitled Safety Zone; Big Rock Blue Marlin Air Show; Bogue...

  7. 76 FR 18672 - Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound, Morehead City, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Big Rock Blue Marlin Air Show; Bogue Sound... proposes to establish a temporary Safety Zone for the ``Big Rock Blue Marlin Air Show'', an aerial... Register. Basis and Purpose On June 11, 2011 from 7 p.m. to 8 p.m., the Big Rock Blue Marlin Tournament...

  8. Ripples in Rocks Point to Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the rock nicknamed 'Last Chance,' which lies within the outcrop near the rover's landing site at Meridiani Planum, Mars. The image provides evidence for a geologic feature known as ripple cross-stratification. At the base of the rock, layers can be seen dipping downward to the right. The bedding that contains these dipping layers is only one to two centimeters (0.4 to 0.8 inches) thick. In the upper right corner of the rock, layers also dip to the right, but exhibit a weak 'concave-up' geometry. These two features -- the thin, cross-stratified bedding combined with the possible concave geometry -- suggest small ripples with sinuous crest lines. Although wind can produce ripples, they rarely have sinuous crest lines and never form steep, dipping layers at this small scale. The most probable explanation for these ripples is that they were formed in the presence of moving water.

    Crossbedding Evidence for Underwater Origin Interpretations of cross-lamination patterns presented as clues to this martian rock's origin under flowing water are marked on images taken by the panoramic camera and microscopic imager on NASA's Opportunity.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The red arrows (Figure 1) point to features suggesting cross-lamination within the rock called 'Last Chance' taken at a distance of 4.5 meters (15 feet) during Opportunity's 17th sol (February 10, 2004). The inferred sets of fine layers at angles to each other (cross-laminae) are up to 1.4 centimeters (half an inch) thick. For scale, the distance between two vertical cracks in the rock is about 7 centimeters (2.8 inches). The feature indicated by the middle red arrow suggests a pattern called trough cross-lamination, likely produced when flowing water shaped sinuous ripples in underwater sediment and pushed the ripples to migrate

  9. Ripples in Rocks Point to Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows the rock nicknamed 'Last Chance,' which lies within the outcrop near the rover's landing site at Meridiani Planum, Mars. The image provides evidence for a geologic feature known as ripple cross-stratification. At the base of the rock, layers can be seen dipping downward to the right. The bedding that contains these dipping layers is only one to two centimeters (0.4 to 0.8 inches) thick. In the upper right corner of the rock, layers also dip to the right, but exhibit a weak 'concave-up' geometry. These two features -- the thin, cross-stratified bedding combined with the possible concave geometry -- suggest small ripples with sinuous crest lines. Although wind can produce ripples, they rarely have sinuous crest lines and never form steep, dipping layers at this small scale. The most probable explanation for these ripples is that they were formed in the presence of moving water.

    Crossbedding Evidence for Underwater Origin Interpretations of cross-lamination patterns presented as clues to this martian rock's origin under flowing water are marked on images taken by the panoramic camera and microscopic imager on NASA's Opportunity.

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The red arrows (Figure 1) point to features suggesting cross-lamination within the rock called 'Last Chance' taken at a distance of 4.5 meters (15 feet) during Opportunity's 17th sol (February 10, 2004). The inferred sets of fine layers at angles to each other (cross-laminae) are up to 1.4 centimeters (half an inch) thick. For scale, the distance between two vertical cracks in the rock is about 7 centimeters (2.8 inches). The feature indicated by the middle red arrow suggests a pattern called trough cross-lamination, likely produced when flowing water shaped sinuous ripples in underwater sediment and pushed the ripples to migrate

  10. High-Temperature Gas-Cooled Test Reactor Point Design

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Kinsey, James Carl; Strydom, Gerhard; Kumar, Akansha

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  11. Investigating the Accuracy of Point Clouds Generated for Rock Surfaces

    NASA Astrophysics Data System (ADS)

    Seker, D. Z.; Incekara, A. H.

    2016-12-01

    Point clouds which are produced by means of different techniques are widely used to model the rocks and obtain the properties of rock surfaces like roughness, volume and area. These point clouds can be generated by applying laser scanning and close range photogrammetry techniques. Laser scanning is the most common method to produce point cloud. In this method, laser scanner device produces 3D point cloud at regular intervals. In close range photogrammetry, point cloud can be produced with the help of photographs taken in appropriate conditions depending on developing hardware and software technology. Many photogrammetric software which is open source or not currently provide the generation of point cloud support. Both methods are close to each other in terms of accuracy. Sufficient accuracy in the mm and cm range can be obtained with the help of a qualified digital camera and laser scanner. In both methods, field work is completed in less time than conventional techniques. In close range photogrammetry, any part of rock surfaces can be completely represented owing to overlapping oblique photographs. In contrast to the proximity of the data, these two methods are quite different in terms of cost. In this study, whether or not point cloud produced by photographs can be used instead of point cloud produced by laser scanner device is investigated. In accordance with this purpose, rock surfaces which have complex and irregular shape located in İstanbul Technical University Ayazaga Campus were selected as study object. Selected object is mixture of different rock types and consists of both partly weathered and fresh parts. Study was performed on a part of 30m x 10m rock surface. 2D and 3D analysis were performed for several regions selected from the point clouds of the surface models. 2D analysis is area-based and 3D analysis is volume-based. Analysis conclusions showed that point clouds in both are similar and can be used as alternative to each other. This proved that

  12. Big Fat Wand: A Pointing Device for Open Space Edutainment

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Namatame, Miki; Kusunoki, Fusako; Terano, Takao

    This paper presents principles, functions, and experiments of a new edutainment tool: Big Fat Wand (BFW). BFW is developed from a conventional laser show device, however, it is modified to a small enough one to be used at an open apace. BFW is connected to a laptop PC, which provides character, symbol images, and/or animations. From experimental results, we conclude that BFW is a good gear for a facilitator to educate and educate hearing-impaired students.

  13. Rock falls from Glacier Point above Camp Curry, Yosemite National Park, California

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Snyder, James B.

    1999-01-01

    A series of rock falls from the north face of Glacier Point above Camp Curry, Yosemite National Park, California, have caused reexamination of the rock-fall hazard because beginning in June, 1999 a system of cracks propagated through a nearby rock mass outlining a future potential rock fall. If the estimated volume of the potential rock fall fails as a single piece, there could be a risk from rock-fall impact and airborne rock debris to cabins in Camp Curry. The role of joint plane orientation and groundwater pressure in the fractured rock mass are discussed in light of the pattern of developing cracks and potential modes of failure.

  14. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  15. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  16. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  17. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  18. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the Rock...

  19. Isotopic data for Late Cretaceous intrusions and associated altered and mineralized rocks in the Big Belt Mountains, Montana

    USGS Publications Warehouse

    du Bray, Edward A.; Unruh, Daniel M.; Hofstra, Albert H.

    2017-03-07

    The quartz monzodiorite of Mount Edith and the concentrically zoned intrusive suite of Boulder Baldy constitute the principal Late Cretaceous igneous intrusions hosted by Mesoproterozoic sedimentary rocks of the Newland Formation in the Big Belt Mountains, Montana. These calc-alkaline plutonic masses are manifestations of subduction-related magmatism that prevailed along the western edge of North America during the Cretaceous. Radiogenic isotope data for neodymium, strontium, and lead indicate that the petrogenesis of the associated magmas involved a combination of (1) sources that were compositionally heterogeneous at the scale of the geographically restricted intrusive rocks in the Big Belt Mountains and (2) variable contamination by crustal assimilants also having diverse isotopic compositions. Altered and mineralized rocks temporally, spatially, and genetically related to these intrusions manifest at least two isotopically distinct mineralizing events, both of which involve major inputs from spatially associated Late Cretaceous igneous rocks. Alteration and mineralization of rock associated with the intrusive suite of Boulder Baldy requires a component characterized by significantly more radiogenic strontium than that characteristic of the associated igneous rocks. However, the source of such a component was not identified in the Big Belt Mountains. Similarly, altered and mineralized rocks associated with the quartz monzodiorite of Mount Edith include a component characterized by significantly more radiogenic strontium and lead, particularly as defined by 207Pb/204Pb values. The source of this component appears to be fluids that equilibrated with proximal Newland Formation rocks. Oxygen isotope data for rocks of the intrusive suite of Boulder Baldy are similar to those of subduction-related magmatism that include mantle-derived components; oxygen isotope data for altered and mineralized equivalents are slightly lighter.

  20. End point control of an actinide precipitation reactor

    SciTech Connect

    Muske, K.R.; Palmer, M.J.

    1997-10-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements.

  1. Reactor physics and safety aspects of various design options of a Russian light water reactor with rock-like fuels

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. V.; Komissarov, O. V.; Kozmenkov, Ya. K.; Matveev, Yu. V.; Orekhov, Yu. I.; Pivovarov, V. A.; Sharapov, V. N.

    2003-06-01

    This paper presents results of analytical studies on weapons grade plutonium incineration in VVER (640) medium size light water reactors using a special composition of rock-like fuel (ROX-fuel) to assure spent fuel long-term storage without its reprocessing. The main goal is to achieve high degree of plutonium incineration in once-through cycle. In this paper we considered two fuel compositions. In both compositions weapons grade plutonium is used as fissile material. Spinel (MgAl 2O 4) is used as the 'preserving' material assuring safe storage of the spent fuel. Besides an inert matrix, the option of rock-like fuel with thorium dioxide was studied. One of principal problems in the realization of the proposed approach is the substantial change of properties of the light water reactor core when passing to the use of the ROX-fuel, in particular: (i) due to the absence of 238U the Doppler effect playing a crucial role in reactor's self-regulation and limiting the consequences of reactivity accidents, decreases significantly, (ii) no fuel breeding on one hand, and the quest to attain the maximum plutonium burnup on the other hand, would result in a drastical change of the fuel assembly power during the lifetime and, as a consequence, the rise in irregularity of the power density of fuel assemblies, (iii) both the control rods worth and dissolved boron worth decrease in view of neutron spectrum hardening brought on by the larger absorption cross-section of plutonium as compared to uranium, (iv) βeff is markedly reduced. All these distinctive features are potentially detrimental to the reactor nuclear safety. The principal objective of this work is that to identify a variant of the fuel composition and the reactor layout, which would permit neutralize the negative effect of the above-mentioned distinctive features.

  2. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Strydom, Gerhard

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  3. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David; Nelson, Lee Orville; Gougar, Hans David; Kinsey, J.; Strydom, Gerhard

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  4. PBF Reactor Building (PER620). Construction view shows native lava rock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Construction view shows native lava rock surrounding basement excavation and general complexity of planning required to build the PBF. A three-inch low-pressure air line protrudes from wall just below left center. Date: February 21, 1967. Photographer: Larry Page. INEEL negative no. 67-1125 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. Rock fall dynamics and deposition: an integrated analysis of the 2009 Ahwiyah Point rock fall, Yosemite National Park, USA.

    USGS Publications Warehouse

    Valerie L. Zimmer,; Collins, Brian; Greg M. Stock,; Nicholas Sitar,

    2012-01-01

    We analyzed a combination of airborne and terrestrial LiDAR, high-resolution photography, seismic, and acoustic data in order to gain insights into the initiation, dynamics, and talus deposition of a complex rock fall. A large (46 700 m3) rock fall originated from near Ahwiyah Point in eastern Yosemite Valley and fell a total of 730 m to the valley floor on 28 March 2009. Analyses of remote sensing, seismic, and acoustic data were integrated to reconstruct the rock fall, which consisted of (1) the triggering of a 25 400 m3 rock block in an area of intersecting and sometimes highly weathered joint planes, (2) the sliding and subsequent ballistic trajectory of the block from a steeply dipping ledge, (3) dislodging of additional rock from the cliff surface from beneath the rock fall source area, (4) a mid-cliff ledge impact that detached a volume of rock nearly equivalent in volume to the initial block, (5) sliding of the deteriorating rock mass down the remainder of the cliff, and (6) final impact at the base of the cliff that remobilized the existing talus downward and outward and produced an airblast that knocked down hundreds of trees. The depositional geomorphology indicates that the porosity of the fresh talus is significantly lower than that expected for typical blocky talus slopes, likely because the rock debris from this event was pulverized into smaller, more poorly sorted fragments and densified via dynamic compaction when compared to less energetic, fragmental-type rock falls. These results suggest that accumulation of individual rock-fall boulders tends to steepen talus slopes, whereas large, energetic rock falls tend to flatten them. Detachment and impact signals were recorded by seismic and acoustic instruments and highlight the potential use of this type of instrumentation for generalized rock fall monitoring, while LiDAR and photography data were able to quantify the cliff geometry, rock fall volume, source and impact locations, and

  6. Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Kork, John O.

    1978-01-01

    The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

  7. Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Liu, Shanjun; Zhang, Peina; Wu, Lixin; Zhou, Wenhui; Yu, Yinan

    2017-06-01

    Obtaining accurate information on rock mass discontinuities for deformation analysis and the evaluation of rock mass stability is important. Obtaining measurements for high and steep zones with the traditional compass method is difficult. Photogrammetry, three-dimensional (3D) laser scanning and other remote sensing methods have gradually become mainstream methods. In this study, a method that is based on a 3D point cloud is proposed to semi-automatically extract rock mass structural plane information. The original data are pre-treated prior to segmentation by removing outlier points. The next step is to segment the point cloud into different point subsets. Various parameters, such as the normal, dip/direction and dip, can be calculated for each point subset after obtaining the equation of the best fit plane for the relevant point subset. A cluster analysis (a point subset that satisfies some conditions and thus forms a cluster) is performed based on the normal vectors by introducing the firefly algorithm (FA) and the fuzzy c-means (FCM) algorithm. Finally, clusters that belong to the same discontinuity sets are merged and coloured for visualization purposes. A prototype system is developed based on this method to extract the points of the rock discontinuity from a 3D point cloud. A comparison with existing software shows that this method is feasible. This method can provide a reference for rock mechanics, 3D geological modelling and other related fields.

  8. Rocks in a Box: A Three-Point Problem.

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1981-01-01

    Describes a simulation drilling core activity involving the use of a physical model from which students gather data and solve a three-point problem to determine the strike and dip of a buried stratum. Includes descriptions of model making, data plots, and additional problems involving strike and dip. (DS)

  9. Parallel Processing of Big Point Clouds Using Z-Order Partitioning

    NASA Astrophysics Data System (ADS)

    Alis, C.; Boehm, J.; Liu, K.

    2016-06-01

    As laser scanning technology improves and costs are coming down, the amount of point cloud data being generated can be prohibitively difficult and expensive to process on a single machine. This data explosion is not only limited to point cloud data. Voluminous amounts of high-dimensionality and quickly accumulating data, collectively known as Big Data, such as those generated by social media, Internet of Things devices and commercial transactions, are becoming more prevalent as well. New computing paradigms and frameworks are being developed to efficiently handle the processing of Big Data, many of which utilize a compute cluster composed of several commodity grade machines to process chunks of data in parallel. A central concept in many of these frameworks is data locality. By its nature, Big Data is large enough that the entire dataset would not fit on the memory and hard drives of a single node hence replicating the entire dataset to each worker node is impractical. The data must then be partitioned across worker nodes in a manner that minimises data transfer across the network. This is a challenge for point cloud data because there exist different ways to partition data and they may require data transfer. We propose a partitioning based on Z-order which is a form of locality-sensitive hashing. The Z-order or Morton code is computed by dividing each dimension to form a grid then interleaving the binary representation of each dimension. For example, the Z-order code for the grid square with coordinates (x = 1 = 012, y = 3 = 112) is 10112 = 11. The number of points in each partition is controlled by the number of bits per dimension: the more bits, the fewer the points. The number of bits per dimension also controls the level of detail with more bits yielding finer partitioning. We present this partitioning method by implementing it on Apache Spark and investigating how different parameters affect the accuracy and running time of the k nearest neighbour algorithm

  10. Downstream-migrating fluvial point bars in the rock record

    NASA Astrophysics Data System (ADS)

    Ghinassi, Massimiliano; Ielpi, Alessandro; Aldinucci, Mauro; Fustic, Milovan

    2016-04-01

    Classical models developed for ancient fluvial point bars are based on the assumption that meander bends invariably increase their radius as meander-bend apices migrate in a direction transverse to the channel-belt axis (i.e., meander bend expansion). However, many modern meandering rivers are also characterized by down-valley migration of the bend apex, a mechanism that takes place without a significant change in meander radius and wavelength. Downstream-migrating fluvial point bars (DMFPB) are the dominant architectural element of these types of meander belts. Yet they are poorly known from ancient fluvial-channel belts, since their disambiguation from expansional point bars often requires fully-3D perspectives. This study aims to review DMFPB deposits spanning in age from Devonian to Holocene, and to discuss their main architectural and sedimentological features from published outcrop, borehole and 3D-seismic datasets. Fluvial successions hosting DMFPB mainly accumulated in low accommodation conditions, where channel belts were affected by different degrees of morphological (e.g., valleys) or tectonic (e.g., axial drainage of shortening basins) confinement. In confined settings, bends migrate downstream along the erosion-resistant valley flanks and little or no floodplain deposits are preserved. Progressive floor aggradation (e.g., valley filling) allow meander belts with DMFPB to decrease their degree of confinement. In less confined settings, meander bends migrate downstream mainly after impinging against older, erosion-resistant channel fill mud. By contrast, tectonic confinement is commonly associated with uplifted alluvial plains that prevented meander-bend expansion, in turn triggering downstream translation. At the scale of individual point bars, translational morphodynamics promote the preservation of downstream-bar deposits, whereas the coarser-grained upstream and central beds are less frequently preserved. However, enhanced preservation of upstream

  11. Seafloor Rocks and Sediments of the Continental Shelf From Monterey Bay to Point Sur, California

    USGS Publications Warehouse

    Eittreim, Stephen L.; Anima, Roberto J.; Stevenson, Andrew J.; Wong, Florence L.

    2000-01-01

    Introduction Acoustic swath mapping of the greater Monterey Bay area continental shelf from Point Ano Nuevo to Point Sur reveals complex patterns of rock outcrops on the shelf, and coarse sand bodies that occur in distinct depressions on the inner and mid-shelves. This publication portrays the seafloor components in a 36- by 48-inch map sheet at 1:100,000 scale.

  12. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    PubMed

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-09-09

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect

    Qualls, A. L.; Betzler, Benjamin R.; Brown, Nicholas R.; Carbajo, Juan; Greenwood, Michael Scott; Hale, Richard Edward; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry W.

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  14. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  15. Big slow movers: a look at weathered-rock slides in Western North Carolina

    Treesearch

    Rebecca S. Latham; Richard M. Wooten; Anne C. Witt; Stephen J. Fuemmeler; Kenneth a. Gillon; Thomas J. Douglas; Jennifer B. Bauer; Barton D. Clinton

    2007-01-01

    The North Carolina Geological Survey (NCGS) is currently implementing a landslide hazard-mapping program in western North Carolina authorized by the North Carolina Hurricane Recovery Act of 2005. To date, over 2700 landslides and landslide deposits have been documented. A small number of these landslides are relatively large, slow-moving, weathered-rock slides...

  16. Innovations and enhancements in neutronic analysis of the Big-10 university research and training reactors based on the AGENT code system

    SciTech Connect

    Hursin, M.; Shanjie, X.; Burns, A.; Hopkins, J.; Satvat, N.; Gert, G.; Tsoukalas, L. H.; Jevremovic, T.

    2006-07-01

    Introduction. This paper summarizes salient aspects of the 'virtual' reactor system developed at Purdue Univ. emphasizing efficient neutronic modeling through AGENT (Arbitrary Geometry Neutron Transport) a deterministic neutron transport code. DOE's Big-10 Innovations in Nuclear Infrastructure and Education (INIE) Consortium was launched in 2002 to enhance scholarship activities pertaining to university research and training reactors (URTRs). Existing and next generation URTRs are powerful campus tools for nuclear engineering as well as a number of disciplines that include, but are not limited to, medicine, biology, material science, and food science. Advancing new computational environments for the analysis and configuration of URTRs is an important Big-10 INIE aim. Specifically, Big-10 INIE has pursued development of a 'virtual' reactor, an advanced computational environment to serve as a platform on which to build operations, utilization (research and education), and systemic analysis of URTRs physics. The 'virtual' reactor computational system will integrate computational tools addressing the URTR core and near core physics (transport, dynamics, fuel management and fuel configuration); thermal-hydraulics; beam line, in-core and near-core experiments; instrumentation and controls; confinement/containment and security issues. Such integrated computational environment does not currently exist. The 'virtual' reactor is designed to allow researchers and educators to configure and analyze their systems to optimize experiments, fuel locations for flux shaping, as well as detector selection and configuration. (authors)

  17. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  18. An approach to versatile highly-uniform MOVPE growth: the flow controlled stagnation point flow reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Makoto; Kuramata, Akito; Fujii, Takuya; Anayama, Chikashi; Okazaki, Jiro; Sekiguchi, Hiroshi; Tanahashi, Toshiyuki; Yamazaki, Susumu; Nakajima, Kazuo

    1992-11-01

    We present an approach to versatile highly-uniform MOVPE growth using the controlled stagnation point flow reactor. Our approach for uniform growth involves two concepts: (1) realizing the stagnation point flow condition in a vertical reactor configuration and (2) introducing a method for versatile flow-field control using the flow-controlled multiple gas-injector technique. The versatility of the flow-control technique was investigated by evaluating how radial deposition rate uniformity is affected by variation in several hydrodynamic and reactor configuration factors: the inlet flow rate, operating pressure, susceptor temperature, susceptor rotation speed, and the inlet and susceptor separation. We confirmed that a spatially uniform deposition rate can be obtained over a wide range of hydrodynamic and configuration parameters, demonstrating that the flow-control technique can provide a stable stagnation point flow field. Even when the ideal stagnation point flow-field is disturbed, for example, by high temperature susceptor heating, it could be completely compensated by adjusting the flow rate ratio for multiple injectors, showing our technique's ability to control flow-fields. By using this technique, we obtained excellent uniformities in both layer thickness and alloy composition for two important materials - GaInAsP and AlGaInP - in the same reactor.

  19. Measured Sections of Upper Paleozoic to Early Tertiary Rocks, Demarcation Point Quadrangle, Alaska

    USGS Publications Warehouse

    Detterman, Robert L.

    1984-01-01

    Introduction Twelve sections of upper Paleozoic to early Tertiary rocks from the Demarcation Point quadrangle and the northern edge of the Table Mountain quadrangle are presented. These measured sections include the type sections for the Joe Creek Member of the Echooka Formation (Section 11), the Bathtub Graywacke and Kongakut Formation (Section 9), and the unnamed early Tertiary rocks (Section 1). The early Tertiary rocks correlate closely with the Moose Channel Formation in the MacKenzie Delta, Candada (Detterman and Spicer, 1981). The sections were measured with a Jacob's staff during the geologic investigations of the Demarcation Point quadrangle in 1969 to 1971. The geologic map is published in generalized form (Detterman, 1974, 1976; Detterman and others, 1975). The sections are at a scale of 1 in to 100 ft, except for section 1, which is at 1 in to 200 ft. The location map shows the year and station number for each station. Fossils collected from these rocks and marked by and asterisk (*) are included in Detterman and others, 1975 (p. 42-45). A double asterisk (**) indicates they are included in the list below. All other fossil indicators mean fossils are present, but not collected.

  20. 78 FR 61401 - Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... DPR-6 for the BRP facility. The license, issued pursuant to the Atomic Energy Act of 1954, as amended... structure in place prior to the issuance of the EP Final Rule and, therefore, does not propose any changes..., where only the ISFSI and its related support systems, structures, and components remain. With the EP...

  1. A pilot reactor study on the effect of the naphtha boiling point properties in catalytic reforming

    SciTech Connect

    Moliord, K.; Tanem, I.; Grande, K.

    1995-12-31

    Three naphthas with different initial and three naphthas with different final boiling points were compared by testing in a pilot reactor. The pilot reactor unit consisted of isothermal, once-through 200 cm{sup 2} reactors with on-line GCs for full product analysis and octane number determination. Octane numbers, reformate yields and composition, gas and hydrogen yields were measured as function of reaction temperature at 16 bar reaction pressure and a molar H{sub 2}/HC ratio of 4.23. Catalyst deactivation was studied over 2 weeks periods at high seventy conditions, i.e. 102.4 RON and a H{sub 2}/HC ratio of 2.2. Test results, with emphasis on the yields of benzene and other aromatics, hydrogen yields as well as catalyst deactivation, are presented.

  2. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    NASA Astrophysics Data System (ADS)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  3. Geology of Precambrian rocks and isotope geochemistry of shear zones in the Big Narrows area, northern Front Range, Colorado

    USGS Publications Warehouse

    Abbott, Jeffrey T.

    1970-01-01

    Rocks within the Big Narrows and Poudre Park quadrangles located in the northern Front Range of Colorado are Precambrian metasedimentary and metaigneous schists and gneisses and plutonic igneous rocks. These are locally mantled by extensive late Tertiary and Quaternary fluvial gravels. The southern boundary of the Log Cabin batholith lies within the area studied. A detailed chronology of polyphase deformation, metamorphism and plutonism has been established. Early isoclinal folding (F1) was followed by a major period of plastic deformation (F2), sillimanite-microcline grade regional metamorphism, migmatization and synkinematic Boulder Creek granodiorite plutonism (1.7 b.y.). Macroscopic doubly plunging antiformal and synformal structures were developed. P-T conditions at the peak of metamorphism were probably about 670?C and 4.5 Kb. Water pressures may locally have differed from load pressures. The 1.4 b.y. Silver Plume granite plutonism was post kinematic and on the basis of petrographic and field criteria can be divided into three facies. Emplacement was by forcible injection and assimilation. Microscopic and mesoscopic folds which postdate the formation of the characteristic mineral phases during the 1.7 b.y. metamorphism are correlated with the emplacement of the Silver Plume Log Cabin batholith. Extensive retrograde metamorphism was associated with this event. A major period of mylonitization postdates Silver Plume plutonism and produced large E-W and NE trending shear zones. A detailed study of the Rb/Sr isotope geochemistry of the layered mylonites demonstrated that the mylonitization and associated re- crystallization homogenized the Rb87/Sr 86 ratios. Whole-rock dating techniques applied to the layered mylonites indicate a probable age of 1.2 b.y. Petrographic studies suggest that the mylonitization-recrystallization process produced hornfels facies assemblages in the adjacent metasediments. Minor Laramide faulting, mineralization and igneous activity

  4. A new approach for semi-automatic rock mass joints recognition from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Riquelme, Adrián J.; Abellán, A.; Tomás, R.; Jaboyedoff, M.

    2014-07-01

    Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information - synthetic and 3D scanned data - were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.

  5. Nutrient inputs via rock weathering point to enhanced CO2 uptake capacity of the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.

    2016-12-01

    Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover

  6. Balancing on the Edge: An Approach to Leadership and Resiliency that Combines Rock Climbing with Four Key Touch Points

    ERIC Educational Resources Information Center

    Winkler, Harold E.

    2005-01-01

    In this article, the author compares leadership and resiliency with rock climbing. It describes the author's personal experience on a rock climbing adventure with his family and how it required application of similar elements as that of leadership and resiliency. The article contains the following sections: (1) Being Resilient; (2) Points of…

  7. Balancing on the Edge: An Approach to Leadership and Resiliency that Combines Rock Climbing with Four Key Touch Points

    ERIC Educational Resources Information Center

    Winkler, Harold E.

    2005-01-01

    In this article, the author compares leadership and resiliency with rock climbing. It describes the author's personal experience on a rock climbing adventure with his family and how it required application of similar elements as that of leadership and resiliency. The article contains the following sections: (1) Being Resilient; (2) Points of…

  8. Water-quality, phytoplankton, and trophic-status characteristics of Big Base and Little Base lakes, Little Rock Air Force Base, Arkansas, 2003-2004

    USGS Publications Warehouse

    Justus, B.G.

    2005-01-01

    Little Rock Air Force Base is the largest C-130 base in the Air Force and is the only C-130 training base in the Department of Defense. Little Rock Air Force Base is located in central Arkansas near the eastern edge of the Ouachita Mountains, near the Mississippi Alluvial Plain, and within the Arkansas Valley Ecoregion. Habitats include upland pine forests, upland deciduous forest, broad-leaved deciduous swamps, and two small freshwater lakes?Big Base Lake and Little Base Lake. Big Base and Little Base Lakes are used primarily for recreational fishing by base personnel and the civilian public. Under normal (rainfall) conditions, Big Base Lake has a surface area of approximately 39 acres while surface area of Little Base Lake is approximately 1 acre. Little Rock Air Force Base personnel are responsible for managing the fishery in these two lakes and since 1999 have started a nutrient enhancement program that involves sporadically adding fertilizer to Big Base Lake. As a means of determining the relations between water quality and primary production, Little Rock Air Force Base personnel have a need for biological (phytoplankton density), chemical (dissolved-oxygen and nutrient concentrations), and physical (water temperature and light transparency) data. To address these monitoring needs, the U.S. Geological Survey in cooperation with Little Rock Air Force Base, conducted a study to collect and analyze biological, chemical, and physical data. The U.S. Geological Survey sampled water quality in Big Base Lake and Little Base Lake on nine occasions from July 2003 through June 2004. Because of the difference in size, two sampling sites were established on Big Base Lake, while only one site was established on Little Base Lake. Lake profile data for Big Base Lake indicate that low dissolved- oxygen concentrations in the hypolimnion probably constrain most fish species to the upper 5-6 feet of depth during the summer stratification period. Dissolved-oxygen concentrations in

  9. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  10. Supergene destruction of a hydrothermal replacement alunite deposit at Big Rock Candy Mountain, Utah: Mineralogy, spectroscopic remote sensing, stable-isotope, and argon-age evidences

    USGS Publications Warehouse

    Cunningham, C.G.; Rye, R.O.; Rockwell, B.W.; Kunk, M.J.; Councell, T.B.

    2005-01-01

    Big Rock Candy Mountain is a prominent center of variegated altered volcanic rocks in west-central Utah. It consists of the eroded remnants of a hypogene alunite deposit that, at ???21 Ma, replaced intermediate-composition lava flows. The alunite formed in steam-heated conditions above the upwelling limb of a convection cell that was one of at least six spaced at 3- to 4-km intervals around the margin of a monzonite stock. Big Rock Candy Mountain is horizontally zoned outward from an alunite core to respective kaolinite, dickite, and propylite envelopes. The altered rocks are also vertically zoned from a lower pyrite-propylite assemblage upward through assemblages successively dominated by hypogene alunite, jarosite, and hematite, to a flooded silica cap. This hydrothermal assemblage is undergoing natural destruction in a steep canyon downcut by the Sevier River in Marysvale Canyon. Integrated geological, mineralogical, spectroscopic remote sensing using AVIRIS data, Ar radiometric, and stable isotopic studies trace the hypogene origin and supergene destruction of the deposit and permit distinction of primary (hydrothermal) and secondary (weathering) processes. This destruction has led to the formation of widespread supergene gypsum in cross-cutting fractures and as surficial crusts, and to natrojarosite, that gives the mountain its buff coloration along ridges facing the canyon. A small spring, Lemonade Spring, with a pH of 2.6 and containing Ca, Mg, Si, Al, Fe, Mn, Cl, and SO4, also occurs near the bottom of the canyon. The 40Ar/39 Ar age (21.32??0.07 Ma) of the alunite is similar to that for other replacement alunites at Marysvale. However, the age spectrum contains evidence of a 6.6-Ma thermal event that can be related to the tectonic activity responsible for the uplift that led to the downcutting of Big Rock Candy Mountain by the Sevier River. This ???6.6 Ma event also is present in the age spectrum of supergene natrojarosite forming today, and probably dates

  11. Causality and entropic arguments pointing to a null Big Bag hypersurface

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2011-09-01

    I propose a causality argument in order to solve the homogeneity (horizon) problem and the entropy problem of cosmology. The solution is based on the replacement of the spacelike Big Bang boundary with a null boundary behind which stays a chronology violating region. This solution requires a tilting of the light cones near the null boundary and thus it is based more on the behavior of the light cones and hence on causality than on the behavior of the scale factor (expansion). The connection of this picture with Augustine of Hippo famous philosophical discussion on time and creation is mentioned.

  12. Towards microfluidic reactors for cell-free protein synthesis at the point-of-care

    SciTech Connect

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-12-22

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.

  13. Towards microfluidic reactors for cell-free protein synthesis at the point-of-care

    DOE PAGES

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; ...

    2015-12-22

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro- and nano-fluidic architectures, CFPS can be optimized for point-of care use. Here, we describe the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel reactor and feeder channels. This engineered membrane facilitatesmore » the exchange of metabolites, energy, and inhibitory species, prolonging the CFPS reaction and increasing protein yield. Membrane permeability can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. As a result, we show that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.« less

  14. Toward Microfluidic Reactors for Cell-Free Protein Synthesis at the Point-of-Care.

    PubMed

    Timm, Andrea C; Shankles, Peter G; Foster, Carmen M; Doktycz, Mitchel J; Retterer, Scott T

    2016-02-10

    Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  16. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  17. Development of a point-kinetic verification scheme for nuclear reactor applications

    NASA Astrophysics Data System (ADS)

    Demazière, C.; Dykin, V.; Jareteg, K.

    2017-06-01

    In this paper, a new method that can be used for checking the proper implementation of time- or frequency-dependent neutron transport models and for verifying their ability to recover some basic reactor physics properties is proposed. This method makes use of the application of a stationary perturbation to the system at a given frequency and extraction of the point-kinetic component of the system response. Even for strongly heterogeneous systems for which an analytical solution does not exist, the point-kinetic component follows, as a function of frequency, a simple analytical form. The comparison between the extracted point-kinetic component and its expected analytical form provides an opportunity to verify and validate neutron transport solvers. The proposed method is tested on two diffusion-based codes, one working in the time domain and the other working in the frequency domain. As long as the applied perturbation has a non-zero reactivity effect, it is demonstrated that the method can be successfully applied to verify and validate time- or frequency-dependent neutron transport solvers. Although the method is demonstrated in the present paper in a diffusion theory framework, higher order neutron transport methods could be verified based on the same principles.

  18. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  19. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  20. Matched Molecular Pair Analysis on Large Melting Point Datasets: A Big Data Perspective.

    PubMed

    Withnall, Michael; Chen, Hongming; Tetko, Igor V

    2017-06-26

    A matched molecular pair (MMP) analysis was used to examine the change in melting point (MP) between pairs of similar molecules in a set of ∼275k compounds. We found many cases in which the change in MP (ΔMP) of compounds correlates with changes in functional groups. In line with the results of a previous study, correlations between ΔMP and simple molecular descriptors, such as the number of hydrogen bond donors, were identified. In using a larger dataset, covering a wider chemical space and range of melting points, we observed that this method remains stable and scales well with larger datasets. This MMP-based method could find use as a simple privacy-preserving technique to analyze large proprietary databases and share findings between participating research groups. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Geologic Field Notes, Geochemical Analyses, and Field Photographs of Outcrops and Rock Samples from the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.

  2. Particles fluidized bed receiver/reactor with a beam-down solar concentrating optics: 30-kWth performance test using a big sun-simulator

    NASA Astrophysics Data System (ADS)

    Kodama, Tatsuya; Gokon, Nobuyuki; Cho, Hyun Seok; Matsubara, Koji; Etori, Tetsuro; Takeuchi, Akane; Yokota, Shin-nosuke; Ito, Sumie

    2016-05-01

    A novel concept of particles fluidized bed receiver/reactor with a beam-down solar concentrating optics was performed using a 30-kWth window type receiver by a big sun-simulator. A fluidized bed of quartz sand particles was created by passing air from the bottom distributor of the receiver, and about 30 kWth of high flux visible light from 19 xenon-arc lamps of the sun-simulator was directly irradiated on the top of the fluidized bed in the receiver through a quartz window. The particle bed temperature at the center position of the fluidized bed went up to a temperature range from 1050 to 1200°C by the visible light irradiation with the average heat flux of about 950 kW/m2, depending on the air flow rate. The output air temperature from the receiver reached 1000 - 1060°C.

  3. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  4. Extended Burnup Demonstration Reactor Fuels Program. Annual progress report, April 1983-March 1984. [BWR

    SciTech Connect

    Exarhos, C.A.

    1985-06-20

    The US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities Nuclear Corporation have participated since 1979 in a cooperative Extended Burnup Demonstration Program. Under the program, standard ENC-fabricated reload fuel in the Big Rock Point and Oyster Creek reactor cores has been irradiated to discharge burnups at or beyond 35,000 MWD/MTU, one to two cycles beyond its originally projected exposure life. The program provides for examination of the fuel at poolside before and after each extended burnup cycle as well as for limited destructive hot cell examination. The 1984 progress report covers work performed under the EBD program between April 1983 and March 1984. Major milestones reached during the period include completion of a hot cell examination on four high burnup rods from Big Rock Point and of a poolside on the Oyster Creek EBD fuel at discharge. The hot cell examination of four rods at burnups to 37.2 GWD/MTU confirmed poolside measurements on the same fuel, showing the urania and gadolinia-bearing fuel rods to be in excellent condition. No major cladding degradation, pellet restructuring, or pellet-clad interaction was found in any of the samples examined. The Oyster Creek fuel, examined at an assembly average exposure of 34.5 GWD/MTU, showed good performance with regard to both diametral creepdown and clad oxide accumulation.

  5. Semi-automatic characterization of fractured rock masses using 3D point clouds: discontinuity orientation, spacing and SMR geomechanical classification

    NASA Astrophysics Data System (ADS)

    Riquelme, Adrian; Tomas, Roberto; Abellan, Antonio; Cano, Miguel; Jaboyedoff, Michel

    2015-04-01

    Investigation of fractured rock masses for different geological applications (e.g. fractured reservoir exploitation, rock slope instability, rock engineering, etc.) requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in 3D data acquisition using photogrammetric and/or LiDAR techniques currently allow a quick and an accurate characterization of rock mass discontinuities. This contribution presents a methodology for: (a) use of 3D point clouds for the identification and analysis of planar surfaces outcropping in a rocky slope; (b) calculation of the spacing between different discontinuity sets; (c) semi-automatic calculation of the parameters that play a capital role in the Slope Mass Rating geomechanical classification. As for the part a) (discontinuity orientation), our proposal identifies and defines the algebraic equations of the different discontinuity sets of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test. Additionally, the procedure finds principal orientations by Kernel Density Estimation and identifies clusters (Riquelme et al., 2014). As a result of this analysis, each point is classified with a discontinuity set and with an outcrop plane (cluster). Regarding the part b) (discontinuity spacing) our proposal utilises the previously classified point cloud to investigate how different outcropping planes are linked in space. Discontinuity spacing is calculated for each pair of linked clusters within the same discontinuity set, and then spacing values are analysed calculating their statistic values. Finally, as for the part c) the previous results are used to calculate parameters F_1, F2 and F3 of the Slope Mass Rating geomechanical classification. This analysis is carried out for each discontinuity set using their respective orientation extracted in part a). The open access tool SMRTool (Riquelme et al., 2014) is then used to calculate F1 to F3 correction

  6. Optical sensor based on combined GI/DSPI technique for strain monitoring in crucial points of big engineering structures

    NASA Astrophysics Data System (ADS)

    Łukaszewski, Dariusz; Sałbut, Leszek; Kujawińska, Małgorzata; Malowany, Krzysztof

    2011-05-01

    The data from a monitored structure/object should be easy acquired, processed and sent to the user, who can assess the health of a structure in short time and schedule necessary maintenance in order to prevent accidences. Systems which provide such information are fundamental for Structural Health Monitoring (SHM). In the paper novel optical sensor designed for in-plane displacement and strain monitoring in crucial points of a big engineering and civil structures is presented. It combines two techniques: Grating Interferometry (GI) and Digital Speckle Pattern Interferometry (DSPI). GI requires specimen grating attached to the surface of an object under test. It is the unique technique which may provide the information about fatigue process and increased residual stresses. DSPI works with a rough object surface but due to differential measurements cannot be simply used for long time monitoring but to explore the actual behavior of a structure. The sensor which combines these techniques provides user with wide possibilities concerning functionality, measuring range, object surface and environmental conditions. The crucial issue in implementation of this sensor is the choice of its location(s) at the investigated structure. Therefore it is proposed to be as one of the elements of hierarchical sensors net, which gives complete information about structure state. As the method for supporting the choice of GI/DSPI sensor location we proposed the system based on 3D digital correlation method. The paper presents mechanical and optical sensor design along with laboratory tests of main component such as sensor heads in form of monolithic (plastic) and cavity waveguides. Finally the possible application of proposed sensor in combination with 3D DIC system is presented.

  7. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    SciTech Connect

    Qualls, A. L.; Brown, Nicholas R.; Betzler, Benjamin R.; Carbajo, Juan; Hale, Richard Edward; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry W.; Wysocki, Aaron J.

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  8. SCoRe - Concepts of Liquid Metal Cooled Space Reactors for Avoidance of Single-Point Failure

    SciTech Connect

    El-Genk, Mohamed; Hatton, Steven; Fox, Charles; Tournier, Jean-Michel

    2005-02-06

    Space nuclear Reactor Power Systems (SRPSs) are being developed to meet electrical power requirements for NASA's planetary exploration missions early next decade. In addition to enjoying some degree of autonomy, these systems need to operate reliably through the end of the mission, which could not be realized solely through a redundancy in the reactor's coolant loop. Besides increasing the total system mass, such hardware redundancy does not eliminate a single-point failure in the reactor and subsequent loss of coolant. This paper presents three concepts of the liquid metal cooled. Sectored, Compact Reactor (SCoRe) for the avoidance of single-point failure. The SCoRe-S, ScoRe-M, and SCoRe-L concepts are for small, medium, and large reactor cores, covering a wide range of electrical power requirements, from 10's of kWe to a few MWe. As a common feature in all SCoRe concepts, the reactor core is divided into six sectors that are neutronically coupled but thermal-hydraulically decoupled. The dividers of the sectors are liquid metal heat pipes, which facilitate cooling a sector experiencing a Loss of Coolant (LOC) by passively transporting the fission power generated in it to the two adjacent sectors without losing the mission. At the same time, the fission power of the reactor is reduced to avoid overheating the fuel in the sector experiencing a LOC. The SCoRe concepts have compact, hexagonal cores surrounded by a relatively thick (10 cm minimum) BeO reflector and axial BeO reflector that is 4 cm thick. The SCoRe is placed directly in front of the radiation shield, thus reducing the shield mass and that of the power system. In SCoRe-S cores, the UN fuel pins are arranged in a triangular lattice while in the SCoRe-M and SCoRe-L cores, the UN fuel pins arranged in a triangular lattice are assembled in 19-pin and 37-pin shrouded bundles, respectively.

  9. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.

    PubMed

    Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J

    2015-10-15

    Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of

  10. Compliance Monitoring of Underwater Blasting for Rock Removal at Warrior Point, Columbia River Channel Improvement Project, 2009/2010

    SciTech Connect

    Carlson, Thomas J.; Johnson, Gary E.; Woodley, Christa M.; Skalski, J. R.; Seaburg, Adam

    2011-05-10

    The U.S. Army Corps of Engineers, Portland District (USACE) conducted the 20-year Columbia River Channel Improvement Project (CRCIP) to deepen the navigation channel between Portland, Oregon, and the Pacific Ocean to allow transit of fully loaded Panamax ships (100 ft wide, 600 to 700 ft long, and draft 45 to 50 ft). In the vicinity of Warrior Point, between river miles (RM) 87 and 88 near St. Helens, Oregon, the USACE conducted underwater blasting and dredging to remove 300,000 yd3 of a basalt rock formation to reach a depth of 44 ft in the Columbia River navigation channel. The purpose of this report is to document methods and results of the compliance monitoring study for the blasting project at Warrior Point in the Columbia River.

  11. A 3D clustering approach for point clouds to detect and quantify changes at a rock glacier front

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2016-04-01

    Terrestrial Laser Scanners (TLS) are extensively used in geomorphology to remotely-sense landforms and surfaces of any type and to derive digital elevation models (DEMs). Modern devices are able to collect many millions of points, so that working on the resulting dataset is often troublesome in terms of computational efforts. Indeed, it is not unusual that raw point clouds are filtered prior to DEM creation, so that only a subset of points is retained and the interpolation process becomes less of a burden. Whilst this procedure is in many cases necessary, it implicates a considerable loss of valuable information. First, and even without eliminating points, the common interpolation of points to a regular grid causes a loss of potentially useful detail. Second, it inevitably causes the transition from 3D information to only 2.5D data where each (x,y) pair must have a unique z-value. Vector-based DEMs (e.g. triangulated irregular networks) partially mitigate these issues, but still require a set of parameters to be set and a considerable burden in terms of calculation and storage. Because of the reasons above, being able to perform geomorphological research directly on point clouds would be profitable. Here, we propose an approach to identify erosion and deposition patterns on a very active rock glacier front in the Swiss Alps to monitor sediment dynamics. The general aim is to set up a semiautomatic method to isolate mass movements using 3D-feature identification directly from LiDAR data. An ultra-long range LiDAR RIEGL VZ-6000 scanner was employed to acquire point clouds during three consecutive summers. In order to isolate single clusters of erosion and deposition we applied the Density-Based Scan Algorithm with Noise (DBSCAN), previously successfully employed by Tonini and Abellan (2014) in a similar case for rockfall detection. DBSCAN requires two input parameters, strongly influencing the number, shape and size of the detected clusters: the minimum number of

  12. Nova-Scotia Power's Point Aconi plant overcomes CFB design problems to become rock of reliability

    SciTech Connect

    Peltier, R.

    2006-09-15

    Point Aconi's circulating fluidized-bed boiler experienced erosion, corrosion, and fouling problems from the day it went on-line in 1993. After several frustrating years of unreliable operation, in late 1999, Nova Scotia Power discovered the right combination of engineering and fuel modifications. Today, after a switch to 80% petroleum coke and major boiler modifications, Point Aconi's output exceeds its original nameplate rating. For having the vision and fortitude to plan and execute a multi year, $20 million project to revitalize North America's first in-service utility CFB boiler, Nova Scotia Power's Point Aconi plant is the well-deserved winner of POWER magazine's 2006 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshooter par excellence. 10 figs. 1 tab.

  13. Lost in Virtual Reality: Pathfinding Algorithms Detect Rock Fractures and Contacts in Point Clouds

    NASA Astrophysics Data System (ADS)

    Thiele, S.; Grose, L.; Micklethwaite, S.

    2016-12-01

    UAV-based photogrammetric and LiDAR techniques provide high resolution 3D point clouds and ortho-rectified photomontages that can capture surface geology in outstanding detail over wide areas. Automated and semi-automated methods are vital to extract full value from these data in practical time periods, though the nuances of geological structures and materials (natural variability in colour and geometry, soft and hard linkage, shadows and multiscale properties) make this a challenging task. We present a novel method for computer assisted trace detection in dense point clouds, using a lowest cost path solver to "follow" fracture traces and lithological contacts between user defined end points. This is achieved by defining a local neighbourhood network where each point in the cloud is linked to its neighbours, and then using a least-cost path algorithm to search this network and estimate the trace of the fracture or contact. A variety of different algorithms can then be applied to calculate the best fit plane, produce a fracture network, or map properties such as roughness, curvature and fracture intensity. Our prototype of this method (Fig. 1) suggests the technique is feasible and remarkably good at following traces under non-optimal conditions such as variable-shadow, partial occlusion and complex fracturing. Furthermore, if a fracture is initially mapped incorrectly, the user can easily provide further guidance by defining intermediate waypoints. Future development will include optimization of the algorithm to perform well on large point clouds and modifications that permit the detection of features such as step-overs. We also plan on implementing this approach in an interactive graphical user environment.

  14. [Analysis of a blog for gastrointestinal disease in the view point of the big data: a single institutional study].

    PubMed

    Choi, Jungran; Park, Hyojin; Lee, Choong-Hyun

    2014-06-01

    With the enormous increase in the amount of data, the concept of big data has emerged and this allows us to gain new insights and appreciate its value. However, analysis related to gastrointestinal diseases in the viewpoint of the big data has not been performed yet in Korea. This study analyzed the data of the blog's visitors as a set of big data to investigate questions they did not mention in the clinical situation. We analyzed the blog of a professor whose subspecialty is gastroenterology at Gangnam Severance Hospital. We assessed the changes in the number of visitors, access path of visitors, and the queries from January 2011 to December 2013. A total of 50,084 visitors gained accessed to the blog. An average of 1,535.3 people visited the blog per month and 49.5 people per day. The number of visitors and the cumulative number of registered posts showed a positive correlation. The most utilized access path of visitors to the website was blog.iseverance.com (42.2%), followed by Google (32.8%) and Daum (6.6%). The most searched term by the visitors in the blog was intestinal metaplasia (16.6%), followed by dizziness (8.3%) and gastric submucosal tumor (7.0%). Personal blog can function as a communication route for patients with digestive diseases. The most frequently searched word necessitating explanation and education was 'intestinal metaplasia'. Identifying and analyzing even unstructured data as a set of big data is expected to provide meaningful information.

  15. Toward a Learning Health-care System - Knowledge Delivery at the Point of Care Empowered by Big Data and NLP.

    PubMed

    Kaggal, Vinod C; Elayavilli, Ravikumar Komandur; Mehrabi, Saeed; Pankratz, Joshua J; Sohn, Sunghwan; Wang, Yanshan; Li, Dingcheng; Rastegar, Majid Mojarad; Murphy, Sean P; Ross, Jason L; Chaudhry, Rajeev; Buntrock, James D; Liu, Hongfang

    2016-01-01

    The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery. Additionally, significant clinical information is embedded in the free text, making natural language processing (NLP) an essential component in implementing an LHS. Herein, we share our institutional implementation of a big data-empowered clinical NLP infrastructure, which not only enables health-care analytics but also has real-time NLP processing capability. The infrastructure has been utilized for multiple institutional projects including the MayoExpertAdvisor, an individualized care recommendation solution for clinical care. We compared the advantages of big data over two other environments. Big data infrastructure significantly outperformed other infrastructure in terms of computing speed, demonstrating its value in making the LHS a possibility in the near future.

  16. A golden point rule in rock-paper-scissors-lizard-spock game

    NASA Astrophysics Data System (ADS)

    Kang, Yibin; Pan, Qiuhui; Wang, Xueting; He, Mingfeng

    2013-06-01

    We study a novel five-species system on two-dimensional lattices when each species have two superior and two inferior partners. Here we simplify the huge parameter space of predation probability to only two parameters. Both of Monte Carlo simulation and Mean Field Theory reveal that two of strategies may die out when the ratio of the two parameters is close to the golden point 0.618, and the remaining three strategies are provided a cyclic dominance system.

  17. Big Data: Big Confusion? Big Challenges?

    DTIC Science & Technology

    2015-05-01

    12th Annual Acquisition Research Symposium 12th Annual Acquisition Research Symposium Big Data : Big Confusion? Big Challenges? Mary Maureen... Data : Big Confusion? Big Challenges? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...Acquisition Research Symposium • ~!& UNC CHARlD1TE 90% of the data in the world today was created in the last two years Big Data growth from

  18. Application of the Reactor Analysis Support Package LWR set-point analysis guidelines

    SciTech Connect

    Engel, R.E.; Sorensen, J.M.; May, R.S.; Doran, K.J.; Trikouros, N.G.; Mozzias, E.S.

    1989-07-01

    Frequently, a situation is encountered in which the technical specification setpoints established by the plant safety analysis are judged to be unacceptable from a plant operational standpoint. This report documents the application of the Electric Power Research Institute (EPRI) Reactor Analysis Support Package (RASP) Light Water Reactor (LWR) setpoint analysis guidelines to provide justification for relaxing the high pressure setpoints at the Oyster Creek Nuclear Generation Station. More Specifically, the plant operation's staff determined that it was desirable to provide increased margin for measurement uncertainties in the high pressure instrument and safety valve setpoints. Previous experience had indicated that there was insufficient margin to justify the desired setpoints using conventional deterministic inputs to the safety analysis and plant performance evaluation process. Therefore, it was determined that the RASP LWR setpoint analysis guidelines, which incorporated the use of a statistical combination of uncertainties methodology, would be used to establish an acceptable set of high pressure setpoints. This report documents the results of applying the RASP setpoint analysis guidelines to provide justification for an acceptable set of high pressure setpoints for the Oyster Creek station. 14 refs., 53 figs., 28 tabs.

  19. The Inversion Point of the Isothermal Reactivity Coefficient of the IPEN/MB-01 Reactor - II: Theoretical Analysis

    SciTech Connect

    Santos, A. dos; Fuga, R.; Abe, A.Y.

    2005-10-15

    TORT, an S{sub N} three-dimensional transport code, is employed for the analysis of the inversion point of the isothermal reactivity coefficient of the IPEN/MB-01 reactor. The analyses are performed in companion NJOY, AMPX-II, and TORT systems considering the data libraries ENDF/B-VI.8, JENDL3.3, and JEF3.0. The analyses reveal that for this peculiar problem, there is a need to convert all the computer codes to DOUBLE-PRECISION as well as to increase to seven the number of digits of the ANISN library generated by XSDRNPM. Contrary to the traditional diffusion theory codes, TORT k{sub eff} results are very sensitive to the number of both fine and broad groups. For instance, the traditional and very well known two- and four-group structure, largely utilized in several diffusion codes, produced simply unacceptable k{sub eff} results. The highest deviation between calculated and experimental values found for the inversion point was -4.48 deg. C. At first glance, there appears to be a significant discrepancy. However, in terms of reactivity coefficient, this discrepancy means a deviation of -0.90 {+-} 0.05 pcm/deg. C, which indicates that the calculational methodology and related nuclear data libraries meet the desired accuracy (-1.0 pcm/deg. C) for the determination of this parameter for thermal reactors.

  20. Still Bay Point-Production Strategies at Hollow Rock Shelter and Umhlatuzana Rock Shelter and Knowledge-Transfer Systems in Southern Africa at about 80-70 Thousand Years Ago.

    PubMed

    Högberg, Anders; Lombard, Marlize

    2016-01-01

    It has been suggested that technological variations associated with Still Bay assemblages of southern Africa have not been addressed adequately. Here we present a study developed to explore regional and temporal variations in Still Bay point-production strategies. We applied our approach in a regional context to compare the Still Bay point assemblages from Hollow Rock Shelter (Western Cape) and Umhlatuzana Rock Shelter (KwaZulu-Natal). Our interpretation of the point-production strategies implies inter-regional point-production conventions, but also highlights variability and intra-regional knapping strategies used for the production of Still Bay points. These strategies probably reflect flexibility in the organisation of knowledge-transfer systems at work during the later stages of the Middle Stone Age between about 80 ka and 70 ka in South Africa.

  1. Still Bay Point-Production Strategies at Hollow Rock Shelter and Umhlatuzana Rock Shelter and Knowledge-Transfer Systems in Southern Africa at about 80-70 Thousand Years Ago

    PubMed Central

    Lombard, Marlize

    2016-01-01

    It has been suggested that technological variations associated with Still Bay assemblages of southern Africa have not been addressed adequately. Here we present a study developed to explore regional and temporal variations in Still Bay point-production strategies. We applied our approach in a regional context to compare the Still Bay point assemblages from Hollow Rock Shelter (Western Cape) and Umhlatuzana Rock Shelter (KwaZulu-Natal). Our interpretation of the point-production strategies implies inter-regional point-production conventions, but also highlights variability and intra-regional knapping strategies used for the production of Still Bay points. These strategies probably reflect flexibility in the organisation of knowledge-transfer systems at work during the later stages of the Middle Stone Age between about 80 ka and 70 ka in South Africa. PMID:27942012

  2. End points in discharge cleaning on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Mueller, D.; Dylla, H.F.; Bell, M.G.; Blanchard, W.R.; Bush, C.E.; Gettelfinger, G.; Hawryluk, R.J.; Hill, K.W.; Janos, A.C.; Jobes, F.C.

    1989-07-01

    It has been found necessary to perform a series of first-wall conditioning steps prior to successful high power plasma operation in the Tokamak Fusion Test Reactor (TFTR). This series begins with glow discharge cleaning (GDC) and is followed by pulse discharge cleaning (PDC). During machine conditioning, the production of impurities is monitored by a Residual Gas Analyzer (RGA). PDC is made in two distinct modes: Taylor discharge cleaning (TDC), where the plasma current is kept low (15--50 kA) and of short duration (50 ms) by means of a relatively high prefill pressure and aggressive PDC, where lower prefill pressure and higher toroidal field result in higher current (200--400 kA) limited by disruptions at q(a) /approx/ 3 at /approx/ 250 ms. At a constant repetition rate of 12 discharges/minute, the production rate of H/sub 2/O, CO, or other impurities has been found to be an unreliable measure of progress in cleaning. However, the ability to produce aggressive PDC with substantial limiter heating, but without the production of x-rays from runaway electrons, is an indication that TDC is no longer necessary after /approx/ 10/sup 5/ pulses. During aggressive PDC, the uncooled limiters are heated by the plasma from the bakeout temperature of 150/degree/C to about 250/degree/C over a period of three to eight hours. This limiter heating is important to enhance the rate at which H/sub 2/O is removed from the graphite limiter. 14 refs., 3 figs., 1 tab.

  3. Permafrost and snow monitoring at Rothera Point (Adelaide Island, Maritime Antarctica): Implications for rock weathering in cryotic conditions

    NASA Astrophysics Data System (ADS)

    Guglielmin, Mauro; Worland, M. Roger; Baio, Fabio; Convey, Peter

    2014-11-01

    In February 2009 a new permafrost borehole was installed close to the British Antarctic Survey Station at Rothera Point, Adelaide Island (67.57195°S 68.12068°W). The borehole is situated at 31 m asl on a granodiorite knob with scattered lichen cover. The spatial variability of snow cover and of ground surface temperature (GST) is characterised through the monitoring of snow depth on 5 stakes positioned around the borehole and with thermistors placed at three different rock surfaces (A, B and C). The borehole temperature is measured by 18 thermistors placed at different depths between 0.3 and 30 m. Snow persistence is very variable both spatially and temporally with snow free days per year ranging from 13 and more than 300, and maximum snow depths varying between 0.03 and 1.42 m. This variability is the main cause of high variability in GST, that ranged between - 3.7 and - 1.5 °C. The net effect of the snow cover is a cooling of the surface. Mean annual GST, mean summer GST, and the degree days of thawing and the n-factor of thawing were always much lower at sensor A where snow persistence and depth were greater than in the other sensor locations. At sensor A the potential freeze-thaw events were negligible (0-3) and the thermal stress was at least 40% less than in the other sensor locations. The zero curtain effect at the rock surface occurred only at surface A, favouring chemical weathering over mechanical action. The active layer thickness (ALT) ranged between 0.76 and 1.40 m. ALT was directly proportional to the mean air temperature in summer, and inversely proportional to the maximum snow depth in autumn. ALT temporal variability was greater than reported at other sites at similar latitude in the Northern Hemisphere, or with the similar mean annual air temperature in Maritime Antarctica, because vegetation and a soil organic horizon are absent at the study site. Zero annual amplitude in temperature was observed at about 16 m depth, where the mean annual

  4. Life's Little (and Big) Lessons: Identity Statuses and Meaning-Making in the Turning Point Narratives of Emerging Adults

    ERIC Educational Resources Information Center

    McLean, Kate C.; Pratt, Michael W.

    2006-01-01

    A longitudinal study examined relations between 2 approaches to identity development: the identity status model and the narrative life story model. Turning point narratives were collected from emerging adults at age 23 years. Identity statuses were collected at several points across adolescence and emerging adulthood, as were measures of…

  5. Performance evaluation of a natural treatment system for small communities, composed of a UASB reactor, maturation ponds (baffled and unbaffled) and a granular rock filter in series.

    PubMed

    Dias, D F C; Passos, R G; Rodrigues, V A J; Matos, M P de; Santos, C R S; Sperling, M von

    2017-03-08

    Post-treatment of anaerobic reactor effluent with maturation ponds is a good option for small to medium-sized communities in tropical climates. The treatment line investigated, operating in Brazil, with an equivalent capacity to treat domestic sewage from 250 inhabitants, was comprised of a UASB reactor followed by two shallow maturation ponds (unbaffled and baffled) and a granular rock filter (decreasing grain size) in series, requiring an area of only 1.5 m(2).inhabitant(-1). With an overall hydraulic retention time of only 6.7 days, the performance was excellent for a natural treatment system. Based on over two years of continuous monitoring, median removal efficiencies were: BOD = 93%, COD = 79%, TSS = 87%, ammonia = 43% and E. coli = 6.1 log units. The final effluent complied with European discharge standards and WHO guidelines for some forms of irrigation, and showed to be a suitable alternative for treating domestic sewage for small communities in warm areas, especially in developing countries.

  6. National demonstration of full reactor coolant system (RCS) chemical decontamination at Indian Point 2

    SciTech Connect

    Trovato, S.A.; Parry, J.O.

    1995-03-01

    Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effective method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.

  7. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  8. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  9. BigDog

    NASA Astrophysics Data System (ADS)

    Playter, R.; Buehler, M.; Raibert, M.

    2006-05-01

    BigDog's goal is to be the world's most advanced quadruped robot for outdoor applications. BigDog is aimed at the mission of a mechanical mule - a category with few competitors to date: power autonomous quadrupeds capable of carrying significant payloads, operating outdoors, with static and dynamic mobility, and fully integrated sensing. BigDog is about 1 m tall, 1 m long and 0.3 m wide, and weighs about 90 kg. BigDog has demonstrated walking and trotting gaits, as well as standing up and sitting down. Since its creation in the fall of 2004, BigDog has logged tens of hours of walking, climbing and running time. It has walked up and down 25 & 35 degree inclines and trotted at speeds up to 1.8 m/s. BigDog has walked at 0.7 m/s over loose rock beds and carried over 50 kg of payload. We are currently working to expand BigDog's rough terrain mobility through the creation of robust locomotion strategies and terrain sensing capabilities.

  10. Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications.

    PubMed

    Ramalingam, Naveen; Liu, Hao-Bing; Dai, Chang-Chun; Jiang, Yu; Wang, Hui; Wang, Qinghui; M Hui, Kam; Gong, Hai-Qing

    2009-10-01

    A major challenge for the lab-on-a-chip (LOC) community is to develop point-of-care diagnostic chips that do not use instruments. Such instruments include pumping or liquid handling devices for distribution of patient's nucleic-acid test sample among an array of reactors and microvalves or mechanical parts to seal these reactors. In this paper, we report the development of a primer pair pre-loaded PCR array chip, in which the loading of the PCR mixture into an array of reactors and subsequent sealing of the reactors were realized by a novel capillary-based microfluidics with a manual two-step pipetting operations. The chip is capable of performing simultaneous (parallel) analyses of multiple gene targets and its performance was tested by amplifying twelve different gene targets against cDNA template from human hepatocellular carcinoma using SYBR Green I fluorescent dye. The versatility and reproducibility of the PCR-array chip are demonstrated by real-time PCR amplification of the BNI-1 fragment of SARS cDNA cloned in a plasmid vector. The reactor-to-reactor diffusion of the pre-loaded primer pairs in the chip is investigated to eliminate the possibility of primer cross-contamination. Key technical issues such as PCR mixture loss in gas-permeable PDMS chip layer and bubble generation due to different PDMS-glass bonding methods are investigated.

  11. Integrated watershed economic model for non-point source pollution management in Upper Big Walnut Creek Watershed, OH

    USDA-ARS?s Scientific Manuscript database

    Today, non-point source pollution (NPS) is one of the major sources of water quality impairments globally (UNEP, 2007). In the US, nutrient pollution is the leading cause of water quality issues in lakes and estuaries (USEPA, 2002). The maximum concentration of nutrients in streams is found to be in...

  12. Reduction of VOC emissions from metal dip coating applications -- Canam Steel Corporation Point of Rocks, MD case study

    SciTech Connect

    Monfet, J.P.

    1997-12-31

    The reduction of VOC emissions from metal dip coating applications is not an environmental constraint, it is an economic opportunity. This case study shows how the industry can reap economic benefits from VOC reductions while improving air quality. The Canam Steel Corporation plant located in Point of Rocks, MD operates dip tanks for primer application on fabricated steel joists and joist girders. This process is presently subject to a regulation that limits the paint VOC content to 3.5 pounds per gallon of coating less water. As a result of the high paint viscosity associated with that regulation, the paint thickness of the dipped steel is thicker than the customers` specifications. Most of the VOC emissions can therefore be associated with the excess of paint applied to the products rather than to the required thickness of the coating. The higher paint usage rate has more than environmental consequences, it increases the cost of the applied coating. The project is to reduce the paint usage by controlling the viscosity of the coating in the tank. Experimental results as well as actual mass balance calculations show that using a higher VOC content paint would reduce the overall VOC emissions. The author explained the project to the Maryland Department of the Environment (MDE) Air and Radiation Management Administration. First, the MDE agreed to develop a new RACT determination for fabricated steel dipping operations. The new regulation would limit the amount of VOC than can be emitted to dip coat a ton of fabricated steel. Second, the MDE agreed to allow experimentation of the higher VOC content paint as a pilot project for the new regulation. This paper demonstrates the need for a RACT determination specific to fabricated steel dipping operations.

  13. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  14. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  15. Interpretation of x-ray rocking-curve broadening caused by lattice relaxation around metastable point defects

    NASA Astrophysics Data System (ADS)

    Leszczynski, M.

    1993-12-01

    The x-ray rocking-curve broadening accompanying the transfer to and from the metastable state of EL2 and DX centers in GaAs and AlxGa1-xAs has recently been observed experimentally [Leszczynski et al., Semicond. Sci. Technol. 6, B66 (1991)]. This paper gives a more quantitative analysis of the experimental results. Computer simulations of rocking curves based on the dynamical theory of x-ray diffraction for various models of the real crystal structure made it possible to evaluate the conditions in which the lattice relaxation could be observed in experiment. The general conclusion is that in all the materials examined, the inhomogeneities played a decisive role. The possible range of the inhomogeneities and the strains around EL2 and DX centers is discussed in relation to their microscopic models.

  16. Cloud point extraction for cobalt preconcentration with on-line phase separation in a knotted reactor followed by ETAAS determination in drinking waters.

    PubMed

    Gil, Raúl A; Gásquez, José A; Olsina, Roberto; Martinez, Luis D; Cerutti, Soledad

    2008-07-30

    A novel method for cobalt preconcentration by cloud point extraction with on-line phase separation in a PTFE knotted reactor and further determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed. The cloud point system was formed in the presence of non-ionic micelles of polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) and it was retained on the inner walls of a knotted reactor (KR). The surfactant rich-phase was removed from the knotted reactor with 75 microL of methanol acidified with 0.8 mol L(-1) nitric acid, directly into the dosing hole of the L'Vov graphite tube. An enrichment factor of 15 was obtained with a preconcentration time of 60 s, with respect to the direct determination of cobalt by ETAAS in aqueous solutions. The value of the detection limit for the preconcentration of 5 mL of sample solution was 10 ng L(-1). The precision, expressed as the relative standard deviation (R.S.D.), for 10 replicate determinations at 0.5 microg L(-1) Co level was 4.5%. Verification of the accuracy was carried out by analysis of a standard reference material (NIST SRM 1640e "Trace elements in natural water"). The method was successfully applied to the determination of cobalt in drinking water samples.

  17. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  18. How Big Is Too Big?

    ERIC Educational Resources Information Center

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  19. How Big Is Too Big?

    ERIC Educational Resources Information Center

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  20. Online stress corrosion crack and fatigue usages factor monitoring and prognostics in light water reactor components: Probabilistic modeling, system identification and data fusion based big data analytics approach

    SciTech Connect

    Mohanty, Subhasish M.; Jagielo, Bryan J.; Iverson, William I.; Bhan, Chi Bum; Soppet, William S.; Majumdar, Saurin M.; Natesan, Ken N.

    2014-12-10

    Nuclear reactors in the United States account for roughly 20% of the nation's total electric energy generation, and maintaining their safety in regards to key component structural integrity is critical not only for long term use of such plants but also for the safety of personnel and the public living around the plant. Early detection of damage signature such as of stress corrosion cracking, thermal-mechanical loading related material degradation in safety-critical components is a necessary requirement for long-term and safe operation of nuclear power plant systems.

  1. The ARIES-III D- sup 3 He tokamak reactor: Design-point determination and parametric studies

    SciTech Connect

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A. ); Santarius, J.F. )

    1991-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-3 design uses a D-{sup 3}He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. Results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-1 is included. 11 refs., 5 figs.

  2. Toward a Learning Health-care System – Knowledge Delivery at the Point of Care Empowered by Big Data and NLP

    PubMed Central

    Kaggal, Vinod C.; Elayavilli, Ravikumar Komandur; Mehrabi, Saeed; Pankratz, Joshua J.; Sohn, Sunghwan; Wang, Yanshan; Li, Dingcheng; Rastegar, Majid Mojarad; Murphy, Sean P.; Ross, Jason L.; Chaudhry, Rajeev; Buntrock, James D.; Liu, Hongfang

    2016-01-01

    The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery. Additionally, significant clinical information is embedded in the free text, making natural language processing (NLP) an essential component in implementing an LHS. Herein, we share our institutional implementation of a big data-empowered clinical NLP infrastructure, which not only enables health-care analytics but also has real-time NLP processing capability. The infrastructure has been utilized for multiple institutional projects including the MayoExpertAdvisor, an individualized care recommendation solution for clinical care. We compared the advantages of big data over two other environments. Big data infrastructure significantly outperformed other infrastructure in terms of computing speed, demonstrating its value in making the LHS a possibility in the near future. PMID:27385912

  3. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  4. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  5. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  6. Big bluestem

    USDA-ARS?s Scientific Manuscript database

    Big Bluestem (Andropogon gerardii) is a warm season grass native to North America, accounting for 40% of the herbaceous biomass of the tall grass prairie, and a candidate for bioenergy feedstock production. The goal of this study was to measure among and within population genetic variation of natura...

  7. Big Dreams

    ERIC Educational Resources Information Center

    Benson, Michael T.

    2015-01-01

    The Keen Johnson Building is symbolic of Eastern Kentucky University's historic role as a School of Opportunity. It is a place that has inspired generations of students, many from disadvantaged backgrounds, to dream big dreams. The construction of the Keen Johnson Building was inspired by a desire to create a student union facility that would not…

  8. Big data need big theory too.

    PubMed

    Coveney, Peter V; Dougherty, Edward R; Highfield, Roger R

    2016-11-13

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their 'depth' and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote 'blind' big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2015 The Authors.

  9. Big data need big theory too

    PubMed Central

    Dougherty, Edward R.; Highfield, Roger R.

    2016-01-01

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their ‘depth’ and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote ‘blind’ big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698035

  10. The Big Rocks: Priority Management for Principals

    ERIC Educational Resources Information Center

    Marshall, Kim

    2008-01-01

    How can a dedicated principal work really, really hard but fail to get significant gains in student achievement? The answer is obvious: by spending too much time on the wrong things and not enough on the right things. The principal's number-one priority is zeroing in on the highest-priority activities for bringing all students to high levels of…

  11. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  12. Intensification and forecasting of low-pour-point diesel fuel production via modelling reactor and stabilizer column at industrial unit

    NASA Astrophysics Data System (ADS)

    Belinskaya, N. S.; Frantsina, E. V.; Ivanchina, E. D.; Popova, N. V.; Zyryanova, I. V.; Averyanova, E. V.

    2016-09-01

    In this work forecast calculation of stabilizer column in the technology of low-pour- point diesel fuel production was modelled. The results of forecast calculation were proved by full-scale experiment at diesel fuel catalytic dewaxing unit. The forecast calculation and full- scale experiment made it possible to determine the ways of mass transfer intensification, as well as to increase the degree of hydrogen sulphide removal in the column, and thereby to decrease corrosiveness of the product stream. It was found out that maintenance of the reflux rate in the range of 80-90 m3/h and injection of additional vapourizing streams, such as stable naphtha from distillation unit (in the volume of 10-22 m3/h) and hydrogen-containing gas (in the volume of 100-300 m3/h), ensure complete elimination of corrosive hydrogen sulphide from the product stream. Reduction of stream corrosive activity due to suggested solutions extends service life of equipment and pipelines at industrial catalytic dewaxing unit.

  13. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  14. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  15. Big trees in the southern forest inventory

    Treesearch

    Christopher M. Oswalt; Sonja N. Oswalt; Thomas J. Brandeis

    2010-01-01

    Big trees fascinate people worldwide, inspiring respect, awe, and oftentimes, even controversy. This paper uses a modified version of American Forests’ Big Trees Measuring Guide point system (May 1990) to rank trees sampled between January of 1998 and September of 2007 on over 89,000 plots by the Forest Service, U.S. Department of Agriculture, Forest Inventory and...

  16. Completely automated nuclear reactors for long-term operation II: toward a conceptual-level point design of a high-temperature, gas-cooled central power station system

    SciTech Connect

    Teller, E.; Ishikawa, M.; Wood, L.; Hyde, R.; Nuckolls, J.

    1996-06-01

    We discuss a new type of nuclear fission power reactor optimized for the generation of heat for use in obviously safe, economic, and long- duration electricity production in large central power stations. These reactors are fundamentally different in design, implementation, and operation from conventional light-water-cooled and- moderated reactors (LWRs) currently in widespread use. they feature a low- average-enrichment initial fuel loading which lasts the entire 30 year, full-power design life of the power plant, and which is intended never to be removed from the reactor. The reactor contains a cylindrical core comprised of a nuclear ignitor and a much larger nuclear [breeding + burning] wave propagating region containing natural thorium or uranium fuel, a surrounding neutron reflector and radiation shield, distributed means for implementing a thermostating function on the reactivity and local power density, a redundant pressurized gas coolant transport system, and automatic and redundant heat dumping means to obviate concerns regarding all classes of loss-of-coolant accidents during the plants operational and post operational life. These reactors are proposed to be situated at {>=}100 meter depths underground. There operation will be completely automatic, with no powered mechanisms, no operator controls and no provision for human access during or after their operational lifetime, in order to avoid both error and misuse. The power plant`s heat engine and electrical generator sub-systems are located above ground and are connected to the nuclear heat source only with readily sealed coolant conduits. This paper outlines a concept level point design of a 1 GWe member of this type of reactor, one oriented to production of high temperature, high pressure coolant gas and directed towards 60% efficiency, combined-cycle electricity generation.

  17. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  18. Challenges of Big Data Analysis

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-01-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions. PMID:25419469

  19. Challenges of Big Data Analysis.

    PubMed

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-06-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions.

  20. Magnetostratigraphy of a Marine Triassic-Jurassic Boundary Section, Kennecott Point, Queen Charlotte Islands: Implications for the Temporal Correlation of a 'Big Five' Mass Extinction Event.

    NASA Astrophysics Data System (ADS)

    Hilburn, I. A.; Kirschvink, J. L.; Ward, P. D.; Haggart, J. W.; Raub, T. D.

    2008-12-01

    Several causes have been proposed for Triassic-Jurassic (T-J) boundary extinctions, including global ocean anoxia/euxinia, an impact event, and/or eruption of the massive Central Atlantic Magmatic Province (CAMP), but poor intercontinental correlation makes testing these difficult. Sections at Kennecott Point, Queen Charlotte Islands, British Columbia span the late Norian through Rhaetian (Triassic) and into the earliest Hettangian (Jurassic) and provide the best integrated magneto- and chemostratigraphic framework for placing necessary temporal constraints upon the T-J mass extinctions. At Kennecott Point, turnover of radiolaria and ammonoids define the T-J boundary marine extinction and are coincident with a 2 ‰ negative excursion in δ13Corg similar in magnitude to that observed at Ferguson Hill (Muller Canyon), Nevada (1, 2). With Conodont Alteration Index values in the 1-2 range, Kennecott Point provides the ideal setting for use of magnetostratigraphy to tie the marine isotope excursion into the chronostratigraphic framework of the Newark, Hartford, and Fundy Basins. In the summer of 2005, we collected a ~1m resolution magnetostratigraphic section from 105 m of deep marine, silt- and sandstone turbidites and interbedded mudstones, spanning the T-J boundary at Kennecott Point. Hybrid progressive demagnetization - including zero-field, low-temperature cycling; low-field AF cleaning; and thermal demagnetization in ~25°C steps to 445°C under flowing N2 gas (3) - first removed a Northerly, steeply inclined component interpreted to be a Tertiary overprint, revealing an underlying dual-polarity component of moderate inclination. Five major polarity zones extend through our section, with several short, one-sample reversals interspersed amongst them. Comparison of this pattern with other T-J boundary sections (4-6) argues for a Northern hemisphere origin of our site, albeit with large vertical-axis rotations. A long normal chron bounds the T-J boundary punctuated

  1. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  2. "Rock Garden"

    NASA Image and Video Library

    1997-10-14

    This false color composite image of the Rock Garden shows the rocks "Shark" and "Half Dome" at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989). http://photojournal.jpl.nasa.gov/catalog/PIA00987

  3. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  4. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  5. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  6. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  7. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?"…

  8. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  9. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  10. Considerations on Geospatial Big Data

    NASA Astrophysics Data System (ADS)

    LIU, Zhen; GUO, Huadong; WANG, Changlin

    2016-11-01

    Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.

  11. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  12. Big Boulders

    NASA Image and Video Library

    2015-02-11

    On Mercury, craters larger than approximately 10-12 km display a complex morphology, with slump terraces and central peaks, as compared to smaller bowl-shaped craters. At this complex crater, nearly 20 km in diameter, boulders created by the impact event can be seen outside the southwest rim and within the crater interior. The largest boulder observed here is around 180 m (590 feet) across! For comparison with humans for scale, check out the lunar House Rock at the Apollo 16 site, which is (only) 24 meters across. Date acquired: January 24, 2015 Image Mission Elapsed Time (MET): 64441328 Image ID: 7855678 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: -2.66° Center Longitude: 83.54° E Resolution: 26 meters/pixel Scale: This crater is approximately 19.5 km (12.1 miles) in diameter Incidence Angle: 82.8° Emission Angle: 43.0° Phase Angle: 39.8° http://photojournal.jpl.nasa.gov/catalog/PIA19202

  13. Preliminary geologic map of the Big Bear City 7.5' Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, Fred K.; digital preparation by Cossette, Pamela M.

    2004-01-01

    This data set maps and describes the geology of the Big Bear City 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a rock-unit coverage and attribute tables (polygon and arc) containing geologic contacts, units and rock-unit labels as annotation which are also included in a separate annotation coverage, bbc_anno (2) a point coverage containing structural point data and (3) a coverage containing fold axes. In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and an explanation for point and line symbols; (2) PDF files of the Readme (including the metadata file as an appendix), and a screen graphic of the plot produced by the PostScript plot file. The geologic map describes a geologically complex area on the north side of the San Bernardino Mountains. Bedrock units in the Big Bear City quadrangle are dominated by (1) large Cretaceous granitic bodies ranging in composition from monzogranite to gabbro, (2) metamorphosed sedimentary rocks ranging in age from late Paleozoic to late Proterozoic, and (3) Middle Proterozoic gneiss. These rocks are complexly deformed by normal, reverse, and thrust faults, and in places are tightly folded. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map data was compiled on base-stable cronoflex copies of the Big Bear City 7.5' topographic map, transferred to a scribe-guide and subsequently digitized. Lines, points, and polygons were edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of

  14. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Liu, Bo; Wang, Jieqiong; Zhang, Zhe; Shi, Kaibo; Wu, Shuanglin

    2014-08-01

    Commonly used petrological quantification methods are visual estimation, counting, and image analyses. However, in this article, an Adobe Photoshop-based analyzing method (PSQ) is recommended for quantifying the rock textural data and porosities. Adobe Photoshop system provides versatile abilities in selecting an area of interest and the pixel number of a selection could be read and used to calculate its area percentage. Therefore, Adobe Photoshop could be used to rapidly quantify textural components, such as content of grains, cements, and porosities including total porosities and different genetic type porosities. This method was named as Adobe Photoshop Quantification (PSQ). The workflow of the PSQ method was introduced with the oolitic dolomite samples from the Triassic Feixianguan Formation, Northeastern Sichuan Basin, China, for example. And the method was tested by comparing with the Folk's and Shvetsov's "standard" diagrams. In both cases, there is a close agreement between the "standard" percentages and those determined by the PSQ method with really small counting errors and operator errors, small standard deviations and high confidence levels. The porosities quantified by PSQ were evaluated against those determined by the whole rock helium gas expansion method to test the specimen errors. Results have shown that the porosities quantified by the PSQ are well correlated to the porosities determined by the conventional helium gas expansion method. Generally small discrepancies (mostly ranging from -3% to 3%) are caused by microporosities which would cause systematic underestimation of 2% and/or by macroporosities causing underestimation or overestimation in different cases. Adobe Photoshop could be used to quantify rock textural components and porosities. This method has been tested to be precise and accurate. It is time saving compared with usual methods.

  15. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  16. 'Escher' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Chemical Changes in 'Endurance' Rocks

    [figure removed for brevity, see original site] Figure 1

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock dubbed 'Escher' on the southwestern slopes of 'Endurance Crater.' Scientists believe the rock's fractures, which divide the surface into polygons, may have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Opportunity has spent the last 14 sols investigating Escher, specifically the target dubbed 'Kirchner,' and other similar rocks with its scientific instruments. This image was taken on sol 208 (Aug. 24, 2004) by the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

    The graph above shows that rocks located deeper into 'Endurance Crater' are chemically altered to a greater degree than rocks located higher up. This chemical alteration is believed to result from exposure to water.

    Specifically, the graph compares ratios of chemicals between the deep rock dubbed 'Escher,' and the more shallow rock called 'Virginia,' before (red and blue lines) and after (green line) the Mars Exploration Rover Opportunity drilled into the rocks. As the red and blue lines indicate, Escher's levels of chlorine relative to Virginia's went up, and sulfur down, before the rover dug a hole into the rocks. This implies that the surface of Escher has been chemically altered to a greater extent than the surface of Virginia. Scientists are still investigating the role water played in influencing this trend.

    These data were taken by the rover's alpha particle X-ray spectrometer.

  17. Big Data, Big Problems: A Healthcare Perspective.

    PubMed

    Househ, Mowafa S; Aldosari, Bakheet; Alanazi, Abdullah; Kushniruk, Andre W; Borycki, Elizabeth M

    2017-01-01

    Much has been written on the benefits of big data for healthcare such as improving patient outcomes, public health surveillance, and healthcare policy decisions. Over the past five years, Big Data, and the data sciences field in general, has been hyped as the "Holy Grail" for the healthcare industry promising a more efficient healthcare system with the promise of improved healthcare outcomes. However, more recently, healthcare researchers are exposing the potential and harmful effects Big Data can have on patient care associating it with increased medical costs, patient mortality, and misguided decision making by clinicians and healthcare policy makers. In this paper, we review the current Big Data trends with a specific focus on the inadvertent negative impacts that Big Data could have on healthcare, in general, and specifically, as it relates to patient and clinical care. Our study results show that although Big Data is built up to be as a the "Holy Grail" for healthcare, small data techniques using traditional statistical methods are, in many cases, more accurate and can lead to more improved healthcare outcomes than Big Data methods. In sum, Big Data for healthcare may cause more problems for the healthcare industry than solutions, and in short, when it comes to the use of data in healthcare, "size isn't everything."

  18. Pancam Multispectral and APXS Chemical Examination of Rocks and Soils in Marathon Valley and Points South Along the Rim of Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D. W.; Gellert, R.; VanBommel, S.; Arvidson, R. E.; Schroder, C.

    2017-01-01

    The Mars Exploration Rover Opportunity has concluded its exploration of Marathon Valley, a 100-meter-wide valley in the western rim of the 22-kilometer-diameter Endeavour crater. Orbital observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) indicated the presence of Fe smectites in Marathon Valley. Since leaving the valley, Opportunity has been traversing along the inner rim of the crater, and currently towards the outer rim. This presentation describes the Pancam 430 to 1009 nanometer (VNIR - Visible and Near Infared) multispectral reflectance and APXS (Alpha Particle X-ray Spectrometer) chemical compositions of rock and soil units observed during the latter portions of the Marathon Valley campaign on the Knudson Ridge area and observations of those materi-als along the traverse to the south. Full Pancam spectral coverage of rock targets consists of 13 filter (13f) data collections with 11 spectrally unique channels with data processing. Data were examined using spectral parameters, decorrelation stretch composites, and spectral mixture analysis. Note that color terms used here refer to colors in various false-color renditions, not true colors. The APXS determines major and select trace element compositions of targets.

  19. Comparison of lactate sampling sites for rock climbing.

    PubMed

    Fryer, S; Draper, N; Dickson, T; Blackwell, G; Winter, D; Ellis, G

    2011-06-01

    Comparisons of capillary blood lactate concentrations pre and post climb have featured in the protocols of many rock climbing studies, with most researchers obtaining samples from the fingertip. The nature of rock climbing, however, places a comparatively high physiological loading on the foreaand fingertips. Indeed, the fingertips are continually required for gripping and this makes pre-climb sampling at this site problematic. The purpose of our study was to examine differences in capillary blood lactate concentrations from samples taken at the fingertip and first (big) toe in a rock climbing context. 10 participants (9 males and 1 female) completed climbing bouts at 3 different angles (91°, 100° and 110°). Capillary blood samples were taken simultaneously from the fingertip and first toe pre and post climb. A limit of agreement plot revealed all data points to be well within the upper and lower bounds of the 95% population confidence interval. Subsequent regression analysis revealed a strong relationship (R (2)=0.94, y=0.940x + 0.208) between fingertip and first toe capillary blood lactate concentrations. Findings from our study suggest that the toe offers a valid alternative site for capillary blood lactate concentration analysis in a rock climbing context.

  20. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  1. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  2. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  3. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  4. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  5. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  6. The Big Group of People Looking at How to Control Putting the Parts of the Air That Are the Same as What You Breathe Out Into Small Spaces in Rocks

    SciTech Connect

    Stack, Andrew

    2013-07-18

    Representing the Nanoscale Control of Geologic CO2 (NCGC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of NCGC is to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to the injection and storage of carbon dioxide (CO2) in subsurface reservoirs.

  7. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  8. Kidney Disease a Big Contributor to Heart-Related Deaths

    MedlinePlus

    ... gov/news/fullstory_164624.html Kidney Disease a Big Contributor to Heart-Related Deaths: Study Finding points ... deaths worldwide, a new study reports. Based on data from 188 countries at six time points between ...

  9. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  10. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  11. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  12. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  13. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  14. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  15. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  16. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  17. Opportunity Rocks!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This high-resolution image captured by the Mars Exploration Rover Opportunity's panoramic camera shows in superb detail a portion of the puzzling rock outcropping that scientists are eagerly planning to investigate. Presently, Opportunity is on its lander facing northeast; the outcropping lies to the northwest. These layered rocks measure only 10 centimeters (4 inches) tall and are thought to be either volcanic ash deposits or sediments carried by water or wind. The small rock in the center is about the size of a golf ball.

  18. White Rock

    NASA Image and Video Library

    2002-05-21

    White Rock is the unofficial name for this unusual landform which was first observed during NASA Mariner 9 mission in the early 1970 and is now shown here in an image from NASA Mars Odyssey spacecraft.

  19. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. 'Lutefisk' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's Mars Exploration Rover Spirit used its panoramic camera to take this image of a rock called 'Lutefisk' on the rover's 286th martian day (Oct. 22, 2004). The surface of the rock is studded with rounded granules of apparently more-resistant material up to several millimeters (0.1 inch) or more across. The visible portion of Lutefisk is about 25 centimeters (10 inches) across.

  1. Nitrogen release from rock and soil under simulated field conditions

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.; Casey, W.H.

    2001-01-01

    A laboratory study was performed to simulate field weathering and nitrogen release from bedrock in a setting where geologic nitrogen has been suspected to be a large local source of nitrate. Two rock types containing nitrogen, slate (1370 mg N kg-1) and greenstone (480 mg N kg-1), were used along with saprolite and BC horizon sand from soils derived from these rock types. The fresh rock and weathered material were used in batch reactors that were leached every 30 days over 6 months to simulate a single wet season. Nitrogen was released from rock and soil materials at rates between 10-20 and 10-19 mo1 N cm-2 s-1. Results from the laboratory dissolution experiments were compared to in situ soil solutions and available mineral nitrogen pools from the BC horizon of both soils. Concentrations of mineral nitrogen (NO3- + NH4+) in soil solutions reached the highest levels at the beginning of the rainy season and progressively decreased with increased leaching. This seasonal pattern was repeated for the available mineral nitrogen pool that was extracted using a KCl solution. Estimates based on these laboratory release rates bracket stream water NO3-N fluxes and changes in the available mineral nitrogen pool over the active leaching period. These results confirm that geologic nitrogen, when present, may be a large and reactive pool that may contribute as a non-point source of nitrate contamination to surface and ground waters. ?? 2001 Elsevier Science B.V. All rights reserved.

  2. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  3. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  4. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  5. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  6. Comparison of plasma cortisol sampling sites for rock climbing.

    PubMed

    Dickson, T; Fryer, S; Draper, N; Winter, D; Ellis, G; Hamlin, M

    2012-12-01

    Blood samples for the determination of plasma cortisol concentration are generally obtained via venipuncture or capillary sampling at the fingertip. During rock climbing the upper body, forearms and fingertips are subject to continual loading and gripping making sampling at these sites problematic. The purpose of this study was to examine differences in plasma cortisol concentrations from capillary samples taken at the fingertip and first (big) toe in a rock climbing context. Nine (8 males, 1 female) climbers completed a succession of climbing bouts at three different angles (91°,100° and 110°). Capillary blood samples were taken simultaneously from the fingertip and first toe pre and post climb at each angle. Plasma samples were collected via centrifugation and subsequently analysed for cortisol using an Enzyme-Linked Immunosorbent Assay (ELISA) kit. All standards and samples were analysed in duplicate. Intra assay coeffiecients of variation (CV%) were 5.91% and 7.94% for finger and toe respectively. A limits of agreement plot revealed all data points to be well within upper and lower bounds of the 95% population confidence interval. Paired samples t-tests (for finger and toe) indicated there were no significant differences between sample sites. Subsequent regression analysis revealed a strong relationship (R2=0.78, y=1.031x - 2.079) between fingertip and first toe capillary plasma cortisol concentrations. Findings suggest that the first toe offers a valid alternative sampling site for plasma cortisol concentration in a rock climbing context.

  7. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  8. Dual of big bang and big crunch

    SciTech Connect

    Bak, Dongsu

    2007-01-15

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory.

  9. The big deal about big data.

    PubMed

    Moore, Keith D; Eyestone, Katherine; Coddington, Dean C

    2013-08-01

    Big data is a concept that is being widely applied in the retail industries as a means to understand customers' purchasing habits and preferences for followup promotional activity. It is characterized by vast amounts of diverse and rapidly multiplying data that are available at or near real-time. Conversations with executives of leading healthcare organizations provide a barometer for understanding where the industry stands in its adoption of big data as a means to meet the critical information requirements of value-based health care.

  10. Restoring Wyoming big sagebrush

    Treesearch

    Cindy R. Lysne

    2005-01-01

    The widespread occurrence of big sagebrush can be attributed to many adaptive features. Big sagebrush plays an essential role in its communities by providing wildlife habitat, modifying local environmental conditions, and facilitating the reestablishment of native herbs. Currently, however, many sagebrush steppe communities are highly fragmented. As a result, restoring...

  11. ARTIST CONCEPT - BIG JOE

    NASA Image and Video Library

    1963-09-01

    S63-19317 (October 1963) --- Pen and ink views of comparative arrangements of several capsules including the existing "Big Joe" design, the compromise "Big Joe" design, and the "Little Joe". All capsule designs are labeled and include dimensions. Photo credit: NASA

  12. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  13. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  14. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  15. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  16. Big data for health.

    PubMed

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled.

  17. Trace-metal and organic constituent concentrations in bed sediment at Big Base and Little Base Lakes, Little Rock Air Force Base, Arkansas—Comparisons to sediment-quality guidelines and indications for timing of exposure

    USGS Publications Warehouse

    Justus, B.G.; Hays, Phillip D.; Hart, Rheannon M.

    2015-09-16

    Regarding highest concentrations and associated timing of exposure, trace metals analyzed in the sediment core seem to indicate three fairly distinct exposure patterns. For 11 trace metals that had the highest concentration measured in the shallowest and most recently deposited sediment, the most likely explanation is recent exposure by anthropogenic activities. Most of the 11 trace metals with highest concentrations in shallow sediment are relatively innocuous; however, arsenic, copper, selenium, and zinc are among the U.S. Environmental Protection Agency’s 126 priority pollutants. For three trace metals (cadmium, lead, and mercury), for which concentrations were highest in sediments that were 16–20 centimeters down the core, it is likely that a source associated with those contaminants during the period when those sediments were deposited, was reduced or eliminated. The eight remaining trace metals, for which concentrations were highest in sediments that were just below the prereservoir surface, likely had sources that were eliminated soon after lake construction or occurred at relatively high background concentrations in soils in the area around Little Rock Air Force Base.

  18. 'Wopmay' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by NASA's Mars Exploration Rover Opportunity shows an unusual, lumpy rock informally named 'Wopmay' on the lower slopes of 'Endurance Crater.' The rock was named after the Canadian bush pilot Wilfrid Reid 'Wop' May. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe the lumps in Wopmay may be related to cracking and alteration processes, possibly caused by exposure to water. The area between intersecting sets of cracks eroded in a way that created the lumpy appearance. Rover team members plan to drive Opportunity over to Wopmay for a closer look in coming sols. This image was taken by the rover's panoramic camera on sol 248 (Oct. 4, 2004), using its 750-, 530- and 480-nanometer filters.

  19. Genesis of the big bang

    NASA Astrophysics Data System (ADS)

    Alpher, Ralph A.; Herman, Robert

    The authors of this volume have been intimately connected with the conception of the big bang model since 1947. Following the late George Gamov's ideas in 1942 and more particularly in 1946 that the early universe was an appropriate site for the synthesis of the elements, they became deeply involved in the question of cosmic nucleosynthesis and particularly the synthesis of the light elements. In the course of this work they developed a general relativistic model of the expanding universe with physics folded in, which led in a progressive, logical sequence to our prediction of the existence of a present cosmic background radiation some seventeen years before the observation of such radiation was reported by Penzias and Wilson. In addition, they carried out with James W. Follin, Jr., a detailed study of the physics of what was then considered to be the very early universe, starting a few seconds after the big bang, which still provides a methodology for studies of light element nucleosynthesis. Because of their involvement, they bring a personal perspective to the subject. They present a picture of what is now believed to be the state of knowledge about the evolution of the expanding universe and delineate the story of the development of the big bang model as they have seen and lived it from their own unique vantage point.

  20. [Embracing medical innovation in the era of big data].

    PubMed

    You, Suning

    2015-01-01

    Along with the advent of big data era worldwide, medical field has to place itself in it inevitably. The current article thoroughly introduces the basic knowledge of big data, and points out the coexistence of its advantages and disadvantages. Although the innovations in medical field are struggling, the current medical pattern will be changed fundamentally by big data. The article also shows quick change of relevant analysis in big data era, depicts a good intention of digital medical, and proposes some wise advices to surgeons.

  1. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  2. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  3. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  4. Big data: survey, technologies, opportunities, and challenges.

    PubMed

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Ali, Waleed Kamaleldin Mahmoud; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.

  5. Big Data: Survey, Technologies, Opportunities, and Challenges

    PubMed Central

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Mahmoud Ali, Waleed Kamaleldin; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data. PMID:25136682

  6. Big data, big knowledge: big data for personalized healthcare.

    PubMed

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority.

  7. Big Data in industry

    NASA Astrophysics Data System (ADS)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  8. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  9. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  10. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has…

  11. Possible Triggering of Solar Activities to Big Earthquakes (Ms>=8) in the Middle Latitude in China

    NASA Astrophysics Data System (ADS)

    Su, Tong-Wei; Li, Ke-Jun

    2007-06-01

    The relationship between solar activities and big earthquakes (Ms>=8) that occured in middle latitudes (20°<=latitude<=40°) in China is studied in this paper. It is found that the occurence dates of most of the big earthquakes are close to the descendent years to minimum years of sunspot numbers, and it implies the correlation between solar activities and earthquakes. Occurence of large flood in the middle latitude is negatively correlated with solar activity. The rainfall result in rise of water level. Perhaps the gestated big earthquakes occur easily since the rocks are dipped in groundwater and therefore decreases the shear resistant intensity of rocks.

  12. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  13. Application and challenges of big data in quality monitoring of highway engineering

    NASA Astrophysics Data System (ADS)

    Xiao, Xianglin; Zhou, Chunrong

    2017-03-01

    Generation of big data brings opportunities and challenges to quality monitoring technologies of highway engineering. Big data of highway engineering quality monitoring is featured by typical "4V" characteristics. In order to deeply analyze application of big data in quality monitoring of highway engineering, the paper discusses generation, processing processes, key technologies as well as other aspects of big data of highway engineering quality monitoring. The paper analyzes storage structure, computing courses and data visualized processing processes of the big data of highway engineering quality monitoring and points out the problems and challenges encountered by application of big data in quality monitoring of highway engineering.

  14. The Big Bang Theory

    SciTech Connect

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  15. The Big Bang Theory

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  16. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  17. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  18. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  19. Cryptography for Big Data Security

    DTIC Science & Technology

    2015-07-13

    Cryptography for Big Data Security Book Chapter for Big Data: Storage, Sharing, and Security (3S) Distribution A: Public Release Ariel Hamlin1 Nabil...Email: arkady@ll.mit.edu ii Contents 1 Cryptography for Big Data Security 1 1.1 Introduction...48 Chapter 1 Cryptography for Big Data Security 1.1 Introduction With the amount

  20. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  1. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  2. Sharing big biomedical data.

    PubMed

    Toga, Arthur W; Dinov, Ivo D

    The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent datasets; however there are significant technical, social, regulatory, and institutional barriers that need to be overcome to ensure the power of Big Data overcomes these detrimental factors. Pragmatic policies that demand extensive sharing of data, promotion of data fusion, provenance, interoperability and balance security and protection of personal information are critical for the long term impact of translational Big Data analytics.

  3. Thinking big thoughts

    NASA Astrophysics Data System (ADS)

    Vedral, Vlatko

    2016-08-01

    The short synopsis of The Big Picture by Sean Carroll is that it explores the question of whether science can explain everything in the world, and analyses the emerging reality that such an explanation entails.

  4. Big Baby, Heavier Kid?

    MedlinePlus

    ... not prove that being a big baby caused obesity in children, however. The University of Virginia Children's Hospital study ... Human Services. More Health News on Child Nutrition Obesity in Children Recent Health News Related MedlinePlus Health Topics Child ...

  5. The Jeanie Point complex revisited

    USGS Publications Warehouse

    Dumoulin, Julie A.; Miller, Martha L.

    1984-01-01

    The so-called Jeanie Point complex is a distinctive package of rocks within the Orca Group, a Tertiary turbidite sequence. The rocks crop out on the southeast coast of Montague Island, Prince William Sound, approximately 3 km northeast of Jeanie Point (loc. 7, fig. 44). These rocks consist dominantly of fine-grained limestone and lesser amounts of siliceous limestone, chert, tuff, mudstone, argillite, and sandstone (fig. 47). The Jeanie Point rocks also differ from those typical of the Orca Group in their fold style. Thus, the Orca Group of the area is isoclinally folded on a large scale (tens to hundreds of meters), whereas the Jeanie Point rocks are tightly folded on a 1- to 3- m-wavelength scale (differences in rock competency may be responsible for this variation in fold style).

  6. Reactivity Transients in Nuclear Research Reactors

    SciTech Connect

    2015-01-01

    Version 01 AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant.

  7. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  8. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  9. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  10. Reactor apparatus

    DOEpatents

    Echtler, J. Paul

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  11. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  12. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  13. Reactor Engineering

    NASA Astrophysics Data System (ADS)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  14. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  15. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  16. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  17. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  19. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  20. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  1. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  2. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  3. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  4. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  5. Source rock potential of middle cretaceous rocks in Southwestern Montana

    USGS Publications Warehouse

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  6. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  7. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  8. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  9. Rafted Rock

    NASA Image and Video Library

    2016-11-09

    This area of Amazonis Planitia to the west of the large volcano Olympus Mons was once flooded with lava. A huge eruption flowed out across the relatively flat landscape. Sometimes called "flood basalt," the lava surface quickly cooled and formed a thin crust of solidified rock that was pushed along with the flowing hot liquid rock. Hills and mounds that pre-dated the flooding eruption became surrounded, forming obstructions to the relentless march of lava. In this image, these obstructions appeared to have poked up and sliced through the lava crust as the molten rock and crust moved together from west to east, over and past the stationary mounds. The result is a series of parallel grooves or channels with the obstructing mound remaining at the western end as the flow came to rest. From such images scientists can reconstruct the direction of the lava flow, potentially tracing it back to the source vent. http://photojournal.jpl.nasa.gov/catalog/PIA21204

  10. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  11. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed Central

    Hutter, Harald; Moerman, Donald

    2015-01-01

    A clear definition of what constitutes “Big Data” is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of “complete” data sets for this organism is actually rather small—not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein–protein interaction—important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. PMID:26543198

  12. Big Data in Caenorhabditis elegans: quo vadis?

    PubMed

    Hutter, Harald; Moerman, Donald

    2015-11-05

    A clear definition of what constitutes "Big Data" is difficult to identify, but we find it most useful to define Big Data as a data collection that is complete. By this criterion, researchers on Caenorhabditis elegans have a long history of collecting Big Data, since the organism was selected with the idea of obtaining a complete biological description and understanding of development. The complete wiring diagram of the nervous system, the complete cell lineage, and the complete genome sequence provide a framework to phrase and test hypotheses. Given this history, it might be surprising that the number of "complete" data sets for this organism is actually rather small--not because of lack of effort, but because most types of biological experiments are not currently amenable to complete large-scale data collection. Many are also not inherently limited, so that it becomes difficult to even define completeness. At present, we only have partial data on mutated genes and their phenotypes, gene expression, and protein-protein interaction--important data for many biological questions. Big Data can point toward unexpected correlations, and these unexpected correlations can lead to novel investigations; however, Big Data cannot establish causation. As a result, there is much excitement about Big Data, but there is also a discussion on just what Big Data contributes to solving a biological problem. Because of its relative simplicity, C. elegans is an ideal test bed to explore this issue and at the same time determine what is necessary to build a multicellular organism from a single cell. © 2015 Hutter and Moerman. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Fast reactors and nuclear nonproliferation

    SciTech Connect

    Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.

    2013-07-01

    Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)

  14. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  15. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  16. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  17. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  18. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  19. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  20. The lack of a big picture in tuberculosis: the clinical point of view, the problems of experimental modeling and immunomodulation. The factors we should consider when designing novel treatment strategies

    PubMed Central

    Vilaplana, Cristina; Cardona, Pere-Joan

    2014-01-01

    This short review explores the large gap between clinical issues and basic science, and suggests why tuberculosis research should focus on redirect the immune system and not only on eradicating Mycobacterium tuberculosis bacillus. Along the manuscript, several concepts involved in human tuberculosis are explored in order to understand the big picture, including infection and disease dynamics, animal modeling, liquefaction, inflammation and immunomodulation. Scientists should take into account all these factors in order to answer questions with clinical relevance. Moreover, the inclusion of the concept of a strong inflammatory response being required in order to develop cavitary tuberculosis disease opens a new field for developing new therapeutic and prophylactic tools in which destruction of the bacilli may not necessarily be the final goal. PMID:24592258

  1. Rock mechanics. Second edition

    SciTech Connect

    Jumikis, A.R.

    1983-01-01

    Rock Mechanics, 2nd Edition deals with rock as an engineering construction material-a material with which, upon which, and within which civil engineers build structures. It thus pertains to hydraulic structures engineering; to highway, railway, canal, foundation, and tunnel engineering; and to all kinds of rock earthworks and to substructures in rock. Major changes in this new edition include: rock classification, rock types and description, rock testing equipment, rock properties, stability effects of discontinuity and gouge, grouting, gunite and shotcrete, and Lugeon's water test. This new edition also covers rock bolting and prestressing, pressure-grouted soil anchors, and rock slope stabilization.

  2. Big Bend sees big environmental push

    SciTech Connect

    Blankinship, S.

    2007-10-15

    The 1800 MW Big Bend Power Station is a coal-fired facility in Tampa Bay, Florida, USA owned by Tampa Electric. It has four pulverized coal- fired steam units equipped with FGD scrubbers and electrostatic precipitators. Currently the addition of selective catalytic reduction (SCR) systems is under consideration. The Unit 4 SCR retrofit was completed in June 2007; the remaining three systems are scheduled for completion by 2010. Boiler draft systems will be modified to a balance draft design to accommodate the increased pressure drop of the new systems. 3-D computer models were developed to determine constructability due to the tight clearance at the site. 1 photo.

  3. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA

  4. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA

  5. Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Albright, Dennis; Butler, Carey; West, Nicole; Cole, John W. (Technical Monitor)

    2002-01-01

    Institute for Scientific Research, Inc. (ISR) research program consist of: 1.Study core physics by adapting existing codes: MCNP4C - Monte Carlo code; COMBINE/VENTURE - diffusion theory; SCALE4 - Monte Carlo, with many utility codes. 2. Determine feasibility and study major design parameters: fuel selection, temperature and reflector sizing. 3. Study reactor kinetics: develop QCALC1 to model point kinetics; study dynamic behavior of the power release.

  6. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  7. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  8. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.

    1957-10-01

    A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.

  9. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  10. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  11. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  12. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  13. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  14. Water resources in the Big Lost River Basin, south-central Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.; Thomas, C.A.; Dyer, K.L.

    1970-01-01

    The Big Lost River basin occupies about 1,400 square miles in south-central Idaho and drains to the Snake River Plain. The economy in the area is based on irrigation agriculture and stockraising. The basin is underlain by a diverse-assemblage of rocks which range, in age from Precambrian to Holocene. The assemblage is divided into five groups on the basis of their hydrologic characteristics. Carbonate rocks, noncarbonate rocks, cemented alluvial deposits, unconsolidated alluvial deposits, and basalt. The principal aquifer is unconsolidated alluvial fill that is several thousand feet thick in the main valley. The carbonate rocks are the major bedrock aquifer. They absorb a significant amount of precipitation and, in places, are very permeable as evidenced by large springs discharging from or near exposures of carbonate rocks. Only the alluvium, carbonate rock and locally the basalt yield significant amounts of water. A total of about 67,000 acres is irrigated with water diverted from the Big Lost River. The annual flow of the river is highly variable and water-supply deficiencies are common. About 1 out of every 2 years is considered a drought year. In the period 1955-68, about 175 irrigation wells were drilled to provide a supplemental water supply to land irrigated from the canal system and to irrigate an additional 8,500 acres of new land. Average. annual precipitation ranged from 8 inches on the valley floor to about 50 inches at some higher elevations during the base period 1944-68. The estimated water yield of the Big Lost River basin averaged 650 cfs (cubic feet per second) for the base period. Of this amount, 150 cfs was transpired by crops, 75 cfs left the basin as streamflow, and 425 cfs left as ground-water flow. A map of precipitation and estimated values of evapotranspiration were used to construct a water-yield map. A distinctive feature of the Big Lost River basin, is the large interchange of water from surface streams into the ground and from the

  15. Using the Big Six Research Process. The Coconut Crab from Guam and Other Stories: Writing Myths, Fables, and Tall Tales.

    ERIC Educational Resources Information Center

    Jansen, Barbara A.; Culpepper, Susan N.

    1996-01-01

    Using the Big Six research process, students at Live Oak Elementary (Round Rock, TX) supplemented information from traditional print and electronic sources with e-mail exchanges around the world to complete a library research collaborative project culminating in an original folk tale. Describes the Big Six process and how it was applied. (PEN)

  16. Using the Big Six Research Process. The Coconut Crab from Guam and Other Stories: Writing Myths, Fables, and Tall Tales.

    ERIC Educational Resources Information Center

    Jansen, Barbara A.; Culpepper, Susan N.

    1996-01-01

    Using the Big Six research process, students at Live Oak Elementary (Round Rock, TX) supplemented information from traditional print and electronic sources with e-mail exchanges around the world to complete a library research collaborative project culminating in an original folk tale. Describes the Big Six process and how it was applied. (PEN)

  17. Big data bioinformatics.

    PubMed

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia.

  18. Big data in biomedicine.

    PubMed

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science.

  19. Big Questions: Missing Antimatter

    SciTech Connect

    Lincoln, Don

    2013-08-27

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  20. Big Questions: Missing Antimatter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  1. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  3. [Utilization of Big Data in Medicine and Future Outlook].

    PubMed

    Kinosada, Yasutomi; Uematsu, Machiko; Fujiwara, Takuya

    2016-03-01

    "Big data" is a new buzzword. The point is not to be dazzled by the volume of data, but rather to analyze it, and convert it into insights, innovations, and business value. There are also real differences between conventional analytics and big data. In this article, we show some results of big data analysis using open DPC (Diagnosis Procedure Combination) data in areas of the central part of JAPAN: Toyama, Ishikawa, Fukui, Nagano, Gifu, Aichi, Shizuoka, and Mie Prefectures. These 8 prefectures contain 51 medical administration areas called the second medical area. By applying big data analysis techniques such as k-means, hierarchical clustering, and self-organizing maps to DPC data, we can visualize the disease structure and detect similarities or variations among the 51 second medical areas. The combination of a big data analysis technique and open DPC data is a very powerful method to depict real figures on patient distribution in Japan.

  4. Baryon symmetric big bang cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  5. 6. SEAWARD VIEW OF BOAT LANDING CUT INTO ROCK, ALSO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SEAWARD VIEW OF BOAT LANDING CUT INTO ROCK, ALSO SHOWING CEMENT POURED ATOP TUNNEL. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA

  6. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  7. Boiling rocks

    SciTech Connect

    Not Available

    1992-09-01

    This paper discusses Zeolites, 3-dimensional crystals made up to silicon, aluminum, oxygen, and small amounts of other elements. Highly porous, zeolites differ in crystallization and composition. However, both natural and synthetic zeolites, of which in there are about 133, are characterized by submicroscopic channels and holes, often called pores, that let zeolites act as molecular sieves. It is this molecular-sieve capability that has made zeolites so valuable as a catalyst in industrial uses. According to a leading zeolite authority, Dr. John M. Newsam, a director with BIOSYM Technologies, Inc., Every crude oil developer worldwide uses a zeolite as a catalyst. So it's big business. Besides their use in reducing the cost of processing gasoline and other petroleum products, zeolites are helping in cleaning up low-level nuclear wastes and other hazardous materials. They're also used in aromatic processing and in raising pigs and tomatoes. In the coming years, zeolites will used in place of phosphorous in certain products.

  8. Big Joe Capsule Assembly Activities

    NASA Image and Video Library

    1959-08-01

    Big Joe Capsule Assembly Activities in 1959 at NASA Glenn Research Center (formerly NASA Lewis). Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959.

  9. Seeding considerations in restoring big sagebrush habitat

    Treesearch

    Scott M. Lambert

    2005-01-01

    This paper describes methods of managing or seeding to restore big sagebrush communities for wildlife habitat. The focus is on three big sagebrush subspecies, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), basin big sagebrush (Artemisia tridentata ssp. tridentata), and mountain...

  10. Stabilized Spheromak Fusion Reactors

    SciTech Connect

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  11. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  12. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  13. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  14. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  15. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  16. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  17. The BIG Data Center: from deposition to integration to translation

    PubMed Central

    2017-01-01

    Biological data are generated at unprecedentedly exponential rates, posing considerable challenges in big data deposition, integration and translation. The BIG Data Center, established at Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, provides a suite of database resources, including (i) Genome Sequence Archive, a data repository specialized for archiving raw sequence reads, (ii) Gene Expression Nebulas, a data portal of gene expression profiles based entirely on RNA-Seq data, (iii) Genome Variation Map, a comprehensive collection of genome variations for featured species, (iv) Genome Warehouse, a centralized resource housing genome-scale data with particular focus on economically important animals and plants, (v) Methylation Bank, an integrated database of whole-genome single-base resolution methylomes and (vi) Science Wikis, a central access point for biological wikis developed for community annotations. The BIG Data Center is dedicated to constructing and maintaining biological databases through big data integration and value-added curation, conducting basic research to translate big data into big knowledge and providing freely open access to a variety of data resources in support of worldwide research activities in both academia and industry. All of these resources are publicly available and can be found at http://bigd.big.ac.cn. PMID:27899658

  18. The BIG Data Center: from deposition to integration to translation.

    PubMed

    2017-01-04

    Biological data are generated at unprecedentedly exponential rates, posing considerable challenges in big data deposition, integration and translation. The BIG Data Center, established at Beijing Institute of Genomics (BIG), Chinese Academy of Sciences, provides a suite of database resources, including (i) Genome Sequence Archive, a data repository specialized for archiving raw sequence reads, (ii) Gene Expression Nebulas, a data portal of gene expression profiles based entirely on RNA-Seq data, (iii) Genome Variation Map, a comprehensive collection of genome variations for featured species, (iv) Genome Warehouse, a centralized resource housing genome-scale data with particular focus on economically important animals and plants, (v) Methylation Bank, an integrated database of whole-genome single-base resolution methylomes and (vi) Science Wikis, a central access point for biological wikis developed for community annotations. The BIG Data Center is dedicated to constructing and maintaining biological databases through big data integration and value-added curation, conducting basic research to translate big data into big knowledge and providing freely open access to a variety of data resources in support of worldwide research activities in both academia and industry. All of these resources are publicly available and can be found at http://bigd.big.ac.cn. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Big Rock Candy Mountain; Resources for Our Education.

    ERIC Educational Resources Information Center

    Yanes, Samuel, Ed.; Holdorf, Cia, Ed.

    The material reviewed in this edition is loosely divided into categories--process learning, educational environments, classroom materials, home learning, self discovery, and education and consciousness. As in previous editions of the catalog, education is defined in its broadest sense, so that the material reviewed is suitable for many age groups…

  20. Big Rock Candy Mountain Education and Classroom Materials.

    ERIC Educational Resources Information Center

    Big Rock Candy Mountain, 1971

    1971-01-01

    Education and classroom materials for young children are listed which aim at imposing as little as possible between the child and the act of involvement and which are open ended and have the capacity for extension to many applications. Materials are illustrated: rationales and suggestions for their use are provided; supplier's names and prices are…

  1. Big Rock Candy Mountain; Resources for Our Education.

    ERIC Educational Resources Information Center

    Yanes, Samuel, Ed.; Holdorf, Cia, Ed.

    The material reviewed in this edition is loosely divided into categories--process learning, educational environments, classroom materials, home learning, self discovery, and education and consciousness. As in previous editions of the catalog, education is defined in its broadest sense, so that the material reviewed is suitable for many age groups…

  2. A Sobering Big Idea

    ERIC Educational Resources Information Center

    Wineburg, Sam

    2006-01-01

    Since Susan Adler, Alberta Dougan, and Jesus Garcia like "big ideas," the author offers one to ponder: young people in this country can not read with comprehension. The saddest thing about this crisis is that it is no secret. The 2001 results of the National Assessment of Educational Progress (NAEP) for reading, published in every major…

  3. The big bang

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.

  4. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  5. Thinking Big, Aiming High

    ERIC Educational Resources Information Center

    Berkeley, Viv

    2010-01-01

    What do teachers, providers and policymakers need to do in order to support disabled learners to "think big and aim high"? That was the question put to delegates at NIACE's annual disability conference. Some clear themes emerged, with delegates raising concerns about funding, teacher training, partnership-working and employment for disabled…

  6. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  7. Big-City Rules

    ERIC Educational Resources Information Center

    Gordon, Dan

    2011-01-01

    When it comes to implementing innovative classroom technology programs, urban school districts face significant challenges stemming from their big-city status. These range from large bureaucracies, to scalability, to how to meet the needs of a more diverse group of students. Because of their size, urban districts tend to have greater distance…

  8. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  9. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The…

  10. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  11. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  12. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The…

  13. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  14. Countering misinformation concerning big sagebrush

    Treesearch

    Bruce L Welch; Craig Criddle

    2003-01-01

    This paper examines the scientific merits of eight axioms of range or vegetative management pertaining to big sagebrush. These axioms are: (1) Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) does not naturally exceed 10 percent canopy cover and mountain big sagebrush (A. t. ssp. vaseyana) does not naturally exceed 20 percent canopy...

  15. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  16. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  17. Business and Science - Big Data, Big Picture

    NASA Astrophysics Data System (ADS)

    Rosati, A.

    2013-12-01

    Data Science is more than the creation, manipulation, and transformation of data. It is more than Big Data. The business world seems to have a hold on the term 'data science' and, for now, they define what it means. But business is very different than science. In this talk, I address how large datasets, Big Data, and data science are conceptually different in business and science worlds. I focus on the types of questions each realm asks, the data needed, and the consequences of findings. Gone are the days of datasets being created or collected to serve only one purpose or project. The trick with data reuse is to become familiar enough with a dataset to be able to combine it with other data and extract accurate results. As a Data Curator for the Advanced Cooperative Arctic Data and Information Service (ACADIS), my specialty is communication. Our team enables Arctic sciences by ensuring datasets are well documented and can be understood by reusers. Previously, I served as a data community liaison for the North American Regional Climate Change Assessment Program (NARCCAP). Again, my specialty was communicating complex instructions and ideas to a broad audience of data users. Before entering the science world, I was an entrepreneur. I have a bachelor's degree in economics and a master's degree in environmental social science. I am currently pursuing a Ph.D. in Geography. Because my background has embraced both the business and science worlds, I would like to share my perspectives on data, data reuse, data documentation, and the presentation or communication of findings. My experiences show that each can inform and support the other.

  18. Neutron shielding panels for reactor pressure vessels

    SciTech Connect

    Singleton, Norman R

    2011-11-22

    In a nuclear reactor neutron panels varying in thickness in the circumferential direction are disposed at spaced circumferential locations around the reactor core so that the greatest radial thickness is at the point of highest fluence with lesser thicknesses at adjacent locations where the fluence level is lower. The neutron panels are disposed between the core barrel and the interior of the reactor vessel to maintain radiation exposure to the vessel within acceptable limits.

  19. Experimental Breeder Reactor I Preservation Plan

    SciTech Connect

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  20. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  1. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    ERIC Educational Resources Information Center

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own…

  2. The 1980 Archeological Investigations at the Big Hill Lake, Kansas.

    DTIC Science & Technology

    1980-01-01

    rodents and other mammals such as coyotes, raccoons, bobcats, opossums, etc. The bottomland forests are also represented on a small scale in the Big... forests are adjacent to Big Hill creek and its feeder tributaries. These streams, some intermittent, provide suitable habitation for many groups of...points recovered from the areas near the hearths have suggested Preceramic cultural affiliations and have been identified as Afton , Ellis, Lange

  3. Lunar Rocks

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples, some of which can be seen in this photograph. Apollo 12 safely returned to Earth on November 24, 1969.

  4. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  5. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  6. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  7. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  8. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  9. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  10. Neutronic reactor

    DOEpatents

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  11. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  12. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  13. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  14. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  15. Space reactors

    NASA Astrophysics Data System (ADS)

    Ranken, W. A.

    1983-01-01

    Progress in design studies and technology for the SP-100 Project - successor to the Space Power Advanced Reactor (SPAR) Project - is reported for the period October 1, 1981 to March 31, 1982. The basis for selecting a high-temperature, UO2-fueled, heat-pipe-cooled reactor with a thermoelectric conversion system as the 100/kW-sub e/ reference design has been reviewed. Although no change has been made in the general concept, design studies have been done to investigate various reactor/conversion system coupling methods and core design modifications. Thermal and mechanical finite element modeling and three dimensional Monte Carlo analysis of a core with individual finned fuel elements are reported. Studies of unrestrained fuel irradiation data are discussed that are relevant both to the core modeling work and to the design and fabrication of the first in-pile irradiation test, which is also reported. Work on lithium-filled core heat pipe development is described, including the attainment of 15.6 kW/sub t/ operation at 1525 K for a 2-m-long heat pipe with a 15.7-mm outside diameter. The successful operation of a 5.5-m-long, lightweight potassium/titanium heat pipe at 760 K is described, and test results of a thermoelectric module with GaP-modified SiGe thermoelectric elements are presented.

  16. Institute for Rock Magnetism established

    NASA Astrophysics Data System (ADS)

    Banerjee, Subir K.

    There is a new focal point for cooperative research in advanced rock magnetism. The University of Minnesota in Minneapolis has established an Institute for Rock Magnetism (IRM) that will provide free access to modern equipment and encourage visiting fellows to focus on important topics in rock magnetism and related interdisciplinary research. Funding for the first three years has been secured from the National Science Foundation, the W.M. Keck Foundation, and the University of Minnesota.In the fall of 1986, the Geomagnetism and Paleomagnetism (GP) section of the AGU held a workshop at Asilomar, Calif., to pinpoint important and emerging research areas in paleomagnetism and rock magnetism, and the means by which to achieve them. In a report of this workshop published by the AGU in September 1987, two urgent needs were set forth. The first was for interdisciplinary research involving rock magnetism, and mineralogy, petrology, sedimentology, and the like. The second need was to ease the access of rock magnetists and paleomagnetists around the country to the latest equipment in modern magnetics technology, such as magneto-optics or electronoptics. Three years after the publication of the report, we announced the opening of these facilities at the GP section of the AGU Fall 1990 Meeting. A classified advertisement inviting applications for visiting fellowships was published in the January 22, 1991, issue of Eos.

  17. The Big One

    NASA Image and Video Library

    2017-03-13

    Mimas' gigantic crater Herschel lies near the moon's limb in this Cassini view. A big enough impact could potentially break up a moon. Luckily for Mimas, whatever created Herschel was not quite big enough to cause that level of disruption. When large impacts happen, they deliver tremendous amounts of energy -- sometimes enough to cause global destruction. Even impacts that are not catastrophic can leave enormous, near-permanent scars on bodies like Mimas (246 miles or 396 kilometers across). This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 32 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 19, 2016. The view was acquired at a distance of approximately 53,000 miles (85,000 kilometers) from Mimas. Image scale is 1,677 feet (511 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20523

  18. A holographic big bang?

    NASA Astrophysics Data System (ADS)

    Afshordi, N.; Mann, R. B.; Pourhasan, R.

    2015-11-01

    We present a cosmological model in which the Universe emerges out of the collapse of a five-dimensional (5D) star as a spherical three-brane. The initial singularity of the big bang becomes hidden behind a causal horizon. Near scale-invariant primordial curvature perturbations can be induced on the brane via a thermal atmosphere that is in equilibrium with the brane, circumventing the need for a separate inflationary process and providing an important test of the model.

  19. DARPA's Big Mechanism program.

    PubMed

    Cohen, Paul R

    2015-07-16

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  20. The Next Big Idea

    PubMed Central

    2013-01-01

    Abstract George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed. PMID:23786296

  1. Big Bang Circus

    NASA Astrophysics Data System (ADS)

    Ambrosini, C.

    2011-06-01

    Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…

  2. DARPA's Big Mechanism program

    NASA Astrophysics Data System (ADS)

    Cohen, Paul R.

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  3. Big3. Editorial

    PubMed Central

    Lehmann, Christoph U.; Séroussi, Brigitte; Jaulent, Marie-Christine

    2014-01-01

    Summary Objectives To provide an editorial introduction into the 2014 IMIA Yearbook of Medical Informatics with an overview of the content, the new publishing scheme, and upcoming 25th anniversary. Methods A brief overview of the 2014 special topic, Big Data - Smart Health Strategies, and an outline of the novel publishing model is provided in conjunction with a call for proposals to celebrate the 25th anniversary of the Yearbook. Results ‘Big Data’ has become the latest buzzword in informatics and promise new approaches and interventions that can improve health, well-being, and quality of life. This edition of the Yearbook acknowledges the fact that we just started to explore the opportunities that ‘Big Data’ will bring. However, it will become apparent to the reader that its pervasive nature has invaded all aspects of biomedical informatics – some to a higher degree than others. It was our goal to provide a comprehensive view at the state of ‘Big Data’ today, explore its strengths and weaknesses, as well as its risks, discuss emerging trends, tools, and applications, and stimulate the development of the field through the aggregation of excellent survey papers and working group contributions to the topic. Conclusions For the first time in history will the IMIA Yearbook be published in an open access online format allowing a broader readership especially in resource poor countries. For the first time, thanks to the online format, will the IMIA Yearbook be published twice in the year, with two different tracks of papers. We anticipate that the important role of the IMIA yearbook will further increase with these changes just in time for its 25th anniversary in 2016. PMID:24853037

  4. Big Data Technologies

    PubMed Central

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-01-01

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient’s care processes and of single patient’s behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, able to gather large amounts of real-time data, requires the implementation of distributed platforms for data analysis and decision support. Finally, the inclusion of geographical and environmental information into such complex IT systems may further increase the capability of interpreting the data gathered and extract new knowledge from them. This article reviews the main concepts and definitions related to big data, it presents some efforts in health care, and discusses the potential role of big data in diabetes care. Finally, as an example, it describes the research efforts carried on in the MOSAIC project, funded by the European Commission. PMID:25910540

  5. Bedrock erosion in the lower Big Wood River channel, southcentral Idaho

    SciTech Connect

    Maley, T.S.; Oberlindacher, P. )

    1993-04-01

    The Big Wood River, which is fed from the mountains to the north of the Snake River Plain, cuts through 0.8 m.y. old basalt in an area north and east of Shoshone, Idaho. The basalt channel carved by the Big Wood River exhibits remarkable and unusual bedrock erosional features. Approximately 10,000 years ago, nearby Black Butte shield volcano erupted basaltic lave which rerouted the Big Wood River. At the time the new river channel formed 10,000 years ago, alpine glaciers in the mountains were also beginning to melt. High flows of water from the melting glaciers during the next few thousand years carried large sediment loads and were instrumental in developing the spectacular potholes now found in the channel. Most of the scouring agents are pebbles and cobbles derived from quartzite, granitic, and gneissic rocks. As potholes began to develop, they were closely spaced and generally less than 1 m apart. However, as the potholes enlarged and expanded both horizontally and vertically, they coalesced with one another. The merging process occurred when the walls of two or more adjacent potholes were breached by the outward expansion of each pothole. The deeper of the two potholes captured the pebbles of the adjacent pothole. When pebbles are captured, pothole growth is terminated and the more shallow pothole was gradually cannibalized. All of the features within the channel are overprinted with a strong asymmetry caused by the current-driven pebbles against the upstream side of the features. Consequently, the upstream side of the features tends to be smooth, convex and rounded; whereas, the downstream side tends to be concave with the leading edge of the feature pointing in the downstream direction.

  6. Disaggregating asthma: Big investigation versus big data.

    PubMed

    Belgrave, Danielle; Henderson, John; Simpson, Angela; Buchan, Iain; Bishop, Christopher; Custovic, Adnan

    2017-02-01

    We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational tools for data analysis is that the process of data mining can become uncoupled from the scientific process of clinical interpretation, understanding the provenance of the data, and external validation. Although advances in computational methods can be valuable for using unexpected structure in data to generate hypotheses, there remains a need for testing hypotheses and interpreting results with scientific rigor. We argue for combining data- and hypothesis-driven methods in a careful synergy, and the importance of carefully characterized birth and patient cohorts with genetic, phenotypic, biological, and molecular data in this process cannot be overemphasized. The main challenge on the road ahead is to harness bigger health care data in ways that produce meaningful clinical interpretation and to translate this into better diagnoses and properly personalized prevention and treatment plans. There is a pressing need for cross-disciplinary research with an integrative approach to data science, whereby basic scientists, clinicians, data analysts, and epidemiologists work together to understand the heterogeneity of asthma.

  7. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  8. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  9. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  10. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  11. ELECTRONUCLEAR REACTOR

    DOEpatents

    Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

    1960-04-19

    An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

  12. REACTOR COMPONETN

    DOEpatents

    Creutz, E.C.

    1959-10-27

    A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.

  13. Photocatalytic reactor

    DOEpatents

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  14. Accelerated Weathering of Rocks.

    DTIC Science & Technology

    1977-08-01

    Dry tests en polished specimens with alternating heating and co- oling actions; ii) Wet tests in destilled water, with alternating...Rock-type Dry tests KxlO2 Wet tests KxlO2 Sound rock SR 3.64 8.31 Medium altered rock MAR 4.96 31.58 Very altered rock VAR 8.89 116.20 TABLE X...Sound rock SR Medium altered rock Very altered rock" KAR VAR ’ Reflectivity R (%) dry test wet test dry test wet test dry test wet

  15. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications. A supplement to final report: Design of slurry reactor for indirect liquefaction applications

    SciTech Connect

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  16. 9. VIEW OF WHITE ROCK ROAD INDICATING CULVERT LOCATION (SEE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF WHITE ROCK ROAD INDICATING CULVERT LOCATION (SEE ROAD ANGLE POINT ON RIGHT) WITH LATROBE RD, INTERSECTION IN DISTANCE (LEFT OF CENTER); VIEW TO NORTHEAST. - Placerville Road, White Rock Road between Clarksville & White Rock, El Dorado Hills, El Dorado County, CA

  17. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Sampling Operations on Big Data

    DTIC Science & Technology

    2015-11-29

    Sampling Operations on Big Data Vijay Gadepally, Taylor Herr, Luke Johnson, Lauren Milechin, Maja Milosavljevic, Benjamin A. Miller Lincoln...ll.mit.edu Abstract—The 3Vs - Volume, Velocity and Variety - of Big Data continues to be a large challenge for systems and algorithms designed to store... big data in Section II, followed by a description of the analytic environment D4M in Section III. We then describe the types of sampling methods and

  20. A novel plant protection strategy for transient reactors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.

    The present plant protection system (PPS) has been defined for use in the TREAT-upgrade (TU) reactor for controlled transient operation of reactor-fuel behavior testing under simulated reactor-accident conditions. A PPS with energy-dependent trip set points lowered worst-case clad temperatures by as much as 180 K, relative to the use of conventional fixed-level trip set points. The multilayered multilevel protection strategy represents the state-of-the-art in terrestrial transient reactor protection systems, and should be applicable to multi-MW space reactors.

  1. A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)

    NASA Astrophysics Data System (ADS)

    Yasar, Serdar; Yilmaz, Ali Osman

    2017-04-01

    In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.

  2. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  3. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2014-09-30

    slope was determined from high-resolution interferometric bathymetry so that the global grazing angle of the 5 ideal mean seafloor could be mapped to...from exposed rock on the seafloor , (i.e., individual rocks and rock outcrops) presents some of the most difficult challenges for modern MCM and ASW...classification tools. Inverse models based on forward models would be essential for using sonar systems for remote sensing of seafloor properties. An

  4. Rocks as poroelastic composites

    SciTech Connect

    Berryman, J G

    1998-04-30

    In Biot's theory of poroelasticity, elastic materials contain connected voids or pores and these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical effects of stress or strain applied externally to the solid matrix. Eshelby's formula for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at infinity is a very well-known and important result in elasticity. Having a rigorous generalization of Eshelby's results valid for poroelasticity means that the hard part of Eshelby' work (in computing the elliptic integrals needed to evaluate the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks) can be carried over from elasticity to poroelasticity - and also thermoelasticity - with only trivial modifications. Effective medium theories for poroelastic composites such as rocks can then be formulated easily by analogy to well-established methods used for elastic composites. An identity analogous to Eshelby's classic result has been derived [Physical Review Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock mechanics analysis. Descriptions of the application of this result as the starting point for new methods of estimation are presented.

  5. Distributed snow and rock temperature modelling in steep rock walls using Alpine3D

    NASA Astrophysics Data System (ADS)

    Haberkorn, Anna; Wever, Nander; Hoelzle, Martin; Phillips, Marcia; Kenner, Robert; Bavay, Mathias; Lehning, Michael

    2017-02-01

    In this study we modelled the influence of the spatially and temporally heterogeneous snow cover on the surface energy balance and thus on rock temperatures in two rugged, steep rock walls on the Gemsstock ridge in the central Swiss Alps. The heterogeneous snow depth distribution in the rock walls was introduced to the distributed, process-based energy balance model Alpine3D with a precipitation scaling method based on snow depth data measured by terrestrial laser scanning. The influence of the snow cover on rock temperatures was investigated by comparing a snow-covered model scenario (precipitation input provided by precipitation scaling) with a snow-free (zero precipitation input) one. Model uncertainties are discussed and evaluated at both the point and spatial scales against 22 near-surface rock temperature measurements and high-resolution snow depth data from winter terrestrial laser scans.In the rough rock walls, the heterogeneously distributed snow cover was moderately well reproduced by Alpine3D with mean absolute errors ranging between 0.31 and 0.81 m. However, snow cover duration was reproduced well and, consequently, near-surface rock temperatures were modelled convincingly. Uncertainties in rock temperature modelling were found to be around 1.6 °C. Errors in snow cover modelling and hence in rock temperature simulations are explained by inadequate snow settlement due to linear precipitation scaling, missing lateral heat fluxes in the rock, and by errors caused by interpolation of shortwave radiation, wind and air temperature into the rock walls.Mean annual near-surface rock temperature increases were both measured and modelled in the steep rock walls as a consequence of a thick, long-lasting snow cover. Rock temperatures were 1.3-2.5 °C higher in the shaded and sunny rock walls, while comparing snow-covered to snow-free simulations. This helps to assess the potential error made in ground temperature modelling when neglecting snow in steep bedrock.

  6. ATFSR: a small torsatron reactor

    SciTech Connect

    Houlberg, W.A.; Lacatski, J.T.; Uckan, N.A.

    1985-01-01

    A small (average minor radius anti a approx. = 1 m), moderate-aspect-ratio torsatron reactor based on the Advanced Toroidal Facility (ATF) is proposed as a starting point for improved stellarator reactor designs. The major limitation of the compact size is the lack of space under the helical coils for the blanket and shield. Neoclassical confinement models for helically trapped particles show that a large electric potential (radial electric field) is necessary to achieve ignition in a device of this size, although high-Q operation is still attainable with more modest potentials.

  7. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  8. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  9. NEUTRONIC REACTOR

    DOEpatents

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  10. Nuclear reactor neutron shielding

    DOEpatents

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  11. "Big Events" and Networks.

    PubMed

    Friedman, Samuel; Rossi, Diana; Flom, Peter L

    2006-01-01

    Some, but not all, "big events" such as wars, revolutions, socioeconomic transitions, economic collapses, and ecological disasters in recent years seem to lead to large-scale HIV outbreaks (Friedman et al, in press; Hankins et al 2002). This was true of transitions in the USSR, South Africa and Indonesia, for example, but not those in the Philippines or (so far) in Argentina. It has been hypothesized that whether or not HIV outbreaks occur is shaped in part by the nature and extent of changes in the numbers of voluntary or involuntary risk-takers, which itself may be related to the growth of roles such as sex-sellers or drug sellers; the riskiness of the behaviors engaged in by risk-takers; and changes in sexual and injection networks and other "mixing patterns" variables. Each of these potential causal processes, in turn, is shaped by the nature of pre-existing social networks and the patterns and content of normative regulation and communication that happen within these social networks-and on how these social networks and their characteristics are changed by the "big event" in question. We will present ideas about what research is needed to help understand these events and to help guide both indigenous community-based efforts to prevent HIV outbreaks and also to guide those who organize external intervention efforts and aid.

  12. Reactor and method of operation

    DOEpatents

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  13. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  14. Nursing Needs Big Data and Big Data Needs Nursing.

    PubMed

    Brennan, Patricia Flatley; Bakken, Suzanne

    2015-09-01

    Contemporary big data initiatives in health care will benefit from greater integration with nursing science and nursing practice; in turn, nursing science and nursing practice has much to gain from the data science initiatives. Big data arises secondary to scholarly inquiry (e.g., -omics) and everyday observations like cardiac flow sensors or Twitter feeds. Data science methods that are emerging ensure that these data be leveraged to improve patient care. Big data encompasses data that exceed human comprehension, that exist at a volume unmanageable by standard computer systems, that arrive at a velocity not under the control of the investigator and possess a level of imprecision not found in traditional inquiry. Data science methods are emerging to manage and gain insights from big data. The primary methods included investigation of emerging federal big data initiatives, and exploration of exemplars from nursing informatics research to benchmark where nursing is already poised to participate in the big data revolution. We provide observations and reflections on experiences in the emerging big data initiatives. Existing approaches to large data set analysis provide a necessary but not sufficient foundation for nursing to participate in the big data revolution. Nursing's Social Policy Statement guides a principled, ethical perspective on big data and data science. There are implications for basic and advanced practice clinical nurses in practice, for the nurse scientist who collaborates with data scientists, and for the nurse data scientist. Big data and data science has the potential to provide greater richness in understanding patient phenomena and in tailoring interventional strategies that are personalized to the patient. © 2015 Sigma Theta Tau International.

  15. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  16. Numerical study of the effects of surface roughness on water disinfection UV reactor.

    PubMed

    Sultan, Tipu; Ahmad, Sarfraz; Cho, Jinsoo

    2016-04-01

    UV reactors are an emerging choice as a big barrier against the pathogens present in drinking water. However, the precise role of reactor's wall roughness for cross flow ultraviolet (CF-UV) and axial flow ultraviolet (AF-UV) water disinfection reactors are unknown. In this paper, the influences of reactor's wall roughness were investigated with a view to identify their role on the performance factors namely dose distribution and reduction equivalent dose (RED). Herein, the relative effects of reactor's wall roughness on the performance of CF-UV and AF-UV reactors were also highlighted. This numerical study is a first step towards the comprehensive analysis of the effects of reactor's wall roughness for UV reactor. A numerical analysis was performed using ANSYS Fluent 15 academic version. The reactor's wall roughness has a significant effect on the RED. We found that the increase in RED is Reynolds number dependent (at lower value of turbulent Reynolds number the effects are remarkable). The effects of reactor's roughness were more pronounced for AF-UV reactor. The simulation results suggest that the study of reactor's wall roughness provides valuable insight to fully understand the effects of reactor's wall roughness and its impact on the flow behavior and other features of CF-UV and AF-UV water disinfection reactors.

  17. The Rise of Big Data in Neurorehabilitation.

    PubMed

    Faroqi-Shah, Yasmeen

    2016-02-01

    In some fields, Big Data has been instrumental in analyzing, predicting, and influencing human behavior. However, Big Data approaches have so far been less central in speech-language pathology. This article introduces the concept of Big Data and provides examples of Big Data initiatives pertaining to adult neurorehabilitation. It also discusses the potential theoretical and clinical contributions that Big Data can make. The article also recognizes some impediments in building and using Big Data for scientific and clinical inquiry.

  18. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  19. Geotechnical Descriptions of Rock and Rock Masses.

    DTIC Science & Technology

    1985-04-01

    user of the field log can relate to the general class of rock being described. For example, the rock name " syenite " might be qualified by adding "the...FELDSPAR PRE-S---- Coarne Texture Granite Syenite Qts ononite Honzonite Cabbro Peridotite (Platonic or to Qtx Diorite to Diorite Pyroxenite intrusive

  20. To What Extent Can the Big Five and Learning Styles Predict Academic Achievement

    ERIC Educational Resources Information Center

    Köseoglu, Yaman

    2016-01-01

    Personality traits and learning styles play defining roles in shaping academic achievement. 202 university students completed the Big Five personality traits questionnaire and the Inventory of Learning Processes Scale and self-reported their grade point averages. Conscientiousness and agreeableness, two of the Big Five personality traits, related…

  1. Comparison of slurry versus fixed-bed reactor costs for indirect liquefaction applications

    SciTech Connect

    Prakash, A.; Bendale, P.G.

    1991-12-01

    This work is a comparative evaluation of slurry reactors and fixed-bed reactors, with special emphasis on cost. Relative differences between slurry reactors and fixed-bed reactors have been pointed out in previous reviews; the differences pertinent to indirect liquefaction are summarized here. Design of both types is outlined.

  2. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  3. Research reactor job analysis - A project description

    SciTech Connect

    Yoder, John

    1988-07-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators.

  4. Geologic cross sections showing the concentrations of As, Cd, Co, Cu, Cr, Fe, Mo, Ni, Pb, and Zn in acid-insoluble residues of Paleozoic rocks within the Doniphan/Eleven Point Ranger District of the Mark Twain National Forest, Missouri, USA

    USGS Publications Warehouse

    Lee, Lopaka; Goldhaber, Martin B.

    2002-01-01

    This report is a product of a U.S. Geological Survey investigation that is focused on characterizing the potential environmental impacts of lead-zinc mining within the Doniphan/Eleven Point ranger district of the Mark Twain national forest. The elemental concentrations of iron (Fe), arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), and zinc (Zn) in acidinsoluble residues are shown for boreholes along two geologic cross sections within Doniphan/Elevan Point ranger district (Figure 1). The purpose of this report is to characterize, in a general sense, the distribution of economically and environmentally important elements within the rocks and aquifers of the Doniphan/Eleven Point ranger district

  5. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  6. Envisioning the Future of 'Big Data' Biomedicine.

    PubMed

    Bui, Alex A T; Darrell Van Horn, John

    2017-03-30

    In our era of digital biomedicine, data take many forms, from "omics" to imaging, mobile health (mHealth), and electronic health records (EHRs). With the availability of more efficient digital collection methods, scientists in many domains now find themselves confronting ever larger sets of data and trying to make sense of it all (1-4). Indeed, data which used to be considered large now seems small as the amount of data now being collected in a single day by an investigator can surpass what might have been generated over his/her career even a decade ago (e.g., (5)). This deluge of biomedical information requires new thinking about how data are generated, managed, and ultimately leveraged to further scientific understanding and for improving healthcare. Responding to this challenge, the National Institutes of Health (NIH) has spearheaded the "Big Data to Knowledge" (BD2K) program (6). Data scientists are being engaged through BD2K to guide biomedical researchers through the thickets of data they are producing. NIH Director, Francis Collins, has noted, "Indeed, we are at a point in history where Big Data should not intimidate, but inspire us. We are in the midst of a revolution that is transforming the way we do biomedical research…we just have to devise creative ways to sift through this mountain of data and make sense of it" (7). The NIH is now taking its first major steps toward realizing biomedical science as an interdisciplinary "big data" science.

  7. Zapped, Martian Rock

    NASA Image and Video Library

    2013-02-20

    This image from the Mars Hand Lens Imager MAHLI on NASA Mars rover Curiosity shows details of rock texture and color in an area where the rover Dust Removal Tool DRT brushed away dust that was on the rock.

  8. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  9. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  10. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  11. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  12. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  13. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  14. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  15. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  16. The Last Big Bang

    SciTech Connect

    McGuire, Austin D.; Meade, Roger Allen

    2016-09-13

    As one of the very few people in the world to give the “go/no go” decision to detonate a nuclear device, Austin “Mac” McGuire holds a very special place in the history of both the Los Alamos National Laboratory and the world. As Commander of Joint Task Force Unit 8.1.1, on Christmas Island in the spring and summer of 1962, Mac directed the Los Alamos data collection efforts for twelve of the last atmospheric nuclear detonations conducted by the United States. Since data collection was at the heart of nuclear weapon testing, it fell to Mac to make the ultimate decision to detonate each test device. He calls his experience THE LAST BIG BANG, since these tests, part of Operation Dominic, were characterized by the dramatic displays of the heat, light, and sounds unique to atmospheric nuclear detonations – never, perhaps, to be witnessed again.

  17. BIG DATA AND STATISTICS

    PubMed Central

    Rossell, David

    2016-01-01

    Big Data brings unprecedented power to address scientific, economic and societal issues, but also amplifies the possibility of certain pitfalls. These include using purely data-driven approaches that disregard understanding the phenomenon under study, aiming at a dynamically moving target, ignoring critical data collection issues, summarizing or preprocessing the data inadequately and mistaking noise for signal. We review some success stories and illustrate how statistical principles can help obtain more reliable information from data. We also touch upon current challenges that require active methodological research, such as strategies for efficient computation, integration of heterogeneous data, extending the underlying theory to increasingly complex questions and, perhaps most importantly, training a new generation of scientists to develop and deploy these strategies. PMID:27722040

  18. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population.

  19. Big-bounce genesis

    NASA Astrophysics Data System (ADS)

    Li, Changhong; Brandenberger, Robert H.; Cheung, Yeuk-Kwan E.

    2014-12-01

    We report on the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a big bounce at the early stage in the evolution of our currently observed universe. A model independent study of dark matter production in the pre-bounce contraction and the post-bounce expansion epochs of the bounce universe reveals a new venue for achieving the observed relic abundance of our present universe, in which a significantly smaller amount of dark matter with a smaller cross section—as compared to the prediction of standard cosmology—is produced and the information about the bounce universe evolution is preserved by the out-of-thermal-equilibrium process. Once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario.

  20. Big bang and big crunch in matrix string theory

    SciTech Connect

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-04-15

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.

  1. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  2. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  3. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  4. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  5. Possible triggering of solar activity to big earthquakes ( Ms≥8) in faults with near west-east strike in China

    NASA Astrophysics Data System (ADS)

    Han, Yanben; Guo, Zengjian; Wu, Jinbing; Ma, Lihua

    2004-03-01

    This paper studies the relationship between solar activity and big earthquakes ( Ms≥8) that occurred in China and western Mongolia. It is discovered that the occurrence dates of most of the big earthquakes in and near faults with west-east strike are close to the maximum years of sunspot numbers, whereas dates of some big earthquakes which are not in such faults are not close to the maximum years. We consider that it is possibly because of the appearance of many magnetic storms in the maximum years of solar activity. The magnetic storms result in anomalies of geomagnetic field and then produce eddy current in the faults gestating earthquake with near west-east strike. Perhaps the gestated big earthquakes occur easily since the eddy current heats the rocks in the faults and therefore decreases the shear resistant intensity and the static friction limit of the rocks.

  6. Rotating reactor studies

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1991-01-01

    Undesired gravitational effects such as convection or sedimentation in a fluid can sometimes be avoided or decreased by the use of a closed chamber uniformly rotated about a horizontal axis. In a previous study, the spiral orbits of a heavy or buoyant particle in a uniformly rotating fluid were determined. The particles move in circles, and spiral in or out under the combined effects of the centrifugal force and centrifugal buoyancy. A optimization problem for the rotation rate of a cylindrical reactor rotated about its axis and containing distributed particles was formulated and solved. Related studies in several areas are addressed. A computer program based on the analysis was upgraded by correcting some minor errors, adding a sophisticated screen-and-printer graphics capability and other output options, and by improving the automation. The design, performance, and analysis of a series of experiments with monodisperse polystyrene latex microspheres in water were supported to test the theory and its limitations. The theory was amply confirmed at high rotation rates. However, at low rotation rates (1 rpm or less) the assumption of uniform solid-body rotation of the fluid became invalid, and there were increasingly strong secondary motions driven by variations in the mean fluid density due to variations in the particle concentration. In these tests the increase in the mean fluid density due to the particles was of order 0.015 percent. To a first approximation, these flows are driven by the buoyancy in a thin crescent-shaped depleted layer on the descending side of the rotating reactor. This buoyancy distribution is balanced by viscosity near the walls, and by the Coriolis force in the interior. A full analysis is beyond the scope of this study. Secondary flows are likely to be stronger for buoyant particles, which spiral in towards the neutral point near the rotation axis under the influence of their centrifugal buoyancy. This is because the depleted layer is

  7. Big Bang of Massenergy and Negative Big Bang of Spacetime

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2017-01-01

    There is a balance between Big Bang of Massenergy and Negative Big Bang of Spacetime in the universe. Also some scientists considered there is an anti-Big Bang who could produce the antimatter. And the paper supposes there is a structure balance between Einstein field equation and negative Einstein field equation, a balance between massenergy structure and spacetime structure, a balance between an energy of nucleus of the stellar matter and a dark energy of nucleus of the dark matter-dark energy, and a balance between the particle and the wave-a balance system between massenergy (particle) and spacetime (wave). It should explain of the problems of the Big Bang. http://meetings.aps.org/Meeting/APR16/Session/M13.8

  8. Spirit Guidepost, 'Plymouth Rock'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit took this panoramic camera image during Spirit's 152nd sol, on June 7, 2004. The rock, informally named 'Plymouth Rock,' is approximately 90 centimeters (35 inches) across and 50 centimeters (20 inches) tall. Spirit did not spend any time studying Plymouth Rock, but rover controllers used it as a guide to maneuver Spirit closer to the 'Columbia Hills.' Like most of the rocks found at the Gusev crater location, Plymouth is most likely a basalt. The tiny vesicles pitting the rock's surface further indicate its volcanic origin.

  9. Rock ramp design guidelines

    USGS Publications Warehouse

    Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan

    2007-01-01

    Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.

  10. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  11. Homogeneous and isotropic big rips?

    SciTech Connect

    Giovannini, Massimo

    2005-10-15

    We investigate the way big rips are approached in a fully inhomogeneous description of the space-time geometry. If the pressure and energy densities are connected by a (supernegative) barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is approached. This behavior is contrasted with the usual big-bang singularities. A similar analysis is performed in the case of sudden (quiescent) singularities and it is argued that the spatial gradients may well be non-negligible in the vicinity of pressure singularities.

  12. Big Data and Ambulatory Care

    PubMed Central

    Thorpe, Jane Hyatt; Gray, Elizabeth Alexandra

    2015-01-01

    Big data is heralded as having the potential to revolutionize health care by making large amounts of data available to support care delivery, population health, and patient engagement. Critics argue that big data's transformative potential is inhibited by privacy requirements that restrict health information exchange. However, there are a variety of permissible activities involving use and disclosure of patient information that support care delivery and management. This article presents an overview of the legal framework governing health information, dispels misconceptions about privacy regulations, and highlights how ambulatory care providers in particular can maximize the utility of big data to improve care. PMID:25401945

  13. Is Space Big Enough for a US-Sino Partnership?

    DTIC Science & Technology

    2010-04-01

    believe that space is big enough, that there is a future for the US and China in space. I would like to thank Lt Col Rick Rogers, my research...professionals who have aided and directed my own development to this point in my career. The list is long, but a few stand out: Cols John Riordan , Jeff

  14. Geoneutrinos and reactor antineutrinos at SNO+

    NASA Astrophysics Data System (ADS)

    Baldoncini, M.; Strati, V.; Wipperfurth, S. A.; Fiorentini, G.; Mantovani, F.; McDonough, W. F.; Ricci, B.

    2016-05-01

    In the heart of the Creighton Mine near Sudbury (Canada), the SNO+ detector is foreseen to observe almost in equal proportion electron antineutrinos produced by U and Th in the Earth and by nuclear reactors. SNO+ will be the first long baseline experiment to measure a reactor signal dominated by CANDU cores (~55% of the total reactor signal), which generally burn natural uranium. Approximately 18% of the total geoneutrino signal is generated by the U and Th present in the rocks of the Huronian Supergroup-Sudbury Basin: the 60% uncertainty on the signal produced by this lithologic unit plays a crucial role on the discrimination power on the mantle signal as well as on the geoneutrino spectral shape reconstruction, which can in principle provide a direct measurement of the Th/U ratio in the Earth.

  15. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety.

  16. Modular Stellarator Fusion Reactor concept

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  17. The BigBOSS Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  18. Big Data and Perioperative Nursing.

    PubMed

    Westra, Bonnie L; Peterson, Jessica J

    2016-10-01

    Big data are large volumes of digital data that can be collected from disparate sources and are challenging to analyze. These data are often described with the five "Vs": volume, velocity, variety, veracity, and value. Perioperative nurses contribute to big data through documentation in the electronic health record during routine surgical care, and these data have implications for clinical decision making, administrative decisions, quality improvement, and big data science. This article explores methods to improve the quality of perioperative nursing data and provides examples of how these data can be combined with broader nursing data for quality improvement. We also discuss a national action plan for nursing knowledge and big data science and how perioperative nurses can engage in collaborative actions to transform health care. Standardized perioperative nursing data has the potential to affect care far beyond the original patient. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  19. Tokamak reactor studies

    SciTech Connect

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features.

  20. My Big Wall

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.

    2002-01-01

    It was June and I was in Yosemite National Park in California, 2,000-feet off the ground. I was climbing El Capitan, a majestic 3,000-foot high, mile-wide granite monolith--one of the most sought after and spectacular rock climbs in the world. After three days of climbing on its sheer face, and having completed the most difficult part of the route, my partner and I were heading down. A thunderstorm lasting all night and into the morning had soaked our tiny perch and all our worldly possessions. We began rappelling down the vertical wall by sliding to the ends of two 50meter ropes tied together and looped through a set of fixed rings bolted into the rock. At the end of the ropes was another rappel station consisting of a set of rings, placed by previous climbers for retreating parties, which we used to anchor ourselves to the rock face. We then pulled the ropes down from the rings above, threaded the ones in front of our noses and started down another rope length. Everything we brought up for our five-day climb to the summit we had to bring back down with us: ropes, climbing gear of every sort, sleeping bags, extra clothes, food, water, and other essentials. All this we either stuffed into a haul bag (an oversized reinforced duffel bag) or slung over our shoulders. The retreat was slow and methodical, akin to a train backing down a mountain, giving me ample time to think. My situation made me think about my work, mostly, about all the projects I have managed, or been involved in managing. As a NASA project manager, I have worked on a number of successful projects. I have also been involved in a number of projects I never saw the end of. I thought about all the projects I transferred off of for other opportunities, projects that were in full stride and ran out of funding, and ones put on the shelf because they would not meet a flight date. Oh yes, I have had many success, to be sure, or I would have burned out years ago. Lessons from both the successful and not

  1. Pressurized water reactor flow skirt apparatus

    SciTech Connect

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  2. The role of big laboratories

    NASA Astrophysics Data System (ADS)

    Heuer, R.-D.

    2013-12-01

    This paper presents the role of big laboratories in their function as research infrastructures. Starting from the general definition and features of big laboratories, the paper goes on to present the key ingredients and issues, based on scientific excellence, for the successful realization of large-scale science projects at such facilities. The paper concludes by taking the example of scientific research in the field of particle physics and describing the structures and methods required to be implemented for the way forward.

  3. Big Spherules near 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This frame from the microscopic imager on NASA's Mars Exploration Rover Opportunity shows spherules up to about 5 millimeters (one-fifth of an inch) in diameter. The camera took this image during the 924th Martian day, or sol, of Opportunity's Mars-surface mission (Aug. 30, 2006), when the rover was about 200 meters (650 feet) north of 'Victoria Crater.'

    Opportunity discovered spherules like these, nicknamed 'blueberries,' at its landing site in 'Eagle Crater,' and investigations determined them to be iron-rich concretions that formed inside deposits soaked with groundwater. However, such concretions were much smaller or absent at the ground surface along much of the rover's trek of more than 5 kilometers (3 miles) southward to Victoria. The big ones showed up again when Opportunity got to the ring, or annulus, of material excavated and thrown outward by the impact that created Victoria Crater. Researchers hypothesize that some layer beneath the surface in Victoria's vicinity was once soaked with water long enough to form the concretions, that the crater-forming impact dispersed some material from that layer, and that Opportunity might encounter that layer in place if the rover drives down into the crater.

  4. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  5. Nuclear reactor control apparatus

    DOEpatents

    Sridhar, Bettadapur N.

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  6. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  7. Point-counterpoint: big robots vs small robots

    NASA Astrophysics Data System (ADS)

    Thorpe, Chuck E.

    1993-04-01

    Mobile robot architectures have been based on many different design principles: AI, control theory, hierarchical organization, etc. Brooks argues for a `subsumption' approach, based on layers of very simple, real-time computations. The CMU Navlab project takes a more pragmatic approach. The bottom layer is real-time, based on local coordinates, with no high- level models or central data structures to be bottlenecks. But the architectural tools developed for the Navlab also provide hooks for a higher level, based in world coordinates and using AI planning, to control the lower layer.

  8. Powering Big Data for Nursing Through Partnership.

    PubMed

    Harper, Ellen M; Parkerson, Sara

    2015-01-01

    The Big Data Principles Workgroup (Workgroup) was established with support of the Healthcare Information and Management Systems Society. Building on the Triple Aim challenge, the Workgroup sought to identify Big Data principles, barriers, and challenges to nurse-sensitive data inclusion into Big Data sets. The product of this pioneering partnership Workgroup was the "Guiding Principles for Big Data in Nursing-Using Big Data to Improve the Quality of Care and Outcomes."

  9. Safety Characteristics of LBE Cooled Long-Life Small Reactor, 'LSPR'

    SciTech Connect

    Hiroshi Sekimoto; Shinichi Makino

    2002-07-01

    Lead bismuth eutectic (LBE) shows a good performance on neutron economy, and LBE cooled fast reactor can be designed as an excellent long-life small reactor. LBE is good not only for neutron economy but for chemical inertness and high boiling point, which may realize a much safer reactor than conventional sodium-cooled reactor. We have designed such a long-life small reactor and name it LSPR. This paper presents safety characteristics of LSPR. (authors)

  10. Natural polish in granitic rocks

    NASA Astrophysics Data System (ADS)

    Siman-Tov, S.; Brodsky, E. E.; Stock, G. M.; White, J. C.

    2016-12-01

    Fault mirrors are highly smooth and reflective rock surfaces that are found in many shear zones around the world. Recent studies suggest that fault mirrors are formed during high velocity slip on faults and therefore may serve as an indicator for seismic slip. In contrast, other studies suggest that fault mirrors may form under high normal stress at sub-seismic velocities and at room temperature. Fault mirrors are observed within the fault core of many rock type environments including limestone, dolomite, chert and rhyolite. However, to the best of our knowledge, they are missing in faults hosted in granite. Moreover, mirror-like surfaces form during high velocity rotary shear experiments in many types of rock but not in sheared granite blocks. The absence of fault mirrors in granite is surprising, particularly since there exists extensive glacial polish on granitic bedrock. Glacial polish describes the smooth and reflective rock surfaces formed at the base of glaciers that carved the underlying bedrock. In addition to their import for studies of glacial dynamics and geomorphology, glacially polished surfaces may hold some significance for fault mechanics. Glacial polish and fault mirrors share many similarities. At field exposures they both present highly smooth surfaces and striations that clearly point in the slip direction. Studies on carbonate fault mirrors showed that individual highly reflective surfaces are composed of a thin nanograin layer. Preliminary SEM observations on samples collected from granitic rocks at Yosemite National Park suggest that these polished surfaces are also coated by an ultrathin cohesive layer composed of nanograins. Although there are clear differences between glacial and fault-zone environments, the similarity between these textures, and the fact that both are formed during shear, suggest that a similar mechanism is responsible for their formation. The comparison raises questions about the importance of high fluid contents and

  11. Big bang nucleosynthesis: Present status

    NASA Astrophysics Data System (ADS)

    Cyburt, Richard H.; Fields, Brian D.; Olive, Keith A.; Yeh, Tsung-Han

    2016-01-01

    Big bang nucleosynthesis (BBN) describes the production of the lightest nuclides via a dynamic interplay among the four fundamental forces during the first seconds of cosmic time. A brief overview of the essentials of this physics is given, and new calculations presented of light-element abundances through 6Li and 7Li, with updated nuclear reactions and uncertainties including those in the neutron lifetime. Fits are provided for these results as a function of baryon density and of the number of neutrino flavors Nν. Recent developments are reviewed in BBN, particularly new, precision Planck cosmic microwave background (CMB) measurements that now probe the baryon density, helium content, and the effective number of degrees of freedom Neff. These measurements allow for a tight test of BBN and cosmology using CMB data alone. Our likelihood analysis convolves the 2015 Planck data chains with our BBN output and observational data. Adding astronomical measurements of light elements strengthens the power of BBN. A new determination of the primordial helium abundance is included in our likelihood analysis. New D/H observations are now more precise than the corresponding theoretical predictions and are consistent with the standard model and the Planck baryon density. Moreover, D/H now provides a tight measurement of Nν when combined with the CMB baryon density and provides a 2 σ upper limit Nν<3.2 . The new precision of the CMB and D/H observations together leaves D/H predictions as the largest source of uncertainties. Future improvement in BBN calculations will therefore rely on improved nuclear cross-section data. In contrast with D/H and 4He, 7Li predictions continue to disagree with observations, perhaps pointing to new physics. This paper concludes with a look at future directions including key nuclear reactions, astronomical observations, and theoretical issues.

  12. Results of new petrologic and remote sensing studies in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Benker, Stevan Christian

    The initial section of this manuscript involves the South Rim Formation, a series of 32.2-32 Ma comenditic quartz trachytic-rhyolitic volcanics and associated intrusives, erupted and was emplaced in Big Bend National Park, Texas. Magmatic parameters have only been interpreted for one of the two diverse petrogenetic suites comprising this formation. Here, new mineralogic data for the South Rim Formation rocks are presented. Magmatic parameters interpreted from these data assist in deciphering lithospheric characteristics during the mid-Tertiary. Results indicate low temperatures (< 750 °C), reduced conditions (generally below the FMQ buffer), and low pressures (≤ 100 MPa) associated with South Rim Formation magmatism with slight conditional differences between the two suites. Newly discovered fayalite microphenocrysts allowed determination of oxygen fugacity values (between -0.14 and -0.25 DeltaFMQ over temperature ranges of 680-700 °C), via mineral equilibria based QUILF95 calculations, for Emory Peak Suite. Petrologic information is correlated with structural evidence from Trans-Pecos Texas and adjacent regions to evaluate debated timing of tectonic transition (Laramide compression to Basin and Range extension) and onset of the southern Rio Grande Rift during the mid-Tertiary. The A-type and peralkaline characteristics of the South Rim Formation and other pre-31 Ma magmatism in Trans-Pecos Texas, in addition to evidence implying earlier Rio Grande Rift onset in Colorado and New Mexico, promotes a near-neutral to transtensional setting in Trans-Pecos Texas by 32 Ma. This idea sharply contrasts with interpretations of tectonic compression and arc-related magmatism until 31 Ma as suggested by some authors. However, evidence discussed cannot preclude a pre-36 Ma proposed by other authors. The later section of this manuscript involves research in the Big Bend area using Google Earth. At present there is high interest in using Google Earth in a variety of scientific

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-01

    soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership

  14. Survey: Translational Bioinformatics embraces Big Data

    PubMed Central

    Shah, Nigam H.

    2015-01-01

    Summary We review the latest trends and major developments in translational bioinformatics in the year 2011–2012. Our emphasis is on highlighting the key events in the field and pointing at promising research areas for the future. The key take-home points are: Translational informatics is ready to revolutionize human health and healthcare using large-scale measurements on individuals.Data–centric approaches that compute on massive amounts of data (often called “Big Data”) to discover patterns and to make clinically relevant predictions will gain adoption.Research that bridges the latest multimodal measurement technologies with large amounts of electronic healthcare data is increasing; and is where new breakthroughs will occur. PMID:22890354

  15. Hybrid plasmachemical reactor

    SciTech Connect

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  16. Attrition reactor system

    SciTech Connect

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  17. Attrition reactor system

    SciTech Connect

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  18. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  19. Nuclear reactor containment structure with continuous ring tunnel at grade

    DOEpatents

    Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.

    1977-01-01

    A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.

  20. Period meter for reactors

    DOEpatents

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  1. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  2. Reactor physics verification of the MCNP6 unstructured mesh capability

    SciTech Connect

    Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.

    2013-07-01

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  3. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  4. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  5. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  6. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  7. Low grade metamorphism of mafic rocks

    NASA Astrophysics Data System (ADS)

    Schiffman, Peter

    1995-07-01

    Through most of this past century, metamorphic petrologists in the United States have paid their greatest attention to high grade rocks, especially those which constitute the core zones of exhumed, mountain belts. The pioneering studies of the 50's through the 80's, those which applied the principles of thermodynamics to metamorphic rocks, focused almost exclusively on high temperature systems, for which equilibrium processes could be demonstrated. By the 1980's, metamorphic petrologists had developed the methodologies for deciphering the thermal and baric histories of mountain belts through the study of high grade rocks. Of course, low grade metamorphic rocks - here defined as those which form at pressures and temperatures up to and including the greenschist facies - had been well known and described as well, initially through the efforts of Alpine and Circum-Pacific geologists who recognized that they constituted an integral and contiguous portion of mountain belts, and that they underlay large portions of accreted terranes, many of oceanic origins. But until the mid 80's, much of the effort in studying low grade rocks - for a comprehensive review of the literature to that point see Frey (1987) - had been concentrated on mudstones, volcanoclastic rocks, and associated lithologies common to continental mountain belts and arcs. In the mid 80's, results of the Deep Sea Drilling Project (DSDP) rather dramatically mitigated a shift in the study of low grade metamorphic rocks.

  8. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  9. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  10. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  11. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  12. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  13. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  14. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  15. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  16. A Review of Rock Bolt Monitoring Using Smart Sensors.

    PubMed

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  17. A Review of Rock Bolt Monitoring Using Smart Sensors

    PubMed Central

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-01-01

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced. PMID:28379167

  18. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  19. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  20. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  1. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine Areas, Southeastern Montana. Water resources investigation report

    SciTech Connect

    Clark, D.W.

    1995-09-01

    This report describes the geochemical processes that occur in ground water as a result of surface mining of coal at the Big Sky and West Decker Mine areas in southeastern Montana. The report is based on data obtained during 1988 through 1990 from intensive sampling and analysis of rock material and water at several points along flow paths extending from coal aquifers upgradient of each mine, through spoils aquifers to downgradient coal or other aquifers. Data requirements included mineralogy, elemental chemistry, and ion-exchange capabilities obtained from solid-phase samples collected by core drilling during monitoring-well installation. Other data include ground-water samples analyzed for major and minor chemical constituents, isotopic composition, and dissolved gases. The data were then analyzed with geochemical models.

  2. [Big data in official statistics].

    PubMed

    Zwick, Markus

    2015-08-01

    The concept of "big data" stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany.

  3. GEOSS: Addressing Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  4. Big data for bipolar disorder.

    PubMed

    Monteith, Scott; Glenn, Tasha; Geddes, John; Whybrow, Peter C; Bauer, Michael

    2016-12-01

    The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, population health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many technical challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active participation of psychiatrists is needed throughout the analytical process.

  5. Interaction between injection points during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Berre, Inga

    2012-11-01

    We study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction in combination with disorder influences the fracturing process. To this end, we develop an effective continuum model of the hydrofracking of heterogeneous poroelastic media that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. For injection points that are separated by less than a critical correlation length, our numerical simulations show that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture force that attracts the fractures toward the neighboring injection point.

  6. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  7. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  8. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    John Grotzinger (second from left), Curiosity project scientist, California Institute of Technology in Pasadena, speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  9. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    John Grotzinger, Curiosity project scientist, California Institute of Technology in Pasadena, answers a reporter's question at a news conference where findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars were presented, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  10. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    John Grotzinger (center), Curiosity project scientist, California Institute of Technology in Pasadena, speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  11. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  12. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  13. Odyssey/White Rock

    NASA Image and Video Library

    2002-10-01

    These Mars Odyssey images show the White Rock feature on Mars in both infrared left and visible right wavelengths. White Rock is the unofficial name for this landform that was first observed during NASA Mariner 9 mission in the early 1970.

  14. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  15. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  16. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  17. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    David Blake, principal investigator for Curiosity's Chemistry and Mineralogy investigation at NASA's Ames Research Center in Calif., speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  18. Chocolate Hills Rock

    NASA Image and Video Library

    2010-02-16

    This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.

  19. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  20. Rock Bites into 'Bounce'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from the Mars Exploration Rover Opportunity features the 6.44 millimeter (0.25 inch) deep hole ground into the rock dubbed 'Bounce' by the rover's rock abrasion tool. The tool took 2 hours and 15 minutes to grind the hole on sol 66 of the rover's journey. A combination of limited solar power and the rock's jagged texture led the rock abrasion tool team to set very aggressive grinding parameters to ensure that the end result was a full circle, suitable for a thorough read from the rover's spectrometers.

    Bounce's markedly different appearance (when compared to the rocks that were previously examined in the Eagle Crater outcrop) made it a natural target for rover research. In order to achieve an ideal position from which to grind into the rock, Opportunity moved in very close with its right wheel next to Bounce. In this image, the panoramic camera on the rover's mast is looking down, catching the tip of the solar panel which partially blocks the full circle ground by the rock abrasion tool.

    The outer ring consists of the cuttings from the rock, pushed out by the brushes on the grinding instrument. The dark impression at the top of the outer circle was caused by the instrument's contact mechanism which serves to stabilize it while grinding.

  1. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  2. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  3. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  4. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  5. [Development of the heterogeneous photocatalytic reactor in water treatment].

    PubMed

    He, X; Wang, Y

    2001-07-01

    Based on the history and the functions of the heterogenous photocatalytic reactors, three categories were discussed. The emphasis was put on the employment of the reactors designed for the practice in recent years. It was pointed out that the study and the design of the reactors were one of the cores in the process of the application of the photocatalytic oxidation techniques. And the trend of this technology was also predicted.

  6. Bounce Rock Snapshot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 This Mars Exploration Rover Opportunity panoramic camera image shows 'Bounce Rock,' a rock the airbag-packaged rover struck while rolling to a stop on January 24, 2004. This is the largest rock for as far as the eye can see, approximately 35 centimeters (14 inches) long and 10 centimeters (4 inches) high. There appears to be a dusty coating on the top of parts of the rock, which may have been broken when it was struck by the airbags. The rock was about 5 meters (16 feet) from the rover when this image was obtained. This is an enhanced color composite image from sol 36 of the rover's journey, generated using the camera's L2 (750 nanometer), L5 (530 nanometer), and L6 (480 nanometer) filters.

    Bounce Rock Spectra Figure 1 above is a plot of panoramic camera spectra extracted from three different regions on the rock dubbed 'Bounce.' The yellow spectrum is from the yellow box in the image on the left, from the dusty top part of the rock. The spectrum is dominated by the signature of oxidized 'ferric' iron (Fe3+) like that seen in the classic Martian dust. The red spectrum is from the darker Meridiani Planum soils that were disturbed by the airbag when it bounced near the rock. That spectrum is also dominated by ferric iron, though the reflectivity is lower. Scientists speculate that this may be because the grains are coarser in these soils compared to the dust. The green spectrum, which is from the right side of the rock, shows a strong drop in the infrared reflectance that is unlike any other rock yet seen at Meridiani Planum or Gusev Crater. This spectral signature is typical of un-oxidized 'ferrous' iron (Fe2+) in the rock, perhaps related to the presence of volcanic minerals like olivine or pyroxene. The possibility that this may be a basaltic rock that is distinctly different from the rocks seen in the Eagle Crater outcrop is being intensively explored using the rover's other instruments.

  7. Savannah River Site L reactor testing

    SciTech Connect

    Menna, J.D.; Whitehouse, J.C.

    1990-01-01

    Flow tests were conducted in the Savannah River Site L reactor to evaluate the performance of the primary coolant system under simulated Loss of Coolant Accident (LOCA) conditions. Results were obtained with a prototypic cold fuel charge in the core. Core flows typical of normal and shutdown operation were studied. The tests consisted of measuring hydraulic parameters while lowering tank moderator levels to allow air entrainment from the reactor tank through operating coolant pumps. Data were collected continuously as the flows changed from single-phase to a two-component mixture of water and air. Minimum tank levels equivalent to those resulting from a hypothetical double-ended guillotine break of a coolant pipe were simulated. System pressures, water levels, densities, flows, and pump parameters were measured by over 200 instruments especially designed or adapted for in-reactor use. Special in-reactor video cameras provided visual observation of flow regimes and confirmed water levels in the reactor tank, plenum, and pump suction and plenum inlet pipes. The tests provided a unique opportunity to study full-scale pump degradation and two-component flow distributions in the reactor under ambient temperature conditions. Results showed the different pump operating regimes and points of transition and some of the other key features of the reactor response system during a severe loss of coolant event. 4 refs., 24 figs.

  8. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  9. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Beard, Daniel A.

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  10. Multiwavelength astronomy and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    Two major characteristics of modern astronomy are multiwavelength (MW) studies (fromγ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed at various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomers deal with big numbers. Surveys are the main source for discovery of astronomical objects and accumulation of observational data for further analysis, interpretation, and achieving scientific results. We review the main characteristics of astronomical surveys, compare photographic and digital eras of astronomical studies (including the development of wide-field observations), describe the present state of MW surveys, and discuss the Big Data in astronomy and related topics of Virtual Observatories and Computational Astrophysics. The review includes many numbers and data that can be compared to have a possibly overall understanding on the Universe, cosmic numbers and their relationship to modern computational facilities.

  11. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  12. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  13. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  14. [Stability control of aerobic granules using an innovative reactor].

    PubMed

    Li, Zhi-Hua; Yang, Fan; Li, Sheng; Xie, Lei; Wang, Xiao-Chang

    2012-06-01

    Uncontrolled variation of diameter and density of aerobic granules frequently resulted in instability and thus brought about operation failure. An innovative reactor was therefore developed for the control of diameter and density of aerobic granules. There were two ways to select the sludge, one was the short settling time select the big and dense granules in the reactor, and the other was the hydro cyclone that washed out the big and compact granules preventing big and compact fourthly growth in the reactor. By these means, the diameter of granules could maintained in the range of 300-1 000 microm for a long time, consequently, the long term stability could be obtained. According to the kinetic analysis, it was found that the energy maintenance coefficient was 0.08-0.10, which was much higher than the conventional granular system (0.06), and the ratio of the COD used for maintenance to the influent was higher than the conventional one. Additionally, the removal efficiencies of COD and ammonia were 92% and 60%, respectively.

  15. [Sequential extraction experiments applied to study chemical mobility of fluorine in rocks].

    PubMed

    Xu, Li-Rong; Liang, Han-Dong; Luo, Kun-Li; Feng, Fu-Jian; Tan, Jian-An

    2006-11-01

    Sequential extraction experiments were used to study the chemical mobility of fluorine in rocks. The results show that there are quite big differences in chemical mobility of fluorine in rocks of different types. Fluorine in carbonate rock is very active, in which the proportion of leachable fluorine is generally more than 75%. Fluorine in black rocks of Lower Cambrian is closely related to their different metamorphosed grades, in which fluorine in black carbonaceous slate with higher metamorphosed grade mostly has lower leachability than black shale and black siliceous rock. Generally speaking, the leachable percentage of fluorine is high in phosphorite rocks and low in phyllite. The leachable fluorine in diabase is in direct proportion to its fluorine concentration. There are some differences in chemical mobility of fluorine in stone coal of different ages. Fluorine in stone coal of Silurian has higher leachability than stone coal of Cambrian.

  16. [Algorithms, machine intelligence, big data : general considerations].

    PubMed

    Radermacher, F J

    2015-08-01

    We are experiencing astonishing developments in the areas of big data and artificial intelligence. They follow a pattern that we have now been observing for decades: according to Moore's Law,the performance and efficiency in the area of elementary arithmetic operations increases a thousand-fold every 20 years. Although we have not achieved the status where in the singular sense machines have become as "intelligent" as people, machines are becoming increasingly better. The Internet of Things has again helped to massively increase the efficiency of machines. Big data and suitable analytics do the same. If we let these processes simply continue, our civilization may be endangerd in many instances. If the "containment" of these processes succeeds in the context of a reasonable political global governance, a worldwide eco-social market economy, andan economy of green and inclusive markets, many desirable developments that are advantageous for our future may result. Then, at some point in time, the constant need for more and faster innovation may even stop. However, this is anything but certain. We are facing huge challenges.

  17. Heat pipe reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  18. Heat pipe reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Koenig, D. R.; Ranken, W. A.; Salmi, E. W.

    1977-01-01

    A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kWe and operate in the temperature range 1200-1700 K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO2. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor. Virtues of the reactor designs are the avoidance of single-point failure mechanisms, the relatively high operating temperature, and the expected long lifetimes of the fuel element components.

  19. Exascale computing and big data

    SciTech Connect

    Reed, Daniel A.; Dongarra, Jack

    2015-06-25

    Scientific discovery and engineering innovation requires unifying traditionally separated high-performance computing and big data analytics. The tools and cultures of high-performance computing and big data analytics have diverged, to the detriment of both; unification is essential to address a spectrum of major research domains. The challenges of scale tax our ability to transmit data, compute complicated functions on that data, or store a substantial part of it; new approaches are required to meet these challenges. Finally, the international nature of science demands further development of advanced computer architectures and global standards for processing data, even as international competition complicates the openness of the scientific process.

  20. [Big Data- challenges and risks].

    PubMed

    Krauß, Manuela; Tóth, Tamás; Hanika, Heinrich; Kozlovszky, Miklós; Dinya, Elek

    2015-12-06

    The term "Big Data" is commonly used to describe the growing mass of information being created recently. New conclusions can be drawn and new services can be developed by the connection, processing and analysis of these information. This affects all aspects of life, including health and medicine. The authors review the application areas of Big Data, and present examples from health and other areas. However, there are several preconditions of the effective use of the opportunities: proper infrastructure, well defined regulatory environment with particular emphasis on data protection and privacy. These issues and the current actions for solution are also presented.

  1. The Big Bang, Genesis, and Knocking on Heaven's Door

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2012-03-01

    Michael Shermer recently upped the ante in the big bang-Genesis controversy by citing Lisa Randall's provocative claim (Science 334, 762 (2011)) that ``it is inconceivable that God could continue to intervene without introducing a material trace of his actions.'' So does Randall's and Shermer's agreement that no such evidence exists disprove God's existence? Not in my view because my 1970s Science, Nature and ARNS publications, and my article in the 1982 AAAS Western Division's Symposium Proceedings, Evolution Confronts Creation, all contain validation of God's existence via discovery of His Fingerprints of Creation and falsification of the big bang and geological evolution. These results came to wide public/scientific attention in my testimony at the 1981 Arkansas creation/evolution trial. There ACLU witness G Brent Dalrymple from the USGS -- and 2005 Medal of Science recipient from President Bush -- admitted I had discovered a tiny mystery (primordial polonium radiohalos) in granite rocks that indicated their almost instant creation. As a follow-up in 1992 and 1995 he sent out SOS letters to the entire AGU membership that the polonium halo evidence for fiat creation still existed and that someone needed to urgently find a naturalistic explanation for them. Is the physics community guilty of a Watergate-type cover-up of this discovery of God's existence and falsification of the big bang? For the answer see www.halos.tv.

  2. Our World: The Rock Cycle

    NASA Image and Video Library

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  3. Paleoenvironmental conditions in a Travertine Complex deduced from rock magnetism

    NASA Astrophysics Data System (ADS)

    Reinders, Jan; Hambach, Ulrich

    We present a rock magnetic study on ca. 100 specimens from a 7.5 m travertine section (BMH) and a parallel 1.0 m profile (BMP) to evaluate vertical and lateral variations. Concentration dependent parameters and inter-parametric ratios point to varying redox conditions through time and space suggesting local paleoenvironmental rather than paleoclimatic control of the rock magnetic properties.

  4. 13. INTERIOR OF MILE ROCK TUNNEL, COMPLETED AND READY FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF MILE ROCK TUNNEL, COMPLETED AND READY FOR FINAL INSPECTION, AUGUST 1915. Department of Public Works, Map and Plan Room, photo #2512. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA

  5. 9. MILE ROCK TUNNEL DURING EXCAVATION OF OPEN CUT PORTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. MILE ROCK TUNNEL DURING EXCAVATION OF OPEN CUT PORTION IN 1915. DEPARTMENT OF PUBLIC WORKS, MAP AND PLAN ROOM, PHOTO #2513. - Mile Rock Tunnel, Under Forty-eighth Avenue from Cabrillo Street to San Francisco Bay at Point Lobos, San Francisco, San Francisco County, CA

  6. Neutron fluxes in test reactors

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  7. Modelling, inference and big data in biophysics.

    PubMed

    Ho, Joshua W K; Grant, Guy H

    2017-07-30

    In recognition of the increasing importance of big data in biophysics, a new session called 'Modelling, inference, big data' is incorporated into the IUPAB/EBSA Congress on 18 July 2017 at Edinburgh, UK.

  8. Pellet bed reactor for nuclear propelled vehicles: Part 1: Reactor technology

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.

    1991-01-01

    The pellet bed reactor (PBR) for nuclear propelled vehicles is briefly discussed. Much of the information is given in viewgraph form. Viewgraphs include information on the layout for a Mars mission using a PBR nuclear thermal rocket, the rocket reactor layout, the fuel pellet design, materials compatibility, fuel microspheres, microsphere coating, melting points in quasibinary systems, stress analysis of microspheres, safety features, and advantages of the PBR concept.

  9. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  10. Level 1 transient model for a molybdenum-99 producing aqueous homogeneous reactor and its applicability to the tracy reactor

    SciTech Connect

    Nygaard, E. T.; Williams, M. M. R.; Angelo, P. L.

    2012-07-01

    Babcock and Wilcox Technical Services Group (B and W) has identified aqueous homogeneous reactors (AHRs) as a technology well suited to produce the medical isotope molybdenum 99 (Mo-99). AHRs have never been specifically designed or built for this specialized purpose. However, AHRs have a proven history of being safe research reactors. In fact, in 1958, AHRs had 'a longer history of operation than any other type of research reactor using enriched fuel' and had 'experimentally demonstrated to be among the safest of all various type of research reactor now in use [1].' A 'Level 1' model representing B and W's proposed Medical Isotope Production System (MIPS) reactor has been developed. The Level 1 model couples a series of differential equations representing neutronics, temperature, and voiding. Neutronics are represented by point reactor kinetics while temperature and voiding terms are axially varying (one-dimensional). While this model was developed specifically for the MIPS reactor, its applicability to the Japanese TRACY reactor was assessed. The results from the Level 1 model were in good agreement with TRACY experimental data and found to be conservative over most of the time domains considered. The Level 1 model was used to study the MIPS reactor. An analysis showed the Level 1 model agreed well with a more complex computational model of the MIPS reactor (a FETCH model). Finally, a significant reactivity insertion was simulated with the Level 1 model to study the MIPS reactor's time-dependent response. (authors)

  11. Zapping Rocks on Mars

    ScienceCinema

    Wiens, Roger

    2016-07-12

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  12. Zapping Rocks on Mars

    SciTech Connect

    Wiens, Roger

    2016-05-16

    Better understanding Mars means better understanding its geology. That’s why, sitting atop NASA’s Curiosity rover, is ChemCam, an instrument built by Los Alamos National Laboratory that shoots lasers at Martian rocks and analyzes the data. After nearly 1,500 rock zaps, ChemCam has uncovered some surprising facts about the Red Planet, including the discovery of igneous rocks. Soon, a new Los Alamos-built instrument—the SuperCam—will ride aboard the Mars 2020 rover and bring with it enhanced capabilities to unlock new secrets about the planet.

  13. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  14. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  15. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  16. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  17. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  18. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  19. Chinchilla "big" and "little" gastrins.

    PubMed

    Shinomura, Y; Eng, J; Yalow, R S

    1987-02-27

    Gastrin heptadecapeptides (gastrins I and II which differ in the presence of sulfate on the tyrosine of the latter) have been purified and sequenced from several mammalian species including pig, dog, cat, sheep, cow, human and rat. A 34 amino acid precursor ("big" gastrin), generally accounting for only 5% of total gastrin immunoreactivity, has been purified and sequenced only from the pig, human, dog and goat. Recently we have demonstrated that guinea pig (GP) "little" gastrin is a hexadecapeptide due to a deletion of a glutamic acid in the region 6-9 from its NH2-terminus and that GP "big" gastrin is a 33 amino acid peptide. The chinchilla, like the GP, is a New World hystricomorph. This report describes the extraction and purification of "little" and "big" gastrins from 31 chinchilla antra. Chinchilla "little" gastrin is a hexadecapeptide with a sequence identical to that of the GP and its "big" gastrin is a 33 amino acid peptide with the following sequence: (See text)

  20. Big Opportunities in Small Science

    ERIC Educational Resources Information Center

    Dewey, T. Gregory

    2007-01-01

    A transformation is occurring that will have a major impact on how academic science is done and how scientists are trained. That transformation--driven by declining federal funds, as well as by the rising cost of technology and the need for costly, labor-intensive interdisciplinary approaches--is from small science to big science. It is…