Science.gov

Sample records for big sky carbon

  1. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  4. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  7. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  9. Big Sky Carbon Sequestration Partnership--Phase I

    SciTech Connect

    Susan M. Capalbo

    2006-01-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  10. Big Sky Carbon Sequestration Partnership--Phase I

    SciTech Connect

    Susan M. Capalbo

    2005-10-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  11. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  12. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  13. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  14. Big Sky and Greenhorn Elemental Comparison

    NASA Image and Video Library

    2015-12-17

    NASA's Curiosity Mars rover examined both the "Greenhorn" and "Big Sky" targets with the rover's Alpha Particle X-ray Spectrometer (APXS) instrument. Greenhorn is located within an altered fracture zone and has an elevated concentration of silica (about 60 percent by weight). Big Sky is the unaltered counterpart for comparison. The bar plot on the left shows scaled concentrations as analyzed by Curiosity's APXS. The bar plot on the right shows what the Big Sky composition would look like if silica (SiO2) and calcium-sulfate (both abumdant in Greenhorn) were added. The similarity in the resulting composition suggests that much of the chemistry of Greenhorn could be explained by the addition of silica. Ongoing research aims to distinguish between that possible explanation for silicon enrichment and an alternative of silicon being left behind when some other elements were removed by acid weathering. http://photojournal.jpl.nasa.gov/catalog/PIA20275

  15. Big Sky Telegraph: Telecommunications Guide to Community Action.

    ERIC Educational Resources Information Center

    Odasz, Frank B., Comp.

    This document contains a wide assortment of papers and promotional materials concerning the Big Sky Telegraph, a Montana-based telecommunications network serving rural economic development organizations. Funded by the US West Foundation and Western Montana College, Big Sky was created to stimulate grassroots innovation in rural education,…

  16. Big Sky and Greenhorn Drilling Area on Mount Sharp

    NASA Image and Video Library

    2015-12-17

    This view from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover covers an area in "Bridger Basin" that includes the locations where the rover drilled a target called "Big Sky" on the mission's Sol 1119 (Sept. 29, 2015) and a target called "Greenhorn" on Sol 1137 (Oct. 18, 2015). The scene combines portions of several observations taken from sols 1112 to 1126 (Sept. 22 to Oct. 6, 2015) while Curiosity was stationed at Big Sky drilling site. The Big Sky drill hole is visible in the lower part of the scene. The Greenhorn target, in a pale fracture zone near the center of the image, had not yet been drilled when the component images were taken. Researchers selected this pair of drilling sites to investigate the nature of silica enrichment in the fracture zones of the area. http://photojournal.jpl.nasa.gov/catalog/PIA20270

  17. Evolution of the Air Toxics under the Big Sky Program

    ERIC Educational Resources Information Center

    Marra, Nancy; Vanek, Diana; Hester, Carolyn; Holian, Andrij; Ward, Tony; Adams, Earle; Knuth, Randy

    2011-01-01

    As a yearlong exploration of air quality and its relation to respiratory health, the "Air Toxics Under the Big Sky" program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence…

  18. Evolution of the Air Toxics under the Big Sky Program

    ERIC Educational Resources Information Center

    Marra, Nancy; Vanek, Diana; Hester, Carolyn; Holian, Andrij; Ward, Tony; Adams, Earle; Knuth, Randy

    2011-01-01

    As a yearlong exploration of air quality and its relation to respiratory health, the "Air Toxics Under the Big Sky" program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence…

  19. Morning Water on the Big Round Rock in the Sky

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.

    2015-12-01

    There is a little bit of water on the Big Round Rock in the sky. The Rock turns slowly and so it has morning and day and night. The little bit of water sticks to the rocks on the Rock at night, when it is very cold and the water makes ice. When the Sun puts light on it, the water gets hot and goes up in the air. Really, the water is the air. The wind moves the water back the way it came, so the water goes to where the ground is cold and then it sticks to the very cold ground again. Then, the turning Rock slowly carries it back to the morning and it goes over and over like that. This keeps all of the Big Rock's water close to the morning, even though the Big Rock turns all the time. A box on the ground on the Big Rock that is three feet long on each side could catch enough water each month for one drink of water, but a box that is way big could catch a lot more water. We know that the water is there because we can find very little tiny rocks that hit the tiny water bits. Where there is more water, there are not so many of the little tiny rocks and where there is less water, there are more of the little tiny rocks.

  20. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc., Biosys... is a lack of current and accurate information concerning the securities of Biometrics...

  1. Curiosity Self-Portrait at Big Sky Drilling Site

    NASA Image and Video Library

    2015-10-13

    This self-portrait of NASA's Curiosity Mars rover shows the vehicle at the "Big Sky" site, where its drill collected the mission's fifth taste of Mount Sharp. The scene combines dozens of images taken during the 1,126th Martian day, or sol, of Curiosity's work during Mars (Oct. 6, 2015, PDT), by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover's robotic arm. The rock drilled at this site is sandstone in the Stimson geological unit inside Gale Crater. The location is on cross-bedded sandstone in which the cross bedding is more evident in views from when the rover was approaching the area, such as PIA19818. The view is centered toward the west-northwest. It does not include the rover's robotic arm, though the shadow of the arm is visible on the ground. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites "Rocknest" (PIA16468), "John Klein" (PIA16937) and "Windjana" (PIA18390). This portrait of the rover was designed to show the Chemistry and Camera (ChemCam) instrument atop the rover appearing level. This causes the horizon to appear to tilt toward the left, but in reality it is fairly flat. For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide. The drilled hole in the rock, appearing grey near the lower left corner of the image, is 0.63 inch (1.6 centimeters) in diameter. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http

  2. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  3. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  4. Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272

  5. Paddling the Big Sky: Reflections on place-based education and experience

    Treesearch

    Phil Mullins; Patrick T. Maher

    2007-01-01

    Paddling the Big Sky began as many expeditions do: out of past trips and in the stories, banter and daydreams of a group of friends. The journey, by canoe, departed from the foothills of the Rocky Mountains, stretched over 2,800 km (1,740 miles), crossed prairie, the width of the boreal forest, and then the “barren lands.” It included a 29-day university outdoor...

  6. Air Toxics under the Big Sky: A Real-World Investigation to Engage High School Science Students

    ERIC Educational Resources Information Center

    Adams, Earle; Smith, Garon; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Jones, David; Henthorn, Melissa; Striebel, Jim

    2008-01-01

    This paper describes a problem-based chemistry education model in which students perform scientific research on a local environmentally relevant problem. The project is a collaboration among The University of Montana and local high schools centered around Missoula, Montana. "Air Toxics under the Big Sky" involves high school students in collecting…

  7. Air Toxics under the Big Sky: A Real-World Investigation to Engage High School Science Students

    ERIC Educational Resources Information Center

    Adams, Earle; Smith, Garon; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Jones, David; Henthorn, Melissa; Striebel, Jim

    2008-01-01

    This paper describes a problem-based chemistry education model in which students perform scientific research on a local environmentally relevant problem. The project is a collaboration among The University of Montana and local high schools centered around Missoula, Montana. "Air Toxics under the Big Sky" involves high school students in collecting…

  8. The potential of clear-sky carbon dioxide satellite retrievals

    NASA Astrophysics Data System (ADS)

    Nelson, Robert R.; O'Dell, Christopher W.; Taylor, Thomas E.; Mandrake, Lukas; Smyth, Mike

    2016-04-01

    Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS) XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2) measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had errors 0-20 % larger than the full-physics retrieval over land and errors roughly 20-35 % larger over ocean, depending on filtration level. In general, the clear-sky retrieval had XCOThe potential of clear-sky carbon dioxide satellite retrievals

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C. W.; Taylor, T. E.; Mandrake, L.; Smyth, M.

    2015-12-01

    Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS) XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2) measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had nearly indistinguishable error characteristics over land, but roughly 30-60 % larger errors over ocean, depending on filtration level, compared to the full-physics retrieval. In general, the clear-sky retrieval had XCO2 root-mean-square (RMS) errors of

  9. Geochemistry and geohydrology of the West Decker and Big Sky coal-mining areas, southeastern Montana

    USGS Publications Warehouse

    Davis, R.E.

    1984-01-01

    In the West Decker Mine area, water levels west of the mine at post-mining equilibrium may be almost 12 feet higher than pre-mining levels. Dissolved-solids concentration in water from coal aquifers is about 1,400 milligrams per liter and from mine spoils is about 2,500 milligrams per liter. About 13 years will be required for ground water moving at an average velocity of 2 feet per day to flow from the spoils to the Tongue River Reservoir. The increase in dissolved-solids load to the reservoir due to mining will be less than 1 percent. In the Big Sky Mine area, water levels at post-mining equilibrium will closely resemble pre-mining levels. Dissolved-solids concentration in water from coal aquifers is about 2,700 milligrams per liter and from spoils is about 3,700 milligrams per liter. About 36 to 60 years will be required for ground water moving at an average velocity of 1.2 feet per day to flow from the spoils to Rosebud Creek. The average annual increase in dissolved-solids load to the creek due to mining will be about 2 percent, although a greater increase probably will occur during summer months when flow in the creek is low. (USGS)

  10. Laser hazard analysis for airborne AURA (Big Sky variant) Proteus platform.

    SciTech Connect

    Augustoni, Arnold L.

    2004-02-01

    A laser safety and hazard analysis was performed for the airborne AURA (Big Sky Laser Technology) lidar system based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances or ranges from the airborne platform. In order to protect personnel, who may be in the target area and may be subjected to exposures, it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength, calculate the Nominal Ocular Hazard Distance (NOHD), and determine the maximum 'eye-safe' dwell times for various operational altitudes and conditions. It was also necessary to calculate the appropriate minimum Optical Density (ODmin) of the laser safety eyewear used by authorized personnel who may receive hazardous exposures during ground base operations of the airborne AURA laser system (system alignment and calibration).

  11. It's Not a Big Sky After All: Justification for a Close Approach Prediction and Risk Assessment Process

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Frigm, Ryan; McKinley, David

    2009-01-01

    There is often skepticism about the need for Conjunction Assessment from mission operators that invest in the "big sky theory", which states that the likelihood of a collision is so small that it can be neglected. On 10 February 2009, the collision between Iridium 3; and Cosmos 2251 provided an indication that this theory is invalid and that a CA process should be considered for all missions. This paper presents statistics of the effect of the Iridium/Cosmos collision on NASA's Earth Science Constellation as well as results of analyses which characterize the debris environment for NASA's robotic missions.

  12. Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Green, Paul

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  13. INNOCENT BYSTANDERS: CARBON STARS FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Green, Paul

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, {approx}5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while {approx}7% are giants. The dCs likely span absolute magnitudes M{sub i} from {approx}6.5 to 10.5. 'G-type' dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C{sub 2} bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these 'smoking guns' for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be 'N'-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at {approx}40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  14. The Big Sky Model: A Regional Collaboration for Participatory Research on Environmental Health in the Rural West.

    PubMed

    Ward, Tony J; Vanek, Diana; Marra, Nancy; Holian, Andrij; Adams, Earle; Jones, David; Knuth, Randy

    2008-01-01

    The case for inquiry-based, hands-on, meaningful science education continues to gain credence as an effective and appropriate pedagogical approach (Karukstis 2005; NSF 2000). An innovative community-based framework for science learning, hereinafter referred to as the Big Sky Model, successfully addresses these educational aims, guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools.

  15. The Big Sky Model: A Regional Collaboration for Participatory Research on Environmental Health in the Rural West

    PubMed Central

    Ward, Tony J.; Vanek, Diana; Marra, Nancy; Holian, Andrij; Adams, Earle; Jones, David; Knuth, Randy

    2010-01-01

    The case for inquiry-based, hands-on, meaningful science education continues to gain credence as an effective and appropriate pedagogical approach (Karukstis 2005; NSF 2000). An innovative community-based framework for science learning, hereinafter referred to as the Big Sky Model, successfully addresses these educational aims, guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools. PMID:20428505

  16. Caring, Sharing in the Big Sky--Writer, Photographer Explore Five of Montana's Tribal Colleges

    ERIC Educational Resources Information Center

    Worley, Jerry

    2010-01-01

    The author travels across Montana with a former student and photographer, Anders Andersson, and says that visiting tribal colleges is the best way to really understand them. In this article, he writes about five tribal colleges in Montana: (1) Little Big Horn College (LBHC); (2) Chief Dull Knife College (CDKC); (3) Stone Child College (SCC); (4)…

  17. SkyServer Voyages Website - Using Big Data to Explore Astronomy Concepts in Formal Education Settings

    NASA Astrophysics Data System (ADS)

    Meredith, Kate K.; Masters, Karen; Raddick, Jordan; Lundgren, Britt

    2015-08-01

    The Sloan Digital Sky Survey (SDSS) web interface “SkyServer” has long included online educational materials designed to help students and the public discover the fundamentals of modern astronomy using real observations from the SDSS database. The newly launched SDSS Voyages website updates and expands these activities to reflect new data from subsequent generations of the survey, advances in web technology, and evolving practices in science education. Voyages provides access to quality astronomy, astrophysics, and engineering materials to educators seeking an inquiry approach to fundamental concepts. During this session we will provide an overview of the design and development of Skyserver Voyages and discuss ways to apply this resource at K-12 and university levels.

  18. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    ERIC Educational Resources Information Center

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  19. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    ERIC Educational Resources Information Center

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  1. Triton's Summer Sky of Methane and Carbon Monoxide

    NASA Astrophysics Data System (ADS)

    2010-04-01

    According to the first ever infrared analysis of the atmosphere of Neptune's moon Triton, summer is in full swing in its southern hemisphere. The European observing team used ESO's Very Large Telescope and discovered carbon monoxide and made the first ground-based detection of methane in Triton's thin atmosphere. These observations revealed that the thin atmosphere varies seasonally, thickening when warmed. "We have found real evidence that the Sun still makes its presence felt on Triton, even from so far away. This icy moon actually has seasons just as we do on Earth, but they change far more slowly," says Emmanuel Lellouch, the lead author of the paper reporting these results in Astronomy & Astrophysics. On Triton, where the average surface temperature is about minus 235 degrees Celsius, it is currently summer in the southern hemisphere and winter in the northern. As Triton's southern hemisphere warms up, a thin layer of frozen nitrogen, methane, and carbon monoxide on Triton's surface sublimates into gas, thickening the icy atmosphere as the season progresses during Neptune's 165-year orbit around the Sun. A season on Triton lasts a little over 40 years, and Triton passed the southern summer solstice in 2000. Based on the amount of gas measured, Lellouch and his colleagues estimate that Triton's atmospheric pressure may have risen by a factor of four compared to the measurements made by Voyager 2 in 1989, when it was still spring on the giant moon. The atmospheric pressure on Triton is now between 40 and 65 microbars - 20 000 times less than on Earth. Carbon monoxide was known to be present as ice on the surface, but Lellouch and his team discovered that Triton's upper surface layer is enriched with carbon monoxide ice by about a factor of ten compared to the deeper layers, and that it is this upper "film" that feeds the atmosphere. While the majority of Triton's atmosphere is nitrogen (much like on Earth), the methane in the atmosphere, first detected by

  2. ARE THERE ECHOES FROM THE PRE-BIG-BANG UNIVERSE? A SEARCH FOR LOW-VARIANCE CIRCLES IN THE COSMIC MICROWAVE BACKGROUND SKY

    SciTech Connect

    Hajian, Amir

    2011-10-20

    In a recent analysis of Wilkinson Microwave Anisotropy Probe (WMAP) seven-year temperature maps, Gurzadyan and Penrose claim to find concentric circular patterns in the sky with anomalously low variances. These circles are presented as observational evidence for violent processes in a universe preceding our big bang as predicted by Penrose's Conformal Cyclic Cosmology. We reassess the statistical significance of the detection of the claimed concentric low-variance circles by comparing the WMAP data with Monte Carlo simulations of the cosmic microwave background (CMB) sky plus realistic modeling of WMAP's anisotropic noise. We find no anomaly in the variances compared with the {Lambda}CDM cosmological model. The observed variances in the data are consistent with a Gaussian CMB sky as predicted by the inflationary cosmology model at better than 3{sigma}.

  3. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    USGS Publications Warehouse

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  4. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine Areas, Southeastern Montana. Water resources investigation report

    SciTech Connect

    Clark, D.W.

    1995-09-01

    This report describes the geochemical processes that occur in ground water as a result of surface mining of coal at the Big Sky and West Decker Mine areas in southeastern Montana. The report is based on data obtained during 1988 through 1990 from intensive sampling and analysis of rock material and water at several points along flow paths extending from coal aquifers upgradient of each mine, through spoils aquifers to downgradient coal or other aquifers. Data requirements included mineralogy, elemental chemistry, and ion-exchange capabilities obtained from solid-phase samples collected by core drilling during monitoring-well installation. Other data include ground-water samples analyzed for major and minor chemical constituents, isotopic composition, and dissolved gases. The data were then analyzed with geochemical models.

  5. Investigation of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2016-09-01

    The goal of this paper is to present the optical variability study of the comparatively faint carbon (C) stars which have been discovered by searching the First Byurakan Survey (FBS) low-resolution (lr) spectral plates at high Galactic latitudes using a recent wide-area variability databases. The light curves from the Catalina Sky Survey (CSS) and Northern Sky Variability Survey (NSVS) databases were exploited to study the variability nature of them. From the 120 detected objects 54 are N-type Asymptotic Giant Branch (AGB) C stars. 9 stars belongs to the group of Mira-type, 43 are Semi-Regular (SR), and 2 stars are Irregular (Irr) - type variables. The variability types of 27 objects has been established for the first time. From 66 objects showing early-type spectra 57 are CH-type stars, 4 objects are R-type stars and 5 are dC candidates. K-band absolute magnitudes, distances, and height from the Galactic plane were estimated for all of them. We aim to better understand the nature of the selected C stars through spectroscopy, 2MASS photometric colours, and variability data.

  6. Extinction due to amorphous carbon grains in red quasars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Czerny, B.; Li, J.; Loska, Z.; Szczerba, R.

    2004-03-01

    We construct a quasar extinction curve based on the blue and red composite quasar spectra of Richards et al. prepared from the Sloan Digital Sky Survey. This extinction curve does not show any traces of the 2200-Å feature characteristic of the interstellar medium, and this indicates that graphite grains are likely to be absent close to quasar nuclei. The extinction is best modelled by an AC sample of amorphous carbon grains, assuming a standard distribution of grain sizes (p= 3.5) but slightly larger minimum grain size (amin= 0.016 μm) and lower maximum grain size (amin= 0.12 μm) than the respective canonical values for the interstellar medium. The dust composition is thus similar to that of the dust in carbon reach asymptotic giant branch stars. Since graphite grains form from amorphous carbon exposed to strong ultraviolet irradiation, the results indicate that the dust forms either surprisingly far from the active nucleus or in a wind that leaves the nucleus quickly enough to avoid crystallization into graphite.

  7. Quantifying thermal constraints on carbon and water fluxes in a mixed-conifer sky island ecosystem

    NASA Astrophysics Data System (ADS)

    Braun, Z.; Minor, R. L.; Potts, D. L.; Barron-Gafford, G. A.

    2012-12-01

    Western North American forests represent a potential, yet uncertain, sink for atmospheric carbon. Revealing how predicted climatic conditions of warmer temperatures and longer inter-storm periods of moisture stress might influence the carbon status of these forests requires a fuller understanding of plant functional responses to abiotic stress. While data related to snow dominated montane ecosystems has become more readily available to parameterize ecosystem function models, there is a paucity of data available for Madrean sky island mixed-conifer forests, which receive about one third of their precipitation from the North American Monsoon. Thus, we quantified ecophysiological responses to moisture and temperature stress in a Madrean mixed-conifer forest near Tucson, Arizona, within the footprint of the Mt. Bigelow Eddy Covariance Tower. In measuring a series of key parameters indicative of carbon and water fluxes within the dominant species across pre-monsoon and monsoon conditions, we were able to develop a broader understanding of what abiotic drivers are most restrictive to plant performance in this ecosystem. Within Pinus ponderosa (Ponderosa Pine), Pseudotsuga menziesii (Douglas Fir), and Pinus strobiformis (Southwestern White Pine) we quantified: (i) the optimal temperature (Topt) for maximum photosynthesis (Amax), (ii) the range of temperatures over which photosynthesis was at least 50% of Amax (Ω50), and (iii) each conifer's water use efficiency (WUE) to relate to the balance between carbon uptake and water loss in this high elevation semiarid ecosystem. Our findings support the prediction that photosynthesis decreases under high temperatures (>30°C) among the three species we measured, regardless of soil moisture status. However, monsoon moisture reduced sensitivity to temperature extremes and fluctuations (Ω50), which substantially magnified total photosynthetic productivity. In particular, wet conditions enhanced Amax the most dramatically for P

  8. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    NASA Astrophysics Data System (ADS)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  9. Results of experiments related to contact of mine-spoils water with coal, West Decker and Big Sky Mines, southeastern Montana

    USGS Publications Warehouse

    Davis, R.E.; Dodge, K.A.

    1986-01-01

    Batch-mixing experiments using spoils water and coal from the West Decker and Big Sky Mines were conducted to determine possible chemical changes in water moving from coal-mine spoils through a coal aquifer. The spoils water was combined with air-dried and oven-dried chunks of coal and air-dried and oven-dried crushed coal at a 1:1 weight ratio, mixed for 2 hr, and separated after a total contact time of 24 hr. The dissolved-solids concentration in water used in the experiments decreased an average 210 mg/liter (5-10%). Other chemical changes included general decreases in the concentrations of magnesium, potassium, and bicarbonate, and general increases in the concentrations of barium and boron. The magnitude of the changes increased as the surface area of the coal increased. The quantity of extractable cations and exchangeable cations on the post-mixing coal was larger than on the pre-mixing coal. Equilibrium and mass-transfer relations indicate that adsorption reactions or ion-exchange and precipitation reactions, or both, probably are the major reactions responsible for the chemical changes observed in the experiments. (Authors ' abstract)

  10. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students’ Science Skills and Interest

    PubMed Central

    Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375

  11. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    PubMed

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  12. Extended ocular hazard distances associated with intrabeam aided viewing of the Sandia remote sensing system, airborne aura laser (Big Sky Variant).

    SciTech Connect

    Augustoni, Arnold L.

    2004-08-01

    A laser hazard analysis to determine the Extended Ocular Hazard Distances associated with a possible intrabeam aided viewing of the Sandia Remote Sensing System (SRSS) airborne AURA laser (Big Sky Laser Technology) was performed based on the 2000 version of the American National Standard Institute's (ANSI) Standard Z136.1, for the Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for the Safe Use of Lasers Outdoors. The AURA lidar system is installed in the instrument pod of a Proteus airframe and is used to perform laser interaction experiments and tests at various national test sites. The targets are located at various distances (ranges) from the airborne platform. Nominal Ocular Hazard Distance (NOHD) and maximum ''eye-safe'' dwell times for various operational altitudes associated with unaided intrabeam exposure of ground personnel were determined and presented in a previous SAND report. Although the target areas are controlled and the use of viewing aids are prohibited there is the possibility of the unauthorized use of viewing aids such as binoculars. This aided viewing hazard analysis is supplemental to the previous SAND report for the laser hazard analysis of the airborne AURA.

  13. A big-microsite framework for soil carbon modeling.

    PubMed

    Davidson, Eric A; Savage, Kathleen E; Finzi, Adrien C

    2014-12-01

    Soil carbon cycling processes potentially play a large role in biotic feedbacks to climate change, but little agreement exists at present on what the core of numerical soil C cycling models should look like. In contrast, most canopy models of photosynthesis and leaf gas exchange share a common 'Farquhaur-model' core structure. Here, we explore why a similar core model structure for heterotrophic soil respiration remains elusive and how a pathway to that goal might be envisioned. The spatial and temporal variation in soil microsite conditions greatly complicates modeling efforts, but we believe it is possible to develop a tractable number of parameterizable equations that are organized into a coherent, modular, numerical model structure. First, we show parallels in insights gleaned from linking Arrhenius and Michaelis-Menten kinetics for both photosynthesis and soil respiration. Additional equations and layers of complexity are then added to simulate substrate supply. For soils, model modules that simulate carbon stabilization processes will be key to estimating the fraction of soil C that is accessible to enzymes. Potential modules for dynamic photosynthate input, wetting-event inputs, freeze-thaw impacts on substrate diffusion, aggregate turnover, soluble-C sorption, gas transport, methane respiration, and microbial dynamics are described for conceptually and numerically linking our understanding of fast-response processes of soil gas exchange with longer-term dynamics of soil carbon and nitrogen stocks. © 2014 John Wiley & Sons Ltd.

  14. Investigation of Variability of Faint Galactic Early-Type Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.; Kostandyan, G. R.; Paronyan, G. M.

    2016-06-01

    In this poster, we discuss the nature of 66 faint carbon (C) stars which have been discovered by scrutinizing the plates of the First Byurakan Survey (FBS). These plates display low-resolution spectra of objects located at high Galactic latitudes and have a limiting magnitude of about V=16. Our sample of 66 confirmed spectroscopically to be C stars. These 66 objects are those which show early-type spectra. To better characterize these objects, medium-resolution CCD spectra were obtained and are exploited for them all, together with consideration of their 2MASS near-infrared (NIR) colors and their optical variability. We derive effective temperatures from photometry. Finally, the optical variability of our objects are studied by using the data of the Catalina Sky Survey (CSS). It is found that the vast majority does not display variability. However, for some of them, the phased light curve may indicate the presence of a secondary component.

  15. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  16. Carbon monoxide column retrieval for clear-sky and cloudy atmospheres: a full-mission data set from SCIAMACHY 2.3 µm reflectance measurements

    NASA Astrophysics Data System (ADS)

    Borsdorff, Tobias; aan de Brugh, Joost; Hu, Haili; Nédélec, Philippe; Aben, Ilse; Landgraf, Jochen

    2017-05-01

    We discuss the retrieval of carbon monoxide (CO) vertical column densities from clear-sky and cloud contaminated 2311-2338 nm reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from January 2003 until the end of the mission in April 2012. These data were processed with the Shortwave Infrared CO Retrieval algorithm (SICOR) that we developed for the operational data processing of the Tropospheric Monitoring Instrument (TROPOMI) that will be launched on ESA's Sentinel-5 Precursor (S5P) mission. This study complements previous work that was limited to clear-sky observations over land. Over the oceans, CO is estimated from cloudy-sky measurements only, which is an important addition to the SCIAMACHY clear-sky CO data set as shown by NDACC and TCCON measurements at coastal sites. For Ny-Ålesund, Lauder, Mauna Loa and Reunion, a validation of SCIAMACHY clear-sky retrievals is not meaningful because of the high retrieval noise and the few collocations at these sites. The situation improves significantly when considering cloudy-sky observations, where we find a low mean bias b = ±6. 0 ppb and a strong correlation between the validation and the SCIAMACHY results with a mean Pearson correlation coefficient r = 0. 7. Also for land observations, cloudy-sky CO retrievals present an interesting complement to the clear-sky data set. For example, at the cities Tehran and Beijing the agreement of SCIAMACHY clear-sky CO observations with MOZAIC/IAGOS airborne measurements is poor with a mean bias of b = 171. 2 ppb and 57.9 ppb because of local CO pollution, which cannot be captured by SCIAMACHY. For cloudy-sky retrievals, the validation improves significantly. Here the retrieved column is mainly sensitive to CO above the cloud and so not affected by the strong local surface emissions. Adjusting the MOZAIC/IAGOS measurements to the

  17. Infra-Red Characteristics of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2017-07-01

    Infra-Red (IR) astronomical databases, namely, IRAS, 2MASS, WISE, and Spitzer, are used to analyze photometric data of 126 carbon (C) stars whose spectra are visible in the First Byurakan Survey (FBS) (Markarian et al. 1989) low-resolution (lr) spectral plates. In this work several IR color-color diagrams are studied. Early and late-type C stars are separated in the JHK Near-Infra-Red (NIR) color-color plots, as well as in the WISE W3-W4 versus W1-W2 diagram. Late N-type Asymptotic Giant Branch (AGB) stars are redder in W1-W2, while early-types (CH and R giants) are redder in W3-W4 as expected. Objects with W2-W3 > 1.0m show double-peaked spectral energy distribution (SED), indicating the existence of the circumstellar envelopes around them. 26 N-type stars have IRAS Point Source Catalog (PSC) associations. The reddest object among the targets is N-type C star FBS 2213+421, which belong to the group of the cold post-AGB R Coronae Borealis (R CrB) variables (Rossi et al. 2016).

  18. Entire Sky

    NASA Image and Video Library

    1999-12-01

    Aitoff projection of the three-color composite JHKs source count map of the entire sky, based on 95,851,173 stars with Ks 13.5. What appears most prominently are the Galactic plane and the Galactic bulge.

  19. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the

  20. Sky cover

    NASA Astrophysics Data System (ADS)

    Gerth, Jordan J.

    Of all of the standard meteorological parameters collected and observed daily, sky cover is not only one of the most complex, but the one that is fairly ambiguously defined and difficult to quantify. Despite that, the implications of how cloud fraction and sky cover are understood not only impact daily weather forecasts, but also present challenges to assessing the state of the earth's climate system. Part of the reason for this is the lack of observational methods for verifying the skill of clouds represented and parameterized in numerical models. While human observers record sky cover as part of routine duties, the spatial coverage of such observations in the United States is relatively sparse. There is greater spatial coverage of automated observations, and essentially complete coverage from geostationary weather satellites that observe the Americas. A good analysis of sky cover reconciles differences between manual observations, automated observations, and satellite observations, through an algorithm that accounts for the strengths and weaknesses of each dataset. This work describes the decision structure for trusting and weighting these similar observations. Some of the issues addressed include: human and instrument error resulting from approximations and estimations, a deficiency in high cloud detectability using surface-based ceilometers, poorly resolved low cloud using infrared channels on space-based radiometers during overnight hours, and decreased confidence in satellite-detected cloud during stray light periods. Using the blended sky cover analysis as the best representation of cloudiness, it is possible to compare the analysis to numerical model fields in order to assess the performance of the model and the parameterizations therein, as well as confirm or uncover additional relationships between sky cover and pertinent fields using an optimization methodology. The optimizer minimizes an affine expression of adjusted fields to the "truth" sky cover

  1. Fading Skies

    ERIC Educational Resources Information Center

    Sio, Betsy Menson

    2009-01-01

    A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…

  2. Fading Skies

    ERIC Educational Resources Information Center

    Sio, Betsy Menson

    2009-01-01

    A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…

  3. Methane evasion and oxidation in the Big Cypress National Preserve—a low relief carbonate wetland

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Bianchi, T. S.; Cohen, M. J.; Martin, J. B.; Quintero, C.; Brown, A.; Osborne, T.; Sawakuchi, H. O.

    2016-12-01

    The Big Cypress National Preserve is a low relief carbonate wetland characterized by unique basin patterning known as "cypress domes." Here we examine the concentration and stable isotopic composition of methane in pore waters, surface waters, and bubbles from the sediment across horizontal gradients in four domes during three sampling campaigns. The proportion of methane oxidized in surface waters was estimated based on isotopic differences between surface water and pore waters/bubbles. Rates of methane evasion from surface waters, soils, and cypress knees to the atmosphere were also measured. Surface water CH4 concentrations ranged from 170 to 4,533 ppm with the highest levels generally being observed during wet periods. Pore water CH4 concentrations ranged from 748 to 75,213 ppm. The concentration of methane in bubbles ranged from 6.5 to 71%. The stable isotopic composition of CH4 ranged from -69.2 to -43.8‰ for all samples and was generally more enriched in surface waters compared to bubbles and porewaters, particularly in the two domes that were persistently inundated throughout the year. Based on these isotopic values, the average percentage of surface water CH4 that was oxidized was 37 ± 16% (maximum of 67%) and 19 ± 4% (maximum of 47%) in the two domes that are persistently inundated versus the two domes that are not inundated during the dry season, respectively. The average rate of CH4 evasion was 3.6 ± 1.6 mmol m-2 d-1 via diffusion, 7.6 ± 4.7 mmol m-2 d-1 via ebullition, 10.9 ± 11.4 mmol m-2 d-1­ from soil surfaces, and 34.3 ± 27.4 mmol m-2 d-1 from cypress knees. These results indicate that CH4 is produced in great quantities in inundated sediments, particularly in the center of the cypress domes. Diffusive fluxes from surface waters are suppressed by microbial oxidation in the water column, whereas ebullition from sediments and evasion through cypress knees, and likely other vascular vegetation, are the primary pathways for CH4 outgassing.

  4. Indians, Coal, and the Big Sky

    ERIC Educational Resources Information Center

    Harris, Fred; Harris, LaDonna

    1977-01-01

    American government policy has always encouraged non-Indian control and exploitation of American Indian land and other resources. Reservation mineral resources are extracted in a harmful rush by outside corporations. The Northern Cheyennes have set out to change this by trying to break the coal leases and permits which the government encouraged…

  5. Indians, Coal, and the Big Sky

    ERIC Educational Resources Information Center

    Harris, Fred; Harris, LaDonna

    1977-01-01

    American government policy has always encouraged non-Indian control and exploitation of American Indian land and other resources. Reservation mineral resources are extracted in a harmful rush by outside corporations. The Northern Cheyennes have set out to change this by trying to break the coal leases and permits which the government encouraged…

  6. Big Data: Big Confusion? Big Challenges?

    DTIC Science & Technology

    2015-05-01

    12th Annual Acquisition Research Symposium 12th Annual Acquisition Research Symposium Big Data : Big Confusion? Big Challenges? Mary Maureen... Data : Big Confusion? Big Challenges? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...Acquisition Research Symposium • ~!& UNC CHARlD1TE 90% of the data in the world today was created in the last two years Big Data growth from

  7. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-02-29

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively.

  8. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104

  9. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-02-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively.

  10. Explorers of the Southern Sky

    NASA Astrophysics Data System (ADS)

    Haynes, Raymond; Haynes, Roslynn D.; Malin, David; McGee, Richard

    2010-08-01

    Preface; Acknowledgements; 1. Dreaming the stars; 2. Sailing south for a new sky; 3. Astronomy in Sydney town; 4. The struggle for independence; 5. A bid for fame; 6. For love of the subject; 7. Astronomy on a national basis; 8. From swords to ploughshares; 9. Radio astronomy and the big telescopes; 10. Entrepreneurs in astronomy; 11. The advantage of latitude; 12. The high-energy frontier; 13. Diversity through innovation; 14. Optical astronomy goes high tech; 15. A telescope as wide as a continent; Glossary of abbreviations; Glossary of scientific and technical words; Bibliography; Index of names and dates; Subject index.

  11. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Treesearch

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  12. Carbon Isotopes in Pinus elliotti from Big Pine Key, Florida: Indicators of Seasonal Precipitation, ENSO and Disturbance Events

    NASA Astrophysics Data System (ADS)

    Rebenack, C.; Willoughby, H. E.; Anderson, W. T.; Cherubini, P.

    2013-12-01

    , and disturbance events. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations. The work presented here is the result of a carbon-isotope study of four slash pine trees from Big Pine Key, Florida. The δ13C data show seasonal stomatal activity in the trees that can be linked to regional precipitation and, to a larger extent, to the ENSO cycles. In addition, there are several anomalies in the carbon isotope record that may indicate the timing of disturbance events.

  13. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  14. Big Society, Big Deal?

    ERIC Educational Resources Information Center

    Thomson, Alastair

    2011-01-01

    Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…

  15. Microwave Sky image from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html

  16. Microwave Sky image from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html

  17. Bjerknes Lecture: Anticipating the Big Impacts of Anthropogenic Carbon Dioxide Increases

    NASA Astrophysics Data System (ADS)

    Overpeck, J.

    2005-12-01

    The reality of human-caused global warming is no longer a subject of much serious scientific debate, but many critical details remain to be worked out in what has come to define a whole generation of geophysical careers. We could be called the "Keeling Generation" - those who came to science in the shadow of Keeling curve of atmospheric carbon dioxide concentrations rising steadily and foreshadowing large potential change for the Earth System. To many, the call to help figure out this change has been a prime career motivation. We owe much to the visionaries such as David Keeling, for they build the foundation on which we build. Three decades after the start of the Keeling curve, we know that atmospheric carbon dioxide levels are now unprecedented in nearly a million years, and that global warmth could be unprecedented to a similar degree - if it is not now, it could be soon. To many in society, this is enough to warrant action, but to many others the response is more of a "so what?" Society has many technological tools at its disposal, and air conditioning is one that many of us (at least in Arizona) have come to depend on. So, why worry about increasing temperatures? Rising temperatures can, and likely will, have many impacts that will cause society to incur costs (both market and non-market). Many of the possible costs will be incurred by current generations, but paid for by future generations. Perhaps the biggest one, in terms of economic costs, cultural impacts and possibly lives, will be global sea level rise. Sea level could rise up to a meter in this century, and in doing so put entire countries underwater. However, these changes will pale compared to the post-2100 sea level rise that 21st century generations could commit future generations to. Paleoclimatic constraints indicate that warmth by the end of this century could be enough to melt large portions of both the Greenland and Antarctic Ice Sheets, with resulting sea level rise of 4-7m, and at rates that

  18. Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas

    USGS Publications Warehouse

    Qi, L.; Carr, T.R.

    2006-01-01

    In the Hugoton Embayment of southwestern Kansas, St. Louis Limestone reservoirs have relatively low recovery efficiencies, attributed to the heterogeneous nature of the oolitic deposits. This study establishes quantitative relationships between digital well logs and core description data, and applies these relationships in a probabilistic sense to predict lithofacies in 90 uncored wells across the Big Bow and Sand Arroyo Creek fields. In 10 wells, a single hidden-layer neural network based on digital well logs and core described lithofacies of the limestone depositional texture was used to train and establish a non-linear relationship between lithofacies assignments from detailed core descriptions and selected log curves. Neural network models were optimized by selecting six predictor variables and automated cross-validation with neural network parameters and then used to predict lithofacies on the whole data set of the 2023 half-foot intervals from the 10 cored wells with the selected network size of 35 and a damping parameter of 0.01. Predicted lithofacies results compared to actual lithofacies displays absolute accuracies of 70.37-90.82%. Incorporating adjoining lithofacies, within-one lithofacies improves accuracy slightly (93.72%). Digital logs from uncored wells were batch processed to predict lithofacies and probabilities related to each lithofacies at half-foot resolution corresponding to log units. The results were used to construct interpolated cross-sections and useful depositional patterns of St. Louis lithofacies were illustrated, e.g., the concentration of oolitic deposits (including lithofacies 5 and 6) along local highs and the relative dominance of quartz-rich carbonate grainstone (lithofacies 1) in the zones A and B of the St. Louis Limestone. Neural network techniques are applicable to other complex reservoirs, in which facies geometry and distribution are the key factors controlling heterogeneity and distribution of rock properties. Future work

  19. Sky subtraction for LAMOST

    NASA Astrophysics Data System (ADS)

    Bai, Zhong-Rui; Zhang, Hao-Tong; Yuan, Hai-Long; Li, Guang-Wei; Chen, Jian-Jun; Lei, Ya-Juan; Yang, Hui-Qin; Dong, Yi-Qiao; Wang, Gang; Zhao, Yong-Heng

    2017-09-01

    Sky subtraction is a key technique in data reduction of multi-fiber spectra. Knowledge of characteristics related to the instrument is necessary to determine the method adopted in sky subtraction. In this study, we describe the sky subtraction method designed for the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey. The method has been integrated into the LAMOST 2D Pipeline v2.6 and applied to data from LAMOST DR3 and later. For LAMOST, calibration using sky emission lines is used to alleviate the position-dependent (and thus time-dependent) ∼ 4 % fiber throughput uncertainty and small wavelength instability (0.1 Å) during observation. Sky subtraction using principal component analysis (PCA) further reduces 25% of the sky line residual from OH lines in the red part of LAMOST spectra after the master sky spectrum, which is derived from a B-spline fit of 20 sky fibers in each spectrograph. Using this approach, values are adjusted by a sky emission line and subtracted from each fiber. Further analysis shows that our wavelength calibration accuracy is about 4.5 km s‑1, and the averages of residuals after sky subtraction are about 3% for sky emission lines and 3% for the continuum region. The relative sky subtraction residuals vary with moonlight background brightness, and can reach as low as 1.5% for regions that have sky emission lines during a dark night. Tests on F stars with both similar sky emission line strength and similar object continuum intensity show that the sky emission line residual of LAMOST is smaller than that of the SDSS survey.

  20. Seasonality and Disturbance Events in the Carbon Isotope Record of Pinus elliottii Tree Rings from Big Pine Key, Florida

    NASA Astrophysics Data System (ADS)

    Rebenack, C.; Anderson, W. T.; Cherubini, P.

    2012-12-01

    , and disturbance events, such as tropical cyclone impacts. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations. The work presented here is the result of a carbon-isotope study of four slash pine trees located across a freshwater gradient on Big Pine Key, Florida. A site chronology has been developed by cross-dating the δ13C records for each of the trees. The tree located on the distal edge of the freshwater gradient shows an overall enriched isotopic signature over time compared to the trees growing over a deeper part of the local freshwater lens, indicating that these trees are sensitive to water stress. In addition, the carbon isotope data show seasonal stomatal activity in the trees and indicate the timing of two disturbance events.

  1. Carbon Isotopes in Pinus elliotti cellulose from Big Pine Key, Florida: Indicators of Seasonal Precipitation, ENSO and Disturbance Events.

    NASA Astrophysics Data System (ADS)

    Rebenack, C.; Willoughby, H. E.; Anderson, W. T., Jr.; Cherubini, P.

    2014-12-01

    Long-term, high-resolution paleoclimate data has never been more important as a means of putting global climate change in context. The inherent complexities of natural climate variability require a very long paleoproxy record that spans many cycles of overlapping multi-scale climate oscillations, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-Southern Oscillation (ENSO), in order to distinguish the true effects of climate change. The tropical region has important linkages to global climate regulation and its annual stability makes it highly sensitive to climate change. It is predicted that tropical ecosystems will experience greater climate-related stress than those located at the poles. Yet, this region has an underrepresentation of high-resolution terrestrial paleoclimate records, such as those derived from the tree ring archives. South Florida, like many areas of the subtropics, has few tree species that are suitable for dendrochronological studies due to non-visible or seasonally inconsistent ring production. This study examines the potential of Pinus elliottii trees from Big Pine Key as a high-resolution terrestrial paleoclimate proxy for South Florida. The trees were difficult to cross-date using standard dendrochronology techniques. Instead, a chronology extending from 1927 to 2005 was developed by cross-dating patterns in the δ13C records. There is a strong, but complex, correlation between δ13C, ENSO and the AMO. The δ13C record trends with ENSO during the cool phase of the AMO, but there is an inverse relationship between δ13C and ENSO during the warm phases. The transition in the relationship between δ13C and ENSO occurs about 5 years before the AMO phase shift. In addition, preliminary analysis shows that about 45% of the variance in the carbon isotope chronology is related to precipitation and the ENSO signal is captured through the timing of that precipitation. During El Niño years, there is an increase in dry season

  2. Sky monitoring with LOBSTER

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Tichy, V.

    2014-12-01

    The X--ray sky monitoring represents valuable energy spectral extension to optical sky monitoring. Lobster--Eye all--sky monitors are able to provide relatively high sensitivity and good time resolution in the soft X--ray energy range up to 10 keV. The fine time resolution can be used to alert optical robotic telescopes for follow--up and multispectral analyzes in the visible light.

  3. Educating for the Preservation of Dark Skies

    NASA Astrophysics Data System (ADS)

    Preston, Sandra Lee; Cianciolo, Frank; Wetzel, Marc; Finkelstein, Keely; Wren, William; Nance, Craig

    2015-08-01

    The stars at night really are big and bright deep in the heart of Texas at the McDonald Observatory near Fort Davis, Texas. Each year 80,000 visitors from all over the world make the pilgrimage to the Observatory to attend one of the three-times-a-week star parties. Many experience, for the first time, the humbling, splendor of a truly dark night sky. Over the last several years, the Observatory has experienced dramatic increases in visitation demonstrating the public’s appetite for science education, in general, and interest in the night sky, in particular. This increasing interest in astronomy is, ironically, occurring at a time when most of humanity’s skies are becoming increasingly light-polluted frustrating this natural interest. Dark skies and knowledgeable education and outreach staff are an important resource in maintaining the public’s interest in astronomy, support for astronomical research, and local tourism.This year Observatory educators were inspired by the observance of the International Year of Light to promote healthy outdoor lighting through its popular Astronomy Day distance learning program. This program reaches tens of thousands of K-12 students in Texas and other states with a message of how they can take action to preserve dark skies. As well, more than a thousand Boy Scouts visiting during the summer months receive a special program, which includes activities focusing on good lighting practices, thereby earning them credits toward an astronomy badge.The Observatory also offers a half-a-dozen K-12 teacher professional development workshops onsite each year, which provide about 90 teachers with dark skies information, best-practice lighting demonstrations, and red flashlights. Multi-year workshops for National Park and State of Texas Parks personnel are offered on dark sky preservation and sky interpretation at McDonald and a Dark Skies fund for retrofitting lights in the surrounding area has been established. The Observatory also uses

  4. Under Summer Skies

    ERIC Educational Resources Information Center

    Texley, Juliana

    2009-01-01

    There's no better way to celebrate 2009, the International Year of Astronomy, than by curling up with a good book under summer skies. To every civilization, in every age, the skies inspired imagination and scientific inquiry. There's no better place to start your summer reading than under their influence. Here are a few selections identified by…

  5. Under Summer Skies

    ERIC Educational Resources Information Center

    Texley, Juliana

    2009-01-01

    There's no better way to celebrate 2009, the International Year of Astronomy, than by curling up with a good book under summer skies. To every civilization, in every age, the skies inspired imagination and scientific inquiry. There's no better place to start your summer reading than under their influence. Here are a few selections identified by…

  6. Theory SkyNode

    NASA Astrophysics Data System (ADS)

    Wagner, Richard P.; Norman, M. L.

    2006-12-01

    A working example of a Basic SkyNode serving theoretical data will be presented. The data is taken from the Simulated Cluster Archive (a set of simulated galaxy clusters, where each cluster was computed using four different physics models). The Theory SkyNode tables contain columns of both computational and observational interest. Examples will be shown of using this theoretical data for comparison to data taken from observational SkyNodes, and vice versa. The relative ease of setting up the Theory SkyNode is of import, as it represents a clear way to present tabular theory data to the Virtual Observatory. Also, the Theory SkyNode provides a prototype for additional "theory catalogs", which wil be created from other simulations. This work is supported by the University of California Office of the President via UCDRD-LLNL award "Scientific Data Management". Travel funding was provided by the US NVO Summer School.

  7. WISE Eyes the Whole Sky

    NASA Image and Video Library

    This animation shows the progress of the WISE all-sky survey over time. WISE, or NASA's Wide-field Infrared Survey Explorer, is perched up in the sky like a wise, old owl, scanning the whole sky on...

  8. How Big Is Too Big?

    ERIC Educational Resources Information Center

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  9. How Big Is Too Big?

    ERIC Educational Resources Information Center

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  10. Colors of the Sky.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Fraser, Alistair B.

    1985-01-01

    Explains the physical principles which result in various colors of the sky. Topics addressed include: blueness, mystical properties of water vapor, ozone, fluctuation theory of scattering, variation of purity and brightness, and red sunsets and sunrises. (DH)

  11. Colors of the Sky.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Fraser, Alistair B.

    1985-01-01

    Explains the physical principles which result in various colors of the sky. Topics addressed include: blueness, mystical properties of water vapor, ozone, fluctuation theory of scattering, variation of purity and brightness, and red sunsets and sunrises. (DH)

  12. Waharau Dark Sky Weekend

    NASA Astrophysics Data System (ADS)

    McFarlane, Ursuka

    2004-06-01

    The Waharau Dark Sky weekend event, organized by Keith Edwards and Dean Jonkers of the Auckland Astronomical Society, happens at least twice a year, and is not to be missed. The event isn't catered, there are no speakers or lectures, it's not even organized chaos. It is a weekend of relaxation in the company of like-minded friends, exploring the night skies, checking out the latest skywatching tools, and having fun.

  13. Sloan digital sky survey

    SciTech Connect

    Kent, S.M.; Stoughton, C.; Newberg, H.; Loveday, J.; Petravick, D.; Gurbani, V.; Berman, E.; Sergey, G.; Lupton, R.

    1994-04-01

    The Sloan Digital Sky Survey will produce a detailed digital photometric map of half the northern sky to about 23 magnitude using a special purpose wide field 2.5 meter telescope. From this map we will select {approximately} 10{sup 6} galaxies and 10{sup 5} quasars, and obtain high resolution spectra using the same telescope. The imaging catalog will contain 10{sup 8} galaxies, a similar number of stars, and 10{sup 6} quasar candidates.

  14. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada - An alkaline, meromictic lake

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Des Marais, D. J.

    1983-01-01

    The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.

  15. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada - An alkaline, meromictic lake

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Des Marais, D. J.

    1983-01-01

    The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.

  16. Angles in the Sky?

    NASA Astrophysics Data System (ADS)

    Behr, Bradford

    2005-09-01

    Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.

  17. Digitised optical sky surveys.

    NASA Astrophysics Data System (ADS)

    MacGillivray, H. T.

    1990-12-01

    Contents: 1. The Second Palomar Observatory Sky Survey. 2. The status of the UKST surveys. 3. A proposal for the construction of a 150/220-cm Schmidt Telescope and processing facilities in China. 4. The measuring machines - a world roundup. 5. Reports from the individual machine groups. 6. A progress report on the APS catalog of POSS I. 7. The ROE/NRL collaborative effort on the COSMOS/UKST survey material. 8. Automated optical identification of IRAS Faint Source Survey Objects. 9. A catalogue of the North Galactic Pole. 10. The need for standard data sets. 11. Programmes on plate calibration. 12. Automated image measuring system. 13. Astronomical image data compression. 14. Opportunities for image compression in astronomy. 15. The Loiano 152 cm telescope CCD images archive. 16. PPM: a reference star catalogue for sky surveys. 17. Announcement: Second Meeting on Digitised Optical Sky Surveys.

  18. Fireballs in the Sky

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Bland, P.

    2016-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly app. To date, more than 23,000 people have downloaded the app world-wide and participated in planetary science. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  19. Dark-Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  20. Sloan Digital Sky Survey

    SciTech Connect

    Kent, S.M.

    1993-11-01

    The Solan Digital Sky Survey is a project which will produce a detailed digital phometric map of half the northern sky to about 23 magnitude using a special purpose wide field telescope of 2.5 meter aperture. This map will be used to select about a million galaxies and 100,000 quasars, for which high resolution spectra will be obtained using the same telescope. A catalog will be produced of all the detected objects, about 100 million galaxies and a similar number of stars, and a million quasar candidates.

  1. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  2. Big Opportunities and Big Concerns of Big Data in Education

    ERIC Educational Resources Information Center

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  3. Big bluestem

    USDA-ARS?s Scientific Manuscript database

    Big Bluestem (Andropogon gerardii) is a warm season grass native to North America, accounting for 40% of the herbaceous biomass of the tall grass prairie, and a candidate for bioenergy feedstock production. The goal of this study was to measure among and within population genetic variation of natura...

  4. Big Dreams

    ERIC Educational Resources Information Center

    Benson, Michael T.

    2015-01-01

    The Keen Johnson Building is symbolic of Eastern Kentucky University's historic role as a School of Opportunity. It is a place that has inspired generations of students, many from disadvantaged backgrounds, to dream big dreams. The construction of the Keen Johnson Building was inspired by a desire to create a student union facility that would not…

  5. Future Sky Surveys: New Discovery Frontiers

    NASA Astrophysics Data System (ADS)

    Tyson, J. Anthony; Borne, Kirk D.

    2012-03-01

    Driven by the availability of new instrumentation, there has been an evolution in astronomical science toward comprehensive investigations of new phenomena. Major advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our capability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) can be achieved through the application of advanced data mining methods and machine learning algorithms operating on the numerous large astronomical databases that will be generated from a variety of revolutionary future sky surveys. Over the next decade, astronomy will irrevocably enter the era of big surveys and of really big telescopes. New sky surveys (some of which will produce petabyte-scale data collections) will begin their operations, and one or more very large telescopes (ELTs = Extremely Large Telescopes) will enter the construction phase. These programs and facilities will generate a remarkable wealth of data of high complexity, endowed with enormous scientific knowledge discovery potential. New parameter spaces will be opened, in multiple wavelength domains as well as the time domain, across wide areas of the sky, and down to unprecedented faint source flux limits. The synergies of grand facilities, massive data collections, and advanced machine learning algorithms will come together to enable discoveries within most areas of astronomical science, including Solar System, exo-planets, star formation, stellar populations, stellar death, galaxy assembly, galaxy evolution, quasar evolution

  6. September in the Skies

    ERIC Educational Resources Information Center

    Riddle, Bob

    2004-01-01

    This school year begins with no planets visible in the evenings, and it will remain this way until November when Mercury returns to the evening skies. For a period of several days, starting on September 8, you can follow the waning crescent Moon in the early morning as it passes Saturn, Venus, the bright star Regulus, and Mercury. On the morning…

  7. Discovering the Sky.

    ERIC Educational Resources Information Center

    Weedman, Daniel W.

    1997-01-01

    An astronomer gives teachers tips on learning how to look at the night sky then on passing along personal instruction to students. Presents ideas for finding information through astronomers at colleges, science museums, planetariums, research observatories, and on the World Wide Web. Contains a resource list and foldout poster of galaxies with…

  8. The Quiet Skies Project

    ERIC Educational Resources Information Center

    Rapp, Steve

    2008-01-01

    To help promote student awareness of the connection between radio astronomy and radio frequency interference (RFI), an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project--the result of a collaboration between the National Aeronautics and Space…

  9. September in the Skies

    ERIC Educational Resources Information Center

    Riddle, Bob

    2004-01-01

    This school year begins with no planets visible in the evenings, and it will remain this way until November when Mercury returns to the evening skies. For a period of several days, starting on September 8, you can follow the waning crescent Moon in the early morning as it passes Saturn, Venus, the bright star Regulus, and Mercury. On the morning…

  10. The Quiet Skies Project

    ERIC Educational Resources Information Center

    Rapp, Steve

    2008-01-01

    To help promote student awareness of the connection between radio astronomy and radio frequency interference (RFI), an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project--the result of a collaboration between the National Aeronautics and Space…

  11. The Infrared Sky.

    ERIC Educational Resources Information Center

    Habing, Harm J.; Neugebauer, Gerry

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) is a survey instrument that has provided an overall view of the infrared sky and identified objects that merit further investigation. A description of the IRAS and examples of the types of astronomical data collected are presented. (JN)

  12. A night sky model.

    NASA Astrophysics Data System (ADS)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  13. All-Sky Infrared Survey

    NASA Image and Video Library

    2009-11-17

    This infrared view of the whole sky highlights the flat plane of our Milky Way galaxy line across middle of image. NASA WISE, will take a similar infrared census of the whole sky, only with much improved resolution and sensitivity.

  14. Biogeochemical controls on diel cycling of stable isotopes of dissolved 02 and dissolved inorganic carbon in the Big Hole River, Montana

    USGS Publications Warehouse

    Parker, Stephen R.; Poulson, Simon R.; Gammons, Christopher H.; DeGrandpre, Michael D.

    2005-01-01

    Rivers with high biological productivity typically show substantial increases in pH and dissolved oxygen (DO) concentration during the day and decreases at night, in response to changes in the relative rates of aquatic photosynthesis and respiration. These changes, coupled with temperature variations, may impart diel (24-h) fluctuations in the concentration of trace metals, nutrients, and other chemical species. A better understanding of diel processes in rivers is needed and will lead to improved methods of data collection for both monitoring and research purposes. Previous studies have used stable isotopes of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) as tracers of geochemical and biological processes in streams, lakes, and marine systems. Although seasonal variation in δ18O of DO in rivers and lakes has been documented, no study has investigated diel changes in this parameter. Here, we demonstrate large (up to 13‰) cycles in δ18O-DO for two late summer sampling periods in the Big Hole River of southwest Montana and illustrate that these changes are correlated to variations in the DO concentration, the C-isotopic composition of DIC, and the primary productivity of the system. The magnitude of the diel cycle in δ18O-DO was greater in August versus September because of the longer photoperiod and warmer water temperatures. This study provides another biogeochemical tool for investigating the O2 and C budgets in rivers and may also be applicable to lake and groundwater systems.

  15. Biogeochemical controls on Diel cycling of stable isotopes of dissolved O2 and dissolved inorganic carbon in the Big Hole River, Montana.

    PubMed

    Parker, Stephen R; Poulson, Simon R; Gammons, Christopher H; DeGrandpre, Michael D

    2005-09-15

    Rivers with high biological productivity typically show substantial increases in pH and dissolved oxygen (DO) concentration during the day and decreases at night, in response to changes in the relative rates of aquatic photosynthesis and respiration. These changes, coupled with temperature variations, may impart diel (24-h) fluctuations in the concentration of trace metals, nutrients, and other chemical species. A better understanding of diel processes in rivers is needed and will lead to improved methods of data collection for both monitoring and research purposes. Previous studies have used stable isotopes of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) as tracers of geochemical and biological processes in streams, lakes, and marine systems. Although seasonal variation in 6180 of DO in rivers and lakes has been documented, no study has investigated diel changes in this parameter. Here, we demonstrate large (up to 13%o) cycles in delta18O-DO for two late summer sampling periods in the Big Hole River of southwest Montana and illustrate that these changes are correlated to variations in the DO concentration, the C-isotopic composition of DIC, and the primary productivity of the system. The magnitude of the diel cycle in delta18O-DO was greater in August versus September because of the longer photoperiod and warmer water temperatures. This study provides another biogeochemical tool for investigating the O2 and C budgets in rivers and may also be applicable to lake and groundwater systems.

  16. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  17. Pictures in the Sky

    ERIC Educational Resources Information Center

    Brako, Elisa; Fout, James; Peltz, William H.

    2005-01-01

    The authors teach an astronomy unit in their seventh-grade course that they find never fails to motivate and stretch the imagination. The questions students ask are wonder-full: "What was here before the universe?" "If there was nothing before the Big Bang, where did energy and matter come from?" "Does the universe have a boundary, and if it does,…

  18. Pictures in the Sky

    ERIC Educational Resources Information Center

    Brako, Elisa; Fout, James; Peltz, William H.

    2005-01-01

    The authors teach an astronomy unit in their seventh-grade course that they find never fails to motivate and stretch the imagination. The questions students ask are wonder-full: "What was here before the universe?" "If there was nothing before the Big Bang, where did energy and matter come from?" "Does the universe have a boundary, and if it does,…

  19. Dark Skies Rangers

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    2015-08-01

    Creating awareness about the importance of the protection of our dark skies is the main goal of the Dark Skies Rangers project, a joint effort from the NOAO and the Galileo Teacher Training Program. Hundreds of schools and thousands of students have been reached by this program. We will focus in particular on the experience being developed in Portugal where several municipalities have now received street light auditing produced by students with suggestions on how to enhance the energy efficiency of illumination of specific urban areas. In the International Year of Light we are investing our efforts in exporting the successful Portuguese experience to other countries. The recipe is simple: train teachers, engage students, foster the participation of local community and involve local authorities in the process. In this symposium we hope to draft the cookbook for the near future.

  20. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  1. Point Source All Sky

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky as seen by Two Micron All-Sky Survey. The measured brightnesses of half a billion stars (points) have been combined into colors representing three distinct wavelengths of infrared light: blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns. This image is centered on the core of our own Milky Way galaxy, toward the constellation of Sagittarius. The reddish stars seemingly hovering in the middle of the Milky Way's disc -- many of them never observed before -- trace the densest dust clouds in our galaxy. The two faint smudges seen in the lower right quadrant are our neighboring galaxies, the Small and Large Magellanic Clouds. http://photojournal.jpl.nasa.gov/catalog/PIA04250

  2. Point Source All Sky

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky as seen by Two Micron All-Sky Survey. The measured brightnesses of half a billion stars (points) have been combined into colors representing three distinct wavelengths of infrared light: blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns. This image is centered on the core of our own Milky Way galaxy, toward the constellation of Sagittarius. The reddish stars seemingly hovering in the middle of the Milky Way's disc -- many of them never observed before -- trace the densest dust clouds in our galaxy. The two faint smudges seen in the lower right quadrant are our neighboring galaxies, the Small and Large Magellanic Clouds.

  3. Sacred Sky and Cyberspace

    NASA Astrophysics Data System (ADS)

    Clynes, F.

    2011-06-01

    The concept of the sacred world beyond the stars found expression in the works of Plato, into Gnosticism and was incorporated into Christianity where medieval images of the cosmos pictured the heavenly domain as beyond the stars. Today cyberspace literature abounds with descriptions of a transmundane space, a great Beyond. This talk looks at current views of cyberspace and asks if they are a re-packaging of the age-old concept of a sacred sky in a secular and technological format?

  4. Tropical rainforest response to marine sky brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  5. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics

    USGS Publications Warehouse

    Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth

    2013-01-01

    To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the

  6. Digital Optical Sky Surveys

    SciTech Connect

    Kron, R.G.

    1995-08-01

    Cameras containing arrays of charge-coupled devices---or which are otherwise capable of sustained high data rates---enable optical sky surveys that compete in efficiency with photographic surveys in terms of area of sky covered per unit observing time. There are gains in performance as well as efficiency: stellar photometry is more straightforward because of the higher dynamic range of CCDs, and the low noise of CCDs allows narrow-band surveys to be undertaken. The small dead-time between exposures allows surveys for rapid variability as well as near-simultaneous color measurements. The most important new prospect may be real-time analysis for identification of sources changing either in position or in brightness. These gains come only after substantial investment in analysis tools and data handling and storage systems. To illustrate some of this potential, this review will focus on a number of sky surveys with CCDs that are either under way or in advanced implementation stages. {copyright} {ital 1995} {ital Astronomical} {ital Society} {ital of} {ital the} {ital Pacific}.

  7. The Dynamic Infrared Sky

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; SPIRITS (Spitzer InfraRed Intensive Transients Survey) Team

    2017-01-01

    The dynamic infrared sky is hitherto largely unexplored. I will present the SPitzer InfraRed Intensive Transients Survey (SPIRITS) --- a systematic search of 194 nearby galaxies within 30 Mpc, on timescales ranging between a week to a year, to a depth of 20 mag with Spitzer's IRAC camera. SPIRITS has already uncovered over 95 explosive transients and over 1200 strong variables. Of these, 37 infrared transients are especially interesting as they have no optical counterparts whatsoever even with deep limits from Keck and HST. Interpretation of these new discoveries may include (i) the birth of massive binaries that drive shocks in their molecular cloud, (ii) stellar mergers with dusty winds, (iii) 8--10 solar mass stars experiencing e-capture induced collapse in their cores, (iv) enshrouded supernovae, or (v) formation of stellar mass black holes. SPIRITS reveals that the infrared sky is not just as dynamic as the optical sky; it also provides access to unique, elusive signatures in stellar astrophysics.

  8. Seasonality and Disturbance Events in the Carbon Isotope Record of Slash Pine (Pinus elliottii) Tree Rings from Big Pine Key, Florida

    NASA Astrophysics Data System (ADS)

    Rebenack, C.; Anderson, W. T.; Cherubini, P.

    2011-12-01

    , and disturbance events. Because slash pine growth is dependent on water availability, a chronology developed using carbon isotopes may provide greater insight into plant stress over time and ultimately may lead to better correlations with climate oscillations. The work presented here is the preliminary result of a carbon-isotope study of four slash pine trees from Big Pine Key, Florida. Initial δ13C data show seasonal stomatal activity in the trees and indicate the timing of possible disturbance events.

  9. Soils in our big back yard: characterizing the state, vulnerabilities, and opportunities for detecting changes in soil carbon storage

    NASA Astrophysics Data System (ADS)

    Harden, Jennifer W.; Loiesel, Julie; Ryals, Rebecca; Lawrence, Corey; Blankinship, Joseph; Phillips, Claire; Bond-Lamberty, Ben; Todd-Brown, Katherine; Vargas, Rodrigo; Hugelius, Gustaf; Nave, Luke; Malhotra, Avni; Silver, Whendee; Sanderman, Jon

    2017-04-01

    A number of diverse approaches and sciences can contribute to a robust understanding of the I. state, II. vulnerabilities, and III. opportunities for soil carbon in context of its potential contributions to the atmospheric C budget. Soil state refers to the current C stock of a given site, region, or ecosystem/landuse type. Soil vulnerabilities refers to the forms and bioreactivity of C stocks, which determine how soil C might respond to climate, disturbance, and landuse perturbations. Opportunities refer to the potential for soils in their current state to increase capacity for and rate of C storage under future conditions, thereby impacting atmospheric C budgets. In order to capture the state, vulnerability, and opportunities for soil C, a robust C accounting scheme must include at least three science needs: (1) a user-friendly and dynamic database with transparent, shared coding in which data layers of solid, liquid, and gaseous phases share relational metadata and allow for changes over time (2) a framework to characterize the capacity and reactivity of different soil types based on climate, historic, and landscape factors (3) a framework to characterize landuse practices and their impact on physical state, capacity/reactivity, and potential for C change. In order to transfer our science information to practicable implementations for land policies, societal and social needs must also include: (1) metrics for landowners and policy experts to recognize conditions of vulnerability or opportunity (2)communication schemes for accessing salient outcomes of the science. Importantly, there stands an opportunity for contributions of data, model code, and conceptual frameworks in which scientists, educators, and decision-makers can become citizens of a shared, scrutinized database that contributes to a dynamic, improved understanding of our soil system.

  10. Under the Same Sky

    NASA Astrophysics Data System (ADS)

    Ratajczak, Milena

    2016-07-01

    Sharing the same sky provides the unique opportunity to use it as a tool to inspire pupils and encourage them to develop an interest in science and technology. Excitement of space can also serve as introduction to the idea of global citizenship and tolerance. A wide spectrum of educational activities dedicated to children and teenagers, especially those from less privileged backgrounds, carried out under several projects in Poland will be presented. We will also introduce the way we follow to support teachers and educators in discovering our wonderful cosmos.

  11. Bargaining for Open Skies

    NASA Technical Reports Server (NTRS)

    Wojahn, Oliver W.

    2001-01-01

    In this paper we analyze the bargaining problem between countries when negotiating bilateral air service agreements. To do so, we use the methods of bargaining and game theory. We give special attention to the case where a liberal minded country is trying to convince a less liberal country to agree to bilateral open skies, and the liberal country might also unilaterally open up its market. The following analysis is positive in the sense that the results help explain and predict the outcome of negotiations under different payoffs and structures of the bargaining process. They are normative in the sense that adequate manipulation of the bargaining conditions can ensure a desired outcome.

  12. SkyView Virtual Telescope:

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; McDonald, Laura M.; Scollick, Keith A.

    2015-11-01

    The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well. SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

  13. The Other Dark Sky

    NASA Astrophysics Data System (ADS)

    Pazmino, John

    In previous demonstrations of New York's elimination of luminous graffiti from its skies, I focused attention on large-scale projects in the showcase districts of Manhattan. Although these works earned passionate respect in the dark sky movement, they by the same token were disheartening. New York was in some quarters of the movement regarded more as an unachievable Shangri-La than as a role model to emulate. This presentation focuses on scenes of light abatement efforts in parts of New York which resemble other towns in scale and density. I photographed these scenes along a certain bus route in Brooklyn on my way home from work during October 2001. This route circulates through various "bedroom communities," each similar to a mid-size to large town elsewhere in the United States. The sujbects included individual structures - stores, banks, schools - and streetscapes mimicking downtowns. The latter protrayed a mix of atrocious and excellent lighting practice, being that these streets are in transition by the routine process of replacement and renovation. The fixtures used - box lamps, fluted or Fresnel globes, subdued headsigns, indirect lighting - are casually obtainable by property managers at local outlets for lighting apparatus. They are routinely offered to the property managers by storefront designers, security services, contractors, and the community improvement or betterment councils.

  14. Ring Around the Sky

    NASA Astrophysics Data System (ADS)

    Croswell, Ken

    2005-07-01

    Gould's Belt, the most prominent starry feature in the Sun's neighborhood, is a zone of large supergiant stars including the Orion constellation; the bright stars of Canis Major, the Southern Cross, Centaurus, and Lupus; and the brightest stars of the Pupis, Vela, and Carina constellations. Its most prominent feature is its 20-degree tilt to the plane of the Milky Way. Gould's Belt was first noticed in 1847 by Englishman John F. W. Herschel while observing from the Cape of Good Hope in South Africa. Later, Benjamin A. Gould, the first American to earn a doctoral degree in astronomy and the founder of The Astronomical Journal, traced the belt around the entire sky. More recent studies of Gould's Belt show evidence of more than just superstars. When massive stars like those in Gould's Belt explode, they leave behind pulsars and black holes. In the 1990's several dozen gamma-ray sources were discovered to track along the path of Gould's Belt around the sky, possible evidence of the explosion of brilliant stars at an earlier time. X-ray studies suggest that the belt may actually be a disk.

  15. A Violet Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These clouds from Sol 15 have a new look. As water ice clouds cover the sky, the sky takes on a more bluish cast. This is because small particles (perhaps a tenth the size of the martian dust, or one-thousandth the thickness of a human hair) are bright in blue light, but almost invisible in red light. Thus, scientists expect that the ice particles in the clouds are very small. The clouds were imaged by the Imager for Mars Pathfinder (IMP).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  16. A Violet Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These clouds from Sol 15 have a new look. As water ice clouds cover the sky, the sky takes on a more bluish cast. This is because small particles (perhaps a tenth the size of the martian dust, or one-thousandth the thickness of a human hair) are bright in blue light, but almost invisible in red light. Thus, scientists expect that the ice particles in the clouds are very small. The clouds were imaged by the Imager for Mars Pathfinder (IMP).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Diamonds in the Sky

    NASA Astrophysics Data System (ADS)

    Brotherton, M.

    2004-12-01

    My first science fiction novel, Star Dragon, just recently available in paperback from Tor, features a voyage to the cataclysmic variable star system SS Cygni. My second novel, Spider Star, to appear early in 2006, takes place in and around a dark matter ``planet'' orbiting a neutron star. Both novels are ``hard'' science fiction, relying on accurate physics to inform the tales. It's possible to bring to life abstract concepts like special relativity, and alien environments like accretion disks, by using science fiction. Novels are difficult to use in a science class, but short stories offer intriguing possibilities. I'm planning to edit an anthology of hard science fiction stories that contain accurate science and emphasize fundamental ideas in modern astronomy. The working title is Diamonds in the Sky. The collection will be a mix of original stories and reprints, highlighting challenging concepts covered in a typical introductory astronomy course. Larry Niven's classic story, ``Neutron Star," is an excellent demonstration of extreme tidal forces in an astronomical context. Diamonds in the Sky will include forewards and afterwards to the stories, including discussion questions and mathematical formulas/examples as appropriate. I envision this project will be published electronically or through a print-on-demand publisher, providing long-term availabilty and keeping low cost. I encourage interested parties to suggest previously published stories, or to suggest which topics must be included.

  18. Preserving our sky heritage

    NASA Astrophysics Data System (ADS)

    Bonavitacola, Michel; Le Gué, Alain

    2011-06-01

    We briefly relate the story of the fight against light pollution in France and make a projection into the future. Following the steps of Jean Kovalevsky who was the initiator of the protection of the astronomical sites in France, a few French amateur astronomers began the fight against light pollution in the 1990s. After a first conference for the night environmental protection in 1995 in Rodez, the second conference in 1998 creates the national association which will become in 2007 the National association for the Protection of the Sky and the Night Environment (ANPCEN). In 2008 light pollution is formally identified, by law, as a problem. Since 2005 the LICORNESS association continues to promote research on the impacts of light on the biotopes while protecting the astronomical sites.

  19. A Multi-Institutional Big Data Collaboration to Estimate Long Term Terrestrial Net Carbon Uptake from Remote Sensing and Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Halem, M.; Dorband, J.; Rao, R.; Lomonaco, S.; Chapman, D. R.; LeMoigne, J.; Nearing, G. S.; Pelissier, C. S.; Simpson, D. G.; Clune, T.

    2014-12-01

    Recent aircraft measurements from scattered records have shown long-term, global, seasonal photosynthetic CO2 uptake over land accelerating over the past 50 years. The successful launch of the sun-synchronous Orbiting Carbon Observatory 2 (OCO-2) on July 2, 2014 is expected to provide global, high spatial and spectral resolution datasets of vertical CO2 concentrations with surface spectral resolutions capable of yielding accurate CO2 flux profiles. It is unclear whether the biosphere will continue to act as a sink for anthropogenic CO2 loading of the atmosphere. Since current climate models with detailed terrestrial ecosystems are unable to simulate the observed increase in net ecosystem production (NEP), we will conduct assimilation studies with the derived CO2 fluxes in the GSFC Land Information System hydrological model to validate the generated NEP uptake. Further, we plan to use the OCO-2 CO2 concentrations to train a neural network to enable the calculation of long term trends from a decade of AIRS CO2 concentration data to produce regional NEP. To address this important Big Data science issue, a multi-institutional collaboration was formed to leverage their combined resources and the expertise of the researchers at the NASA GSFC, the Lamont Doherty Earth Observatory and UMBC. We will employ a high speed 10Gb network to connect the collaborating researchers and provide them with remote access to dedicated computational hybrid multicore resources at UMBC, as well as access to an archive containing more than a decade of readily accessible continuous daily gridded AIRS data and ten years of daily MODIS data for each September. The status of the following research efforts is planned to be presented; (i) acquisition and processing of the expected CO2 profile data from OCO-2 for two test sites, a low latitude region over the Amazon and a Boral forest at high latitude, (ii) initial impact of 3-D data assimilation of CO2 fluxes with the advanced Goddard LIS

  20. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile

  1. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  2. THEMIS / All-Sky Imagers

    NASA Image and Video Library

    A collection of ground-based All-Sky Imagers (ASI) make up another important component of the THEMIS mission. It is sometimes referred to as the sixth THEMIS satellite. Imagery from each camera is ...

  3. Sky Cover from MFRSR Observations

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Flynn, Connor J.; Long, Charles N.

    2011-07-01

    The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their model clear-sky counterparts are two main components of a new method for estimating the fractional sky cover of different cloud types, including cumulus clouds. The performance of this method is illustrated using 1-min resolution data from ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumulus clouds. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  4. Reach the sky

    NASA Astrophysics Data System (ADS)

    Mariana Peicuti, Cristina

    2017-04-01

    I am working as primary teacher at Scoala Gimnaziala Dumbrava,Timis County, Romania & my pupils has 6 to 10 years old. I was&I am a main pillar in my community, always disseminating knowledge and experience to students, other teachers in the school area &Timis County.Astronomy is the must favorite subject of my students from my classes. They are very courious & always come to me with questions about Earth and Sky because Curriculum scientific disciplines provides too little information about Earth and Sky.I need to know more about how to teach space contents into my classes&what competencies can form in elementary school and also to share my experience to the others.As a result of participation at this meeting I want to attract as many students to astronomy,science/STEM disciplines&space technologies, to astronomy topics and exploration of outer space.Schools needs to be prepared for social life needs,new generations needs,on science/space technologies,which are one of the key points for developing the knowledge society.I intend to introduce new scientific activities as part of the existing curriculum.I am passionate about astronomy,I need to know new approaches and new ideas for primary because I think Science is very important in daily life. Here are some developed activities with pupils from K-2 grade levels wich I wish share with colleagues in Viena. Subject: MATHEMATICS. Primary Topic: MEASUREMENT : -+=<> ☼ Rockets by Size. Students cut out,color and sequence paper rockets/Read the information on the International Space Station and rockets/Gather pictures of different types of rockets/Print/cut out/color&laminate rocket drawings/Find objects in the room to put in order by height. ☼ Oil Spot Photometer - Measure the brightness of the sun using cooking oil and a white card. A smear of oil on a white card becomes a powerful tool for comparing the brightness of two light sources, including the sun. ☼ The Sundial & Making Shadows-device to measure time by the

  5. Astronomical surveys and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ -rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ -ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC) in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS), and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  6. Armenian Names of Sky Constellations

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.; Mikayelyan, A. A.

    2016-12-01

    The work is devoted to the correction and recovery of the Armenian names of the sky constellations, as they were forgotten or distorted during the Soviet years, mainly due to the translation from Russian. A total of 34 constellation names have been corrected. A brief overview of the history of the division of the sky into constellations and their naming is also given. At the end, the list of all 88 constellations is given with the names in Latin, English, Russian and Armenian.

  7. Big Data, Big Problems: A Healthcare Perspective.

    PubMed

    Househ, Mowafa S; Aldosari, Bakheet; Alanazi, Abdullah; Kushniruk, Andre W; Borycki, Elizabeth M

    2017-01-01

    Much has been written on the benefits of big data for healthcare such as improving patient outcomes, public health surveillance, and healthcare policy decisions. Over the past five years, Big Data, and the data sciences field in general, has been hyped as the "Holy Grail" for the healthcare industry promising a more efficient healthcare system with the promise of improved healthcare outcomes. However, more recently, healthcare researchers are exposing the potential and harmful effects Big Data can have on patient care associating it with increased medical costs, patient mortality, and misguided decision making by clinicians and healthcare policy makers. In this paper, we review the current Big Data trends with a specific focus on the inadvertent negative impacts that Big Data could have on healthcare, in general, and specifically, as it relates to patient and clinical care. Our study results show that although Big Data is built up to be as a the "Holy Grail" for healthcare, small data techniques using traditional statistical methods are, in many cases, more accurate and can lead to more improved healthcare outcomes than Big Data methods. In sum, Big Data for healthcare may cause more problems for the healthcare industry than solutions, and in short, when it comes to the use of data in healthcare, "size isn't everything."

  8. Dark Sky Protection and Education - Izera Dark Sky Park

    NASA Astrophysics Data System (ADS)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  9. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  10. Five Big Ideas

    ERIC Educational Resources Information Center

    Morgan, Debbie

    2012-01-01

    Designing quality continuing professional development (CPD) for those teaching mathematics in primary schools is a challenge. If the CPD is to be built on the scaffold of five big ideas in mathematics, what might be these five big ideas? Might it just be a case of, if you tell me your five big ideas, then I'll tell you mine? Here, there is…

  11. Pi in the Sky

    NASA Astrophysics Data System (ADS)

    O'Brien, W. P.

    2008-12-01

    Pi In The Sky (PITS) consists of a loose collection of virtual globe (VG) activities with a slight mathematical twist, wherein students search for interesting circular structures on the surface of Earth (Moon or other planets) and measure the circumference C and diameter D of each structure, using the built-in VG measure tool, in order to determine experimental values of pi from the C/D ratios. Examples of man-made circular structures visible using VG browsers include Fermilab and l"Arc de Triomphe roundabout; quasi-circular natural structures include certain volcano calderas and impact craters. Since a circle is but a special case of an ellipse, a natural extension of the activity involves making similar measurements of perimeter P, semi-major axis a, and semi-minor axis b of a visible elliptical structure (such as one of the thousands of elliptical Carolina bays, enigmatic depressions on the Atlantic Coast of North America) and solving for pi using Ramanujan's first approximation for the dependence of the perimeter of an ellipse on a and b. PITS exercises can be adapted to a wide range of student ages and teaching goals. For instance, K-6 students could measure C and D of the huge irrigation circles near Circle, Texas, to discover pi in the same way they might infer pi from measurements of coffee-can lids in math class. Middle school and high school students could move beyond man-made circles to consider the near-circularity of certain volcano calderas and impact craters in earth science units, make measurements for Olympus Mons on Mars or Crater Kepler on the moon in astronomy units, or search for circularity among Arctic thermokarst lakes as an introduction to climate change in tundra environments in environmental science units; such studies might ignite student curiosity about planetary processes. High school students of analytic geometry could examine several elliptical Carolina bays and calculate not only values of pi (as noted above) but also determine the

  12. Infrared Sky Imager (IRSI) Instrument Handbook

    SciTech Connect

    Morris, Victor R

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  13. Exmoor - Europe's first International Dark Sky Reserve

    NASA Astrophysics Data System (ADS)

    Owens, S.

    2011-12-01

    On 2011 October 9 Exmoor National Park in the southwest of England was designated as Europe's first International Dark Sky Reserve by the International Dark Skies Association. This is a huge achievement, and follows three years of work by park authorities, local astronomers, lighting engineers and the resident community. Exmoor Dark Sky Reserve follows in the footsteps of Galloway Forest Dark Sky Park, set up in 2009, and Sark Dark Sky Island, established in January 2011.

  14. Dark Skies are a Universal Resource. So are Quiet Skies!

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. Network based sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    McKenna, Dan; Pulvermacher, R.; Davis, D. R.

    2009-01-01

    We have developed and are currently testing an autonomous 2 channel photometer designed to measure the night sky brightness in the visual wavelengths over a multi-year campaign. The photometer uses a robust silicon sensor filtered with Hoya CM500 glass. The Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The Sky Brightness monitor consists of two units, the remote photometer and a network interface. Currently these devices use 2.4 Ghz transceivers with a free space range of 100 meters. The remote unit is battery powered with day time recharging using a solar panel. Data received by the network interface transmits data via standard POP Email protocol. A second version is under development for radio sensitive areas using an optical fiber for data transmission. We will present the current comparison with the National Park Service sky monitoring camera. We will also discuss the calibration methods used for standardization and temperature compensation. This system is expected to be deployed in the next year and be operated by the International Dark Sky Association SKYMONITOR project.

  16. LSST Site: Sky Brightness Data

    NASA Astrophysics Data System (ADS)

    Burke, Jamison; Claver, Charles

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is an upcoming robotic survey telescope. At the telescope site on Cerro Pachon in Chile there are currently three photodiodes and a Canon camera with a fisheye lens, and both the photodiodes and Canon monitor the night sky continuously. The NIST-calibrated photodiodes directly measure the flux from the sky, and the sky brightness can also be obtained from the Canon images via digital aperture photometry. Organizing and combining the two data sets gives nightly information of the development of sky brightness across a swath of the electromagnetic spectrum, from blue to near infrared light, and this is useful for accurately predicting the performance of the LSST. It also provides data for models of moonlight and twilight sky brightness. Code to accomplish this organization and combination was successfully written in Python, but due to the backlog of data not all of the nights were processed by the end of the summer.Burke was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  17. Dark Skies Rangers - Fighting light pollution and simulating dark skies

    NASA Astrophysics Data System (ADS)

    Doran, Rosa; Correia, Nelson; Guerra, Rita; Costa, Ana

    2015-03-01

    Dark Skies Rangers is an awareness program aimed at students of all ages to stimulate them to make an audit of light pollution in their school/district. The young light pollution fighters evaluate the level of light pollution, how much energy is being wasted, and produce a report to be delivered to the local authorities. They are also advised to promote a light pollution awareness campaign to the local community targeting not only the dark skies but also other implications such as effects in our health, to the flora and fauna, etc.

  18. Big Data Cognition for City Emergency Rescue

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Chen, Yongxin; Wang, Weisheng

    2016-11-01

    There are many kinds of data produced in the city daily life, which operates as an elementary component of the citizen life support system. The city unexpected incidents occurs in a seemingly unpredictable patterns. With the Big Data analysis the emergency rescue can be carried out efficiently. In this paper, the Big Data cognition for city emergency rescue is studied from four perspectives. From the data volume perspective, the spatial data analysis technology is divided into two parts, the indoor data and the outdoor data. From the data velocity perspective, the big data is collected from the eyes in the sky and objects on-the-ground networks, together with demographic data. From the data variety analysis perspective, the population distribution data, the socio-economic data and model estimates are included. From the data value mining perspective, the crime model estimates are studied. In the end, the application in the big public venues emergency rescue is introduced, which is located in Urumqi, Xinjiang, China.

  19. AmeriFlux US-Rms RCEW Mountain Big Sagebrush

    SciTech Connect

    Flerchinger, Gerald

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rms RCEW Mountain Big Sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by mountain big sagebrush on land managed by USDI Bureau of Land Management.

  20. Sky subtraction with fiber spectrographs

    NASA Astrophysics Data System (ADS)

    Lissandrini, C.; Cristiani, S.; La Franca, F.

    1994-11-01

    The sky-subtraction performance of multifiber spectrographs is discussed, analyzing in detail the case of the OPTOPUS system at the 3.6-m European Space Observatory (ESO) telescope at La Silla. A standard technique, based on flat fields obtained with a uniformly illuminated screen on the dome, provides poor results. A new method has been developed, using the (O I) emission line at 5577 A as a calibrator of the fiber transmittance, taking into account the diffuse light and the influence of each fiber on the adjacent ones, and correcting for the effects of the image distortions on the sky sampling. In this way the accuracy of the sky subtraction improves from 2%-8% to 1.3%-1.6%.

  1. Dark sky enters the lexicon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    “Basketbrawl,” “cloud music,” “humblebrag,” and “occupy Wall Street.” These are some of the catchwords and phrases that lexicographer Grant Barrett included in a year-end newspaper column, “Which words will live on?,” in the New York Times on 31 December 2011. Among the couple dozen examples of new language was “dark sky.” Barrett wrote that it “designates a place free of nighttime light pollution. For example, the island of Sark in the English Channel is a dark-sky island.”

  2. Experiences in the "Sky Classroom"

    NASA Astrophysics Data System (ADS)

    Gallego, A. T.

    2006-08-01

    The "Aula del Cel" (valencian for "Sky Classroom") is a project carried out by the Astronomical Observatory of the University of Valencia, Spain. Its aim is teaching and spreading Astronomy to students with ages ranging from 10 to 17. In some cases we also prepare sessions for audiences with special needs, 5 year-old or more than 55 year-old students, or autistic children, for example. In this work we will show different experiences that we have carried out with standard and special groups, not only in our "Sky Classroom" but also in their own educational establishments, used resources and positive (or negative) results we have obtained.

  3. The solan digital sky suvey

    SciTech Connect

    Nash, T.

    1996-01-01

    A description is provided for the planned Sloan Digital Sky Survey (SDSS) designed to replace and supplement the Palomar Sky Survey used broadly in cosmology for the past four decades. The SDSS will employ CCD detectors to achieve orders of magnitude increases sensitivity over photographic plates used in the Palomar survey. Described herein are plans for and expected results to be gained from the survey. Detailed descriptions of the design and construction of the SDSS Telescope at Apache Point Observatory, NM. and the spectrographs to be used are also provided.

  4. What is All-Sky and Clear-Sky?

    Atmospheric Science Data Center

    2014-12-08

    ... Footprint TOA/Surface Fluxes and Clouds (SSF) , or Energy Balanced and Filled (EBAF) . ERBE-like clear-sky scene is ... identified as clear using the ERBE scene id algorithm which uses climatological, zonal LW thresholds and appropriate SW thresholds based on ...

  5. Bernhard Schmidt and the Schmidt Telescope for Mapping the Sky

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    Bernhard Voldemar Schmidt (1879--1935) was born in Estonia. He ran an optical workshop in Mittweida, Saxonia, between 1901 and 1927. Astronomers appreciated the quality of his telescopes. Starting in 1925, working freelance in Hamburg Observatory, he developed a short focal length optical system with a large field of view. He succeeded in inventing the ``Schmidt Telescope'' in 1930, which allows the imaging a large field of the sky without any distortions. Shortly after Schmidt's death, the director of the observatory published details on the invention and production of the Schmidt Telescope. After World War II, Schmidt telescopes have been widely used. The first large Schmidt telescope was built in 1948, the ``Big Schmidt'' (126 cm), Mount Palomar, USA. Schmidt telescopes are also important tools for cosmology. The result of the Palomar Observatory Sky Surveys (1949--1958, 1985--1999) is a data base of about 20 million galaxies and over 100 million stars, supplemented in 1971 by the ESO Schmidt for the southern sky. Also high resolution spectrometers can be fitted to the Schmidt telescope. The 80 cm Schmidt telescope of Hamburg Observatory, planned since 1936, finished 1955, is on Calar Alto, Spain, since 1975. Combined with two objective prisms, it was used for a Quasar survey project.

  6. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  7. All-sky Compton imager

    NASA Astrophysics Data System (ADS)

    von Ballmoos, Peter; Boggs, Steven E.; Jean, Pierre; Zoglauer, Andreas

    2014-07-01

    The All-Sky Compton Imager (ASCI) is a mission concept for MeV Gamma-Ray astronomy. It consists of a compact array of cross-strip germanium detectors, shielded only by a plastic anticoicidence, and weighting less than 100 kg. Situated on a deployable structure at a distance of 10 m from the spacecraft orbiting at L2 or in a HEO, the ASCI not only avoids albedo- and spacecraft-induced background, but it benefits from a continuous all-sky exposure. The modest effective area is more than compensated by the 4 π field-of-view. Despite its small size, ASCI's γ-ray line sensitivity after its nominal lifetime of 3 years is ~ 10-6 ph cm-2 s-1 at 1 MeV for every γ-ray source in the sky. With its high spectral and 3-D spatial resolution, the ASCI will perform sensitive γray spectroscopy and polarimetry in the energy band 100 keV-10 MeV. The All-Sky Compton Imager is particularly well suited to the task of measuring the Cosmic Gamma-Ray Background - and simultaneously covering the wide range of science topics in gamma-ray astronomy.

  8. Full Moon and Empty Skies

    NASA Astrophysics Data System (ADS)

    Lauroesch, T. J.; Edinger, J. R., Jr.; Lauroesch, J. T.

    1996-01-01

    The hypothesis that weather is influenced by the occurrence of the full moon has been explored with respect to cloud coverage. Statistical analysis of 44 years of data has shown no apparent correlation between a clear sky and the occurrence of the full moon.

  9. Red Sky with Red Mesa

    ScienceCinema

    None

    2016-07-12

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  10. Sky Observations by the Book

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Sackes, Mesut

    2008-01-01

    The "National Science Education Standards (NSES)" state that students in grades K-4 are expected to understand that astronomical objects in the sky, including the Sun, Moon, and stars--have properties, locations, and patterns of movement that can be observed and described. They further suggest using an inquiry-based approach to teach…

  11. Sky Observations by the Book

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Sackes, Mesut

    2008-01-01

    The "National Science Education Standards (NSES)" state that students in grades K-4 are expected to understand that astronomical objects in the sky, including the Sun, Moon, and stars--have properties, locations, and patterns of movement that can be observed and described. They further suggest using an inquiry-based approach to teach…

  12. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  13. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  14. The "Ocean" and the Night-Sky: Relations Between the Five-Factor Model of Personality and Noctcaelador

    ERIC Educational Resources Information Center

    Kelly, William E.

    2004-01-01

    This study explored the relationship between noctcaelador, psychological attachment to the night-sky, and the Five-Factor Model of Personality. University students (N = 108) were administered the Noctcaelador Inventory and Saucier's Big-Five Mini-Markers of Personality. Noctcaelador was significantly positively related to Openness to Experience…

  15. Open Skies Treaty imaging radar technology issues

    NASA Astrophysics Data System (ADS)

    Sandoval, M. B.

    1992-06-01

    This paper discusses the imaging radar technology requirements for the Open Skies regime, including the unresolved issues to be discussed at future Open Skies Consultative Commission (OSCC) meetings. Compliance with international rules on shared technology is addressed and some of the practical considerations for operational deployment of the radar imaging equipment in an Open Skies aircraft are presented. The Open Skies Treaty requirements and validation methodologies for imaging radars that were agreed on and those that will require future OSCC review are discussed.

  16. ATLAS: Big Data in a Small Package

    NASA Astrophysics Data System (ADS)

    Denneau, Larry; Tonry, John

    2015-08-01

    For even small telescope projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry 2011) will robotically survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids (NEAs) on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards -- two 0.5 m F/2.0 telescopes -- each year the ATLAS system will obtain ~103 measurements of 109 astronomical sources to a photometric accuracy of <5%. This ever-growing dataset must be searched in real-time for moving objects then archived for further analysis, and alerts for newly discovered near-Earth NEAs disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many ``rifle shot'' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of satellites and pieces of space junk that ATLAS will see each night. Additional interrogation will identify interesting phenomena from beyond the solar system occurring over millions of transient sources per night. The data processing and storage requirements for ATLAS demand a ``big data'' approach typical of commercial Internet enterprises. We describe our approach to deploying a nimble, scalable and reliable data processing infrastructure, and promote ATLAS as steppingstone to eventual processing scales in the era of LSST.

  17. Exploring the Variable Sky with the Sloan Digital Sky Survey

    DTIC Science & Technology

    2007-12-01

    van den Besselaar, E. J. M. 2006, MNRAS, 371, 1681 National Research Council. 2001, Astronomy and Astrophysics in the New Millennium (Washington: Natl...structure out to distances of 100 kpc. We extrapolate these results to the expected performance by the Large Synoptic Survey Telescope and estimate...Decadal SurveyReport (National ResearchCouncil 2001) highly recommended a major new initiative for studying the var- iable sky: the large survey

  18. The new World Atlas of Artificial Sky Brightness

    NASA Astrophysics Data System (ADS)

    Falchi, Fabio; Cinzano, Pierantonio; Kyba, Christopher C. M.; Portnov, Boris A.

    2015-08-01

    I present the main steps toward the completion of the new World Atlas of Artificial Sky Brightness (WA II) and some results. The computational technique has been updated, in comparison to the first World Atlas, to take into account both sources and sites elevation. The elevation data are from USGS GTOPO30 global digital elevation model, with the same pixel size as the WA II maps. The upward emission function used to compute the Atlas is a three parameters function. The parameters can be constrained to the database of Earth based night sky brightness measurements. In this way we can use the better fitting upward function for the final map’s calibration. We maintained constant atmosphere parameters over the entire Earth, identical to those used for the first Atlas (Garstang atmospheric clarity coefficient k=1, equivalent to a vertical extinction at sea level of 0.33 magnitude in the V band). This was done in order to avoid introducing a local bias due to different conditions that may confound the light pollution propagation effects. The radiance data used are those from Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) on board the Suomi NPP satellite. The use of this newly available radiance data allows for an increased real resolution, even while maintaining the same 30"x30" lat-lon pixel size. Anyway, a higher resolution is really appreciable only in the immediate proximity of sources of light pollution (e.g. inside a big city). The VIIRS DNB data used for the input data were chosen from the months ranging from May to September in order to avoid introducing bias from the variable snow coverage in mid to high northern latitudes. In the southern hemisphere this problem is far less pronounced. The WA II takes advantage of the now enormous database of Earth based sky brightness measurements obtained mainly with Sky Quality Meters, but also with CCD measurements.

  19. Putting Together a Blue Sky: Laying the Foundation for Staff Evaluation

    ERIC Educational Resources Information Center

    Searcy, Jeny

    2012-01-01

    Evaluation time can be like putting together a 5,000-piece jigsaw puzzle that is all sky--what, exactly, is the point? When all is said and done, one ends up with a big blue blob--nothing to show for all the effort. However, it doesn't have to be that way. Performance reviews can and should be an effective means of communication for both parties…

  20. Putting Together a Blue Sky: Laying the Foundation for Staff Evaluation

    ERIC Educational Resources Information Center

    Searcy, Jeny

    2012-01-01

    Evaluation time can be like putting together a 5,000-piece jigsaw puzzle that is all sky--what, exactly, is the point? When all is said and done, one ends up with a big blue blob--nothing to show for all the effort. However, it doesn't have to be that way. Performance reviews can and should be an effective means of communication for both parties…

  1. Dual of big bang and big crunch

    SciTech Connect

    Bak, Dongsu

    2007-01-15

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory.

  2. The big deal about big data.

    PubMed

    Moore, Keith D; Eyestone, Katherine; Coddington, Dean C

    2013-08-01

    Big data is a concept that is being widely applied in the retail industries as a means to understand customers' purchasing habits and preferences for followup promotional activity. It is characterized by vast amounts of diverse and rapidly multiplying data that are available at or near real-time. Conversations with executives of leading healthcare organizations provide a barometer for understanding where the industry stands in its adoption of big data as a means to meet the critical information requirements of value-based health care.

  3. Restoring Wyoming big sagebrush

    Treesearch

    Cindy R. Lysne

    2005-01-01

    The widespread occurrence of big sagebrush can be attributed to many adaptive features. Big sagebrush plays an essential role in its communities by providing wildlife habitat, modifying local environmental conditions, and facilitating the reestablishment of native herbs. Currently, however, many sagebrush steppe communities are highly fragmented. As a result, restoring...

  4. ARTIST CONCEPT - BIG JOE

    NASA Image and Video Library

    1963-09-01

    S63-19317 (October 1963) --- Pen and ink views of comparative arrangements of several capsules including the existing "Big Joe" design, the compromise "Big Joe" design, and the "Little Joe". All capsule designs are labeled and include dimensions. Photo credit: NASA

  5. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  6. Implementing Big History.

    ERIC Educational Resources Information Center

    Welter, Mark

    2000-01-01

    Contends that world history should be taught as "Big History," a view that includes all space and time beginning with the Big Bang. Discusses five "Cardinal Questions" that serve as a course structure and address the following concepts: perspectives, diversity, change and continuity, interdependence, and causes. (CMK)

  7. Validation of spectral sky radiance derived from all-sky camera images - a case study

    NASA Astrophysics Data System (ADS)

    Tohsing, K.; Schrempf, M.; Riechelmann, S.; Seckmeyer, G.

    2014-01-01

    Spectral sky radiance (380-760 nm) is derived from measurements with a Hemispherical Sky Imager (HSI) system. The HSI consists of a commercial compact CCD (charge coupled device) camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated by spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelength 380 nm to 760 nm between both instruments at various directions deviate by less then 20% for all sky conditions.

  8. Validation of spectral sky radiance derived from all-sky camera images - a case study

    NASA Astrophysics Data System (ADS)

    Tohsing, K.; Schrempf, M.; Riechelmann, S.; Seckmeyer, G.

    2014-07-01

    Spectral sky radiance (380-760 nm) is derived from measurements with a hemispherical sky imager (HSI) system. The HSI consists of a commercial compact CCD (charge coupled device) camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images, non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated using spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelengths 380-760 nm between both instruments at various directions deviate by less than 20% for all sky conditions.

  9. The Alphabet and the Sky

    NASA Astrophysics Data System (ADS)

    Lebeuf, A.

    2011-06-01

    Since the beginning of the 17th century the letters of the Greek alphabet are used to identify the stars of constellation by order of magnitude. This was simply a practical means of astronomical classification. In several instances the Bible uses such metaphors as "The sky rolled up like a scroll". The idea of associating letters of different alphabets with stars, constellations and the sky in general can be found to day in the marginal subculture. The persistence of such an association of writing with astronomy or cosmology is at least of interest for cultural reasons, but the problem might be of good interest as well for the history of astronomy and cosmology. I present here two examples of this tradition in works of art. The first a painted representation of the Revelation of Saint John in the Orthodox church tradition, and the other in the construction of the late bronze age sacred well at Santa Cristina in Sardinia, Italy.

  10. The Sky, A User's Guide

    NASA Astrophysics Data System (ADS)

    Levy, David H.

    This is an ideal book for starting astronomy. It stirs the imagination, and puts observation of the sky into the framework of leisure activity as well as a personal adventure. Written by an award winning astronomer, it is a non-technical guide to the night sky, full of practical hints. The author's lively style enthuses, entertains and informs. * know the constellations, even if you live in a large city * observe the Sun safely * find out how comets are discovered * watch a star vary in brightness from week to week * explore star clusters and remote galaxies. Author David Levy is one of the world's foremost amateur astronomers. He has discovered 17 comets. Minor Planet 3673 Levy is named in his honour. An English graduate, Levy has written a beautiful introduction to the glories of the observable universe of constellations, stars and galaxies.

  11. Simplified night sky display system

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P. (Inventor)

    2008-01-01

    A portable structure, simply constructed with inexpensive and generally lightweight materials, for displaying a selected portion of the night sky and selected planets, satellites, comets and other astronomically observable objects that are visually perceptible within that portion of the night sky. The structure includes a computer having stored signals representing the observable objects, an image projector that converts and projects the stored signals as visually perceptible images, a first curvilinear light-reflecting surface to receive and reflect the visually perceptible images, and a second curvilinear surface to receive and display the visually perceptible images reflected from the first surface. The images may be motionless or may move with passage of time. In one embodiment, the structure includes an inflatable screen surface that receives gas in an enclosed volume, supports itself without further mechanical support, and optionally self-regulates pressure of the received gas within the enclosed volume.

  12. Eyeing the Sky's Water Vapor

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, and many like it, are one way NASA's Phoenix Mars Lander is measuring trace amounts of water vapor in the atmosphere over far-northern Mars. Phoenix's Surface Stereo Imager (SSI) uses solar filters, or filters designed to image the sun, to make these images. The camera is aimed at the sky for long exposures.

    SSI took this image as a test on June 9, 2008, which was the Phoenix mission's 15th Martian day, or sol, since landing, at 5:20 p.m. local solar time. The camera was pointed about 38 degrees above the horizon. The white dots in the sky are detector dark current that will be removed during image processing and analysis.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space

  13. Update on Dark Sky Preservation

    NASA Astrophysics Data System (ADS)

    Crawford, D. L.

    1998-12-01

    The efforts to protect dark skies for astronomy and for the public are accelerating. An increasing number of cities and states are considering and enacting outdoor lighting control ordinances. Examples of such lighting codes and a model code are available from the International Dark-Sky Association's Web page, at www.darksky.org. There will be a major meeting on Preserving the Astronomical Environment, IAU Symposium #196, co-sponsored by the United Nations, IDA, and others, to be held the week of 12 July 1999 in Vienna, Austria. Further information on this meeting (and others) can also be found on the IDA Web site, which also contains many other resources (and links to other web sites) for those interested in the issues.

  14. Big data for health.

    PubMed

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled.

  15. Astronomy Education Under Dark Skies

    NASA Astrophysics Data System (ADS)

    Cecylia Molenda-Zakowicz, Joanna

    2015-08-01

    We have been providing professional support for the high school students and the astronomy teachers since 2007. Our efforts include organizing astronomy events that take from several hours, like, e.g., watching the transit of Venus, to several days, like the workshops organized in the framework of the projects 'School Workshops on Astronomy' (SWA) and 'Wygasz'.The SWA and Wygasz workshops include presentations by experts in astronomy and space science research, presentations prepared by students being supervised by those experts, hands-on interactive experience in the amateur astrophotography, various pencil-and-paper exercises, and other practical activities. We pay particular attention to familiarize the teachers and students with the idea and the necessity of protecting the dark sky. The format of these events allows also for some time for teachers to share ideas and best practices in teaching astronomy.All those activities are organized either in the Izera Dark-Sky Park in Poland or in other carefuly selected locations in which the beauty of the dark night sky can be appreciated.

  16. The ADS All Sky Survey

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa

    We will create the first interactive sky map of astronomers' understanding of the Universe over time. We will accomplish this goal by turning the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource, into a data resource. GIS and GPS systems have made it commonplace to see and explore information about goings-on on Earth in the context of maps and timelines. Our proposal shows an example of a program that lets a user explore which countries have been mentioned in the New York Times, on what dates, and in what kinds of articles. By analogy, the goal of our project is to enable this kind of exploration-on the sky-for the full corpus of astrophysical literature available through ADS. Our group's expertise and collaborations uniquely position us to create this interactive sky map of the literature, which we call the "ADS All-Sky Survey." To create this survey, here are the principal steps we need to follow. First, by analogy to "geotagging," we will "astrotag," the ADS literature. Many "astrotags" effectively already exist, thanks to curation efforts at both CDS and NED. These efforts have created links to "source" positions on the sky associated with each of the millions of articles in the ADS. Our collaboration with ADS and CDS will let us automatically extract astrotags for all existing and future ADS holdings. The new ADS Labs, which our group helps to develop, includes the ability for researchers to filter article search results using a variety of "facets" (e.g. sources, keywords, authors, observatories, etc.). Using only extracted astrotags and facets, we can create functionality like what is described in the Times example above: we can offer a map of the density of positions' "mentions" on the sky, filterable by the properties of those mentions. Using this map, researchers will be able to interactively, visually, discover what regions have been studied for what reasons, at what times, and by whom. Second, where

  17. Meteor Observations as Big Data Citizen Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.

    2016-12-01

    Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.

  18. Night sky brightness measurement at PERMATApintar observatory

    NASA Astrophysics Data System (ADS)

    Azhar, A. D.; Gopir, G.; Kamil, W. M. A. Wan Mohd; Mohamad, N. S.; Azmi, N. Che

    2016-11-01

    One of the quality parameter of an astronomical site testing is sky brightness. We measure the night sky brightness over PERMATApintar Observatory to obtain the first preliminary sky brightness reading. The measurement is done by using an Unihedron Sky Quality Meter (SQM-LU) with a position pointing zenith. Six measurements have been done during the period of January to March 2016. The measurement is taken between approximately 7 p.m. to 11 p.m. on each of the night. The best (darken) night sky brightness reading is 19.54 mag/arcsec2 obtained on March 11th, 2016. The preliminary average reading of sky brightness is 17.20 mag/arcsec2. Comparison with previous similar measurement for the same type of area (suburban area) shows that our data is within the range of the sky brightness for suburban area, which is 19.5 to 20.7 mag/arcsec2.

  19. Big data, big knowledge: big data for personalized healthcare.

    PubMed

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority.

  20. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex

    NASA Astrophysics Data System (ADS)

    King, Hubert E.; Walters, Clifford C.; Horn, William C.; Zimmer, Mindy; Heines, Maureen M.; Lamberti, William A.; Kliewer, Christine; Pottorf, Robert J.; Macleod, Gordon

    2014-06-01

    Sulfur isotopes of solid bitumen and associated pyrite from the Madison Limestone in the Big Piney-La Barge production complex were measured using a Secondary Ion Mass Spectrometry (SIMS) method. The solid bitumens, a product of thermochemical sulfate reduction, yielded δ34S values of +18.9 ± 3.9 that are consistent with inferred values for native Mississippian sulfate. In contrast, coarse and fine grain pyrite grains were found to be 34S depleted, with values similar to that of the produced H2S (δ34S ∼ +10‰). We interpret these results to indicate that two different sources of sulfate were involved with TSR within the Madison Limestone-autochthonous anhydrite, which is now completely replaced with calcite, and Permian age sulfate dissolved in the aquifer. While checking for inclusions within the bitumen that could lead to erroneous measurement, we found the bitumen possesses a ∼5 μm rim and internal “worm-like” features enriched in organic sulfur. We hypothesize that the rim is the result of back reaction of the late forming H2S with the solid bitumen and that the <1 μm diameter wormy features may result from liquid-liquid immiscibility occurring at the high temperatures of formation.

  1. Big Data in industry

    NASA Astrophysics Data System (ADS)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  2. BigDog

    NASA Astrophysics Data System (ADS)

    Playter, R.; Buehler, M.; Raibert, M.

    2006-05-01

    BigDog's goal is to be the world's most advanced quadruped robot for outdoor applications. BigDog is aimed at the mission of a mechanical mule - a category with few competitors to date: power autonomous quadrupeds capable of carrying significant payloads, operating outdoors, with static and dynamic mobility, and fully integrated sensing. BigDog is about 1 m tall, 1 m long and 0.3 m wide, and weighs about 90 kg. BigDog has demonstrated walking and trotting gaits, as well as standing up and sitting down. Since its creation in the fall of 2004, BigDog has logged tens of hours of walking, climbing and running time. It has walked up and down 25 & 35 degree inclines and trotted at speeds up to 1.8 m/s. BigDog has walked at 0.7 m/s over loose rock beds and carried over 50 kg of payload. We are currently working to expand BigDog's rough terrain mobility through the creation of robust locomotion strategies and terrain sensing capabilities.

  3. The Big Bang Theory

    SciTech Connect

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  4. The Big Bang Theory

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  5. Derivation of sky quality indicators from photometrically calibrated all-sky image mosaics

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.; Moore, Chadwick A.; Luginbuhl, Christian B.

    2015-08-01

    A large database of high resolution all-sky measurements of V-band night sky brightness at sites in U.S. National Parks and astronomical observatories is utilized to describe sky quality over a wide geographic area. Mosaics of photometrically calibrated V-band imagery are processed with a semi-automated procedure to reveal the effects of artificial sky glow through graphical presentation and numeric indicators of artificial sky brightness. Comparison with simpler methods such as the use of the Unihedron SQM and naked eye limiting magnitude reveal that areas near the horizon, which are not typically captured with single-channel measurements, contribute significantly to the indicators maximum vertical illuminance, maximum sky luminance, and average all-sky luminance. Distant sources of sky glow may represent future threats to areas of the sky nearer the zenith. Timely identification and quantification of these threats may allow mitigating strategies to be implemented.

  6. Vegetation-environment relations of the Chisos Mountains, Big Bend National Park, Texas

    Treesearch

    Helen M. Poulos; Ann E. Camp

    2005-01-01

    The Sky Island Archipelagos of the Sierra Madre Oriental and Occidental contain a unique array of endemic flora and fauna. Plant species composition in these elevationally restricted forests is thought to vary in relation to environmental gradients. This study quantifies plant population abundance and spatial distribution patterns in pine-oak woodlands of Big Bend...

  7. Cryptography for Big Data Security

    DTIC Science & Technology

    2015-07-13

    Cryptography for Big Data Security Book Chapter for Big Data: Storage, Sharing, and Security (3S) Distribution A: Public Release Ariel Hamlin1 Nabil...Email: arkady@ll.mit.edu ii Contents 1 Cryptography for Big Data Security 1 1.1 Introduction...48 Chapter 1 Cryptography for Big Data Security 1.1 Introduction With the amount

  8. Simplified Night Sky Display System

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.

    2010-01-01

    A document describes a simple night sky display system that is portable, lightweight, and includes, at most, four components in its simplest configuration. The total volume of this system is no more than 10(sup 6) cm(sup 3) in a disassembled state, and weighs no more than 20 kilograms. The four basic components are a computer, a projector, a spherical light-reflecting first surface and mount, and a spherical second surface for display. The computer has temporary or permanent memory that contains at least one signal representing one or more images of a portion of the sky when viewed from an arbitrary position, and at a selected time. The first surface reflector is spherical and receives and reflects the image from the projector onto the second surface, which is shaped like a hemisphere. This system may be used to simulate selected portions of the night sky, preserving the appearance and kinesthetic sense of the celestial sphere surrounding the Earth or any other point in space. These points will then show motions of planets, stars, galaxies, nebulae, and comets that are visible from that position. The images may be motionless, or move with the passage of time. The array of images presented, and vantage points in space, are limited only by the computer software that is available, or can be developed. An optional approach is to have the screen (second surface) self-inflate by means of gas within the enclosed volume, and then self-regulate that gas in order to support itself without any other mechanical support.

  9. The Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Gunn, James E.

    1995-05-01

    The Sloan Digital Sky Survey (SDSS) plans to produce an archive of digital images and spectra over about 10,000 square degrees of the sky. The survey is designed to provide a reference view of the Universe out to z 0.1, by producing a database of precise coordinates, image profiles, and intensities in five bands of galaxies, QSO's, and selected stars. The database will be particularly useful for studies of large scale structure at low redshift, using galaxies, and at high redshift, using QSO's and QSO absorption lines. The hardware for the survey consists of a 2.5 meter telescope of novel design, with a three degree field of view; a CCD camera, containing 30 CCD's of 4 million pixels each, arranged and filtered to give coverage of 0.3 square degrees of sky per minute in each of five color bands; two, fiber-fed, double spectrographs with a resolving power of 2000, arranged to yield 640 spectra simultaneously; and a 24 inch auxiliary telescope used to derive extinction coefficients and establish secondary flux standards in conjunction with the main survey. The magnitude limit is about 23 for imaging (5 standard deviation significance) and about 19 for spectroscopy. Drift scanning with the photometric camera will be done on the best nights. The processed data will be reduced in near real time and used to select objects for the spectroscopic survey, to be done on the remaining clear, dark nights. In five years, we expect to obtain spectra of 1 million objects and images of over 100 million objects. The survey will cover pi contiguous radians above +30 degrees Northern Galactic latitude and about 0.1 steradians, parts to a greater depth, in the Southern hemisphere. Partners in the project are the University of Chicago, Fermi National Accelerator Laboratory, the Institute for Advanced Study, the Japanese Participation Group, the Johns Hopkins University, Princeton University, the U.S. Naval Observatory, and the University of Washington.

  10. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  11. Sharing big biomedical data.

    PubMed

    Toga, Arthur W; Dinov, Ivo D

    The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent datasets; however there are significant technical, social, regulatory, and institutional barriers that need to be overcome to ensure the power of Big Data overcomes these detrimental factors. Pragmatic policies that demand extensive sharing of data, promotion of data fusion, provenance, interoperability and balance security and protection of personal information are critical for the long term impact of translational Big Data analytics.

  12. Thinking big thoughts

    NASA Astrophysics Data System (ADS)

    Vedral, Vlatko

    2016-08-01

    The short synopsis of The Big Picture by Sean Carroll is that it explores the question of whether science can explain everything in the world, and analyses the emerging reality that such an explanation entails.

  13. Big Baby, Heavier Kid?

    MedlinePlus

    ... not prove that being a big baby caused obesity in children, however. The University of Virginia Children's Hospital study ... Human Services. More Health News on Child Nutrition Obesity in Children Recent Health News Related MedlinePlus Health Topics Child ...

  14. Big data need big theory too.

    PubMed

    Coveney, Peter V; Dougherty, Edward R; Highfield, Roger R

    2016-11-13

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their 'depth' and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote 'blind' big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2015 The Authors.

  15. Big data need big theory too

    PubMed Central

    Dougherty, Edward R.; Highfield, Roger R.

    2016-01-01

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their ‘depth’ and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote ‘blind’ big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698035

  16. MSDS sky reference and preamplifier study

    NASA Technical Reports Server (NTRS)

    Larsen, L.; Stewart, S.; Lambeck, P.

    1974-01-01

    The major goals in re-designing the Multispectral Scanner and Data System (MSDS) sky reference are: (1) to remove the sun-elevation angle and aircraft-attitude angle dependence from the solar-sky illumination measurement, and (2) to obtain data on the optical state of the atmosphere. The present sky reference is dependent on solar elevation and provides essentially no information on important atmospheric parameters. Two sky reference designs were tested. One system is built around a hyperbolic mirror and the reflection approach. A second approach to a sky reference utilizes a fish-eye lens to obtain a 180 deg field of view. A detailed re-design of the present sky reference around the fish-eye approach, even with its limitations, is recommended for the MSDS system. A preamplifier study was undertaken to find ways of improving the noise-equivalent reflectance by reducing the noise level for silicon detector channels on the MSDS.

  17. The big data-big model (BDBM) challenges in ecological research

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple

  18. Nightscape Photography Reclaims the Natural Sky

    NASA Astrophysics Data System (ADS)

    Tafreshi, Babak

    2015-08-01

    Nightscape photos and timelapse videos, where the Earth & sky are framed together with an astronomical purpose, support the dark skies activities by improving public awareness. TWAN or The World at Night program (www.twanight.org) presents the world's best collection of such landscape astrophotos and aims to introduce the night sky as a part of nature, an essential element of our living environment besides being the astronomers lab. The nightscape images also present views of our civilizations landmarks, both natural and historic sites, against the night-time backdrop of stars, planets, and celestial events. In this context TWAN is a bridge between art, science and culture.TWAN images contribute to programs such as the Dark Sky Parks by the International Dark Sky Association or Starlight reserves by assisting local efforts in better illustrating their dark skies and by producing stunning images that not only educate the local people on their night sky heritage also communicate with the governments that are responsible to support the dark sky area.Since 2009 TWAN organizes the world's largest annual photo contest on nightscape imaging, in collaboration with the Dark Skies Awareness, National Optical Astronomy Observatory, and Astronomers Without Borders. The International Earth & Sky Photo Contest promotes the photography that documents the beauty of natural skies against the problem of light pollution. In 2014 the entries received from about 50 countries and the contest result news was widely published in the most popular sources internationally.*Babak A. Tafreshi is a photographer and science communicator. He is the creator of The World At Night program, and a contributing photographer to the National Geographic, Sky&Telescope magazine, and the European Southern Observatory. http://twanight.org/tafreshi

  19. Far infrared all-sky survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1991-01-01

    An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.

  20. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  1. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  2. For Spacious Skies: A Teacher's Guide. An Interdisciplinary Approach to the Sky.

    ERIC Educational Resources Information Center

    For Spacious Skies, Inc., Lexington, MA.

    Despite the fact that the sky is the most dominant feature of our surroundings, it plays the role of an unseen background for many objects. It is the intent of this guide to bring about an awareness of the sky to young people. Topics for activities include: (1) "Sky Awareness"; (2) "Compass"; (3) "Hand Lens"; (4)…

  3. For Spacious Skies Activity Guide. An Interdisciplinary Approach to the Sky.

    ERIC Educational Resources Information Center

    Ward, C. Whitney; Borden, Jack

    Despite the fact that the sky is the most dominant feature of our surroundings, it plays the role of an unseen background for may objects. It is the intent of this guide to bring about an awareness of the sky to young people. Topics for activities include: (1) "Sky Awareness"; (2) "Compass"; (3) "Hand Lens"; (4) "Prism"; (5) "Binoculars"; (6)…

  4. AmeriFlux US-SO4 Sky Oaks- New Stand

    DOE Data Explorer

    Oechel, Walt [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SO4 Sky Oaks- New Stand. Site Description - The Sky Oaks New site is located near the Sky Oaks Field station, owned and operated by San Diego State University. Chaparral vegetation, associated with a Mediterranean climate, covers nearly half of the rough and rocky terrain. Precipitation is almost exclusively confined to the winter months. During the summer and early fall, hot and dry Santa Ana winds from the northeast bring desert heat to the site. A high intensity natural wildfire occurred in approximately 1905. Physical characteristics prior to the 1905 burn are unknown, including stand age and canopy height. Currently, the Sky Oaks New site is an excellent representation of an old-growth chaparral ecosystem, with a canopy height of 2.3 m and chamise-dominated overstory.

  5. Sky Database for Objects in Time-Domain (SkyDOT). A general tool for sky variability studies at LANL.

    NASA Astrophysics Data System (ADS)

    Wozniak, P. R.; Starr, D.; Vestrand, W. T.

    2002-12-01

    Virtual Observatories (VOs) and data mining thereof is a powerful new method for discovery in astronomy. We describe the SkyDOT (Sky Database for Objects in the Time domain), a new Virtual Observatory, which is dedicated to the study of sky variability. We discuss the architecture of the database and the functionality of the user interface. The key feature of SkyDOT is the real time data stream provided by RAPTOR (RAPid Telescopes for Optical Response), the sky monitoring experiment designed and conducted at the Los Alamos National Laboratory (LANL). The site will also confederate a number of massive variability surveys and enable exploration of the time domain in astronomy. Currently, the public domain OGLE-II data set from difference image photometry of the Galactic bulge has been integrated into the database and is available for searching. The site will also utilize high level machine learning tools that will allow sophisticated mining of the archive.

  6. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    each orbit, PSR J1729-2117 which is an unusual isolated recycled pulsar, and PSR J2322-2650 which has a companion of very low mass - just 7 × 10^{-4} {M}_{⊙}, amongst others. I begin this thesis with the study of these pulsars and discuss their histories. In addition, I demonstrate that optical observations of the companions to some of the newly discovered pulsars in the High Time Resolution Universe survey may result in a measurement of their age and that of the pulsar. I have discovered five new extragalactic single radio bursts, confirming them as an astronomical population. These appear to occur frequently, with a rate of 1.0^{+0.6}_{-0.5} × 10^4 sky^{-1} day^{-1}. The sources are likely at cosmological distances - with redshifts between 0.45 and 1.45, making them more than half way to the Big Bang in the most distant case. This implies their luminosities must be enormous, 10^{31} to 10^{33} J emitted in just a few milliseconds. Their source is unknown but I present an analysis of the options. I also perform a population simulation of the bursts which demonstrates how their intrinsic spectrum could be measured, even for unlocalised FRBs: early indications are that the spectral index of FRBs < 0.

  7. Roses in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-12-01

    N44 in the Large Magellanic Cloud is a spectacular example of a giant HII region. Having observed it in 1999 (see ESO PR Photos 26ad/ 99), a team composed of Fernando Comerón and Nausicaa Delmotte from ESO, and Annie Laval from the Observatoire de Marseille (France), again used the Wide-Field-Imager (WFI) at the MPG/ESO 2.2-m telescope of the La Silla Observatory, pointing this 67-million pixel digital camera to the same sky region in order to provide another striking - and scientifically extremely rich - image of this complex of nebulae. With a size of roughly 1,000 light-years, the peculiar shape of N44 clearly outlines a ring that includes a bright stellar association of about 40 very luminous and bluish stars.

  8. Big Bend sees big environmental push

    SciTech Connect

    Blankinship, S.

    2007-10-15

    The 1800 MW Big Bend Power Station is a coal-fired facility in Tampa Bay, Florida, USA owned by Tampa Electric. It has four pulverized coal- fired steam units equipped with FGD scrubbers and electrostatic precipitators. Currently the addition of selective catalytic reduction (SCR) systems is under consideration. The Unit 4 SCR retrofit was completed in June 2007; the remaining three systems are scheduled for completion by 2010. Boiler draft systems will be modified to a balance draft design to accommodate the increased pressure drop of the new systems. 3-D computer models were developed to determine constructability due to the tight clearance at the site. 1 photo.

  9. Exploring the Dynamic Radio Sky

    NASA Astrophysics Data System (ADS)

    Mooley, Kunal P.; Hallinan, Gregg; Frail, Dale A.; Myers, Steven T.; Kulkarni, Shrinivas R.; Bourke, Stephen; Horesh, Assaf

    2015-01-01

    Most of what is currently known about slow radio transients (supernovae, gamma-ray bursts, tidal disruption events, stellar flares, etc.) has come via radio follow-up of objects identified by synoptic telescopes at optical, X-ray or gamma-ray wavelengths. However, with the ability to capture obscured, unbeamed and magnetically-driven phenomena, radio surveys offer unique discovery strong diagnostic for cosmic transients. For the first time, we are systematically exploring the dynamic radio sky on timescales between one day to several years using multi-epoch large surveys with the Karl G. Jansky Array (VLA). We have carried out surveys in the COSMOS deep field as well as wide fields like Stripe 82. I have developed a unique infrastructure for near-real-time calibration, imaging, transient search, transient vetting, rapid multiwavelength follow-up, and contemporaneous optical surveys to better characterize radio transient phenomena. A large part of my thesis includes the commissioning of a new observing mode at the VLA: On-The-Fly Mosaicking. This mode has significantly improved the survey efficiency of the VLA, and it is a driver for VLASS, the future all-sky survey planned with this telescope. Through our radio surveys we have discovered several fascinating transients that are unique to the radio. These surveys have established the VLA as an efficient transient discovery machine. My thesis has enormous implications for how to design efficient transient surveys for the next generation of radio interferometer facilities like ASKAP, MeerKAT, WSRT/Apertif and LOFAR. My work has also provided answers to key problems such as the rates of transients, demographics of variability of radio sources including AGN, and false-positive foreground for future searches for the radio counterparts of gravitational-wave (GW) sources.

  10. TASS - The Amateur Sky Survey

    NASA Astrophysics Data System (ADS)

    Droege, T. F.; Albertson, C.; Gombert, G.; Gutzwiller, M.; Molhant, N. W.; Johnson, H.; Skvarc, J.; Wickersham, R. J.; Richmond, M. W.; Rybski, P.; Henden, A.; Beser, N.; Pittinger, M.; Kluga, B.

    1997-05-01

    As a non-astronomer watching Shoemaker/Levy 9 crash into Jupiter through postings on sci.astro, it occurred to me that it might be fun to build a comet finding machine. After wild speculations on how such a device might be built - I considered a 26" x 40" fresnel lens and a string of pin diodes -- postings to sci.astro brought me down to earth. I quickly made contact with both professionals and amateurs and found that there was interesting science to be done with an all sky survey. After several prototype drift scan cameras were built using various CCDs, I determined the real problem was software. How does one get the software written for an all sky survey? Willie Sutton could tell you, "Go where the programmers are." Our strategy has been to build a bunch of drift scan cameras and just give them away (without software) to programmers found on the Internet. This author reports more success by this technique than when he had a business and hired and paid programmers at a cost of a million or so a year. To date, 22 drift scan cameras have been constructed. Most of these are operated as triplets spaced 15 degrees apart in Right Ascension and with I, V, I filters. The cameras use 135mm fl, f.2.8 camera lenses for a plate scale of 14 arc seconds per pixel and reach magnitude 13. With 512 pixels across the drift scan direction and running through the night, a triplet will collect 200 Mb of data on three overlapping areas of 3 x 120 degrees each. To date four of the triplets and one single have taken data. Production has started on 25 second generation cameras using 2k x 2k devices and a barn door mount.

  11. Interpreting Sky-Averaged 21-cm Measurements

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation

  12. Photometric indicators of visual night sky quality derived from all-sky brightness maps

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.

    2016-09-01

    Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.

  13. ATLAS: Big Data in a Small Package?

    NASA Astrophysics Data System (ADS)

    Denneau, Larry

    2016-01-01

    For even small astronomy projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (Tonry 2011) will survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards - two 0.5 m F/2.0 telescopes - each night the ATLAS system will measure nearly 109 astronomical sources to a photometric accuracy of <5%, totaling 1012 individual observations over its initial 3-year mission. This ever-growing dataset must be searched in real-time for moving objects and transients then archived for further analysis, and alerts for newly discovered near-Earth asteroids (NEAs) disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many `rifle shot' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of low-Earth orbit (LEO) and geosynchronous orbit (GEO) satellites ATLAS will see each night. Additional interrogation will identify interesting phenomena from millions of transient sources per night beyond the solar system. The data processing and storage requirements for ATLAS demand a `big data' approach typical of commercial internet enterprises. We describe our experience in deploying a nimble, scalable and reliable data processing infrastructure, and suggest ATLAS as steppingstone to data processing capability needed as we enter the era of LSST.

  14. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    ERIC Educational Resources Information Center

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  15. Euclid Space Mission: building the sky survey

    NASA Astrophysics Data System (ADS)

    Tereno, I.; Carvalho, C. S.; Dinis, J.; Scaramella, R.; Amiaux, J.; Burigana, C.; Cuillandre, J. C.; da Silva, A.; Derosa, A.; Maiorano, E.; Maris, M.; Oliveira, D.; Franzetti, P.; Garilli, B.; Gomez-Alvarez, P.; Meneghetti, M.; Wachter, S.; Wachter

    2014-05-01

    The Euclid space mission proposes to survey 15000 square degrees of the extragalactic sky during 6 years, with a step-and-stare technique. The scheduling of observation sequences is driven by the primary scientific objectives, spacecraft constraints, calibration requirements and physical properties of the sky. We present the current reference implementation of the Euclid survey and on-going work on survey optimization.

  16. Planck View of the Whole Sky

    NASA Image and Video Library

    2010-07-06

    This image of the microwave sky was synthesized using data spanning the range of light frequencies detected by ESA Planck. A vast portion of the sky is dominated by the diffuse emission from gas and dust in our Milky Way galaxy.

  17. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    ERIC Educational Resources Information Center

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  18. Bright Meteor Lights Up Atlanta Skies

    NASA Image and Video Library

    This video shows a very bright meteor that streaked over the skies of Atlanta, Ga., on the night of Aug. 28, 2011. The view is from an all sky camera in Cartersville, Ga., operated by NASA’s Mars...

  19. SkyMapper Early Data Release

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Onken, Christopher; Schmidt, Brian; Bessell, Michael; Da Costa, Gary; Luvaul, Lance; Mackey, Dougal; Murphy, Simon; White, Marc; SkyMapper Team

    2016-05-01

    The SkyMapper Early Data Release (EDR) is the initial data release from the SkyMapper Southern Survey, which aims to create a deep, multi-epoch, multi-band photometric data set for the entire southern sky. EDR covers approximately 6700 sq. deg. (one-third) of the southern sky as obtained by the Short Survey component of the project. All included fields have at least two visits in good conditions in all six SkyMapper filters (uvgriz). Object catalogues are complete to magnitude 17-18, depending on filter. IVOA-complaint table access protocol (TAP), cone search and simple image access protocol (SIAP) services are available from the SkyMapper website (http://skymapper.anu.edu.au/), as well as through tools such as TOPCAT. Data are restricted to Australian astronomers and their collaborators for twelve months from the release date. Further details on the reduction of SkyMapper data, along with data quality improvements, will be released in late 2016 as part of SkyMapper Data Release 1 (DR1).

  20. Big data bioinformatics.

    PubMed

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia.

  1. Big data in biomedicine.

    PubMed

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science.

  2. Big Questions: Missing Antimatter

    SciTech Connect

    Lincoln, Don

    2013-08-27

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  3. Big Questions: Missing Antimatter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Einstein's equation E = mc2 is often said to mean that energy can be converted into matter. More accurately, energy can be converted to matter and antimatter. During the first moments of the Big Bang, the universe was smaller, hotter and energy was everywhere. As the universe expanded and cooled, the energy converted into matter and antimatter. According to our best understanding, these two substances should have been created in equal quantities. However when we look out into the cosmos we see only matter and no antimatter. The absence of antimatter is one of the Big Mysteries of modern physics. In this video, Fermilab's Dr. Don Lincoln explains the problem, although doesn't answer it. The answer, as in all Big Mysteries, is still unknown and one of the leading research topics of contemporary science.

  4. Another Way to Explore the Sky: HEALPix Usage in Aladin Full Sky Mode

    NASA Astrophysics Data System (ADS)

    Fernique, P.; Oberto, A.; Boch, T.; Bonnarel, F.

    2010-12-01

    The last few years have seen the emergence of new visualization tools such as Google Sky and Microsoft World Wide Telescope supporting immediate full sky panning and zooming. All these tools have in common a view of the sky based on a hierarchical multi-resolution sky tessellation. The aim is to load and draw the good pieces of the sky at the good resolution as fast as possible, according to the current user sky view. The goal is the same but sky indexing solutions differ significantly and do not offer the same capabilities in term of performances, underlying data base complexity, available projections, projection distortion, pixel value access, graphical overlays, etc. Actually, most of the tools offer false-colour skies with a unique simple projection. But this new feature can be used not only for providing a sky background, but also for accessing and analyzing pixel data in the same way that astronomers commonly use FITS images for doing science. We will present how Aladin is using an HEALPix sky tessellation for building a powerful sky data base.

  5. Big Sky Workshop on Super-Intense Laser-Atom Physics Held in Big Sky, Montana on 22-25 June 1991

    DTIC Science & Technology

    1992-03-20

    approximately bounded by 5x10 15 and 2x10 16 W/cm2 in a few cycles. The structure of the stabilized state and its subsequent ionization dynamics is established...of the previous results. If the laser becomes very intense bound states still exist, but they completely change their character. Particularly...cause by the ponderomotive shift of the ionization threshold. The results are sensitive to the angular momenta of the bound state and of the laser

  6. Big Joe Capsule Assembly Activities

    NASA Image and Video Library

    1959-08-01

    Big Joe Capsule Assembly Activities in 1959 at NASA Glenn Research Center (formerly NASA Lewis). Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959.

  7. Seeding considerations in restoring big sagebrush habitat

    Treesearch

    Scott M. Lambert

    2005-01-01

    This paper describes methods of managing or seeding to restore big sagebrush communities for wildlife habitat. The focus is on three big sagebrush subspecies, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), basin big sagebrush (Artemisia tridentata ssp. tridentata), and mountain...

  8. Simulations of the Microwave Sky

    SciTech Connect

    Sehgal, Neelima; Bode, Paul; Das, Sudeep; Hernandez-Monteagudo, Carlos; Huffenberger, Kevin; Lin, Yen-Ting; Ostriker, Jeremiah P.; Trac, Hy; /Harvard-Smithsonian Ctr. Astrophys.

    2009-12-16

    We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands and utilized the easily accessible HEALPix map format to make these simulations applicable to other current and near future microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster and group populations, the primordial microwave background is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zel'dovich (SZ) signals from galaxy clusters, groups, and the intergalactic medium has been included, and the gas prescription to model the SZ signals has been refined to match the most recent X-ray observations. The cosmology adopted in these simulations is also consistent with the WMAP 5-year parameter measurements. From these simulations we find a slope for the Y{sub 200} - M{sub 200} relation that is only slightly steeper than self-similar, with an intrinsic scatter in the relation of {approx} 14%. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14}M{sub {circle_dot}} and z < 1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14}M{sub {circle_dot}} and z < 0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared

  9. Simulations of the Microwave Sky

    NASA Astrophysics Data System (ADS)

    Sehgal, Neelima; Bode, Paul; Das, Sudeep; Hernandez-Monteagudo, Carlos; Huffenberger, Kevin; Lin, Yen-Ting; Ostriker, Jeremiah P.; Trac, Hy

    2010-02-01

    We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands and utilized the easily accessible HEALPix map format to make these simulations applicable to other current and near future microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster and group populations, the primordial microwave background is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zel'dovich (SZ) signals from galaxy clusters, groups, and the intergalactic medium has been included, and the gas prescription to model the SZ signals has been refined to match the most recent X-ray observations. The cosmology adopted in these simulations is also consistent with the WMAP 5-year parameter measurements. From these simulations we find a slope for the Y 200-M 200 relation that is only slightly steeper than self-similar, with an intrinsic scatter in the relation of ~14%. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M 200 > 2.5 × 1014 M sun and z < 1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M 200 > 2.5 × 1014 M sun and z < 0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared galaxies, which are likely lensed sources, contribute most to the

  10. A Sobering Big Idea

    ERIC Educational Resources Information Center

    Wineburg, Sam

    2006-01-01

    Since Susan Adler, Alberta Dougan, and Jesus Garcia like "big ideas," the author offers one to ponder: young people in this country can not read with comprehension. The saddest thing about this crisis is that it is no secret. The 2001 results of the National Assessment of Educational Progress (NAEP) for reading, published in every major…

  11. The big bang

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    Our universe was born billions of years ago in a hot, violent explosion of elementary particles and radiation - the big bang. What do we know about this ultimate moment of creation, and how do we know it? Drawing upon the latest theories and technology, this new edition of The big bang, is a sweeping, lucid account of the event that set the universe in motion. Joseph Silk begins his story with the first microseconds of the big bang, on through the evolution of stars, galaxies, clusters of galaxies, quasars, and into the distant future of our universe. He also explores the fascinating evidence for the big bang model and recounts the history of cosmological speculation. Revised and updated, this new edition features all the most recent astronomical advances, including: Photos and measurements from the Hubble Space Telescope, Cosmic Background Explorer Satellite (COBE), and Infrared Space Observatory; the latest estimates of the age of the universe; new ideas in string and superstring theory; recent experiments on neutrino detection; new theories about the presence of dark matter in galaxies; new developments in the theory of the formation and evolution of galaxies; the latest ideas about black holes, worm holes, quantum foam, and multiple universes.

  12. Thinking Big, Aiming High

    ERIC Educational Resources Information Center

    Berkeley, Viv

    2010-01-01

    What do teachers, providers and policymakers need to do in order to support disabled learners to "think big and aim high"? That was the question put to delegates at NIACE's annual disability conference. Some clear themes emerged, with delegates raising concerns about funding, teacher training, partnership-working and employment for disabled…

  13. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  14. Big-City Rules

    ERIC Educational Resources Information Center

    Gordon, Dan

    2011-01-01

    When it comes to implementing innovative classroom technology programs, urban school districts face significant challenges stemming from their big-city status. These range from large bureaucracies, to scalability, to how to meet the needs of a more diverse group of students. Because of their size, urban districts tend to have greater distance…

  15. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The…

  16. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  17. A Big Bang Lab

    ERIC Educational Resources Information Center

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  18. Big Enough for Everyone?

    ERIC Educational Resources Information Center

    Coote, Anna

    2010-01-01

    The UK's coalition government wants to build a "Big Society." The Prime Minister says "we are all in this together" and building it is the responsibility of every citizen as well as every government department. The broad vision is welcome, but everything depends on how the vision is translated into policy and practice. The…

  19. The Big Fish

    ERIC Educational Resources Information Center

    DeLisle, Rebecca; Hargis, Jace

    2005-01-01

    The Killer Whale, Shamu jumps through hoops and splashes tourists in hopes for the big fish, not because of passion, desire or simply the enjoyment of doing so. What would happen if those fish were obsolete? Would this killer whale be able to find the passion to continue to entertain people? Or would Shamu find other exciting activities to do…

  20. Countering misinformation concerning big sagebrush

    Treesearch

    Bruce L Welch; Craig Criddle

    2003-01-01

    This paper examines the scientific merits of eight axioms of range or vegetative management pertaining to big sagebrush. These axioms are: (1) Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) does not naturally exceed 10 percent canopy cover and mountain big sagebrush (A. t. ssp. vaseyana) does not naturally exceed 20 percent canopy...

  1. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  2. Big Data and Chemical Education

    ERIC Educational Resources Information Center

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  3. Sky Subtraction with Fiber-Fed Spectrograph

    NASA Astrophysics Data System (ADS)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  4. The Sky Brightness Data Archive (SBDA)

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Erin M.; Craine, Brian L.

    2011-05-01

    Although many astronomers have long been sensitive to issues of light pollution and deteriorating sky quality it is only in recent years that such interest has extended to other groups including, among others, ecologists, health professionals, and urban planners. Issues of light pollution and loss of dark skies are starting to appear in the scientific literature in the context of health and behavior impacts on both human and animal life. Nonetheless, a common deficiency in most such studies is the absence of historical or baseline data against which to compare sky brightness trends and temporal changes. To address this deficiency we have begun to collect a variety of types of quantitative sky brightness data for insertion in an international sky brightness archive that can be accessed for research projects which are dependent upon an understanding of the nature of local light pollution issues. To aid this process we have developed a mobile sky brightness meter which automatically logs sky brightness and observation location. The device can be stationary for long periods of time or can be easily transported for continuous sky brightness measurement from ground vehicles, boats, or aircraft. The sampling rate is typically about 0.25Hz. We present here examples of different modes of sky brightness measurement, various means of displaying and analyzing such data, ways to interpret natural astronomical phenomena apparent in the data, and suggest a number of complementary scientific projects that may capture the interest of both professional and amateur scientists. Finally, we discuss the status of the archive and ways that potential contributors may submit their observations for publication in the archive.

  5. Preserving Dark Skies: Do Astronomers Care?

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Crawford, D. L.

    2001-12-01

    Ground based telescopes are, even in this era of planetary missions and space telescopes, the dominant source of data on solar system objects. Yet many of the premier observing sites in the world are threatened by increasing artificial light that is scattered into the sky - light pollution. World class observing sites such as Mt. Wilson have long since lost the ability to do cutting edge faint object science and observatories in Southern Arizona have been recently threatened - the Canoa Ranch development being the most recent example. Yet there are actions that can be taken to preserve dark skies, not only for astronomy, but also for the benefit of all humanity. Lead by astronomers, effective outdoor lighting codes have been produced and adopted by many jurisdictional authorities. Advocacy organizations such as the International Dark-sky Association (IDA) distribute educational material on how to preserve dark skies through good outdoor lighting practices. Other institutions, such as the National Park Service, are realizing that dark skies are an integral part of the wilderness experience and are taking steps to preserve the quality of their skies. However, the primary beneficaries of dark sky preservation efforts, namely the ground based astronomical community, have largely failed to become involved in efforts to preserve dark skies. For example, only a few percent of the membership of the American Astronomical Society is active in light pollution work or is even a member of IDA. In this presentation, Iwe will outline what is being done locally to preserve dark skies througout the world. In addition, some observations on the level of support from the astronomical community will be offered.

  6. NASA Science Engagement Through "Sky Art"

    NASA Astrophysics Data System (ADS)

    Bethea, K. L.; Damadeo, K.

    2013-12-01

    Sky Art is a NASA-funded online community where the public can share in the beauty of nature and the science behind it. At the center of Sky Art is a gallery of amateur sky photos submitted by users that are related to NASA Earth science mission research areas. Through their submissions, amateur photographers from around the world are engaged in the process of making observations, or taking pictures, of the sky just like many NASA science instruments. By submitting their pictures and engaging in the online community discussions and interactions with NASA scientists, users make the connection between the beauty of nature and atmospheric science. Sky Art is a gateway for interaction and information aimed at drawing excitement and interest in atmospheric phenomena including sunrises, sunsets, moonrises, moonsets, and aerosols, each of which correlates to a NASA science mission. Educating the public on atmospheric science topics in an informal way is a central goal of Sky Art. NASA science is included in the community through interaction from scientists, NASA images, and blog posts on science concepts derived from the images. Additionally, the website connects educators through the formal education pathway where science concepts are taught through activities and lessons that align with national learning standards. Sky Art was conceived as part of the Education and Public Outreach program of the SAGE III on ISS mission. There are currently three other NASA mission involved with Sky Art: CALIPSO, GPM, and CLARREO. This paper will discuss the process of developing the Sky Art online website, the challenges of growing a community of users, as well as the use of social media and mobile applications in science outreach and education.

  7. Business and Science - Big Data, Big Picture

    NASA Astrophysics Data System (ADS)

    Rosati, A.

    2013-12-01

    Data Science is more than the creation, manipulation, and transformation of data. It is more than Big Data. The business world seems to have a hold on the term 'data science' and, for now, they define what it means. But business is very different than science. In this talk, I address how large datasets, Big Data, and data science are conceptually different in business and science worlds. I focus on the types of questions each realm asks, the data needed, and the consequences of findings. Gone are the days of datasets being created or collected to serve only one purpose or project. The trick with data reuse is to become familiar enough with a dataset to be able to combine it with other data and extract accurate results. As a Data Curator for the Advanced Cooperative Arctic Data and Information Service (ACADIS), my specialty is communication. Our team enables Arctic sciences by ensuring datasets are well documented and can be understood by reusers. Previously, I served as a data community liaison for the North American Regional Climate Change Assessment Program (NARCCAP). Again, my specialty was communicating complex instructions and ideas to a broad audience of data users. Before entering the science world, I was an entrepreneur. I have a bachelor's degree in economics and a master's degree in environmental social science. I am currently pursuing a Ph.D. in Geography. Because my background has embraced both the business and science worlds, I would like to share my perspectives on data, data reuse, data documentation, and the presentation or communication of findings. My experiences show that each can inform and support the other.

  8. The Night Sky on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. This time-lapse composite, acquired the evening of Spirit's martian sol 590 (Aug. 30, 2005) from a perch atop 'Husband Hill' in Gusev Crater, shows Phobos, the brighter moon, on the left, and Deimos, the dimmer moon, on the right. In this sequence of images obtained every 170 seconds, both moons move from top to bottom. The bright star Aldebaran forms a trail on the right, along with some other stars in the constellation Taurus. Most of the other streaks in the image mark the collision of cosmic rays with pixels in the camera.

    Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the six images that make up this composite using Spirit's panoramic camera with the camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.

  9. Sky dancer: an intermittent system

    NASA Astrophysics Data System (ADS)

    Cros, Anne; Rodríguez Romero, Jesse Alexander; Damián Díaz Andrade, Oscar

    2009-11-01

    Sky dancers attract people sight to make advertising. What is the origin of those large vertical tubes fluctuations above an air blower? This study complements the previous one [1] about the system analysis from a dynamical system point of view. As a difference from the ``garden hose-instability'' [2], the tube shape has got ``break points''. Those ``break points'' separate the air-filled bottom tube portion from its deflated top portion. We record the tube dynamics with a high-speed videocamera simultaneously that we measure the pressure at the air blower exit. The intermittent pressure evolution displays picks when the tube fluctuates. We compare those overpressure values with the ones that appears in a rigid tube whose exit is partially obstructed. [1] F. Castillo Flores & A. Cros ``Transition to chaos of a vertical collapsible tube conveying air flow'' J. Phys.: Conf. Ser. 166, 012017 (2009). [2] A. S. Greenwald & J. Dungundji ``Static and dynamic instabilities of a propellant line'' MIT Aeroelastic and Structures Research Lab, AFOSR Sci. Report: AFOSR 67-1395 (1967).

  10. Exploring the Dynamic Radio Sky

    NASA Astrophysics Data System (ADS)

    Mooley, Kunal; Horesh, A.; Hallinan, G.; Bourke, S.; Kulkarni, S. R.; Frail, D. A.; Ofek, E.

    2013-01-01

    The dynamic radio sky remains a rich area for discovery. Taking advantage of the new capabilities of the Jansky-VLA, we have carried out a near-real-time survey for radio transients in the SDSS Stripe 82 region. We observed 50 sq. deg. at 3 GHz at 3 epochs separated by 1 week and 1 month with 75uJy rms. In contrast to previous surveys, our survey is coupled with contemporaneous optical monitoring (with the Palomar Transient Factory) and rapid follow-up (at X-ray through radio frequencies), enabling physical interpretation of the detected transients. Supernovae, non-thermal tidal disruption events (TDEs), stellar flares, orphan long-duration Gamma Ray Bursts (GRBs) and NS-NS coalescence events are among those which we expect to see. Such detections will have large impact on several key questions such as the rate of TDEs, obscured supernovae, the beaming factor of GRBs and the rate of NS-NS mergers. This systematic search for transient and variable radio sources is meant to be a fore-runner of next-generation surveys planned for WSRT/Apertif, ASKAP, LOFAR and MeerKAT.

  11. Hiding in the night sky

    NASA Image and Video Library

    2016-04-04

    This striking NASA/ESA Hubble Space Telescope image captures the galaxy UGC 477, located just over 110 million light-years away in the constellation of Pisces (The Fish). UGC 477 is a low surface brightness (LSB) galaxy. First proposed in 1976 by Mike Disney, the existence of LSB galaxies was confirmed only in 1986 with the discovery of Malin 1. LSB galaxies like UGC 477 are more diffusely distributed than galaxies such as Andromeda and the Milky Way. With surface brightnesses up to 250 times fainter than the night sky, these galaxies can be incredibly difficult to detect. Most of the matter present in LSB galaxies is in the form of hydrogen gas, rather than stars. Unlike the bulges of normal spiral galaxies, the centres of LSB galaxies do not contain large numbers of stars. Astronomers suspect that this is because LSB galaxies are mainly found in regions devoid of other galaxies, and have therefore experienced fewer galactic interactions and mergers capable of triggering high rates of star formation. LSB galaxies such as UGC 477 instead appear to be dominated by dark matter, making them excellent objects to study to further our understanding of this elusive substance. However, due to an underrepresentation in galactic surveys — caused by their characteristic low brightness — their importance has only been realised relatively recently.

  12. Monitoring All Sky for Variability

    NASA Astrophysics Data System (ADS)

    Paczynski, B.; Pojmanski, G.

    2000-05-01

    A few percent of all stars are variable, yet more than 90 percent of variables brighter than 12 magnitude have not been discovered yet. There is a need for an all sky search and for the early detection of any unexpected events: optical flashes from gamma-ray bursts, novae, dwarf novae, supernovae, killer asteroids, comets, etc. The ongoing projects like ROTSE, ASAS, TASS, and others, using instruments with just 4 inch aperture, have already discovered thousands of new variable stars, a flash from an explosion at a cosmological distance, and the first partial eclipse of a nearby star by its Jupiter like planet. About one million variable stars may be discovered with such small instruments, and many more with larger telescopes. The critical elements are software and full automation of the hardware. A complete census of the brightest eclipsing binaries is needed to select objects for a robust empirical calibration of the accurate distance determination to the Magellanic Clouds, the first step towards the Hubble constant. An archive to be generated by a large number of small instruments will be very valuable for data mining projects. The real time alerts will provide great targets of opportunity for the follow-up observations with the largest telescopes. The ASAS project is supported by a generous gift from Mr. William Golden, and we are grateful for his support and interest.

  13. Monitoring All Sky for Variability

    NASA Astrophysics Data System (ADS)

    Paczyński, Bohdan

    2000-10-01

    A few percent of all stars are variable, yet over 90% of variables brighter than 12 mag have not been discovered yet. There is a need for an all-sky search and for the early detection of any unexpected events: optical flashes from gamma-ray bursts, novae, dwarf novae, supernovae, ``killer asteroids.'' The ongoing projects like ROTSE, ASAS, TASS, and others, using instruments with just 4 inch aperture, have already discovered thousands of new variable stars, a flash from an explosion at a cosmological distance, and the first partial eclipse of a nearby star by its Jupiter-like planet. About one million variables may be discovered with such small instruments, and many more with larger telescopes. The critical elements are software and full automation of the hardware. A complete census of the brightest eclipsing binaries is needed to select objects for a robust empirical calibration of the accurate distance determination to the Magellanic Clouds, the first step toward the Hubble constant. An archive to be generated by a large number of small instruments will be very valuable for data-mining projects. The real-time alerts will provide great targets of opportunity for follow-up observations with the largest telescopes. This Essay is one of a series of invited contributions which will appear in the PASP throughout the year 2000 to mark the upcoming millennium. (Eds.)

  14. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  15. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    ERIC Educational Resources Information Center

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own…

  16. Teachable Fiction Comes to Yellow Sky.

    ERIC Educational Resources Information Center

    Tietz, Stephen

    2001-01-01

    Proposes that teachable fiction is efficient, strategically sound, and very visual. Analyzes Stephen Crane's "The Bride Comes to Yellow Sky" to show it fulfills these three characteristics. Suggests the story should be taught later in the semester. (PM)

  17. Infrared Astronomical Satellite View of the Sky

    NASA Image and Video Library

    2009-11-03

    Nearly the entire sky, as seen in infrared wavelengths and projected at one-half degree resolution, is shown in this image, assembled from six months of data from the NASA Infrared Astronomical Satellite, or IRAS.

  18. The SkyMapper Transient Survey

    NASA Astrophysics Data System (ADS)

    Scalzo, R. A.; Yuan, F.; Childress, M. J.; Möller, A.; Schmidt, B. P.; Tucker, B. E.; Zhang, B. R.; Onken, C. A.; Wolf, C.; Astier, P.; Betoule, M.; Regnault, N.

    2017-07-01

    The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun regular operations. Alongside the Southern Sky Survey, a comprehensive digital survey of the entire southern sky, SkyMapper will carry out a search for supernovae and other transients. The search strategy, covering a total footprint area of 2 000 deg2 with a cadence of ⩽5 d, is optimised for discovery and follow-up of low-redshift type Ia supernovae to constrain cosmic expansion and peculiar velocities. We describe the search operations and infrastructure, including a parallelised software pipeline to discover variable objects in difference imaging; simulations of the performance of the survey over its lifetime; public access to discovered transients; and some first results from the Science Verification data.

  19. A Machine-Learning-Driven Sky Model.

    PubMed

    Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt

    2017-01-01

    Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.

  20. The LWA1 Low Frequency Sky Survey

    NASA Astrophysics Data System (ADS)

    Dowell, Jayce; Taylor, Gregory B.; Schinzel, Frank K.; Kassim, Namir E.; Stovall, Kevin

    2017-08-01

    We present a survey of the radio sky accessible from the first station of the Long Wavelength Array. Images are presented at nine frequencies between 35 and 80 MHz with spatial resolutions ranging from 4.7° to 2.0°, respectively. The maps cover the sky north of a declination of -40° and represent the most modern systematic survey of the diffuse Galactic emission within this frequency range. We also combine our survey with other low-frequency sky maps to create an updated model of the low-frequency sky. Due to the low frequencies probed by our survey, the updated model better accounts for the effects of free-free absorption from Galactic-ionized hydrogen. A longer term motivation behind this survey is to understand the foreground emission that obscures the redshifted 21-cm transition of neutral hydrogen from the cosmic dark ages (z >10) and, at higher frequencies, the epoch of reionization (z >6).

  1. Fire in the Sky--From Big Bang to Big Money: Outdoor Education and Sustainable Development. Part One.

    ERIC Educational Resources Information Center

    Walker, Rod

    1998-01-01

    Within diverse outdoor educational activities, a core experience of connection with the earth balances self, others, and nature with elements of ritual. Most effective when experiential, integrated, and technologically simple, the core experience's educative power lies in awakening awareness of interconnectedness between human and nonhuman life.…

  2. Fire in the Sky--From Big Bang to Big Money: Outdoor Education and Sustainable Development. Part One.

    ERIC Educational Resources Information Center

    Walker, Rod

    1998-01-01

    Within diverse outdoor educational activities, a core experience of connection with the earth balances self, others, and nature with elements of ritual. Most effective when experiential, integrated, and technologically simple, the core experience's educative power lies in awakening awareness of interconnectedness between human and nonhuman life.…

  3. The Southern Sky Redshift Survey

    NASA Astrophysics Data System (ADS)

    da Costa, L. Nicolaci; Willmer, C. N. A.; Pellegrini, P. S.; Chaves, O. L.; Rité, C.; Maia, M. A. G.; Geller, M. J.; Latham, D. W.; Kurtz, M. J.; Huchra, J. P.; Ramella, M.; Fairall, A. P.; Smith, C.; Lípari, S.

    1998-07-01

    We report redshifts, magnitudes, and morphological classifications for 5369 galaxies with m_B <= 15.5 and for 57 galaxies fainter than this limit, in two regions covering a total of 1.70 sr in the southern celestial hemisphere. The galaxy catalog is drawn primarily from the list of nonstellar objects identified in the Hubble Space Telescope Guide Star Catalog (GSC). The galaxies have positions accurate to ~1" and magnitudes with an rms scatter of ~0.3 mag. We compute magnitudes (m_SSRS2) from the relation between instrumental GSC magnitudes and the photometry by Lauberts & Valentijn. From a comparison with CCD photometry, we find that our system is homogeneous across the sky and corresponds to magnitudes measured at the isophotal level ~26 mag arcsec^-2. The precision of the radial velocities is ~40 km s^-1, and the redshift survey is more than 99% complete to the m_SSRS2 = 15.5 mag limit. This sample is in the direction opposite that of the CfA2; in combination the two surveys provide an important database for studies of the properties of galaxies and their large-scale distribution in the nearby universe. Based on observations obtained at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation; Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan; the European Southern Observatory, La Silla, Chile, partially under the bilateral ESO-Observatório Nacional agreement; Fred Lawrence Whipple Observatory; Laboratório Nacional de Astrofísica, Brazil; and the South African Astronomical Observatory.

  4. Information sources for deep sky astronomy

    NASA Astrophysics Data System (ADS)

    Brazell, O.

    1998-04-01

    With the increasing availability of computer systems and with more information becoming available through magazines and books, amateur astronomers now have access to a wide variety of material on non-stellar deep sky objects. The purpose of this paper is to explore some of the sources of information open to deep sky astronomers and to clarify the nature of the plethora of designations used to describe non-stellar astronomical objects.

  5. Stability of FORS2 Sky Flats

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.; Dobrzycka, D.; Hummel, C.; Moehler, S.; Smoker, J.; Anderson, J.; Dias, B.

    2017-09-01

    "The FORS2 calibration plan previously had a validity for imaging sky flatfields of four days. This placed some stress on the observers, especially during periods of bad weather. We therefore decided to analyse a series of flats to check if it was possible to extend this validity range, and if yes, to what level. The analysis allowed us to change the FORS2 calibration plan, increasing the validity of sky flats from four to 14 days."

  6. Aladin Lite: Lightweight sky atlas for browsers

    NASA Astrophysics Data System (ADS)

    Boch, Thomas

    2014-02-01

    Aladin Lite is a lightweight version of the Aladin tool, running in the browser and geared towards simple visualization of a sky region. It allows visualization of image surveys (JPEG multi-resolution HEALPix all-sky surveys) and permits superimposing tabular (VOTable) and footprints (STC-S) data. Aladin Lite is powered by HTML5 canvas technology and is easily embeddable on any web page and can also be controlled through a Javacript API.

  7. The conformal transformation of the night sky

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2016-12-01

    We give a simple differential geometric proof of the conformal transformation of the night sky under change of observer. The proof does not use the four dimensionality of spacetime or spinor methods. Furthermore, it really shows that the result does not depend on Lorentz transformations. This approach, by giving a transparent covariant expression to the conformal factor, shows that in most situations it is possible to define a thermal sky metric independent of the observer.

  8. The Mythology of the Night Sky

    NASA Astrophysics Data System (ADS)

    Falkner, David E.

    The word "planet" comes from the Latin word planeta and the Greek word planes, which means "wanderer." When the ancient Greeks studied the night sky they noticed that most of the stars remained in the same position relative to all the other stars, but a few stars seem to move in the sky from day to day, week to week, and month to month. The Greeks called these rogue stars "wanderers" because they wandered through the starry background.

  9. All Sky Observations with BATSE and GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2008-01-01

    The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) monitored the entire sky from 1991-2000. I will review highlights of BATSE observations including gamma ray bursts, black hole candidates, accreting pulsars, and active galaxies. On 2008 June 11, the Fermi Gamma Ray Space Telescope was launched. The Gamma ray Burst Monitor (GBM) on board Fermi continues the all-sky monitoring legacy started with BATSE. I will review early results and planned observations with GBM.

  10. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2017-09-28

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  11. Using Virtual Observatory Services in Sky View

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2007-01-01

    For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.

  12. AmeriFlux US-Rws Reynolds Creek Wyoming big sagebrush

    SciTech Connect

    Flerchinger, Gerald

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rws Reynolds Creek Wyoming big sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by Wyoming big sagebrush on land managed by USDI Bureau of Land Management.

  13. The Big One

    NASA Image and Video Library

    2017-03-13

    Mimas' gigantic crater Herschel lies near the moon's limb in this Cassini view. A big enough impact could potentially break up a moon. Luckily for Mimas, whatever created Herschel was not quite big enough to cause that level of disruption. When large impacts happen, they deliver tremendous amounts of energy -- sometimes enough to cause global destruction. Even impacts that are not catastrophic can leave enormous, near-permanent scars on bodies like Mimas (246 miles or 396 kilometers across). This view looks toward the anti-Saturn hemisphere of Mimas. North on Mimas is up and rotated 32 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 19, 2016. The view was acquired at a distance of approximately 53,000 miles (85,000 kilometers) from Mimas. Image scale is 1,677 feet (511 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20523

  14. Correcting for Circumsolar and Near-Horizon Errors in Sky Cover Retrievals from Sky Images

    SciTech Connect

    Long, Charles N.

    2010-03-31

    Fractional sky cover amounts retrieved from sky imagery are overestimated significantly at times due to occurrences of “whitening” near the sun, and near the horizon for low sun, in the images. This phenomenon occurs due to forward scattering of visible light by aerosols and haze, and the intensity range limitations of the detectors of the cameras used to record the sky images. Our results suggest that when the problem occurs, the magnitude of the overestimate is typically on the order of about 10% to 20% fractional sky cover. To help alleviate this problem, a statistical analysis of the time series of the areas in the image near the sun position and along the horizon centered on the solar azimuth angle has been developed. This statistical analysis requires that images be captured frequently, at least once per minute. For times when the overestimation is detected as occurring, a correction is applied to the retrieved sky cover amounts. When the sky cover amount correction is applied, analysis indicates that the result better matches the actual sky conditions present, as noted by visual inspection of the sky images in question. In addition, frequency-of-occurrence histogram comparisons show that the adjusted results improve the agreement with other methodologies and expectations. Thus, the methodology presented here helps produce more accurate fractional sky cover retrievals.

  15. A holographic big bang?

    NASA Astrophysics Data System (ADS)

    Afshordi, N.; Mann, R. B.; Pourhasan, R.

    2015-11-01

    We present a cosmological model in which the Universe emerges out of the collapse of a five-dimensional (5D) star as a spherical three-brane. The initial singularity of the big bang becomes hidden behind a causal horizon. Near scale-invariant primordial curvature perturbations can be induced on the brane via a thermal atmosphere that is in equilibrium with the brane, circumventing the need for a separate inflationary process and providing an important test of the model.

  16. DARPA's Big Mechanism program.

    PubMed

    Cohen, Paul R

    2015-07-16

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  17. The Next Big Idea

    PubMed Central

    2013-01-01

    Abstract George S. Eisenbarth will remain in our memories as a brilliant scientist and great collaborator. His quest to discover the cause and prevention of type 1 (autoimmune) diabetes started from building predictive models based on immunogenetic markers. Despite his tremendous contributions to our understanding of the natural history of pre-type 1 diabetes and potential mechanisms, George left us with several big questions to answer before his quest is completed. PMID:23786296

  18. Big Bang Circus

    NASA Astrophysics Data System (ADS)

    Ambrosini, C.

    2011-06-01

    Big Bang Circus is an opera I composed in 2001 and which was premiered at the Venice Biennale Contemporary Music Festival in 2002. A chamber group, four singers and a ringmaster stage the story of the Universe confronting and interweaving two threads: how early man imagined it and how scientists described it. Surprisingly enough fancy, myths and scientific explanations often end up using the same images, metaphors and sometimes even words: a strong tension, a drumskin starting to vibrate, a shout…

  19. DARPA's Big Mechanism program

    NASA Astrophysics Data System (ADS)

    Cohen, Paul R.

    2015-07-01

    Reductionist science produces causal models of small fragments of complicated systems. Causal models of entire systems can be hard to construct because what is known of them is distributed across a vast amount of literature. The Big Mechanism program aims to have machines read the literature and assemble the causal fragments found in individual papers into huge causal models, automatically. The current domain of the program is cell signalling associated with Ras-driven cancers.

  20. Big3. Editorial

    PubMed Central

    Lehmann, Christoph U.; Séroussi, Brigitte; Jaulent, Marie-Christine

    2014-01-01

    Summary Objectives To provide an editorial introduction into the 2014 IMIA Yearbook of Medical Informatics with an overview of the content, the new publishing scheme, and upcoming 25th anniversary. Methods A brief overview of the 2014 special topic, Big Data - Smart Health Strategies, and an outline of the novel publishing model is provided in conjunction with a call for proposals to celebrate the 25th anniversary of the Yearbook. Results ‘Big Data’ has become the latest buzzword in informatics and promise new approaches and interventions that can improve health, well-being, and quality of life. This edition of the Yearbook acknowledges the fact that we just started to explore the opportunities that ‘Big Data’ will bring. However, it will become apparent to the reader that its pervasive nature has invaded all aspects of biomedical informatics – some to a higher degree than others. It was our goal to provide a comprehensive view at the state of ‘Big Data’ today, explore its strengths and weaknesses, as well as its risks, discuss emerging trends, tools, and applications, and stimulate the development of the field through the aggregation of excellent survey papers and working group contributions to the topic. Conclusions For the first time in history will the IMIA Yearbook be published in an open access online format allowing a broader readership especially in resource poor countries. For the first time, thanks to the online format, will the IMIA Yearbook be published twice in the year, with two different tracks of papers. We anticipate that the important role of the IMIA yearbook will further increase with these changes just in time for its 25th anniversary in 2016. PMID:24853037

  1. Big Data Technologies

    PubMed Central

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-01-01

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient’s care processes and of single patient’s behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, able to gather large amounts of real-time data, requires the implementation of distributed platforms for data analysis and decision support. Finally, the inclusion of geographical and environmental information into such complex IT systems may further increase the capability of interpreting the data gathered and extract new knowledge from them. This article reviews the main concepts and definitions related to big data, it presents some efforts in health care, and discusses the potential role of big data in diabetes care. Finally, as an example, it describes the research efforts carried on in the MOSAIC project, funded by the European Commission. PMID:25910540

  2. Disaggregating asthma: Big investigation versus big data.

    PubMed

    Belgrave, Danielle; Henderson, John; Simpson, Angela; Buchan, Iain; Bishop, Christopher; Custovic, Adnan

    2017-02-01

    We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational tools for data analysis is that the process of data mining can become uncoupled from the scientific process of clinical interpretation, understanding the provenance of the data, and external validation. Although advances in computational methods can be valuable for using unexpected structure in data to generate hypotheses, there remains a need for testing hypotheses and interpreting results with scientific rigor. We argue for combining data- and hypothesis-driven methods in a careful synergy, and the importance of carefully characterized birth and patient cohorts with genetic, phenotypic, biological, and molecular data in this process cannot be overemphasized. The main challenge on the road ahead is to harness bigger health care data in ways that produce meaningful clinical interpretation and to translate this into better diagnoses and properly personalized prevention and treatment plans. There is a pressing need for cross-disciplinary research with an integrative approach to data science, whereby basic scientists, clinicians, data analysts, and epidemiologists work together to understand the heterogeneity of asthma.

  3. Frequency of College Students' Night-Sky Watching Behaviors

    ERIC Educational Resources Information Center

    Kelly, William E.; Kelly, Kathryn E.; Batey, Jason

    2006-01-01

    College students (N = 112) completed the Noctcaelador Inventory, a measure of psychological attachment to the night-sky, and estimated various night-sky watching related activities: frequency and duration of night-sky watching, astro-tourism, ownership of night-sky viewing equipment, and attendance of observatories or planetariums. The results…

  4. Frequency of College Students' Night-Sky Watching Behaviors

    ERIC Educational Resources Information Center

    Kelly, William E.; Kelly, Kathryn E.; Batey, Jason

    2006-01-01

    College students (N = 112) completed the Noctcaelador Inventory, a measure of psychological attachment to the night-sky, and estimated various night-sky watching related activities: frequency and duration of night-sky watching, astro-tourism, ownership of night-sky viewing equipment, and attendance of observatories or planetariums. The results…

  5. Roses in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-11-01

    The two best known satellite galaxies of the Milky Way, the Magellanic Clouds, are located in the southern sky at a distance of about 170,000 light-years. They host many giant nebular complexes with very hot and luminous stars whose intense ultraviolet radiation causes the surrounding interstellar gas to glow. The intricate and colourful nebulae are produced by ionised gas [1] that shines as electrons and positively charged atomic nuclei recombine, emitting a cascade of photons at well defined wavelengths. Such nebulae are called "H II regions", signifying ionised hydrogen, i.e. hydrogen atoms that have lost one electron (protons). Their spectra are characterized by emission lines whose relative intensities carry useful information about the composition of the emitting gas, its temperature, as well as the mechanisms that cause the ionisation. Since the wavelengths of these spectral lines correspond to different colours, these alone are already very informative about the physical conditions of the gas. N44 [2] in the Large Magellanic Cloud is a spectacular example of such a giant H II region. Having observed it in 1999 (see ESO PR Photos 26a-d/99), a team of European astronomers [3] again used the Wide-Field-Imager (WFI) at the MPG/ESO 2.2-m telescope of the La Silla Observatory, pointing this 67-million pixel digital camera to the same sky region in order to provide another striking - and scientifically extremely rich - image of this complex of nebulae. With a size of roughly 1,000 light-years, the peculiar shape of N44 clearly outlines a ring that includes a bright stellar association of about 40 very luminous and bluish stars. These stars are the origin of powerful "stellar winds" that blow away the surrounding gas, piling it up and creating gigantic interstellar bubbles. Such massive stars end their lives as exploding supernovae that expel their outer layers at high speeds, typically about 10,000 km/sec. It is quite likely that some supernovae have already

  6. Dark Skies are a Universal Resource: IYA Programs on Dark Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Bueter, C.; Pompea, S. M.; Berglund, K.; Mann, T.; Gay, P.; Crelin, B.; Collins, D.; Sparks, R.

    2008-05-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also health, ecology, safety, economics and energy conservation. Because of its relevance, "Dark Skies” is a theme of the US Node for the International Year of Astronomy (IYA). Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, the ASP session will immerse participants in hands-on, minds-on activities, events and resources on dark skies awareness. These include a planetarium show on DVD, podcasting, social networking, a digital photography contest, The Great Switch Out, Earth Hour, National Dark Skies Week, a traveling exhibit, a 6-minute video tutorial, Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights, and unaided-eye and digital-meter star counting programs like GLOBE at Night. The ASP "Dark Skies” session is offered to provide IYA dark skies-related programs to a variety of attendees. Participants include professional or amateur astronomers, education and public outreach professionals, science center/museum/planetarium staff and educators who want to lead activities involving dark skies awareness in conjunction with IYA. During the session, each participant will be given a package of educational materials on the various dark skies programs. We will provide the "know-how” and the means for session attendees to become community leaders in promoting these dark skies programs as public events at their home institutions during IYA. Participants will be able to jump-start their education programs through the use of well-developed instructional materials and kits sent later if they commit to leading IYA dark skies activities. For more information about the IYA Dark Skies theme, visit http://astronomy2009.us/darkskies/.

  7. Mira Soars Through the Sky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of 'seeds' for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy.

    In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or 'far' ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or 'near' ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira.

    The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before.

    Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2).

    Mira is a highly evolved, 'red giant' star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated; for example, if a red giant were to replace

  8. Mira Soars Through the Sky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of 'seeds' for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy.

    In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or 'far' ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or 'near' ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira.

    The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before.

    Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2).

    Mira is a highly evolved, 'red giant' star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated; for example, if a red giant were to replace

  9. Mira Soars Through the Sky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of 'seeds' for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy.

    In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or 'far' ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or 'near' ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira.

    The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before.

    Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2).

    Mira is a highly evolved, 'red giant' star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated; for example, if a red giant were to replace

  10. Dark Skies: Local Success, Global Challenge

    NASA Astrophysics Data System (ADS)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  11. An Innovative Collaboration on Dark Skies Education

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Mayer, M.; EPO Students, NOAO

    2011-01-01

    Dark night skies are being lost all over the globe, and hundreds of millions of dollars of energy are being wasted in the process.. Improper lighting is the main cause of light pollution. Light pollution is a concern on many fronts, affecting safety, energy conservation, cost, human health, and wildlife. It also robs us of the beauty of viewing the night sky. In the U.S. alone, over half of the population cannot see the Milky Way from where they live. To help address this, the National Optical Astronomy Observatory Education and Public Outreach (NOAO EPO) staff created two programs: Dark Skies Rangers and GLOBE at Night. Through the two programs, students learn about the importance of dark skies and experience activities that illustrate proper lighting, light pollution's effects on wildlife and how to measure the darkness of their skies. To disseminate the programs locally in an appropriate yet innovative venue, NOAO partnered with the Cooper Center for Environmental Learning in Tucson, Arizona. Operated by the largest school district in Tucson and the University of Arizona College of Education, the Cooper Center educates thousands of students and educators each year about ecology, science, and the beauty and wonders of the Sonoran Desert. During the first academic year (2009-2010), we achieved our goal of reaching nearly 20 teachers in 40 classrooms of 1000 students. We gave two 3-hour teacher-training sessions and provided nineteen 2.5-hour on-site evening sessions on dark skies activities for the students of the teachers trained. One outcome of the program was the contribution of 1000 "GLOBE at Night 2010” night-sky brightness measurements by Tucson students. Training sessions at similar levels are continuing this year. The partnership, planning, lesson learned, and outcomes of NOAO's collaboration with the environmental center will be presented.

  12. Cloudy Sky Version of Bird's Broadband Hourly Clear Sky Model (Presentation)

    SciTech Connect

    Myers, D.

    2006-08-01

    Presentation on Bird's Broadband Hourly Clear Sky Model given by NREL's Daryl Myers at SOLAR 2006. The objective of this report is to produce ''all sky'' modeled hourly solar radiation. This is based on observed cloud cover data using a SIMPLE model.

  13. OpenSkyQuery and OpenSkyNode - the VO Framework to Federate Astronomy Archives

    NASA Astrophysics Data System (ADS)

    O'Mullane, W.; Budavári, T.; Li, N.; Malik, T.; Nieto-Santisteban, M. A.; Szalay, A. S.; Thakar, A. R.

    2005-12-01

    OpenSkyNode and ADQL are the major new steps in the Data Access layer of the Virtual Observatory. OpenSkyQuery (OSQ) allows cross matches between catalogs on registered nodes and supports the upload of lists of sources to be cross matched. This system utilizes the IVOA's nascent standard Astronomical Data Query Language (ADQL).

  14. yourSky: Custom Sky-Image Mosaics via the Internet

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph

    2003-01-01

    yourSky (http://yourSky.jpl.nasa.gov) is a computer program that supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. [yourSky is an upgraded version of the software reported in Software for Generating Mosaics of Astronomical Images (NPO-21121), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 16a.] A requester no longer has to engage in the tedious process of determining what subset of images is needed, nor even to know how the images are indexed in image archives. Instead, in response to a requester s specification of the size and location of the sky area, (and optionally of the desired set and type of data, resolution, coordinate system, projection, and image format), yourSky automatically retrieves the component image data from archives totaling tens of terabytes stored on computer tape and disk drives at multiple sites and assembles the component images into a mosaic image by use of a high-performance parallel code. yourSky runs on the server computer where the mosaics are assembled. Because yourSky includes a Web-interface component, no special client software is needed: ordinary Web browser software is sufficient.

  15. Sampling Operations on Big Data

    DTIC Science & Technology

    2015-11-29

    Sampling Operations on Big Data Vijay Gadepally, Taylor Herr, Luke Johnson, Lauren Milechin, Maja Milosavljevic, Benjamin A. Miller Lincoln...ll.mit.edu Abstract—The 3Vs - Volume, Velocity and Variety - of Big Data continues to be a large challenge for systems and algorithms designed to store... big data in Section II, followed by a description of the analytic environment D4M in Section III. We then describe the types of sampling methods and

  16. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    PubMed

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  17. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  18. "Let There Be Night" Advocates Dark Skies

    NASA Astrophysics Data System (ADS)

    Bueter, Chuck

    2008-05-01

    Let There Be Night is an interactive planetarium program that supports a community-wide experiment to quantify local sky glow. In the planetarium, visitors will experience three aspects of light pollution--glare, sky glow, and light trespass--and decide whether and how to confront dark sky issues. Planetarians can select optional recorded stories and lessons to complement live demonstrations or star talks. As a companion experiment, students in grades 3-8 from one school district will then submit their backyard observations of Orion's limiting magnitude to the 2009 Globe at Night star hunt while small student teams concurrently quantify sky glow from each schoolyard with hand-held meters. After mapping their results and having classroom discussions, students will present their findings to the School Board. Material compiled and created for the program will be available for other dark sky advocates at www.LetThereBeNight.com, while large digital files will be distributed on disk through two planetarium associations. A 2008 Toyota TAPESTRY grant has enticed significant professional support, additional funding, and in-kind contributions.

  19. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo

    2011-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.

  20. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo

    2011-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.

  1. Pockmarks off Big Sur, California

    USGS Publications Warehouse

    Paull, C.; Ussler, W.; Maher, N.; Greene, H. Gary; Rehder, G.; Lorenson, T.; Lee, H.

    2002-01-01

    A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ??? 1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique ( ??? 45000 yr BP), with a sedimentation rate of ??? 10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface ( ??? 100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. AmeriFlux US-SO3 Sky Oaks- Young Stand

    DOE Data Explorer

    Oechel, Walt [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SO3 Sky Oaks- Young Stand. Site Description - The Sky Oaks Young site is located near the Sky Oaks Field station, owned and operated by San Diego State University. Chaparral vegetation, associated with a Mediterranean climate, covers nearly half of the rough and rocky terrain. Precipitation is almost exclusively confined to the winter months. During the summer and early fall, hot and dry Santa Ana winds from the northeast bring desert heat to the site. A high intensity natural wildfire occurred in July of 2003. The stand age at the time of the wildfire was 10 years old, following a controlled burn in 1993.

  3. AmeriFlux US-SO2 Sky Oaks- Old Stand

    DOE Data Explorer

    Oechel, Walt [San Diego State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SO2 Sky Oaks- Old Stand. Site Description - The Sky Oaks Old site is located near the Sky Oaks Field station, owned and operated by San Diego State University. Chaparral vegetation, associated with a Mediterranean climate, covers nearly half of the rough and rocky terrain. Precipitation is almost exclusively confined to the winter months. During the summer and early fall, hot and dry Santa Ana winds from the northeast bring desert heat to the site. A high intensity natural wildfire occurred in July of 2003. The stand age at the time of the wildfire was 80 years old, following an early wildfire poorly characterized. Following the 2003 wildfire, most native chaparral began to regrow from root stocks reaching a height of 1.0 m in 2008.

  4. How Big is Earth?

    NASA Astrophysics Data System (ADS)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  5. Secrets to Successful Earth and Sky Photography

    NASA Astrophysics Data System (ADS)

    Tafreshi, Babak A.

    In the absolute silence of a desert night, surrounded by an arena of celestial beauties, a gentle breeze shifts the tiny grains of sand around me. There is a patchy glow of light visible all across the eastern horizon. It is gradually ascending over the sand dunes. The glow represents billions of stars in our home galaxy rising above the horizon of our planet. I have seen such dream-like starry scenes from many locations; from the boundless dark skies of the African Sahara when the summer Milky Way was arching over giant sandstones, to the shimmering beauty of the Grand Canyon under moonlight, and the transparent skies of the Himalayas when the bright stars of winter were rising above where the highest peak on Earth (Mt. Everest) meets the sky. These are forever-engraved moments in my memory. Astrophotography is not only about recording the celestial world. It can lead you to a life of adventure and discovery (Fig. 1).

  6. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  7. The NASA SETI sky survey: Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Renzetti, N. A.

    1989-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future.

  8. Launch window definition for sky target experiments.

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1973-01-01

    This paper is a brief report on the computer program developed for the Extraterrestrial Physics Barium Ion Cloud (BIC) Project. The mathematical analysis developed for the program along with its programing characteristics are pointed out to show that this program is adaptable to similar sky target projects. Definite viewing constraints are specified so that the chosen ground tracking stations can photograph the behavior of the sky target after its release. Viewing factors include the illumination of the target by the sun, the relative elevation look angle to the target from each tracking station, the solar and lunar depression angles at each tracking station, and the total sky background brightness of the target relative to each tracking station. Numeric values are assigned to each factor through program input. The program output is flexible so that the results of the window calculations can be studied to the depth required.

  9. Sky surveys in the ultraviolet. [spaceborne astronomy

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.

    1978-01-01

    Instrumentation, results, and future prospects for sky surveys at UV wavelengths inaccessible from the ground are reviewed. Detectors and optical materials, coatings, and systems for UV surveys are discussed, previously performed UV sky surveys are recounted, and some specific results of these surveys are examined. The rationale for UV surveys is explained, and the detectors and instrumentation considered for future UV surveys are described. It is noted that for the wavelength range from 1000 to 2000 A, detectors and instrumentation are already available to provide an all-sky UV survey of moderate resolution (10 to 30 arcsec) and moderate sensitivity (reaching hot stars as faint as 18th visual magnitude in direct imagery and 11th magnitude spectrographically with 2-A resolution).

  10. Infrared Sky Brightness Monitors for Antarctica

    NASA Astrophysics Data System (ADS)

    Storey, J. W. V.; Ashley, M. C. B.; Boccas, M.; Phillips, M. A.; Schinckel, A. E. T.

    1999-06-01

    Two sky brightness monitors-one for the near-infrared and one for the mid-infrared-have been developed for site survey work in Antarctica. The instruments, which we refer to as the NISM (Near-Infrared Sky Monitor) and the MISM (Mid-Infrared Sky Monitor), are part of a suite of instruments being deployed in the Automated Astrophysical Site-Testing Observatory (AASTO). The chief design constraints include reliable, autonomous operation, low power consumption, and of course the ability to operate under conditions of extreme cold. The instruments are currently operational at the Amundsen-Scott South Pole Station, prior to deployment at remote, unattended sites on the high antarctic plateau.

  11. Extended Source/Galaxy All Sky 2

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey's All-Sky Survey Extended Source Catalog,; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image.

  12. Hyperspectral all-sky imaging of auroras.

    PubMed

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-03

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms.

  13. Polarization patterns of the twilight sky

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  14. Modelling and Display of the Ultraviolet Sky

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  15. "Big Events" and Networks.

    PubMed

    Friedman, Samuel; Rossi, Diana; Flom, Peter L

    2006-01-01

    Some, but not all, "big events" such as wars, revolutions, socioeconomic transitions, economic collapses, and ecological disasters in recent years seem to lead to large-scale HIV outbreaks (Friedman et al, in press; Hankins et al 2002). This was true of transitions in the USSR, South Africa and Indonesia, for example, but not those in the Philippines or (so far) in Argentina. It has been hypothesized that whether or not HIV outbreaks occur is shaped in part by the nature and extent of changes in the numbers of voluntary or involuntary risk-takers, which itself may be related to the growth of roles such as sex-sellers or drug sellers; the riskiness of the behaviors engaged in by risk-takers; and changes in sexual and injection networks and other "mixing patterns" variables. Each of these potential causal processes, in turn, is shaped by the nature of pre-existing social networks and the patterns and content of normative regulation and communication that happen within these social networks-and on how these social networks and their characteristics are changed by the "big event" in question. We will present ideas about what research is needed to help understand these events and to help guide both indigenous community-based efforts to prevent HIV outbreaks and also to guide those who organize external intervention efforts and aid.

  16. Nursing Needs Big Data and Big Data Needs Nursing.

    PubMed

    Brennan, Patricia Flatley; Bakken, Suzanne

    2015-09-01

    Contemporary big data initiatives in health care will benefit from greater integration with nursing science and nursing practice; in turn, nursing science and nursing practice has much to gain from the data science initiatives. Big data arises secondary to scholarly inquiry (e.g., -omics) and everyday observations like cardiac flow sensors or Twitter feeds. Data science methods that are emerging ensure that these data be leveraged to improve patient care. Big data encompasses data that exceed human comprehension, that exist at a volume unmanageable by standard computer systems, that arrive at a velocity not under the control of the investigator and possess a level of imprecision not found in traditional inquiry. Data science methods are emerging to manage and gain insights from big data. The primary methods included investigation of emerging federal big data initiatives, and exploration of exemplars from nursing informatics research to benchmark where nursing is already poised to participate in the big data revolution. We provide observations and reflections on experiences in the emerging big data initiatives. Existing approaches to large data set analysis provide a necessary but not sufficient foundation for nursing to participate in the big data revolution. Nursing's Social Policy Statement guides a principled, ethical perspective on big data and data science. There are implications for basic and advanced practice clinical nurses in practice, for the nurse scientist who collaborates with data scientists, and for the nurse data scientist. Big data and data science has the potential to provide greater richness in understanding patient phenomena and in tailoring interventional strategies that are personalized to the patient. © 2015 Sigma Theta Tau International.

  17. The LWA1 Low Frequency Sky Survey

    NASA Astrophysics Data System (ADS)

    Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration

    2015-01-01

    The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST

  18. Mining the Optical Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.

    2002-05-01

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations of less than a day is a rich area of research that remains largely unexplored. The fact that spectacular optical transients exist was clearly demonstrated by the detection of an optical flash associated with a Gamma Ray Burst at redshift z=1.6. However, the depth and breath of optical sky monitoring is so incomplete that this cosmological optical transient, which reached the astounding apparent magnitude of 9, would have been missed but for the real-time position provided by a high-energy satellite. Since there are many reasons to suspect the existence of rapid optical transients that cannot be found through sky monitoring by high-energy satellites, we need all-sky optical monitoring systems that can locate rapid transients in real time. We discuss how with existing technology it is possible to construct robotic telescope systems for monitoring all of the optical sky that can autonomously locate celestial optical transients with timescales as short as a fraction of a minute. The data from such a monitoring system could also be used to recognize important variations of known sources. Real-time alerts from such an optical all-sky monitoring system would enable otherwise impossible observations with more powerful, narrow-field telescopes that more deeply probe the physics of the rapidly varying sources. As an example of this new type of sky monitoring system, we discuss the RAPTOR telescope system at Los Alamos National Laboratory that is designed to identify and make follow-up observations of optical transients in real time. The system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1500 square degrees for transients down to about 12th magnitude in 30 seconds. Each array also contains a sensitive, higher resolution "fovea" telescope, capable of imaging at a faster cadence

  19. The all-sky camera revitalized.

    PubMed

    Oznovich, I; Yee, R; Schiffler, A; McEwen, D J; Sofko, G J

    1994-10-20

    An all-sky camera, a ground imager used since the 1950's in the aeronomy and space physics studies, was refurbished with a modern control, digitization, and archiving system. Monochromatic and broadband digital images of airglow and aurora are continuously integrated and recorded by the low-cost unmanned system, which is located in northern Canada. Radiometric corrections applied to the data include noise subtraction, normalization to a flat-field response, and absolute calibration. The images are geometrically corrected with star positions and projected onto a geographic or geomagnetic coordinate system. An illustration of the application of corrected all-sky camera images to the study of auroral spirals is given.

  20. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Liebl, Michael

    2010-05-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available.2-5 Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of classroom demonstrations have been described for showing the effects.6-11 This paper describes how these demonstrations can be enhanced by using a spectrometer to measure the preferential scattering of the shorter wavelength light.

  1. The Big Read: Case Studies

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2009

    2009-01-01

    The Big Read evaluation included a series of 35 case studies designed to gather more in-depth information on the program's implementation and impact. The case studies gave readers a valuable first-hand look at The Big Read in context. Both formal and informal interviews, focus groups, attendance at a wide range of events--all showed how…

  2. The Rise of Big Data in Neurorehabilitation.

    PubMed

    Faroqi-Shah, Yasmeen

    2016-02-01

    In some fields, Big Data has been instrumental in analyzing, predicting, and influencing human behavior. However, Big Data approaches have so far been less central in speech-language pathology. This article introduces the concept of Big Data and provides examples of Big Data initiatives pertaining to adult neurorehabilitation. It also discusses the potential theoretical and clinical contributions that Big Data can make. The article also recognizes some impediments in building and using Big Data for scientific and clinical inquiry.

  3. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths

    NASA Astrophysics Data System (ADS)

    Román, R.; Antón, M.; Cazorla, A.; de Miguel, A.; Olmo, F. J.; Bilbao, J.; Alados-Arboledas, L.

    2012-08-01

    This paper proposes a method to obtain spectral sky radiances, at three wavelengths (464, 534 and 626 nm), from hemispherical sky images. Images are registered with the All-Sky Imager installed at the Andalusian Center for Environmental Research (CEAMA) in Granada (Spain). The methodology followed in this work for the absolute calibration in radiance of this instrument is based on the comparison of its output measurements with modelled sky radiances derived from the LibRadtran/UVSPEC radiative transfer code under cloud-free conditions. Previously, in order to check the goodness of the simulated radiances, these are compared with experimental values recorded by a CIMEL sunphotometer. In general, modelled radiances are in agreement with experimental data, showing mean differences lower than 20% except for the pixels located next to the Sun position that show larger errors. The relationship between the output signal of the All-Sky Imager and the modelled sky radiances provides a calibration matrix for each image. The variability of the matrix coefficients is analyzed, showing no significant changes along a period of 5 months. Therefore, a unique calibration matrix per channel is obtained for all selected images (a total of 705 images per channel). Camera radiances are compared with CIMEL radiances, finding mean absolute differences between 2% and 15% except for pixels near to the Sun and high scattering angles. We apply these calibration matrices to three images in order to study the sky radiance distributions for three different sky conditions: cloudless, overcast and partially cloudy. Horizon brightening under cloudless conditions has been observed together with the enhancement effect of individual clouds on sky radiance.

  4. Changes in Skiing and Snowboarding Injury Epidemiology and Attitudes to Safety in Big Sky, Montana, USA

    PubMed Central

    Patrick, Edward; Cooper, Jamie G.; Daniels, Jeff

    2015-01-01

    Background Despite a risk of harm, the past 20 years have seen dramatically increased participation in snow sports such as skiing, and particularly, snowboarding. This period has also seen revolutions in piste maintenance and paradigm developments in the use of safety equipment. Consequently, the numbers and characteristics of injury may be very different from those traditionally quoted. Purpose To compare and evaluate the injury patterns among skiers and snowboarders in a North American ski resort in 1996 and 2013. Study Design Cross-sectional study; Level of evidence, 3. Methods Questionnaire-based cross-sectional studies were carried out independently in a North American ski resort between the dates of March 6 and April 11 in both 1996 and 2013. Demographic data and information about incident circumstances were collected from injured patients who visited the local on-site clinic. Data were compared statistically to assess for significant changes in injury characteristics between the 2 time periods. Results The 1996 report consisted of 148 injured participants, and the 2013 study included 156 participants. Results from 2013 demonstrated significant increases in helmet use, the number of snowboarders injured, and shoulder injuries. Injury was also more likely in those aged 46 to 55 years, those never having had professional instruction, or those with rented equipment. Significant reductions were seen in those injured with other people close by and in the 36- to 45-year age group. Overall, the knee was the most commonly injured body part in both periods (1996: 31%, n = 38; 2013: 33%, n = 36), although upper limb injuries were predominant in snowboarders. Conclusion Snow sports injury characteristics of patients presenting to a ski resort medical clinic have changed between 1996 and 2013. These findings can be used to further inform safety recommendations and areas to target with further research. PMID:26665097

  5. The Big Occulting Steerable Satellite (BOSS)

    SciTech Connect

    Copi, Craig J.; Starkman, Glenn D.

    2000-03-20

    Natural (such as lunar) occultations have long been used to study sources on small angular scales, while coronographs have been used to study high-contrast sources. We describe here the properties of the Big Occulting Steerable Satellite (BOSS), a large steerable occulting satellite to combine both of these techniques. BOSS will have several advantages over standard occulting bodies. BOSS would block all but about 4x10{sup -5} of the light at 1 {mu}m in the region of interest around the star for planet detections (with even better blocking possible using new film surface etching techniques). Because the occultation occurs outside the telescope, scattering inside the telescope does not degrade this performance. BOSS could be combined with a space telescope at the Earth-Sun L2 point to yield very long integration times, in excess of 3000 s. If placed in Earth orbit, integration times of 160-1600 s can be achieved from most major telescope sites for objects in over 90% of the sky. Applications for BOSS include direct imaging of planets around nearby stars. Planets separated by as little as 0.1''-0.25'' from the star they orbit could be seen down to a relative intensity as little as 1x10{sup -9} around a magnitude 8 (or brighter) star. Other applications include ultra-high-resolution imaging of compound sources, such as microlensed stars and quasars, down to a resolution as little as 0.1 mas. (c) 2000 The American Astronomical Society.

  6. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of

  7. Spectral karyotyping (SKY) in hematological neoplasia

    NASA Astrophysics Data System (ADS)

    Preiss, Birgitte S.; Pedersen, Rikke K.; Kerndrup, Gitte B.

    2001-07-01

    From November 1, 1997 till November 1, 2000 we have investigated 204 cases of acute myeloid leukemia (AML) (nequals95), acute lymphatic leukemia (ALL) (nequals40), myelodysplastic syndrome (MDS) (nequals11), chronic myeloid leukemia (CML) (nequals9), chronic lymphatic leukemia (CLL) (nequals4) and non-Hodgkin lymphoma (NHL) (nequals45) cytogenetically, using G-band analysis and spectral karyotyping (SKY). By SKY we were able to detect the abnormal clones in all cases but 9. In the G-band preparations these cases showed very few abnormal mitoses. The SKY either extended or confirmed the G-band findings in 94% of those with an abnormal karyotype. Cryptic translocations (translocations not suspected from the G-band karyotype) were found in 71 cases (26 AML, 9 ALL, 5 MDS, 2 CLL and 29 NHL). We find SKY a powerful adjuvant diagnostic tool that does not compromise one of the advantages of karyotyping techniques, the analysis of the entire genome which, in contrast to molecular biological techniques, still leave the possibility to get mroe answers than questions posed.

  8. Another Kind of Change in the Sky

    NASA Astrophysics Data System (ADS)

    Percy, John R.; Mattei, Janet A.

    2003-12-01

    AAVSO-ers automatically think of variable stars when they think of change in the sky. In the school science curriculum, however, change in the sky refers to the motions of the sun, moon, and planets in the sky. Students are encouraged to observe these motions, since they are a good way of doing science. Planetary motions can be dull, however, and variable stars can be exciting, but the usual concern is that very few stars can be seen from urban locations. We have therefore developed this simple activity in which students estimate the brightness of the urban variable Betelgeuse, relative to Aldebaran and Procyon, and pool their own results with longer-term data from the AAVSO web site. They can then exercise a wide range of science and math skills, as well as investigate one of the brightest, largest, and most bizarre objects in the sky. We show how this activity, which is an extension of the AAVSO's Hands-On Astrophysics project, meets most of the expectations of a typical school science curriculum.

  9. Very large radio surveys of the sky

    PubMed Central

    Condon, J. J.

    1999-01-01

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys. PMID:10220365

  10. Curiosity Sky Crane Maneuver, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This artist concept shows the sky crane maneuver during the descent of NASA Curiosity rover to the Martian surface. The sheer size of the rover over one ton, or 900 kilograms would preclude it from taking advantage of an airbag-assisted landing.

  11. Why Is the Sky Dark at Night?

    ERIC Educational Resources Information Center

    Stinner, Arthur

    2014-01-01

    The puzzle as to just why the sky is dark at night, given that there are so many stars, has been around at least since Newton. This article summarizes six cosmological models that have been used to attempt to give an account of this puzzle including the Copernican universe, the Newton-Halley universe, the nineteenth century "one galaxy"…

  12. Very large radio surveys of the sky.

    PubMed

    Condon, J J

    1999-04-27

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys.

  13. Predicting UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Mohan, R.; Sreejith, A. G.; Murthy, Jayant

    2013-02-01

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse Galactic light, depends on different factors. Airglow is dependent on the time of day; zodiacal light depends on the time of year, angle from the Sun and from the ecliptic; diffuse UV emission depends on the line of sight. To provide a full description of the sky along any line of sight, we have also added stars. The UV background light can dominate in many areas of the sky and severely limit viewing directions due to overbrightness. The simulator, available as a downloadable package and as a web-based tool, can be applied to preparation of real space missions and instruments. For demonstration, we present the example use for the two near-future UV missions: UVIT instrument on the Indian Astrosat mission and a new proposed wide-field (∼1000 square degrees) transient explorer satellite.

  14. The van Gogh of the Infrared Sky

    NASA Image and Video Library

    2011-04-25

    NASA Wide-field Infrared Survey Explorer is a little like the Vincent van Gogh of the infrared sky, providing the world with picturesque images of the cosmos by representing infrared light through color. This image is the nebula NGC 2174.

  15. Why Is the Sky Dark at Night?

    ERIC Educational Resources Information Center

    Stinner, Arthur

    2014-01-01

    The puzzle as to just why the sky is dark at night, given that there are so many stars, has been around at least since Newton. This article summarizes six cosmological models that have been used to attempt to give an account of this puzzle including the Copernican universe, the Newton-Halley universe, the nineteenth century "one galaxy"…

  16. Sky brightness during eclipses: a review.

    PubMed

    Silverman, S M; Mullen, E G

    1975-12-01

    This paper is abstracted from the introductory section of "Sky Brightness During Eclipses: A Compendium from the Literature," AFCRL-TR-74-0363, Special Reports 180, Air Force Cambridge Research Laboratories, Hanscom AFB, Massachusetts 01731. This report should be consulted for fuller details and tables.

  17. The Last Big Bang

    SciTech Connect

    McGuire, Austin D.; Meade, Roger Allen

    2016-09-13

    As one of the very few people in the world to give the “go/no go” decision to detonate a nuclear device, Austin “Mac” McGuire holds a very special place in the history of both the Los Alamos National Laboratory and the world. As Commander of Joint Task Force Unit 8.1.1, on Christmas Island in the spring and summer of 1962, Mac directed the Los Alamos data collection efforts for twelve of the last atmospheric nuclear detonations conducted by the United States. Since data collection was at the heart of nuclear weapon testing, it fell to Mac to make the ultimate decision to detonate each test device. He calls his experience THE LAST BIG BANG, since these tests, part of Operation Dominic, were characterized by the dramatic displays of the heat, light, and sounds unique to atmospheric nuclear detonations – never, perhaps, to be witnessed again.

  18. BIG DATA AND STATISTICS

    PubMed Central

    Rossell, David

    2016-01-01

    Big Data brings unprecedented power to address scientific, economic and societal issues, but also amplifies the possibility of certain pitfalls. These include using purely data-driven approaches that disregard understanding the phenomenon under study, aiming at a dynamically moving target, ignoring critical data collection issues, summarizing or preprocessing the data inadequately and mistaking noise for signal. We review some success stories and illustrate how statistical principles can help obtain more reliable information from data. We also touch upon current challenges that require active methodological research, such as strategies for efficient computation, integration of heterogeneous data, extending the underlying theory to increasingly complex questions and, perhaps most importantly, training a new generation of scientists to develop and deploy these strategies. PMID:27722040

  19. Big cat genomics.

    PubMed

    O'Brien, Stephen J; Johnson, Warren E

    2005-01-01

    Advances in population and quantitative genomics, aided by the computational algorithms that employ genetic theory and practice, are now being applied to biological questions that surround free-ranging species not traditionally suitable for genetic enquiry. Here we review how applications of molecular genetic tools have been used to describe the natural history, present status, and future disposition of wild cat species. Insight into phylogenetic hierarchy, demographic contractions, geographic population substructure, behavioral ecology, and infectious diseases have revealed strategies for survival and adaptation of these fascinating predators. Conservation, stabilization, and management of the big cats are important areas that derive benefit from the genome resources expanded and applied to highly successful species, imperiled by an expanding human population.

  20. Big-bounce genesis

    NASA Astrophysics Data System (ADS)

    Li, Changhong; Brandenberger, Robert H.; Cheung, Yeuk-Kwan E.

    2014-12-01

    We report on the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a big bounce at the early stage in the evolution of our currently observed universe. A model independent study of dark matter production in the pre-bounce contraction and the post-bounce expansion epochs of the bounce universe reveals a new venue for achieving the observed relic abundance of our present universe, in which a significantly smaller amount of dark matter with a smaller cross section—as compared to the prediction of standard cosmology—is produced and the information about the bounce universe evolution is preserved by the out-of-thermal-equilibrium process. Once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario.

  1. NRAO Makes Available VLA Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    1994-06-01

    An original and comprehensive data set potentially full of scientific surprises now is available to astronomers, students and the public through the information superhighway. Radio images of the sky produced by the Very Large Array radio telescope -- one of the premier astronomical instruments in the world -- as part of a massive survey now are stored in an electronic repository avail- able over the Internet computer communications network. "Each of these sensitive new sky maps shows about a thou- sand radio-emitting objects, most of which have never been seen before," said Dr. J. J. Condon, leader of the National Radio As- tronomy Observatory (NRAO) survey team. "We are releasing them as soon as they are completed because they contain more data than we could possibly analyze by ourselves." "By using electronic distribution, we can open this tre- mendous resource of information for computer analysis by all as- tronomers immediately, without waiting for traditional publication," Condon added. The radio images are copyright NRAO/ AUI. Permission is granted for use of the material without charge for scholarly, educational and private non-commercial purposes. "It is entirely conceivable -- even probable -- that valuable discoveries will be made by students or amateur astrono- mers who devote the time to study these maps carefully," said team member Dr. W. D. Cotton. "Making this new information available electronically means that more people can participate in adding to its scientific value." The maps are a product of the NRAO VLA Sky Survey (NVSS), which began its observational phase in September of 1993 and will cover 82 percent of the sky when completed by the end of 1996. The NVSS is expected to produce a catalog of more than two million ra- dio-emitting objects in the sky, and it is the first sky survey sensitive to linearly polarized emission from radio sources beyond our own Milky Way galaxy. "The NVSS is being made as a service to the entire astronomical

  2. Big bang and big crunch in matrix string theory

    SciTech Connect

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-04-15

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.

  3. Introduction: The Night Sky Back Home

    NASA Astrophysics Data System (ADS)

    Upgren, A. R.

    2001-12-01

    Light pollution is a proper and fitting subject of great concern to all astronomers. Back before 1988, when the International Dark-Sky Association was founded, astronomical concern centered around and was mostly restricted to the large southwestern mountaintop observatories. This is understandable since these largest telescopes demand the darkest possible skies. The IDA was promoted and organized with this goal in mind. Today the IDA numbers almost 8000 members and is dominated by environmentalists and lighting engineers as much as or more than professional astronomers. Amateur astronomers from skygazers to those with CCD's on their telescopes are now of great importance in the realm of light pollution awareness and control. They are busy in almost every state and province working to pass ordinances restricting the worst in outdoor lighting. For example. Connecticut, a state with little professional astronomical observation, has passed the first law to require FCO (full-cutoff shielding) on every new and renovated street and highway light in the state. The needs of astronomers in places like New England differ from those of Arizona, California, and Hawaii where LPS is much preferred to HPS illumination. In the lesser climates, FCO and lumen constraints are of much greater concern. Almost every state still has very dark sky areas, well worth preserving. It is of the greatest importance for amateurs and professionals to work together to preserve dark skies wherever they are found. Our profession needs for its continued health, places near population centers where the Milky Way can still be seen. Many future astronomers will be brought into the field by the sights of a dark sky. I encourage the AAS to become more active, individually and collectively, in the multitude of efforts now in progress across the continent.

  4. Between Earth and Sky - Climate Change on the Last Frontier

    NASA Astrophysics Data System (ADS)

    Weindorf, David; Hunton, Paul

    2017-04-01

    Globally, Gelisols comprise 11.26 million km2; 8.6% of earth's surface. These soils effectively sequester 25% of global soil organic carbon. Global climate change has disproportionately affected arctic regions of the world, accelerating warming, erosion events, and altering soils and ecosystems. While many documentary films have touched on global climate change, this film is the first to consider the critical role soils play in the biogeochemical carbon cycle. Between Earth and Sky is a feature length documentary filmed in 4K which presents both the science of soil/climate dynamics whilst integrating the perspective of native Alaskans and respected elders of the community who provide personal accounts of changes observed over the past decades in Alaska. More than 40 scientists from universities, governmental research units, and consultancies deconstruct this complex topic to explain how soils form an integral part of the carbon cycle in arctic environments. This presentation will cover the development of the film from initial concepts, writing, fundraising, and project development, through filming on-site, post-production, marketing, and outreach plans.

  5. Constellations and Inflow of Galactic Wind -- IBEX Full Sky Map

    NASA Image and Video Library

    Animation, zooming out from Scorpio to a full sky view of the stars. It blends over to a color-coded full sky neutral atom map, as obtained with IBEX at energies where the interstellar wind is the ...

  6. LEE VINING INTAKE LOOKING SOUTH. (MOTTLED SKY FROM CONDENSED MOISTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEE VINING INTAKE LOOKING SOUTH. (MOTTLED SKY FROM CONDENSED MOISTURE ON NEGATIVE AFFECTING EVEN PROCESSING OF SKY, SAVED FOR DOCUMENTARY PURPOSES) - Los Angeles Aqueduct, Lee Vining Intake Structure, Los Angeles, Los Angeles County, CA

  7. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  8. NightSkyLive.net: Bringing the Night Sky into Your Classroom

    NASA Astrophysics Data System (ADS)

    Nemiroff, R. J.; Night Sky Live

    2004-12-01

    Show your class a full live night sky with a single click. The Night Sky Live project now has 10 fisheye CONtinuous CAMeras (CONCAMs) deployed around the world that send live images of the night sky back to http://NightSkyLive.net every few minutes. Any classroom that has access to a web browser can see the current night sky, live, horizon to horizon, similar in depth to what the human eye can see, and annotated, above a major observatory somewhere in the world. Additionally, archived images and automatically generated movies show how the night sky appeared over the past night and the past year, and how it will likely appear above your student's heads tonight, all through the night. Stars, planets, and constellations are automatically labelled. In addition to live products, canned on-line tutorials for beginning students use archived NSL images to explain concepts such as diurnal motion and and demonstrate the transience of variable stars. Projects for more advanced undergraduates include using the automatically generated photometry files to follow the light curves of well known stars such as Polaris, Betelgeuse, and Alpha Centauri.

  9. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    PubMed

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.

  10. INVESTIGATIONS OF THE POLARIZATION OF THE SUNLIT SKY.

    DTIC Science & Technology

    SOLAR RADIATION, POLARIZATION), (*ATMOSPHERES, OPTICAL PROPERTIES), (*OPTICS, METEOROLOGICAL PHENOMENA), SKY BRIGHTNESS, ELECTROMAGNETIC RADIATION, SCATTERING, AEROSOLS, PHOTOELECTRIC EFFECT, POLARISCOPES

  11. Big Bang of Massenergy and Negative Big Bang of Spacetime

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2017-01-01

    There is a balance between Big Bang of Massenergy and Negative Big Bang of Spacetime in the universe. Also some scientists considered there is an anti-Big Bang who could produce the antimatter. And the paper supposes there is a structure balance between Einstein field equation and negative Einstein field equation, a balance between massenergy structure and spacetime structure, a balance between an energy of nucleus of the stellar matter and a dark energy of nucleus of the dark matter-dark energy, and a balance between the particle and the wave-a balance system between massenergy (particle) and spacetime (wave). It should explain of the problems of the Big Bang. http://meetings.aps.org/Meeting/APR16/Session/M13.8

  12. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  13. Homogeneous and isotropic big rips?

    SciTech Connect

    Giovannini, Massimo

    2005-10-15

    We investigate the way big rips are approached in a fully inhomogeneous description of the space-time geometry. If the pressure and energy densities are connected by a (supernegative) barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is approached. This behavior is contrasted with the usual big-bang singularities. A similar analysis is performed in the case of sudden (quiescent) singularities and it is argued that the spatial gradients may well be non-negligible in the vicinity of pressure singularities.

  14. Big Data and Ambulatory Care

    PubMed Central

    Thorpe, Jane Hyatt; Gray, Elizabeth Alexandra

    2015-01-01

    Big data is heralded as having the potential to revolutionize health care by making large amounts of data available to support care delivery, population health, and patient engagement. Critics argue that big data's transformative potential is inhibited by privacy requirements that restrict health information exchange. However, there are a variety of permissible activities involving use and disclosure of patient information that support care delivery and management. This article presents an overview of the legal framework governing health information, dispels misconceptions about privacy regulations, and highlights how ambulatory care providers in particular can maximize the utility of big data to improve care. PMID:25401945

  15. More Observations in Schools for Promoting Astronomy and Sky Protection

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2015-03-01

    In astronomy it is important to promote observation and the quality of the sky is essential for a good observation impact. It is important that children have a nice memory of their observations in a non-polluted sky. Using students as agents of change it is possible to promote good practice for sky protection in society.

  16. Integrated primary flight display: the sky arc

    NASA Astrophysics Data System (ADS)

    Voulgaris, Theodore J.; Metalis, Sam A.; Mobley, R. S.

    1995-05-01

    Flight instrument interpretability has been a key piloting issue because it is directly related to operator performance and inversely related to operator error. To improve interpretability we have developed the Sky Arc, a new symbology initially developed for attitude control, particularly for a helmet-mounted display. It consists of an integrated set of graphic symbols which vary in a continuous, analog fashion with changing flight parameters. The Sky Arc currently integrates, pitch, roll, heading, air speed, and terrain avoidance. The display can be integrated into a head down display, a head up display, or a helmet mounted display. In this preliminary study the usability of the Sky Arc as an attitude indicator was compared to a conventional head-up display pitch ladder symbology. The test involved six test subject pilots and a medium-fidelity simulator. The pilots were asked to fully recover from a series of unusual attitude conditions that were presented on the simulator. The time taken to recover and the correctness of the recovery procedure served as the objective evaluation measures. A Likert-type rating scale and open-ended subject matter expert opinions served as the subjective measures of evaluation. To examine whether there was a relationship between usability of the attitude indicator and difficulty of the unusual attitude, the workload levels involved in performing the unusual attitude recoveries were grouped into three levels, low, medium, and high. At each workload level there were four conditions, for a total of 12 different conditions. Each pilot was asked to recovery twice from each condition, for a total of 24 unusual attitude recovery trials. The test trials were counterbalanced and displayed in a prearranged order. No differences due to difficulty of the unusual attitude were detected. Overall, the study revealed that the Sky Arc led to generally faster recoveries than did the standard display, as well as higher subjective preference ratings

  17. The BigBOSS Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  18. Big Data and Perioperative Nursing.

    PubMed

    Westra, Bonnie L; Peterson, Jessica J

    2016-10-01

    Big data are large volumes of digital data that can be collected from disparate sources and are challenging to analyze. These data are often described with the five "Vs": volume, velocity, variety, veracity, and value. Perioperative nurses contribute to big data through documentation in the electronic health record during routine surgical care, and these data have implications for clinical decision making, administrative decisions, quality improvement, and big data science. This article explores methods to improve the quality of perioperative nursing data and provides examples of how these data can be combined with broader nursing data for quality improvement. We also discuss a national action plan for nursing knowledge and big data science and how perioperative nurses can engage in collaborative actions to transform health care. Standardized perioperative nursing data has the potential to affect care far beyond the original patient. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  19. The role of big laboratories

    NASA Astrophysics Data System (ADS)

    Heuer, R.-D.

    2013-12-01

    This paper presents the role of big laboratories in their function as research infrastructures. Starting from the general definition and features of big laboratories, the paper goes on to present the key ingredients and issues, based on scientific excellence, for the successful realization of large-scale science projects at such facilities. The paper concludes by taking the example of scientific research in the field of particle physics and describing the structures and methods required to be implemented for the way forward.

  20. Photographic surveys of the southern sky

    NASA Technical Reports Server (NTRS)

    Sim, M. E.

    1984-01-01

    Parameters of the UK 1.2 meter Schmidt telescope are described. Plates taken with this instrument are in two categories, those for systematic sky surveys and those taken at the request of research users. A collaborative project with the European Southern Observatory was undertaken to obtain a two-color survey of the sky south of -20 deg declination to complement the Palomar survey. A near infrared survey of the Galactic Plane and the Megallanic Clouds is being done. The area south of -20 deg and the zone between 0 deg and -15 deg are also being surveyed. Pending a decision on survey parameters, all available A quality prism plates are being retained to form a basis for systematic survey. Nearly half the plates taken on a service basis for the UK astronomical community are to fulfill nonsurvey requests. Plates taken for surveys which are not of A grade quality are also made available for research purposes.

  1. The ROSAT all-sky survey

    NASA Astrophysics Data System (ADS)

    Voges, W.

    1993-12-01

    The ROSAT (Roentgensatellit) X-ray astronomy satellite has completed the first all-sky X-ray and XUV survey with imaging telescopes. About 60,000 new X-ray and 400 new XUV sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source X-ray skymaps, the positional accuracy obtained for the X-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard X-rays as well as identifications from optical follow-up observations are presented.

  2. Extinction and Sky Brightness at Dome C

    NASA Astrophysics Data System (ADS)

    Faurobert, M.; Arnaud, J.; Vernisse, Y.

    2012-06-01

    We have installed a small telescope to monitor the sky brightness around the sun at the French-Italian station Concordia at Dome C in Antarctica. Previous campaigns have been performed with the same instrument at Haleakala in Hawai and Sunspot in New Mexico. We compare here the results of the first year of the campaign at Dome C (2008) to the purest sky observed at Haleakala. We show that Dome C is an outstanding site for coronal observations. Compared to Haleaka, it appears to be more transparent, and to contain less aerosols. Its water vapour content is also significantly smaller. These results still have to be confirmed by the analysis of the 2009 and 2010 data.

  3. Exploring the Night Sky with Binoculars

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    On a clear, starry night, the jewelled beauty and unimaginable immensity of our Universe is awe-inspiring. Star-gazing with binoculars is rewarding and may begin a lifelong hobby! Patrick Moore has painstakingly researched Exploring the Night Sky with Binoculars to describe how to use binoculars for astronomical observation. He explains basic astronomy and the selection of binoculars, then discusses the stars, clusters, nebulae and galaxies that await the observer. The sky seen from northern and southern hemispheres is charted season by season, with detailed maps of all the constellations. The reader can also observe the Sun, Moon, planets, comets and meteors. With many beautiful illustrations, this handbook will be helpful and encouraging to casual observers and those cultivating a more serious interest. The enjoyment of amateur astronomy is now available to everybody.

  4. The Rosat x-ray sky

    NASA Astrophysics Data System (ADS)

    Voges, Wolfgang

    1995-01-01

    The ROSAT (Röntgensatellit) X-ray astronomy satellite has completed the first all-sky x-ray and XUV survey with imaging telescopes. About 60 000 new x-ray and 400 new XUV (1) sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source x-ray skymaps, the positional accuracy obtained for the x-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard x-rays as well as identifications from optical follow-up observations will be presented.

  5. Big Spherules near 'Victoria'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This frame from the microscopic imager on NASA's Mars Exploration Rover Opportunity shows spherules up to about 5 millimeters (one-fifth of an inch) in diameter. The camera took this image during the 924th Martian day, or sol, of Opportunity's Mars-surface mission (Aug. 30, 2006), when the rover was about 200 meters (650 feet) north of 'Victoria Crater.'

    Opportunity discovered spherules like these, nicknamed 'blueberries,' at its landing site in 'Eagle Crater,' and investigations determined them to be iron-rich concretions that formed inside deposits soaked with groundwater. However, such concretions were much smaller or absent at the ground surface along much of the rover's trek of more than 5 kilometers (3 miles) southward to Victoria. The big ones showed up again when Opportunity got to the ring, or annulus, of material excavated and thrown outward by the impact that created Victoria Crater. Researchers hypothesize that some layer beneath the surface in Victoria's vicinity was once soaked with water long enough to form the concretions, that the crater-forming impact dispersed some material from that layer, and that Opportunity might encounter that layer in place if the rover drives down into the crater.

  6. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  7. Dark Skies, Bright Kids! Year 5

    NASA Astrophysics Data System (ADS)

    Prager, Brian; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Bittle, L.; Borish, H.; Burkhardt, A.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Graninger, D.; Lauck, T.; Liss, S.; Oza, A.; Peacock, S.; Romero, C.; Sokal, K. R.; Stierwalt, S.; Walker, L.; Wenger, T.; Zucker, C.

    2014-01-01

    Our public outreach group Dark Skies, Bright Kids! (DSBK) fosters science literacy in Virginia by bringing a hands-on approach to astronomy that engages children's natural excitement and curiosity. We are an entirely volunteer-run group based out of the Department of Astronomy at the University of Virginia and we enthusiastically utilize astronomy as a 'gateway science.' We create long-term relationships with students during an 8 to 10 week long, after-school astronomy club at under served elementary schools in neighboring counties, and we visited 3 different schools in 2013. Additionally, we organize and participate in science events throughout the community. The fifth year of DSBK was marked by surpassing 10,000 contact hours in Spring 2013 Semester and by ringing in the fall semester with our biggest, most successful star party to date. We hosted the Third Annual Central Virginia Star Party, free and open to the community to encourage families to enjoy astronomy together. Nearly four hundred people of all ages attended, double the number from previous years. Joining with local astronomical societies, we offered an enlightening and exciting night with resources rarely accessible to the public, such as an IR camera and a portable planetarium. With numerous telescopes pointed at the sky, and a beautifully clear night with views of the Milky Way, the International Space Station, and numerous meteors, the star party was a fantastic opportunity to introduce many of our guests to the natural wonders of our night sky and enjoy some of the darkest skies on the eastern seaboard.

  8. Colors of the Daytime Overcast Sky

    DTIC Science & Technology

    2005-09-20

    sunlight) spectra beneath overcast skies reveal an unexpectedly wide gamut of pastel colors. Analyses of these spectra indicate that at visible wavelengths...care, however, we also were able to acquire some data in drizzle, light rain, and snow. What kinds of chromaticity gamuts do such overcasts produce...noteworthy in Fig. 1. First, its chromaticity gamut for clear daylight is much less than for its two stratus and stratocumu- lus overcasts. Using the

  9. Challenges of Big Data Analysis

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-01-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions. PMID:25419469

  10. Challenges of Big Data Analysis.

    PubMed

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-06-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions.

  11. Powering Big Data for Nursing Through Partnership.

    PubMed

    Harper, Ellen M; Parkerson, Sara

    2015-01-01

    The Big Data Principles Workgroup (Workgroup) was established with support of the Healthcare Information and Management Systems Society. Building on the Triple Aim challenge, the Workgroup sought to identify Big Data principles, barriers, and challenges to nurse-sensitive data inclusion into Big Data sets. The product of this pioneering partnership Workgroup was the "Guiding Principles for Big Data in Nursing-Using Big Data to Improve the Quality of Care and Outcomes."

  12. Study of sky coverage for Multi-conjugate adaptative optics

    NASA Astrophysics Data System (ADS)

    Blanc, A.; Fusco, T.; Rousset, G.; Michau, V.; Beuzit, J.-L.; Nicolle, M.; Hubin, N.

    2004-12-01

    This presentation is concerned with sky coverage studies for MCAO systems. We propose a modification of the "classical" computing for the sky coverage (only based on star counts) by taking into account the sky area actually observable from a fixed number of stars. The results obtained by this new approach are compared with those of the "classical" method. Two types of systems are studied: the "Layer Oriented" and the "Star Oriented" approaches. The sky coverage is computed from stellar densities provided by the Besancon model of the Milky Way [Robin et al-2003]. The results are presented for different conditions (star number, limiting magnitude, position in the sky, etc.).

  13. Tropospheric haze and colors of the clear daytime sky.

    PubMed

    Lee, Raymond L

    2015-02-01

    To casual observers, haze's visible effects on clear daytime skies may seem mundane: significant scattering by tropospheric aerosols visibly (1) reduces the luminance contrast of distant objects and (2) desaturates sky blueness. However, few published measurements of hazy-sky spectra and chromaticities exist to compare with these naked-eye observations. Hyperspectral imaging along sky meridians of clear and hazy skies at one inland and two coastal sites shows that they have characteristic colorimetric signatures of scattering and absorption by haze aerosols. In addition, a simple spectral transfer function and a second-order scattering model of skylight reveal the net spectral and colorimetric effects of haze.

  14. NIXNOX project: Enjoy the dark skies of Spain

    NASA Astrophysics Data System (ADS)

    Zamorano, J.; Sánchez de Miguel, A.; Alfaro, E.; Martínez-Delgado, D.; Ocaña, F.; Nievas, M.; Gómez Castaño, J.

    2013-05-01

    The NIXNOX project, sponsored by the Spanish Astronomical Society, is a Pro-Am collabo- ration with the aim of finding sites with dark skies. All sky data of the night sky brightness is being obtained by amateur astronomers with Sky Quality Meter (SQM) photometers. We are not looking for remote locations because the places should be easily accessible by people with children. Our goal is to motivate citizens to observe the night sky. NIXNOX will provide information to answer the question: where can I go to observe the stars with my family?

  15. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  16. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  17. IRAS sky survey atlas: Explanatory supplement

    NASA Technical Reports Server (NTRS)

    Wheelock, S. L.; Gautier, T. N.; Chillemi, J.; Kester, D.; Mccallon, H.; Oken, C.; White, J.; Gregorich, D.; Boulanger, F.; Good, J.

    1994-01-01

    This Explanatory Supplement accompanies the IRAS Sky Survey Atlas (ISSA) and the ISSA Reject Set. The first ISSA release in 1991 covers completely the high ecliptic latitude sky, absolute value of beta is greater than 50 deg, with some coverage down to the absolute value of beta approx. equal to 40 deg. The second ISSA release in 1992 covers ecliptic latitudes of 50 deg greater than the absolute value of beta greater than 20 deg, with some coverage down to the absolute value of beta approx. equal to 13 deg. The remaining fields covering latitudes within 20 deg of the ecliptic plane are of reduced quality compared to the rest of the ISSA fields and therefore are released as a separate IPAC product, the ISSA Reject Set. The reduced quality is due to contamination by zodiacal emission residuals. Special care should be taken when using the ISSA Reject images. In addition to information on the ISSA images, some information is provided in this Explanatory Supplement on the IRAS Zodiacal History File (ZOHF), Version 3.0, which was described in the December 1988 release memo. The data described in this Supplement are available at the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center. The interested reader is referred to the NSSDC for access to the IRAS Sky Survey Atlas (ISSA).

  18. Cosmology with all-sky surveys

    NASA Astrophysics Data System (ADS)

    Bilicki, Maciej

    2016-06-01

    Various aspects of cosmology require comprehensive all-sky mapping of the cosmic web to considerable depths. In order to probe the whole extragalactic sky beyond 100 Mpc, one must draw on multiwavelength datasets and state-of-the-art photometric redshift techniques. Here I summarize our dedicated program that employs the largest photometric all-sky surveys - 2MASS, WISE and SuperCOSMOS - to obtain accurate redshift estimates of millions of galaxies. The first outcome of these efforts - the 2MASS Photometric Redshift catalog (2MPZ) - was publicly released in 2013 and includes almost 1 million galaxies with a median redshift of z˜0.1. I discuss how this catalog was constructed and how it is being used for various cosmological tests. I also present how combining the WISE mid-infrared survey with SuperCOSMOS optical data allowed us to push to depths over 1 Gpc on unprecedented angular scales. These photometric redshift samples, with about 20 million sources in total, provide access to volumes large enough to study observationally the Copernican Principle of universal homogeneity and isotropy, as well as to probe various aspects of dark energy and dark matter through cross-correlations with other data such as the cosmic microwave or gamma-ray backgrounds. Last but not least, they constitute a test-bed for forthcoming wide-angle multi-million galaxy samples expected from such instruments as the SKA, Euclid, or LSST.

  19. Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at mid- to far-range (approximately 20 100 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). Non-traversable water bodies, such as large puddles, ponds, and lakes, are indirectly detected by detecting reflections of the sky below the horizon in color imagery. The appearance of water bodies in color imagery largely depends on the ratio of light reflected off the water surface to the light coming out of the water body. When a water body is far away, the angle of incidence is large, and the light reflected off the water surface dominates. We have exploited this behavior to detect water bodies out in the open at mid- to far-range. When a water body is detected at far range, a UGV s path planner can begin to look for alternate routes to the goal position sooner, rather than later. As a result, detecting water hazards at far range generally reduces the time required to reach a goal position during autonomous navigation. This software implements a new water detector based on sky reflections that geometrically locates the exact pixel in the sky that is reflecting on a candidate water pixel on the ground, and predicts if the ground pixel is water based on color similarity and local terrain features

  20. Sky camera geometric calibration using solar observations

    NASA Astrophysics Data System (ADS)

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. Calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.

  1. Sky camera geometric calibration using solar observations

    DOE PAGES

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-05

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. Themore » performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. In conclusion, calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.« less

  2. Sky camera geometric calibration using solar observations

    SciTech Connect

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-05

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. In conclusion, calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.

  3. Modelling UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Safanova, M.; Mohan, R.; Murthy, Jayant

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse galactic light, is dependent on various factors. Airglow is dependent on the time of day, zodiacal light on the time of year, angle from the Sun and from the ecliptic, and diffuse UV emission depends on the look direction. To provide a full description of any line of sight, we have also added stars. The diffuse UV background light can dominate in many areas of the sky and severely impact space telescopes viewing directions due to over brightness. The simulator, available as a downloadable package and as a simple web-based tool, can be applied to separate missions and instruments. For demonstration, we present the example used for two UV missions: the UVIT instrument on the Indian ASTROSAT mission to be launched in the next year and a prospective wide-field mission to search for transients in the UV.

  4. IRAS sky survey atlas: Explanatory supplement

    NASA Astrophysics Data System (ADS)

    Wheelock, S. L.; Gautier, T. N.; Chillemi, J.; Kester, D.; McCallon, H.; Oken, C.; White, J.; Gregorich, D.; Boulanger, F.; Good, J.

    1994-05-01

    This Explanatory Supplement accompanies the IRAS Sky Survey Atlas (ISSA) and the ISSA Reject Set. The first ISSA release in 1991 covers completely the high ecliptic latitude sky, absolute value of beta is greater than 50 deg, with some coverage down to the absolute value of beta approx. equal to 40 deg. The second ISSA release in 1992 covers ecliptic latitudes of 50 deg greater than the absolute value of beta greater than 20 deg, with some coverage down to the absolute value of beta approx. equal to 13 deg. The remaining fields covering latitudes within 20 deg of the ecliptic plane are of reduced quality compared to the rest of the ISSA fields and therefore are released as a separate IPAC product, the ISSA Reject Set. The reduced quality is due to contamination by zodiacal emission residuals. Special care should be taken when using the ISSA Reject images. In addition to information on the ISSA images, some information is provided in this Explanatory Supplement on the IRAS Zodiacal History File (ZOHF), Version 3.0, which was described in the December 1988 release memo. The data described in this Supplement are available at the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center. The interested reader is referred to the NSSDC for access to the IRAS Sky Survey Atlas (ISSA).

  5. Status of The Catalina Sky Survey

    NASA Astrophysics Data System (ADS)

    Christensen, Eric J.; Carson Fuls, David; Gibbs, Alex R.; Grauer, Albert D.; Hill, Rik E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.; Matheny, Rose G.; Shelly, Frank C.

    2015-11-01

    The Catalina Sky Survey (CSS) continues to be a key contributor to NASA’s Near-Earth Object (NEO) survey effort, accounting for 42% of all new discoveries in the last calendar year (618 of 1,478). Recent upgrades and improvements include the routine, queue-scheduled remote operation of a 1.0-m telescope principally dedicated to the follow-up of newly discovered NEOs; enhancement of the moving object detection software resulting in a 10-15% increase in efficiency; reduction in acquisition overheads resulting in ~10% higher data throughput; and changes to the data reduction pipeline which have yielded overall better data quality (flat-fielding, astrometry and photometry). Significant instrumentation upgrades to the 1.5-m telescope (MPC code G96) and 0.7-m Schmidt telescope (MPC code 703) are underway, despite significant delays in procuring science-grade 10k x 10k detectors. The G96 camera has been fully assembled in the lab, and on-sky commissioning is imminent. When complete these new cameras will increase the fields-of-view of the 1.5-m and 0.7-m by 4.0x (to 5.0 sq. deg.) and 2.4x (to 19.4 sq. deg.), dramatically expanding the nightly coverage for both telescopes.The Catalina Sky Survey is funded by NASA’s Near-Earth Object Observation program (NNX15AF79G).

  6. Extended Source/Galaxy All Sky 1

    NASA Image and Video Library

    2003-03-27

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns. The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04252

  7. Extended Source/Galaxy All Sky 2

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey’s All-Sky Survey Extended Source Catalog; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04251

  8. Charged-coupled detector sky surveys.

    PubMed Central

    Schneider, D P

    1993-01-01

    Sky surveys have played a fundamental role in advancing our understanding of the cosmos. The current pictures of stellar evolution and structure and kinematics of our Galaxy were made possible by the extensive photographic and spectrographic programs performed in the early part of the 20th century. The Palomar Sky Survey, completed in the 1950s, is still the principal source for many investigations. In the past few decades surveys have been undertaken at radio, millimeter, infrared, and x-ray wavelengths; each has provided insights into new astronomical phenomena (e.g., quasars, pulsars, and the 3 degrees cosmic background radiation). The advent of high quantum efficiency, linear solid-state devices, in particular charged-coupled detectors, has brought about a revolution in optical astronomy. With the recent development of large-format charged-coupled detectors and the rapidly increasing capabilities of data acquisition and processing systems, it is now feasible to employ the full capabilities of electronic detectors in projects that cover an appreciable fraction of the sky. This talk reviews the first "large scale" charged-coupled detector survey. This program, designed to detect very distant quasars, reveals the powers and limitations of charged-coupled detector surveys. PMID:11607431

  9. Extended Source/Galaxy All Sky 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns.

    The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image.

  10. Starry sky hepatic ultrasonographic pattern in horses.

    PubMed

    Carlson, Kelly L; Chaffin, M Keith; Corapi, Wayne V; Snowden, Karen F; Schmitz, David G

    2011-01-01

    The starry sky hepatic pattern is an unusual ultrasonographic appearance of equine liver characterized by numerous small, hyperechoic foci, some of which cast an acoustic shadow, distributed randomly throughout the hepatic parenchyma. Our objectives were to describe the signalment, clinical signs, clinicopathological findings, primary disease process, and ultrasonographic findings of horses with this ultrasonographic pattern, as well as determine the associated gross and histologic changes. The starry sky pattern was identified in 18 adult horses of mixed gender and breed. The horses had various clinical signs, with weight loss and anorexia reported most commonly. Liver size and parenchymal echogenicity were normal in most horses. The hyperechoic foci frequently caused acoustic shadowing. Biliary dilation was noted rarely. The ultrasonographic pattern was the result of numerous fibrosing hepatic granulomas in all horses evaluated histologically. γ-Glutamyltransferase was the most commonly elevated hepatic enzyme, though it was increased in fewer than half the horses. Fifteen horses had an additional disease that was identified as the apparent cause of clinical signs. Three horses had primary hepatic disease while 12 had diseases of other body systems. Therefore, the starry sky ultrasonographic pattern is likely incidental in most horses and not clinically significant. Improved recognition of this pattern and further investigation of affected horses may help refine the etiology and clinical significance of the granulomas. © 2011 Veterinary Radiology & Ultrasound.

  11. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Sabri, Nor Hazmin; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  12. Spatial Model of Sky Brightness Magnitude in Langkawi Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Redzuan Tahar, Mohammad; Kamarudin, Farahana; Umar, Roslan; Khairul Amri Kamarudin, Mohd; Hazmin Sabri, Nor; Ahmad, Karzaman; Rahim, Sobri Abdul; Sharul Aikal Baharim, Mohd

    2017-03-01

    Sky brightness is an essential topic in the field of astronomy, especially for optical astronomical observations that need very clear and dark sky conditions. This study presents the spatial model of sky brightness magnitude in Langkawi Island, Malaysia. Two types of Sky Quality Meter (SQM) manufactured by Unihedron are used to measure the sky brightness on a moonless night (or when the Moon is below the horizon), when the sky is cloudless and the locations are at least 100 m from the nearest light source. The selected locations are marked by their GPS coordinates. The sky brightness data obtained in this study were interpolated and analyzed using a Geographic Information System (GIS), thus producing a spatial model of sky brightness that clearly shows the dark and bright sky areas in Langkawi Island. Surprisingly, our results show the existence of a few dark sites nearby areas of high human activity. The sky brightness of 21.45 mag arcsec{}-2 in the Johnson-Cousins V-band, as the average of sky brightness equivalent to 2.8 × {10}-4{cd} {{{m}}}-2 over the entire island, is an indication that the island is, overall, still relatively dark. However, the amount of development taking place might reduce the number in the near future as the island is famous as a holiday destination.

  13. A silver needle in the sky

    NASA Image and Video Library

    2014-08-18

    This stunning new image from the NASA/ESA Hubble Space Telescope shows part of the sky in the constellation of Canes Venatici (The Hunting Dogs). Although this region of the sky is not home to any stellar heavyweights, being mostly filled with stars of average brightness, it does contain five Messier objects and numerous intriguing galaxies — including NGC 5195, a small barred spiral galaxy considered to be one of the most beautiful galaxies visible, and its nearby interacting partner the Whirlpool Galaxy (heic0506a). The quirky Sunflower Galaxy is another notable galaxy in this constellation, and is one of the largest and brightest edge-on galaxies in our skies. Joining this host of characters is spiral galaxy NGC 4244, nicknamed the Silver Needle Galaxy, shown here in a new image from Hubble. This galaxy spans some 65 000 light-years and lies around 13.5 million light-years away. It appears as a wafer-thin streak across the sky, with its loosely wound spiral arms hidden from view as we observe the galaxy side on. It is part of a group of galaxies known as the M94 Group [1]. Numerous bright clumps of gas can be seen scattered across its length, along with dark dust lanes surrounding the galaxy’s core. NGC 4244 also has a bright star cluster at its centre. Although we can make out the galaxy’s bright central region and star-spattered arms, we cannot see any more intricate structure due to the galaxy’s position; from Earth, we see it stretched out as a flattened streak across the sky. A number of different observations were pieced together to form this mosaic, and gaps in Hubble’s coverage have been filled in using ground-based data. The Hubble observations were taken as part of the GHOSTS survey, which is scanning nearby galaxies to explore how they and their stars formed to get a more complete view of the history of the Universe. Notes [1] Our home group, containing the Milky Way and many others, is known as the Local Group. M94 is relatively close to th

  14. The interactive sky: a browsable allsky image

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; Da Rosa, Fernando; Roland, Santiago; Almenares, Luciano; Gomez, Fernando

    2015-08-01

    We are conducting a project to make available panoramas of the night sky of the southern hemisphere, based on a mosaic of hundred of photographs. Each allsky panorama is a giant image composed by hundreds of high-resolution photos taken in the course of one night. The panoramas are accessible with a web-browser and the public is able to zoom on them and to see the sky with better quality than the naked eye. We are preparing 4 sets of panoramas corresponding to the four seasons.The individual images are taken with a 16 Mpixels DLSR camera with a 50 mm lens mounted on a Gigapan EPIC robotic camera mounts. These devices and a autoguiding telescope are mounted in a equatorial telescope mount, which allows us to have exposure of several tens seconds. The images are then processed and stitched to create the gigantic panorama, with typical weight of several GBytes.The limiting magnitude is V~8. The panoramas include more than 50 times more stars those detected with the naked eye.In addition to the allsky panoramas, we embedded higher resolution images of specific regions of interest such as: emission nebulae and dark, open and globular clusters and galaxies; which can be zoomed.The photographs have been acquiring since December 2014 in a dark place with low light pollution in the countryside of Uruguay; which allows us to achieve deep sky objects.These panoramas will be available on a website and can be accessed with any browser.This tool will be available for teaching purposes, astronomy popularization or introductory research. Teacher guides will be developed for educational activities at different educational levels.While there are similar projects like Google Sky, the methodology used to generate the giant panoramas allows a much more realistic view, with a background of continuous sky without sharp edges. Furthermore, while the planetarium software is based on drawings of the stars, our panoramas are based on real images.This is the first project with these

  15. COBE's search for structure in the Big Bang

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)

    1989-01-01

    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.

  16. Teach and Touch the Earth and Sky

    NASA Astrophysics Data System (ADS)

    Florina Tendea, Camelia

    2017-04-01

    My name is Camelia Florina Tendea. I am primary school teacher at "Horea, Closca and Crisan" Secondary School, in Brad, a town in the west side of Transylvania. I am permanently interested to develop my knowledge and teaching skills about space sciences (Earth and Sky) because the new generations of students are very well informed and couriouse about these topics. In this context the teachers must be prepared to deal with such requests in school. Introducing of activity: For a primary school teacher is a real challenge teaching about Earth and Sky, so I consider that a collaboration with science teachers, engineers and other specialists in the sciences is absolutely essential and beneficial in the educational design. In my opinion, the contents about Earth ans Sky-Space in a single word- are very attractive for students and they are a permanent source of discoveries and provide a multidisciplinary vision, so required in the education. Possible contents to teach in primary school: about Earth: -Terra -the third Planet from the Sun; How Earth spins; Land and water; The Earth seen from space, Trip between Earth and Moon,Weather Phenomena; the Poles; about Sky: Solar System, Asteroids, Comets, Meteorites; Rosetta Mission or rendez-vous with a comet; Sun.Moon. Earth. Eclipse;Light Pollution and protection of the night sky; Life in Space. Astronauts and experiences; Mission X:- Train Like an Astronaut;About ISS. For teachers it is important to know from the beginning how they teach, a viable support is the teaching of STEM subjects, which provides access to careers in astronomy, science/technology space. We could teach about earth and sky using different kinds of experiments, simulations, hands-on activities, competitions, exhibitions, video presentations. Competences developed in primary school through these contents: Comunication, individual studying, understanding and valorisation of scientific information, relating to the natural environment. In addition, they are

  17. The Economics of Big Area Addtiive Manufacturing

    SciTech Connect

    Post, Brian; Lloyd, Peter D; Lindahl, John; Lind, Randall F; Love, Lonnie J; Kunc, Vlastimil

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  18. SkyServer: Education and Outreach with Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Raddick, M. J.

    2002-12-01

    The Sloan Digital Sky Survey (SDSS) will map 25 night sky down to 23rd magnitude, cataloging more than 100 million objects and taking spectra of over 1 million objects. All SDSS data will be publicly available over the Internet, and the instant access to high-quality data that SDSS offers is already beginning to change astronomy. The same power of data access can likewise change the way science is taught, at all levels, around the world. The SkyServer web site makes all SDSS data available, free of charge, to students and the general public. We have developed several tools to make the data easier to access and understand, as well as several interactive educational activities that use data to teach concepts from astronomy, physics, and computational science. Students can use SDSS data to make a Hubble diagram and see the expansion of the universe, to connect stars and galaxies to make their own constellations, or to find and study asteroids and supernovae. Each activity includes a teacher's site with background reading, ideas for student evaluation, and correlations to national educational standards. Students can also use SkyServer for independent scientific research -- they can answer their own questions by analyzing exactly the same high-quality data that professional researchers analyze. In this talk, I will introduce the tools and projects we have developed for SkyServer, present some preliminary data on SkyServer's distribution and effectiveness, and share the lessons we have learned. We are actively looking for teachers at all levels to help us evaluate our materials, and for other outreach groups to share insights with us. Our work has been sponsored by an IDEAS grant from NASA's Office of Space Science, by a Small Grant for Emerging Research from the National Science Foundation, and by the Maryland Space Grant Consortium.

  19. [Big data in official statistics].

    PubMed

    Zwick, Markus

    2015-08-01

    The concept of "big data" stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany.

  20. GEOSS: Addressing Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  1. Considerations on Geospatial Big Data

    NASA Astrophysics Data System (ADS)

    LIU, Zhen; GUO, Huadong; WANG, Changlin

    2016-11-01

    Geospatial data, as a significant portion of big data, has recently gained the full attention of researchers. However, few researchers focus on the evolution of geospatial data and its scientific research methodologies. When entering into the big data era, fully understanding the changing research paradigm associated with geospatial data will definitely benefit future research on big data. In this paper, we look deep into these issues by examining the components and features of geospatial big data, reviewing relevant scientific research methodologies, and examining the evolving pattern of geospatial data in the scope of the four ‘science paradigms’. This paper proposes that geospatial big data has significantly shifted the scientific research methodology from ‘hypothesis to data’ to ‘data to questions’ and it is important to explore the generality of growing geospatial data ‘from bottom to top’. Particularly, four research areas that mostly reflect data-driven geospatial research are proposed: spatial correlation, spatial analytics, spatial visualization, and scientific knowledge discovery. It is also pointed out that privacy and quality issues of geospatial data may require more attention in the future. Also, some challenges and thoughts are raised for future discussion.

  2. Big data for bipolar disorder.

    PubMed

    Monteith, Scott; Glenn, Tasha; Geddes, John; Whybrow, Peter C; Bauer, Michael

    2016-12-01

    The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, population health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many technical challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active participation of psychiatrists is needed throughout the analytical process.

  3. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  4. Causality and skies: is non-refocussing necessary?

    NASA Astrophysics Data System (ADS)

    Bautista, A.; Ibort, A.; Lafuente, J.

    2015-05-01

    The causal structure of a strongly causal, null pseudo-convex, space-time M is completely characterized in terms of a partial order on its space of skies defined by means of a class of non-negative Legendrian isotopies called sky isotopies. It is also shown that such partial order is determined by the class of future causal celestial curves, that is, curves in the space of light rays which are tangent to skies and such that they determine non-negative sky isotopies. It will also be proved that the space of skies Σ equipped with Low’s (or reconstructive) topology is homeomorphic and diffeomorphic to M under the only additional assumption that M separates skies, that is, that different events determine different skies. The sky-separating property of M is sharp and the previous result provides an answer to the question about the class of space-times whose causal structure, topological and differentiable structure can be reconstructed from their spaces of light rays and skies. These results can be understood as a Malament-Hawking-like theorem stated in terms of the partial order defined on the space of skies.

  5. Dark Skies Awareness Programs for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  6. Going Big or Going Home!

    NASA Astrophysics Data System (ADS)

    Riendeau, Diane

    2013-04-01

    It seems to me that people are going to greater extremes to get thrills these days. Amusement park rides are getting tall and faster. Sky diving is becoming a ``normal'' thing to do to celebrate your birthday. To acknowledge this lust for bigger and better, I put together a few videos that I thought might fit the bill.

  7. Going Big or Going Home!

    NASA Astrophysics Data System (ADS)

    2013-04-01

    It seems to me that people are going to greater extremes to get thrills these days. Amusement park rides are getting tall and faster. Sky diving is becoming a "normal" thing to do to celebrate your birthday. To acknowledge this lust for bigger and better, I put together a few videos that I thought might fit the bill.

  8. The diffuse galactic far-ultraviolet sky

    SciTech Connect

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  9. The SPHEREx All-Sky Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. The 53 GHz DMR sky map

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 53 GHz DMR sky map (top) prior to dipole subtraction, (middle) after dipole subtraction, and (bottom) after subtraction of a model of the Galactic emission, based on data gathered over the entire 4-year mission. The Galactic emission model is based on DIRBE far-infrared and Haslam et al. (1982) 408 MHz radio continuum observations (see Bennett et al. 1996, ApJ, 464, L1). Bennett et al. excluded an area around the Galactic plane referred to as the 'custom cut' region when they conducted their analysis. See slide 19 caption for information about map smoothing and projection.

  11. Hot spots in the microwave sky

    NASA Technical Reports Server (NTRS)

    Vittorio, Nicola; Juszkiewicz, Roman

    1987-01-01

    Tha assumption that the cosmic background fluctuations can be approximated as a random Gaussian field implies specific predictions for the radiation temperature pattern. Using this assumption, the abundances and angular sizes are calculated for regions of various levels of brightness expected to appear in the sky. Different observational strategies are assessed in the context of these results. Calculations for both large-angle and small-angle anisotropy generated by scale-invariant fluctuations in a flat universe are presented. Also discussed are simple generalizations to open cosmological models.

  12. The FLAMINGOS-2 On-Sky Performance

    NASA Astrophysics Data System (ADS)

    Raines, Steven Nicholas; Eikenberry, S. S.; Gonzalez, A. H.; Bandyopadhyay, R. M.; DeWitt, C.; Elston, R. J.; Bennett, J.; Murphey, C.; Hanna, K. T.; Rambold, W. N.; Warner, C.; Bessoff, A.; Branch, M.; Corley, R.; Eriksen, J.; Frommeyer, S.; Herlevich, M.; Hon, D.; Julian, J. A.; Julian, R. E.; Marin-Franch, A.; Marti, J.; Rashkin, D.; Leckie, B.; Gardhouse, W.; Fletcher, M.; Hardy, T.; Dunn, J.; Wooff, R.; Gomez, P. L.; Diaz, R. J.; Bergmann, M. P.

    2010-01-01

    FLAMINGOS-2, a near-infrared wide-field imager and fully-cryogenic multi-object spectrometer for Gemini Observatory built by the University of Florida, achieved First-Light in September 2009. We present and discuss on-sky characterization data such as image quality, imaging throughput, spectroscopic image quality and throughput, spectroscopic dispersion and resolution, as well as plate scale, field-of-view, and distortion. We also present detector plus system read noise, and detector gain, dark current, and linearity.

  13. SPHEREx: An All-Sky Spectral Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; SPHEREx Science Team

    2016-01-01

    SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A in July 2015, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, in a single survey, with a single instrument. We will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power. Finally, SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 - 4.8 um at R = 41.5 and 150) with high sensitivity using a cooled telescope with large mapping speed.SPHEREx will observe from a sun-synchronous low-earth orbit, covering the entire sky in a manner similar to IRAS, COBE and WISE. During its two-year mission, SPHEREx will produce four complete all-sky maps for constraining the physics of inflation. These same maps contain numerous high signal-to-noise absorption spectra to study water and biogenic ices. The orbit naturally covers two deep regions at the celestial poles, which we use for studying galaxy evolution. All aspects of the SPHEREx instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. The projected instrument sensitivity, based on conservative performance estimates, meets the driving point source sensitivity requirement with 300 % margin.SPHEREx is a partnership between Caltech and JPL, following the successful management structure of the NuSTAR and GALEX SMEX missions. The spacecraft

  14. ACTPol: On-Sky Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Grace, E.; Beall, J.; Bond, J. R.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dunner, R.; Fox, A. E.; Gallardo, P.; Hasselfield, M.; Henderson, S.; Hilton, G. C.; Hincks, A. D.; Hlozek, R.; Hubmayr, J.; Irwin, K.; Klein, J.; Koopman, B.; Li, D.; Lungu, M.; Newburgh, L.; Nibarger, J. P.; Niemack, M. D.; Maurin, L.; Wollack, E. J.

    2014-01-01

    ACTPol is the polarization-sensitive receiver on the Atacama Cosmology Telescope. ACTPol enables sensitive millimeter wavelength measurements of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB) at arcminute angular scales. These measurements are designed to explore the process of cosmic structure formation, constrain or determine the sum of the neutrino masses, probe dark energy, and provide a foundation for a host of other cosmological tests. We present an overview of the first season of ACTPol observations focusing on the optimization and calibration of the first detector array as well as detailing the on-sky performance.

  15. Sloan Digital Sky Survey Photometric Calibration Revisited

    SciTech Connect

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  16. A ROTATION MEASURE IMAGE OF THE SKY

    SciTech Connect

    Taylor, A. R.; Stil, J. M.; Sunstrum, C.

    2009-09-10

    We have re-analyzed the NRAO VLA Sky Survey (NVSS) data to derive rotation measures (RMs) toward 37,543 polarized radio sources. The resulting catalog of RM values covers the sky area north of declination -40 deg. with an average density of more than one RM per square degree. We present an image of the median RM over 82% of the sky with a resolution of 8 deg. and a typical error of {+-}1-2 rad m{sup -2}. The image shows large-scale structures in RM that extend to very high Galactic latitudes. A simple analysis of the RM structure at high Galactic latitudes is used to derive properties of the Galactic halo magnetic field in the solar neighborhood. We find the component of the local field perpendicular to the plane (the z-component) equal to +0.30 {mu}G for z < 0 and -0.14 {mu}G for z>0. The reversal of sign across the Galactic plane is consistent with a quadrupole field geometry for the poloidal component of the halo field. The halo magnetic field component parallel to the disk is also found to be antisymmetric and generally consistent with a toroidal field, with strength +0.83 {mu}G for z < 0 and -0.39 {mu}G for z>0. We have identified five regions of the sky where the foreground median RM is consistently less than 1 rad m{sup -2} over several degrees. These holes in the foreground RM will be useful for future studies of possible small-scale fluctuations in cosmic magnetic field structures. In addition to allowing measurement of RMs toward polarized sources, the new analysis of the NVSS data removes the effects of bandwidth depolarization for |RM| {approx}> 100 rad m{sup -2} inherent in the original NVSS source catalog. This new catalog of RMs and polarized flux densities is available online, and will be a valuable resource for further studies of the Galactic magnetic field and magnetoionic medium, and extragalactic magnetic fields.

  17. Temperature Stability of the Sky Quality Meter

    PubMed Central

    Schnitt, Sabrina; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz; Kyba, Christopher C.M.

    2013-01-01

    The stability of radiance measurements taken by the Sky Quality Meter (SQM) was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of −15°C to 35°C, and during temperature changes of −33°C/h and +70°C/h. This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%, indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions. PMID:24030682

  18. Lost Skies of Italian Folk Astronomy

    NASA Astrophysics Data System (ADS)

    Barale, Piero

    The limited archival material and the scarcity of evidence from the oldest living representatives of various communities effectively restrict research on archaic astronomical knowledge within Italy to the Alpine area and the most northerly part of the Appenines. These are territories where, fortunately, the folk culture is historically recognized as being very conservative. The sky provided a series of "astral instruments" used for planning religious festivals, fairs, and work in the fields through an empirical-symbolic approach and ancient sidereal calendars with which the valley dwellers were able to arrange daily life.

  19. Big Data Analytics in Healthcare

    PubMed Central

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S. M. Reza; Beard, Daniel A.

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined. PMID:26229957

  20. Multiwavelength astronomy and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    Two major characteristics of modern astronomy are multiwavelength (MW) studies (fromγ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed at various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomers deal with big numbers. Surveys are the main source for discovery of astronomical objects and accumulation of observational data for further analysis, interpretation, and achieving scientific results. We review the main characteristics of astronomical surveys, compare photographic and digital eras of astronomical studies (including the development of wide-field observations), describe the present state of MW surveys, and discuss the Big Data in astronomy and related topics of Virtual Observatories and Computational Astrophysics. The review includes many numbers and data that can be compared to have a possibly overall understanding on the Universe, cosmic numbers and their relationship to modern computational facilities.

  1. Big Data: Astronomical or Genomical?

    PubMed

    Stephens, Zachary D; Lee, Skylar Y; Faghri, Faraz; Campbell, Roy H; Zhai, Chengxiang; Efron, Miles J; Iyer, Ravishankar; Schatz, Michael C; Sinha, Saurabh; Robinson, Gene E

    2015-07-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"--it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade.

  2. Big Data Analytics in Healthcare.

    PubMed

    Belle, Ashwin; Thiagarajan, Raghuram; Soroushmehr, S M Reza; Navidi, Fatemeh; Beard, Daniel A; Najarian, Kayvan

    2015-01-01

    The rapidly expanding field of big data analytics has started to play a pivotal role in the evolution of healthcare practices and research. It has provided tools to accumulate, manage, analyze, and assimilate large volumes of disparate, structured, and unstructured data produced by current healthcare systems. Big data analytics has been recently applied towards aiding the process of care delivery and disease exploration. However, the adoption rate and research development in this space is still hindered by some fundamental problems inherent within the big data paradigm. In this paper, we discuss some of these major challenges with a focus on three upcoming and promising areas of medical research: image, signal, and genomics based analytics. Recent research which targets utilization of large volumes of medical data while combining multimodal data from disparate sources is discussed. Potential areas of research within this field which have the ability to provide meaningful impact on healthcare delivery are also examined.

  3. Big Data: Astronomical or Genomical?

    PubMed Central

    Stephens, Zachary D.; Lee, Skylar Y.; Faghri, Faraz; Campbell, Roy H.; Zhai, Chengxiang; Efron, Miles J.; Iyer, Ravishankar; Schatz, Michael C.; Sinha, Saurabh; Robinson, Gene E.

    2015-01-01

    Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed beast”—it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the “genomical” challenges of the next decade. PMID:26151137

  4. ESA joins forces with Japan on new infrared sky surveyor

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Prof. David Southwood, ESA’s Director of Science, said: “The successful launch of ASTRO-F(Akari) is a big step. A decade ago, our Infrared Space Observatory (ISO) opened up this field of astronomy, and the Japanese took part then. It is wonderful to be cooperating again with Japan in this discipline.” “Our involvement with the Japanese in this programme responds to our long-term commitment in infrared astronomy, whose potential for discovery is huge. We are now off and rolling with ASTRO-F/Akari, but we are also working extremely hard towards the launch of the next-generation infrared telescope, ESA’s Herschel spacecraft, which will go up in the next two years”, he continued. “This will still not be the end of the story. Infrared astronomy is also a fundamental part of the future vision for ESA’s space research, as outlined in the ‘Cosmic Vision 2015-2025’ programme. The truth is, subjects such as the formation of stars and exoplanets, or the evolution of the early universe, are themes at the very core of our programme.” The mission : On 21 February, at 22:28 Central European Time, (22 February, 06:28 local time), a Japanese M-V rocket blasted off from the Uchinoura Space Centre, in the Kagoshima district of Japan, carrying the new infrared satellite into space. In about two weeks' time, ASTRO-F will be in polar orbit around the Earth at an altitude of 745 kilometres. From there, after two months of system check-outs and performance verification, it will survey the whole sky in about half a year, with much better sensitivity, spatial resolution and wider wavelength coverage than its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite (1983). The all-sky survey will be followed by a ten-month phase during which thousands of selected astronomical targets will be observed in detail. This will enable scientists to look at these individual objects for a longer time, and thus with increased sensitivity, to conduct their spectral

  5. Graphene in the Sky and Beyond

    NASA Technical Reports Server (NTRS)

    Siochi, Emilie J.

    2014-01-01

    With the premium placed on strong, lightweight structures, carbon materials have a long history of use in aerospace applications. Graphitized carbon and carbon/carbon composites are used in thermal protection systems and heat shields, carbon fiber composites in aircraft, and more recently, carbon nanotubes have been used on spacecraft. As the newest member of this family of materials, graphene also has a number of interesting properties that intersect with unique aerospace requirements. Despite its many attractive properties, graphene-based structures and systems, like any other material used in aerospace, must clear a number of hurdles before it will be accepted for use in flight structures. Carbon fiber, for example, underwent a development period of several decades between initial discovery and large-scale application in commercial aircraft.

  6. Exascale computing and big data

    SciTech Connect

    Reed, Daniel A.; Dongarra, Jack

    2015-06-25

    Scientific discovery and engineering innovation requires unifying traditionally separated high-performance computing and big data analytics. The tools and cultures of high-performance computing and big data analytics have diverged, to the detriment of both; unification is essential to address a spectrum of major research domains. The challenges of scale tax our ability to transmit data, compute complicated functions on that data, or store a substantial part of it; new approaches are required to meet these challenges. Finally, the international nature of science demands further development of advanced computer architectures and global standards for processing data, even as international competition complicates the openness of the scientific process.

  7. [Big Data- challenges and risks].

    PubMed

    Krauß, Manuela; Tóth, Tamás; Hanika, Heinrich; Kozlovszky, Miklós; Dinya, Elek

    2015-12-06

    The term "Big Data" is commonly used to describe the growing mass of information being created recently. New conclusions can be drawn and new services can be developed by the connection, processing and analysis of these information. This affects all aspects of life, including health and medicine. The authors review the application areas of Big Data, and present examples from health and other areas. However, there are several preconditions of the effective use of the opportunities: proper infrastructure, well defined regulatory environment with particular emphasis on data protection and privacy. These issues and the current actions for solution are also presented.

  8. All Sky Camera for the CTA Atmospheric Calibration work package

    NASA Astrophysics Data System (ADS)

    Mandat, Dusan; Pech, Miroslav; Hrabovsky, Miroslav; Schovanek, Petr; Palatka, Miroslav; Prouza, Michael; Travnicek, Petr; Janecek, Petr; Ebr, Jan; Doro, Michele; Gaug, Markus

    2015-03-01

    The All Sky Camera (ASC) is a passive non-invasive imaging system for rapid night sky atmosphere monitoring. By design, the operation of the ASC will not affect the measurement procedure of the CTA observatory, for which we discuss its application in this report. The data collected should enable improved productivity and increased measurement time for the CTA observatory. The goal of ASC is to identify cloud position, atmosphere attenuation and time evolution of the sky condition, working within the CTA Central Calibration Facilities (CCF) group. Clouds and atmosphere monitoring may allow near-future prediction of the night-sky quality, helping scheduling. Also, in the case of partly cloudy night sky the cameras will identify the uncovered regions of the sky during the operation time, and define potential observable sources that can be measured. By doing so, a higher productivity of the CTA observatory measurements may be possible.

  9. Blinded: Modern Art, Astronomy, and the Lost Sky

    NASA Astrophysics Data System (ADS)

    Wells, G.

    2016-01-01

    For today's casual visual observer, the night sky has become lost. Pollution, light glare, and the constructed environment have created a blindness through which the night sky is only imperfectly seen, when seen at all. Can the night sky, then, still inspire art if it has become invisible? In this paper, I would like to explore the question of the inspiration of the night sky in the absence of direct observation. In particular, I suggest that the absence of the visual night sky has forced artists to consider the problems of representing an “invisible” subject from nature. The implications of this “invisible” sky are not just a matter of stylistic expression, but also of cultural interpretation.

  10. On the relation between zenith sky brightness and horizontal illuminance

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Posch, Th.; Solano Lamphar, H. A.

    2015-01-01

    The effects of artificial light at night are an emergent research topic for astronomers, physicists, engineers and biologists around the world. This leads to a need for measurements of the night sky brightness (= diffuse luminance of the night sky) and nocturnal illuminance. Currently, the most sensitive light meters measure the zenith sky brightness in magV/arcsec2 or - less frequently - in cd m-2. However, the horizontal illuminance resulting only from the night sky is an important source of information that is difficult to obtain with common instruments. Here we present a set of approximations to convert the zenith luminance into horizontal illuminance. Three different approximations are presented for three idealized atmospheric conditions: homogeneous sky brightness, an isotropically scattering atmosphere and a turbid atmosphere. We also apply the resulting conversion formulae to experimental data on night sky luminance, obtained during the past three years.

  11. Seeing the Sky through Hubble's Eye: The COSMOS SkyWalker

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Sánchez, S. F.; Koekemoer, A.

    2006-08-01

    Large, high-resolution space-based imaging surveys produce a volume of data that is difficult to present to the public in a comprehensible way. While megapixel-sized images can still be printed out or downloaded via the World Wide Web, this is no longer feasible for images with 109 pixels (e.g., the Hubble Space Telescope Advanced Camera for Surveys [ACS] images of the Galaxy Evolution from Morphology and SEDs [GEMS] project) or even 1010 pixels (for the ACS Cosmic Evolution Survey [COSMOS]). We present a Web-based utility called the COSMOS SkyWalker that allows viewing of the huge ACS image data set, even through slow Internet connections. Using standard HTML and JavaScript, the application successively loads only those portions of the image at a time that are currently being viewed on the screen. The user can move within the image by using the mouse or interacting with an overview image. Using an astrometrically registered image for the COSMOS SkyWalker allows the display of calibrated world coordinates for use in science. The SkyWalker ``technique'' can be applied to other data sets. This requires some customization, notably the slicing up of a data set into small (e.g., 2562 pixel) subimages. An advantage of the SkyWalker is the use of standard Web browser components; thus, it requires no installation of any software and can therefore be viewed by anyone across many operating systems.

  12. EXPLORING THE VARIABLE SKY WITH LINEAR. I. PHOTOMETRIC RECALIBRATION WITH THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Sesar, Branimir; Stuart, J. Scott; Ivezic, Zeljko; Morgan, Dylan P.; Becker, Andrew C.; Wozniak, Przemyslaw

    2011-12-15

    We describe photometric recalibration of data obtained by the asteroid survey LINEAR. Although LINEAR was designed for astrometric discovery of moving objects, the data set described here contains over 5 billion photometric measurements for about 25 million objects, mostly stars. We use Sloan Digital Sky Survey (SDSS) data from the overlapping {approx}10,000 deg{sup 2} of sky to recalibrate LINEAR photometry and achieve errors of 0.03 mag for sources not limited by photon statistics with errors of 0.2 mag at r {approx} 18. With its 200 observations per object on average, LINEAR data provide time domain information for the brightest four magnitudes of the SDSS survey. At the same time, LINEAR extends the deepest similar wide-area variability survey, the Northern Sky Variability Survey, by 3 mag. We briefly discuss the properties of about 7000 visually confirmed periodic variables, dominated by roughly equal fractions of RR Lyrae stars and eclipsing binary stars, and analyze their distribution in optical and infrared color-color diagrams. The LINEAR data set is publicly available from the SkyDOT Web site.

  13. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Notes [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to several hundreds light years on each side of the black hole, or about several thousand million million km! More information This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising

  14. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Note: [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to 1000 light-years, or about 9000 million million km! More Information: This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates

  15. Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Isbell, D.; Pompea, S. M.

    2007-12-01

    The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline

  16. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    NASA Astrophysics Data System (ADS)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  17. Observing Handbook and Catalogue of Deep-Sky Objects

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Christian B.; Skiff, Brian A.

    1998-09-01

    List of charts, tables and figures; Prolegomenon; Part I. Amateur Observing: Telescopes; Eyepieces; Finderscopes and finding; Star atlases; Gadgets; Looking through the telescope; Lighting and the recording of notes; Observing locations; Instruments used in the survey of deep-sky objects; Observing sites for the survey; Part II. Deep-Sky Data Sources: Galaxies; Open clusters; Globular clusters; Planetary nebulae; Galactic nebulae; Double stars; Part III. Observations: Notes on references for deep-sky observers; Catalogue; Appendix of double stars.

  18. Patrolling the Sky at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory B.; Obenberger, K.; Hartman, J.; LWA Collaboration

    2013-01-01

    The first station of the Long Wavelength Array, “LWA1”, is located near the center of the Very Large Array in central New Mexico and has recently begun scientific operations as a stand-alone instrument with collecting area roughly equivalent to a 100m dish. The LWA1 images the sky in near-real-time using the “transient buffer - narrowband” (TBN) system which is operational with 258 dipoles, and a bandwidth of 70 kHz. This bandwidth can be placed at any frequency between 5 and 88 MHz. Near-real-time reduction of the data is accomplished by a dedicated cluster in the electronics shelter of the array. The LWA1 can also form up to 4 beams on the sky simultaneously with 16 MHz bandwidth in each of two tunings and full polarization which can provide higher senstivity for follow-up observations. Here we report on detection limits for prompt emission from approximately 30 Gamma-Ray Bursts at frequencies between 30 and 80 MHz. We also report on a number of bright transients of short duration that were detected in the course of searching the error-boxes of GRBs. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grant AST-1139974 of the University Radio Observatory program.

  19. Flying Drosophila Orient to Sky Polarization

    PubMed Central

    Weir, Peter T.; Dickinson, Michael H.

    2015-01-01

    Summary Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], foraging bees and ants travel hundreds of meters to return to their nest [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of celestial cues for navigation is a general and perhaps ancient behavioral capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short straight segments are interspersed with rapid turns [7, 8]. Such flight modes, however, are inconsistent with measures of gene flow between geographically-separated populations [9-11], and individual Drosophila have been observed to travel 10 km across desert terrain in a single night [9, 12, 13] – a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the angle of polarization. Our findings indicate that flying Drosophila actively orient using the sky's natural polarization pattern. PMID:22177905

  20. Intercomparisons of nine sky brightness detectors.

    PubMed

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2011-01-01

    Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across The Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from -16% to +20%. Intercalibration reduces this to 0.5%, and -7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m(2) on 12 April, and the largest value was 5.94 ± 0.03 mcd/m(2) on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  1. Flying Drosophila orient to sky polarization.

    PubMed

    Weir, Peter T; Dickinson, Michael H

    2012-01-10

    Insects maintain a constant bearing across a wide range of spatial scales. Monarch butterflies and locusts traverse continents [1, 2], and foraging bees and ants travel hundreds of meters to return to their nests [1, 3, 4], whereas many other insects fly straight for only a few centimeters before changing direction. Despite this variation in spatial scale, the brain region thought to underlie long-distance navigation is remarkably conserved [5, 6], suggesting that the use of a celestial compass is a general and perhaps ancient capability of insects. Laboratory studies of Drosophila have identified a local search mode in which short, straight segments are interspersed with rapid turns [7, 8]. However, this flight mode is inconsistent with measured gene flow between geographically separated populations [9-11], and individual Drosophila can travel 10 km across desert terrain in a single night [9, 12, 13]-a feat that would be impossible without prolonged periods of straight flight. To directly examine orientation behavior under outdoor conditions, we built a portable flight arena in which a fly viewed the natural sky through a liquid crystal device that could experimentally rotate the polarization angle. Our findings indicate that Drosophila actively orient using the sky's natural polarization pattern.

  2. The Palomar-Quest Synoptic Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, A.; Djorgovski, S. G.; Graham, M.; Williams, R.; Granett, B.; Bogosavljevic, M.; Baltay, C.; Rabinowitz, D.; Bauer, A.; Andrews, P.; Morgan, N.; Snyder, J.; Ellman, N.; Brunner, R.; Rengstorf, A. W.; Musser, J.; Gebhard, M.; Mufson, S.

    2003-12-01

    Exploration of the time domain is rapidly becoming one of the most exciting areas of astronomy. The Palomar-Quest synoptic sky survey has recently started producing a steady stream of data. In driftscan mode the survey covers Declination strips 4.6 deg wide, between -25 and +30 deg, at least twice in each of the two filter sets, one Johnson-Cousin's UBRI and one SDSS r'i'z'z', at a rate of about 500 square degrees per night. The scans are separated by time baselines of days to months, and we anticipate that they will extend to multi-year time scales over the next 3 to 5 years or beyond. The unprecedented amount of data makes this the largest synoptic survey of its kind both in terms of area covered and depth. We would search for both variable and transient objects, including supernovae, variable AGN, GRB orphan afterglows, cataclysmic variables, interesting stellar flares, novae, other types of variable stars, and possibly even entirely new types of objects or phenomena. We are in the process of designing a real-time data reduction pipeline which would enable a rapid discovery and spectroscopic follow-up of transients and other intersting objects. This survey can be seen as a precursor for the even larger synoptic sky surveys with LSST and PanSTARRS.

  3. Structure in the Rotation Measure Sky

    NASA Astrophysics Data System (ADS)

    Stil, J. M.; Taylor, A. R.; Sunstrum, C.

    2011-01-01

    An analysis of structure in rotation measure (RM) across the sky based on the RM catalog of Taylor et al. is presented. Several resolved RM structures are identified with structure in the local interstellar medium, including radio loops I, II, and III, the Gum nebula, and the Orion-Eridanus superbubble. Structure functions (SFs) of RM are presented for selected areas, and maps of SF amplitude and slope across the sky are compared with Hα intensity and diffuse polarized intensity. RM variance on an angular scale of 1° is correlated with length of the line of sight through the Galaxy, with a contribution from local structures. The slope of the SFs is less concentrated to the Galactic plane and less correlated with length of the line of sight through the Galaxy, suggesting a more local origin for RM structure on angular scales ~10°. The RM variance is a factor of ~2 higher toward the South Galactic Pole than toward the North Galactic Pole, reflecting a more wide-spread asymmetry between the northern and southern Galactic hemispheres. Depolarization of diffuse Galactic synchrotron emission at latitudes <30° can be explained largely by Faraday dispersion related to small-scale variance in RM, but the errors allow a significant contribution from differential Faraday rotation along the line of sight.

  4. COSMO-SkyMed and GIS applications

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Sole, Aurelia; Serio, Carmine

    2013-04-01

    Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.

  5. Modelling, inference and big data in biophysics.

    PubMed

    Ho, Joshua W K; Grant, Guy H

    2017-07-30

    In recognition of the increasing importance of big data in biophysics, a new session called 'Modelling, inference, big data' is incorporated into the IUPAB/EBSA Congress on 18 July 2017 at Edinburgh, UK.

  6. The dancing sky: 6 years of night-sky observations at Cerro Paranal

    NASA Astrophysics Data System (ADS)

    Patat, F.

    2008-04-01

    Aims: This work provides the results of the first six years of operation by the systematic night-sky monitoring at ESO-Paranal (Chile). Methods: The UBVRI night-sky brightness was estimated on about 10 000 VLT-FORS1 archival images, obtained on more than 650 separate nights, distributed over 6 years, and covering the descent from maximum to minimum of sunspot cycle n. 23. Additionally, a set of about 1000 low-resolution, optical, night-sky spectra were extracted and analysed. Results: The unprecedented database discussed in this paper has led to detecting a clear seasonal variation of the broad-band night-sky brightness in the VRI passbands, similar to the well-known semi-annual oscillation of the Na I D doublet. The spectroscopic data demonstrate that this seasonality is common to all spectral features, with the remarkable exception of the OH rotational-vibrational bands. A clear dependency on the solar activity is detected in all passbands and is particularly pronounced in the U band, where the sky brightness decreased by ~0.6 mag arcsec-2 from maximum to minimum of solar cycle n. 23. No correlation is found between solar activity and the intensity of the Na I D doublet and the OH bands. A strong correlation between the intensity of N I 5200 Å and [OI]6300, 6364 Å is reported here for the first time. The paper also addresses the determination of the correlation time-scales with solar activity and the possible connection with the flux of charged particles emitted by the Sun. Based on observations with ESO Telescopes at Paranal Observatory.

  7. Evidence of Cross-correlation between the CMB Lensing and the γ-Ray Sky

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Perotto, Laurence; Regis, Marco; Camera, Stefano

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  8. Research on technology of target real-time detection under sea-sky background

    NASA Astrophysics Data System (ADS)

    Wang, Shiyun; Li, Yueqiang; Du, Bin; Wang, Hongtao; Han, Rui

    2015-10-01

    Optoelectronic imaging system which loaded on ships have several imaging channels generally. They can cover visible light (daylight and low-light), medium wave infrared and long wave infrared. To that systems have only two channels, visible light imaging is kept. In this paper, for the requirement of target real-time detection and classification under sea-sky background, image data from different channels are processed independently using Harris feature of targets and texture feature of background, then the result data from different channels are fused and compared to delete fake targets and interference from background, in order to reduce false alarm rate and improve the detection location precision. Based on the location relationship between targets and different type background (sky or sea), the target types are determined. For the rigidly requirement of system real time, multithread mechanism and big neighborhood processor are applied for parallel data processing, in order to reduce the processing time less than one frame time. At last, the experiment has been done on two channels system, approving that the method in this paper can improve the comprehensive searching performance of optoelectronic imaging system.

  9. EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY

    SciTech Connect

    Fornengo, Nicolao; Regis, Marco; Perotto, Laurence

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  10. EuroSkyWay Multipurpose Terminal: architecture and design methodology

    NASA Astrophysics Data System (ADS)

    Ciancarelli, C.; Macchia, G.

    2002-07-01

    This paper describes the architecture of the EuroSkyWay Multipurpose Terminal, aimed to satisfy the need of the Provider and Gateway Terminal of the EuroSkyWay system. First, an overview of the EuroSkyWay system is shown, with a short description of the proprietary EuroSkyWay protocol layer and of the terminals. The extension of the OMT methodology that has been used to design the system is described. Then, the architecture of the Multipurpose Terminal described in terms of configurations, hardware and software.

  11. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, Bruce K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  12. Scanning sky monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar

    2017-10-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.

  13. An optical to IR sky brightness model for the LSST

    NASA Astrophysics Data System (ADS)

    Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo

    2016-07-01

    To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.

  14. Managing the Big Data Avalanche in Astronomy - Data Mining the Galaxy Zoo Classification Database

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.

    2014-01-01

    We will summarize a variety of data mining experiments that have been applied to the Galaxy Zoo database of galaxy classifications, which were provided by the volunteer citizen scientists. The goal of these exercises is to learn new and improved classification rules for diverse populations of galaxies, which can then be applied to much larger sky surveys of the future, such as the LSST (Large Synoptic Sky Survey), which is proposed to obtain detailed photometric data for approximately 20 billion galaxies. The massive Big Data that astronomy projects will generate in the future demand greater application of data mining and data science algorithms, as well as greater training of astronomy students in the skills of data mining and data science. The project described here has involved several graduate and undergraduate research assistants at George Mason University.

  15. Chinchilla "big" and "little" gastrins.

    PubMed

    Shinomura, Y; Eng, J; Yalow, R S

    1987-02-27

    Gastrin heptadecapeptides (gastrins I and II which differ in the presence of sulfate on the tyrosine of the latter) have been purified and sequenced from several mammalian species including pig, dog, cat, sheep, cow, human and rat. A 34 amino acid precursor ("big" gastrin), generally accounting for only 5% of total gastrin immunoreactivity, has been purified and sequenced only from the pig, human, dog and goat. Recently we have demonstrated that guinea pig (GP) "little" gastrin is a hexadecapeptide due to a deletion of a glutamic acid in the region 6-9 from its NH2-terminus and that GP "big" gastrin is a 33 amino acid peptide. The chinchilla, like the GP, is a New World hystricomorph. This report describes the extraction and purification of "little" and "big" gastrins from 31 chinchilla antra. Chinchilla "little" gastrin is a hexadecapeptide with a sequence identical to that of the GP and its "big" gastrin is a 33 amino acid peptide with the following sequence: (See text)

  16. Big Opportunities in Small Science

    ERIC Educational Resources Information Center

    Dewey, T. Gregory

    2007-01-01

    A transformation is occurring that will have a major impact on how academic science is done and how scientists are trained. That transformation--driven by declining federal funds, as well as by the rising cost of technology and the need for costly, labor-intensive interdisciplinary approaches--is from small science to big science. It is…

  17. Big6 Turbotools and Synthesis

    ERIC Educational Resources Information Center

    Tooley, Melinda

    2005-01-01

    The different tools that are helpful during the Synthesis stage, their role in boosting students abilities in Synthesis and the way in which it can be customized to meet the needs of each group of students are discussed. Big6 TurboTools offers several tools to help complete the task. In Synthesis stage, these same tools along with Turbo Report and…

  18. The Case for "Big History."

    ERIC Educational Resources Information Center

    Christian, David

    1991-01-01

    Urges an approach to the teaching of history that takes the largest possible perspective, crossing time as well as space. Discusses the problems and advantages of such an approach. Describes a course on "big" history that begins with time, creation myths, and astronomy, and moves on to paleontology and evolution. (DK)

  19. Big Explosives Experimental Facility - BEEF

    ScienceCinema

    None

    2016-07-12

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  20. True Randomness from Big Data

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Periklis A.; Woodruff, David P.; Yang, Guang

    2016-09-01

    Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.

  1. The International Big History Association

    ERIC Educational Resources Information Center

    Duffy, Michael; Duffy, D'Neil

    2013-01-01

    IBHA, the International Big History Association, was organized in 2010 and "promotes the unified, interdisciplinary study and teaching of history of the Cosmos, Earth, Life, and Humanity." This is the vision that Montessori embraced long before the discoveries of modern science fleshed out the story of the evolving universe. "Big…

  2. Too Big for the Sieve

    NASA Image and Video Library

    2012-10-11

    In this image, the scoop on NASA Curiosity rover shows the larger soil particles that were too big to filter through a sample-processing sieve that is porous only to particles less than 0.006 inches 150 microns across.

  3. Banking Wyoming big sagebrush seeds

    Treesearch

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  4. Big Explosives Experimental Facility - BEEF

    SciTech Connect

    2014-10-31

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  5. True Randomness from Big Data

    PubMed Central

    Papakonstantinou, Periklis A.; Woodruff, David P.; Yang, Guang

    2016-01-01

    Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests. PMID:27666514

  6. 1976 Big Thompson flood, Colorado

    USGS Publications Warehouse

    Jarrett, R. D.; Vandas, S.J.

    2006-01-01

    In the early evening of July 31, 1976, a large stationary thunderstorm released as much as 7.5 inches of rainfall in about an hour (about 12 inches in a few hours) in the upper reaches of the Big Thompson River drainage. This large amount of rainfall in such a short period of time produced a flash flood that caught residents and tourists by surprise. The immense volume of water that churned down the narrow Big Thompson Canyon scoured the river channel and destroyed everything in its path, including 418 homes, 52 businesses, numerous bridges, paved and unpaved roads, power and telephone lines, and many other structures. The tragedy claimed the lives of 144 people. Scores of other people narrowly escaped with their lives. The Big Thompson flood ranks among the deadliest of Colorado's recorded floods. It is one of several destructive floods in the United States that has shown the necessity of conducting research to determine the causes and effects of floods. The U.S. Geological Survey (USGS) conducts research and operates a Nationwide streamgage network to help understand and predict the magnitude and likelihood of large streamflow events such as the Big Thompson Flood. Such research and streamgage information are part of an ongoing USGS effort to reduce flood hazards and to increase public awareness.

  7. True Randomness from Big Data.

    PubMed

    Papakonstantinou, Periklis A; Woodruff, David P; Yang, Guang

    2016-09-26

    Generating random bits is a difficult task, which is important for physical systems simulation, cryptography, and many applications that rely on high-quality random bits. Our contribution is to show how to generate provably random bits from uncertain events whose outcomes are routinely recorded in the form of massive data sets. These include scientific data sets, such as in astronomics, genomics, as well as data produced by individuals, such as internet search logs, sensor networks, and social network feeds. We view the generation of such data as the sampling process from a big source, which is a random variable of size at least a few gigabytes. Our view initiates the study of big sources in the randomness extraction literature. Previous approaches for big sources rely on statistical assumptions about the samples. We introduce a general method that provably extracts almost-uniform random bits from big sources and extensively validate it empirically on real data sets. The experimental findings indicate that our method is efficient enough to handle large enough sources, while previous extractor constructions are not efficient enough to be practical. Quality-wise, our method at least matches quantum randomness expanders and classical world empirical extractors as measured by standardized tests.

  8. China: Big Changes Coming Soon

    ERIC Educational Resources Information Center

    Rowen, Henry S.

    2011-01-01

    Big changes are ahead for China, probably abrupt ones. The economy has grown so rapidly for many years, over 30 years at an average of nine percent a year, that its size makes it a major player in trade and finance and increasingly in political and military matters. This growth is not only of great importance internationally, it is already having…

  9. The Case for "Big History."

    ERIC Educational Resources Information Center

    Christian, David

    1991-01-01

    Urges an approach to the teaching of history that takes the largest possible perspective, crossing time as well as space. Discusses the problems and advantages of such an approach. Describes a course on "big" history that begins with time, creation myths, and astronomy, and moves on to paleontology and evolution. (DK)

  10. The International Big History Association

    ERIC Educational Resources Information Center

    Duffy, Michael; Duffy, D'Neil

    2013-01-01

    IBHA, the International Big History Association, was organized in 2010 and "promotes the unified, interdisciplinary study and teaching of history of the Cosmos, Earth, Life, and Humanity." This is the vision that Montessori embraced long before the discoveries of modern science fleshed out the story of the evolving universe. "Big…

  11. Big sagebrush seed bank densities following wildfires

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...

  12. A survey of big data research

    PubMed Central

    Fang, Hua; Zhang, Zhaoyang; Wang, Chanpaul Jin; Daneshmand, Mahmoud; Wang, Chonggang; Wang, Honggang

    2015-01-01

    Big data create values for business and research, but pose significant challenges in terms of networking, storage, management, analytics and ethics. Multidisciplinary collaborations from engineers, computer scientists, statisticians and social scientists are needed to tackle, discover and understand big data. This survey presents an overview of big data initiatives, technologies and research in industries and academia, and discusses challenges and potential solutions. PMID:26504265

  13. Big Sagebrush Seed Bank Densities Following Wildfires

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia sp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires wildfires and big sagebrush seed is generally sho...

  14. Big Data: Implications for Health System Pharmacy

    PubMed Central

    Stokes, Laura B.; Rogers, Joseph W.; Hertig, John B.; Weber, Robert J.

    2016-01-01

    Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services. PMID:27559194

  15. Big Data: Implications for Health System Pharmacy.

    PubMed

    Stokes, Laura B; Rogers, Joseph W; Hertig, John B; Weber, Robert J

    2016-07-01

    Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services.

  16. A SWOT Analysis of Big Data

    ERIC Educational Resources Information Center

    Ahmadi, Mohammad; Dileepan, Parthasarati; Wheatley, Kathleen K.

    2016-01-01

    This is the decade of data analytics and big data, but not everyone agrees with the definition of big data. Some researchers see it as the future of data analysis, while others consider it as hype and foresee its demise in the near future. No matter how it is defined, big data for the time being is having its glory moment. The most important…

  17. Judging Big Deals: Challenges, Outcomes, and Advice

    ERIC Educational Resources Information Center

    Glasser, Sarah

    2013-01-01

    This article reports the results of an analysis of five Big Deal electronic journal packages to which Hofstra University's Axinn Library subscribes. COUNTER usage reports were used to judge the value of each Big Deal. Limitations of usage statistics are also discussed. In the end, the author concludes that four of the five Big Deals are good deals…

  18. Judging Big Deals: Challenges, Outcomes, and Advice

    ERIC Educational Resources Information Center

    Glasser, Sarah

    2013-01-01

    This article reports the results of an analysis of five Big Deal electronic journal packages to which Hofstra University's Axinn Library subscribes. COUNTER usage reports were used to judge the value of each Big Deal. Limitations of usage statistics are also discussed. In the end, the author concludes that four of the five Big Deals are good deals…

  19. A SWOT Analysis of Big Data

    ERIC Educational Resources Information Center

    Ahmadi, Mohammad; Dileepan, Parthasarati; Wheatley, Kathleen K.

    2016-01-01

    This is the decade of data analytics and big data, but not everyone agrees with the definition of big data. Some researchers see it as the future of data analysis, while others consider it as hype and foresee its demise in the near future. No matter how it is defined, big data for the time being is having its glory moment. The most important…

  20. The BigBoss Experiment

    SciTech Connect

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

    2012-06-07

    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.